%>%
flights group_by(origin) %>%
summarise(n=n(),dly=mean(dep_delay,na.rm = T))
# A tibble: 3 × 3
origin n dly
<chr> <int> <dbl>
1 EWR 120835 15.1
2 JFK 111279 12.1
3 LGA 104662 10.3
利用nycflights13包的flights数据集是2013年从纽约三大机场(JFK、LGA、EWR)起飞的所有航班的准点数据,共336776条记录。
计算纽约三大机场2013起飞航班数和平均延误时间(可使用group_by, summarise函数)
%>%
flights group_by(origin) %>%
summarise(n=n(),dly=mean(dep_delay,na.rm = T))
# A tibble: 3 × 3
origin n dly
<chr> <int> <dbl>
1 EWR 120835 15.1
2 JFK 111279 12.1
3 LGA 104662 10.3
计算不同航空公司2013从纽约起飞航班数和平均延误时间
%>%
flights group_by(carrier) %>%
summarise(n=n(),dly=mean(dep_delay,na.rm = T))
# A tibble: 16 × 3
carrier n dly
<chr> <int> <dbl>
1 9E 18460 16.7
2 AA 32729 8.59
3 AS 714 5.80
4 B6 54635 13.0
5 DL 48110 9.26
6 EV 54173 20.0
7 F9 685 20.2
8 FL 3260 18.7
9 HA 342 4.90
10 MQ 26397 10.6
11 OO 32 12.6
12 UA 58665 12.1
13 US 20536 3.78
14 VX 5162 12.9
15 WN 12275 17.7
16 YV 601 19.0
计算纽约三大机场排名前三个目的地和平均飞行距离(可使用group_by, summarise, arrange, slice_max函数)
%>%
flights group_by(origin,dest) %>%
summarise(n=n(),dis=mean(distance,na.rm = T)) %>%
slice_max(n,n=3)
`summarise()` has grouped output by 'origin'. You can override using the
`.groups` argument.
# A tibble: 9 × 4
# Groups: origin [3]
origin dest n dis
<chr> <chr> <int> <dbl>
1 EWR ORD 6100 719
2 EWR BOS 5327 200
3 EWR SFO 5127 2565
4 JFK LAX 11262 2475
5 JFK SFO 8204 2586
6 JFK BOS 5898 187
7 LGA ATL 10263 762
8 LGA ORD 8857 733
9 LGA CLT 6168 544
代码含义:先按species排序后,然后在每个物种内,按以sepal为开头的两个变量降序排序。
tibble(iris) %>%
arrange(Species,across(starts_with("Sepal"), desc))
# A tibble: 150 × 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fct>
1 5.8 4 1.2 0.2 setosa
2 5.7 4.4 1.5 0.4 setosa
3 5.7 3.8 1.7 0.3 setosa
4 5.5 4.2 1.4 0.2 setosa
5 5.5 3.5 1.3 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 5.4 3.9 1.3 0.4 setosa
8 5.4 3.7 1.5 0.2 setosa
9 5.4 3.4 1.7 0.2 setosa
10 5.4 3.4 1.5 0.4 setosa
# ℹ 140 more rows
代码含义:按gender对数据进行分组后筛选出mass大于mass的平均值的数据且去除空值。
%>%
starwars group_by(gender) %>%
filter(mass > mean(mass, na.rm = TRUE))
# A tibble: 15 × 14
# Groups: gender [3]
name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 Darth … 202 136 none white yellow 41.9 male mascu…
2 Owen L… 178 120 brown, gr… light blue 52 male mascu…
3 Beru W… 165 75 brown light blue 47 fema… femin…
4 Chewba… 228 112 brown unknown blue 200 male mascu…
5 Jabba … 175 1358 <NA> green-tan… orange 600 herm… mascu…
6 Jek To… 180 110 brown fair blue NA <NA> <NA>
7 IG-88 200 140 none metal red 15 none mascu…
8 Bossk 190 113 none green red 53 male mascu…
9 Ayla S… 178 55 none blue hazel 48 fema… femin…
10 Gregar… 185 85 black dark brown NA <NA> <NA>
11 Lumina… 170 56.2 black yellow blue 58 fema… femin…
12 Zam We… 168 55 blonde fair, gre… yellow NA fema… femin…
13 Shaak … 178 57 none red, blue… black NA fema… femin…
14 Grievo… 216 159 none brown, wh… green, y… NA male mascu…
15 Tarfful 234 136 brown brown blue NA male mascu…
# ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
# vehicles <list>, starships <list>
代码含义:选择出name,homeworld和species三个变量,将除了name变量的其他两个变量从数值型变量转换成因子变量。
%>%
starwars select(name, homeworld, species) %>%
mutate(across(!name, as.factor))
# A tibble: 87 × 3
name homeworld species
<chr> <fct> <fct>
1 Luke Skywalker Tatooine Human
2 C-3PO Tatooine Droid
3 R2-D2 Naboo Droid
4 Darth Vader Tatooine Human
5 Leia Organa Alderaan Human
6 Owen Lars Tatooine Human
7 Beru Whitesun Lars Tatooine Human
8 R5-D4 Tatooine Droid
9 Biggs Darklighter Tatooine Human
10 Obi-Wan Kenobi Stewjon Human
# ℹ 77 more rows
代码含义:将mtcars数据转换为数据框,按照vs对数据进行分组,然后利用cut代码对vs不同的hp值分成三个等宽的区间后,再对hp的每个区间进行分组。
tibble(mtcars) %>%
group_by(vs) %>%
mutate(hp_cut = cut(hp, 3)) %>%
group_by(hp_cut)
# A tibble: 32 × 12
# Groups: hp_cut [6]
mpg cyl disp hp drat wt qsec vs am gear carb hp_cut
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 (90.8,172]
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 (90.8,172]
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 (75.7,99.3]
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 (99.3,123]
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 (172,254]
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 (99.3,123]
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 (172,254]
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 (51.9,75.7]
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 (75.7,99.3]
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 (99.3,123]
# ℹ 22 more rows
阅读 https://dplyr.tidyverse.org/reference/mutate-joins.html 内容,说明4个数据集链接函数函数的作用。分别举一个实际例子演示并解释其输出结果。
inner_join()
:根据两个数据框中的共同键进行匹配,并返回两个数据框中键值匹配的行。如果某一行在其中一个数据框中没有匹配的键值,则该行不会出现在结果中。
# 查看 mtcars 数据集的前几行
head(mtcars)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
# 创建 car_info 数据集
<- data.frame(
car_info car_model = c("Mazda RX4", "Datsun 710", "Toyota Corolla", "Ford Mustang"),
origin = c("Japan", "Japan", "Japan", "USA")
)
# 查看 car_info
print(car_info)
car_model origin
1 Mazda RX4 Japan
2 Datsun 710 Japan
3 Toyota Corolla Japan
4 Ford Mustang USA
# 加载 dplyr 包
library(dplyr)
# 将 mtcars 的行名转换为列(因为汽车型号在行名中)
<- mtcars %>%
mtcars mutate(car_model = rownames(mtcars))
# 使用 inner_join() 合并
<- inner_join(mtcars, car_info, by = "car_model")
result
# 查看合并结果
print(result)
mpg cyl disp hp drat wt qsec vs am gear carb car_model origin
1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Japan
2 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 Datsun 710 Japan
3 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 Toyota Corolla Japan
每辆车的性能指标和产地信息被合并在一起。
left_join()
:根据两个数据框中共同的列进行匹配,并返回左侧数据框中的所有行,同时将右侧数据框中匹配的行合并进来。如果右侧数据框中没有匹配的行,则用NA填充。
# 查看 mtcars 数据集的前几行
head(mtcars)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
car_model
Mazda RX4 Mazda RX4
Mazda RX4 Wag Mazda RX4 Wag
Datsun 710 Datsun 710
Hornet 4 Drive Hornet 4 Drive
Hornet Sportabout Hornet Sportabout
Valiant Valiant
# 创建 car_info 数据集
<- data.frame(
car_info car_model = c("Mazda RX4", "Datsun 710", "Toyota Corolla", "Ford Mustang"),
origin = c("Japan", "Japan", "Japan", "USA")
)
# 查看 car_info
print(car_info)
car_model origin
1 Mazda RX4 Japan
2 Datsun 710 Japan
3 Toyota Corolla Japan
4 Ford Mustang USA
# 加载 dplyr 包
library(dplyr)
# 将 mtcars 的行名转换为列(因为汽车型号在行名中)
<- mtcars %>%
mtcars mutate(car_model = rownames(mtcars))
# 使用 left_join() 合并
<- left_join(mtcars, car_info, by = "car_model")
result
# 查看合并结果
print(result)
mpg cyl disp hp drat wt qsec vs am gear carb car_model
1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4
2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Mazda RX4 Wag
3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 Datsun 710
4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Hornet 4 Drive
5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 Hornet Sportabout
6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Valiant
7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 Duster 360
8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 Merc 240D
9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 Merc 230
10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 Merc 280
11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 Merc 280C
12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 Merc 450SE
13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 Merc 450SL
14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 Merc 450SLC
15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 Cadillac Fleetwood
16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 Lincoln Continental
17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 Chrysler Imperial
18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 Fiat 128
19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 Honda Civic
20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 Toyota Corolla
21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 Toyota Corona
22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 Dodge Challenger
23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 AMC Javelin
24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 Camaro Z28
25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 Pontiac Firebird
26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 Fiat X1-9
27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 Porsche 914-2
28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 Lotus Europa
29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 Ford Pantera L
30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 Ferrari Dino
31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 Maserati Bora
32 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 Volvo 142E
origin
1 Japan
2 <NA>
3 Japan
4 <NA>
5 <NA>
6 <NA>
7 <NA>
8 <NA>
9 <NA>
10 <NA>
11 <NA>
12 <NA>
13 <NA>
14 <NA>
15 <NA>
16 <NA>
17 <NA>
18 <NA>
19 <NA>
20 Japan
21 <NA>
22 <NA>
23 <NA>
24 <NA>
25 <NA>
26 <NA>
27 <NA>
28 <NA>
29 <NA>
30 <NA>
31 <NA>
32 <NA>
对于car_model在car_info中存在的行,合并了origin列,对于不存在的行,origin用NA填充。
right_join()
:根据两个数据框中的共同键进行匹配,并返回右侧数据框中所有行,同时将左侧数据框中匹配的行合并进来。如果左侧数据框中没有匹配的行,则用NA填充。
# 查看 mtcars 数据集的前几行
head(mtcars)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
car_model
Mazda RX4 Mazda RX4
Mazda RX4 Wag Mazda RX4 Wag
Datsun 710 Datsun 710
Hornet 4 Drive Hornet 4 Drive
Hornet Sportabout Hornet Sportabout
Valiant Valiant
# 创建 car_info 数据集
<- data.frame(
car_info car_model = c("Mazda RX4", "Datsun 710", "Toyota Corolla", "Ford Mustang"),
origin = c("Japan", "Japan", "Japan", "USA")
)
# 查看 car_info
print(car_info)
car_model origin
1 Mazda RX4 Japan
2 Datsun 710 Japan
3 Toyota Corolla Japan
4 Ford Mustang USA
# 加载 dplyr 包
library(dplyr)
# 将 mtcars 的行名转换为列(因为汽车型号在行名中)
<- mtcars %>%
mtcars mutate(car_model = rownames(mtcars))
# 使用 right_join() 合并
<- right_join(mtcars, car_info, by = "car_model")
result
# 查看合并结果
print(result)
mpg cyl disp hp drat wt qsec vs am gear carb car_model origin
1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Japan
2 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 Datsun 710 Japan
3 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 Toyota Corolla Japan
4 NA NA NA NA NA NA NA NA NA NA NA Ford Mustang USA
对于car_model在mtcars中存在的行,合并了mtcars中的列。
full_join()
:根据两个数据框中的共同键进行匹配,并返回两个数据框中的所有行。如果其中一行在其中一个数据框中没有匹配的行,则用NA填充。
# 查看 mtcars 数据集的前几行
head(mtcars)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
car_model
Mazda RX4 Mazda RX4
Mazda RX4 Wag Mazda RX4 Wag
Datsun 710 Datsun 710
Hornet 4 Drive Hornet 4 Drive
Hornet Sportabout Hornet Sportabout
Valiant Valiant
# 创建 car_info 数据集
<- data.frame(
car_info car_model = c("Mazda RX4", "Datsun 710", "Toyota Corolla", "Ford Mustang"),
origin = c("Japan", "Japan", "Japan", "USA")
)
# 查看 car_info
print(car_info)
car_model origin
1 Mazda RX4 Japan
2 Datsun 710 Japan
3 Toyota Corolla Japan
4 Ford Mustang USA
# 加载 dplyr 包
library(dplyr)
# 将 mtcars 的行名转换为列(因为汽车型号在行名中)
<- mtcars %>%
mtcars mutate(car_model = rownames(mtcars))
# 使用 full_join() 合并
<- full_join(mtcars, car_info, by = "car_model")
result
# 查看合并结果
print(result)
mpg cyl disp hp drat wt qsec vs am gear carb car_model
1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4
2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Mazda RX4 Wag
3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 Datsun 710
4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Hornet 4 Drive
5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 Hornet Sportabout
6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Valiant
7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 Duster 360
8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 Merc 240D
9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 Merc 230
10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 Merc 280
11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 Merc 280C
12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 Merc 450SE
13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 Merc 450SL
14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 Merc 450SLC
15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 Cadillac Fleetwood
16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 Lincoln Continental
17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 Chrysler Imperial
18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 Fiat 128
19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 Honda Civic
20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 Toyota Corolla
21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 Toyota Corona
22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 Dodge Challenger
23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 AMC Javelin
24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 Camaro Z28
25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 Pontiac Firebird
26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 Fiat X1-9
27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 Porsche 914-2
28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 Lotus Europa
29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 Ford Pantera L
30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 Ferrari Dino
31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 Maserati Bora
32 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 Volvo 142E
33 NA NA NA NA NA NA NA NA NA NA NA Ford Mustang
origin
1 Japan
2 <NA>
3 Japan
4 <NA>
5 <NA>
6 <NA>
7 <NA>
8 <NA>
9 <NA>
10 <NA>
11 <NA>
12 <NA>
13 <NA>
14 <NA>
15 <NA>
16 <NA>
17 <NA>
18 <NA>
19 <NA>
20 Japan
21 <NA>
22 <NA>
23 <NA>
24 <NA>
25 <NA>
26 <NA>
27 <NA>
28 <NA>
29 <NA>
30 <NA>
31 <NA>
32 <NA>
33 USA
对于car_model在两个数据框中都存在的行,合并了mtcars和car_info中的列,对于car_model在其中一个数据框中不存在的行,用NA填充