Import data
# excel file
data <- read_excel("data/myData_Shoals.xlsx")
data
## # A tibble: 96,429 × 12
## reported_date_time reported_date_time_utc posted_date city state
## <dttm> <dttm> <dttm> <chr> <chr>
## 1 2022-08-29 02:03:00 2022-08-29 02:03:00 2022-09-09 00:00:00 Pinehur… NC
## 2 2022-08-19 21:51:00 2022-08-19 21:51:00 2022-10-08 00:00:00 Rapid C… MI
## 3 2022-08-13 01:30:00 2022-08-13 01:30:00 2022-09-09 00:00:00 Clevela… OH
## 4 2022-08-06 17:00:00 2022-08-06 17:00:00 2022-09-09 00:00:00 Bloomin… IN
## 5 2022-08-04 03:40:00 2022-08-04 03:40:00 2022-09-09 00:00:00 Irvine CA
## 6 2022-07-22 12:00:00 2022-07-22 12:00:00 2022-09-09 00:00:00 Moore OK
## 7 2022-07-19 12:27:00 2022-07-19 12:27:00 2022-09-09 00:00:00 Short P… VA
## 8 2022-07-14 14:56:00 2022-07-14 14:56:00 2022-09-09 00:00:00 Norwalk CT
## 9 2022-07-13 15:40:00 2022-07-13 15:40:00 2022-09-09 00:00:00 Blayney New …
## 10 2022-07-13 00:10:00 2022-07-13 00:10:00 2022-09-09 00:00:00 Greybull WY
## # ℹ 96,419 more rows
## # ℹ 7 more variables: country_code <chr>, shape <chr>, reported_duration <chr>,
## # duration_seconds <dbl>, summary <chr>, has_images <lgl>, day_part <chr>
Plot prices
data %>%
ggplot(aes(day_part)) +
geom_bar() +
coord_flip()
