Modelos

Definimos variables:

library(haven)
library(broom)
## Warning: package 'broom' was built under R version 4.4.1
library(dplyr)
## 
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.4.1
## Warning: package 'tidyr' was built under R version 4.4.1
## Warning: package 'lubridate' was built under R version 4.4.1
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ readr     2.1.5
## ✔ ggplot2   3.5.1     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(knitr)
## Warning: package 'knitr' was built under R version 4.4.1
BDD_Sensgenpol <- read_sav("C:/Users/alvar/OneDrive/Escritorio/BDD Sensgenpol.sav")
myvars <- c("VOX", "PP", "Modern_Sexism", "Populism", "P6_4", "Insatisfacción_afectivo_sexual", "Insatisfacción_economica", "SEXO", "Pareja2", "IDEOLOGIA", "Nativismo", "EDAD", "FORMACIÓN_desagregado", "P27B_1", "P27B_2")
data <- as.data.frame(BDD_Sensgenpol[,myvars])
data$SEXO <- factor(data$SEXO,
                     levels = 1:2,
                     labels= c("Man", "Woman"))
data$Pareja2 <- factor(data$Pareja2,
                        levels = 1:4,
                        labels = c("Has partner", "Don't like or doesn't care", "Would like to have partner", "Would like to have partner and it's important"))
data$Porn_Consumption <- data$P6_4
data$Nivel_educativo <- data$FORMACIÓN_desagregado
data$Masculine_traits <- data$P27B_1
data$Feminine_traits <- data$P27B_2
summary(data)
##       VOX               PP         Modern_Sexism      Populism    
##  Min.   : 0.000   Min.   : 0.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.: 0.000   1st Qu.: 0.000   1st Qu.:2.600   1st Qu.:3.400  
##  Median : 0.000   Median : 1.000   Median :3.600   Median :4.000  
##  Mean   : 1.841   Mean   : 2.784   Mean   :3.553   Mean   :3.958  
##  3rd Qu.: 3.000   3rd Qu.: 5.000   3rd Qu.:4.400   3rd Qu.:4.400  
##  Max.   :10.000   Max.   :10.000   Max.   :7.000   Max.   :5.000  
##  NA's   :78       NA's   :117      NA's   :41      NA's   :44     
##       P6_4       Insatisfacción_afectivo_sexual Insatisfacción_economica
##  Min.   :1.000   Min.   : 0.000                 Min.   : 0.00           
##  1st Qu.:1.000   1st Qu.: 1.000                 1st Qu.: 3.00           
##  Median :1.000   Median : 3.000                 Median : 4.00           
##  Mean   :1.658   Mean   : 3.019                 Mean   : 4.45           
##  3rd Qu.:2.000   3rd Qu.: 5.000                 3rd Qu.: 6.00           
##  Max.   :5.000   Max.   :10.000                 Max.   :10.00           
##  NA's   :31      NA's   :81                     NA's   :65              
##     SEXO                                              Pareja2   
##  Man  :557   Has partner                                  :705  
##  Woman:543   Don't like or doesn't care                   :128  
##              Would like to have partner                   :138  
##              Would like to have partner and it's important: 74  
##              NA's                                         : 55  
##                                                                 
##                                                                 
##    IDEOLOGIA        Nativismo          EDAD       FORMACIÓN_desagregado
##  Min.   : 0.000   Min.   : 0.00   Min.   :18.00   Min.   :1.000        
##  1st Qu.: 2.000   1st Qu.: 3.00   1st Qu.:24.00   1st Qu.:2.000        
##  Median : 5.000   Median : 5.00   Median :33.00   Median :4.000        
##  Mean   : 4.238   Mean   : 5.18   Mean   :32.31   Mean   :4.032        
##  3rd Qu.: 6.000   3rd Qu.: 7.00   3rd Qu.:40.00   3rd Qu.:6.000        
##  Max.   :10.000   Max.   :10.00   Max.   :44.00   Max.   :6.000        
##  NA's   :120      NA's   :53                                           
##      P27B_1           P27B_2       Porn_Consumption Nivel_educativo
##  Min.   :  0.00   Min.   :  0.00   Min.   :1.000    Min.   :1.000  
##  1st Qu.: 20.00   1st Qu.: 13.00   1st Qu.:1.000    1st Qu.:2.000  
##  Median : 65.00   Median : 50.00   Median :1.000    Median :4.000  
##  Mean   : 56.18   Mean   : 49.88   Mean   :1.658    Mean   :4.032  
##  3rd Qu.: 90.00   3rd Qu.: 88.00   3rd Qu.:2.000    3rd Qu.:6.000  
##  Max.   :100.00   Max.   :100.00   Max.   :5.000    Max.   :6.000  
##  NA's   :151      NA's   :123      NA's   :31                      
##  Masculine_traits Feminine_traits 
##  Min.   :  0.00   Min.   :  0.00  
##  1st Qu.: 20.00   1st Qu.: 13.00  
##  Median : 65.00   Median : 50.00  
##  Mean   : 56.18   Mean   : 49.88  
##  3rd Qu.: 90.00   3rd Qu.: 88.00  
##  Max.   :100.00   Max.   :100.00  
##  NA's   :151      NA's   :123

Dividimos la muestra en hombres y mujeres

Modelamos PTVs con Modern Sexism como VIs

#PTV VOX
model.VOX <- lm(VOX ~ Modern_Sexism + Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)

tidy(model.VOX) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) -2.4029256 0.0004441
Modern_Sexism 0.3702722 0.0000004
Populism 0.0902617 0.4793358
Nativismo 0.0952787 0.0022059
SEXOWoman 0.0980691 0.5770040
Insatisfacción_economica -0.0178958 0.5903931
IDEOLOGIA 0.5791755 0.0000000
EDAD -0.0030419 0.7763816
Nivel_educativo -0.0339008 0.5087979
#PTV VOX HOMBRES
model.VOX.hombres <- lm(VOX ~ Modern_Sexism + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)

tidy(model.VOX.hombres) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) -3.3326797 0.0004612
Modern_Sexism 0.3408649 0.0004825
Populism 0.1643757 0.3484208
Nativismo 0.0757581 0.0866055
Insatisfacción_economica 0.0405624 0.3985795
IDEOLOGIA 0.6069630 0.0000000
EDAD 0.0104183 0.4824045
Nivel_educativo -0.0218646 0.7547407
#PTV VOX MUJERES
model.VOX.mujeres <- lm(VOX ~ Modern_Sexism + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)

tidy(model.VOX.mujeres) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) -1.4592628 0.1357072
Modern_Sexism 0.4075520 0.0004399
Populism 0.0539712 0.7773592
Nativismo 0.1124353 0.0106091
Insatisfacción_economica -0.0722774 0.1220975
IDEOLOGIA 0.5592419 0.0000000
EDAD -0.0201621 0.1998947
Nivel_educativo -0.0406314 0.5936938
#PTV PP
model.PP <- lm(PP ~ Modern_Sexism + Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)

tidy(model.PP) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) 0.6990373 0.3408987
Modern_Sexism 0.2430672 0.0023848
Populism -0.2045478 0.1381360
Nativismo -0.0563169 0.0943179
SEXOWoman 0.5327372 0.0054694
Insatisfacción_economica -0.0727427 0.0443147
IDEOLOGIA 0.6497345 0.0000000
EDAD -0.0077301 0.5041417
Nivel_educativo -0.0065993 0.9051744
#PTV PP HOMBRES
model.PP.hombres <- lm(PP ~ Modern_Sexism + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)

tidy(model.PP.hombres) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) 0.9684912 0.3307229
Modern_Sexism 0.2849248 0.0073354
Populism -0.1537336 0.4078714
Nativismo -0.1315528 0.0054432
Insatisfacción_economica -0.0892352 0.0847017
IDEOLOGIA 0.6150673 0.0000000
EDAD 0.0011311 0.9425160
Nivel_educativo -0.0891455 0.2312582
#PTV PP MUJERES
model.PP.mujeres <- lm(PP ~ Modern_Sexism + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)

tidy(model.PP.mujeres) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) 0.8222049 0.4425941
Modern_Sexism 0.2526751 0.0460459
Populism -0.2837909 0.1777238
Nativismo 0.0285145 0.5522179
Insatisfacción_economica -0.0524586 0.3064016
IDEOLOGIA 0.6698368 0.0000000
EDAD -0.0213380 0.2173505
Nivel_educativo 0.1094062 0.1882175

Modelamos con Insatisfacción afectivo sexual y luego como deseo de tener pareja como VIs:

Insatisfaccion.VOX <- lm(VOX ~ Insatisfacción_afectivo_sexual + Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)

tidy(Insatisfaccion.VOX) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) -1.5580408 0.0233865
Insatisfacción_afectivo_sexual 0.0139717 0.6778904
Populism 0.1940486 0.1331567
Nativismo 0.1277102 0.0000410
SEXOWoman -0.2051656 0.2293703
Insatisfacción_economica -0.0480831 0.1772714
IDEOLOGIA 0.6725719 0.0000000
EDAD -0.0089873 0.4088667
Nivel_educativo -0.0530704 0.3084777
Insatisfaccion.VOX2 <- lm(VOX ~ Pareja2 + Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)

tidy(Insatisfaccion.VOX2) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) -1.7001197 0.0152310
Pareja2Don’t like or doesn’t care -0.2771355 0.3060032
Pareja2Would like to have partner -0.2708249 0.3087831
Pareja2Would like to have partner and it’s important 0.5633243 0.0993689
Populism 0.1801965 0.1638172
Nativismo 0.1341462 0.0000172
SEXOWoman -0.1464643 0.3952129
Insatisfacción_economica -0.0375604 0.2744267
IDEOLOGIA 0.6606971 0.0000000
EDAD -0.0035093 0.7558564
Nivel_educativo -0.0482111 0.3557151
Insatisfaccion.VOX.hombres <- lm(VOX ~ Insatisfacción_afectivo_sexual + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)

tidy(Insatisfaccion.VOX.hombres) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) -2.9344475 0.0023207
Insatisfacción_afectivo_sexual 0.0327915 0.4862709
Populism 0.3335660 0.0562280
Nativismo 0.1150286 0.0086206
Insatisfacción_economica 0.0161005 0.7571804
IDEOLOGIA 0.7154129 0.0000000
EDAD -0.0013451 0.9280058
Nivel_educativo -0.0214758 0.7610278
Insatisfaccion.VOX.hombres2 <- lm(VOX ~ Pareja2 + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)

tidy(Insatisfaccion.VOX.hombres2) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) -2.8845378 0.0030824
Pareja2Don’t like or doesn’t care -0.5784705 0.1263687
Pareja2Would like to have partner -0.2069099 0.5432549
Pareja2Would like to have partner and it’s important 0.9783565 0.0395587
Populism 0.3033087 0.0820746
Nativismo 0.1175566 0.0073460
Insatisfacción_economica 0.0301236 0.5429422
IDEOLOGIA 0.6819679 0.0000000
EDAD 0.0070103 0.6485258
Nivel_educativo -0.0334688 0.6362013
Insatisfaccion.VOX.mujeres <- lm(VOX ~ Insatisfacción_afectivo_sexual +  Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)

tidy(Insatisfaccion.VOX.mujeres) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) -0.3736793 0.7038591
Insatisfacción_afectivo_sexual -0.0163188 0.7384953
Populism 0.0697611 0.7215576
Nativismo 0.1304535 0.0033740
Insatisfacción_economica -0.1129197 0.0219196
IDEOLOGIA 0.6418706 0.0000000
EDAD -0.0170532 0.2867465
Nivel_educativo -0.0872062 0.2616139
Insatisfaccion.VOX.mujeres2 <- lm(VOX ~ Pareja2 +  Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)

tidy(Insatisfaccion.VOX.mujeres2) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) -0.7156591 0.4780242
Pareja2Don’t like or doesn’t care 0.0437156 0.9107445
Pareja2Would like to have partner -0.3667074 0.3961721
Pareja2Would like to have partner and it’s important -0.0167589 0.9730366
Populism 0.0834128 0.6722880
Nativismo 0.1440320 0.0013650
Insatisfacción_economica -0.1097679 0.0233203
IDEOLOGIA 0.6504955 0.0000000
EDAD -0.0142882 0.3934337
Nivel_educativo -0.0654618 0.3999399
Insatisfaccion.PP <- lm(PP ~ Insatisfacción_afectivo_sexual +  Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)

tidy(Insatisfaccion.PP) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) 1.3070785 0.0746704
Insatisfacción_afectivo_sexual 0.0291378 0.4213823
Populism -0.1823699 0.1887668
Nativismo -0.0261021 0.4336077
SEXOWoman 0.3240758 0.0779091
Insatisfacción_economica -0.1005802 0.0095304
IDEOLOGIA 0.7044282 0.0000000
EDAD -0.0093162 0.4259041
Nivel_educativo -0.0141626 0.8000257
Insatisfaccion.PP2 <- lm(PP ~ Pareja2 +  Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)

tidy(Insatisfaccion.PP2) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) 1.5447472 0.0397877
Pareja2Don’t like or doesn’t care -0.0458287 0.8751776
Pareja2Would like to have partner -0.3149741 0.2705687
Pareja2Would like to have partner and it’s important -0.0824173 0.8225437
Populism -0.2214812 0.1121544
Nativismo -0.0312662 0.3500790
SEXOWoman 0.2988100 0.1076770
Insatisfacción_economica -0.0710119 0.0567148
IDEOLOGIA 0.7063317 0.0000000
EDAD -0.0109529 0.3689271
Nivel_educativo -0.0103546 0.8536532
Insatisfaccion.PP.hombres <- lm(PP ~ Insatisfacción_afectivo_sexual + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)

tidy(Insatisfaccion.PP.hombres) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) 1.4703754 0.1444050
Insatisfacción_afectivo_sexual -0.0196541 0.6947457
Populism -0.1105729 0.5498279
Nativismo -0.0909719 0.0511484
Insatisfacción_economica -0.0778604 0.1681362
IDEOLOGIA 0.6940179 0.0000000
EDAD -0.0022094 0.8886404
Nivel_educativo -0.0757809 0.3133941
Insatisfaccion.PP.hombres2 <- lm(PP ~ Pareja2 + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)

tidy(Insatisfaccion.PP.hombres2) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) 1.7805488 0.0861232
Pareja2Don’t like or doesn’t care -0.2286830 0.5682872
Pareja2Would like to have partner -0.2252600 0.5377543
Pareja2Would like to have partner and it’s important -0.4655752 0.3647576
Populism -0.1251227 0.5031364
Nativismo -0.1006512 0.0332839
Insatisfacción_economica -0.0708383 0.1878983
IDEOLOGIA 0.6899604 0.0000000
EDAD -0.0073616 0.6566831
Nivel_educativo -0.0801600 0.2928652
Insatisfaccion.PP.mujeres <- lm(PP ~ Insatisfacción_afectivo_sexual + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)

tidy(Insatisfaccion.PP.mujeres) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) 1.3848073 0.1963785
Insatisfacción_afectivo_sexual 0.0837155 0.1175854
Populism -0.2675448 0.2115189
Nativismo 0.0504902 0.2931565
Insatisfacción_economica -0.1051103 0.0507686
IDEOLOGIA 0.7132091 0.0000000
EDAD -0.0201829 0.2481429
Nivel_educativo 0.0670114 0.4251960
Insatisfaccion.PP.mujeres2 <- lm(PP ~ Pareja2 + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)

tidy(Insatisfaccion.PP.mujeres2) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) 1.5923465 0.1451536
Pareja2Don’t like or doesn’t care 0.0824743 0.8472915
Pareja2Would like to have partner -0.5108860 0.2718196
Pareja2Would like to have partner and it’s important 0.3044394 0.5648510
Populism -0.3363462 0.1169520
Nativismo 0.0444181 0.3558432
Insatisfacción_economica -0.0582660 0.2653519
IDEOLOGIA 0.7250085 0.0000000
EDAD -0.0196696 0.2784464
Nivel_educativo 0.0878874 0.2928241

Modelamos con Frequency Porn Consumption como VI:

PORN.VOX <- lm(VOX ~ Porn_Consumption + Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)

tidy(PORN.VOX) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) -2.6887867 0.0001535
Porn_Consumption 0.4024393 0.0000076
Populism 0.1583115 0.2122372
Nativismo 0.1456368 0.0000019
SEXOWoman 0.0415043 0.8145983
Insatisfacción_economica -0.0263197 0.4280564
IDEOLOGIA 0.6568372 0.0000000
EDAD 0.0006116 0.9546912
Nivel_educativo -0.0355156 0.4885683
PORN.VOX.hombres <- lm(VOX ~ Porn_Consumption + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)

tidy(PORN.VOX.hombres) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) -3.6715237 0.0002159
Porn_Consumption 0.3649783 0.0012370
Populism 0.2467009 0.1552316
Nativismo 0.1328346 0.0022584
Insatisfacción_economica 0.0409743 0.3961629
IDEOLOGIA 0.6925883 0.0000000
EDAD 0.0103093 0.4911246
Nivel_educativo -0.0299779 0.6693633
PORN.VOX.mujeres <- lm(VOX ~ Porn_Consumption + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)

tidy(PORN.VOX.mujeres) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) -1.8427944 0.0671242
Porn_Consumption 0.4783318 0.0018242
Populism 0.1076855 0.5712603
Nativismo 0.1524371 0.0004348
Insatisfacción_economica -0.0874509 0.0580897
IDEOLOGIA 0.6298075 0.0000000
EDAD -0.0106087 0.4961482
Nivel_educativo -0.0345613 0.6483998
PORN.PP <- lm(PP ~ Porn_Consumption + Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)

tidy(PORN.PP) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) 0.8070177 0.2889707
Porn_Consumption 0.1814591 0.0620095
Populism -0.1653696 0.2290947
Nativismo -0.0226455 0.4926638
SEXOWoman 0.4579934 0.0175101
Insatisfacción_economica -0.0780923 0.0313553
IDEOLOGIA 0.6994064 0.0000000
EDAD -0.0071428 0.5401529
Nivel_educativo -0.0172787 0.7556120
PORN.PP.hombres <- lm(PP ~ Porn_Consumption + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)

tidy(PORN.PP.hombres) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) 1.1083918 0.2854297
Porn_Consumption 0.1834733 0.1246518
Populism -0.0937001 0.6111159
Nativismo -0.0918518 0.0481955
Insatisfacción_economica -0.0885012 0.0894538
IDEOLOGIA 0.6821539 0.0000000
EDAD -0.0009818 0.9506678
Nivel_educativo -0.0991487 0.1853717
PORN.PP.mujeres <- lm(PP ~ Porn_Consumption + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)

tidy(PORN.PP.mujeres) %>%
  dplyr::select(term, estimate, p.value) %>%
  kable()
term estimate p.value
(Intercept) 0.9062704 0.4121177
Porn_Consumption 0.1786296 0.2960609
Populism -0.2543135 0.2274730
Nativismo 0.0589971 0.2129267
Insatisfacción_economica -0.0621895 0.2231486
IDEOLOGIA 0.7164673 0.0000000
EDAD -0.0178103 0.3019534
Nivel_educativo 0.0933001 0.2626444