Modelos
Definimos variables:
library(haven)
library(broom)
## Warning: package 'broom' was built under R version 4.4.1
library(dplyr)
##
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.4.1
## Warning: package 'tidyr' was built under R version 4.4.1
## Warning: package 'lubridate' was built under R version 4.4.1
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ readr 2.1.5
## ✔ ggplot2 3.5.1 ✔ stringr 1.5.1
## ✔ lubridate 1.9.3 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(knitr)
## Warning: package 'knitr' was built under R version 4.4.1
BDD_Sensgenpol <- read_sav("C:/Users/alvar/OneDrive/Escritorio/BDD Sensgenpol.sav")
myvars <- c("VOX", "PP", "Modern_Sexism", "Populism", "P6_4", "Insatisfacción_afectivo_sexual", "Insatisfacción_economica", "SEXO", "Pareja2", "IDEOLOGIA", "Nativismo", "EDAD", "FORMACIÓN_desagregado", "P27B_1", "P27B_2")
data <- as.data.frame(BDD_Sensgenpol[,myvars])
data$SEXO <- factor(data$SEXO,
levels = 1:2,
labels= c("Man", "Woman"))
data$Pareja2 <- factor(data$Pareja2,
levels = 1:4,
labels = c("Has partner", "Don't like or doesn't care", "Would like to have partner", "Would like to have partner and it's important"))
data$Porn_Consumption <- data$P6_4
data$Nivel_educativo <- data$FORMACIÓN_desagregado
data$Masculine_traits <- data$P27B_1
data$Feminine_traits <- data$P27B_2
summary(data)
## VOX PP Modern_Sexism Populism
## Min. : 0.000 Min. : 0.000 Min. :1.000 Min. :1.000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.:2.600 1st Qu.:3.400
## Median : 0.000 Median : 1.000 Median :3.600 Median :4.000
## Mean : 1.841 Mean : 2.784 Mean :3.553 Mean :3.958
## 3rd Qu.: 3.000 3rd Qu.: 5.000 3rd Qu.:4.400 3rd Qu.:4.400
## Max. :10.000 Max. :10.000 Max. :7.000 Max. :5.000
## NA's :78 NA's :117 NA's :41 NA's :44
## P6_4 Insatisfacción_afectivo_sexual Insatisfacción_economica
## Min. :1.000 Min. : 0.000 Min. : 0.00
## 1st Qu.:1.000 1st Qu.: 1.000 1st Qu.: 3.00
## Median :1.000 Median : 3.000 Median : 4.00
## Mean :1.658 Mean : 3.019 Mean : 4.45
## 3rd Qu.:2.000 3rd Qu.: 5.000 3rd Qu.: 6.00
## Max. :5.000 Max. :10.000 Max. :10.00
## NA's :31 NA's :81 NA's :65
## SEXO Pareja2
## Man :557 Has partner :705
## Woman:543 Don't like or doesn't care :128
## Would like to have partner :138
## Would like to have partner and it's important: 74
## NA's : 55
##
##
## IDEOLOGIA Nativismo EDAD FORMACIÓN_desagregado
## Min. : 0.000 Min. : 0.00 Min. :18.00 Min. :1.000
## 1st Qu.: 2.000 1st Qu.: 3.00 1st Qu.:24.00 1st Qu.:2.000
## Median : 5.000 Median : 5.00 Median :33.00 Median :4.000
## Mean : 4.238 Mean : 5.18 Mean :32.31 Mean :4.032
## 3rd Qu.: 6.000 3rd Qu.: 7.00 3rd Qu.:40.00 3rd Qu.:6.000
## Max. :10.000 Max. :10.00 Max. :44.00 Max. :6.000
## NA's :120 NA's :53
## P27B_1 P27B_2 Porn_Consumption Nivel_educativo
## Min. : 0.00 Min. : 0.00 Min. :1.000 Min. :1.000
## 1st Qu.: 20.00 1st Qu.: 13.00 1st Qu.:1.000 1st Qu.:2.000
## Median : 65.00 Median : 50.00 Median :1.000 Median :4.000
## Mean : 56.18 Mean : 49.88 Mean :1.658 Mean :4.032
## 3rd Qu.: 90.00 3rd Qu.: 88.00 3rd Qu.:2.000 3rd Qu.:6.000
## Max. :100.00 Max. :100.00 Max. :5.000 Max. :6.000
## NA's :151 NA's :123 NA's :31
## Masculine_traits Feminine_traits
## Min. : 0.00 Min. : 0.00
## 1st Qu.: 20.00 1st Qu.: 13.00
## Median : 65.00 Median : 50.00
## Mean : 56.18 Mean : 49.88
## 3rd Qu.: 90.00 3rd Qu.: 88.00
## Max. :100.00 Max. :100.00
## NA's :151 NA's :123
Dividimos la muestra en hombres y mujeres
Modelamos PTVs con Modern Sexism como VIs
#PTV VOX
model.VOX <- lm(VOX ~ Modern_Sexism + Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)
tidy(model.VOX) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
-2.4029256 |
0.0004441 |
| Modern_Sexism |
0.3702722 |
0.0000004 |
| Populism |
0.0902617 |
0.4793358 |
| Nativismo |
0.0952787 |
0.0022059 |
| SEXOWoman |
0.0980691 |
0.5770040 |
| Insatisfacción_economica |
-0.0178958 |
0.5903931 |
| IDEOLOGIA |
0.5791755 |
0.0000000 |
| EDAD |
-0.0030419 |
0.7763816 |
| Nivel_educativo |
-0.0339008 |
0.5087979 |
#PTV VOX HOMBRES
model.VOX.hombres <- lm(VOX ~ Modern_Sexism + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)
tidy(model.VOX.hombres) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
-3.3326797 |
0.0004612 |
| Modern_Sexism |
0.3408649 |
0.0004825 |
| Populism |
0.1643757 |
0.3484208 |
| Nativismo |
0.0757581 |
0.0866055 |
| Insatisfacción_economica |
0.0405624 |
0.3985795 |
| IDEOLOGIA |
0.6069630 |
0.0000000 |
| EDAD |
0.0104183 |
0.4824045 |
| Nivel_educativo |
-0.0218646 |
0.7547407 |
#PTV VOX MUJERES
model.VOX.mujeres <- lm(VOX ~ Modern_Sexism + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)
tidy(model.VOX.mujeres) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
-1.4592628 |
0.1357072 |
| Modern_Sexism |
0.4075520 |
0.0004399 |
| Populism |
0.0539712 |
0.7773592 |
| Nativismo |
0.1124353 |
0.0106091 |
| Insatisfacción_economica |
-0.0722774 |
0.1220975 |
| IDEOLOGIA |
0.5592419 |
0.0000000 |
| EDAD |
-0.0201621 |
0.1998947 |
| Nivel_educativo |
-0.0406314 |
0.5936938 |
#PTV PP
model.PP <- lm(PP ~ Modern_Sexism + Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)
tidy(model.PP) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
0.6990373 |
0.3408987 |
| Modern_Sexism |
0.2430672 |
0.0023848 |
| Populism |
-0.2045478 |
0.1381360 |
| Nativismo |
-0.0563169 |
0.0943179 |
| SEXOWoman |
0.5327372 |
0.0054694 |
| Insatisfacción_economica |
-0.0727427 |
0.0443147 |
| IDEOLOGIA |
0.6497345 |
0.0000000 |
| EDAD |
-0.0077301 |
0.5041417 |
| Nivel_educativo |
-0.0065993 |
0.9051744 |
#PTV PP HOMBRES
model.PP.hombres <- lm(PP ~ Modern_Sexism + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)
tidy(model.PP.hombres) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
0.9684912 |
0.3307229 |
| Modern_Sexism |
0.2849248 |
0.0073354 |
| Populism |
-0.1537336 |
0.4078714 |
| Nativismo |
-0.1315528 |
0.0054432 |
| Insatisfacción_economica |
-0.0892352 |
0.0847017 |
| IDEOLOGIA |
0.6150673 |
0.0000000 |
| EDAD |
0.0011311 |
0.9425160 |
| Nivel_educativo |
-0.0891455 |
0.2312582 |
#PTV PP MUJERES
model.PP.mujeres <- lm(PP ~ Modern_Sexism + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)
tidy(model.PP.mujeres) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
0.8222049 |
0.4425941 |
| Modern_Sexism |
0.2526751 |
0.0460459 |
| Populism |
-0.2837909 |
0.1777238 |
| Nativismo |
0.0285145 |
0.5522179 |
| Insatisfacción_economica |
-0.0524586 |
0.3064016 |
| IDEOLOGIA |
0.6698368 |
0.0000000 |
| EDAD |
-0.0213380 |
0.2173505 |
| Nivel_educativo |
0.1094062 |
0.1882175 |
Modelamos con Insatisfacción afectivo sexual y luego como deseo de
tener pareja como VIs:
Insatisfaccion.VOX <- lm(VOX ~ Insatisfacción_afectivo_sexual + Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)
tidy(Insatisfaccion.VOX) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
-1.5580408 |
0.0233865 |
| Insatisfacción_afectivo_sexual |
0.0139717 |
0.6778904 |
| Populism |
0.1940486 |
0.1331567 |
| Nativismo |
0.1277102 |
0.0000410 |
| SEXOWoman |
-0.2051656 |
0.2293703 |
| Insatisfacción_economica |
-0.0480831 |
0.1772714 |
| IDEOLOGIA |
0.6725719 |
0.0000000 |
| EDAD |
-0.0089873 |
0.4088667 |
| Nivel_educativo |
-0.0530704 |
0.3084777 |
Insatisfaccion.VOX2 <- lm(VOX ~ Pareja2 + Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)
tidy(Insatisfaccion.VOX2) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
-1.7001197 |
0.0152310 |
| Pareja2Don’t like or doesn’t care |
-0.2771355 |
0.3060032 |
| Pareja2Would like to have partner |
-0.2708249 |
0.3087831 |
| Pareja2Would like to have partner and it’s
important |
0.5633243 |
0.0993689 |
| Populism |
0.1801965 |
0.1638172 |
| Nativismo |
0.1341462 |
0.0000172 |
| SEXOWoman |
-0.1464643 |
0.3952129 |
| Insatisfacción_economica |
-0.0375604 |
0.2744267 |
| IDEOLOGIA |
0.6606971 |
0.0000000 |
| EDAD |
-0.0035093 |
0.7558564 |
| Nivel_educativo |
-0.0482111 |
0.3557151 |
Insatisfaccion.VOX.hombres <- lm(VOX ~ Insatisfacción_afectivo_sexual + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)
tidy(Insatisfaccion.VOX.hombres) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
-2.9344475 |
0.0023207 |
| Insatisfacción_afectivo_sexual |
0.0327915 |
0.4862709 |
| Populism |
0.3335660 |
0.0562280 |
| Nativismo |
0.1150286 |
0.0086206 |
| Insatisfacción_economica |
0.0161005 |
0.7571804 |
| IDEOLOGIA |
0.7154129 |
0.0000000 |
| EDAD |
-0.0013451 |
0.9280058 |
| Nivel_educativo |
-0.0214758 |
0.7610278 |
Insatisfaccion.VOX.hombres2 <- lm(VOX ~ Pareja2 + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)
tidy(Insatisfaccion.VOX.hombres2) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
-2.8845378 |
0.0030824 |
| Pareja2Don’t like or doesn’t care |
-0.5784705 |
0.1263687 |
| Pareja2Would like to have partner |
-0.2069099 |
0.5432549 |
| Pareja2Would like to have partner and it’s
important |
0.9783565 |
0.0395587 |
| Populism |
0.3033087 |
0.0820746 |
| Nativismo |
0.1175566 |
0.0073460 |
| Insatisfacción_economica |
0.0301236 |
0.5429422 |
| IDEOLOGIA |
0.6819679 |
0.0000000 |
| EDAD |
0.0070103 |
0.6485258 |
| Nivel_educativo |
-0.0334688 |
0.6362013 |
Insatisfaccion.VOX.mujeres <- lm(VOX ~ Insatisfacción_afectivo_sexual + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)
tidy(Insatisfaccion.VOX.mujeres) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
-0.3736793 |
0.7038591 |
| Insatisfacción_afectivo_sexual |
-0.0163188 |
0.7384953 |
| Populism |
0.0697611 |
0.7215576 |
| Nativismo |
0.1304535 |
0.0033740 |
| Insatisfacción_economica |
-0.1129197 |
0.0219196 |
| IDEOLOGIA |
0.6418706 |
0.0000000 |
| EDAD |
-0.0170532 |
0.2867465 |
| Nivel_educativo |
-0.0872062 |
0.2616139 |
Insatisfaccion.VOX.mujeres2 <- lm(VOX ~ Pareja2 + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)
tidy(Insatisfaccion.VOX.mujeres2) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
-0.7156591 |
0.4780242 |
| Pareja2Don’t like or doesn’t care |
0.0437156 |
0.9107445 |
| Pareja2Would like to have partner |
-0.3667074 |
0.3961721 |
| Pareja2Would like to have partner and it’s
important |
-0.0167589 |
0.9730366 |
| Populism |
0.0834128 |
0.6722880 |
| Nativismo |
0.1440320 |
0.0013650 |
| Insatisfacción_economica |
-0.1097679 |
0.0233203 |
| IDEOLOGIA |
0.6504955 |
0.0000000 |
| EDAD |
-0.0142882 |
0.3934337 |
| Nivel_educativo |
-0.0654618 |
0.3999399 |
Insatisfaccion.PP <- lm(PP ~ Insatisfacción_afectivo_sexual + Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)
tidy(Insatisfaccion.PP) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
1.3070785 |
0.0746704 |
| Insatisfacción_afectivo_sexual |
0.0291378 |
0.4213823 |
| Populism |
-0.1823699 |
0.1887668 |
| Nativismo |
-0.0261021 |
0.4336077 |
| SEXOWoman |
0.3240758 |
0.0779091 |
| Insatisfacción_economica |
-0.1005802 |
0.0095304 |
| IDEOLOGIA |
0.7044282 |
0.0000000 |
| EDAD |
-0.0093162 |
0.4259041 |
| Nivel_educativo |
-0.0141626 |
0.8000257 |
Insatisfaccion.PP2 <- lm(PP ~ Pareja2 + Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)
tidy(Insatisfaccion.PP2) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
1.5447472 |
0.0397877 |
| Pareja2Don’t like or doesn’t care |
-0.0458287 |
0.8751776 |
| Pareja2Would like to have partner |
-0.3149741 |
0.2705687 |
| Pareja2Would like to have partner and it’s
important |
-0.0824173 |
0.8225437 |
| Populism |
-0.2214812 |
0.1121544 |
| Nativismo |
-0.0312662 |
0.3500790 |
| SEXOWoman |
0.2988100 |
0.1076770 |
| Insatisfacción_economica |
-0.0710119 |
0.0567148 |
| IDEOLOGIA |
0.7063317 |
0.0000000 |
| EDAD |
-0.0109529 |
0.3689271 |
| Nivel_educativo |
-0.0103546 |
0.8536532 |
Insatisfaccion.PP.hombres <- lm(PP ~ Insatisfacción_afectivo_sexual + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)
tidy(Insatisfaccion.PP.hombres) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
1.4703754 |
0.1444050 |
| Insatisfacción_afectivo_sexual |
-0.0196541 |
0.6947457 |
| Populism |
-0.1105729 |
0.5498279 |
| Nativismo |
-0.0909719 |
0.0511484 |
| Insatisfacción_economica |
-0.0778604 |
0.1681362 |
| IDEOLOGIA |
0.6940179 |
0.0000000 |
| EDAD |
-0.0022094 |
0.8886404 |
| Nivel_educativo |
-0.0757809 |
0.3133941 |
Insatisfaccion.PP.hombres2 <- lm(PP ~ Pareja2 + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)
tidy(Insatisfaccion.PP.hombres2) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
1.7805488 |
0.0861232 |
| Pareja2Don’t like or doesn’t care |
-0.2286830 |
0.5682872 |
| Pareja2Would like to have partner |
-0.2252600 |
0.5377543 |
| Pareja2Would like to have partner and it’s
important |
-0.4655752 |
0.3647576 |
| Populism |
-0.1251227 |
0.5031364 |
| Nativismo |
-0.1006512 |
0.0332839 |
| Insatisfacción_economica |
-0.0708383 |
0.1878983 |
| IDEOLOGIA |
0.6899604 |
0.0000000 |
| EDAD |
-0.0073616 |
0.6566831 |
| Nivel_educativo |
-0.0801600 |
0.2928652 |
Insatisfaccion.PP.mujeres <- lm(PP ~ Insatisfacción_afectivo_sexual + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)
tidy(Insatisfaccion.PP.mujeres) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
1.3848073 |
0.1963785 |
| Insatisfacción_afectivo_sexual |
0.0837155 |
0.1175854 |
| Populism |
-0.2675448 |
0.2115189 |
| Nativismo |
0.0504902 |
0.2931565 |
| Insatisfacción_economica |
-0.1051103 |
0.0507686 |
| IDEOLOGIA |
0.7132091 |
0.0000000 |
| EDAD |
-0.0201829 |
0.2481429 |
| Nivel_educativo |
0.0670114 |
0.4251960 |
Insatisfaccion.PP.mujeres2 <- lm(PP ~ Pareja2 + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)
tidy(Insatisfaccion.PP.mujeres2) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
1.5923465 |
0.1451536 |
| Pareja2Don’t like or doesn’t care |
0.0824743 |
0.8472915 |
| Pareja2Would like to have partner |
-0.5108860 |
0.2718196 |
| Pareja2Would like to have partner and it’s
important |
0.3044394 |
0.5648510 |
| Populism |
-0.3363462 |
0.1169520 |
| Nativismo |
0.0444181 |
0.3558432 |
| Insatisfacción_economica |
-0.0582660 |
0.2653519 |
| IDEOLOGIA |
0.7250085 |
0.0000000 |
| EDAD |
-0.0196696 |
0.2784464 |
| Nivel_educativo |
0.0878874 |
0.2928241 |
Modelamos con Frequency Porn Consumption como VI:
PORN.VOX <- lm(VOX ~ Porn_Consumption + Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)
tidy(PORN.VOX) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
-2.6887867 |
0.0001535 |
| Porn_Consumption |
0.4024393 |
0.0000076 |
| Populism |
0.1583115 |
0.2122372 |
| Nativismo |
0.1456368 |
0.0000019 |
| SEXOWoman |
0.0415043 |
0.8145983 |
| Insatisfacción_economica |
-0.0263197 |
0.4280564 |
| IDEOLOGIA |
0.6568372 |
0.0000000 |
| EDAD |
0.0006116 |
0.9546912 |
| Nivel_educativo |
-0.0355156 |
0.4885683 |
PORN.VOX.hombres <- lm(VOX ~ Porn_Consumption + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)
tidy(PORN.VOX.hombres) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
-3.6715237 |
0.0002159 |
| Porn_Consumption |
0.3649783 |
0.0012370 |
| Populism |
0.2467009 |
0.1552316 |
| Nativismo |
0.1328346 |
0.0022584 |
| Insatisfacción_economica |
0.0409743 |
0.3961629 |
| IDEOLOGIA |
0.6925883 |
0.0000000 |
| EDAD |
0.0103093 |
0.4911246 |
| Nivel_educativo |
-0.0299779 |
0.6693633 |
PORN.VOX.mujeres <- lm(VOX ~ Porn_Consumption + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)
tidy(PORN.VOX.mujeres) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
-1.8427944 |
0.0671242 |
| Porn_Consumption |
0.4783318 |
0.0018242 |
| Populism |
0.1076855 |
0.5712603 |
| Nativismo |
0.1524371 |
0.0004348 |
| Insatisfacción_economica |
-0.0874509 |
0.0580897 |
| IDEOLOGIA |
0.6298075 |
0.0000000 |
| EDAD |
-0.0106087 |
0.4961482 |
| Nivel_educativo |
-0.0345613 |
0.6483998 |
PORN.PP <- lm(PP ~ Porn_Consumption + Populism + Nativismo + SEXO + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data)
tidy(PORN.PP) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
0.8070177 |
0.2889707 |
| Porn_Consumption |
0.1814591 |
0.0620095 |
| Populism |
-0.1653696 |
0.2290947 |
| Nativismo |
-0.0226455 |
0.4926638 |
| SEXOWoman |
0.4579934 |
0.0175101 |
| Insatisfacción_economica |
-0.0780923 |
0.0313553 |
| IDEOLOGIA |
0.6994064 |
0.0000000 |
| EDAD |
-0.0071428 |
0.5401529 |
| Nivel_educativo |
-0.0172787 |
0.7556120 |
PORN.PP.hombres <- lm(PP ~ Porn_Consumption + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.hombres)
tidy(PORN.PP.hombres) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
1.1083918 |
0.2854297 |
| Porn_Consumption |
0.1834733 |
0.1246518 |
| Populism |
-0.0937001 |
0.6111159 |
| Nativismo |
-0.0918518 |
0.0481955 |
| Insatisfacción_economica |
-0.0885012 |
0.0894538 |
| IDEOLOGIA |
0.6821539 |
0.0000000 |
| EDAD |
-0.0009818 |
0.9506678 |
| Nivel_educativo |
-0.0991487 |
0.1853717 |
PORN.PP.mujeres <- lm(PP ~ Porn_Consumption + Populism + Nativismo + Insatisfacción_economica + IDEOLOGIA + EDAD + Nivel_educativo, data = data.mujeres)
tidy(PORN.PP.mujeres) %>%
dplyr::select(term, estimate, p.value) %>%
kable()
| (Intercept) |
0.9062704 |
0.4121177 |
| Porn_Consumption |
0.1786296 |
0.2960609 |
| Populism |
-0.2543135 |
0.2274730 |
| Nativismo |
0.0589971 |
0.2129267 |
| Insatisfacción_economica |
-0.0621895 |
0.2231486 |
| IDEOLOGIA |
0.7164673 |
0.0000000 |
| EDAD |
-0.0178103 |
0.3019534 |
| Nivel_educativo |
0.0933001 |
0.2626444 |