data <- read_excel("myData.xlsx")
data
## # A tibble: 236 × 20
## TEAMID TEAM PAKE PAKERANK PASE PASERANK GAMES W L WINPERCENT R64
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 Abil… 0.7 45 0.7 52 3 1 2 0.333 2
## 2 2 Akron -0.9 179 -1.1 187 4 0 4 0 4
## 3 3 Alab… -2.1 211 -2.9 220 10 5 5 0.5 5
## 4 4 Alba… -0.4 147 -0.3 138 3 0 3 0 3
## 5 6 Amer… -0.5 160 -0.4 150 3 0 3 0 3
## 6 8 Ariz… -1.7 206 -2.5 216 28 17 11 0.607 11
## 7 9 Ariz… -2 209 -1.9 206 5 1 4 0.2 4
## 8 10 Arka… 4.3 11 3.5 16 18 11 7 0.611 7
## 9 11 Arka… 0 76 0 78 1 0 1 0 1
## 10 12 Aubu… 0.6 53 1.4 30 11 7 4 0.636 4
## # ℹ 226 more rows
## # ℹ 9 more variables: R32 <dbl>, S16 <dbl>, E8 <dbl>, F4 <dbl>, F2 <dbl>,
## # CHAMP <dbl>, `2` <dbl>, F4PERCENT <dbl>, CHAMPPERCENT <dbl>
data_small <- data %>%
select(TEAM, PAKERANK, W)
data_small
## # A tibble: 236 × 3
## TEAM PAKERANK W
## <chr> <dbl> <dbl>
## 1 Abilene Christian 45 1
## 2 Akron 179 0
## 3 Alabama 211 5
## 4 Albany 147 0
## 5 American 160 0
## 6 Arizona 206 17
## 7 Arizona St. 209 1
## 8 Arkansas 11 11
## 9 Arkansas Pine Bluff 76 0
## 10 Auburn 53 7
## # ℹ 226 more rows
data_small
## # A tibble: 236 × 3
## TEAM PAKERANK W
## <chr> <dbl> <dbl>
## 1 Abilene Christian 45 1
## 2 Akron 179 0
## 3 Alabama 211 5
## 4 Albany 147 0
## 5 American 160 0
## 6 Arizona 206 17
## 7 Arizona St. 209 1
## 8 Arkansas 11 11
## 9 Arkansas Pine Bluff 76 0
## 10 Auburn 53 7
## # ℹ 226 more rows
data_long <- data_small %>%
pivot_longer(cols = c(2,3),
names_to = "Name",
values_to = "Rank_Wins")
data_long
## # A tibble: 472 × 3
## TEAM Name Rank_Wins
## <chr> <chr> <dbl>
## 1 Abilene Christian PAKERANK 45
## 2 Abilene Christian W 1
## 3 Akron PAKERANK 179
## 4 Akron W 0
## 5 Alabama PAKERANK 211
## 6 Alabama W 5
## 7 Albany PAKERANK 147
## 8 Albany W 0
## 9 American PAKERANK 160
## 10 American W 0
## # ℹ 462 more rows
data_long %>%
pivot_wider(names_from = TEAM,
values_from = Rank_Wins)
## # A tibble: 2 × 237
## Name `Abilene Christian` Akron Alabama Albany American Arizona `Arizona St.`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 PAKER… 45 179 211 147 160 206 209
## 2 W 1 0 5 0 0 17 1
## # ℹ 229 more variables: Arkansas <dbl>, `Arkansas Pine Bluff` <dbl>,
## # Auburn <dbl>, `Austin Peay` <dbl>, Baylor <dbl>, Belmont <dbl>,
## # Binghamton <dbl>, `Boise St.` <dbl>, `Boston College` <dbl>,
## # `Boston University` <dbl>, Bradley <dbl>, Bucknell <dbl>, Buffalo <dbl>,
## # Butler <dbl>, BYU <dbl>, `Cal Poly` <dbl>, `Cal St. Bakersfield` <dbl>,
## # `Cal St. Fullerton` <dbl>, `Cal St. Northridge` <dbl>, California <dbl>,
## # Chattanooga <dbl>, Cincinnati <dbl>, Clemson <dbl>, …
data_long
## # A tibble: 472 × 3
## TEAM Name Rank_Wins
## <chr> <chr> <dbl>
## 1 Abilene Christian PAKERANK 45
## 2 Abilene Christian W 1
## 3 Akron PAKERANK 179
## 4 Akron W 0
## 5 Alabama PAKERANK 211
## 6 Alabama W 5
## 7 Albany PAKERANK 147
## 8 Albany W 0
## 9 American PAKERANK 160
## 10 American W 0
## # ℹ 462 more rows
data_long_sep <- data_long %>%
separate(col = Rank_Wins, into = c("PAKERANK", "W"))
data_long_sep
## # A tibble: 472 × 4
## TEAM Name PAKERANK W
## <chr> <chr> <chr> <chr>
## 1 Abilene Christian PAKERANK 45 <NA>
## 2 Abilene Christian W 1 <NA>
## 3 Akron PAKERANK 179 <NA>
## 4 Akron W 0 <NA>
## 5 Alabama PAKERANK 211 <NA>
## 6 Alabama W 5 <NA>
## 7 Albany PAKERANK 147 <NA>
## 8 Albany W 0 <NA>
## 9 American PAKERANK 160 <NA>
## 10 American W 0 <NA>
## # ℹ 462 more rows
data_long_sep %>%
unite(col = "W", c(TEAM,PAKERANK), sep = "/", )
## # A tibble: 472 × 2
## W Name
## <chr> <chr>
## 1 Abilene Christian/45 PAKERANK
## 2 Abilene Christian/1 W
## 3 Akron/179 PAKERANK
## 4 Akron/0 W
## 5 Alabama/211 PAKERANK
## 6 Alabama/5 W
## 7 Albany/147 PAKERANK
## 8 Albany/0 W
## 9 American/160 PAKERANK
## 10 American/0 W
## # ℹ 462 more rows
data_small %>%
pivot_wider(names_from = TEAM, values_from = PAKERANK)
## # A tibble: 31 × 237
## W `Abilene Christian` Akron Alabama Albany American Arizona `Arizona St.`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 45 NA NA NA NA NA 209
## 2 0 NA 179 NA 147 160 NA NA
## 3 5 NA NA 211 NA NA NA NA
## 4 17 NA NA NA NA NA 206 NA
## 5 11 NA NA NA NA NA NA NA
## 6 7 NA NA NA NA NA NA NA
## 7 19 NA NA NA NA NA NA NA
## 8 2 NA NA NA NA NA NA NA
## 9 3 NA NA NA NA NA NA NA
## 10 6 NA NA NA NA NA NA NA
## # ℹ 21 more rows
## # ℹ 229 more variables: Arkansas <dbl>, `Arkansas Pine Bluff` <dbl>,
## # Auburn <dbl>, `Austin Peay` <dbl>, Baylor <dbl>, Belmont <dbl>,
## # Binghamton <dbl>, `Boise St.` <dbl>, `Boston College` <dbl>,
## # `Boston University` <dbl>, Bradley <dbl>, Bucknell <dbl>, Buffalo <dbl>,
## # Butler <dbl>, BYU <dbl>, `Cal Poly` <dbl>, `Cal St. Bakersfield` <dbl>,
## # `Cal St. Fullerton` <dbl>, `Cal St. Northridge` <dbl>, California <dbl>, …
data_small %>%
pivot_wider(names_from = TEAM, values_from = W)
## # A tibble: 75 × 237
## PAKERANK `Abilene Christian` Akron Alabama Albany American Arizona
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 45 1 NA NA NA NA NA
## 2 179 NA 0 NA NA NA NA
## 3 211 NA NA 5 NA NA NA
## 4 147 NA NA NA 0 NA NA
## 5 160 NA NA NA NA 0 NA
## 6 206 NA NA NA NA NA 17
## 7 209 NA NA NA NA NA NA
## 8 11 NA NA NA NA NA NA
## 9 76 NA NA NA NA NA NA
## 10 53 NA NA NA NA NA NA
## # ℹ 65 more rows
## # ℹ 230 more variables: `Arizona St.` <dbl>, Arkansas <dbl>,
## # `Arkansas Pine Bluff` <dbl>, Auburn <dbl>, `Austin Peay` <dbl>,
## # Baylor <dbl>, Belmont <dbl>, Binghamton <dbl>, `Boise St.` <dbl>,
## # `Boston College` <dbl>, `Boston University` <dbl>, Bradley <dbl>,
## # Bucknell <dbl>, Buffalo <dbl>, Butler <dbl>, BYU <dbl>, `Cal Poly` <dbl>,
## # `Cal St. Bakersfield` <dbl>, `Cal St. Fullerton` <dbl>, …
data_small %>%
complete(TEAM, PAKERANK)
## # A tibble: 17,700 × 3
## TEAM PAKERANK W
## <chr> <dbl> <dbl>
## 1 Abilene Christian 1 NA
## 2 Abilene Christian 2 NA
## 3 Abilene Christian 3 NA
## 4 Abilene Christian 4 NA
## 5 Abilene Christian 6 NA
## 6 Abilene Christian 7 NA
## 7 Abilene Christian 8 NA
## 8 Abilene Christian 9 NA
## 9 Abilene Christian 10 NA
## 10 Abilene Christian 11 NA
## # ℹ 17,690 more rows