flights |>
group_by(origin) |>
summarise(n=n(),depm=mean(dep_delay,na.rm=T))# A tibble: 3 × 3
origin n depm
<chr> <int> <dbl>
1 EWR 120835 15.1
2 JFK 111279 12.1
3 LGA 104662 10.3
利用nycflights13包的flights数据集是2013年从纽约三大机场(JFK、LGA、EWR)起飞的所有航班的准点数据,共336776条记录。
计算纽约三大机场2013起飞航班数和平均延误时间(可使用group_by, summarise函数)
flights |>
group_by(origin) |>
summarise(n=n(),depm=mean(dep_delay,na.rm=T))# A tibble: 3 × 3
origin n depm
<chr> <int> <dbl>
1 EWR 120835 15.1
2 JFK 111279 12.1
3 LGA 104662 10.3
计算不同航空公司2013从纽约起飞航班数和平均延误时间
flights |>
group_by(carrier) |>
summarise(n=n(),depm=mean(dep_delay,na.rm=T)) |>
arrange(desc(n))# A tibble: 16 × 3
carrier n depm
<chr> <int> <dbl>
1 UA 58665 12.1
2 B6 54635 13.0
3 EV 54173 20.0
4 DL 48110 9.26
5 AA 32729 8.59
6 MQ 26397 10.6
7 US 20536 3.78
8 9E 18460 16.7
9 WN 12275 17.7
10 VX 5162 12.9
11 FL 3260 18.7
12 AS 714 5.80
13 F9 685 20.2
14 YV 601 19.0
15 HA 342 4.90
16 OO 32 12.6
计算纽约三大机场排名前三个目的地和平均飞行距离(可使用group_by, summarise, arrange, slice_max函数)
flights |>
group_by(origin,dest) |>
summarise(n=n(),depm=mean(distance)) |>
slice_max(n,n=3)`summarise()` has grouped output by 'origin'. You can override using the
`.groups` argument.
# A tibble: 9 × 4
# Groups: origin [3]
origin dest n depm
<chr> <chr> <int> <dbl>
1 EWR ORD 6100 719
2 EWR BOS 5327 200
3 EWR SFO 5127 2565
4 JFK LAX 11262 2475
5 JFK SFO 8204 2586
6 JFK BOS 5898 187
7 LGA ATL 10263 762
8 LGA ORD 8857 733
9 LGA CLT 6168 544
代码含义:这段代码将iris数据集转换为tibble格式,并首先按照Species列进行升序排序,然后对以"Sepal"开头的列(Sepal.Length和Sepal.Width)进行降序排序。最终返回排序后的数据集。
tibble(iris) %>%
arrange(Species,across(starts_with("Sepal"), desc))# A tibble: 150 × 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fct>
1 5.8 4 1.2 0.2 setosa
2 5.7 4.4 1.5 0.4 setosa
3 5.7 3.8 1.7 0.3 setosa
4 5.5 4.2 1.4 0.2 setosa
5 5.5 3.5 1.3 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 5.4 3.9 1.3 0.4 setosa
8 5.4 3.7 1.5 0.2 setosa
9 5.4 3.4 1.7 0.2 setosa
10 5.4 3.4 1.5 0.4 setosa
# ℹ 140 more rows
代码含义:这段代码对starwars数据集进行操作,首先按照gender列进行分组,然后筛选出每个性别组中体重(mass)大于该组平均体重的角色。最终返回筛选后的结果。
starwars %>%
group_by(gender) %>%
filter(mass > mean(mass, na.rm = TRUE))# A tibble: 15 × 14
# Groups: gender [3]
name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 Darth … 202 136 none white yellow 41.9 male mascu…
2 Owen L… 178 120 brown, gr… light blue 52 male mascu…
3 Beru W… 165 75 brown light blue 47 fema… femin…
4 Chewba… 228 112 brown unknown blue 200 male mascu…
5 Jabba … 175 1358 <NA> green-tan… orange 600 herm… mascu…
6 Jek To… 180 110 brown fair blue NA <NA> <NA>
7 IG-88 200 140 none metal red 15 none mascu…
8 Bossk 190 113 none green red 53 male mascu…
9 Ayla S… 178 55 none blue hazel 48 fema… femin…
10 Gregar… 185 85 black dark brown NA <NA> <NA>
11 Lumina… 170 56.2 black yellow blue 58 fema… femin…
12 Zam We… 168 55 blonde fair, gre… yellow NA fema… femin…
13 Shaak … 178 57 none red, blue… black NA fema… femin…
14 Grievo… 216 159 none brown, wh… green, y… NA male mascu…
15 Tarfful 234 136 brown brown blue NA male mascu…
# ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
# vehicles <list>, starships <list>
代码含义:这段代码从starwars数据集中选择了name、homeworld和species三列,然后将homeworld和species列的数据类型转换为因子(factor)。最终返回处理后的数据集。
starwars %>%
select(name, homeworld, species) %>%
mutate(across(!name, as.factor))# A tibble: 87 × 3
name homeworld species
<chr> <fct> <fct>
1 Luke Skywalker Tatooine Human
2 C-3PO Tatooine Droid
3 R2-D2 Naboo Droid
4 Darth Vader Tatooine Human
5 Leia Organa Alderaan Human
6 Owen Lars Tatooine Human
7 Beru Whitesun Lars Tatooine Human
8 R5-D4 Tatooine Droid
9 Biggs Darklighter Tatooine Human
10 Obi-Wan Kenobi Stewjon Human
# ℹ 77 more rows
代码含义:这段代码将mtcars数据集转换为tibble格式,首先按照vs列(发动机类型)进行分组,然后根据hp(马力)列的值将其分成3个等宽的区间,并将结果存储在新列hp_cut中。最后,进一步按照hp_cut列(马力区间)对数据进行分组。最终返回分组后的数据集。
tibble(mtcars) %>%
group_by(vs) %>%
mutate(hp_cut = cut(hp, 3)) %>%
group_by(hp_cut)# A tibble: 32 × 12
# Groups: hp_cut [6]
mpg cyl disp hp drat wt qsec vs am gear carb hp_cut
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 (90.8,172]
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 (90.8,172]
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 (75.7,99.3]
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 (99.3,123]
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 (172,254]
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 (99.3,123]
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 (172,254]
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 (51.9,75.7]
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 (75.7,99.3]
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 (99.3,123]
# ℹ 22 more rows
阅读 https://dplyr.tidyverse.org/reference/mutate-joins.html 内容,说明4个数据集链接函数函数的作用。分别举一个实际例子演示并解释其输出结果。
inner_join() :返回两个数据集中键值匹配的行。
library(dplyr)
# 创建两个数据集
df1 <- tibble(id = c(1, 2, 3), name = c("Alice", "Bob", "Carol"))
df2 <- tibble(id = c(1, 3, 4), age = c(25, 30, 22))
# 使用inner_join合并
result <- inner_join(df1, df2, by = "id")
print(result)# A tibble: 2 × 3
id name age
<dbl> <chr> <dbl>
1 1 Alice 25
2 3 Carol 30
left_join() :返回左侧数据集的所有行,以及右侧数据集中键值匹配的行。
# 使用left_join合并
result <- left_join(df1, df2, by = "id")
print(result)# A tibble: 3 × 3
id name age
<dbl> <chr> <dbl>
1 1 Alice 25
2 2 Bob NA
3 3 Carol 30
right_join() :返回右侧数据集的所有行,以及左侧数据集中键值匹配的行。
# 使用right_join合并
result <- right_join(df1, df2, by = "id")
print(result)# A tibble: 3 × 3
id name age
<dbl> <chr> <dbl>
1 1 Alice 25
2 3 Carol 30
3 4 <NA> 22
full_join() :返回两个数据集中所有行,无论键值是否匹配。
# 使用full_join合并
result <- full_join(df1, df2, by = "id")
print(result)# A tibble: 4 × 3
id name age
<dbl> <chr> <dbl>
1 1 Alice 25
2 2 Bob NA
3 3 Carol 30
4 4 <NA> 22