第一题 编写代码
利用nycflights13包的flights数据集是2013年从纽约三大机场(JFK、LGA、EWR)起飞的所有航班的准点数据,共336776条记录。
计算纽约三大机场2013起飞航班数和平均延误时间(可使用group_by, summarise函数)
install.packages ("nycflights13" )
Warning: package 'nycflights13' is in use and will not be installed
install.packages ("tidyverse" )
Warning: package 'tidyverse' is in use and will not be installed
library ("nycflights13" )
data (package = "nycflights13" )
data ("flights" )
head (flights)
# A tibble: 6 × 19
year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
<int> <int> <int> <int> <int> <dbl> <int> <int>
1 2013 1 1 517 515 2 830 819
2 2013 1 1 533 529 4 850 830
3 2013 1 1 542 540 2 923 850
4 2013 1 1 544 545 -1 1004 1022
5 2013 1 1 554 600 -6 812 837
6 2013 1 1 554 558 -4 740 728
# ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
# hour <dbl>, minute <dbl>, time_hour <dttm>
flights |>
group_by (origin) |>
summarise (n= n (),dly= mean (dep_delay,na.rm = T))
# A tibble: 3 × 3
origin n dly
<chr> <int> <dbl>
1 EWR 120835 15.1
2 JFK 111279 12.1
3 LGA 104662 10.3
计算不同航空公司2013从纽约起飞航班数和平均延误时间
flights |>
group_by (carrier) |>
summarise (n= n (),dly= mean (dep_delay,na.rm = T)) |>
arrange (desc (n))
# A tibble: 16 × 3
carrier n dly
<chr> <int> <dbl>
1 UA 58665 12.1
2 B6 54635 13.0
3 EV 54173 20.0
4 DL 48110 9.26
5 AA 32729 8.59
6 MQ 26397 10.6
7 US 20536 3.78
8 9E 18460 16.7
9 WN 12275 17.7
10 VX 5162 12.9
11 FL 3260 18.7
12 AS 714 5.80
13 F9 685 20.2
14 YV 601 19.0
15 HA 342 4.90
16 OO 32 12.6
计算纽约三大机场排名前三个目的地和平均飞行距离(可使用group_by, summarise, arrange, slice_max函数)
flights |>
group_by (origin,dest) |>
summarise (n= n (),dist= mean (distance)) |>
slice_max (n,n= 3 )
`summarise()` has grouped output by 'origin'. You can override using the
`.groups` argument.
# A tibble: 9 × 4
# Groups: origin [3]
origin dest n dist
<chr> <chr> <int> <dbl>
1 EWR ORD 6100 719
2 EWR BOS 5327 200
3 EWR SFO 5127 2565
4 JFK LAX 11262 2475
5 JFK SFO 8204 2586
6 JFK BOS 5898 187
7 LGA ATL 10263 762
8 LGA ORD 8857 733
9 LGA CLT 6168 544
第二题 解释代码
代码含义:将iris数据集转换为tibble格式后,首先按 Species 列升序排列,在每个 Species 组内,对 Sepal.Length 和 Sepal.Width 列进行降序排列。
tibble (iris) %>%
arrange (Species,across (starts_with ("Sepal" ), desc))
# A tibble: 150 × 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fct>
1 5.8 4 1.2 0.2 setosa
2 5.7 4.4 1.5 0.4 setosa
3 5.7 3.8 1.7 0.3 setosa
4 5.5 4.2 1.4 0.2 setosa
5 5.5 3.5 1.3 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 5.4 3.9 1.3 0.4 setosa
8 5.4 3.7 1.5 0.2 setosa
9 5.4 3.4 1.7 0.2 setosa
10 5.4 3.4 1.5 0.4 setosa
# ℹ 140 more rows
代码含义:加载数据集starwars,并按照gender进行分组,通过filter进行数据的过滤,筛选出每个性别组中体重(mass)大于该组平均体重的角色。mean用于计算数据的平均值,na.rm=True表示忽略mass列中的缺失值(NA)。
starwars %>%
group_by (gender) %>%
filter (mass > mean (mass, na.rm = TRUE ))
# A tibble: 15 × 14
# Groups: gender [3]
name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 Darth … 202 136 none white yellow 41.9 male mascu…
2 Owen L… 178 120 brown, gr… light blue 52 male mascu…
3 Beru W… 165 75 brown light blue 47 fema… femin…
4 Chewba… 228 112 brown unknown blue 200 male mascu…
5 Jabba … 175 1358 <NA> green-tan… orange 600 herm… mascu…
6 Jek To… 180 110 brown fair blue NA <NA> <NA>
7 IG-88 200 140 none metal red 15 none mascu…
8 Bossk 190 113 none green red 53 male mascu…
9 Ayla S… 178 55 none blue hazel 48 fema… femin…
10 Gregar… 185 85 black dark brown NA <NA> <NA>
11 Lumina… 170 56.2 black yellow blue 58 fema… femin…
12 Zam We… 168 55 blonde fair, gre… yellow NA fema… femin…
13 Shaak … 178 57 none red, blue… black NA fema… femin…
14 Grievo… 216 159 none brown, wh… green, y… NA male mascu…
15 Tarfful 234 136 brown brown blue NA male mascu…
# ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
# vehicles <list>, starships <list>
代码含义:加载数据集starwars,从数据集中选择name, homeworld, species这三列,除去name列,将homeworld和species列的数据类型转换为因子(factor),而name列保持不变。mutate表示对数据框进行列操作,表示在原有的基础上添加或者修改列。
starwars %>%
select (name, homeworld, species) %>%
mutate (across (! name, as.factor))
# A tibble: 87 × 3
name homeworld species
<chr> <fct> <fct>
1 Luke Skywalker Tatooine Human
2 C-3PO Tatooine Droid
3 R2-D2 Naboo Droid
4 Darth Vader Tatooine Human
5 Leia Organa Alderaan Human
6 Owen Lars Tatooine Human
7 Beru Whitesun Lars Tatooine Human
8 R5-D4 Tatooine Droid
9 Biggs Darklighter Tatooine Human
10 Obi-Wan Kenobi Stewjon Human
# ℹ 77 more rows
代码含义:将mtcars数据集转换为tibble格式,并按照vs列进行分组。在每组中,将 hp 列的值分成 3 个等宽的区间,并创建新列hp_cut。最后,按 hp_cut 列重新分组。
tibble (mtcars) %>%
group_by (vs) %>%
mutate (hp_cut = cut (hp, 3 )) %>%
group_by (hp_cut)
# A tibble: 32 × 12
# Groups: hp_cut [6]
mpg cyl disp hp drat wt qsec vs am gear carb hp_cut
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 (90.8,172]
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 (90.8,172]
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 (75.7,99.3]
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 (99.3,123]
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 (172,254]
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 (99.3,123]
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 (172,254]
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 (51.9,75.7]
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 (75.7,99.3]
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 (99.3,123]
# ℹ 22 more rows
第三题 查找帮助理解函数
阅读 https://dplyr.tidyverse.org/reference/mutate-joins.html 内容,说明4个数据集链接函数函数的作用。分别举一个实际例子演示并解释其输出结果。
inner_join() :只保留两个数据集中键匹配的行
library (dplyr)
# 创建两个示例数据集
iris1 <- iris %>% select (Sepal.Length, Sepal.Width, Species) %>% slice (1 : 5 )
iris2 <- iris %>% select (Sepal.Length, Petal.Length, Species) %>% slice (3 : 7 )
print ("iris1:" )
Sepal.Length Sepal.Width Species
1 5.1 3.5 setosa
2 4.9 3.0 setosa
3 4.7 3.2 setosa
4 4.6 3.1 setosa
5 5.0 3.6 setosa
Sepal.Length Petal.Length Species
1 4.7 1.3 setosa
2 4.6 1.5 setosa
3 5.0 1.4 setosa
4 5.4 1.7 setosa
5 4.6 1.4 setosa
result_inner <- inner_join (iris1, iris2, by = c ("Sepal.Length" , "Species" ))
print ("inner_join 结果:" )
Sepal.Length Sepal.Width Species Petal.Length
1 4.7 3.2 setosa 1.3
2 4.6 3.1 setosa 1.5
3 4.6 3.1 setosa 1.4
4 5.0 3.6 setosa 1.4
left_join():保留左侧数据集中的所有行,右侧数据集中没有匹配的键时填充 NA。
result_left <- left_join (iris1, iris2, by = c ("Sepal.Length" , "Species" ))
print ("left_join 结果:" )
Sepal.Length Sepal.Width Species Petal.Length
1 5.1 3.5 setosa NA
2 4.9 3.0 setosa NA
3 4.7 3.2 setosa 1.3
4 4.6 3.1 setosa 1.5
5 4.6 3.1 setosa 1.4
6 5.0 3.6 setosa 1.4
right_join():保留右侧数据集中的所有行,左侧数据集中没有匹配的键时填充 NA。
result_right <- right_join (iris1, iris2, by = c ("Sepal.Length" , "Species" ))
print ("right_join 结果:" )
Sepal.Length Sepal.Width Species Petal.Length
1 4.7 3.2 setosa 1.3
2 4.6 3.1 setosa 1.5
3 4.6 3.1 setosa 1.4
4 5.0 3.6 setosa 1.4
5 5.4 NA setosa 1.7
full_join():保留两个数据集中的所有行,没有匹配的键时填充 NA。
result_full <- full_join (iris1, iris2, by = c ("Sepal.Length" , "Species" ))
print ("full_join 结果:" )
Sepal.Length Sepal.Width Species Petal.Length
1 5.1 3.5 setosa NA
2 4.9 3.0 setosa NA
3 4.7 3.2 setosa 1.3
4 4.6 3.1 setosa 1.5
5 4.6 3.1 setosa 1.4
6 5.0 3.6 setosa 1.4
7 5.4 NA setosa 1.7