1) Set-up

We need to set-up R Markdown to run Stata. This is possible due to Doug Hemken’s package: https://www.ssc.wisc.edu/~hemken/Stataworkshops/Statamarkdown/stata-and-r-markdown.html

2) Gathering Data

First, I gather data from SOEP. Much of this code is sourced from Kramer et al. (2024). I am very grateful to these authors for making their code public and saving me hundreds of hours of time. Their code can be found at: https://osf.io/qdtb5/

In particular, I implemented much of: https://osf.io/qdtb5/files/osfstorage/64b6939eb49dcb01557365fd https://osf.io/qdtb5/files/osfstorage/64b6939e465d14014aa31c19

My only changes I were:

1. I merged the occurrences of life events, such that: e.g., the 1st instance of bereavement was merged with the 2nd, 3rd etc.

2. I updated the code to collect data for 2021 and 2022.

A pdf for my data gathering script is available here: https://tinyurl.com/3ky8m8s2

quietly {
  do "/Users/charlieharrison/Desktop/Dissertation/Final Docs/Gathering_Data.do"
}

3) Analyzing Data

The in-text comments are fairly descriptive. Unfortunately, RMarkdown doesn’t display the plots. Please contact me if you have any questions.

Note: I then extracted the results manually, and plotted using R. See: https://tinyurl.com/mvf672f9

cd "/Users/charlieharrison/Desktop/DissCoding"
pwd

// Global variable for where SOEP data is saved 
global soep "/Users/charlieharrison/Desktop/DissCoding/SOEPFiles/Stata_DE/soepdata/raw"

// New directory for processed ("help") data
!mkdir "/Users/charlieharrison/Desktop/DissCoding/Processed_Data/"

// Shortcut for this directory
global helpdata "/Users/charlieharrison/Desktop/DissCoding/Processed_Data"

global soep_not_raw "/Users/charlieharrison/Desktop/DissCoding/SOEPFiles/Stata_DE/soepdata/"

use "$helpdata/dataset_lifesat_analyses.dta", clear

// *** Step 1: Create Decadal Period Dummies ***


*** Step 2: First-Difference Life Satisfaction ***
sort pid syear  
tsset pid syear

gen d_lifesat = lifesat - L.lifesat

// List of event variables with numeric conversion
local variables ///
    retire_1 unemployed_1 partner_died_1 father_died_1 mother_died_1 ///
    child_died_1 child_moved_out_1 first_job_1 ///
    divorced_1 newpartner_1 ///
    cohabnew_1 separation_1 ///
    childbirth_1 ///
    retire_n unemployed_n partner_died_n father_died_n mother_died_n ///
    child_died_n child_moved_out_n first_job_n ///
    divorced_n newpartner_n ///
    cohabnew_n separation_n ///
    childbirth_n

// Destring variables safely
foreach var in `variables' {
    capture confirm numeric variable `var'
    if _rc {
        replace `var' = "" if `var' == "."  
        destring `var', replace force
    }
}

drop if syear<1990
//

count

gen period = .
replace period = 1990 if inrange(syear, 1990, 1994)  // 5-year bin
replace period = 1995 if inrange(syear, 1995, 1999)  // 5-year bin
replace period = 2000 if inrange(syear, 2000, 2004)  // 5-year bin
replace period = 2005 if inrange(syear, 2005, 2009)  // 5-year bin
replace period = 2010 if inrange(syear, 2010, 2014)  // 5-year bin
replace period = 2015 if inrange(syear, 2015, 2019)  // 5-year bin
replace period = 2020 if inrange(syear, 2020, 2022)  // 3-year bin (to balance recent years)


// Regression for all events
// // Interaction Regressions
foreach event in separation_n ///
                child_moved_out_n retire_1 unemployed_n partner_died_n first_job_1 ///
                  divorced_n newpartner_n cohabnew_n childbirth_1{ ///
                 
    // Define exclusion variable
    local excl_var "`event'_excl"

    // Preserve original dataset
    preserve

    // Apply exclusion rule only if the variable exists
    capture confirm variable `excl_var'
    if _rc == 0 {
        drop if `excl_var' == 1
    }
    
        // Additional exclusion for childbirth_1: drop men
    if "`event'" == "childbirth_1" {
        drop if sex == 1
    }

    di "Processing event: `event'"

    // Identify available periods
    levelsof period if `event' == 1, local(periods)

    // Run regression
    reg d_lifesat i.`event'##i.period, cluster(pid)
//     Restore dataset
    restore
}


// Plots for Final 5 "Core" Events
foreach event in separation_n ///
                 unemployed_n partner_died_n ///
                 newpartner_n cohabnew_n{ ///
    // Define exclusion variable
    local excl_var "`event'_excl"

    // Preserve original dataset
    preserve

    // Apply exclusion rule only if the variable exists
    capture confirm variable `excl_var'
    if _rc == 0 {
        drop if `excl_var' == 1
    }

    di "Processing event: `event'"

    // Identify available periods
    levelsof period if `event' == 1, local(periods)

    // Run regression
    reg d_lifesat i.`event'##i.period, cluster(pid)

    // Perform Chow test
    testparm i.`event'#i.period
    local F_stat = r(F)  
    local p_value = r(p)

    // Display results
    di "Chow Test for `event': F-statistic = " `F_stat'
    di "p-value = " `p_value'

    // Get readable event title
    local event_title ""
    if "`event'" == "unemployed_n" local event_title "Treatment Effect of Unemployment in Each Period"
    if "`event'" == "partner_died_n" local event_title "Treatment Effect of Partner's Death in Each Period"
    if "`event'" == "newpartner_n" local event_title "Treatment Effect of a New Partnership in Each Period"
    if "`event'" == "cohabnew_n" local event_title "Treatment Effect of Moving in with a Partner in Each Period"
    if "`event'" == "separation_n" local event_title "Treatment Effect of Separation in Each Period"
//
//     // Compute marginal effects
    margins period, dydx(`event')
    
    // Generate improved margins plot
    
    marginsplot, xdimension(period) ///
        title("`event_title'", size(large)) ///
        xtitle("Time Period", size(medium)) ///
        ytitle("Estimated Effect", size(medium)) ///
        yline(0, lcolor(gs8) lwidth(thin)) /// Add reference line at y=0
        ylabel(, angle(0)) /// Keep y-axis labels horizontal
        xscale(noline) yscale(noline) /// Remove unnecessary box lines
        plotopts(lwidth(thick) msize(large)) /// Thicker lines & bigger markers
        legend(pos(6) ring(0)) ///
        name(plot_`event', replace)

    // Save graph instead of displaying in loop
    graph display plot_`event'

//     Restore dataset
    restore
}



* Step 1: Generate a variable for the unemployment rate
gen unemployment_rate = .  // Create the variable

* Example: Assign unemployment rates based on period or year
replace unemployment_rate = 7.01025 if period == 1990
replace unemployment_rate = 9.0964 if period == 1995
replace unemployment_rate = 8.9356 if period == 2000
replace unemployment_rate = 9.0684 if period == 2005
replace unemployment_rate = 5.6766 if period == 2010
replace unemployment_rate = 3.8024 if period == 2015
replace unemployment_rate = 3.543  if period == 2020

* Step 2: Run regression with unemployment and interaction term
reg d_lifesat i.unemployed_n##c.unemployment_rate, cluster(pid)
reg d_lifesat i.unemployed_n##i.period, cluster(pid)




// Sensitivity Analysis

gen period_8 = .
replace period_8 = 1990 if inrange(syear, 1990, 1997)  // 8-year bin
replace period_8 = 1998 if inrange(syear, 1998, 2005)  // 8-year bin
replace period_8 = 2006 if inrange(syear, 2006, 2013)  // 8-year bin
replace period_8 = 2014 if inrange(syear, 2014, 2022)  // 9-year bin

// Results: Final 5
foreach event in separation_n ///
                 unemployed_n partner_died_n ///
                 newpartner_n cohabnew_n{ ///
    // Define exclusion variable
    local excl_var "`event'_excl"

    // Preserve original dataset
    preserve

    // Apply exclusion rule only if the variable exists
    capture confirm variable `excl_var'
    if _rc == 0 {
        drop if `excl_var' == 1
    }

    di "Processing event: `event'"

    // Identify available periods
    levelsof period_8 if `event' == 1, local(period_8)

    // Run regression
    reg d_lifesat i.`event'##i.period_8, cluster(pid)

    // Perform Chow test
    testparm i.`event'#i.period_8
    local F_stat = r(F)  
    local p_value = r(p)

    // Display results
    di "Chow Test for `event': F-statistic = " `F_stat'
    di "p-value = " `p_value'

    // Get readable event title
    local event_title ""
    local event_title ""
    if "`event'" == "unemployed_n" local event_title "Treatment Effect of Unemployment in Each Period"
    if "`event'" == "partner_died_n" local event_title "Treatment Effect of Partner's Death in Each Period"
    if "`event'" == "newpartner_n" local event_title "Treatment Effect of a New Partnership in Each Period"
    if "`event'" == "cohabnew_n" local event_title "Treatment Effect of Moving in with a Partner in Each Period"
    if "`event'" == "separation_n" local event_title "Treatment Effect of Separation in Each Period"
//
    margins period_8, dydx(`event')
    
    // Generate improved margins plot
    
    marginsplot, xdimension(period_8) ///
        title("`event_title'", size(large)) ///
        xtitle("Time Period", size(medium)) ///
        ytitle("Estimated Effect", size(medium)) ///
        yline(0, lcolor(gs8) lwidth(thin)) /// Add reference line at y=0
        ylabel(, angle(0)) /// Keep y-axis labels horizontal
        xscale(noline) yscale(noline) /// Remove unnecessary box lines
        plotopts(lwidth(thick) msize(large)) /// Thicker lines & bigger markers
        legend(pos(6) ring(0)) ///
        name(plot_`event', replace)
    // Save graph instead of displaying in loop
    graph display plot_`event'

//     Restore dataset
    restore
}


// Pairwise correlations to assess collinearity between events
pwcorr separation_n unemployed_n partner_died_n newpartner_n cohabnew_n, sig star(.05)


// Calculate the proportion of never-treated individuals
foreach event in separation_n unemployed_n partner_died_n newpartner_n cohabnew_n { 
    sum `event'_ever
    local total_obs = r(N)
    local never_treated = r(N) - r(sum)  // Count of never-treated individuals
    local prop_never_treated = `never_treated' / `total_obs' * 100

    di "Proportion of never-treated individuals for `event': " `prop_never_treated' "%"
}


// Calculate the counts for events in each period
foreach event in separation_n unemployed_n partner_died_n newpartner_n cohabnew_n { 
    tab `event' period
}


local events separation_n unemployed_n partner_died_n newpartner_n cohabnew_n
local total_events = 0

foreach event of local events {
    quietly count if `event' == 1
    local total_events = `total_events' + r(N)
}

display "Total number of life events (==1): `total_events'"


// Calculate mean LS in each period
preserve
collapse (mean) lifesat, by(period)
// Display results
list period lifesat, clean
restore
/Users/charlieharrison/Desktop/DissCoding

/Users/charlieharrison/Desktop/DissCoding



mkdir: /Users/charlieharrison/Desktop/DissCoding/Processed_Data/: File exists



(PreWghts: SOEP-Core, v39 (EU Edition), doi:10.5684/soep.core.v39eu)



Panel variable: pid (unbalanced)
 Time variable: syear, 1984 to 2022, but with gaps
         Delta: 1 unit

(121,862 missing values generated)



(63,994 observations deleted)

  689,492

(689,492 missing values generated)

(62,778 real changes made)

(69,127 real changes made)

(115,183 real changes made)

(104,534 real changes made)

(137,789 real changes made)

(130,276 real changes made)

(69,805 real changes made)

  2.     // Define exclusion variable
(70,709 observations deleted)
Processing event: separation_n
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    158,235
                                                F(13, 21640)      =      31.66
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0021
                                                Root MSE          =     1.6387

                               (Std. err. adjusted for 21,641 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.separati~n |  -.2154436   .0787505    -2.74   0.006    -.3698004   -.0610868
             |
      period |
       1995  |   .0450805   .0186811     2.41   0.016     .0084642    .0816967
       2000  |  -.0478381    .015627    -3.06   0.002    -.0784681   -.0172081
       2005  |   .0450119   .0151235     2.98   0.003     .0153687    .0746551
       2010  |   .0231424   .0143374     1.61   0.107    -.0049599    .0512448
       2015  |   .0618164   .0137369     4.50   0.000     .0348912    .0887417
       2020  |  -.0517848   .0153025    -3.38   0.001    -.0817789   -.0217907
             |
separation_n#|
      period |
     1 1995  |  -.0323073   .0981598    -0.33   0.742    -.2247078    .1600931
     1 2000  |   -.034968   .0915107    -0.38   0.702    -.2143356    .1443997
     1 2005  |  -.0087807    .090524    -0.10   0.923    -.1862145    .1686531
     1 2010  |  -.0459934   .0893656    -0.51   0.607    -.2211566    .1291699
     1 2015  |  -.0301602   .0893182    -0.34   0.736    -.2052304      .14491
     1 2020  |    .024059   .1024239     0.23   0.814    -.1766994    .2248175
             |
       _cons |  -.0314358   .0128533    -2.45   0.014    -.0566291   -.0062424
------------------------------------------------------------------------------
(0 observations deleted)
Processing event: child_moved_out_n
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    582,801
                                                F(13, 71464)      =      93.93
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0008
                                                Root MSE          =     1.5992

                               (Std. err. adjusted for 71,465 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.child_mo~n |  -.0346367    .046105    -0.75   0.453    -.1250023    .0557289
             |
      period |
       1995  |  -.0020225   .0070246    -0.29   0.773    -.0157907    .0117456
       2000  |  -.0965499   .0057657   -16.75   0.000    -.1078507   -.0852491
       2005  |  -.0019834   .0056905    -0.35   0.727    -.0131367    .0091699
       2010  |   .0026801    .005728     0.47   0.640    -.0085467    .0139069
       2015  |   .0395778    .005569     7.11   0.000     .0286625     .050493
       2020  |  -.0610224   .0070615    -8.64   0.000    -.0748628    -.047182
             |
child_move~n#|
      period |
     1 1995  |   .0132036   .0621869     0.21   0.832    -.1086826    .1350897
     1 2000  |   .0193354   .0564469     0.34   0.732    -.0913003    .1299712
     1 2005  |   .0621694   .0566067     1.10   0.272    -.0487796    .1731183
     1 2010  |   .0483681   .0551509     0.88   0.380    -.0597275    .1564637
     1 2015  |   .0643127   .0548453     1.17   0.241     -.043184    .1718094
     1 2020  |   .0765759   .0599837     1.28   0.202    -.0409919    .1941437
             |
       _cons |  -.0221742   .0047648    -4.65   0.000    -.0315132   -.0128351
------------------------------------------------------------------------------
(0 observations deleted)
Processing event: retire_1
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    582,794
                                                F(13, 71464)      =      98.10
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0009
                                                Root MSE          =     1.5991

                               (Std. err. adjusted for 71,465 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
  1.retire_1 |   .1381941   .0899959     1.54   0.125    -.0381976    .3145859
             |
      period |
       1995  |  -.0001422   .0068733    -0.02   0.983    -.0136139    .0133295
       2000  |  -.0953616   .0056123   -16.99   0.000    -.1063617   -.0843615
       2005  |   .0004915   .0055399     0.09   0.929    -.0103667    .0113497
       2010  |    .004742   .0055694     0.85   0.395     -.006174    .0156579
       2015  |   .0400574   .0054163     7.40   0.000     .0294414    .0506734
       2020  |  -.0589903   .0068785    -8.58   0.000    -.0724722   -.0455084
             |
    retire_1#|
      period |
     1 1995  |  -.1941221   .1222261    -1.59   0.112    -.4336849    .0454406
     1 2000  |  -.0524328   .1086063    -0.48   0.629     -.265301    .1604353
     1 2005  |   -.107756   .1077711    -1.00   0.317     -.318987     .103475
     1 2010  |  -.0692658   .1139104    -0.61   0.543    -.2925298    .1539983
     1 2015  |   .2414372   .1065092     2.27   0.023     .0326795    .4501949
     1 2020  |   .0078388    .117492     0.07   0.947    -.2224451    .2381226
             |
       _cons |  -.0242406   .0046213    -5.25   0.000    -.0332985   -.0151828
------------------------------------------------------------------------------
(126,911 observations deleted)
Processing event: unemployed_n
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    466,281
                                                F(13, 62453)      =     112.79
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0028
                                                Root MSE          =     1.5799

                               (Std. err. adjusted for 62,454 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.unemploy~n |  -.4512095   .0521007    -8.66   0.000    -.5533271    -.349092
             |
      period |
       1995  |   .0035625   .0078179     0.46   0.649    -.0117607    .0188856
       2000  |  -.0969359   .0064718   -14.98   0.000    -.1096208   -.0842511
       2005  |  -.0039737   .0064303    -0.62   0.537     -.016577    .0086297
       2010  |  -.0077409   .0064549    -1.20   0.230    -.0203925    .0049107
       2015  |   .0284684   .0062686     4.54   0.000      .016182    .0407548
       2020  |  -.0894458   .0078827   -11.35   0.000    -.1048958   -.0739957
             |
unemployed_n#|
      period |
     1 1995  |  -.0898311   .0713225    -1.26   0.208    -.2296234    .0499612
     1 2000  |  -.0863151   .0669166    -1.29   0.197    -.2174718    .0448416
     1 2005  |    .024465   .0705342     0.35   0.729    -.1137822    .1627121
     1 2010  |   .0960771    .068726     1.40   0.162    -.0386261    .2307803
     1 2015  |   .2245257   .0705603     3.18   0.001     .0862274     .362824
     1 2020  |   .2812839   .0901226     3.12   0.002     .1046435    .4579243
             |
       _cons |  -.0004601   .0053537    -0.09   0.932    -.0109534    .0100333
------------------------------------------------------------------------------
(128,371 observations deleted)
Processing event: partner_died_n
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    480,075
                                                F(13, 62505)      =      90.30
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0020
                                                Root MSE          =     1.5605

                               (Std. err. adjusted for 62,506 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.partner_~n |  -.5859408   .1804029    -3.25   0.001    -.9395308   -.2323508
             |
      period |
       1995  |   .0028845   .0074923     0.38   0.700    -.0118004    .0175694
       2000  |  -.0925613    .006227   -14.86   0.000    -.1047662   -.0803564
       2005  |   -.002569   .0061311    -0.42   0.675    -.0145859    .0094479
       2010  |   .0009427   .0061627     0.15   0.878    -.0111363    .0130216
       2015  |   .0421069   .0059769     7.04   0.000     .0303922    .0538215
       2020  |  -.0652516   .0075878    -8.60   0.000    -.0801236   -.0503795
             |
partner_di~n#|
      period |
     1 1995  |  -.0790644    .233973    -0.34   0.735    -.5376519    .3795232
     1 2000  |  -.4562036   .2320928    -1.97   0.049     -.911106   -.0013012
     1 2005  |  -.1470603   .2213169    -0.66   0.506    -.5808417    .2867212
     1 2010  |  -.3748004   .2283075    -1.64   0.101    -.8222835    .0726826
     1 2015  |  -.3103297   .2269725    -1.37   0.172    -.7551962    .1345367
     1 2020  |  -.1928575   .2528381    -0.76   0.446    -.6884206    .3027056
             |
       _cons |   -.013093   .0051096    -2.56   0.010    -.0231078   -.0030782
------------------------------------------------------------------------------
(0 observations deleted)
Processing event: first_job_1
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    582,796
                                                F(13, 71463)      =      94.96
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0008
                                                Root MSE          =     1.5992

                               (Std. err. adjusted for 71,464 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.first_j~_1 |   .0748228   .0721567     1.04   0.300    -.0666041    .2162498
             |
      period |
       1995  |  -.0025429   .0068895    -0.37   0.712    -.0160463    .0109605
       2000  |   -.095672   .0056327   -16.99   0.000    -.1067121   -.0846319
       2005  |  -.0001477   .0055646    -0.03   0.979    -.0110543     .010759
       2010  |    .004725   .0055949     0.84   0.398     -.006241     .015691
       2015  |   .0413425   .0054353     7.61   0.000     .0306892    .0519957
       2020  |  -.0577548   .0068923    -8.38   0.000    -.0712636   -.0442459
             |
 first_job_1#|
      period |
     1 1995  |   .1140648   .1034845     1.10   0.270    -.0887646    .3168941
     1 2000  |  -.0051048   .0920117    -0.06   0.956    -.1854476     .175238
     1 2005  |   .0026145   .0929591     0.03   0.978    -.1795851    .1848141
     1 2010  |  -.0498879   .0918155    -0.54   0.587    -.2298461    .1300703
     1 2015  |   .0266953   .0878419     0.30   0.761    -.1454745    .1988652
     1 2020  |  -.0791318   .1150153    -0.69   0.491    -.3045614    .1462979
             |
       _cons |  -.0240982   .0046423    -5.19   0.000    -.0331971   -.0149992
------------------------------------------------------------------------------
(0 observations deleted)
Processing event: divorced_n
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    577,099
                                                F(13, 70661)      =      96.48
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0009
                                                Root MSE          =      1.598

                               (Std. err. adjusted for 70,662 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.divorced_n |   .1555418   .1378224     1.13   0.259    -.1145897    .4256733
             |
      period |
       1995  |    -.00132   .0068589    -0.19   0.847    -.0147635    .0121235
       2000  |  -.0969894   .0056095   -17.29   0.000     -.107984   -.0859947
       2005  |  -.0004628   .0055343    -0.08   0.933      -.01131    .0103844
       2010  |   .0060388   .0055852     1.08   0.280    -.0049082    .0169858
       2015  |   .0399499     .00542     7.37   0.000     .0293266    .0505731
       2020  |   -.058938   .0068946    -8.55   0.000    -.0724513   -.0454246
             |
  divorced_n#|
      period |
     1 1995  |   .0182326   .1823563     0.10   0.920    -.3391853    .3756504
     1 2000  |   .1443281   .1644766     0.88   0.380    -.1780456    .4667019
     1 2005  |   .0656248   .1653301     0.40   0.691    -.2584219    .3896714
     1 2010  |  -.0390486   .1570028    -0.25   0.804    -.3467738    .2686766
     1 2015  |   .1494609   .1610457     0.93   0.353    -.1661883      .46511
     1 2020  |  -.0767368    .178467    -0.43   0.667    -.4265317    .2730581
             |
       _cons |  -.0240864   .0046118    -5.22   0.000    -.0331256   -.0150472
------------------------------------------------------------------------------
(170,900 observations deleted)
Processing event: newpartner_n
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    130,034
                                                F(13, 13261)      =      39.37
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0034
                                                Root MSE          =     1.6381

                               (Std. err. adjusted for 13,262 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.newpartn~n |   .2681379   .0522609     5.13   0.000     .1656991    .3705767
             |
      period |
       1995  |   .0137543   .0161719     0.85   0.395     -.017945    .0454536
       2000  |  -.0790885   .0140932    -5.61   0.000    -.1067133   -.0514638
       2005  |   .0345758   .0137094     2.52   0.012     .0077035    .0614482
       2010  |   .0363456    .013855     2.62   0.009     .0091879    .0635033
       2015  |   .0394649   .0138966     2.84   0.005     .0122256    .0667042
       2020  |  -.0498355   .0173258    -2.88   0.004    -.0837964   -.0158745
             |
newpartner_n#|
      period |
     1 1995  |   .0224678   .0709177     0.32   0.751     -.116541    .1614765
     1 2000  |   .0005609    .065003     0.01   0.993    -.1268542     .127976
     1 2005  |  -.0360547   .0643829    -0.56   0.575    -.1622543    .0901449
     1 2010  |   .0471614   .0652543     0.72   0.470    -.0807463    .1750691
     1 2015  |   .0343976   .0683887     0.50   0.615     -.099654    .1684492
     1 2020  |   -.027765   .0866138    -0.32   0.749    -.1975404    .1420104
             |
       _cons |  -.0552434   .0117677    -4.69   0.000    -.0783097   -.0321771
------------------------------------------------------------------------------
(152,204 observations deleted)
Processing event: cohabnew_n
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    123,427
                                                F(13, 12492)      =      36.07
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0028
                                                Root MSE          =     1.6237

                               (Std. err. adjusted for 12,493 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.cohabnew_n |    .301201   .0625741     4.81   0.000     .1785461    .4238558
             |
      period |
       1995  |    .023526   .0158066     1.49   0.137    -.0074574    .0545094
       2000  |  -.0739091   .0135441    -5.46   0.000    -.1004576   -.0473605
       2005  |   .0415508   .0131636     3.16   0.002     .0157482    .0673534
       2010  |   .0482369   .0134557     3.58   0.000     .0218616    .0746122
       2015  |   .0650351   .0132086     4.92   0.000     .0391443     .090926
       2020  |   -.057879   .0167993    -3.45   0.001    -.0908082   -.0249498
             |
  cohabnew_n#|
      period |
     1 1995  |   .0205178   .0826619     0.25   0.804    -.1415122    .1825477
     1 2000  |    .025362   .0802633     0.32   0.752    -.1319665    .1826905
     1 2005  |   .0253048   .0795145     0.32   0.750    -.1305558    .1811655
     1 2010  |  -.0231427   .0809751    -0.29   0.775    -.1818664     .135581
     1 2015  |  -.0976479    .078717    -1.24   0.215    -.2519454    .0566495
     1 2020  |  -.1945056   .0890179    -2.19   0.029    -.3689944   -.0200168
             |
       _cons |   -.054547   .0112717    -4.84   0.000    -.0766413   -.0324527
------------------------------------------------------------------------------
(393,219 observations deleted)
(135,115 observations deleted)
Processing event: childbirth_1
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    133,294
                                                F(13, 16874)      =      21.63
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0009
                                                Root MSE          =     1.5904

                               (Std. err. adjusted for 16,875 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.childbi~_1 |   .0555891   .1252257     0.44   0.657    -.1898664    .3010446
             |
      period |
       1995  |   .0009018   .0129903     0.07   0.945    -.0245605    .0263641
       2000  |  -.0803303   .0108975    -7.37   0.000    -.1016906   -.0589701
       2005  |   .0148356   .0108633     1.37   0.172    -.0064576    .0361288
       2010  |   .0319531   .0113053     2.83   0.005     .0097935    .0541128
       2015  |   .0378367   .0110029     3.44   0.001     .0162699    .0594036
       2020  |  -.0818688   .0145144    -5.64   0.000    -.1103185   -.0534191
             |
childbirth_1#|
      period |
     1 1995  |   .0754659   .1618136     0.47   0.641    -.2417055    .3926374
     1 2000  |  -.0594525   .1459597    -0.41   0.684    -.3455487    .2266438
     1 2005  |  -.0597843   .1457837    -0.41   0.682    -.3455356     .225967
     1 2010  |   .1251952   .1485078     0.84   0.399    -.1658956    .4162861
     1 2015  |   .0039163   .1455868     0.03   0.979     -.281449    .2892816
     1 2020  |   .0115343    .161596     0.07   0.943    -.3052108    .3282793
             |
       _cons |  -.0415046   .0088079    -4.71   0.000    -.0587691   -.0242402
------------------------------------------------------------------------------

  2.     local excl_var "`event'_excl"
  3. 
 18.     if "`event'" == "partner_died_n" local event_title "Treatment Effect o
> f Partner's Death in Each Period"
 19.     if "`event'" == "newpartner_n" local event_title "Treatment Effect of 
> a New Partnership in Each Period"
 20.     if "`event'" == "cohabnew_n" local event_title "Treatment Effect of Mo
> ving in with a Partner in Each Period"
 21.     if "`event'" == "separation_n" local event_title "Treatment Effect of 
> Separation in Each Period"
 22. //
 24. 
(70,709 observations deleted)
Processing event: separation_n
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    158,235
                                                F(13, 21640)      =      31.66
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0021
                                                Root MSE          =     1.6387

                               (Std. err. adjusted for 21,641 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.separati~n |  -.2154436   .0787505    -2.74   0.006    -.3698004   -.0610868
             |
      period |
       1995  |   .0450805   .0186811     2.41   0.016     .0084642    .0816967
       2000  |  -.0478381    .015627    -3.06   0.002    -.0784681   -.0172081
       2005  |   .0450119   .0151235     2.98   0.003     .0153687    .0746551
       2010  |   .0231424   .0143374     1.61   0.107    -.0049599    .0512448
       2015  |   .0618164   .0137369     4.50   0.000     .0348912    .0887417
       2020  |  -.0517848   .0153025    -3.38   0.001    -.0817789   -.0217907
             |
separation_n#|
      period |
     1 1995  |  -.0323073   .0981598    -0.33   0.742    -.2247078    .1600931
     1 2000  |   -.034968   .0915107    -0.38   0.702    -.2143356    .1443997
     1 2005  |  -.0087807    .090524    -0.10   0.923    -.1862145    .1686531
     1 2010  |  -.0459934   .0893656    -0.51   0.607    -.2211566    .1291699
     1 2015  |  -.0301602   .0893182    -0.34   0.736    -.2052304      .14491
     1 2020  |    .024059   .1024239     0.23   0.814    -.1766994    .2248175
             |
       _cons |  -.0314358   .0128533    -2.45   0.014    -.0566291   -.0062424
------------------------------------------------------------------------------

 ( 1)  1.separation_n#1995.period = 0
 ( 2)  1.separation_n#2000.period = 0
 ( 3)  1.separation_n#2005.period = 0
 ( 4)  1.separation_n#2010.period = 0
 ( 5)  1.separation_n#2015.period = 0
 ( 6)  1.separation_n#2020.period = 0

       F(  6, 21640) =    0.19
            Prob > F =    0.9799
Chow Test for separation_n: F-statistic = .18935317
p-value = .97991895

Conditional marginal effects                           Number of obs = 158,235
Model VCE: Robust

Expression: Linear prediction, predict()
dy/dx wrt:  1.separation_n

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
0.separati~n |  (base outcome)
-------------+----------------------------------------------------------------
1.separati~n |
      period |
       1990  |  -.2154436   .0787505    -2.74   0.006    -.3698004   -.0610868
       1995  |  -.2477509   .0587025    -4.22   0.000    -.3628121   -.1326897
       2000  |  -.2504115   .0457402    -5.47   0.000    -.3400657   -.1607573
       2005  |  -.2242243   .0442187    -5.07   0.000    -.3108962   -.1375524
       2010  |  -.2614369   .0428591    -6.10   0.000    -.3454439     -.17743
       2015  |  -.2456038   .0423023    -5.81   0.000    -.3285193   -.1626882
       2020  |  -.1913845   .0655011    -2.92   0.003    -.3197716   -.0629975
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

Variables that uniquely identify margins: period
(126,911 observations deleted)
Processing event: unemployed_n
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    466,281
                                                F(13, 62453)      =     112.79
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0028
                                                Root MSE          =     1.5799

                               (Std. err. adjusted for 62,454 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.unemploy~n |  -.4512095   .0521007    -8.66   0.000    -.5533271    -.349092
             |
      period |
       1995  |   .0035625   .0078179     0.46   0.649    -.0117607    .0188856
       2000  |  -.0969359   .0064718   -14.98   0.000    -.1096208   -.0842511
       2005  |  -.0039737   .0064303    -0.62   0.537     -.016577    .0086297
       2010  |  -.0077409   .0064549    -1.20   0.230    -.0203925    .0049107
       2015  |   .0284684   .0062686     4.54   0.000      .016182    .0407548
       2020  |  -.0894458   .0078827   -11.35   0.000    -.1048958   -.0739957
             |
unemployed_n#|
      period |
     1 1995  |  -.0898311   .0713225    -1.26   0.208    -.2296234    .0499612
     1 2000  |  -.0863151   .0669166    -1.29   0.197    -.2174718    .0448416
     1 2005  |    .024465   .0705342     0.35   0.729    -.1137822    .1627121
     1 2010  |   .0960771    .068726     1.40   0.162    -.0386261    .2307803
     1 2015  |   .2245257   .0705603     3.18   0.001     .0862274     .362824
     1 2020  |   .2812839   .0901226     3.12   0.002     .1046435    .4579243
             |
       _cons |  -.0004601   .0053537    -0.09   0.932    -.0109534    .0100333
------------------------------------------------------------------------------

 ( 1)  1.unemployed_n#1995.period = 0
 ( 2)  1.unemployed_n#2000.period = 0
 ( 3)  1.unemployed_n#2005.period = 0
 ( 4)  1.unemployed_n#2010.period = 0
 ( 5)  1.unemployed_n#2015.period = 0
 ( 6)  1.unemployed_n#2020.period = 0

       F(  6, 62453) =    7.15
            Prob > F =    0.0000
Chow Test for unemployed_n: F-statistic = 7.1500201
p-value = 1.228e-07

Conditional marginal effects                           Number of obs = 466,281
Model VCE: Robust

Expression: Linear prediction, predict()
dy/dx wrt:  1.unemployed_n

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
0.unemploy~n |  (base outcome)
-------------+----------------------------------------------------------------
1.unemploy~n |
      period |
       1990  |  -.4512095   .0521007    -8.66   0.000    -.5533271    -.349092
       1995  |  -.5410407   .0496802   -10.89   0.000     -.638414   -.4436673
       2000  |  -.5375246   .0425188   -12.64   0.000    -.6208616   -.4541877
       2005  |  -.4267446   .0476386    -8.96   0.000    -.5201164   -.3333728
       2010  |  -.3551324   .0447734    -7.93   0.000    -.4428885   -.2673764
       2015  |  -.2266838    .047636    -4.76   0.000    -.3200505   -.1333172
       2020  |  -.1699256   .0736773    -2.31   0.021    -.3143333   -.0255179
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

Variables that uniquely identify margins: period
(128,371 observations deleted)
Processing event: partner_died_n
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    480,075
                                                F(13, 62505)      =      90.30
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0020
                                                Root MSE          =     1.5605

                               (Std. err. adjusted for 62,506 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.partner_~n |  -.5859408   .1804029    -3.25   0.001    -.9395308   -.2323508
             |
      period |
       1995  |   .0028845   .0074923     0.38   0.700    -.0118004    .0175694
       2000  |  -.0925613    .006227   -14.86   0.000    -.1047662   -.0803564
       2005  |   -.002569   .0061311    -0.42   0.675    -.0145859    .0094479
       2010  |   .0009427   .0061627     0.15   0.878    -.0111363    .0130216
       2015  |   .0421069   .0059769     7.04   0.000     .0303922    .0538215
       2020  |  -.0652516   .0075878    -8.60   0.000    -.0801236   -.0503795
             |
partner_di~n#|
      period |
     1 1995  |  -.0790644    .233973    -0.34   0.735    -.5376519    .3795232
     1 2000  |  -.4562036   .2320928    -1.97   0.049     -.911106   -.0013012
     1 2005  |  -.1470603   .2213169    -0.66   0.506    -.5808417    .2867212
     1 2010  |  -.3748004   .2283075    -1.64   0.101    -.8222835    .0726826
     1 2015  |  -.3103297   .2269725    -1.37   0.172    -.7551962    .1345367
     1 2020  |  -.1928575   .2528381    -0.76   0.446    -.6884206    .3027056
             |
       _cons |   -.013093   .0051096    -2.56   0.010    -.0231078   -.0030782
------------------------------------------------------------------------------

 ( 1)  1.partner_died_n#1995.period = 0
 ( 2)  1.partner_died_n#2000.period = 0
 ( 3)  1.partner_died_n#2005.period = 0
 ( 4)  1.partner_died_n#2010.period = 0
 ( 5)  1.partner_died_n#2015.period = 0
 ( 6)  1.partner_died_n#2020.period = 0

       F(  6, 62505) =    1.16
            Prob > F =    0.3264
Chow Test for partner_died_n: F-statistic = 1.1567044
p-value = .32642571

Conditional marginal effects                           Number of obs = 480,075
Model VCE: Robust

Expression: Linear prediction, predict()
dy/dx wrt:  1.partner_died_n

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
0.partner_~n |  (base outcome)
-------------+----------------------------------------------------------------
1.partner_~n |
      period |
       1990  |  -.5859408   .1804029    -3.25   0.001    -.9395308   -.2323508
       1995  |  -.6650052   .1495722    -4.45   0.000    -.9581669   -.3718434
       2000  |  -1.042144   .1460042    -7.14   0.000    -1.328313   -.7559759
       2005  |  -.7330011   .1271447    -5.77   0.000    -.9822049   -.4837972
       2010  |  -.9607412   .1398965    -6.87   0.000    -1.234939   -.6865439
       2015  |  -.8962705   .1377707    -6.51   0.000    -1.166301   -.6262397
       2020  |  -.7787983   .1768133    -4.40   0.000    -1.125353   -.4322439
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

Variables that uniquely identify margins: period
(170,900 observations deleted)
Processing event: newpartner_n
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    130,034
                                                F(13, 13261)      =      39.37
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0034
                                                Root MSE          =     1.6381

                               (Std. err. adjusted for 13,262 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.newpartn~n |   .2681379   .0522609     5.13   0.000     .1656991    .3705767
             |
      period |
       1995  |   .0137543   .0161719     0.85   0.395     -.017945    .0454536
       2000  |  -.0790885   .0140932    -5.61   0.000    -.1067133   -.0514638
       2005  |   .0345758   .0137094     2.52   0.012     .0077035    .0614482
       2010  |   .0363456    .013855     2.62   0.009     .0091879    .0635033
       2015  |   .0394649   .0138966     2.84   0.005     .0122256    .0667042
       2020  |  -.0498355   .0173258    -2.88   0.004    -.0837964   -.0158745
             |
newpartner_n#|
      period |
     1 1995  |   .0224678   .0709177     0.32   0.751     -.116541    .1614765
     1 2000  |   .0005609    .065003     0.01   0.993    -.1268542     .127976
     1 2005  |  -.0360547   .0643829    -0.56   0.575    -.1622543    .0901449
     1 2010  |   .0471614   .0652543     0.72   0.470    -.0807463    .1750691
     1 2015  |   .0343976   .0683887     0.50   0.615     -.099654    .1684492
     1 2020  |   -.027765   .0866138    -0.32   0.749    -.1975404    .1420104
             |
       _cons |  -.0552434   .0117677    -4.69   0.000    -.0783097   -.0321771
------------------------------------------------------------------------------

 ( 1)  1.newpartner_n#1995.period = 0
 ( 2)  1.newpartner_n#2000.period = 0
 ( 3)  1.newpartner_n#2005.period = 0
 ( 4)  1.newpartner_n#2010.period = 0
 ( 5)  1.newpartner_n#2015.period = 0
 ( 6)  1.newpartner_n#2020.period = 0

       F(  6, 13261) =    0.53
            Prob > F =    0.7895
Chow Test for newpartner_n: F-statistic = .52537781
p-value = .78949451

Conditional marginal effects                           Number of obs = 130,034
Model VCE: Robust

Expression: Linear prediction, predict()
dy/dx wrt:  1.newpartner_n

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
0.newpartn~n |  (base outcome)
-------------+----------------------------------------------------------------
1.newpartn~n |
      period |
       1990  |   .2681379   .0522609     5.13   0.000     .1656991    .3705767
       1995  |   .2906057   .0482873     6.02   0.000     .1959557    .3852556
       2000  |   .2686988   .0388137     6.92   0.000     .1926184    .3447792
       2005  |   .2320832   .0376602     6.16   0.000     .1582639    .3059025
       2010  |   .3152993   .0396053     7.96   0.000     .2376672    .3929314
       2015  |   .3025355   .0443121     6.83   0.000     .2156775    .3893935
       2020  |   .2403729   .0691529     3.48   0.001     .1048234    .3759225
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

Variables that uniquely identify margins: period
(152,204 observations deleted)
Processing event: cohabnew_n
1990 1995 2000 2005 2010 2015 2020

Linear regression                               Number of obs     =    123,427
                                                F(13, 12492)      =      36.07
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0028
                                                Root MSE          =     1.6237

                               (Std. err. adjusted for 12,493 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.cohabnew_n |    .301201   .0625741     4.81   0.000     .1785461    .4238558
             |
      period |
       1995  |    .023526   .0158066     1.49   0.137    -.0074574    .0545094
       2000  |  -.0739091   .0135441    -5.46   0.000    -.1004576   -.0473605
       2005  |   .0415508   .0131636     3.16   0.002     .0157482    .0673534
       2010  |   .0482369   .0134557     3.58   0.000     .0218616    .0746122
       2015  |   .0650351   .0132086     4.92   0.000     .0391443     .090926
       2020  |   -.057879   .0167993    -3.45   0.001    -.0908082   -.0249498
             |
  cohabnew_n#|
      period |
     1 1995  |   .0205178   .0826619     0.25   0.804    -.1415122    .1825477
     1 2000  |    .025362   .0802633     0.32   0.752    -.1319665    .1826905
     1 2005  |   .0253048   .0795145     0.32   0.750    -.1305558    .1811655
     1 2010  |  -.0231427   .0809751    -0.29   0.775    -.1818664     .135581
     1 2015  |  -.0976479    .078717    -1.24   0.215    -.2519454    .0566495
     1 2020  |  -.1945056   .0890179    -2.19   0.029    -.3689944   -.0200168
             |
       _cons |   -.054547   .0112717    -4.84   0.000    -.0766413   -.0324527
------------------------------------------------------------------------------

 ( 1)  1.cohabnew_n#1995.period = 0
 ( 2)  1.cohabnew_n#2000.period = 0
 ( 3)  1.cohabnew_n#2005.period = 0
 ( 4)  1.cohabnew_n#2010.period = 0
 ( 5)  1.cohabnew_n#2015.period = 0
 ( 6)  1.cohabnew_n#2020.period = 0

       F(  6, 12492) =    2.06
            Prob > F =    0.0540
Chow Test for cohabnew_n: F-statistic = 2.0641088
p-value = .05399913

Conditional marginal effects                           Number of obs = 123,427
Model VCE: Robust

Expression: Linear prediction, predict()
dy/dx wrt:  1.cohabnew_n

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
0.cohabnew_n |  (base outcome)
-------------+----------------------------------------------------------------
1.cohabnew_n |
      period |
       1990  |    .301201   .0625741     4.81   0.000     .1785461    .4238558
       1995  |   .3217187   .0553709     5.81   0.000     .2131833    .4302542
       2000  |   .3265629   .0502909     6.49   0.000     .2279851    .4251408
       2005  |   .3265058   .0497973     6.56   0.000     .2288955    .4241161
       2010  |   .2780583   .0517037     5.38   0.000     .1767111    .3794055
       2015  |    .203553   .0478383     4.26   0.000     .1097825    .2973235
       2020  |   .1066954   .0625381     1.71   0.088    -.0158889    .2292797
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

Variables that uniquely identify margins: period

(689,492 missing values generated)

(62,778 real changes made)

(69,127 real changes made)

(115,183 real changes made)

(104,534 real changes made)

(137,789 real changes made)

(130,276 real changes made)

(69,805 real changes made)


Linear regression                               Number of obs     =    581,091
                                                F(3, 71417)       =     265.49
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0016
                                                Root MSE          =     1.5976

                               (Std. err. adjusted for 71,418 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.unemploy~n |  -.0313354   .0641921    -0.49   0.625    -.1571518     .094481
unemployme~e |  -.0068852   .0004978   -13.83   0.000    -.0078609   -.0059095
             |
unemployed_n#|
          c. |
unemployme~e |
          1  |  -.0523879   .0087289    -6.00   0.000    -.0694966   -.0352793
             |
       _cons |   .0193117   .0035694     5.41   0.000     .0123157    .0263076
------------------------------------------------------------------------------


Linear regression                               Number of obs     =    581,091
                                                F(13, 71417)      =     129.95
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0023
                                                Root MSE          =     1.5971

                               (Std. err. adjusted for 71,418 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.unemploy~n |  -.4413417   .0518628    -8.51   0.000    -.5429925   -.3396908
             |
      period |
       1995  |   .0024988   .0071506     0.35   0.727    -.0115163    .0165139
       2000  |  -.0955723   .0058866   -16.24   0.000      -.10711   -.0840347
       2005  |  -.0048327   .0058102    -0.83   0.406    -.0162207    .0065553
       2010  |  -.0020784   .0058378    -0.36   0.722    -.0135204    .0093637
       2015  |   .0321681    .005676     5.67   0.000     .0210432    .0432931
       2020  |  -.0689079   .0070881    -9.72   0.000    -.0828005   -.0550152
             |
unemployed_n#|
      period |
     1 1995  |  -.0887675    .071034    -1.25   0.211    -.2279939     .050459
     1 2000  |  -.0876787   .0666172    -1.32   0.188    -.2182482    .0428908
     1 2005  |    .025324   .0702327     0.36   0.718     -.112332    .1629799
     1 2010  |   .0904146   .0684454     1.32   0.187    -.0437382    .2245674
     1 2015  |    .220826   .0702918     3.14   0.002     .0830543    .3585977
     1 2020  |    .260746   .0898536     2.90   0.004     .0846331    .4368589
             |
       _cons |  -.0103279   .0049038    -2.11   0.035    -.0199393   -.0007166
------------------------------------------------------------------------------

(689,492 missing values generated)

(103,220 real changes made)

(164,908 real changes made)

(193,916 real changes made)

(227,448 real changes made)

  2.     local excl_var "`event'_excl"
  3. 
 19.     if "`event'" == "partner_died_n" local event_title "Treatment Effect o
> f Partner's Death in Each Period"
 20.     if "`event'" == "newpartner_n" local event_title "Treatment Effect of 
> a New Partnership in Each Period"
 21.     if "`event'" == "cohabnew_n" local event_title "Treatment Effect of Mo
> ving in with a Partner in Each Period"
 22.     if "`event'" == "separation_n" local event_title "Treatment Effect of 
> Separation in Each Period"
 23. //
 25.     // Save graph instead of displaying in loop
(70,709 observations deleted)
Processing event: separation_n
1990 1998 2006 2014

Linear regression                               Number of obs     =    158,235
                                                F(7, 21640)       =      26.43
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0015
                                                Root MSE          =     1.6392

                               (Std. err. adjusted for 21,641 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.separati~n |  -.2226498   .0562389    -3.96   0.000    -.3328821   -.1124175
             |
    period_8 |
       1998  |   .0155184   .0112726     1.38   0.169    -.0065767    .0376135
       2006  |   .0276423   .0099064     2.79   0.005     .0082251    .0470596
       2014  |   .0202351   .0091284     2.22   0.027     .0023429    .0381274
             |
separation_n#|
    period_8 |
     1 1998  |  -.0290472   .0671883    -0.43   0.666    -.1607412    .1026467
     1 2006  |  -.0144531   .0659578    -0.22   0.827    -.1437351     .114829
     1 2014  |  -.0245637   .0658545    -0.37   0.709    -.1536434    .1045159
             |
       _cons |  -.0314486   .0084023    -3.74   0.000    -.0479176   -.0149795
------------------------------------------------------------------------------

 ( 1)  1.separation_n#1998.period_8 = 0
 ( 2)  1.separation_n#2006.period_8 = 0
 ( 3)  1.separation_n#2014.period_8 = 0

       F(  3, 21640) =    0.08
            Prob > F =    0.9722
Chow Test for separation_n: F-statistic = .07749815
p-value = .97217986

Conditional marginal effects                           Number of obs = 158,235
Model VCE: Robust

Expression: Linear prediction, predict()
dy/dx wrt:  1.separation_n

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
0.separati~n |  (base outcome)
-------------+----------------------------------------------------------------
1.separati~n |
    period_8 |
       1990  |  -.2226498   .0562389    -3.96   0.000    -.3328821   -.1124175
       1998  |   -.251697    .037086    -6.79   0.000    -.3243883   -.1790058
       2006  |  -.2371028   .0343152    -6.91   0.000    -.3043631   -.1698426
       2014  |  -.2472135   .0342643    -7.21   0.000    -.3143741    -.180053
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

Variables that uniquely identify margins: period_8
(126,911 observations deleted)
Processing event: unemployed_n
1990 1998 2006 2014

Linear regression                               Number of obs     =    466,281
                                                F(7, 62453)       =      86.87
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0020
                                                Root MSE          =     1.5805

                               (Std. err. adjusted for 62,454 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.unemploy~n |  -.4844811   .0402007   -12.05   0.000    -.5632745   -.4056877
             |
    period_8 |
       1998  |  -.0242254   .0048096    -5.04   0.000    -.0336521   -.0147986
       2006  |   .0056302   .0044496     1.27   0.206     -.003091    .0143514
       2014  |  -.0048396   .0042831    -1.13   0.259    -.0132345    .0035553
             |
unemployed_n#|
    period_8 |
     1 1998  |  -.0448241   .0525949    -0.85   0.394    -.1479101     .058262
     1 2006  |   .0825526   .0551955     1.50   0.135    -.0256308    .1907359
     1 2014  |    .265979   .0545311     4.88   0.000     .1590981      .37286
             |
       _cons |  -.0144872   .0035691    -4.06   0.000    -.0214827   -.0074918
------------------------------------------------------------------------------

 ( 1)  1.unemployed_n#1998.period_8 = 0
 ( 2)  1.unemployed_n#2006.period_8 = 0
 ( 3)  1.unemployed_n#2014.period_8 = 0

       F(  3, 62453) =   13.92
            Prob > F =    0.0000
Chow Test for unemployed_n: F-statistic = 13.921279
p-value = 4.533e-09

Conditional marginal effects                           Number of obs = 466,281
Model VCE: Robust

Expression: Linear prediction, predict()
dy/dx wrt:  1.unemployed_n

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
0.unemploy~n |  (base outcome)
-------------+----------------------------------------------------------------
1.unemploy~n |
    period_8 |
       1990  |  -.4844811   .0402007   -12.05   0.000    -.5632745   -.4056877
       1998  |  -.5293052   .0349488   -15.15   0.000    -.5978049   -.4608054
       2006  |  -.4019286   .0377789   -10.64   0.000    -.4759752   -.3278819
       2014  |  -.2185021   .0369327    -5.92   0.000    -.2908902    -.146114
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

Variables that uniquely identify margins: period_8
(128,371 observations deleted)
Processing event: partner_died_n
1990 1998 2006 2014

Linear regression                               Number of obs     =    480,075
                                                F(7, 62505)       =      49.85
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0013
                                                Root MSE          =     1.5611

                               (Std. err. adjusted for 62,506 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.partner_~n |  -.5747657   .1340709    -4.29   0.000    -.8375448   -.3119865
             |
    period_8 |
       1998  |  -.0252413   .0046317    -5.45   0.000    -.0343194   -.0161631
       2006  |    .007727   .0042528     1.82   0.069    -.0006084    .0160625
       2014  |   .0091963   .0041092     2.24   0.025     .0011422    .0172504
             |
partner_di~n#|
    period_8 |
     1 1998  |  -.3855649   .1744798    -2.21   0.027    -.7275456   -.0435841
     1 2006  |  -.2858383   .1739271    -1.64   0.100    -.6267357    .0550591
     1 2014  |  -.2734676   .1678085    -1.63   0.103    -.6023725    .0554374
             |
       _cons |  -.0246741   .0034264    -7.20   0.000      -.03139   -.0179583
------------------------------------------------------------------------------

 ( 1)  1.partner_died_n#1998.period_8 = 0
 ( 2)  1.partner_died_n#2006.period_8 = 0
 ( 3)  1.partner_died_n#2014.period_8 = 0

       F(  3, 62505) =    1.70
            Prob > F =    0.1654
Chow Test for partner_died_n: F-statistic = 1.6963468
p-value = .16540385

Conditional marginal effects                           Number of obs = 480,075
Model VCE: Robust

Expression: Linear prediction, predict()
dy/dx wrt:  1.partner_died_n

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
0.partner_~n |  (base outcome)
-------------+----------------------------------------------------------------
1.partner_~n |
    period_8 |
       1990  |  -.5747657   .1340709    -4.29   0.000    -.8375448   -.3119865
       1998  |  -.9603305   .1110093    -8.65   0.000    -1.177909   -.7427521
       2006  |  -.8606039   .1108439    -7.76   0.000    -1.077858   -.6433497
       2014  |  -.8482332   .1003859    -8.45   0.000     -1.04499   -.6514766
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

Variables that uniquely identify margins: period_8
(170,900 observations deleted)
Processing event: newpartner_n
1990 1998 2006 2014

Linear regression                               Number of obs     =    130,034
                                                F(7, 13261)       =      40.06
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0026
                                                Root MSE          =     1.6386

                               (Std. err. adjusted for 13,262 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.newpartn~n |   .3129241   .0405508     7.72   0.000     .2334388    .3924094
             |
    period_8 |
       1998  |   .0022904   .0099435     0.23   0.818    -.0172004    .0217811
       2006  |   .0299711   .0090721     3.30   0.001     .0121884    .0477537
       2014  |   .0252335   .0092095     2.74   0.006     .0071815    .0432855
             |
newpartner_n#|
    period_8 |
     1 1998  |  -.0719397   .0511872    -1.41   0.160    -.1722738    .0283944
     1 2006  |  -.0414135    .050535    -0.82   0.413    -.1404693    .0576423
     1 2014  |  -.0223335   .0535321    -0.42   0.677     -.127264    .0825971
             |
       _cons |  -.0682432   .0074161    -9.20   0.000    -.0827798   -.0537066
------------------------------------------------------------------------------

 ( 1)  1.newpartner_n#1998.period_8 = 0
 ( 2)  1.newpartner_n#2006.period_8 = 0
 ( 3)  1.newpartner_n#2014.period_8 = 0

       F(  3, 13261) =    0.75
            Prob > F =    0.5228
Chow Test for newpartner_n: F-statistic = .74893985
p-value = .52280588

Conditional marginal effects                           Number of obs = 130,034
Model VCE: Robust

Expression: Linear prediction, predict()
dy/dx wrt:  1.newpartner_n

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
0.newpartn~n |  (base outcome)
-------------+----------------------------------------------------------------
1.newpartn~n |
    period_8 |
       1990  |   .3129241   .0405508     7.72   0.000     .2334388    .3924094
       1998  |   .2409844   .0320746     7.51   0.000     .1781137    .3038551
       2006  |   .2715106   .0302269     8.98   0.000     .2122615    .3307597
       2014  |   .2905906   .0351199     8.27   0.000     .2217507    .3594306
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

Variables that uniquely identify margins: period_8
(152,204 observations deleted)
Processing event: cohabnew_n
1990 1998 2006 2014

Linear regression                               Number of obs     =    123,427
                                                F(7, 12492)       =      28.98
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0019
                                                Root MSE          =     1.6244

                               (Std. err. adjusted for 12,493 clusters in pid)
------------------------------------------------------------------------------
             |               Robust
   d_lifesat | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
1.cohabnew_n |   .2972206   .0477812     6.22   0.000     .2035622    .3908791
             |
    period_8 |
       1998  |  -.0025797   .0096776    -0.27   0.790    -.0215494      .01639
       2006  |    .036633    .008813     4.16   0.000     .0193583    .0539078
       2014  |   .0276894   .0087499     3.16   0.002     .0105383    .0448404
             |
  cohabnew_n#|
    period_8 |
     1 1998  |   .0451554   .0623838     0.72   0.469    -.0771265    .1674373
     1 2006  |  -.0146166   .0625553    -0.23   0.815    -.1372346    .1080013
     1 2014  |  -.1155542   .0600345    -1.92   0.054    -.2332311    .0021227
             |
       _cons |   -.059237   .0071223    -8.32   0.000    -.0731978   -.0452763
------------------------------------------------------------------------------

 ( 1)  1.cohabnew_n#1998.period_8 = 0
 ( 2)  1.cohabnew_n#2006.period_8 = 0
 ( 3)  1.cohabnew_n#2014.period_8 = 0

       F(  3, 12492) =    3.15
            Prob > F =    0.0240
Chow Test for cohabnew_n: F-statistic = 3.1463176
p-value = .02402461

Conditional marginal effects                           Number of obs = 123,427
Model VCE: Robust

Expression: Linear prediction, predict()
dy/dx wrt:  1.cohabnew_n

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
0.cohabnew_n |  (base outcome)
-------------+----------------------------------------------------------------
1.cohabnew_n |
    period_8 |
       1990  |   .2972206   .0477812     6.22   0.000     .2035622    .3908791
       1998  |   .3423761   .0408009     8.39   0.000        .2624    .4223522
       2006  |    .282604   .0403827     7.00   0.000     .2034477    .3617603
       2014  |   .1816664   .0364641     4.98   0.000     .1101912    .2531417
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

Variables that uniquely identify margins: period_8

             | separa~n unempl~n partne~n newpar~n cohabn~n
-------------+---------------------------------------------
separation_n |   1.0000 
             |
             |
unemployed_n |   0.0267*  1.0000 
             |   0.0000
             |
partner_di~n |   0.0623* -0.0036*  1.0000 
             |   0.0000   0.0028
             |
newpartner_n |   0.0203*  0.0219*  0.0013   1.0000 
             |   0.0000   0.0000   0.4825
             |
  cohabnew_n |   0.0102*  0.0222* -0.0069*  0.0101*  1.0000 
             |   0.0000   0.0000   0.0003   0.0000
             |

  2.     sum `event'_ever
  3.     local total_obs = r(N)
  4.     local never_treated = r(N) - r(sum)  // Count of never-treated individ
> uals
  5.     local prop_never_treated = `never_treated' / `total_obs' * 100
  6. 
  7. }

    Variable |        Obs        Mean    Std. dev.       Min        Max
-------------+---------------------------------------------------------
separ~n_ever |    327,928     .348607      .47653          0          1
Proportion of never-treated individuals for separation_n: 65.139299%

    Variable |        Obs        Mean    Std. dev.       Min        Max
-------------+---------------------------------------------------------
unemp~n_ever |    689,428    .2175688    .4125928          0          1
Proportion of never-treated individuals for unemployed_n: 78.243123%

    Variable |        Obs        Mean    Std. dev.       Min        Max
-------------+---------------------------------------------------------
partn~n_ever |    685,835    .0576115    .2330075          0          1
Proportion of never-treated individuals for partner_died_n: 94.238848%

    Variable |        Obs        Mean    Std. dev.       Min        Max
-------------+---------------------------------------------------------
newpa~n_ever |    338,153    .4302875     .495117          0          1
Proportion of never-treated individuals for newpartner_n: 56.971253%

    Variable |        Obs        Mean    Std. dev.       Min        Max
-------------+---------------------------------------------------------
cohabnew_n~r |    336,968    .3682575    .4823325          0          1
Proportion of never-treated individuals for cohabnew_n: 63.174248%

  2.     tab `event' period
  3. }

separation |                         period
        _n |      1990       1995       2000       2005       2010 |     Total
-----------+-------------------------------------------------------+----------
         0 |    10,238     12,655     19,283     19,641     67,440 |   250,266 
         1 |       773      1,385      2,286      2,241      2,668 |    13,470 
-----------+-------------------------------------------------------+----------
     Total |    11,011     14,040     21,569     21,882     70,108 |   263,736 


separation |        period
        _n |      2015       2020 |     Total
-----------+----------------------+----------
         0 |    77,158     43,851 |   250,266 
         1 |     2,744      1,373 |    13,470 
-----------+----------------------+----------
     Total |    79,902     45,224 |   263,736 

unemployed |                         period
        _n |      1990       1995       2000       2005       2010 |     Total
-----------+-------------------------------------------------------+----------
         0 |    59,912     66,559    112,784    102,610    135,604 |   674,861 
         1 |     1,715      1,914      2,396      1,922      2,174 |    12,648 
-----------+-------------------------------------------------------+----------
     Total |    61,627     68,473    115,180    104,532    137,778 |   687,509 


unemployed |        period
        _n |      2015       2020 |     Total
-----------+----------------------+----------
         0 |   128,437     68,955 |   674,861 
         1 |     1,814        713 |    12,648 
-----------+----------------------+----------
     Total |   130,251     69,668 |   687,509 

partner_di |                         period
      ed_n |      1990       1995       2000       2005       2010 |     Total
-----------+-------------------------------------------------------+----------
         0 |    62,536     68,855    114,775    104,107    123,218 |   670,855 
         1 |       242        272        408        427        392 |     2,384 
-----------+-------------------------------------------------------+----------
     Total |    62,778     69,127    115,183    104,534    123,610 |   673,239 


partner_di |        period
      ed_n |      2015       2020 |     Total
-----------+----------------------+----------
         0 |   127,806     69,558 |   670,855 
         1 |       398        245 |     2,384 
-----------+----------------------+----------
     Total |   128,204     69,803 |   673,239 

newpartner |                         period
        _n |      1990       1995       2000       2005       2010 |     Total
-----------+-------------------------------------------------------+----------
         0 |    12,259     16,716     24,781     24,863     79,413 |   302,864 
         1 |     1,741      1,754      2,825      2,790      3,172 |    17,161 
-----------+-------------------------------------------------------+----------
     Total |    14,000     18,470     27,606     27,653     82,585 |   320,025 


newpartner |        period
        _n |      2015       2020 |     Total
-----------+----------------------+----------
         0 |    91,615     53,217 |   302,864 
         1 |     3,398      1,481 |    17,161 
-----------+----------------------+----------
     Total |    95,013     54,698 |   320,025 

           |                         period
cohabnew_n |      1990       1995       2000       2005       2010 |     Total
-----------+-------------------------------------------------------+----------
         0 |    13,360     16,680     22,869     22,836     74,466 |   283,640 
         1 |     1,362      1,196      1,600      1,475      1,800 |    10,558 
-----------+-------------------------------------------------------+----------
     Total |    14,722     17,876     24,469     24,311     76,266 |   294,198 

           |        period
cohabnew_n |      2015       2020 |     Total
-----------+----------------------+----------
         0 |    85,549     47,880 |   283,640 
         1 |     1,890      1,235 |    10,558 
-----------+----------------------+----------
     Total |    87,439     49,115 |   294,198 




Total number of life events (==1): 56221

       period                lifesat  
  1.     1990       6.95721435546875  
  2.     1995   6.901616096496582031  
  3.     2000   7.003602981567382812  
  4.     2005   6.952503681182861328  
  5.     2010   7.238335609436035156  
  6.     2015   7.423738956451416016  
  7.     2020   7.474206924438476562  
# # do "/Users/charlieharrison/Desktop/Dissertation/Final Docs/Analysing_Data.do"
> .do"
Unknown #command