data(mtcars)
model_lm <- lm(mpg ~ hp + wt, data = mtcars)
summary(model_lm)
##
## Call:
## lm(formula = mpg ~ hp + wt, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.941 -1.600 -0.182 1.050 5.854
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.22727 1.59879 23.285 < 2e-16 ***
## hp -0.03177 0.00903 -3.519 0.00145 **
## wt -3.87783 0.63273 -6.129 1.12e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.593 on 29 degrees of freedom
## Multiple R-squared: 0.8268, Adjusted R-squared: 0.8148
## F-statistic: 69.21 on 2 and 29 DF, p-value: 9.109e-12
r_squared <- summary(model_lm)$r.squared
cat("R bình phương:", r_squared, "\n")
## R bình phương: 0.8267855
predicted_mpg <- predict(model_lm, newdata = mtcars)
rmse <- sqrt(mean((mtcars$mpg - predicted_mpg)^2))
cat("RMSE:", rmse, "\n")
## RMSE: 2.468854
if (!require(arm)) install.packages("arm", dependencies = TRUE)
## Loading required package: arm
## Warning: package 'arm' was built under R version 4.4.3
## Loading required package: MASS
## Loading required package: Matrix
## Loading required package: lme4
## Warning: package 'lme4' was built under R version 4.4.3
##
## arm (Version 1.14-4, built: 2024-4-1)
## Working directory is D:/Python
library(arm)
data(iris)
iris_binary <- iris[iris$Species %in% c("setosa", "versicolor"), ]
iris_binary$Species <- as.numeric(iris_binary$Species == "versicolor")
model_bayes <- bayesglm(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
data = iris_binary, family = binomial)
predicted_probs <- predict(model_bayes, type = "response")
predicted_classes <- ifelse(predicted_probs > 0.5, 1, 0)
conf_matrix <- table(Predicted = predicted_classes, Actual = iris_binary$Species)
print(conf_matrix)
## Actual
## Predicted 0 1
## 0 50 0
## 1 0 50
accuracy <- sum(diag(conf_matrix)) / sum(conf_matrix)
cat("Độ chính xác:", accuracy, "\n")
## Độ chính xác: 1
library(ggplot2)
ggplot(iris_binary, aes(x = Petal.Length, y = Petal.Width, color = as.factor(Species))) +
geom_point(size = 3) +
theme_minimal() +
labs(title = "Kiểm tra phân tách hoàn toàn giữa Setosa và Versicolor")
