url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-01-18/chocolate.csv"
chocolate <- read_csv(url)
chocolate %>%
ggplot(aes(rating)) +
geom_histogram(bins = 15)
## Sample of most used word's
tidy_chocolate <-
chocolate %>%
unnest_tokens(word, most_memorable_characteristics)
tidy_chocolate %>%
count(word, sort = TRUE)
## # A tibble: 547 × 2
## word n
## <chr> <int>
## 1 cocoa 419
## 2 sweet 318
## 3 nutty 278
## 4 fruit 273
## 5 roasty 228
## 6 mild 226
## 7 sour 208
## 8 earthy 199
## 9 creamy 189
## 10 intense 178
## # ℹ 537 more rows
## Mean of those words
tidy_chocolate %>%
group_by(word) %>%
summarise(
n = n(),
rating = mean(rating)
) %>%
ggplot(aes(n, rating)) +
geom_hline(
yintercept = mean(chocolate$rating), lty = 2,
color = "gray50", linewidth = 1.5
) +
geom_jitter(color = "midnightblue", alpha = 0.7) +
geom_text(aes(label = word),
check_overlap = TRUE, family = "IBMPlexSans",
vjust = "top", hjust = "left"
) +
scale_x_log10()
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Data Budget
set.seed(123)
choco_split <- initial_split(chocolate, strata = rating)
choco_train <- training(choco_split)
choco_test <- testing(choco_split)
set.seed(234)
choco_folds <- vfold_cv(choco_train, strata = rating)
choco_folds
## # 10-fold cross-validation using stratification
## # A tibble: 10 × 2
## splits id
## <list> <chr>
## 1 <split [1705/191]> Fold01
## 2 <split [1705/191]> Fold02
## 3 <split [1705/191]> Fold03
## 4 <split [1706/190]> Fold04
## 5 <split [1706/190]> Fold05
## 6 <split [1706/190]> Fold06
## 7 <split [1707/189]> Fold07
## 8 <split [1707/189]> Fold08
## 9 <split [1708/188]> Fold09
## 10 <split [1709/187]> Fold10
Chocolate Recipe Model
choco_rec <-
recipe(rating ~ most_memorable_characteristics, data = choco_train) %>%
step_tokenize(most_memorable_characteristics) %>%
step_tokenfilter(most_memorable_characteristics, max_tokens = 100) %>%
step_tfidf(most_memorable_characteristics)
## just to check this works
prep(choco_rec) %>% bake(new_data = NULL)
## # A tibble: 1,896 × 101
## rating tfidf_most_memorable_c…¹ tfidf_most_memorable…² tfidf_most_memorable…³
## <dbl> <dbl> <dbl> <dbl>
## 1 3 0 0 0
## 2 2.75 0 0 0
## 3 3 0 0 0
## 4 3 0 0 0
## 5 2.75 0 0 0
## 6 3 1.38 0 0
## 7 2.75 0 0 0
## 8 2.5 0 0 0
## 9 2.75 0 0 0
## 10 3 0 0 0
## # ℹ 1,886 more rows
## # ℹ abbreviated names: ¹tfidf_most_memorable_characteristics_acidic,
## # ²tfidf_most_memorable_characteristics_and,
## # ³tfidf_most_memorable_characteristics_astringent
## # ℹ 97 more variables: tfidf_most_memorable_characteristics_banana <dbl>,
## # tfidf_most_memorable_characteristics_base <dbl>,
## # tfidf_most_memorable_characteristics_basic <dbl>, …
rf_spec <-
rand_forest(trees = 500) %>%
set_mode("regression")
rf_spec
## Random Forest Model Specification (regression)
##
## Main Arguments:
## trees = 500
##
## Computational engine: ranger
svm_spec <-
svm_linear() %>%
set_mode("regression")
svm_spec
## Linear Support Vector Machine Model Specification (regression)
##
## Computational engine: LiblineaR
svm_wf <- workflow(choco_rec, svm_spec)
rf_wf <- workflow(choco_rec, rf_spec)
library(future)
plan(multisession, workers = 4)
doParallel::registerDoParallel()
contrl_preds <- control_resamples(save_pred = TRUE)
svm_rs <- fit_resamples(
svm_wf,
resamples = choco_folds,
control = contrl_preds
)
ranger_rs <- fit_resamples(
rf_wf,
resamples = choco_folds,
control = contrl_preds
)
Comparing the two.
collect_metrics(svm_rs)
## # A tibble: 2 × 6
## .metric .estimator mean n std_err .config
## <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 rmse standard 0.347 10 0.00656 Preprocessor1_Model1
## 2 rsq standard 0.367 10 0.0181 Preprocessor1_Model1
collect_metrics(ranger_rs)
## # A tibble: 2 × 6
## .metric .estimator mean n std_err .config
## <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 rmse standard 0.350 10 0.00666 Preprocessor1_Model1
## 2 rsq standard 0.358 10 0.0161 Preprocessor1_Model1
Bind Rows
bind_rows(
collect_predictions(svm_rs) %>%
mutate(mod = "SVM"),
collect_predictions(ranger_rs) %>%
mutate(mod = "ranger")
) %>%
ggplot(aes(rating, .pred, color = id)) +
geom_abline(lty = 2, color = "gray50", size = 1.2) +
geom_jitter(width = 0.5, alpha = 0.5) +
facet_wrap(vars(mod)) +
coord_fixed()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Workflow
final_fitted <- last_fit(svm_wf, choco_split)
## Warning: package 'LiblineaR' was built under R version 4.4.3
collect_metrics(final_fitted) ## metrics evaluated on the *testing* data
## # A tibble: 2 × 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 rmse standard 0.381 Preprocessor1_Model1
## 2 rsq standard 0.348 Preprocessor1_Model1
final_wf <- extract_workflow(final_fitted)
predict(final_wf, choco_test[55, ])
## # A tibble: 1 × 1
## .pred
## <dbl>
## 1 3.51
extract_workflow(final_fitted) %>%
tidy() %>%
filter(term != "Bias") %>%
group_by(estimate > 0) %>%
slice_max(abs(estimate), n = 10) %>%
ungroup() %>%
mutate(term = str_remove(term, "tfidf_most_memorable_characteristics_")) %>%
ggplot(aes(estimate, fct_reorder(term, estimate), fill = estimate > 0)) +
geom_col(alpha = 0.8) +
scale_fill_discrete(labels = c("low ratings", "high ratings")) +
labs(y = NULL, fill = "More from...")