class: center, middle, inverse, title-slide .title[ # Uber Review Analysis ] .subtitle[ ## Developing Data Products JHU Coursera Course Project ] .author[ ### Anthony DiFiore ] .date[ ### 2025/03/12 ] --- class: inverse #About the Data: * **Source:** “Uber Customer Reviews Dataset (2024)” from Kaggle * **Content:** 1,200 reviews from the Google Play Store * **Details:** Ratings (1–5), user feedback, and review times * **Preparation:** Data is cleaned and anonymized * **Focus:** Explore sentiment patterns, common word pairs (bigrams), and word frequency trends <img src="dataset-cover.jpg" width="1057" /> --- class: inverse #How to Use the Dashboard: ###**Page 1** – Treemap & Reviews: * **Select Sentiment:** Choose sentiment (All/Positive/Negative) and then click on the interactive treemap to zoom in on the most common bigrams per Uber score * **Uber Score Reviews Table:** The reviews table below the treemap displays full review texts based on your selection ###**Page 2** – Wordcloud: * **Toggle Sentiment:** Use radio buttons to select “Positive” or “Negative” reviews * **Frequency Slider:** Set the minimum word frequency to update the wordcloud in real-time --- class: inverse, center, middle .center[ #[Click here](https://ardifiore.shinyapps.io/uber-review-analysis/) to visit the dashboard! ####Afterwards, [click here](https://github.com/ardifiore/uber-analysis) to visit our GitHub repository ] --- class: inverse ## References & Citations * Data Source: Uber Customer Reviews Dataset (2024) – Kaggle DOI: [https://doi.org/10.34740/KAGGLE/DSV/10248932](https://doi.org/10.34740/KAGGLE/DSV/10248932) * Lexicons: VADER, Bing, NRC Emotion, and AFINN * Key R Packages: bs4Dash, shinydashboard, tidyverse, d3treeR, DT, wordcloud2, viridis, tidytext * Further Reading: Click the provided links for more details on each resource