|>
flights group_by(origin) |>
summarise(n=n(),dly=mean(dep_delay,,na.rm=T))
# A tibble: 3 × 3
origin n dly
<chr> <int> <dbl>
1 EWR 120835 15.1
2 JFK 111279 12.1
3 LGA 104662 10.3
利用nycflights13包的flights数据集是2013年从纽约三大机场(JFK、LGA、EWR)起飞的所有航班的准点数据,共336776条记录。
计算纽约三大机场2013起飞航班数和平均延误时间(可使用group_by, summarise函数)
|>
flights group_by(origin) |>
summarise(n=n(),dly=mean(dep_delay,,na.rm=T))
# A tibble: 3 × 3
origin n dly
<chr> <int> <dbl>
1 EWR 120835 15.1
2 JFK 111279 12.1
3 LGA 104662 10.3
计算不同航空公司2013从纽约起飞航班数和平均延误时间
|>
flights group_by(carrier) |>
summarise(n=n(),dly=mean(dep_delay,,na.rm=T)) |>
arrange(desc(n))
# A tibble: 16 × 3
carrier n dly
<chr> <int> <dbl>
1 UA 58665 12.1
2 B6 54635 13.0
3 EV 54173 20.0
4 DL 48110 9.26
5 AA 32729 8.59
6 MQ 26397 10.6
7 US 20536 3.78
8 9E 18460 16.7
9 WN 12275 17.7
10 VX 5162 12.9
11 FL 3260 18.7
12 AS 714 5.80
13 F9 685 20.2
14 YV 601 19.0
15 HA 342 4.90
16 OO 32 12.6
计算纽约三大机场排名前三个目的地和平均飞行距离(可使用group_by, summarise, arrange, slice_max函数)
|>
flights group_by(origin,dest) |>
summarise(n=n(),dly=mean(distance)) |>
slice_max(n,n=3)
`summarise()` has grouped output by 'origin'. You can override using the
`.groups` argument.
# A tibble: 9 × 4
# Groups: origin [3]
origin dest n dly
<chr> <chr> <int> <dbl>
1 EWR ORD 6100 719
2 EWR BOS 5327 200
3 EWR SFO 5127 2565
4 JFK LAX 11262 2475
5 JFK SFO 8204 2586
6 JFK BOS 5898 187
7 LGA ATL 10263 762
8 LGA ORD 8857 733
9 LGA CLT 6168 544
代码含义:将iris数据集转化为tibble,然后按照Species列进行升序排序,接着对以“Sepal”开头的列进行降序排序。最终的结果是一个排序后的tibble
tibble(iris) %>%
arrange(Species,across(starts_with("Sepal"), desc))
# A tibble: 150 × 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fct>
1 5.8 4 1.2 0.2 setosa
2 5.7 4.4 1.5 0.4 setosa
3 5.7 3.8 1.7 0.3 setosa
4 5.5 4.2 1.4 0.2 setosa
5 5.5 3.5 1.3 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 5.4 3.9 1.3 0.4 setosa
8 5.4 3.7 1.5 0.2 setosa
9 5.4 3.4 1.7 0.2 setosa
10 5.4 3.4 1.5 0.4 setosa
# ℹ 140 more rows
代码含义:按性别分组,筛选出每组中体重大于 改组平均体重的星球大战的角色
%>%
starwars group_by(gender) %>%
filter(mass > mean(mass, na.rm = TRUE))
# A tibble: 15 × 14
# Groups: gender [3]
name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 Darth … 202 136 none white yellow 41.9 male mascu…
2 Owen L… 178 120 brown, gr… light blue 52 male mascu…
3 Beru W… 165 75 brown light blue 47 fema… femin…
4 Chewba… 228 112 brown unknown blue 200 male mascu…
5 Jabba … 175 1358 <NA> green-tan… orange 600 herm… mascu…
6 Jek To… 180 110 brown fair blue NA <NA> <NA>
7 IG-88 200 140 none metal red 15 none mascu…
8 Bossk 190 113 none green red 53 male mascu…
9 Ayla S… 178 55 none blue hazel 48 fema… femin…
10 Gregar… 185 85 black dark brown NA <NA> <NA>
11 Lumina… 170 56.2 black yellow blue 58 fema… femin…
12 Zam We… 168 55 blonde fair, gre… yellow NA fema… femin…
13 Shaak … 178 57 none red, blue… black NA fema… femin…
14 Grievo… 216 159 none brown, wh… green, y… NA male mascu…
15 Tarfful 234 136 brown brown blue NA male mascu…
# ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
# vehicles <list>, starships <list>
代码含义:从星球大战的数据集中选择名字、家乡星球、物种三列,并将家乡星球和物种这两列转换为因子类型
%>%
starwars select(name, homeworld, species) %>%
mutate(across(!name, as.factor))
# A tibble: 87 × 3
name homeworld species
<chr> <fct> <fct>
1 Luke Skywalker Tatooine Human
2 C-3PO Tatooine Droid
3 R2-D2 Naboo Droid
4 Darth Vader Tatooine Human
5 Leia Organa Alderaan Human
6 Owen Lars Tatooine Human
7 Beru Whitesun Lars Tatooine Human
8 R5-D4 Tatooine Droid
9 Biggs Darklighter Tatooine Human
10 Obi-Wan Kenobi Stewjon Human
# ℹ 77 more rows
代码含义:将mtcars数据集按照vs列分组,然后在每组内将hp列的值分为3个区间,并最终按照
hp_cut列分组
tibble(mtcars) %>%
group_by(vs) %>%
mutate(hp_cut = cut(hp, 3)) %>%
group_by(hp_cut)
# A tibble: 32 × 12
# Groups: hp_cut [6]
mpg cyl disp hp drat wt qsec vs am gear carb hp_cut
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 (90.8,172]
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 (90.8,172]
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 (75.7,99.3]
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 (99.3,123]
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 (172,254]
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 (99.3,123]
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 (172,254]
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 (51.9,75.7]
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 (75.7,99.3]
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 (99.3,123]
# ℹ 22 more rows
阅读 https://dplyr.tidyverse.org/reference/mutate-joins.html 内容,说明4个数据集链接函数函数的作用。分别举一个实际例子演示并解释其输出结果。
inner_join()
:用于合并两个数据集,并确保只保留共同的数据
library(dplyr)
# 学生信息
<- tibble(
students id = c(1, 2, 3, 4),
name = c("Alice", "Bob", "Charlie", "David")
)
# 成绩信息
<- tibble(
grades id = c(1, 2, 4, 5),
grade = c(90, 85, 88, 92)
)<- inner_join(students, grades, by = "id")
result print(result)
# A tibble: 3 × 3
id name grade
<dbl> <chr> <dbl>
1 1 Alice 90
2 2 Bob 85
3 4 David 88
left_join()
:保留左侧数据集的所有行;将右侧数据集中匹配的行合并到左侧数据集中;如果右侧数据集中没有匹配的行,则用 NA
填充。
library(dplyr)
# 学生信息
<- tibble(
students id = c(1, 2, 3, 4),
name = c("Alice", "Bob", "Charlie", "David")
)
# 学生成绩
<- tibble(
scores id = c(1, 2, 4),
score = c(90, 85, 88)
)<- left_join(students, scores, by = "id")
result print(result)
# A tibble: 4 × 3
id name score
<dbl> <chr> <dbl>
1 1 Alice 90
2 2 Bob 85
3 3 Charlie NA
4 4 David 88
right_join()
:保留右侧数据集的所有行,并将左侧数据集中匹配的行合并到右侧数据集中;如果左侧数据集没有匹配的行,则用 NA
填充;在实际应用中,right_join()
常用于以右侧数据集为主表,补充左侧数据集的信息。
# 学生信息
<- tibble(
students id = c(1, 2, 3),
name = c("Alice", "Bob", "Charlie")
)
# 成绩信息
<- tibble(
scores id = c(2, 3, 4),
score = c(85, 90, 78)
)<- right_join(students, scores, by = "id")
result print(result)
# A tibble: 3 × 3
id name score
<dbl> <chr> <dbl>
1 2 Bob 85
2 3 Charlie 90
3 4 <NA> 78
full_join()
:将两个数据集按照指定的键列合并;保留两个数据集中的所有行,并用 NA
填充缺失的值;适用于需要保留两个数据集全部信息的场景。
library(dplyr)
<- tibble(id = c(1, 2, 3), name = c("Alice", "Bob", "Charlie"))
students <- tibble(id = c(1, 3, 4), score = c(90, 85, 88))
scores
# 使用 full_join() 合并
<- full_join(students, scores, by = "id")
result print(result)
# A tibble: 4 × 3
id name score
<dbl> <chr> <dbl>
1 1 Alice 90
2 2 Bob NA
3 3 Charlie 85
4 4 <NA> 88