1. This question should be answered using the Weekly data set, which is part of the ISLR2 package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.
library(ISLR2)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(caret)
## Loading required package: lattice
library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## The following object is masked from 'package:ISLR2':
## 
##     Boston
library(class)
library(e1071)

data("Weekly")
  1. Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
ggplot(Weekly, aes(x = Year, y = Volume)) + geom_line() + labs(title = "Trading Volume Over Time")

ggplot(Weekly, aes(x = Lag1, y = Lag2, color = Direction)) + geom_point() + labs(title = "Lag1 vs Lag2 by Market Direction")

Market movement direction appears to have some patterns with Lag variables. Trading volume shows variations over the years. From the plot 1 , the volume fluctuates over time showing an increasing trend in later years. From the plot 2, Lag variables exhibit some correlation with market direction, but no obvious linear pattern is visible.

  1. Use the full data set to perform a logistic regression with Direction as the response and the fve lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically signifcant? If so, which ones?
logit_model <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, 
                   data = Weekly, family = binomial)
summary(logit_model)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

Identify statistically significant predictors based on p-values. Lag2 appears to be statistically significant, while others do not strongly predict market direction. Volume does not seem to contribute significantly to predicting stock movements.

  1. Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.
pred_probs <- predict(logit_model, type = "response")
pred_class <- factor(ifelse(pred_probs > 0.5, "Up", "Down"), levels = c("Down", "Up"))
conf_matrix <- confusionMatrix(pred_class, Weekly$Direction)
conf_matrix
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down  Up
##       Down   54  48
##       Up    430 557
##                                          
##                Accuracy : 0.5611         
##                  95% CI : (0.531, 0.5908)
##     No Information Rate : 0.5556         
##     P-Value [Acc > NIR] : 0.369          
##                                          
##                   Kappa : 0.035          
##                                          
##  Mcnemar's Test P-Value : <2e-16         
##                                          
##             Sensitivity : 0.11157        
##             Specificity : 0.92066        
##          Pos Pred Value : 0.52941        
##          Neg Pred Value : 0.56434        
##              Prevalence : 0.44444        
##          Detection Rate : 0.04959        
##    Detection Prevalence : 0.09366        
##       Balanced Accuracy : 0.51612        
##                                          
##        'Positive' Class : Down           
## 

Model accuracy is calculated using the confusion matrix, indicating how well predictions match actual values. Errors mostly occur in predicting market upturns and downturns, suggesting logistic regression struggles with certain market conditions.

  1. Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).
train_data <- Weekly %>% filter(Year <= 2008)
test_data <- Weekly %>% filter(Year > 2008)
logit_model_train <- glm(Direction ~ Lag2, data = train_data, family = binomial)
pred_probs_train <- predict(logit_model_train, test_data, type = "response")
pred_class_train <- factor(ifelse(pred_probs_train > 0.5, "Up", "Down"), levels = c("Down", "Up"))
conf_matrix_train <- confusionMatrix(pred_class_train, test_data$Direction)
conf_matrix_train
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down    9  5
##       Up     34 56
##                                          
##                Accuracy : 0.625          
##                  95% CI : (0.5247, 0.718)
##     No Information Rate : 0.5865         
##     P-Value [Acc > NIR] : 0.2439         
##                                          
##                   Kappa : 0.1414         
##                                          
##  Mcnemar's Test P-Value : 7.34e-06       
##                                          
##             Sensitivity : 0.20930        
##             Specificity : 0.91803        
##          Pos Pred Value : 0.64286        
##          Neg Pred Value : 0.62222        
##              Prevalence : 0.41346        
##          Detection Rate : 0.08654        
##    Detection Prevalence : 0.13462        
##       Balanced Accuracy : 0.56367        
##                                          
##        'Positive' Class : Down           
## 

Using only Lag2 as a predictor, the model still shows some predictive power. Performance is evaluated on 2009-10 data, showing how well past patterns generalize to future trends. Overall accuracy is 62.5%, meaning the model correctly predicts the market direction 62.5% of the time.

  1. Repeat (d) using LDA.
lda_model <- lda(Direction ~ Lag2, data = train_data)
lda_pred <- predict(lda_model, test_data)$class
lda_cm <- confusionMatrix(lda_pred, test_data$Direction)
lda_cm
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down    9  5
##       Up     34 56
##                                          
##                Accuracy : 0.625          
##                  95% CI : (0.5247, 0.718)
##     No Information Rate : 0.5865         
##     P-Value [Acc > NIR] : 0.2439         
##                                          
##                   Kappa : 0.1414         
##                                          
##  Mcnemar's Test P-Value : 7.34e-06       
##                                          
##             Sensitivity : 0.20930        
##             Specificity : 0.91803        
##          Pos Pred Value : 0.64286        
##          Neg Pred Value : 0.62222        
##              Prevalence : 0.41346        
##          Detection Rate : 0.08654        
##    Detection Prevalence : 0.13462        
##       Balanced Accuracy : 0.56367        
##                                          
##        'Positive' Class : Down           
## 
  1. Repeat (d) using QDA.
qda_model <- qda(Direction ~ Lag2, data = train_data)
qda_pred <- predict(qda_model, test_data)$class
qda_cm <- confusionMatrix(qda_pred, test_data$Direction)
qda_cm
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down    0  0
##       Up     43 61
##                                           
##                Accuracy : 0.5865          
##                  95% CI : (0.4858, 0.6823)
##     No Information Rate : 0.5865          
##     P-Value [Acc > NIR] : 0.5419          
##                                           
##                   Kappa : 0               
##                                           
##  Mcnemar's Test P-Value : 1.504e-10       
##                                           
##             Sensitivity : 0.0000          
##             Specificity : 1.0000          
##          Pos Pred Value :    NaN          
##          Neg Pred Value : 0.5865          
##              Prevalence : 0.4135          
##          Detection Rate : 0.0000          
##    Detection Prevalence : 0.0000          
##       Balanced Accuracy : 0.5000          
##                                           
##        'Positive' Class : Down            
## 
  1. Repeat (d) using KNN with K = 1.
train_x <- dplyr::select(train_data, Lag2)
test_x <- dplyr::select(test_data, Lag2)
k_value <- 1
knn_pred <- knn(train = as.matrix(train_data$Lag2), 
                test = as.matrix(test_data$Lag2), 
                cl = train_data$Direction, 
                k = 1)
knn_cm <- confusionMatrix(knn_pred, test_data$Direction)
knn_cm
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down   21 30
##       Up     22 31
##                                           
##                Accuracy : 0.5             
##                  95% CI : (0.4003, 0.5997)
##     No Information Rate : 0.5865          
##     P-Value [Acc > NIR] : 0.9700          
##                                           
##                   Kappa : -0.0033         
##                                           
##  Mcnemar's Test P-Value : 0.3317          
##                                           
##             Sensitivity : 0.4884          
##             Specificity : 0.5082          
##          Pos Pred Value : 0.4118          
##          Neg Pred Value : 0.5849          
##              Prevalence : 0.4135          
##          Detection Rate : 0.2019          
##    Detection Prevalence : 0.4904          
##       Balanced Accuracy : 0.4983          
##                                           
##        'Positive' Class : Down            
## 
  1. Repeat (d) using naive Bayes.
nb_model <- naiveBayes(Direction ~ Lag2, data = train_data)
nb_pred <- predict(nb_model, test_data)
nb_cm <- confusionMatrix(nb_pred, test_data$Direction)
nb_cm
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down    0  0
##       Up     43 61
##                                           
##                Accuracy : 0.5865          
##                  95% CI : (0.4858, 0.6823)
##     No Information Rate : 0.5865          
##     P-Value [Acc > NIR] : 0.5419          
##                                           
##                   Kappa : 0               
##                                           
##  Mcnemar's Test P-Value : 1.504e-10       
##                                           
##             Sensitivity : 0.0000          
##             Specificity : 1.0000          
##          Pos Pred Value :    NaN          
##          Neg Pred Value : 0.5865          
##              Prevalence : 0.4135          
##          Detection Rate : 0.0000          
##    Detection Prevalence : 0.0000          
##       Balanced Accuracy : 0.5000          
##                                           
##        'Positive' Class : Down            
## 
  1. Which of these methods appears to provide the best results on this data?
# Lets compare them by their accuracy to decide method that provide the best results
results <- data.frame(
  Model = c("Logistic Regression", "LDA", "QDA", "KNN (K=1)", "Naive Bayes"),
  Accuracy = c(conf_matrix_train$overall["Accuracy"], lda_cm$overall["Accuracy"],
               qda_cm$overall["Accuracy"], knn_cm$overall["Accuracy"], nb_cm$overall["Accuracy"])
)
print(results)
##                 Model  Accuracy
## 1 Logistic Regression 0.6250000
## 2                 LDA 0.6250000
## 3                 QDA 0.5865385
## 4           KNN (K=1) 0.5000000
## 5         Naive Bayes 0.5865385

Logistic Regression and LDA appears to be providing best results, so they are preferred.

  1. Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifer.
library(dplyr)

train_x <- dplyr::select(train_data, Lag2)
test_x <- dplyr::select(test_data, Lag2)

train_x <- as.matrix(train_x)
test_x <- as.matrix(test_x)

train_y <- train_data$Direction
test_y <- test_data$Direction

best_knn_k <- tune.knn(x = train_x,   
                        y = train_y,   
                        k = 1:20)      


best_knn_k$best.parameters
# Predict using KNN with k=17
knn_pred <- knn(train = train_x, 
                test = test_x, 
                cl = train_y, 
                k = 17)
knn_pred <- as.factor(knn_pred)
test_y <- as.factor(test_y)

knn_cm <- confusionMatrix(knn_pred, test_y)
knn_accuracy <- knn_cm$overall["Accuracy"]
print(knn_accuracy)
##  Accuracy 
## 0.5961538
results <- rbind(results, data.frame(Model = "KNN (K=17)", Accuracy = knn_accuracy))
print(results)
##                        Model  Accuracy
## 1        Logistic Regression 0.6250000
## 2                        LDA 0.6250000
## 3                        QDA 0.5865385
## 4                  KNN (K=1) 0.5000000
## 5                Naive Bayes 0.5865385
## Accuracy          KNN (K=17) 0.5961538
  1. In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.
data(Auto)
head(Auto)
  1. Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may fnd it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.
median_mpg <- median(Auto$mpg)
Auto$mpg01 <- ifelse(Auto$mpg > median_mpg, 1, 0)

Auto_new <- data.frame(Auto)
head(Auto_new)
  1. Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your fndings.
feature_vars <- c("cylinders", "displacement", "horsepower", "weight", "acceleration", "year", "origin")

par(mfrow = c(3,3)) 
for (var in feature_vars) {
  boxplot(Auto[[var]] ~ Auto$mpg01, main = var, xlab = "mpg01", ylab = var, col = c("red", "blue"))
}
par(mfrow = c(1,1)) 

ggplot(Auto, aes(x = horsepower, y = mpg, color = factor(mpg01))) +
  geom_point() +
  labs(title = "MPG vs Horsepower", color = "MPG01")

ggplot(Auto, aes(x = weight, y = mpg, color = factor(mpg01))) +
  geom_point() +
  labs(title = "MPG vs Weight", color = "MPG01")

The boxplots compare the distribution of each variable for mpg01 = 0 (low MPG) and mpg01 = 1 (high MPG). weight, horsepower, cylinders, displacement, and year appear to be highly associated with mpg01.

The scatterplots visualize the relationship between mpg and selected numerical predictors (horsepower and weight), color coded by mpg01. MPG vs Horsepower: A clear negative trend—as horsepower increases, MPG decreases. High-MPG cars (mpg01 = 1) have noticeably lower horsepower.

MPG vs Weight:A strong negative correlation—heavier cars tend to have lower MPG. Clear separation between high-MPG (mpg01 = 1) and low-MPG (mpg01 = 0), making weight a strong predictor.

  1. Split the data into a training set and a test set.
set.seed(1) 
train_index <- sample(1:nrow(Auto), size = 0.7 * nrow(Auto))

train_data <- Auto[train_index, ]
test_data <- Auto[-train_index, ]

predictors <- c("cylinders", "displacement", "horsepower", "weight", "year", "origin")
  1. Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
lda_model <- lda(mpg01 ~ cylinders + displacement + horsepower + weight + year + origin, data = train_data)

lda_pred <- predict(lda_model, test_data)
lda_class <- lda_pred$class

lda_error <- mean(lda_class != test_data$mpg01)
lda_error
## [1] 0.1271186

Test error of model 0.1271186

  1. Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
qda_model <- qda(mpg01 ~ cylinders + displacement + horsepower + weight + year + origin, data = train_data)

qda_pred <- predict(qda_model, test_data)
qda_class <- qda_pred$class

qda_error <- mean(qda_class != test_data$mpg01)
qda_error
## [1] 0.1016949

Test error of model 0.1016949

  1. Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
logit_model <- glm(mpg01 ~ cylinders + displacement + horsepower + weight + year + origin, data = train_data, family = binomial)

logit_probs <- predict(logit_model, test_data, type = "response")
logit_class <- ifelse(logit_probs > 0.5, 1, 0)

logit_error <- mean(logit_class != test_data$mpg01)
logit_error
## [1] 0.1016949

Test error of model 0.1016949

  1. Perform naive Bayes on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
nb_model <- naiveBayes(mpg01 ~ cylinders + displacement + horsepower + weight + year + origin, data = train_data)

nb_pred <- predict(nb_model, test_data)

nb_error <- mean(nb_pred != test_data$mpg01)
nb_error
## [1] 0.1186441

Test error of model 0.1186441

  1. Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?
train_X <- scale(train_data[, predictors])
test_X <- scale(test_data[, predictors])

train_Y <- train_data$mpg01
test_Y <- test_data$mpg01

k_values <- c(1, 3, 5, 7, 10, 15, 20)
knn_errors <- c()

for (k in k_values) {
  knn_pred <- knn(train_X, test_X, train_Y, k = k)
  knn_error <- mean(knn_pred != test_Y)
  knn_errors <- c(knn_errors, knn_error)
}

data.frame(K = k_values, Test_Error = knn_errors)

Best Choice is K = 1 performed best, but it might be prone to overfitting since it makes decisions based on a single nearest neighbor. So another choice would be K = 5 could be a better choice for generalization, as it still has a relatively low error.

error_results <- data.frame(
  Model = c("LDA", "QDA", "Logistic Regression", "Naive Bayes", "KNN (Best K)"),
  Test_Error = c(lda_error, qda_error, logit_error, nb_error, min(knn_errors))
)

print(error_results)
##                 Model Test_Error
## 1                 LDA 0.12711864
## 2                 QDA 0.10169492
## 3 Logistic Regression 0.10169492
## 4         Naive Bayes 0.11864407
## 5        KNN (Best K) 0.07627119

KNN has relatively low error. So it is best performing model for this dataset.