diamonds %>%
ggplot(aes(x=cut)) +
geom_bar()
diamonds %>%
ggplot(mapping = aes(x = carat)) +
geom_histogram(binwidth = .5)
diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.5)
diamonds %>%
ggplot(aes(x= carat, color = cut)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
### Typical values
diamonds %>%
#filter out diamonds > 3 carat
filter(carat < 3) %>%
#plot
ggplot(aes(x=carat)) +
geom_histogram(binwidth = 0.01)
faithful %>%
ggplot(aes(eruptions)) +
geom_histogram(binwidth = 0.25)
diamonds %>%
ggplot(aes(y)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
diamonds %>%
ggplot(aes(y)) +
geom_histogram() +
coord_cartesian(ylim = c(0,50))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Missing Values
diamonds %>%
#filter( y <3 | y > 20) %>%
mutate(y =ifelse(y < 3 | y > 20, NA, y)) %>%
#plot
ggplot(aes(x = x, y = y)) +
geom_point()
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Covariation
diamonds %>%
ggplot(aes(x = cut, y = price)) +
geom_boxplot()
### Two categorical
diamonds %>%
count(color,cut) %>%
ggplot(aes(x=color, y =cut, fill =n)) +
geom_tile()
### Two continous variable
library(hexbin)
## Warning: package 'hexbin' was built under R version 4.4.3
diamonds %>%
ggplot(aes(x = carat, y = price)) +
geom_hex()
diamonds %>%
ggplot(aes(x = carat, y = price)) +
geom_boxplot(aes(group = cut_width(carat, 0.1)))
## Patterns and models
library(modelr)
mod <- lm(log(price) ~ log(carat), data = diamonds)
diamonds4 <- diamonds %>%
modelr::add_residuals(mod) %>%
mutate(resid = exp(resid))
diamonds4 %>%
ggplot(aes(carat, resid)) +
geom_point()
diamonds4 %>%
ggplot(aes(cut,resid))+
geom_boxplot()