Goal is to build a classification model to predict whether the person died.

Import Data

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readr)
library(correlationfunnel)
## ══ correlationfunnel Tip #3 ════════════════════════════════════════════════════
## Using `binarize()` with data containing many columns or many rows can increase dimensionality substantially.
## Try subsetting your data column-wise or row-wise to avoid creating too many columns.
## You can always make a big problem smaller by sampling. :)
data1 <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2020/2020-09-22/members.csv')
## Rows: 76519 Columns: 21
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (10): expedition_id, member_id, peak_id, peak_name, season, sex, citizen...
## dbl  (5): year, age, highpoint_metres, death_height_metres, injury_height_me...
## lgl  (6): hired, success, solo, oxygen_used, died, injured
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Clean Data

skimr::skim(data1)
Data summary
Name data1
Number of rows 76519
Number of columns 21
_______________________
Column type frequency:
character 10
logical 6
numeric 5
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
expedition_id 0 1.00 9 9 0 10350 0
member_id 0 1.00 12 12 0 76518 0
peak_id 0 1.00 4 4 0 391 0
peak_name 15 1.00 4 25 0 390 0
season 0 1.00 6 7 0 5 0
sex 2 1.00 1 1 0 2 0
citizenship 10 1.00 2 23 0 212 0
expedition_role 21 1.00 4 25 0 524 0
death_cause 75413 0.01 3 27 0 12 0
injury_type 74807 0.02 3 27 0 11 0

Variable type: logical

skim_variable n_missing complete_rate mean count
hired 0 1 0.21 FAL: 60788, TRU: 15731
success 0 1 0.38 FAL: 47320, TRU: 29199
solo 0 1 0.00 FAL: 76398, TRU: 121
oxygen_used 0 1 0.24 FAL: 58286, TRU: 18233
died 0 1 0.01 FAL: 75413, TRU: 1106
injured 0 1 0.02 FAL: 74806, TRU: 1713

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1.00 2000.36 14.78 1905 1991 2004 2012 2019 ▁▁▁▃▇
age 3497 0.95 37.33 10.40 7 29 36 44 85 ▁▇▅▁▁
highpoint_metres 21833 0.71 7470.68 1040.06 3800 6700 7400 8400 8850 ▁▁▆▃▇
death_height_metres 75451 0.01 6592.85 1308.19 400 5800 6600 7550 8830 ▁▁▂▇▆
injury_height_metres 75510 0.01 7049.91 1214.24 400 6200 7100 8000 8880 ▁▁▂▇▇

Issues with data: - Missing Values: peak_name, sex, citizenship, expedition_role, death_cause, injury_type, age, highpoint_metres, death_height_metres, injury_height_metres - Factors or numeric variables: none - Zero variance values: none - Character variables: Convert them to numbers in recipe step (step_dummy) _ Unbalanced Target variable: died _ ID Variable: member_id

# drop columns with missing values 
data_clean1 <- data1 %>% select(-c(death_cause, injury_type, highpoint_metres, death_height_metres, injury_height_metres)) %>%
    
    # remove redundant variable
    select(-peak_id) %>%
    
    # remove rows with NA
    na.omit() %>%
    
    # remove duplicates in member_id
    distinct(member_id, .keep_all = TRUE) %>%
    
    # convert character data to factors
    mutate(across(where(is.character), as.factor)) %>%
    
    # convert logical data to factors
    mutate(across(where(is.logical), as.factor)) 

Explore Data

data_clean1 %>% count(died)
## # A tibble: 2 × 2
##   died      n
##   <fct> <int>
## 1 FALSE 72055
## 2 TRUE    929
data_clean1 %>%
    ggplot(aes(died)) +
    geom_bar()

died vs age

data_clean1 %>%
    ggplot(aes(died, age)) +
    geom_boxplot()

died vs year

data_clean1 %>% 
    ggplot(aes(died, year)) +
    geom_boxplot()

correlation plot

# step 1 binarize
data_binarized1 <- data_clean1 %>%
    select(-member_id) %>%
    binarize()

data_binarized1 %>% glimpse()
## Rows: 72,984
## Columns: 69
## $ expedition_id__EVER88101       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `expedition_id__-OTHER`        <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ peak_name__Ama_Dablam          <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ peak_name__Annapurna_I         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Annapurna_IV        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Baruntse            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Cho_Oyu             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Dhaulagiri_I        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Everest             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Himlung_Himal       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Kangchenjunga       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Lhotse              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Makalu              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Manaslu             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ peak_name__Pumori              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `peak_name__-OTHER`            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `year__-Inf_1992`              <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ year__1992_2004                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ year__2004_2012                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ year__2012_Inf                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ season__Autumn                 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, …
## $ season__Spring                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, …
## $ season__Winter                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `season__-OTHER`               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ sex__F                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ sex__M                         <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ `age__-Inf_29`                 <dbl> 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, …
## $ age__29_36                     <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, …
## $ age__36_44                     <dbl> 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, …
## $ age__44_Inf                    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Australia         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Austria           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Canada            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__China             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__France            <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, …
## $ citizenship__Germany           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__India             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Italy             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Japan             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Nepal             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Netherlands       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__New_Zealand       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Poland            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Russia            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__S_Korea           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Spain             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__Switzerland       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__UK                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ citizenship__USA               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, …
## $ citizenship__W_Germany         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, …
## $ `citizenship__-OTHER`          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ expedition_role__Climber       <dbl> 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, …
## $ expedition_role__Deputy_Leader <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ expedition_role__Exp_Doctor    <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `expedition_role__H-A_Worker`  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ expedition_role__Leader        <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `expedition_role__-OTHER`      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, …
## $ hired__FALSE                   <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ hired__TRUE                    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ success__FALSE                 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, …
## $ success__TRUE                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, …
## $ solo__FALSE                    <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ `solo__-OTHER`                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ oxygen_used__FALSE             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ oxygen_used__TRUE              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ died__FALSE                    <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ died__TRUE                     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ injured__FALSE                 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ injured__TRUE                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
# step 2 correlate
data_correlation1 <- data_binarized1 %>%
    correlate(died__TRUE)
## Warning: correlate(): [Data Imbalance Detected] Consider sampling to balance the classes more than 5%
##   Column with imbalance: died__TRUE
data_correlation1
## # A tibble: 69 × 3
##    feature   bin          correlation
##    <fct>     <chr>              <dbl>
##  1 died      FALSE            -1     
##  2 died      TRUE              1     
##  3 year      -Inf_1992         0.0519
##  4 peak_name Annapurna_I       0.0336
##  5 success   FALSE             0.0332
##  6 success   TRUE             -0.0332
##  7 peak_name Dhaulagiri_I      0.0290
##  8 peak_name Ama_Dablam       -0.0281
##  9 peak_name Cho_Oyu          -0.0241
## 10 year      2004_2012        -0.0211
## # ℹ 59 more rows
#step 3 plot
data_correlation1 %>%
    correlationfunnel::plot_correlation_funnel()
## Warning: ggrepel: 41 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Model Building

Split Data

library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom        1.0.6     ✔ rsample      1.2.1
## ✔ dials        1.3.0     ✔ tune         1.2.1
## ✔ infer        1.0.7     ✔ workflows    1.1.4
## ✔ modeldata    1.4.0     ✔ workflowsets 1.1.0
## ✔ parsnip      1.2.1     ✔ yardstick    1.3.2
## ✔ recipes      1.1.0
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Use suppressPackageStartupMessages() to eliminate package startup messages
set.seed(1236)
data_clean1 <- data_clean1 %>%
    group_by(died) %>%
    sample_n(100)

data_split1 <- initial_split(data_clean1, strata = died)
data_train1 <- training(data_split1)
data_test1 <- testing(data_split1)

data_cv1 <- rsample::vfold_cv(data_train1, strata = died)

data_cv1
## #  10-fold cross-validation using stratification 
## # A tibble: 10 × 2
##    splits           id    
##    <list>           <chr> 
##  1 <split [134/16]> Fold01
##  2 <split [134/16]> Fold02
##  3 <split [134/16]> Fold03
##  4 <split [134/16]> Fold04
##  5 <split [134/16]> Fold05
##  6 <split [136/14]> Fold06
##  7 <split [136/14]> Fold07
##  8 <split [136/14]> Fold08
##  9 <split [136/14]> Fold09
## 10 <split [136/14]> Fold10

Preprocess Data

library(themis)

xgboost_rec1 <- recipes::recipe(died ~ ., data = data_train1) %>%
    update_role(member_id, new_role = "ID") %>%
    step_other(expedition_id, peak_name, expedition_role, citizenship, threshold = .02) %>%
    step_dummy(all_nominal_predictors())

xgboost_rec1 %>% prep() %>% juice() %>% glimpse()
## Rows: 150
## Columns: 44
## $ member_id                     <fct> MANA17320-01, LHOT17107-22, ANN179101-14…
## $ year                          <dbl> 2017, 2017, 1979, 2017, 2012, 2006, 1998…
## $ age                           <dbl> 43, 36, 29, 64, 41, 53, 31, 30, 33, 34, …
## $ died                          <fct> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE…
## $ expedition_id_other           <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ peak_name_Annapurna.I         <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Cho.Oyu             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Dhaulagiri.I        <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0…
## $ peak_name_Everest             <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1…
## $ peak_name_Himlung.Himal       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Lhotse              <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Makalu              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Manaslu             <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_Pumori              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ peak_name_other               <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ season_Spring                 <dbl> 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1…
## $ season_Summer                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ season_Winter                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ sex_M                         <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ citizenship_Bulgaria          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_France            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_India             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Italy             <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Japan             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Mexico            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Nepal             <dbl> 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0…
## $ citizenship_Netherlands       <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_New.Zealand       <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_S.Korea           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Slovenia          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Spain             <dbl> 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_Switzerland       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_UK                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ citizenship_USA               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1…
## $ citizenship_other             <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0…
## $ expedition_role_Deputy.Leader <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ expedition_role_H.A.Worker    <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0…
## $ expedition_role_Leader        <dbl> 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1…
## $ expedition_role_other         <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0…
## $ hired_TRUE.                   <dbl> 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0…
## $ success_TRUE.                 <dbl> 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0…
## $ solo_TRUE.                    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ oxygen_used_TRUE.             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0…
## $ injured_TRUE.                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…

Specify Model

xgboost_spec <- 
    boost_tree(trees = tune()) %>%
    set_mode("classification") %>%
    set_engine("xgboost")

xgboost_workflow <- 
    workflow() %>%
    add_recipe(xgboost_rec1) %>%
    add_model(xgboost_spec)

Tune hyperparameters

doParallel::registerDoParallel()
set.seed(10891)
xgboost_tune <-
    tune_grid(xgboost_workflow,
              resamples = data_cv1,
              grid = 5)