Carga de datos

#Archivo CSV
library(readr)
ejemplo_regresion <- read_csv("E:/Archivos para importar/ejemplo_regresion.csv")
head(ejemplo_regresion,n=5)
## # A tibble: 5 × 3
##      X1    X2     Y
##   <dbl> <dbl> <dbl>
## 1  3.92  7298  0.75
## 2  3.61  6855  0.71
## 3  3.32  6636  0.66
## 4  3.07  6506  0.61
## 5  3.06  6450  0.7
#Archivo Excel
library(readxl)
ejemplo_regresion <- read_excel("E:/Archivos para importar/ejemplo_regresion.xlsx", 
    col_types = c("numeric", "numeric", "numeric"))

Ejemplo de regresion lineal

library(stargazer)
Modelo_lineal <- lm(formula = Y~X1 + X2, data = ejemplo_regresion)

#Usando summary
summary(Modelo_lineal)

Call: lm(formula = Y ~ X1 + X2, data = ejemplo_regresion)

Residuals: Min 1Q Median 3Q Max -0.111071 -0.044467 -0.001806 0.060543 0.104058

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.576e+00 1.023e-01 15.412 2.84e-13 X1 -1.269e-06 7.428e-07 -1.708 0.102
X2 -1.229e-04 1.386e-05 -8.866 1.03e-08
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1

Residual standard error: 0.06773 on 22 degrees of freedom Multiple R-squared: 0.7825, Adjusted R-squared: 0.7628 F-statistic: 39.58 on 2 and 22 DF, p-value: 5.144e-08

#Usando stargazer
stargazer(Modelo_lineal,title = "Ejemplo de Regresion Multiple",type = "html",digits = 8)
Ejemplo de Regresion Multiple
Dependent variable:
Y
X1 -0.00000127
(0.00000074)
X2 -0.00012289***
(0.00001386)
Constant 1.57619400***
(0.10227100)
Observations 25
R2 0.78253320
Adjusted R2 0.76276350
Residual Std. Error 0.06772541 (df = 22)
F Statistic 39.58243000*** (df = 2; 22)
Note: p<0.1; p<0.05; p<0.01

Objetos dentro del modelo lineal

Vector de coeficientes estimados

options(scipen = 999999)
Modelo_lineal$coefficients
##     (Intercept)              X1              X2 
##  1.576193987405 -0.000001268749 -0.000122892962

Matriz de varianza-covarianza delos parametros

var_covar <- vcov(Modelo_lineal)
print(var_covar)
##                   (Intercept)                     X1                    X2
## (Intercept)  0.01045935002566 -0.0000000131410842007 -0.000001402024153188
## X1          -0.00000001314108  0.0000000000005517899  0.000000000001115281
## X2          -0.00000140202415  0.0000000000011152812  0.000000000192148255

Intervalos de confianza

confint(object = Modelo_lineal,level = .95)
##                       2.5 %           97.5 %
## (Intercept)  1.364096990062  1.7882909847476
## X1          -0.000002809275  0.0000002717773
## X2          -0.000151640483 -0.0000941454413

Valores ajustado Y

library(magrittr)
## Warning: package 'magrittr' was built under R version 4.4.3
plot(Modelo_lineal$fitted.values,main = "valores ajustados",ylab = "Y", xlab ="casos")

Modelo_lineal$fitted.values %>% as.matrix()
##         [,1]
## 1  0.6793162
## 2  0.7337582
## 3  0.7606721
## 4  0.7184917
## 5  0.7254117
## 6  0.7311165
## 7  0.7936075
## 8  0.7970485
## 9  0.7959422
## 10 0.7955736
## 11 0.7944675
## 12 0.7934842
## 13 0.7717320
## 14 0.7562473
## 15 0.7294566
## 16 0.7018055
## 17 0.6175953
## 18 0.6488383
## 19 0.6015243
## 20 0.5811240
## 21 0.4773744
## 22 0.5049302
## 23 0.4712574
## 24 0.4481535
## 25 0.4310713

Residuos del modelo E

library(magrittr)
plot(Modelo_lineal$residuals,main = "Residuos",ylab = "Residuos",xlab = "casos")

Modelo_lineal$residuals %>% matrix() 
##               [,1]
##  [1,]  0.070683822
##  [2,] -0.023758153
##  [3,] -0.100672080
##  [4,] -0.108491668
##  [5,] -0.025411736
##  [6,] -0.011116480
##  [7,] -0.023607533
##  [8,] -0.057048473
##  [9,]  0.104057767
## [10,]  0.024426446
## [11,] -0.044467479
## [12,] -0.023484171
## [13,]  0.008267985
## [14,]  0.083752651
## [15,]  0.060543367
## [16,] -0.001805526
## [17,]  0.062404723
## [18,]  0.071161696
## [19,] -0.051524311
## [20,]  0.048876022
## [21,]  0.082625592
## [22,] -0.094930227
## [23,]  0.038742584
## [24,]  0.021846486
## [25,] -0.111071303

Matrices A,P & M

#Matriz X
matriz_X <- model.matrix(Modelo_lineal)

#Matriz XX
matriz_XX <- t(matriz_X) %*% matriz_X
print(matriz_XX)
##             (Intercept)            X1         X2
## (Intercept)        25.0      229378.3     181083
## X1             229378.3 10515712538.2 1612640105
## X2             181083.0  1612640105.2 1335796275
#Matriz A
matriz_A <- solve(matriz_XX) %*% t(matriz_X)
print(matriz_A)
##                             1               2               3               4
## (Intercept)  0.04956171280968  0.184974227481  0.251916697630  0.160327791267
## X1          -0.00000109001358 -0.000001197768 -0.000001251054  0.000004231671
## X2           0.00000006064994 -0.000018497670 -0.000027672133 -0.000021972512
##                           5              6               7               8
## (Intercept)  0.177531238726  0.19176503051  0.333836461779  0.342395066931
## X1           0.000004214445  0.00000422118 -0.000001316232 -0.000001323034
## X2          -0.000024325770 -0.00002629939 -0.000038899270 -0.000040072239
##                           9              10              11              12
## (Intercept)  0.339643582255  0.338726573498  0.335975461275  0.333529732135
## X1          -0.000001320827 -0.000001320097 -0.000001317905 -0.000001315944
## X2          -0.000039695170 -0.000039569494 -0.000039192457 -0.000038857287
##                          13              14              15              16
## (Intercept)  0.279425986245  0.240911274630  0.174275190323  0.105499103762
## X1          -0.000001272897 -0.000001242245 -0.000001189232 -0.000001134505
## X2          -0.000031442348 -0.000026163902 -0.000017031392 -0.000007605611
##                         17              18               19               20
## (Intercept) -0.09062980371 -0.026245289929 -0.1439285388693 -0.1946699193157
## X1           0.00000443142 -0.000001029672 -0.0000009360383 -0.0000008956651
## X2           0.00001242123  0.000010449996  0.0000265785323  0.0000335326571
##                          21               22               23               24
## (Intercept) -0.439398801116 -0.3841853203704 -0.4679391020350 -0.5254050414679
## X1           0.000004708859 -0.0000007448989 -0.0000006782615 -0.0000006325462
## X2           0.000060220230  0.0000595058436  0.0000709843334  0.0000788600720
##                           25
## (Intercept) -0.5678933144472
## X1          -0.0000005987394
## X2           0.0000846831050
#Matriz_P
matriz_P <- matriz_X %*% matriz_A
print(matriz_P)
##                 1            2            3              4              5
## 1   0.05000006325  0.049973533  0.049960567 -0.00001101108  0.00001829293
## 2   0.04997353323  0.058168373  0.062219710  0.00972149979  0.01079330238
## 3   0.04996056700  0.062219710  0.068280270  0.01453225267  0.01611942373
## 4  -0.00001101108  0.009721500  0.014532253  0.21135864640  0.21246215694
## 5   0.00001829293  0.010793302  0.016119424  0.21246215694  0.21369796668
## 6  -0.00015139035  0.011497932  0.017256275  0.21416428311  0.21551041371
## 7   0.04994443272  0.067177217  0.075696539  0.02042042033  0.02263826639
## 8   0.04994268002  0.067695092  0.076471296  0.02103586224  0.02331959866
## 9   0.04994305146  0.067528421  0.076222047  0.02083878670  0.02310134104
## 10  0.04994323341  0.067472928  0.076139030  0.02077286917  0.02302836373
## 11  0.04994374656  0.067306413  0.075889944  0.02057524351  0.02280955824
## 12  0.04994409006  0.067158276  0.075668404  0.02040001353  0.02261549996
## 13  0.04995473790  0.063884093  0.070770336  0.01651121749  0.01831017590
## 14  0.04996224899  0.061553243  0.067283497  0.01374318882  0.01524563467
## 15  0.04997542708  0.057520703  0.061250922  0.00895335053  0.00994278547
## 16  0.04998890981  0.053358547  0.055024505  0.00401017015  0.00447011949
## 17  0.00003769251 -0.005466285 -0.008187820  0.19332344595  0.19249491455
## 18  0.05001474474  0.045385716  0.043097465 -0.00545879754 -0.00601310716
## 19  0.05003792056  0.038263921  0.032443494 -0.01391753748 -0.01537785414
## 20  0.05004790125  0.035193212  0.027849820 -0.01756463589 -0.01941559473
## 21  0.00010689410 -0.026572127 -0.039761723  0.16825281009  0.16473921146
## 22  0.05008540612  0.023724548  0.010692985 -0.03118721230 -0.03449719258
## 23  0.05010190430  0.018656055  0.003110683 -0.03720721503 -0.04116198985
## 24  0.05011328469  0.015178469 -0.002091703 -0.04133796260 -0.04573515025
## 25  0.05012163873  0.012607209 -0.005938218 -0.04439184551 -0.04911613721
##                6           7           8            9           10           11
## 1  -0.0001513903  0.04994443  0.04994268  0.049943051  0.049943233  0.049943747
## 2   0.0114979321  0.06717722  0.06769509  0.067528421  0.067472928  0.067306413
## 3   0.0172562749  0.07569654  0.07647130  0.076222047  0.076139030  0.075889944
## 4   0.2141642831  0.02042042  0.02103586  0.020838787  0.020772869  0.020575244
## 5   0.2155104137  0.02263827  0.02331960  0.023101341  0.023028364  0.022809558
## 6   0.2174186251  0.02430405  0.02504064  0.024804623  0.024725725  0.024489157
## 7   0.0243040478  0.08612169  0.08721080  0.086860498  0.086743800  0.086393667
## 8   0.0250406419  0.08721080  0.08833276  0.087971896  0.087851680  0.087490990
## 9   0.0248046227  0.08686050  0.08797190  0.087614429  0.087495343  0.087138047
## 10  0.0247257246  0.08674380  0.08785168  0.087495343  0.087376635  0.087020469
## 11  0.0244891567  0.08639367  0.08749099  0.087138047  0.087020469  0.086667698
## 12  0.0242793103  0.08608230  0.08717024  0.086820314  0.086703742  0.086353987
## 13  0.0196246555  0.07919703  0.08007735  0.079794163  0.079699836  0.079416817
## 14  0.0163114385  0.07429556  0.07502809  0.074792413  0.074713921  0.074478409
## 15  0.0105783398  0.06581547  0.06629229  0.066138813  0.066087719  0.065934401
## 16  0.0046616096  0.05706293  0.05727583  0.057207202  0.057184385  0.057115900
## 17  0.1925767029 -0.01151720 -0.01186477 -0.011752269 -0.011715005 -0.011603081
## 18 -0.0066722467  0.04029698  0.04000433  0.040098213  0.040129563  0.040223582
## 19 -0.0167968375  0.02532055  0.02457630  0.024815361  0.024895097  0.025134276
## 20 -0.0211621990  0.01886317  0.01792421  0.018225857  0.018326455  0.018628223
## 21  0.1625690958 -0.05590126 -0.05758719 -0.057044458 -0.056863798 -0.056321674
## 22 -0.0374674426 -0.00525450 -0.00692070 -0.006385267 -0.006206749 -0.005671219
## 23 -0.0446730119 -0.01591304 -0.01790064 -0.017261889 -0.017048936 -0.016410097
## 24 -0.0496172133 -0.02322613 -0.02543425 -0.024724607 -0.024488027 -0.023778306
## 25 -0.0532725334 -0.02863322 -0.03100438 -0.030242329 -0.029988279 -0.029226149
##              12           13            14           15           16
## 1   0.049944090  0.049954738  0.0499622490  0.049975427  0.049988910
## 2   0.067158276  0.063884093  0.0615532426  0.057520703  0.053358547
## 3   0.075668404  0.070770336  0.0672834974  0.061250922  0.055024505
## 4   0.020400014  0.016511217  0.0137431888  0.008953351  0.004010170
## 5   0.022615500  0.018310176  0.0152456347  0.009942785  0.004470119
## 6   0.024279310  0.019624655  0.0163114385  0.010578340  0.004661610
## 7   0.086082302  0.079197026  0.0742955597  0.065815466  0.057062933
## 8   0.087170240  0.080077348  0.0750280869  0.066292286  0.057275834
## 9   0.086820314  0.079794163  0.0747924130  0.066138813  0.057207202
## 10  0.086703742  0.079699836  0.0747139213  0.066087719  0.057184385
## 11  0.086353987  0.079416817  0.0744784089  0.065934401  0.057115900
## 12  0.086042957  0.079165112  0.0742689362  0.065797995  0.057054908
## 13  0.079165112  0.073599715  0.0696378262  0.062783343  0.055708624
## 14  0.074268936  0.069637826  0.0663410255  0.060637245  0.054750181
## 15  0.065797995  0.062783343  0.0606372452  0.056924354  0.053092112
## 16  0.057054908  0.055708624  0.0547501809  0.053092112  0.051380680
## 17 -0.011503135 -0.009304223 -0.0077386169 -0.005030612 -0.002235171
## 18  0.040307049  0.042156615  0.0434731914  0.045751249  0.048102344
## 19  0.025346782  0.030051108  0.0333998904  0.039193973  0.045174002
## 20  0.018896367  0.024831576  0.0290565833  0.036366667  0.043911380
## 21 -0.055839300 -0.045179943 -0.0375916289 -0.024463431 -0.010913172
## 22 -0.005195269  0.005337205  0.0128348523  0.025807096  0.039195799
## 23 -0.015842311 -0.003278138  0.0056658066  0.021140364  0.037111737
## 24 -0.023147507 -0.009189325  0.0007469682  0.017938439  0.035681860
## 25 -0.028548762 -0.013559901 -0.0028899012  0.015570992  0.034624601
##                17           18           19          20            21
## 1   0.00003769251  0.050014745  0.050037921  0.05004790  0.0001068941
## 2  -0.00546628542  0.045385716  0.038263921  0.03519321 -0.0265721274
## 3  -0.00818781956  0.043097465  0.032443494  0.02784982 -0.0397617233
## 4   0.19332344595 -0.005458798 -0.013917537 -0.01756464  0.1682528101
## 5   0.19249491455 -0.006013107 -0.015377854 -0.01941559  0.1647392115
## 6   0.19257670289 -0.006672247 -0.016796838 -0.02116220  0.1625690958
## 7  -0.01151719623  0.040296980  0.025320550  0.01886317 -0.0559012628
## 8  -0.01186476906  0.040004328  0.024576304  0.01792421 -0.0575871938
## 9  -0.01175226898  0.040098213  0.024815361  0.01822586 -0.0570444583
## 10 -0.01171500529  0.040129563  0.024895097  0.01832646 -0.0568637976
## 11 -0.01160308129  0.040223582  0.025134276  0.01862822 -0.0563216743
## 12 -0.01150313538  0.040307049  0.025346782  0.01889637 -0.0558393003
## 13 -0.00930422344  0.042156615  0.030051108  0.02483158 -0.0451799430
## 14 -0.00773861688  0.043473191  0.033399890  0.02905658 -0.0375916289
## 15 -0.00503061183  0.045751249  0.039193973  0.03636667 -0.0244634305
## 16 -0.00223517072  0.048102344  0.045174002  0.04391138 -0.0109131725
## 17  0.20352570591  0.003119620  0.007902501  0.00996478  0.2176983275
## 18  0.00311961953  0.052606004  0.056629088  0.05836370  0.0150430650
## 19  0.00790250150  0.056629088  0.066861673  0.07127363  0.0382286068
## 20  0.00996477993  0.058363705  0.071273634  0.07683998  0.0482255417
## 21  0.21769832754  0.015043065  0.038228607  0.04822554  0.2864096097
## 22  0.01766634038  0.064842610  0.087752240  0.09763015  0.0855625079
## 23  0.02107024443  0.067705795  0.095034655  0.10681800  0.1020633688
## 24  0.02340552400  0.069670374  0.100031400  0.11312212  0.1133848662
## 25  0.02513238495  0.071122851  0.103725751  0.11778310  0.1217558077
##              22           23            24           25
## 1   0.050085406  0.050101904  0.0501132847  0.050121639
## 2   0.023724548  0.018656055  0.0151784689  0.012607209
## 3   0.010692985  0.003110683 -0.0020917035 -0.005938218
## 4  -0.031187212 -0.037207215 -0.0413379626 -0.044391846
## 5  -0.034497193 -0.041161990 -0.0457351502 -0.049116137
## 6  -0.037467443 -0.044673012 -0.0496172133 -0.053272533
## 7  -0.005254500 -0.015913044 -0.0232261332 -0.028633224
## 8  -0.006920700 -0.017900639 -0.0254342468 -0.031004381
## 9  -0.006385267 -0.017261889 -0.0247246074 -0.030242329
## 10 -0.006206749 -0.017048936 -0.0244880272 -0.029988279
## 11 -0.005671219 -0.016410097 -0.0237783055 -0.029226149
## 12 -0.005195269 -0.015842311 -0.0231475072 -0.028548762
## 13  0.005337205 -0.003278138 -0.0091893250 -0.013559901
## 14  0.012834852  0.005665807  0.0007469682 -0.002889901
## 15  0.025807096  0.021140364  0.0179384386  0.015570992
## 16  0.039195799  0.037111737  0.0356818599  0.034624601
## 17  0.017666340  0.021070244  0.0234055240  0.025132385
## 18  0.064842610  0.067705795  0.0696703738  0.071122851
## 19  0.087752240  0.095034655  0.1000314003  0.103725751
## 20  0.097630151  0.106818000  0.1131221217  0.117783098
## 21  0.085562508  0.102063369  0.1133848662  0.121755808
## 22  0.134523707  0.150828226  0.1620153094  0.170286570
## 23  0.150828226  0.170277858  0.1836228996  0.193489674
## 24  0.162015309  0.183622900  0.1984485805  0.209410086
## 25  0.170286570  0.193489674  0.2094100862  0.221180996
#Matriz M
matriz_M <- diag(25) - matriz_P
print(matriz_M)
##                 1            2            3              4              5
## 1   0.94999993675 -0.049973533 -0.049960567  0.00001101108 -0.00001829293
## 2  -0.04997353323  0.941831627 -0.062219710 -0.00972149979 -0.01079330238
## 3  -0.04996056700 -0.062219710  0.931719730 -0.01453225267 -0.01611942373
## 4   0.00001101108 -0.009721500 -0.014532253  0.78864135360 -0.21246215694
## 5  -0.00001829293 -0.010793302 -0.016119424 -0.21246215694  0.78630203332
## 6   0.00015139035 -0.011497932 -0.017256275 -0.21416428311 -0.21551041371
## 7  -0.04994443272 -0.067177217 -0.075696539 -0.02042042033 -0.02263826639
## 8  -0.04994268002 -0.067695092 -0.076471296 -0.02103586224 -0.02331959866
## 9  -0.04994305146 -0.067528421 -0.076222047 -0.02083878670 -0.02310134104
## 10 -0.04994323341 -0.067472928 -0.076139030 -0.02077286917 -0.02302836373
## 11 -0.04994374656 -0.067306413 -0.075889944 -0.02057524351 -0.02280955824
## 12 -0.04994409006 -0.067158276 -0.075668404 -0.02040001353 -0.02261549996
## 13 -0.04995473790 -0.063884093 -0.070770336 -0.01651121749 -0.01831017590
## 14 -0.04996224899 -0.061553243 -0.067283497 -0.01374318882 -0.01524563467
## 15 -0.04997542708 -0.057520703 -0.061250922 -0.00895335053 -0.00994278547
## 16 -0.04998890981 -0.053358547 -0.055024505 -0.00401017015 -0.00447011949
## 17 -0.00003769251  0.005466285  0.008187820 -0.19332344595 -0.19249491455
## 18 -0.05001474474 -0.045385716 -0.043097465  0.00545879754  0.00601310716
## 19 -0.05003792056 -0.038263921 -0.032443494  0.01391753748  0.01537785414
## 20 -0.05004790125 -0.035193212 -0.027849820  0.01756463589  0.01941559473
## 21 -0.00010689410  0.026572127  0.039761723 -0.16825281009 -0.16473921146
## 22 -0.05008540612 -0.023724548 -0.010692985  0.03118721230  0.03449719258
## 23 -0.05010190430 -0.018656055 -0.003110683  0.03720721503  0.04116198985
## 24 -0.05011328469 -0.015178469  0.002091703  0.04133796260  0.04573515025
## 25 -0.05012163873 -0.012607209  0.005938218  0.04439184551  0.04911613721
##                6           7           8            9           10           11
## 1   0.0001513903 -0.04994443 -0.04994268 -0.049943051 -0.049943233 -0.049943747
## 2  -0.0114979321 -0.06717722 -0.06769509 -0.067528421 -0.067472928 -0.067306413
## 3  -0.0172562749 -0.07569654 -0.07647130 -0.076222047 -0.076139030 -0.075889944
## 4  -0.2141642831 -0.02042042 -0.02103586 -0.020838787 -0.020772869 -0.020575244
## 5  -0.2155104137 -0.02263827 -0.02331960 -0.023101341 -0.023028364 -0.022809558
## 6   0.7825813749 -0.02430405 -0.02504064 -0.024804623 -0.024725725 -0.024489157
## 7  -0.0243040478  0.91387831 -0.08721080 -0.086860498 -0.086743800 -0.086393667
## 8  -0.0250406419 -0.08721080  0.91166724 -0.087971896 -0.087851680 -0.087490990
## 9  -0.0248046227 -0.08686050 -0.08797190  0.912385571 -0.087495343 -0.087138047
## 10 -0.0247257246 -0.08674380 -0.08785168 -0.087495343  0.912623365 -0.087020469
## 11 -0.0244891567 -0.08639367 -0.08749099 -0.087138047 -0.087020469  0.913332302
## 12 -0.0242793103 -0.08608230 -0.08717024 -0.086820314 -0.086703742 -0.086353987
## 13 -0.0196246555 -0.07919703 -0.08007735 -0.079794163 -0.079699836 -0.079416817
## 14 -0.0163114385 -0.07429556 -0.07502809 -0.074792413 -0.074713921 -0.074478409
## 15 -0.0105783398 -0.06581547 -0.06629229 -0.066138813 -0.066087719 -0.065934401
## 16 -0.0046616096 -0.05706293 -0.05727583 -0.057207202 -0.057184385 -0.057115900
## 17 -0.1925767029  0.01151720  0.01186477  0.011752269  0.011715005  0.011603081
## 18  0.0066722467 -0.04029698 -0.04000433 -0.040098213 -0.040129563 -0.040223582
## 19  0.0167968375 -0.02532055 -0.02457630 -0.024815361 -0.024895097 -0.025134276
## 20  0.0211621990 -0.01886317 -0.01792421 -0.018225857 -0.018326455 -0.018628223
## 21 -0.1625690958  0.05590126  0.05758719  0.057044458  0.056863798  0.056321674
## 22  0.0374674426  0.00525450  0.00692070  0.006385267  0.006206749  0.005671219
## 23  0.0446730119  0.01591304  0.01790064  0.017261889  0.017048936  0.016410097
## 24  0.0496172133  0.02322613  0.02543425  0.024724607  0.024488027  0.023778306
## 25  0.0532725334  0.02863322  0.03100438  0.030242329  0.029988279  0.029226149
##              12           13            14           15           16
## 1  -0.049944090 -0.049954738 -0.0499622490 -0.049975427 -0.049988910
## 2  -0.067158276 -0.063884093 -0.0615532426 -0.057520703 -0.053358547
## 3  -0.075668404 -0.070770336 -0.0672834974 -0.061250922 -0.055024505
## 4  -0.020400014 -0.016511217 -0.0137431888 -0.008953351 -0.004010170
## 5  -0.022615500 -0.018310176 -0.0152456347 -0.009942785 -0.004470119
## 6  -0.024279310 -0.019624655 -0.0163114385 -0.010578340 -0.004661610
## 7  -0.086082302 -0.079197026 -0.0742955597 -0.065815466 -0.057062933
## 8  -0.087170240 -0.080077348 -0.0750280869 -0.066292286 -0.057275834
## 9  -0.086820314 -0.079794163 -0.0747924130 -0.066138813 -0.057207202
## 10 -0.086703742 -0.079699836 -0.0747139213 -0.066087719 -0.057184385
## 11 -0.086353987 -0.079416817 -0.0744784089 -0.065934401 -0.057115900
## 12  0.913957043 -0.079165112 -0.0742689362 -0.065797995 -0.057054908
## 13 -0.079165112  0.926400285 -0.0696378262 -0.062783343 -0.055708624
## 14 -0.074268936 -0.069637826  0.9336589745 -0.060637245 -0.054750181
## 15 -0.065797995 -0.062783343 -0.0606372452  0.943075646 -0.053092112
## 16 -0.057054908 -0.055708624 -0.0547501809 -0.053092112  0.948619320
## 17  0.011503135  0.009304223  0.0077386169  0.005030612  0.002235171
## 18 -0.040307049 -0.042156615 -0.0434731914 -0.045751249 -0.048102344
## 19 -0.025346782 -0.030051108 -0.0333998904 -0.039193973 -0.045174002
## 20 -0.018896367 -0.024831576 -0.0290565833 -0.036366667 -0.043911380
## 21  0.055839300  0.045179943  0.0375916289  0.024463431  0.010913172
## 22  0.005195269 -0.005337205 -0.0128348523 -0.025807096 -0.039195799
## 23  0.015842311  0.003278138 -0.0056658066 -0.021140364 -0.037111737
## 24  0.023147507  0.009189325 -0.0007469682 -0.017938439 -0.035681860
## 25  0.028548762  0.013559901  0.0028899012 -0.015570992 -0.034624601
##                17           18           19          20            21
## 1  -0.00003769251 -0.050014745 -0.050037921 -0.05004790 -0.0001068941
## 2   0.00546628542 -0.045385716 -0.038263921 -0.03519321  0.0265721274
## 3   0.00818781956 -0.043097465 -0.032443494 -0.02784982  0.0397617233
## 4  -0.19332344595  0.005458798  0.013917537  0.01756464 -0.1682528101
## 5  -0.19249491455  0.006013107  0.015377854  0.01941559 -0.1647392115
## 6  -0.19257670289  0.006672247  0.016796838  0.02116220 -0.1625690958
## 7   0.01151719623 -0.040296980 -0.025320550 -0.01886317  0.0559012628
## 8   0.01186476906 -0.040004328 -0.024576304 -0.01792421  0.0575871938
## 9   0.01175226898 -0.040098213 -0.024815361 -0.01822586  0.0570444583
## 10  0.01171500529 -0.040129563 -0.024895097 -0.01832646  0.0568637976
## 11  0.01160308129 -0.040223582 -0.025134276 -0.01862822  0.0563216743
## 12  0.01150313538 -0.040307049 -0.025346782 -0.01889637  0.0558393003
## 13  0.00930422344 -0.042156615 -0.030051108 -0.02483158  0.0451799430
## 14  0.00773861688 -0.043473191 -0.033399890 -0.02905658  0.0375916289
## 15  0.00503061183 -0.045751249 -0.039193973 -0.03636667  0.0244634305
## 16  0.00223517072 -0.048102344 -0.045174002 -0.04391138  0.0109131725
## 17  0.79647429409 -0.003119620 -0.007902501 -0.00996478 -0.2176983275
## 18 -0.00311961953  0.947393996 -0.056629088 -0.05836370 -0.0150430650
## 19 -0.00790250150 -0.056629088  0.933138327 -0.07127363 -0.0382286068
## 20 -0.00996477993 -0.058363705 -0.071273634  0.92316002 -0.0482255417
## 21 -0.21769832754 -0.015043065 -0.038228607 -0.04822554  0.7135903903
## 22 -0.01766634038 -0.064842610 -0.087752240 -0.09763015 -0.0855625079
## 23 -0.02107024443 -0.067705795 -0.095034655 -0.10681800 -0.1020633688
## 24 -0.02340552400 -0.069670374 -0.100031400 -0.11312212 -0.1133848662
## 25 -0.02513238495 -0.071122851 -0.103725751 -0.11778310 -0.1217558077
##              22           23            24           25
## 1  -0.050085406 -0.050101904 -0.0501132847 -0.050121639
## 2  -0.023724548 -0.018656055 -0.0151784689 -0.012607209
## 3  -0.010692985 -0.003110683  0.0020917035  0.005938218
## 4   0.031187212  0.037207215  0.0413379626  0.044391846
## 5   0.034497193  0.041161990  0.0457351502  0.049116137
## 6   0.037467443  0.044673012  0.0496172133  0.053272533
## 7   0.005254500  0.015913044  0.0232261332  0.028633224
## 8   0.006920700  0.017900639  0.0254342468  0.031004381
## 9   0.006385267  0.017261889  0.0247246074  0.030242329
## 10  0.006206749  0.017048936  0.0244880272  0.029988279
## 11  0.005671219  0.016410097  0.0237783055  0.029226149
## 12  0.005195269  0.015842311  0.0231475072  0.028548762
## 13 -0.005337205  0.003278138  0.0091893250  0.013559901
## 14 -0.012834852 -0.005665807 -0.0007469682  0.002889901
## 15 -0.025807096 -0.021140364 -0.0179384386 -0.015570992
## 16 -0.039195799 -0.037111737 -0.0356818599 -0.034624601
## 17 -0.017666340 -0.021070244 -0.0234055240 -0.025132385
## 18 -0.064842610 -0.067705795 -0.0696703738 -0.071122851
## 19 -0.087752240 -0.095034655 -0.1000314003 -0.103725751
## 20 -0.097630151 -0.106818000 -0.1131221217 -0.117783098
## 21 -0.085562508 -0.102063369 -0.1133848662 -0.121755808
## 22  0.865476293 -0.150828226 -0.1620153094 -0.170286570
## 23 -0.150828226  0.829722142 -0.1836228996 -0.193489674
## 24 -0.162015309 -0.183622900  0.8015514195 -0.209410086
## 25 -0.170286570 -0.193489674 -0.2094100862  0.778819004

Practica 2

Introduccion de la matriz

matriz_completa <- matrix(data = c(320,50,7.4,450,53,5.1,370,60,4.2,470,63,3.9,420,69,1.4,500,82,2.2,
                                   570,100,7.0,640,104,5.7,670,113,13.1,780,130,16.4,690,150,5.1,
                                   700,181,2.9,910,202,4.5,930,217,6.2,940,229,3.2,1070,240,2.4,
                                   1160,243,4.9,1210,247,8.8,1450,249,10.1,1220,254,6.7), 
                           nrow = 20, ncol = 3, byrow = TRUE)
colnames(matriz_completa) <- c("Y","X1","X2")
print(matriz_completa)
##          Y  X1   X2
##  [1,]  320  50  7.4
##  [2,]  450  53  5.1
##  [3,]  370  60  4.2
##  [4,]  470  63  3.9
##  [5,]  420  69  1.4
##  [6,]  500  82  2.2
##  [7,]  570 100  7.0
##  [8,]  640 104  5.7
##  [9,]  670 113 13.1
## [10,]  780 130 16.4
## [11,]  690 150  5.1
## [12,]  700 181  2.9
## [13,]  910 202  4.5
## [14,]  930 217  6.2
## [15,]  940 229  3.2
## [16,] 1070 240  2.4
## [17,] 1160 243  4.9
## [18,] 1210 247  8.8
## [19,] 1450 249 10.1
## [20,] 1220 254  6.7

Ejemplo de regresion lineal

library(stargazer)
Modelo_lineal <- lm(formula = Y~X1 + X2, data = ejemplo_regresion)

#Usando summary
summary(Modelo_lineal)

Call: lm(formula = Y ~ X1 + X2, data = ejemplo_regresion)

Residuals: Min 1Q Median 3Q Max -0.111071 -0.044467 -0.001806 0.060543 0.104058

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.5761939874 0.1022709637 15.412 0.000000000000284 X1 -0.0000012687 0.0000007428 -1.708 0.102
X2 -0.0001228930 0.0000138618 -8.866 0.000000010293448
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1

Residual standard error: 0.06773 on 22 degrees of freedom Multiple R-squared: 0.7825, Adjusted R-squared: 0.7628 F-statistic: 39.58 on 2 and 22 DF, p-value: 0.00000005144

#Usando stargazer
stargazer(Modelo_lineal,title = "Ejemplo de Regresion Multiple",type = "html",digits = 8)
Ejemplo de Regresion Multiple
Dependent variable:
Y
X1 -0.00000127
(0.00000074)
X2 -0.00012289***
(0.00001386)
Constant 1.57619400***
(0.10227100)
Observations 25
R2 0.78253320
Adjusted R2 0.76276350
Residual Std. Error 0.06772541 (df = 22)
F Statistic 39.58243000*** (df = 2; 22)
Note: p<0.1; p<0.05; p<0.01

Objetos dentro del modelo lineal

Vector de coeficientes estimados

options(scipen = 999999)
Modelo_lineal$coefficients
##     (Intercept)              X1              X2 
##  1.576193987405 -0.000001268749 -0.000122892962

Matriz de varianza-covarianza de los parametros

var_covar <- vcov(Modelo_lineal)
print(var_covar)
##                   (Intercept)                     X1                    X2
## (Intercept)  0.01045935002566 -0.0000000131410842007 -0.000001402024153188
## X1          -0.00000001314108  0.0000000000005517899  0.000000000001115281
## X2          -0.00000140202415  0.0000000000011152812  0.000000000192148255

Intervalos de confianza

confint(object = Modelo_lineal,level = .95)
##                       2.5 %           97.5 %
## (Intercept)  1.364096990062  1.7882909847476
## X1          -0.000002809275  0.0000002717773
## X2          -0.000151640483 -0.0000941454413

Valores ajustados Y

library(magrittr)
plot(Modelo_lineal$fitted.values,main = "valores ajustados",ylab = "Y", xlab ="casos")

Modelo_lineal$fitted.values %>% as.matrix()
##         [,1]
## 1  0.6793162
## 2  0.7337582
## 3  0.7606721
## 4  0.7184917
## 5  0.7254117
## 6  0.7311165
## 7  0.7936075
## 8  0.7970485
## 9  0.7959422
## 10 0.7955736
## 11 0.7944675
## 12 0.7934842
## 13 0.7717320
## 14 0.7562473
## 15 0.7294566
## 16 0.7018055
## 17 0.6175953
## 18 0.6488383
## 19 0.6015243
## 20 0.5811240
## 21 0.4773744
## 22 0.5049302
## 23 0.4712574
## 24 0.4481535
## 25 0.4310713

Residuos del modelo E

library(magrittr)
plot(Modelo_lineal$residuals,main = "Residuos",ylab = "Residuos",xlab = "casos")

Modelo_lineal$residuals %>% matrix() 
##               [,1]
##  [1,]  0.070683822
##  [2,] -0.023758153
##  [3,] -0.100672080
##  [4,] -0.108491668
##  [5,] -0.025411736
##  [6,] -0.011116480
##  [7,] -0.023607533
##  [8,] -0.057048473
##  [9,]  0.104057767
## [10,]  0.024426446
## [11,] -0.044467479
## [12,] -0.023484171
## [13,]  0.008267985
## [14,]  0.083752651
## [15,]  0.060543367
## [16,] -0.001805526
## [17,]  0.062404723
## [18,]  0.071161696
## [19,] -0.051524311
## [20,]  0.048876022
## [21,]  0.082625592
## [22,] -0.094930227
## [23,]  0.038742584
## [24,]  0.021846486
## [25,] -0.111071303