flights %>%
group_by(origin) %>%
summarise(n=n(),depm=mean(dep_time,na.rm = T))# A tibble: 3 × 3
origin n depm
<chr> <int> <dbl>
1 EWR 120835 1337.
2 JFK 111279 1399.
3 LGA 104662 1310.
利用nycflights13包的flights数据集是2013年从纽约三大机场(JFK、LGA、EWR)起飞的所有航班的准点数据,共336776条记录。
计算纽约三大机场2013起飞航班数和平均延误时间(可使用group_by, summarise函数)
flights %>%
group_by(origin) %>%
summarise(n=n(),depm=mean(dep_time,na.rm = T))# A tibble: 3 × 3
origin n depm
<chr> <int> <dbl>
1 EWR 120835 1337.
2 JFK 111279 1399.
3 LGA 104662 1310.
计算不同航空公司2013从纽约起飞航班数和平均延误时间
flights %>%
group_by(carrier) %>%
summarise(n=n(),depm=mean(dep_delay,na.rm = T)) %>%
arrange(desc(n))# A tibble: 16 × 3
carrier n depm
<chr> <int> <dbl>
1 UA 58665 12.1
2 B6 54635 13.0
3 EV 54173 20.0
4 DL 48110 9.26
5 AA 32729 8.59
6 MQ 26397 10.6
7 US 20536 3.78
8 9E 18460 16.7
9 WN 12275 17.7
10 VX 5162 12.9
11 FL 3260 18.7
12 AS 714 5.80
13 F9 685 20.2
14 YV 601 19.0
15 HA 342 4.90
16 OO 32 12.6
计算纽约三大机场排名前三个目的地和平均飞行距离(可使用group_by, summarise, arrange, slice_max函数)
flights %>%
group_by(origin,dest) %>%
summarise(n=n(),distm=mean(distance)) %>%
slice_max(n,n=3)`summarise()` has grouped output by 'origin'. You can override using the
`.groups` argument.
# A tibble: 9 × 4
# Groups: origin [3]
origin dest n distm
<chr> <chr> <int> <dbl>
1 EWR ORD 6100 719
2 EWR BOS 5327 200
3 EWR SFO 5127 2565
4 JFK LAX 11262 2475
5 JFK SFO 8204 2586
6 JFK BOS 5898 187
7 LGA ATL 10263 762
8 LGA ORD 8857 733
9 LGA CLT 6168 544
代码含义:
tibble(iris):将鸢尾花数据及iris转换为tibble格式,
arrange(Species,across(starts_with(“Sepal”), desc)):按照Species列进行升序排序,再对以"Sepal"开头的列(即Sepal.Length和Sepal.Width)进行降序排序。
tibble(iris) %>%
arrange(Species,across(starts_with("Sepal"), desc))# A tibble: 150 × 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fct>
1 5.8 4 1.2 0.2 setosa
2 5.7 4.4 1.5 0.4 setosa
3 5.7 3.8 1.7 0.3 setosa
4 5.5 4.2 1.4 0.2 setosa
5 5.5 3.5 1.3 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 5.4 3.9 1.3 0.4 setosa
8 5.4 3.7 1.5 0.2 setosa
9 5.4 3.4 1.7 0.2 setosa
10 5.4 3.4 1.5 0.4 setosa
# ℹ 140 more rows
代码含义:
group_by(gender):按照gender列(性别)对starwars数据集进行分组。
filter(mass > mean(mass, na.rm = TRUE)):在每个性别组中, 分别计算每个性别组(gender)的平均体重,然后筛选出每个组中体重高于该组平均值的角色。
starwars %>%
group_by(gender) %>%
filter(mass > mean(mass, na.rm = TRUE))# A tibble: 15 × 14
# Groups: gender [3]
name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 Darth … 202 136 none white yellow 41.9 male mascu…
2 Owen L… 178 120 brown, gr… light blue 52 male mascu…
3 Beru W… 165 75 brown light blue 47 fema… femin…
4 Chewba… 228 112 brown unknown blue 200 male mascu…
5 Jabba … 175 1358 <NA> green-tan… orange 600 herm… mascu…
6 Jek To… 180 110 brown fair blue NA <NA> <NA>
7 IG-88 200 140 none metal red 15 none mascu…
8 Bossk 190 113 none green red 53 male mascu…
9 Ayla S… 178 55 none blue hazel 48 fema… femin…
10 Gregar… 185 85 black dark brown NA <NA> <NA>
11 Lumina… 170 56.2 black yellow blue 58 fema… femin…
12 Zam We… 168 55 blonde fair, gre… yellow NA fema… femin…
13 Shaak … 178 57 none red, blue… black NA fema… femin…
14 Grievo… 216 159 none brown, wh… green, y… NA male mascu…
15 Tarfful 234 136 brown brown blue NA male mascu…
# ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
# vehicles <list>, starships <list>
代码含义:
select(name, homeworld, species) :从starwars中选择name, homeworld, species这三列数据
mutate(across(!name, as.factor)):将homeworld,和species列转换为因子类型
starwars %>%
select(name, homeworld, species) %>%
mutate(across(!name, as.factor))# A tibble: 87 × 3
name homeworld species
<chr> <fct> <fct>
1 Luke Skywalker Tatooine Human
2 C-3PO Tatooine Droid
3 R2-D2 Naboo Droid
4 Darth Vader Tatooine Human
5 Leia Organa Alderaan Human
6 Owen Lars Tatooine Human
7 Beru Whitesun Lars Tatooine Human
8 R5-D4 Tatooine Droid
9 Biggs Darklighter Tatooine Human
10 Obi-Wan Kenobi Stewjon Human
# ℹ 77 more rows
代码含义:
tibble(mtcars):将mtcars数据集转换为tibble格式。
group_by(vs):按照vs列(发动机类型)对数据进行分组。
mutate(hp_cut = cut(hp, 3)):在每组中,将hp列(马力)分成3个区间,并将分箱结果存储在新列hp_cut中。
group_by(hp_cut):最后,按照hp_cut列(马力分箱结果)对数据进行分组。
tibble(mtcars) %>%
group_by(vs) %>%
mutate(hp_cut = cut(hp, 3)) %>%
group_by(hp_cut)# A tibble: 32 × 12
# Groups: hp_cut [6]
mpg cyl disp hp drat wt qsec vs am gear carb hp_cut
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 (90.8,172]
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 (90.8,172]
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 (75.7,99.3]
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 (99.3,123]
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 (172,254]
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 (99.3,123]
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 (172,254]
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 (51.9,75.7]
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 (75.7,99.3]
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 (99.3,123]
# ℹ 22 more rows
阅读 https://dplyr.tidyverse.org/reference/mutate-joins.html 内容,说明4个数据集链接函数函数的作用。分别举一个实际例子演示并解释其输出结果。
inner_join() :
返回两个数据框中键完全匹配的行,相当于取两个数据集的交集。
library(dplyr)
# 学生表(包含重复的id)
students <- tibble(
id = c(1, 2, 2, 3, 4),
name = c("Alice", "Bob", "Bob", "Charlie", "David"),
age = c(20, 21, 21, 22, 23)
)
# 成绩表(包含多个匹配和缺失)
scores <- tibble(
id = c(1, 2, 2, 4, 5),
subject = c("Math", "Science", "Art", "Physics", "Music"),
score = c(90, 85, 88, 92, 75)
)
# 内连接(基于id)
result <- inner_join(students, scores, by = "id")Warning in inner_join(students, scores, by = "id"): Detected an unexpected many-to-many relationship between `x` and `y`.
ℹ Row 2 of `x` matches multiple rows in `y`.
ℹ Row 2 of `y` matches multiple rows in `x`.
ℹ If a many-to-many relationship is expected, set `relationship =
"many-to-many"` to silence this warning.
print(result)# A tibble: 6 × 5
id name age subject score
<dbl> <chr> <dbl> <chr> <dbl>
1 1 Alice 20 Math 90
2 2 Bob 21 Science 85
3 2 Bob 21 Art 88
4 2 Bob 21 Science 85
5 2 Bob 21 Art 88
6 4 David 23 Physics 92
left_join() :
保留左表所有行,右表中无匹配的行用NA填充。
# 左连接
result <- left_join(students, scores, by = "id")Warning in left_join(students, scores, by = "id"): Detected an unexpected many-to-many relationship between `x` and `y`.
ℹ Row 2 of `x` matches multiple rows in `y`.
ℹ Row 2 of `y` matches multiple rows in `x`.
ℹ If a many-to-many relationship is expected, set `relationship =
"many-to-many"` to silence this warning.
print(result)# A tibble: 7 × 5
id name age subject score
<dbl> <chr> <dbl> <chr> <dbl>
1 1 Alice 20 Math 90
2 2 Bob 21 Science 85
3 2 Bob 21 Art 88
4 2 Bob 21 Science 85
5 2 Bob 21 Art 88
6 3 Charlie 22 <NA> NA
7 4 David 23 Physics 92
right_join() :
保留右表所有行,左表中无匹配的行用NA填充。
# 右连接
result <- right_join(students, scores, by = "id")Warning in right_join(students, scores, by = "id"): Detected an unexpected many-to-many relationship between `x` and `y`.
ℹ Row 2 of `x` matches multiple rows in `y`.
ℹ Row 2 of `y` matches multiple rows in `x`.
ℹ If a many-to-many relationship is expected, set `relationship =
"many-to-many"` to silence this warning.
print(result)# A tibble: 7 × 5
id name age subject score
<dbl> <chr> <dbl> <chr> <dbl>
1 1 Alice 20 Math 90
2 2 Bob 21 Science 85
3 2 Bob 21 Art 88
4 2 Bob 21 Science 85
5 2 Bob 21 Art 88
6 4 David 23 Physics 92
7 5 <NA> NA Music 75
full_join() :
保留左右两表所有行,无匹配的行用NA填充,相当于取两个数据集的并集。
# 全连接
result <- full_join(students, scores, by = "id")Warning in full_join(students, scores, by = "id"): Detected an unexpected many-to-many relationship between `x` and `y`.
ℹ Row 2 of `x` matches multiple rows in `y`.
ℹ Row 2 of `y` matches multiple rows in `x`.
ℹ If a many-to-many relationship is expected, set `relationship =
"many-to-many"` to silence this warning.
print(result)# A tibble: 8 × 5
id name age subject score
<dbl> <chr> <dbl> <chr> <dbl>
1 1 Alice 20 Math 90
2 2 Bob 21 Science 85
3 2 Bob 21 Art 88
4 2 Bob 21 Science 85
5 2 Bob 21 Art 88
6 3 Charlie 22 <NA> NA
7 4 David 23 Physics 92
8 5 <NA> NA Music 75