# Load library
library(nlme)
# Response variable
response <- c(rnorm(5, 1, 3), rnorm(5, 6, 1), rnorm(5, 10, 5))
# Dataframe with two categorical variables
foo <- data.frame(response = response, X = rep(letters[1:3], each = 5), Y = rep(LETTERS[1:3],
each = 5))
# gls model allowing for different variance per level of Y
m1 <- gls(response ~ X, weights = varIdent(form = ~1 | Y), data = foo)
# anova command indicating the factor 'X' is significant
anova(m1)
## Denom. DF: 12
## numDF F-value p-value
## (Intercept) 1 478.2 <.0001
## X 2 10.9 0.002
# summary command indicating levels b and c are greater than level a of
# factor 'X'. WHAT TEST DO I CITE IN A MANUSCRIPT FOR THESE CONTRASTS?
summary(m1)
## Generalized least squares fit by REML
## Model: response ~ X
## Data: foo
## AIC BIC logLik
## 70.55 73.46 -29.27
##
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | Y
## Parameter estimates:
## A B C
## 1.0000 0.1762 1.7840
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -0.550 1.493 -0.368 0.7190
## Xb 6.324 1.516 4.173 0.0013
## Xc 11.707 3.053 3.835 0.0024
##
## Correlation:
## (Intr) Xb
## Xb -0.985
## Xc -0.489 0.482
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -1.2975 -0.7330 -0.1790 0.8634 1.6068
##
## Residual standard error: 3.338
## Degrees of freedom: 15 total; 12 residual