# ============================================================================
# INSTALL CRAN PACKAGES
# ============================================================================
# Install missing CRAN packages
install.packages(setdiff(c("stats", "dplyr", "ggplot2", "flextable", "ggpubr",
"randomForest", "ggridges", "ggalluvial", "tibble",
"matrixStats", "RColorBrewer", "ape", "rlang",
"scales", "magrittr", "phangorn", "igraph", "tidyr",
"xml2", "data.table", "reshape2","vegan", "patchwork", "officer"),
installed.packages()[,"Package"]))
# Load CRAN packages
lapply(c("stats", "dplyr", "ggplot2", "flextable", "ggpubr", "randomForest",
"ggridges", "ggalluvial", "tibble", "matrixStats", "RColorBrewer",
"ape", "rlang", "scales", "magrittr", "phangorn", "igraph", "tidyr",
"xml2", "data.table", "reshape2","vegan", "patchwork", "officer"), library, character.only = TRUE)
# ============================================================================
# INSTALL BIOCONDUCTOR PACKAGES
# ============================================================================
# Install BiocManager if not installed
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
# Install missing Bioconductor packages
BiocManager::install(setdiff(c("phyloseq", "msa", "DESeq2", "ggtree", "edgeR",
"Biostrings", "DECIPHER", "microbiome", "limma",
"S4Vectors", "SummarizedExperiment", "TreeSummarizedExperiment"),
installed.packages()[,"Package"]))
# Load Bioconductor packages
lapply(c("phyloseq", "msa", "DESeq2", "edgeR", "Biostrings", "ggtree", "DECIPHER",
"microbiome", "limma", "S4Vectors", "SummarizedExperiment", "TreeSummarizedExperiment"),
library, character.only = TRUE)
# ============================================================================
# INSTALL GITHUB PACKAGES
# ============================================================================
# Install remotes if not installed
if (!requireNamespace("remotes", quietly = TRUE)) install.packages("remotes")
library(remotes)
# Install missing GitHub packages
remotes::install_github("mikemc/speedyseq")
remotes::install_github("microsud/microbiomeutilities")
# Optional
#devtools::install_github("briatte/ggnet")
#devtools::install_github("zdk123/SpiecEasi")
# Load GitHub packages
library(speedyseq)
library(microbiomeutilities)
#library(SpiecEasi)
#library(ggnet)
# ============================================================================
# INSTALL DspikeIn FROM GITHUB
# ============================================================================
if (!requireNamespace("devtools", quietly = TRUE)) install.packages("devtools")
devtools::install_github("mghotbi/DspikeIn")
# Load DspikeIn only if installed
if ("DspikeIn" %in% installed.packages()[, "Package"]) {
library(DspikeIn)
} else {
stop("DspikeIn installation failed. Check errors above.")
}
# merges ASVs/OTUs**
#The function Pre_processing_species() merges ASVs of a species using "sum" or "max" methods, preserving #taxonomic, phylogenetic, and sequencing data.
# =====================================================================
# Load the phyloseq objs/ TSE obj
# =====================================================================
library(phyloseq)
library(DspikeIn)
library(TreeSummarizedExperiment)
library(SummarizedExperiment)
data("physeq_16SOTU", package = "DspikeIn")
# tse_16SOTU <- convert_phyloseq_to_tse(physeq_16SOTU)
# physeq_16SOTU <- convert_tse_to_phyloseq(tse_16SOTU)
physeq_16SOTU <- DspikeIn::tidy_phyloseq_tse(physeq_16SOTU) # make it tidy
# Check if metadata contains spiked volumes
physeq_16SOTU@sam_data$spiked.volume
#> [1] 0 0 0 2 2 2 1 2 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2
#> [38] 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 0 0 0 2 2 2 2 2 2
#> [149] 2 2 2 2 2 2 2 0 0 0 2 2 2 2 2 2 2 0 0 0 2 0 0 0 2 2 2 0 0 0 2 2 2 2 2 2 2
#> [186] 2 0 0 0 2 2 0 0 0 0 0 0 2 2 2 2 2 2 2 0 0 0 2 2 2 2 0 0 0 2 2 2 2 0 0 0 2
#> [223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [260] 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [297] 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1
#
# =====================================================================
# CALCULATE SCALING FACTORS
# =====================================================================
# Calculate scaling factors
result <- calculate_spikeIn_factors(Spiked_16S_sum_scaled, spiked_cells, merged_spiked_species)
#> Extracting taxonomy and sample data...
#> Removing spiked species...
#> 🧮 Calculating total reads per sample...
#> âž– Extracting spiked species...
#> âž• Merging spiked species...
#> 🧮 Calculating scaling factors...
result$spiked_species_merged
#> phyloseq-class experiment-level object
#> otu_table() OTU Table: [ 1 taxa and 264 samples ]:
#> sample_data() Sample Data: [ 264 samples by 34 sample variables ]:
#> tax_table() Taxonomy Table: [ 1 taxa by 7 taxonomic ranks ]:
#> refseq() DNAStringSet: [ 1 reference sequences ]
#> taxa are rows
result$spiked_species_reads
#> # A tibble: 264 × 2
#> Sample Total_Reads
#> <chr> <dbl>
#> 1 spiked.blank.20433_S84 8
#> 2 spiked.blank.20817_S84 47066
#> 3 Std2uL.20625_S84 62433
#> 4 StdSwab1uL.20624_S72 17639
#> 5 STP1719.20422_S47 14549
#> 6 STP213.20423_S59 83
#> 7 STP268.20424_S71 17
#> 8 STP544.20419_S11 2259
#> 9 STP570.20420_S23 822
#> 10 STP579.20421_S35 1759
#> # ℹ 254 more rows
scaling_factors <- result$scaling_factors
scaling_factors
#> spiked.blank.20433_S84 spiked.blank.20817_S84 Std2uL.20625_S84
#> 2.308750e+02 3.924277e-02 2.958371e-02
#> StdSwab1uL.20624_S72 STP1719.20422_S47 STP213.20423_S59
#> 5.235558e-02 1.269503e-01 2.225301e+01
#> STP268.20424_S71 STP544.20419_S11 STP570.20420_S23
#> 1.086471e+02 8.176184e-01 2.246959e+00
#> STP579.20421_S35 STP614.20418_S94 UHM1000.20604_S22
#> 1.050028e+00 1.000000e+00 7.826271e+00
#> UHM1001.20609_S82 UHM1007.20622_S48 UHM1009.20614_S47
#> 9.930108e+00 7.826271e+00 7.961207e+00
#> UHM1010.20621_S36 UHM1011.20606_S46 UHM1024.20620_S24
#> 9.433095e-01 7.103846e+00 9.290744e-01
#> UHM1026.20607_S58 UHM1028.20613_S35 UHM1032.20605_S34
#> 2.332071e+00 1.028396e+00 5.714728e-01
#> UHM1033.20619_S12 UHM1034.20616_S71 UHM1035.20611_S11
#> 2.468195e-02 2.308750e+02 4.397619e+00
#> UHM1036.20612_S23 UHM1052.20615_S59 UHM1060.20723_S1
#> 3.708835e+00 6.156667e+00 7.502945e-02
#> UHM1065.20724_S13 UHM1068.20732_S14 UHM1069.20742_S39
#> 2.258222e-01 7.600823e+00 5.384840e+00
#> UHM1070.20725_S25 UHM1071.20733_S26 UHM1072.20734_S38
#> 1.060885e+00 3.298214e+01 1.242934e+00
#> UHM1073.20735_S50 UHM1075.20726_S37 UHM1077.20736_S62
#> 4.735897e+01 1.566582e+00 2.530137e+01
#> UHM1078.20727_S49 UHM1080.20737_S74 UHM1081.20728_S61
#> 1.067630e+01 2.676812e+01 1.042325e+00
#> UHM1088.20738_S86 UHM1090.20739_S3 UHM1093.20729_S73
#> 7.695833e+00 3.482934e-01 5.546547e+00
#> UHM1095.20730_S85 UHM1097.20623_S60 UHM1099.20608_S70
#> 2.969931e-01 1.526446e-01 3.847917e+01
#> UHM1100.20788_S21 UHM1102.20789_S33 UHM1104.20790_S45
#> 2.462667e+01 1.710185e+01 2.225301e+01
#> UHM1105.20791_S57 UHM1109.20531_S1 UHM1110.20568_S65
#> 1.247973e+01 1.592241e+01 3.694000e+01
#> UHM1113.20792_S69 UHM1114.20793_S81 UHM1115.20794_S93
#> 2.337975e+01 5.116343e+00 1.020442e+01
#> UHM1117.20795_S10 UHM1118.20796_S22 UHM1120.20797_S34
#> 3.027869e+01 7.447581e+00 2.572423e+00
#> UHM1124.20798_S46 UHM1126.20799_S58 UHM1128.20800_S70
#> 3.168096e+00 9.569948e+00 1.009290e+01
#> UHM1140.20555_S4 UHM1145.20801_S82 UHM1163.20405_S33
#> 1.420769e+01 4.104444e+01 1.231333e+01
#> UHM1164.20402_S92 UHM1169.20552_S63 UHM1171.20579_S7
#> 6.156667e+02 2.802306e-01 1.904124e+01
#> UHM1176.20404_S21 UHM1177.20546_S86 UHM1182.20576_S66
#> 2.756716e+01 1.185494e+00 7.927039e+00
#> UHM1210.20802_S94 UHM1212.20803_S11 UHM1217.20804_S23
#> 1.884694e+01 6.035948e+00 9.824468e+00
#> UHM1218.20805_S35 UHM1219.20806_S47 UHM1220.20807_S59
#> 1.223179e+01 3.240351e+01 2.198810e+01
#> UHM1221.20808_S71 UHM1222.20809_S83 UHM1223.20810_S95
#> 1.759048e+01 6.077657e-01 2.676812e+01
#> UHM1225.20811_S12 UHM1227.20812_S24 UHM1228.20813_S36
#> 8.065502e+00 2.120551e+00 2.676812e+01
#> UHM1237.20814_S48 UHM1240.20566_S41 UHM1246.20815_S60
#> 4.472155e+00 2.704246e+00 3.223386e+00
#> UHM1247.20816_S72 UHM1248.20575_S54 UHM1256.20570_S89
#> 7.859574e+00 5.619106e-01 2.049945e+00
#> UHM1260.20596_S21 UHM1270.20577_S78 UHM1271.20397_S32
#> 3.008143e+00 8.511521e+00 2.068309e+00
#> UHM1272.20398_S44 UHM1274.20554_S87 UHM1275.20597_S33
#> 1.207979e+00 3.955032e+00 1.535328e+00
#> UHM1282.20599_S57 UHM1287.20543_S50 UHM1291.20416_S70
#> 4.835079e-01 9.332996e-01 7.076628e+00
#> UHM1296.20550_S39 UHM1319.20561_S76 UHM1324.20413_S34
#> 2.430263e+01 1.178685e+00 4.265589e+00
#> UHM1327.20545_S74 UHM1328.20572_S18 UHM1334.20417_S82
#> 2.530137e+01 5.554887e-01 1.191613e+01
#> UHM1338.20399_S56 UHM1341.20602_S93 UHM1356.20541_S26
#> 2.430263e+00 2.294410e-01 2.280247e+00
#> UHM1380.20580_S19 UHM1383.20594_S92 UHM1385.20563_S5
#> 5.996753e+00 4.387173e+00 9.040184e-02
#> UHM1399.20756_S17 UHM1400.20757_S29 UHM1401.20758_S41
#> 2.011983e+00 5.844937e+00 7.651201e-01
#> UHM1402.20759_S53 UHM1403.20760_S65 UHM1405.20761_S77
#> 1.112651e+01 6.095710e+00 8.630841e+00
#> UHM1406.20762_S89 UHM1414.20763_S6 UHM1419.20764_S18
#> 8.671362e+00 1.726168e+01 3.784836e+00
#> UHM1427.20389_S31 UHM1428.20390_S43 UHM1429.20391_S55
#> 1.793204e+01 1.000000e+00 6.368966e+01
#> UHM1430.20392_S67 UHM1432.20393_S79 UHM1435.20388_S19
#> 1.679091e+02 1.026111e+02 1.000000e+00
#> UHM162.20560_S64 UHM198.20585_S79 UHM20.3314_S52
#> 2.623580e+00 5.061661e-01 4.295349e+01
#> UHM20.3315_S64 UHM204.20409_S81 UHM206.20410_S93
#> 5.292264e+00 2.798485e+01 1.000000e+00
#> UHM207.20593_S80 UHM208.20411_S10 UHM211.20406_S45
#> 9.235000e+00 4.723785e+00 1.126220e+01
#> UHM215.20408_S69 UHM216.20429_S36 UHM219.20430_S48
#> 2.052222e+02 2.931746e+01 8.778100e-02
#> UHM236.20431_S60 UHM238.20407_S57 UHM245.20538_S85
#> 4.504878e+01 1.539167e+01 1.710185e+01
#> UHM252.20558_S40 UHM267.20400_S68 UHM274.20581_S31
#> 1.694495e+00 1.454331e+01 9.120988e-01
#> UHM276.20586_S91 UHM280.20401_S80 UHM286.20425_S83
#> 1.579983e+00 4.748072e+00 6.156667e+01
#> UHM289.20426_S95 UHM294.20427_S12 UHM298.20600_S69
#> 4.617500e+02 3.027869e+00 4.571782e+00
#> UHM325.20548_S15 UHM337.20412_S22 UHM354.20535_S49
#> 3.162671e+00 7.076628e+00 5.202817e+00
#> UHM356.20415_S58 UHM369.20773_S31 UHM370.20774_S43
#> 4.493917e+00 7.927039e+00 2.098864e+01
#> UHM372.20775_S55 UHM373.20776_S67 UHM374.20777_S79
#> 6.156667e+01 2.198810e+01 2.676812e+01
#> UHM375.20778_S91 UHM377.20779_S8 UHM38.3376_S36
#> 2.605078e+00 3.872117e+00 1.000000e+00
#> UHM386.20781_S32 UHM387.20782_S44 UHM414.20583_S55
#> 7.893162e+00 3.184483e+01 2.172941e+01
#> UHM418.20765_S30 UHM422.20766_S42 UHM425.20767_S54
#> 6.840741e+00 1.614510e+00 1.565254e+01
#> UHM426.20534_S37 UHM428.20544_S62 UHM429.20559_S52
#> 4.016964e-01 4.068282e+00 1.439595e+00
#> UHM435.20547_S3 UHM437.20768_S66 UHM439.20564_S17
#> 1.075087e+00 3.769388e+01 2.601408e+01
#> UHM44.3526_S31 UHM445.20569_S77 UHM447.20783_S56
#> 1.441842e+00 7.103846e+01 2.885938e+01
#> UHM448.20769_S78 UHM45.3539_S92 UHM454.20770_S90
#> 4.356132e+00 1.000000e+00 6.643885e+00
#> UHM455.20785_S80 UHM458.20786_S92 UHM459.20787_S9
#> 2.346887e+00 2.885938e+01 1.539167e+01
#> UHM461.20771_S7 UHM467.20772_S19 UHM470.20533_S25
#> 7.632231e+00 3.929787e+01 1.513934e+00
#> UHM476.20414_S46 UHM478.20549_S27 UHM479.20551_S51
#> 1.627313e+00 4.305361e+00 1.281571e-01
#> UHM481.20403_S9 UHM482.20590_S44 UHM483.20603_S10
#> 8.136564e+00 7.927039e+00 2.029670e+01
#> UHM519.20582_S43 UHM520.20573_S30 UHM746.21478_S117
#> 1.358088e+01 7.300395e+00 1.084327e-02
#> UHM747.21477_S106 UHM748.21467_S170 UHM748.21487_S129
#> 1.122291e-02 1.670254e-02 2.532774e-02
#> UHM749.21479_S128 UHM759.21466_S159 UHM759.21486_S118
#> 1.471010e-02 1.204010e-02 5.596970e-02
#> UHM775.21485_S107 UHM776.21482_S161 UHM777.21484_S183
#> 2.145379e-02 1.587725e-02 3.932297e-02
#> UHM779.21468_S181 UHM779.21488_S140 UHM782.21480_S139
#> 1.140461e-02 1.026111e+02 2.407832e-02
#> UHM810.21472_S138 UHM811.21471_S127 UHM813.21481_S150
#> 9.750612e-03 3.067699e-02 1.421600e-02
#> UHM818.21469_S105 UHM818.21489_S151 UHM819.21473_S149
#> 1.831723e-02 4.860526e+01 1.106996e-02
#> UHM820.21470_S116 UHM820.21490_S162 UHM827.21474_S160
#> 1.397654e-02 1.793204e+00 1.106425e-02
#> UHM829.21476_S182 UHM832.21483_S172 UHM836.20385_S78
#> 1.331517e-02 1.348293e-02 1.000000e+00
#> UHM837.20386_S90 UHM838.20387_S7 UHM891.20384_S66
#> 1.000000e+00 1.679091e+02 2.172941e+01
#> UHM892.20532_S13 UHM893.20595_S9 UHM894.20540_S14
#> 1.586770e+00 1.154375e+02 5.130556e+01
#> UHM895.20536_S61 UHM896.20601_S81 UHM897.20591_S56
#> 8.728733e-01 1.000000e+00 1.000000e+00
#> UHM898.20394_S91 UHM899.20588_S20 UHM900.20395_S8
#> 1.000000e+00 7.695833e+01 1.000000e+00
#> UHM901.20542_S38 UHM902.20584_S67 UHM903.20587_S8
#> 1.944211e+01 1.517666e+00 3.929787e+00
#> UHM904.20567_S53 UHM905.20598_S45 UHM906.20565_S29
#> 4.104444e+01 2.075281e+01 1.000000e+00
#> UHM907.20592_S68 UHM908.20396_S20 UHM909.20557_S28
#> 6.156667e+01 1.000000e+00 2.122989e+01
#> UHM910.20562_S88 UHM965.20537_S73 UHM966.20743_S51
#> 5.432353e+01 3.980603e+00 4.006508e+00
#> UHM967.20744_S63 UHM968.20571_S6 UHM969.20745_S75
#> 1.000000e+00 5.594935e-02 6.156667e+01
#> UHM971.20746_S87 UHM973.20578_S90 UHM974.20432_S72
#> 1.847000e+02 4.015217e+01 1.000000e+00
#> UHM975.20747_S4 UHM977.20748_S16 UHM978.20749_S28
#> 5.596970e+01 1.847000e+01 2.029670e+01
#> UHM979.20750_S40 UHM980.20731_S2 UHM981.20539_S2
#> 5.277143e+01 7.447581e+00 2.411227e+00
#> UHM982.20740_S15 UHM983.20556_S16 UHM984.20751_S52
#> 1.147205e+01 1.472065e-01 7.103846e+01
#> UHM985.20752_S64 UHM988.20753_S76 UHM989.20754_S88
#> 2.317440e+00 3.063018e+00 1.086471e+02
#> UHM991.20755_S5 UHM993.20741_S27 UHM996.20610_S94
#> 9.908798e-01 3.551923e+01 1.000000e+00
#> UHM997.20553_S75 UHM998.20618_S95 UHM999.20617_S83
#> 1.000000e+00 3.538314e-01 1.282639e+01
str(scaling_factors)
#> Named num [1:264] 230.875 0.0392 0.0296 0.0524 0.127 ...
#> - attr(*, "names")= chr [1:264] "spiked.blank.20433_S84" "spiked.blank.20817_S84" "Std2uL.20625_S84" "StdSwab1uL.20624_S72" ...
# =====================================================================
# Convert relative counts to absolute counts
# =====================================================================
#**Absolute Read Count=Relative Read Count×Scaling Factor**
# Convert to absolute counts
absolute <- convert_to_absolute_counts(Spiked_16S_sum_scaled, scaling_factors)
# Extract processed data
absolute_counts <- absolute$absolute_counts
physeq_absolute <- absolute$obj_adj
physeq_absolute <- tidy_phyloseq_tse(physeq_absolute)
# View absolute count data
head(absolute_counts)
#> # A tibble: 6 × 264
#> spiked.blank.20433_S84 spiked.blank.20817_S84 Std2uL.20625_S84
#> <dbl> <dbl> <dbl>
#> 1 0 0 0
#> 2 0 0 0
#> 3 0 0 0
#> 4 0 0 0
#> 5 0 0 0
#> 6 0 0 0
#> # ℹ 261 more variables: StdSwab1uL.20624_S72 <dbl>, STP1719.20422_S47 <dbl>,
#> # STP213.20423_S59 <dbl>, STP268.20424_S71 <dbl>, STP544.20419_S11 <dbl>,
#> # STP570.20420_S23 <dbl>, STP579.20421_S35 <dbl>, STP614.20418_S94 <dbl>,
#> # UHM1000.20604_S22 <dbl>, UHM1001.20609_S82 <dbl>, UHM1007.20622_S48 <dbl>,
#> # UHM1009.20614_S47 <dbl>, UHM1010.20621_S36 <dbl>, UHM1011.20606_S46 <dbl>,
#> # UHM1024.20620_S24 <dbl>, UHM1026.20607_S58 <dbl>, UHM1028.20613_S35 <dbl>,
#> # UHM1032.20605_S34 <dbl>, UHM1033.20619_S12 <dbl>, …
# =====================================================================
# CALCULATE SPIKE PERCENTAGE & summary stat
# =====================================================================
#**Calculate spike percentage & Generate summary statistics for absolute counts**
# Generate summary statistics for absolute counts
post_eval_summary <- calculate_summary_stats_table(absolute_counts)
#> 💾 Table saved in docx format: post_eval_summary.docx
#> 💾 Summary statistics saved as CSV: post_eval_summary.csv
print(post_eval_summary)
#> a flextable object.
#> col_keys: `spiked.blank.20433_S84_mean`, `spiked.blank.20817_S84_mean`, `Std2uL.20625_S84_mean`, `StdSwab1uL.20624_S72_mean`, `STP1719.20422_S47_mean`, `STP213.20423_S59_mean`, `STP268.20424_S71_mean`, `STP544.20419_S11_mean`, `STP570.20420_S23_mean`, `STP579.20421_S35_mean`, `STP614.20418_S94_mean`, `UHM1000.20604_S22_mean`, `UHM1001.20609_S82_mean`, `UHM1007.20622_S48_mean`, `UHM1009.20614_S47_mean`, `UHM1010.20621_S36_mean`, `UHM1011.20606_S46_mean`, `UHM1024.20620_S24_mean`, `UHM1026.20607_S58_mean`, `UHM1028.20613_S35_mean`, `UHM1032.20605_S34_mean`, `UHM1033.20619_S12_mean`, `UHM1034.20616_S71_mean`, `UHM1035.20611_S11_mean`, `UHM1036.20612_S23_mean`, `UHM1052.20615_S59_mean`, `UHM1060.20723_S1_mean`, `UHM1065.20724_S13_mean`, `UHM1068.20732_S14_mean`, `UHM1069.20742_S39_mean`, `UHM1070.20725_S25_mean`, `UHM1071.20733_S26_mean`, `UHM1072.20734_S38_mean`, `UHM1073.20735_S50_mean`, `UHM1075.20726_S37_mean`, `UHM1077.20736_S62_mean`, `UHM1078.20727_S49_mean`, `UHM1080.20737_S74_mean`, `UHM1081.20728_S61_mean`, `UHM1088.20738_S86_mean`, `UHM1090.20739_S3_mean`, `UHM1093.20729_S73_mean`, `UHM1095.20730_S85_mean`, `UHM1097.20623_S60_mean`, `UHM1099.20608_S70_mean`, `UHM1100.20788_S21_mean`, `UHM1102.20789_S33_mean`, `UHM1104.20790_S45_mean`, `UHM1105.20791_S57_mean`, `UHM1109.20531_S1_mean`, `UHM1110.20568_S65_mean`, `UHM1113.20792_S69_mean`, `UHM1114.20793_S81_mean`, `UHM1115.20794_S93_mean`, `UHM1117.20795_S10_mean`, `UHM1118.20796_S22_mean`, `UHM1120.20797_S34_mean`, `UHM1124.20798_S46_mean`, `UHM1126.20799_S58_mean`, `UHM1128.20800_S70_mean`, `UHM1140.20555_S4_mean`, `UHM1145.20801_S82_mean`, `UHM1163.20405_S33_mean`, `UHM1164.20402_S92_mean`, `UHM1169.20552_S63_mean`, `UHM1171.20579_S7_mean`, `UHM1176.20404_S21_mean`, `UHM1177.20546_S86_mean`, `UHM1182.20576_S66_mean`, `UHM1210.20802_S94_mean`, `UHM1212.20803_S11_mean`, `UHM1217.20804_S23_mean`, `UHM1218.20805_S35_mean`, `UHM1219.20806_S47_mean`, `UHM1220.20807_S59_mean`, `UHM1221.20808_S71_mean`, `UHM1222.20809_S83_mean`, `UHM1223.20810_S95_mean`, `UHM1225.20811_S12_mean`, `UHM1227.20812_S24_mean`, `UHM1228.20813_S36_mean`, `UHM1237.20814_S48_mean`, `UHM1240.20566_S41_mean`, `UHM1246.20815_S60_mean`, `UHM1247.20816_S72_mean`, `UHM1248.20575_S54_mean`, `UHM1256.20570_S89_mean`, `UHM1260.20596_S21_mean`, `UHM1270.20577_S78_mean`, `UHM1271.20397_S32_mean`, `UHM1272.20398_S44_mean`, `UHM1274.20554_S87_mean`, `UHM1275.20597_S33_mean`, `UHM1282.20599_S57_mean`, `UHM1287.20543_S50_mean`, `UHM1291.20416_S70_mean`, `UHM1296.20550_S39_mean`, `UHM1319.20561_S76_mean`, `UHM1324.20413_S34_mean`, `UHM1327.20545_S74_mean`, `UHM1328.20572_S18_mean`, `UHM1334.20417_S82_mean`, `UHM1338.20399_S56_mean`, `UHM1341.20602_S93_mean`, `UHM1356.20541_S26_mean`, `UHM1380.20580_S19_mean`, `UHM1383.20594_S92_mean`, `UHM1385.20563_S5_mean`, `UHM1399.20756_S17_mean`, `UHM1400.20757_S29_mean`, `UHM1401.20758_S41_mean`, `UHM1402.20759_S53_mean`, `UHM1403.20760_S65_mean`, `UHM1405.20761_S77_mean`, `UHM1406.20762_S89_mean`, `UHM1414.20763_S6_mean`, `UHM1419.20764_S18_mean`, `UHM1427.20389_S31_mean`, `UHM1428.20390_S43_mean`, `UHM1429.20391_S55_mean`, `UHM1430.20392_S67_mean`, `UHM1432.20393_S79_mean`, `UHM1435.20388_S19_mean`, `UHM162.20560_S64_mean`, `UHM198.20585_S79_mean`, `UHM20.3314_S52_mean`, `UHM20.3315_S64_mean`, `UHM204.20409_S81_mean`, `UHM206.20410_S93_mean`, `UHM207.20593_S80_mean`, `UHM208.20411_S10_mean`, `UHM211.20406_S45_mean`, `UHM215.20408_S69_mean`, `UHM216.20429_S36_mean`, `UHM219.20430_S48_mean`, `UHM236.20431_S60_mean`, `UHM238.20407_S57_mean`, `UHM245.20538_S85_mean`, `UHM252.20558_S40_mean`, `UHM267.20400_S68_mean`, `UHM274.20581_S31_mean`, `UHM276.20586_S91_mean`, `UHM280.20401_S80_mean`, `UHM286.20425_S83_mean`, `UHM289.20426_S95_mean`, `UHM294.20427_S12_mean`, `UHM298.20600_S69_mean`, `UHM325.20548_S15_mean`, `UHM337.20412_S22_mean`, `UHM354.20535_S49_mean`, `UHM356.20415_S58_mean`, `UHM369.20773_S31_mean`, `UHM370.20774_S43_mean`, `UHM372.20775_S55_mean`, `UHM373.20776_S67_mean`, `UHM374.20777_S79_mean`, `UHM375.20778_S91_mean`, `UHM377.20779_S8_mean`, `UHM38.3376_S36_mean`, `UHM386.20781_S32_mean`, `UHM387.20782_S44_mean`, `UHM414.20583_S55_mean`, `UHM418.20765_S30_mean`, `UHM422.20766_S42_mean`, `UHM425.20767_S54_mean`, `UHM426.20534_S37_mean`, `UHM428.20544_S62_mean`, `UHM429.20559_S52_mean`, `UHM435.20547_S3_mean`, `UHM437.20768_S66_mean`, `UHM439.20564_S17_mean`, `UHM44.3526_S31_mean`, `UHM445.20569_S77_mean`, `UHM447.20783_S56_mean`, `UHM448.20769_S78_mean`, `UHM45.3539_S92_mean`, `UHM454.20770_S90_mean`, `UHM455.20785_S80_mean`, `UHM458.20786_S92_mean`, `UHM459.20787_S9_mean`, `UHM461.20771_S7_mean`, `UHM467.20772_S19_mean`, `UHM470.20533_S25_mean`, `UHM476.20414_S46_mean`, `UHM478.20549_S27_mean`, `UHM479.20551_S51_mean`, `UHM481.20403_S9_mean`, `UHM482.20590_S44_mean`, `UHM483.20603_S10_mean`, `UHM519.20582_S43_mean`, `UHM520.20573_S30_mean`, `UHM746.21478_S117_mean`, `UHM747.21477_S106_mean`, `UHM748.21467_S170_mean`, `UHM748.21487_S129_mean`, `UHM749.21479_S128_mean`, `UHM759.21466_S159_mean`, `UHM759.21486_S118_mean`, `UHM775.21485_S107_mean`, `UHM776.21482_S161_mean`, `UHM777.21484_S183_mean`, `UHM779.21468_S181_mean`, `UHM779.21488_S140_mean`, `UHM782.21480_S139_mean`, `UHM810.21472_S138_mean`, `UHM811.21471_S127_mean`, `UHM813.21481_S150_mean`, `UHM818.21469_S105_mean`, `UHM818.21489_S151_mean`, `UHM819.21473_S149_mean`, `UHM820.21470_S116_mean`, `UHM820.21490_S162_mean`, `UHM827.21474_S160_mean`, `UHM829.21476_S182_mean`, `UHM832.21483_S172_mean`, `UHM836.20385_S78_mean`, `UHM837.20386_S90_mean`, `UHM838.20387_S7_mean`, `UHM891.20384_S66_mean`, `UHM892.20532_S13_mean`, `UHM893.20595_S9_mean`, `UHM894.20540_S14_mean`, `UHM895.20536_S61_mean`, `UHM896.20601_S81_mean`, `UHM897.20591_S56_mean`, `UHM898.20394_S91_mean`, `UHM899.20588_S20_mean`, `UHM900.20395_S8_mean`, `UHM901.20542_S38_mean`, `UHM902.20584_S67_mean`, `UHM903.20587_S8_mean`, `UHM904.20567_S53_mean`, `UHM905.20598_S45_mean`, `UHM906.20565_S29_mean`, `UHM907.20592_S68_mean`, `UHM908.20396_S20_mean`, `UHM909.20557_S28_mean`, `UHM910.20562_S88_mean`, `UHM965.20537_S73_mean`, `UHM966.20743_S51_mean`, `UHM967.20744_S63_mean`, `UHM968.20571_S6_mean`, `UHM969.20745_S75_mean`, `UHM971.20746_S87_mean`, `UHM973.20578_S90_mean`, `UHM974.20432_S72_mean`, `UHM975.20747_S4_mean`, `UHM977.20748_S16_mean`, `UHM978.20749_S28_mean`, `UHM979.20750_S40_mean`, `UHM980.20731_S2_mean`, `UHM981.20539_S2_mean`, `UHM982.20740_S15_mean`, `UHM983.20556_S16_mean`, `UHM984.20751_S52_mean`, `UHM985.20752_S64_mean`, `UHM988.20753_S76_mean`, `UHM989.20754_S88_mean`, `UHM991.20755_S5_mean`, `UHM993.20741_S27_mean`, `UHM996.20610_S94_mean`, `UHM997.20553_S75_mean`, `UHM998.20618_S95_mean`, `UHM999.20617_S83_mean`, `spiked.blank.20433_S84_sd`, `spiked.blank.20817_S84_sd`, `Std2uL.20625_S84_sd`, `StdSwab1uL.20624_S72_sd`, `STP1719.20422_S47_sd`, `STP213.20423_S59_sd`, `STP268.20424_S71_sd`, `STP544.20419_S11_sd`, `STP570.20420_S23_sd`, `STP579.20421_S35_sd`, `STP614.20418_S94_sd`, `UHM1000.20604_S22_sd`, `UHM1001.20609_S82_sd`, `UHM1007.20622_S48_sd`, `UHM1009.20614_S47_sd`, `UHM1010.20621_S36_sd`, `UHM1011.20606_S46_sd`, `UHM1024.20620_S24_sd`, `UHM1026.20607_S58_sd`, `UHM1028.20613_S35_sd`, `UHM1032.20605_S34_sd`, `UHM1033.20619_S12_sd`, `UHM1034.20616_S71_sd`, `UHM1035.20611_S11_sd`, `UHM1036.20612_S23_sd`, `UHM1052.20615_S59_sd`, `UHM1060.20723_S1_sd`, `UHM1065.20724_S13_sd`, `UHM1068.20732_S14_sd`, `UHM1069.20742_S39_sd`, `UHM1070.20725_S25_sd`, `UHM1071.20733_S26_sd`, `UHM1072.20734_S38_sd`, `UHM1073.20735_S50_sd`, `UHM1075.20726_S37_sd`, `UHM1077.20736_S62_sd`, `UHM1078.20727_S49_sd`, `UHM1080.20737_S74_sd`, `UHM1081.20728_S61_sd`, `UHM1088.20738_S86_sd`, `UHM1090.20739_S3_sd`, `UHM1093.20729_S73_sd`, `UHM1095.20730_S85_sd`, `UHM1097.20623_S60_sd`, `UHM1099.20608_S70_sd`, `UHM1100.20788_S21_sd`, `UHM1102.20789_S33_sd`, `UHM1104.20790_S45_sd`, `UHM1105.20791_S57_sd`, `UHM1109.20531_S1_sd`, `UHM1110.20568_S65_sd`, `UHM1113.20792_S69_sd`, `UHM1114.20793_S81_sd`, `UHM1115.20794_S93_sd`, `UHM1117.20795_S10_sd`, `UHM1118.20796_S22_sd`, `UHM1120.20797_S34_sd`, `UHM1124.20798_S46_sd`, `UHM1126.20799_S58_sd`, `UHM1128.20800_S70_sd`, `UHM1140.20555_S4_sd`, `UHM1145.20801_S82_sd`, `UHM1163.20405_S33_sd`, `UHM1164.20402_S92_sd`, `UHM1169.20552_S63_sd`, `UHM1171.20579_S7_sd`, `UHM1176.20404_S21_sd`, `UHM1177.20546_S86_sd`, `UHM1182.20576_S66_sd`, `UHM1210.20802_S94_sd`, `UHM1212.20803_S11_sd`, `UHM1217.20804_S23_sd`, `UHM1218.20805_S35_sd`, `UHM1219.20806_S47_sd`, `UHM1220.20807_S59_sd`, `UHM1221.20808_S71_sd`, `UHM1222.20809_S83_sd`, `UHM1223.20810_S95_sd`, `UHM1225.20811_S12_sd`, `UHM1227.20812_S24_sd`, `UHM1228.20813_S36_sd`, `UHM1237.20814_S48_sd`, `UHM1240.20566_S41_sd`, `UHM1246.20815_S60_sd`, `UHM1247.20816_S72_sd`, `UHM1248.20575_S54_sd`, `UHM1256.20570_S89_sd`, `UHM1260.20596_S21_sd`, `UHM1270.20577_S78_sd`, `UHM1271.20397_S32_sd`, `UHM1272.20398_S44_sd`, `UHM1274.20554_S87_sd`, `UHM1275.20597_S33_sd`, `UHM1282.20599_S57_sd`, `UHM1287.20543_S50_sd`, `UHM1291.20416_S70_sd`, `UHM1296.20550_S39_sd`, `UHM1319.20561_S76_sd`, `UHM1324.20413_S34_sd`, `UHM1327.20545_S74_sd`, `UHM1328.20572_S18_sd`, `UHM1334.20417_S82_sd`, `UHM1338.20399_S56_sd`, `UHM1341.20602_S93_sd`, `UHM1356.20541_S26_sd`, `UHM1380.20580_S19_sd`, `UHM1383.20594_S92_sd`, `UHM1385.20563_S5_sd`, `UHM1399.20756_S17_sd`, `UHM1400.20757_S29_sd`, `UHM1401.20758_S41_sd`, `UHM1402.20759_S53_sd`, `UHM1403.20760_S65_sd`, `UHM1405.20761_S77_sd`, `UHM1406.20762_S89_sd`, `UHM1414.20763_S6_sd`, `UHM1419.20764_S18_sd`, `UHM1427.20389_S31_sd`, `UHM1428.20390_S43_sd`, `UHM1429.20391_S55_sd`, `UHM1430.20392_S67_sd`, `UHM1432.20393_S79_sd`, `UHM1435.20388_S19_sd`, `UHM162.20560_S64_sd`, `UHM198.20585_S79_sd`, `UHM20.3314_S52_sd`, `UHM20.3315_S64_sd`, `UHM204.20409_S81_sd`, `UHM206.20410_S93_sd`, `UHM207.20593_S80_sd`, `UHM208.20411_S10_sd`, `UHM211.20406_S45_sd`, `UHM215.20408_S69_sd`, `UHM216.20429_S36_sd`, `UHM219.20430_S48_sd`, `UHM236.20431_S60_sd`, `UHM238.20407_S57_sd`, `UHM245.20538_S85_sd`, `UHM252.20558_S40_sd`, `UHM267.20400_S68_sd`, `UHM274.20581_S31_sd`, `UHM276.20586_S91_sd`, `UHM280.20401_S80_sd`, `UHM286.20425_S83_sd`, `UHM289.20426_S95_sd`, `UHM294.20427_S12_sd`, `UHM298.20600_S69_sd`, `UHM325.20548_S15_sd`, `UHM337.20412_S22_sd`, `UHM354.20535_S49_sd`, `UHM356.20415_S58_sd`, `UHM369.20773_S31_sd`, `UHM370.20774_S43_sd`, `UHM372.20775_S55_sd`, `UHM373.20776_S67_sd`, `UHM374.20777_S79_sd`, `UHM375.20778_S91_sd`, `UHM377.20779_S8_sd`, `UHM38.3376_S36_sd`, `UHM386.20781_S32_sd`, `UHM387.20782_S44_sd`, `UHM414.20583_S55_sd`, `UHM418.20765_S30_sd`, `UHM422.20766_S42_sd`, `UHM425.20767_S54_sd`, `UHM426.20534_S37_sd`, `UHM428.20544_S62_sd`, `UHM429.20559_S52_sd`, `UHM435.20547_S3_sd`, `UHM437.20768_S66_sd`, `UHM439.20564_S17_sd`, `UHM44.3526_S31_sd`, `UHM445.20569_S77_sd`, `UHM447.20783_S56_sd`, `UHM448.20769_S78_sd`, `UHM45.3539_S92_sd`, `UHM454.20770_S90_sd`, `UHM455.20785_S80_sd`, `UHM458.20786_S92_sd`, `UHM459.20787_S9_sd`, `UHM461.20771_S7_sd`, `UHM467.20772_S19_sd`, `UHM470.20533_S25_sd`, `UHM476.20414_S46_sd`, `UHM478.20549_S27_sd`, `UHM479.20551_S51_sd`, `UHM481.20403_S9_sd`, `UHM482.20590_S44_sd`, `UHM483.20603_S10_sd`, `UHM519.20582_S43_sd`, `UHM520.20573_S30_sd`, `UHM746.21478_S117_sd`, `UHM747.21477_S106_sd`, `UHM748.21467_S170_sd`, `UHM748.21487_S129_sd`, `UHM749.21479_S128_sd`, `UHM759.21466_S159_sd`, `UHM759.21486_S118_sd`, `UHM775.21485_S107_sd`, `UHM776.21482_S161_sd`, `UHM777.21484_S183_sd`, `UHM779.21468_S181_sd`, `UHM779.21488_S140_sd`, `UHM782.21480_S139_sd`, `UHM810.21472_S138_sd`, `UHM811.21471_S127_sd`, `UHM813.21481_S150_sd`, `UHM818.21469_S105_sd`, `UHM818.21489_S151_sd`, `UHM819.21473_S149_sd`, `UHM820.21470_S116_sd`, `UHM820.21490_S162_sd`, `UHM827.21474_S160_sd`, `UHM829.21476_S182_sd`, `UHM832.21483_S172_sd`, `UHM836.20385_S78_sd`, `UHM837.20386_S90_sd`, `UHM838.20387_S7_sd`, `UHM891.20384_S66_sd`, `UHM892.20532_S13_sd`, `UHM893.20595_S9_sd`, `UHM894.20540_S14_sd`, `UHM895.20536_S61_sd`, `UHM896.20601_S81_sd`, `UHM897.20591_S56_sd`, `UHM898.20394_S91_sd`, `UHM899.20588_S20_sd`, `UHM900.20395_S8_sd`, `UHM901.20542_S38_sd`, `UHM902.20584_S67_sd`, `UHM903.20587_S8_sd`, `UHM904.20567_S53_sd`, `UHM905.20598_S45_sd`, `UHM906.20565_S29_sd`, `UHM907.20592_S68_sd`, `UHM908.20396_S20_sd`, `UHM909.20557_S28_sd`, `UHM910.20562_S88_sd`, `UHM965.20537_S73_sd`, `UHM966.20743_S51_sd`, `UHM967.20744_S63_sd`, `UHM968.20571_S6_sd`, `UHM969.20745_S75_sd`, `UHM971.20746_S87_sd`, `UHM973.20578_S90_sd`, `UHM974.20432_S72_sd`, `UHM975.20747_S4_sd`, `UHM977.20748_S16_sd`, `UHM978.20749_S28_sd`, `UHM979.20750_S40_sd`, `UHM980.20731_S2_sd`, `UHM981.20539_S2_sd`, `UHM982.20740_S15_sd`, `UHM983.20556_S16_sd`, `UHM984.20751_S52_sd`, `UHM985.20752_S64_sd`, `UHM988.20753_S76_sd`, `UHM989.20754_S88_sd`, `UHM991.20755_S5_sd`, `UHM993.20741_S27_sd`, `UHM996.20610_S94_sd`, `UHM997.20553_S75_sd`, `UHM998.20618_S95_sd`, `UHM999.20617_S83_sd`, `spiked.blank.20433_S84_se`, `spiked.blank.20817_S84_se`, `Std2uL.20625_S84_se`, `StdSwab1uL.20624_S72_se`, `STP1719.20422_S47_se`, `STP213.20423_S59_se`, `STP268.20424_S71_se`, `STP544.20419_S11_se`, `STP570.20420_S23_se`, `STP579.20421_S35_se`, `STP614.20418_S94_se`, `UHM1000.20604_S22_se`, `UHM1001.20609_S82_se`, `UHM1007.20622_S48_se`, `UHM1009.20614_S47_se`, `UHM1010.20621_S36_se`, `UHM1011.20606_S46_se`, `UHM1024.20620_S24_se`, `UHM1026.20607_S58_se`, `UHM1028.20613_S35_se`, `UHM1032.20605_S34_se`, `UHM1033.20619_S12_se`, `UHM1034.20616_S71_se`, `UHM1035.20611_S11_se`, `UHM1036.20612_S23_se`, `UHM1052.20615_S59_se`, `UHM1060.20723_S1_se`, `UHM1065.20724_S13_se`, `UHM1068.20732_S14_se`, `UHM1069.20742_S39_se`, `UHM1070.20725_S25_se`, `UHM1071.20733_S26_se`, `UHM1072.20734_S38_se`, `UHM1073.20735_S50_se`, `UHM1075.20726_S37_se`, `UHM1077.20736_S62_se`, `UHM1078.20727_S49_se`, `UHM1080.20737_S74_se`, `UHM1081.20728_S61_se`, `UHM1088.20738_S86_se`, `UHM1090.20739_S3_se`, `UHM1093.20729_S73_se`, `UHM1095.20730_S85_se`, `UHM1097.20623_S60_se`, `UHM1099.20608_S70_se`, `UHM1100.20788_S21_se`, `UHM1102.20789_S33_se`, `UHM1104.20790_S45_se`, `UHM1105.20791_S57_se`, `UHM1109.20531_S1_se`, `UHM1110.20568_S65_se`, `UHM1113.20792_S69_se`, `UHM1114.20793_S81_se`, `UHM1115.20794_S93_se`, `UHM1117.20795_S10_se`, `UHM1118.20796_S22_se`, `UHM1120.20797_S34_se`, `UHM1124.20798_S46_se`, `UHM1126.20799_S58_se`, `UHM1128.20800_S70_se`, `UHM1140.20555_S4_se`, `UHM1145.20801_S82_se`, `UHM1163.20405_S33_se`, `UHM1164.20402_S92_se`, `UHM1169.20552_S63_se`, `UHM1171.20579_S7_se`, `UHM1176.20404_S21_se`, `UHM1177.20546_S86_se`, `UHM1182.20576_S66_se`, `UHM1210.20802_S94_se`, `UHM1212.20803_S11_se`, `UHM1217.20804_S23_se`, `UHM1218.20805_S35_se`, `UHM1219.20806_S47_se`, `UHM1220.20807_S59_se`, `UHM1221.20808_S71_se`, `UHM1222.20809_S83_se`, `UHM1223.20810_S95_se`, `UHM1225.20811_S12_se`, `UHM1227.20812_S24_se`, `UHM1228.20813_S36_se`, `UHM1237.20814_S48_se`, `UHM1240.20566_S41_se`, `UHM1246.20815_S60_se`, `UHM1247.20816_S72_se`, `UHM1248.20575_S54_se`, `UHM1256.20570_S89_se`, `UHM1260.20596_S21_se`, `UHM1270.20577_S78_se`, `UHM1271.20397_S32_se`, `UHM1272.20398_S44_se`, `UHM1274.20554_S87_se`, `UHM1275.20597_S33_se`, `UHM1282.20599_S57_se`, `UHM1287.20543_S50_se`, `UHM1291.20416_S70_se`, `UHM1296.20550_S39_se`, `UHM1319.20561_S76_se`, `UHM1324.20413_S34_se`, `UHM1327.20545_S74_se`, `UHM1328.20572_S18_se`, `UHM1334.20417_S82_se`, `UHM1338.20399_S56_se`, `UHM1341.20602_S93_se`, `UHM1356.20541_S26_se`, `UHM1380.20580_S19_se`, `UHM1383.20594_S92_se`, `UHM1385.20563_S5_se`, `UHM1399.20756_S17_se`, `UHM1400.20757_S29_se`, `UHM1401.20758_S41_se`, `UHM1402.20759_S53_se`, `UHM1403.20760_S65_se`, `UHM1405.20761_S77_se`, `UHM1406.20762_S89_se`, `UHM1414.20763_S6_se`, `UHM1419.20764_S18_se`, `UHM1427.20389_S31_se`, `UHM1428.20390_S43_se`, `UHM1429.20391_S55_se`, `UHM1430.20392_S67_se`, `UHM1432.20393_S79_se`, `UHM1435.20388_S19_se`, `UHM162.20560_S64_se`, `UHM198.20585_S79_se`, `UHM20.3314_S52_se`, `UHM20.3315_S64_se`, `UHM204.20409_S81_se`, `UHM206.20410_S93_se`, `UHM207.20593_S80_se`, `UHM208.20411_S10_se`, `UHM211.20406_S45_se`, `UHM215.20408_S69_se`, `UHM216.20429_S36_se`, `UHM219.20430_S48_se`, `UHM236.20431_S60_se`, `UHM238.20407_S57_se`, `UHM245.20538_S85_se`, `UHM252.20558_S40_se`, `UHM267.20400_S68_se`, `UHM274.20581_S31_se`, `UHM276.20586_S91_se`, `UHM280.20401_S80_se`, `UHM286.20425_S83_se`, `UHM289.20426_S95_se`, `UHM294.20427_S12_se`, `UHM298.20600_S69_se`, `UHM325.20548_S15_se`, `UHM337.20412_S22_se`, `UHM354.20535_S49_se`, `UHM356.20415_S58_se`, `UHM369.20773_S31_se`, `UHM370.20774_S43_se`, `UHM372.20775_S55_se`, `UHM373.20776_S67_se`, `UHM374.20777_S79_se`, `UHM375.20778_S91_se`, `UHM377.20779_S8_se`, `UHM38.3376_S36_se`, `UHM386.20781_S32_se`, `UHM387.20782_S44_se`, `UHM414.20583_S55_se`, `UHM418.20765_S30_se`, `UHM422.20766_S42_se`, `UHM425.20767_S54_se`, `UHM426.20534_S37_se`, `UHM428.20544_S62_se`, `UHM429.20559_S52_se`, `UHM435.20547_S3_se`, `UHM437.20768_S66_se`, `UHM439.20564_S17_se`, `UHM44.3526_S31_se`, `UHM445.20569_S77_se`, `UHM447.20783_S56_se`, `UHM448.20769_S78_se`, `UHM45.3539_S92_se`, `UHM454.20770_S90_se`, `UHM455.20785_S80_se`, `UHM458.20786_S92_se`, `UHM459.20787_S9_se`, `UHM461.20771_S7_se`, `UHM467.20772_S19_se`, `UHM470.20533_S25_se`, `UHM476.20414_S46_se`, `UHM478.20549_S27_se`, `UHM479.20551_S51_se`, `UHM481.20403_S9_se`, `UHM482.20590_S44_se`, `UHM483.20603_S10_se`, `UHM519.20582_S43_se`, `UHM520.20573_S30_se`, `UHM746.21478_S117_se`, `UHM747.21477_S106_se`, `UHM748.21467_S170_se`, `UHM748.21487_S129_se`, `UHM749.21479_S128_se`, `UHM759.21466_S159_se`, `UHM759.21486_S118_se`, `UHM775.21485_S107_se`, `UHM776.21482_S161_se`, `UHM777.21484_S183_se`, `UHM779.21468_S181_se`, `UHM779.21488_S140_se`, `UHM782.21480_S139_se`, `UHM810.21472_S138_se`, `UHM811.21471_S127_se`, `UHM813.21481_S150_se`, `UHM818.21469_S105_se`, `UHM818.21489_S151_se`, `UHM819.21473_S149_se`, `UHM820.21470_S116_se`, `UHM820.21490_S162_se`, `UHM827.21474_S160_se`, `UHM829.21476_S182_se`, `UHM832.21483_S172_se`, `UHM836.20385_S78_se`, `UHM837.20386_S90_se`, `UHM838.20387_S7_se`, `UHM891.20384_S66_se`, `UHM892.20532_S13_se`, `UHM893.20595_S9_se`, `UHM894.20540_S14_se`, `UHM895.20536_S61_se`, `UHM896.20601_S81_se`, `UHM897.20591_S56_se`, `UHM898.20394_S91_se`, `UHM899.20588_S20_se`, `UHM900.20395_S8_se`, `UHM901.20542_S38_se`, `UHM902.20584_S67_se`, `UHM903.20587_S8_se`, `UHM904.20567_S53_se`, `UHM905.20598_S45_se`, `UHM906.20565_S29_se`, `UHM907.20592_S68_se`, `UHM908.20396_S20_se`, `UHM909.20557_S28_se`, `UHM910.20562_S88_se`, `UHM965.20537_S73_se`, `UHM966.20743_S51_se`, `UHM967.20744_S63_se`, `UHM968.20571_S6_se`, `UHM969.20745_S75_se`, `UHM971.20746_S87_se`, `UHM973.20578_S90_se`, `UHM974.20432_S72_se`, `UHM975.20747_S4_se`, `UHM977.20748_S16_se`, `UHM978.20749_S28_se`, `UHM979.20750_S40_se`, `UHM980.20731_S2_se`, `UHM981.20539_S2_se`, `UHM982.20740_S15_se`, `UHM983.20556_S16_se`, `UHM984.20751_S52_se`, `UHM985.20752_S64_se`, `UHM988.20753_S76_se`, `UHM989.20754_S88_se`, `UHM991.20755_S5_se`, `UHM993.20741_S27_se`, `UHM996.20610_S94_se`, `UHM997.20553_S75_se`, `UHM998.20618_S95_se`, `UHM999.20617_S83_se`, `spiked.blank.20433_S84_q25`, `spiked.blank.20817_S84_q25`, `Std2uL.20625_S84_q25`, `StdSwab1uL.20624_S72_q25`, `STP1719.20422_S47_q25`, `STP213.20423_S59_q25`, `STP268.20424_S71_q25`, `STP544.20419_S11_q25`, `STP570.20420_S23_q25`, `STP579.20421_S35_q25`, `STP614.20418_S94_q25`, `UHM1000.20604_S22_q25`, `UHM1001.20609_S82_q25`, `UHM1007.20622_S48_q25`, `UHM1009.20614_S47_q25`, `UHM1010.20621_S36_q25`, `UHM1011.20606_S46_q25`, `UHM1024.20620_S24_q25`, `UHM1026.20607_S58_q25`, `UHM1028.20613_S35_q25`, `UHM1032.20605_S34_q25`, `UHM1033.20619_S12_q25`, `UHM1034.20616_S71_q25`, `UHM1035.20611_S11_q25`, `UHM1036.20612_S23_q25`, `UHM1052.20615_S59_q25`, `UHM1060.20723_S1_q25`, `UHM1065.20724_S13_q25`, `UHM1068.20732_S14_q25`, `UHM1069.20742_S39_q25`, `UHM1070.20725_S25_q25`, `UHM1071.20733_S26_q25`, `UHM1072.20734_S38_q25`, `UHM1073.20735_S50_q25`, `UHM1075.20726_S37_q25`, `UHM1077.20736_S62_q25`, `UHM1078.20727_S49_q25`, `UHM1080.20737_S74_q25`, `UHM1081.20728_S61_q25`, `UHM1088.20738_S86_q25`, `UHM1090.20739_S3_q25`, `UHM1093.20729_S73_q25`, `UHM1095.20730_S85_q25`, `UHM1097.20623_S60_q25`, `UHM1099.20608_S70_q25`, `UHM1100.20788_S21_q25`, `UHM1102.20789_S33_q25`, `UHM1104.20790_S45_q25`, `UHM1105.20791_S57_q25`, `UHM1109.20531_S1_q25`, `UHM1110.20568_S65_q25`, `UHM1113.20792_S69_q25`, `UHM1114.20793_S81_q25`, `UHM1115.20794_S93_q25`, `UHM1117.20795_S10_q25`, `UHM1118.20796_S22_q25`, `UHM1120.20797_S34_q25`, `UHM1124.20798_S46_q25`, `UHM1126.20799_S58_q25`, `UHM1128.20800_S70_q25`, `UHM1140.20555_S4_q25`, `UHM1145.20801_S82_q25`, `UHM1163.20405_S33_q25`, `UHM1164.20402_S92_q25`, `UHM1169.20552_S63_q25`, `UHM1171.20579_S7_q25`, `UHM1176.20404_S21_q25`, `UHM1177.20546_S86_q25`, `UHM1182.20576_S66_q25`, `UHM1210.20802_S94_q25`, `UHM1212.20803_S11_q25`, `UHM1217.20804_S23_q25`, `UHM1218.20805_S35_q25`, `UHM1219.20806_S47_q25`, `UHM1220.20807_S59_q25`, `UHM1221.20808_S71_q25`, `UHM1222.20809_S83_q25`, `UHM1223.20810_S95_q25`, `UHM1225.20811_S12_q25`, `UHM1227.20812_S24_q25`, `UHM1228.20813_S36_q25`, `UHM1237.20814_S48_q25`, `UHM1240.20566_S41_q25`, `UHM1246.20815_S60_q25`, `UHM1247.20816_S72_q25`, `UHM1248.20575_S54_q25`, `UHM1256.20570_S89_q25`, `UHM1260.20596_S21_q25`, `UHM1270.20577_S78_q25`, `UHM1271.20397_S32_q25`, `UHM1272.20398_S44_q25`, `UHM1274.20554_S87_q25`, `UHM1275.20597_S33_q25`, `UHM1282.20599_S57_q25`, `UHM1287.20543_S50_q25`, `UHM1291.20416_S70_q25`, `UHM1296.20550_S39_q25`, `UHM1319.20561_S76_q25`, `UHM1324.20413_S34_q25`, `UHM1327.20545_S74_q25`, `UHM1328.20572_S18_q25`, `UHM1334.20417_S82_q25`, `UHM1338.20399_S56_q25`, `UHM1341.20602_S93_q25`, `UHM1356.20541_S26_q25`, `UHM1380.20580_S19_q25`, `UHM1383.20594_S92_q25`, `UHM1385.20563_S5_q25`, `UHM1399.20756_S17_q25`, `UHM1400.20757_S29_q25`, `UHM1401.20758_S41_q25`, `UHM1402.20759_S53_q25`, `UHM1403.20760_S65_q25`, `UHM1405.20761_S77_q25`, `UHM1406.20762_S89_q25`, `UHM1414.20763_S6_q25`, `UHM1419.20764_S18_q25`, `UHM1427.20389_S31_q25`, `UHM1428.20390_S43_q25`, `UHM1429.20391_S55_q25`, `UHM1430.20392_S67_q25`, `UHM1432.20393_S79_q25`, `UHM1435.20388_S19_q25`, `UHM162.20560_S64_q25`, `UHM198.20585_S79_q25`, `UHM20.3314_S52_q25`, `UHM20.3315_S64_q25`, `UHM204.20409_S81_q25`, `UHM206.20410_S93_q25`, `UHM207.20593_S80_q25`, `UHM208.20411_S10_q25`, `UHM211.20406_S45_q25`, `UHM215.20408_S69_q25`, `UHM216.20429_S36_q25`, `UHM219.20430_S48_q25`, `UHM236.20431_S60_q25`, `UHM238.20407_S57_q25`, `UHM245.20538_S85_q25`, `UHM252.20558_S40_q25`, `UHM267.20400_S68_q25`, `UHM274.20581_S31_q25`, `UHM276.20586_S91_q25`, `UHM280.20401_S80_q25`, `UHM286.20425_S83_q25`, `UHM289.20426_S95_q25`, `UHM294.20427_S12_q25`, `UHM298.20600_S69_q25`, `UHM325.20548_S15_q25`, `UHM337.20412_S22_q25`, `UHM354.20535_S49_q25`, `UHM356.20415_S58_q25`, `UHM369.20773_S31_q25`, `UHM370.20774_S43_q25`, `UHM372.20775_S55_q25`, `UHM373.20776_S67_q25`, `UHM374.20777_S79_q25`, `UHM375.20778_S91_q25`, `UHM377.20779_S8_q25`, `UHM38.3376_S36_q25`, `UHM386.20781_S32_q25`, `UHM387.20782_S44_q25`, `UHM414.20583_S55_q25`, `UHM418.20765_S30_q25`, `UHM422.20766_S42_q25`, `UHM425.20767_S54_q25`, `UHM426.20534_S37_q25`, `UHM428.20544_S62_q25`, `UHM429.20559_S52_q25`, `UHM435.20547_S3_q25`, `UHM437.20768_S66_q25`, `UHM439.20564_S17_q25`, `UHM44.3526_S31_q25`, `UHM445.20569_S77_q25`, `UHM447.20783_S56_q25`, `UHM448.20769_S78_q25`, `UHM45.3539_S92_q25`, `UHM454.20770_S90_q25`, `UHM455.20785_S80_q25`, `UHM458.20786_S92_q25`, `UHM459.20787_S9_q25`, `UHM461.20771_S7_q25`, `UHM467.20772_S19_q25`, `UHM470.20533_S25_q25`, `UHM476.20414_S46_q25`, `UHM478.20549_S27_q25`, `UHM479.20551_S51_q25`, `UHM481.20403_S9_q25`, `UHM482.20590_S44_q25`, `UHM483.20603_S10_q25`, `UHM519.20582_S43_q25`, `UHM520.20573_S30_q25`, `UHM746.21478_S117_q25`, `UHM747.21477_S106_q25`, `UHM748.21467_S170_q25`, `UHM748.21487_S129_q25`, `UHM749.21479_S128_q25`, `UHM759.21466_S159_q25`, `UHM759.21486_S118_q25`, `UHM775.21485_S107_q25`, `UHM776.21482_S161_q25`, `UHM777.21484_S183_q25`, `UHM779.21468_S181_q25`, `UHM779.21488_S140_q25`, `UHM782.21480_S139_q25`, `UHM810.21472_S138_q25`, `UHM811.21471_S127_q25`, `UHM813.21481_S150_q25`, `UHM818.21469_S105_q25`, `UHM818.21489_S151_q25`, `UHM819.21473_S149_q25`, `UHM820.21470_S116_q25`, `UHM820.21490_S162_q25`, `UHM827.21474_S160_q25`, `UHM829.21476_S182_q25`, `UHM832.21483_S172_q25`, `UHM836.20385_S78_q25`, `UHM837.20386_S90_q25`, `UHM838.20387_S7_q25`, `UHM891.20384_S66_q25`, `UHM892.20532_S13_q25`, `UHM893.20595_S9_q25`, `UHM894.20540_S14_q25`, `UHM895.20536_S61_q25`, `UHM896.20601_S81_q25`, `UHM897.20591_S56_q25`, `UHM898.20394_S91_q25`, `UHM899.20588_S20_q25`, `UHM900.20395_S8_q25`, `UHM901.20542_S38_q25`, `UHM902.20584_S67_q25`, `UHM903.20587_S8_q25`, `UHM904.20567_S53_q25`, `UHM905.20598_S45_q25`, `UHM906.20565_S29_q25`, `UHM907.20592_S68_q25`, `UHM908.20396_S20_q25`, `UHM909.20557_S28_q25`, `UHM910.20562_S88_q25`, `UHM965.20537_S73_q25`, `UHM966.20743_S51_q25`, `UHM967.20744_S63_q25`, `UHM968.20571_S6_q25`, `UHM969.20745_S75_q25`, `UHM971.20746_S87_q25`, `UHM973.20578_S90_q25`, `UHM974.20432_S72_q25`, `UHM975.20747_S4_q25`, `UHM977.20748_S16_q25`, `UHM978.20749_S28_q25`, `UHM979.20750_S40_q25`, `UHM980.20731_S2_q25`, `UHM981.20539_S2_q25`, `UHM982.20740_S15_q25`, `UHM983.20556_S16_q25`, `UHM984.20751_S52_q25`, `UHM985.20752_S64_q25`, `UHM988.20753_S76_q25`, `UHM989.20754_S88_q25`, `UHM991.20755_S5_q25`, `UHM993.20741_S27_q25`, `UHM996.20610_S94_q25`, `UHM997.20553_S75_q25`, `UHM998.20618_S95_q25`, `UHM999.20617_S83_q25`, `spiked.blank.20433_S84_median`, `spiked.blank.20817_S84_median`, `Std2uL.20625_S84_median`, `StdSwab1uL.20624_S72_median`, `STP1719.20422_S47_median`, `STP213.20423_S59_median`, `STP268.20424_S71_median`, `STP544.20419_S11_median`, `STP570.20420_S23_median`, `STP579.20421_S35_median`, `STP614.20418_S94_median`, `UHM1000.20604_S22_median`, `UHM1001.20609_S82_median`, `UHM1007.20622_S48_median`, `UHM1009.20614_S47_median`, `UHM1010.20621_S36_median`, `UHM1011.20606_S46_median`, `UHM1024.20620_S24_median`, `UHM1026.20607_S58_median`, `UHM1028.20613_S35_median`, `UHM1032.20605_S34_median`, `UHM1033.20619_S12_median`, `UHM1034.20616_S71_median`, `UHM1035.20611_S11_median`, `UHM1036.20612_S23_median`, `UHM1052.20615_S59_median`, `UHM1060.20723_S1_median`, `UHM1065.20724_S13_median`, `UHM1068.20732_S14_median`, `UHM1069.20742_S39_median`, `UHM1070.20725_S25_median`, `UHM1071.20733_S26_median`, `UHM1072.20734_S38_median`, `UHM1073.20735_S50_median`, `UHM1075.20726_S37_median`, `UHM1077.20736_S62_median`, `UHM1078.20727_S49_median`, `UHM1080.20737_S74_median`, `UHM1081.20728_S61_median`, `UHM1088.20738_S86_median`, `UHM1090.20739_S3_median`, `UHM1093.20729_S73_median`, `UHM1095.20730_S85_median`, `UHM1097.20623_S60_median`, `UHM1099.20608_S70_median`, `UHM1100.20788_S21_median`, `UHM1102.20789_S33_median`, `UHM1104.20790_S45_median`, `UHM1105.20791_S57_median`, `UHM1109.20531_S1_median`, `UHM1110.20568_S65_median`, `UHM1113.20792_S69_median`, `UHM1114.20793_S81_median`, `UHM1115.20794_S93_median`, `UHM1117.20795_S10_median`, `UHM1118.20796_S22_median`, `UHM1120.20797_S34_median`, `UHM1124.20798_S46_median`, `UHM1126.20799_S58_median`, `UHM1128.20800_S70_median`, `UHM1140.20555_S4_median`, `UHM1145.20801_S82_median`, `UHM1163.20405_S33_median`, `UHM1164.20402_S92_median`, `UHM1169.20552_S63_median`, `UHM1171.20579_S7_median`, `UHM1176.20404_S21_median`, `UHM1177.20546_S86_median`, `UHM1182.20576_S66_median`, `UHM1210.20802_S94_median`, `UHM1212.20803_S11_median`, `UHM1217.20804_S23_median`, `UHM1218.20805_S35_median`, `UHM1219.20806_S47_median`, `UHM1220.20807_S59_median`, `UHM1221.20808_S71_median`, `UHM1222.20809_S83_median`, `UHM1223.20810_S95_median`, `UHM1225.20811_S12_median`, `UHM1227.20812_S24_median`, `UHM1228.20813_S36_median`, `UHM1237.20814_S48_median`, `UHM1240.20566_S41_median`, `UHM1246.20815_S60_median`, `UHM1247.20816_S72_median`, `UHM1248.20575_S54_median`, `UHM1256.20570_S89_median`, `UHM1260.20596_S21_median`, `UHM1270.20577_S78_median`, `UHM1271.20397_S32_median`, `UHM1272.20398_S44_median`, `UHM1274.20554_S87_median`, `UHM1275.20597_S33_median`, `UHM1282.20599_S57_median`, `UHM1287.20543_S50_median`, `UHM1291.20416_S70_median`, `UHM1296.20550_S39_median`, `UHM1319.20561_S76_median`, `UHM1324.20413_S34_median`, `UHM1327.20545_S74_median`, `UHM1328.20572_S18_median`, `UHM1334.20417_S82_median`, `UHM1338.20399_S56_median`, `UHM1341.20602_S93_median`, `UHM1356.20541_S26_median`, `UHM1380.20580_S19_median`, `UHM1383.20594_S92_median`, `UHM1385.20563_S5_median`, `UHM1399.20756_S17_median`, `UHM1400.20757_S29_median`, `UHM1401.20758_S41_median`, `UHM1402.20759_S53_median`, `UHM1403.20760_S65_median`, `UHM1405.20761_S77_median`, `UHM1406.20762_S89_median`, `UHM1414.20763_S6_median`, `UHM1419.20764_S18_median`, `UHM1427.20389_S31_median`, `UHM1428.20390_S43_median`, `UHM1429.20391_S55_median`, `UHM1430.20392_S67_median`, `UHM1432.20393_S79_median`, `UHM1435.20388_S19_median`, `UHM162.20560_S64_median`, `UHM198.20585_S79_median`, `UHM20.3314_S52_median`, `UHM20.3315_S64_median`, `UHM204.20409_S81_median`, `UHM206.20410_S93_median`, `UHM207.20593_S80_median`, `UHM208.20411_S10_median`, `UHM211.20406_S45_median`, `UHM215.20408_S69_median`, `UHM216.20429_S36_median`, `UHM219.20430_S48_median`, `UHM236.20431_S60_median`, `UHM238.20407_S57_median`, `UHM245.20538_S85_median`, `UHM252.20558_S40_median`, `UHM267.20400_S68_median`, `UHM274.20581_S31_median`, `UHM276.20586_S91_median`, `UHM280.20401_S80_median`, `UHM286.20425_S83_median`, `UHM289.20426_S95_median`, `UHM294.20427_S12_median`, `UHM298.20600_S69_median`, `UHM325.20548_S15_median`, `UHM337.20412_S22_median`, `UHM354.20535_S49_median`, `UHM356.20415_S58_median`, `UHM369.20773_S31_median`, `UHM370.20774_S43_median`, `UHM372.20775_S55_median`, `UHM373.20776_S67_median`, `UHM374.20777_S79_median`, `UHM375.20778_S91_median`, `UHM377.20779_S8_median`, `UHM38.3376_S36_median`, `UHM386.20781_S32_median`, `UHM387.20782_S44_median`, `UHM414.20583_S55_median`, `UHM418.20765_S30_median`, `UHM422.20766_S42_median`, `UHM425.20767_S54_median`, `UHM426.20534_S37_median`, `UHM428.20544_S62_median`, `UHM429.20559_S52_median`, `UHM435.20547_S3_median`, `UHM437.20768_S66_median`, `UHM439.20564_S17_median`, `UHM44.3526_S31_median`, `UHM445.20569_S77_median`, `UHM447.20783_S56_median`, `UHM448.20769_S78_median`, `UHM45.3539_S92_median`, `UHM454.20770_S90_median`, `UHM455.20785_S80_median`, `UHM458.20786_S92_median`, `UHM459.20787_S9_median`, `UHM461.20771_S7_median`, `UHM467.20772_S19_median`, `UHM470.20533_S25_median`, `UHM476.20414_S46_median`, `UHM478.20549_S27_median`, `UHM479.20551_S51_median`, `UHM481.20403_S9_median`, `UHM482.20590_S44_median`, `UHM483.20603_S10_median`, `UHM519.20582_S43_median`, `UHM520.20573_S30_median`, `UHM746.21478_S117_median`, `UHM747.21477_S106_median`, `UHM748.21467_S170_median`, `UHM748.21487_S129_median`, `UHM749.21479_S128_median`, `UHM759.21466_S159_median`, `UHM759.21486_S118_median`, `UHM775.21485_S107_median`, `UHM776.21482_S161_median`, `UHM777.21484_S183_median`, `UHM779.21468_S181_median`, `UHM779.21488_S140_median`, `UHM782.21480_S139_median`, `UHM810.21472_S138_median`, `UHM811.21471_S127_median`, `UHM813.21481_S150_median`, `UHM818.21469_S105_median`, `UHM818.21489_S151_median`, `UHM819.21473_S149_median`, `UHM820.21470_S116_median`, `UHM820.21490_S162_median`, `UHM827.21474_S160_median`, `UHM829.21476_S182_median`, `UHM832.21483_S172_median`, `UHM836.20385_S78_median`, `UHM837.20386_S90_median`, `UHM838.20387_S7_median`, `UHM891.20384_S66_median`, `UHM892.20532_S13_median`, `UHM893.20595_S9_median`, `UHM894.20540_S14_median`, `UHM895.20536_S61_median`, `UHM896.20601_S81_median`, `UHM897.20591_S56_median`, `UHM898.20394_S91_median`, `UHM899.20588_S20_median`, `UHM900.20395_S8_median`, `UHM901.20542_S38_median`, `UHM902.20584_S67_median`, `UHM903.20587_S8_median`, `UHM904.20567_S53_median`, `UHM905.20598_S45_median`, `UHM906.20565_S29_median`, `UHM907.20592_S68_median`, `UHM908.20396_S20_median`, `UHM909.20557_S28_median`, `UHM910.20562_S88_median`, `UHM965.20537_S73_median`, `UHM966.20743_S51_median`, `UHM967.20744_S63_median`, `UHM968.20571_S6_median`, `UHM969.20745_S75_median`, `UHM971.20746_S87_median`, `UHM973.20578_S90_median`, `UHM974.20432_S72_median`, `UHM975.20747_S4_median`, `UHM977.20748_S16_median`, `UHM978.20749_S28_median`, `UHM979.20750_S40_median`, `UHM980.20731_S2_median`, `UHM981.20539_S2_median`, `UHM982.20740_S15_median`, `UHM983.20556_S16_median`, `UHM984.20751_S52_median`, `UHM985.20752_S64_median`, `UHM988.20753_S76_median`, `UHM989.20754_S88_median`, `UHM991.20755_S5_median`, `UHM993.20741_S27_median`, `UHM996.20610_S94_median`, `UHM997.20553_S75_median`, `UHM998.20618_S95_median`, `UHM999.20617_S83_median`, `spiked.blank.20433_S84_q75`, `spiked.blank.20817_S84_q75`, `Std2uL.20625_S84_q75`, `StdSwab1uL.20624_S72_q75`, `STP1719.20422_S47_q75`, `STP213.20423_S59_q75`, `STP268.20424_S71_q75`, `STP544.20419_S11_q75`, `STP570.20420_S23_q75`, `STP579.20421_S35_q75`, `STP614.20418_S94_q75`, `UHM1000.20604_S22_q75`, `UHM1001.20609_S82_q75`, `UHM1007.20622_S48_q75`, `UHM1009.20614_S47_q75`, `UHM1010.20621_S36_q75`, `UHM1011.20606_S46_q75`, `UHM1024.20620_S24_q75`, `UHM1026.20607_S58_q75`, `UHM1028.20613_S35_q75`, `UHM1032.20605_S34_q75`, `UHM1033.20619_S12_q75`, `UHM1034.20616_S71_q75`, `UHM1035.20611_S11_q75`, `UHM1036.20612_S23_q75`, `UHM1052.20615_S59_q75`, `UHM1060.20723_S1_q75`, `UHM1065.20724_S13_q75`, `UHM1068.20732_S14_q75`, `UHM1069.20742_S39_q75`, `UHM1070.20725_S25_q75`, `UHM1071.20733_S26_q75`, `UHM1072.20734_S38_q75`, `UHM1073.20735_S50_q75`, `UHM1075.20726_S37_q75`, `UHM1077.20736_S62_q75`, `UHM1078.20727_S49_q75`, `UHM1080.20737_S74_q75`, `UHM1081.20728_S61_q75`, `UHM1088.20738_S86_q75`, `UHM1090.20739_S3_q75`, `UHM1093.20729_S73_q75`, `UHM1095.20730_S85_q75`, `UHM1097.20623_S60_q75`, `UHM1099.20608_S70_q75`, `UHM1100.20788_S21_q75`, `UHM1102.20789_S33_q75`, `UHM1104.20790_S45_q75`, `UHM1105.20791_S57_q75`, `UHM1109.20531_S1_q75`, `UHM1110.20568_S65_q75`, `UHM1113.20792_S69_q75`, `UHM1114.20793_S81_q75`, `UHM1115.20794_S93_q75`, `UHM1117.20795_S10_q75`, `UHM1118.20796_S22_q75`, `UHM1120.20797_S34_q75`, `UHM1124.20798_S46_q75`, `UHM1126.20799_S58_q75`, `UHM1128.20800_S70_q75`, `UHM1140.20555_S4_q75`, `UHM1145.20801_S82_q75`, `UHM1163.20405_S33_q75`, `UHM1164.20402_S92_q75`, `UHM1169.20552_S63_q75`, `UHM1171.20579_S7_q75`, `UHM1176.20404_S21_q75`, `UHM1177.20546_S86_q75`, `UHM1182.20576_S66_q75`, `UHM1210.20802_S94_q75`, `UHM1212.20803_S11_q75`, `UHM1217.20804_S23_q75`, `UHM1218.20805_S35_q75`, `UHM1219.20806_S47_q75`, `UHM1220.20807_S59_q75`, `UHM1221.20808_S71_q75`, `UHM1222.20809_S83_q75`, `UHM1223.20810_S95_q75`, `UHM1225.20811_S12_q75`, `UHM1227.20812_S24_q75`, `UHM1228.20813_S36_q75`, `UHM1237.20814_S48_q75`, `UHM1240.20566_S41_q75`, `UHM1246.20815_S60_q75`, `UHM1247.20816_S72_q75`, `UHM1248.20575_S54_q75`, `UHM1256.20570_S89_q75`, `UHM1260.20596_S21_q75`, `UHM1270.20577_S78_q75`, `UHM1271.20397_S32_q75`, `UHM1272.20398_S44_q75`, `UHM1274.20554_S87_q75`, `UHM1275.20597_S33_q75`, `UHM1282.20599_S57_q75`, `UHM1287.20543_S50_q75`, `UHM1291.20416_S70_q75`, `UHM1296.20550_S39_q75`, `UHM1319.20561_S76_q75`, `UHM1324.20413_S34_q75`, `UHM1327.20545_S74_q75`, `UHM1328.20572_S18_q75`, `UHM1334.20417_S82_q75`, `UHM1338.20399_S56_q75`, `UHM1341.20602_S93_q75`, `UHM1356.20541_S26_q75`, `UHM1380.20580_S19_q75`, `UHM1383.20594_S92_q75`, `UHM1385.20563_S5_q75`, `UHM1399.20756_S17_q75`, `UHM1400.20757_S29_q75`, `UHM1401.20758_S41_q75`, `UHM1402.20759_S53_q75`, `UHM1403.20760_S65_q75`, `UHM1405.20761_S77_q75`, `UHM1406.20762_S89_q75`, `UHM1414.20763_S6_q75`, `UHM1419.20764_S18_q75`, `UHM1427.20389_S31_q75`, `UHM1428.20390_S43_q75`, `UHM1429.20391_S55_q75`, `UHM1430.20392_S67_q75`, `UHM1432.20393_S79_q75`, `UHM1435.20388_S19_q75`, `UHM162.20560_S64_q75`, `UHM198.20585_S79_q75`, `UHM20.3314_S52_q75`, `UHM20.3315_S64_q75`, `UHM204.20409_S81_q75`, `UHM206.20410_S93_q75`, `UHM207.20593_S80_q75`, `UHM208.20411_S10_q75`, `UHM211.20406_S45_q75`, `UHM215.20408_S69_q75`, `UHM216.20429_S36_q75`, `UHM219.20430_S48_q75`, `UHM236.20431_S60_q75`, `UHM238.20407_S57_q75`, `UHM245.20538_S85_q75`, `UHM252.20558_S40_q75`, `UHM267.20400_S68_q75`, `UHM274.20581_S31_q75`, `UHM276.20586_S91_q75`, `UHM280.20401_S80_q75`, `UHM286.20425_S83_q75`, `UHM289.20426_S95_q75`, `UHM294.20427_S12_q75`, `UHM298.20600_S69_q75`, `UHM325.20548_S15_q75`, `UHM337.20412_S22_q75`, `UHM354.20535_S49_q75`, `UHM356.20415_S58_q75`, `UHM369.20773_S31_q75`, `UHM370.20774_S43_q75`, `UHM372.20775_S55_q75`, `UHM373.20776_S67_q75`, `UHM374.20777_S79_q75`, `UHM375.20778_S91_q75`, `UHM377.20779_S8_q75`, `UHM38.3376_S36_q75`, `UHM386.20781_S32_q75`, `UHM387.20782_S44_q75`, `UHM414.20583_S55_q75`, `UHM418.20765_S30_q75`, `UHM422.20766_S42_q75`, `UHM425.20767_S54_q75`, `UHM426.20534_S37_q75`, `UHM428.20544_S62_q75`, `UHM429.20559_S52_q75`, `UHM435.20547_S3_q75`, `UHM437.20768_S66_q75`, `UHM439.20564_S17_q75`, `UHM44.3526_S31_q75`, `UHM445.20569_S77_q75`, `UHM447.20783_S56_q75`, `UHM448.20769_S78_q75`, `UHM45.3539_S92_q75`, `UHM454.20770_S90_q75`, `UHM455.20785_S80_q75`, `UHM458.20786_S92_q75`, `UHM459.20787_S9_q75`, `UHM461.20771_S7_q75`, `UHM467.20772_S19_q75`, `UHM470.20533_S25_q75`, `UHM476.20414_S46_q75`, `UHM478.20549_S27_q75`, `UHM479.20551_S51_q75`, `UHM481.20403_S9_q75`, `UHM482.20590_S44_q75`, `UHM483.20603_S10_q75`, `UHM519.20582_S43_q75`, `UHM520.20573_S30_q75`, `UHM746.21478_S117_q75`, `UHM747.21477_S106_q75`, `UHM748.21467_S170_q75`, `UHM748.21487_S129_q75`, `UHM749.21479_S128_q75`, `UHM759.21466_S159_q75`, `UHM759.21486_S118_q75`, `UHM775.21485_S107_q75`, `UHM776.21482_S161_q75`, `UHM777.21484_S183_q75`, `UHM779.21468_S181_q75`, `UHM779.21488_S140_q75`, `UHM782.21480_S139_q75`, `UHM810.21472_S138_q75`, `UHM811.21471_S127_q75`, `UHM813.21481_S150_q75`, `UHM818.21469_S105_q75`, `UHM818.21489_S151_q75`, `UHM819.21473_S149_q75`, `UHM820.21470_S116_q75`, `UHM820.21490_S162_q75`, `UHM827.21474_S160_q75`, `UHM829.21476_S182_q75`, `UHM832.21483_S172_q75`, `UHM836.20385_S78_q75`, `UHM837.20386_S90_q75`, `UHM838.20387_S7_q75`, `UHM891.20384_S66_q75`, `UHM892.20532_S13_q75`, `UHM893.20595_S9_q75`, `UHM894.20540_S14_q75`, `UHM895.20536_S61_q75`, `UHM896.20601_S81_q75`, `UHM897.20591_S56_q75`, `UHM898.20394_S91_q75`, `UHM899.20588_S20_q75`, `UHM900.20395_S8_q75`, `UHM901.20542_S38_q75`, `UHM902.20584_S67_q75`, `UHM903.20587_S8_q75`, `UHM904.20567_S53_q75`, `UHM905.20598_S45_q75`, `UHM906.20565_S29_q75`, `UHM907.20592_S68_q75`, `UHM908.20396_S20_q75`, `UHM909.20557_S28_q75`, `UHM910.20562_S88_q75`, `UHM965.20537_S73_q75`, `UHM966.20743_S51_q75`, `UHM967.20744_S63_q75`, `UHM968.20571_S6_q75`, `UHM969.20745_S75_q75`, `UHM971.20746_S87_q75`, `UHM973.20578_S90_q75`, `UHM974.20432_S72_q75`, `UHM975.20747_S4_q75`, `UHM977.20748_S16_q75`, `UHM978.20749_S28_q75`, `UHM979.20750_S40_q75`, `UHM980.20731_S2_q75`, `UHM981.20539_S2_q75`, `UHM982.20740_S15_q75`, `UHM983.20556_S16_q75`, `UHM984.20751_S52_q75`, `UHM985.20752_S64_q75`, `UHM988.20753_S76_q75`, `UHM989.20754_S88_q75`, `UHM991.20755_S5_q75`, `UHM993.20741_S27_q75`, `UHM996.20610_S94_q75`, `UHM997.20553_S75_q75`, `UHM998.20618_S95_q75`, `UHM999.20617_S83_q75`
#> header has 1 row(s)
#> body has 1 row(s)
#> original dataset sample:
#> spiked.blank.20433_S84_mean spiked.blank.20817_S84_mean Std2uL.20625_S84_mean
#> 1 0.1981972 0.1983045 0.1981972
#> StdSwab1uL.20624_S72_mean STP1719.20422_S47_mean STP213.20423_S59_mean
#> 1 0.1368173 0.2609722 20.20753
#> STP268.20424_S71_mean STP544.20419_S11_mean STP570.20420_S23_mean
#> 1 81.28426 0.2052795 0.6382659
#> STP579.20421_S35_mean STP614.20418_S94_mean UHM1000.20604_S22_mean
#> 1 0.5850413 0.0005365383 4.67078
#> UHM1001.20609_S82_mean UHM1007.20622_S48_mean UHM1009.20614_S47_mean
#> 1 4.220303 9.279215 19.50231
#> UHM1010.20621_S36_mean UHM1011.20606_S46_mean UHM1024.20620_S24_mean
#> 1 0.657474 8.698358 0.2920914
#> UHM1026.20607_S58_mean UHM1028.20613_S35_mean UHM1032.20605_S34_mean
#> 1 0.8052366 0.2815753 0.1513038
#> UHM1033.20619_S12_mean UHM1034.20616_S71_mean UHM1035.20611_S11_mean
#> 1 0.1036592 83.96169 0.869192
#> UHM1036.20612_S23_mean UHM1052.20615_S59_mean UHM1060.20723_S1_mean
#> 1 0.9270308 10.58322 0.222878
#> UHM1065.20724_S13_mean UHM1068.20732_S14_mean UHM1069.20742_S39_mean
#> 1 0.2558214 2.061702 9.492649
#> UHM1070.20725_S25_mean UHM1071.20733_S26_mean UHM1072.20734_S38_mean
#> 1 1.193154 7.178023 0.4576671
#> UHM1073.20735_S50_mean UHM1075.20726_S37_mean UHM1077.20736_S62_mean
#> 1 13.87842 1.300676 25.76349
#> UHM1078.20727_S49_mean UHM1080.20737_S74_mean UHM1081.20728_S61_mean
#> 1 5.243052 25.54341 0.2272776
#> UHM1088.20738_S86_mean UHM1090.20739_S3_mean UHM1093.20729_S73_mean
#> 1 5.187681 0.4575598 1.195944
#> UHM1095.20730_S85_mean UHM1097.20623_S60_mean UHM1099.20608_S70_mean
#> 1 0.3734306 0.1777015 15.15388
#> UHM1100.20788_S21_mean UHM1102.20789_S33_mean UHM1104.20790_S45_mean
#> 1 12.89892 4.421826 8.144651
#> UHM1105.20791_S57_mean UHM1109.20531_S1_mean UHM1110.20568_S65_mean
#> 1 3.167722 5.334263 27.68698
#> UHM1113.20792_S69_mean UHM1114.20793_S81_mean UHM1115.20794_S93_mean
#> 1 40.20474 2.767357 5.75566
#> UHM1117.20795_S10_mean UHM1118.20796_S22_mean UHM1120.20797_S34_mean
#> 1 12.93089 4.277605 0.6918124
#> UHM1124.20798_S46_mean UHM1126.20799_S58_mean UHM1128.20800_S70_mean
#> 1 2.147333 6.110956 8.153986
#> UHM1140.20555_S4_mean UHM1145.20801_S82_mean UHM1163.20405_S33_mean
#> 1 15.55854 14.61777 7.155918
#> UHM1164.20402_S92_mean UHM1169.20552_S63_mean UHM1171.20579_S7_mean
#> 1 60.18596 0.2239511 10.15517
#> UHM1176.20404_S21_mean UHM1177.20546_S86_mean UHM1182.20576_S66_mean
#> 1 16.52473 0.7512609 2.073398
#> UHM1210.20802_S94_mean UHM1212.20803_S11_mean UHM1217.20804_S23_mean
#> 1 11.54963 3.811246 7.174268
#> UHM1218.20805_S35_mean UHM1219.20806_S47_mean UHM1220.20807_S59_mean
#> 1 4.585041 7.914047 9.221376
#> UHM1221.20808_S71_mean UHM1222.20809_S83_mean UHM1223.20810_S95_mean
#> 1 4.034231 0.5839682 12.2628
#> UHM1225.20811_S12_mean UHM1227.20812_S24_mean UHM1228.20813_S36_mean
#> 1 5.180277 2.250456 15.81189
#> UHM1237.20814_S48_mean UHM1240.20566_S41_mean UHM1246.20815_S60_mean
#> 1 2.682584 3.768215 1.731731
#> UHM1247.20816_S72_mean UHM1248.20575_S54_mean UHM1256.20570_S89_mean
#> 1 2.849125 0.8204743 3.805022
#> UHM1260.20596_S21_mean UHM1270.20577_S78_mean UHM1271.20397_S32_mean
#> 1 3.68076 1.307329 2.05741
#> UHM1272.20398_S44_mean UHM1274.20554_S87_mean UHM1275.20597_S33_mean
#> 1 1.121472 3.482133 1.616161
#> UHM1282.20599_S57_mean UHM1287.20543_S50_mean UHM1291.20416_S70_mean
#> 1 0.7013628 1.152377 7.973924
#> UHM1296.20550_S39_mean UHM1319.20561_S76_mean UHM1324.20413_S34_mean
#> 1 22.27921 1.253246 4.852667
#> UHM1327.20545_S74_mean UHM1328.20572_S18_mean UHM1334.20417_S82_mean
#> 1 29.27417 0.9950638 8.214508
#> UHM1338.20399_S56_mean UHM1341.20602_S93_mean UHM1356.20541_S26_mean
#> 1 2.824767 0.518296 2.263226
#> UHM1380.20580_S19_mean UHM1383.20594_S92_mean UHM1385.20563_S5_mean
#> 1 7.7254 3.038523 0.2324284
#> UHM1399.20756_S17_mean UHM1400.20757_S29_mean UHM1401.20758_S41_mean
#> 1 1.223629 5.290267 0.5350359
#> UHM1402.20759_S53_mean UHM1403.20760_S65_mean UHM1405.20761_S77_mean
#> 1 8.466359 5.181886 5.486211
#> UHM1406.20762_S89_mean UHM1414.20763_S6_mean UHM1419.20764_S18_mean
#> 1 9.705333 12.17684 2.381157
#> UHM1427.20389_S31_mean UHM1428.20390_S43_mean UHM1429.20391_S55_mean
#> 1 10.06041 0.4863183 26.44221
#> UHM1430.20392_S67_mean UHM1432.20393_S79_mean UHM1435.20388_S19_mean
#> 1 90.81082 44.62711 0.9971027
#> UHM162.20560_S64_mean UHM198.20585_S79_mean UHM20.3314_S52_mean
#> 1 3.980685 0.6021032 143.3243
#> UHM20.3315_S64_mean UHM204.20409_S81_mean UHM206.20410_S93_mean
#> 1 37.78399 17.18629 0.0561219
#> UHM207.20593_S80_mean UHM208.20411_S10_mean UHM211.20406_S45_mean
#> 1 8.244232 3.658011 9.442751
#> UHM215.20408_S69_mean UHM216.20429_S36_mean UHM219.20430_S48_mean
#> 1 423.7458 22.29606 0.2049576
#> UHM236.20431_S60_mean UHM238.20407_S57_mean UHM245.20538_S85_mean
#> 1 21.41925 6.881318 59.54705
#> UHM252.20558_S40_mean UHM267.20400_S68_mean UHM274.20581_S31_mean
#> 1 1.529134 19.67808 1.469578
#> UHM276.20586_S91_mean UHM280.20401_S80_mean UHM286.20425_S83_mean
#> 1 2.314733 3.794506 14.05226
#> UHM289.20426_S95_mean UHM294.20427_S12_mean UHM298.20600_S69_mean
#> 1 0.6441678 1.843224 10.85814
#> UHM325.20548_S15_mean UHM337.20412_S22_mean UHM354.20535_S49_mean
#> 1 2.635691 3.501663 6.310226
#> UHM356.20415_S58_mean UHM369.20773_S31_mean UHM370.20774_S43_mean
#> 1 4.688057 8.536431 9.491898
#> UHM372.20775_S55_mean UHM373.20776_S67_mean UHM374.20777_S79_mean
#> 1 2.26623 12.12855 10.30604
#> UHM375.20778_S91_mean UHM377.20779_S8_mean UHM38.3376_S36_mean
#> 1 2.042601 3.141968 3.12394
#> UHM386.20781_S32_mean UHM387.20782_S44_mean UHM414.20583_S55_mean
#> 1 5.817792 7.34435 29.86962
#> UHM418.20765_S30_mean UHM422.20766_S42_mean UHM425.20767_S54_mean
#> 1 5.006546 1.11836 7.104625
#> UHM426.20534_S37_mean UHM428.20544_S62_mean UHM429.20559_S52_mean
#> 1 0.5824659 1.468934 2.276317
#> UHM435.20547_S3_mean UHM437.20768_S66_mean UHM439.20564_S17_mean
#> 1 1.434381 15.94388 10.34456
#> UHM44.3526_S31_mean UHM445.20569_S77_mean UHM447.20783_S56_mean
#> 1 0.5913725 9.658332 18.06524
#> UHM448.20769_S78_mean UHM45.3539_S92_mean UHM454.20770_S90_mean
#> 1 3.022642 3.779483 4.693422
#> UHM455.20785_S80_mean UHM458.20786_S92_mean UHM459.20787_S9_mean
#> 1 1.611868 11.0162 11.47741
#> UHM461.20771_S7_mean UHM467.20772_S19_mean UHM470.20533_S25_mean
#> 1 8.334371 20.96727 0.9901277
#> UHM476.20414_S46_mean UHM478.20549_S27_mean UHM479.20551_S51_mean
#> 1 2.16182 2.982294 0.2273849
#> UHM481.20403_S9_mean UHM482.20590_S44_mean UHM483.20603_S10_mean
#> 1 1.691383 0.2161176 9.698573
#> UHM519.20582_S43_mean UHM520.20573_S30_mean UHM746.21478_S117_mean
#> 1 23.67014 7.337804 0.09947419
#> UHM747.21477_S106_mean UHM748.21467_S170_mean UHM748.21487_S129_mean
#> 1 0.09915227 0.09915227 0.0995815
#> UHM749.21479_S128_mean UHM759.21466_S159_mean UHM759.21486_S118_mean
#> 1 0.09925958 0.09915227 0.1006546
#> UHM775.21485_S107_mean UHM776.21482_S161_mean UHM777.21484_S183_mean
#> 1 0.09904496 0.09904496 0.09925958
#> UHM779.21468_S181_mean UHM779.21488_S140_mean UHM782.21480_S139_mean
#> 1 0.0995815 0.09915227 0.09915227
#> UHM810.21472_S138_mean UHM811.21471_S127_mean UHM813.21481_S150_mean
#> 1 0.09904496 0.09947419 0.09915227
#> UHM818.21469_S105_mean UHM818.21489_S151_mean UHM819.21473_S149_mean
#> 1 0.09915227 0.1565619 0.09904496
#> UHM820.21470_S116_mean UHM820.21490_S162_mean UHM827.21474_S160_mean
#> 1 0.09915227 0.09968881 0.1003327
#> UHM829.21476_S182_mean UHM832.21483_S172_mean UHM836.20385_S78_mean
#> 1 0.09947419 0.1103123 0.324713
#> UHM837.20386_S90_mean UHM838.20387_S7_mean UHM891.20384_S66_mean
#> 1 0.2620453 78.01781 7.550059
#> UHM892.20532_S13_mean UHM893.20595_S9_mean UHM894.20540_S14_mean
#> 1 1.200987 123.7621 31.26033
#> UHM895.20536_S61_mean UHM896.20601_S81_mean UHM897.20591_S56_mean
#> 1 0.6334371 1.079193 1.47269
#> UHM898.20394_S91_mean UHM899.20588_S20_mean UHM900.20395_S8_mean
#> 1 0.06470651 87.48095 0.7078013
#> UHM901.20542_S38_mean UHM902.20584_S67_mean UHM903.20587_S8_mean
#> 1 26.48117 0.6804378 1.985513
#> UHM904.20567_S53_mean UHM905.20598_S45_mean UHM906.20565_S29_mean
#> 1 71.19616 7.266874 1.219015
#> UHM907.20592_S68_mean UHM908.20396_S20_mean UHM909.20557_S28_mean
#> 1 40.66338 0.8812104 6.285331
#> UHM910.20562_S88_mean UHM965.20537_S73_mean UHM966.20743_S51_mean
#> 1 37.22073 0.7596309 3.052581
#> UHM967.20744_S63_mean UHM968.20571_S6_mean UHM969.20745_S75_mean
#> 1 0.4530529 0.203348 40.41346
#> UHM971.20746_S87_mean UHM973.20578_S90_mean UHM974.20432_S72_mean
#> 1 136.9736 11.55553 0.1215796
#> UHM975.20747_S4_mean UHM977.20748_S16_mean UHM978.20749_S28_mean
#> 1 37.14873 15.63108 13.80009
#> UHM979.20750_S40_mean UHM980.20731_S2_mean UHM981.20539_S2_mean
#> 1 30.85621 3.059448 4.31366
#> UHM982.20740_S15_mean UHM983.20556_S16_mean UHM984.20751_S52_mean
#> 1 7.07254 0.2022749 35.41421
#> UHM985.20752_S64_mean UHM988.20753_S76_mean UHM989.20754_S88_mean
#> 1 0.6409486 2.547484 68.12179
#> UHM991.20755_S5_mean UHM993.20741_S27_mean UHM996.20610_S94_mean
#> 1 0.8934435 25.48943 1.579569
#> UHM997.20553_S75_mean UHM998.20618_S95_mean UHM999.20617_S83_mean
#> 1 1.317309 0.6405194 9.964267
#> spiked.blank.20433_S84_sd spiked.blank.20817_S84_sd Std2uL.20625_S84_sd
#> 1 19.13296 19.13297 19.13296
#> StdSwab1uL.20624_S72_sd STP1719.20422_S47_sd STP213.20423_S59_sd
#> 1 9.686204 19.2432 593.4313
#> STP268.20424_S71_sd STP544.20419_S11_sd STP570.20420_S23_sd
#> 1 2019.324 19.14093 42.92256
#> STP579.20421_S35_sd STP614.20418_S94_sd UHM1000.20604_S22_sd
#> 1 27.05749 0.03734784 97.60031
#> UHM1001.20609_S82_sd UHM1007.20622_S48_sd UHM1009.20614_S47_sd
#> 1 89.28446 432.5865 1489.475
#> UHM1010.20621_S36_sd UHM1011.20606_S46_sd UHM1024.20620_S24_sd
#> 1 14.2381 710.3862 11.73139
#> UHM1026.20607_S58_sd UHM1028.20613_S35_sd UHM1032.20605_S34_sd
#> 1 45.38805 10.93368 10.11923
#> UHM1033.20619_S12_sd UHM1034.20616_S71_sd UHM1035.20611_S11_sd
#> 1 9.573351 3220.642 37.08986
#> UHM1036.20612_S23_sd UHM1052.20615_S59_sd UHM1060.20723_S1_sd
#> 1 41.95557 547.829 19.14295
#> UHM1065.20724_S13_sd UHM1068.20732_S14_sd UHM1069.20742_S39_sd
#> 1 19.19258 44.23078 726.0189
#> UHM1070.20725_S25_sd UHM1071.20733_S26_sd UHM1072.20734_S38_sd
#> 1 52.32642 399.3209 19.64715
#> UHM1073.20735_S50_sd UHM1075.20726_S37_sd UHM1077.20736_S62_sd
#> 1 315.7103 47.91333 2246.436
#> UHM1078.20727_S49_sd UHM1080.20737_S74_sd UHM1081.20728_S61_sd
#> 1 154.9411 840.4478 19.31285
#> UHM1088.20738_S86_sd UHM1090.20739_S3_sd UHM1093.20729_S73_sd
#> 1 134.1664 19.88765 55.40129
#> UHM1095.20730_S85_sd UHM1097.20623_S60_sd UHM1099.20608_S70_sd
#> 1 20.14066 9.957377 1448.161
#> UHM1100.20788_S21_sd UHM1102.20789_S33_sd UHM1104.20790_S45_sd
#> 1 558.7219 92.13501 448.1184
#> UHM1105.20791_S57_sd UHM1109.20531_S1_sd UHM1110.20568_S65_sd
#> 1 116.2209 482.5799 526.0038
#> UHM1113.20792_S69_sd UHM1114.20793_S81_sd UHM1115.20794_S93_sd
#> 1 3277.214 123.4761 320.3602
#> UHM1117.20795_S10_sd UHM1118.20796_S22_sd UHM1120.20797_S34_sd
#> 1 387.4926 129.4337 35.96314
#> UHM1124.20798_S46_sd UHM1126.20799_S58_sd UHM1128.20800_S70_sd
#> 1 40.77466 142.1376 523.7844
#> UHM1140.20555_S4_sd UHM1145.20801_S82_sd UHM1163.20405_S33_sd
#> 1 943.9256 786.7941 197.9178
#> UHM1164.20402_S92_sd UHM1169.20552_S63_sd UHM1171.20579_S7_sd
#> 1 3288.218 19.18331 201.3854
#> UHM1176.20404_S21_sd UHM1177.20546_S86_sd UHM1182.20576_S66_sd
#> 1 639.2037 22.65039 79.47168
#> UHM1210.20802_S94_sd UHM1212.20803_S11_sd UHM1217.20804_S23_sd
#> 1 185.1057 105.4719 291.9855
#> UHM1218.20805_S35_sd UHM1219.20806_S47_sd UHM1220.20807_S59_sd
#> 1 136.8927 275.4189 341.1107
#> UHM1221.20808_S71_sd UHM1222.20809_S83_sd UHM1223.20810_S95_sd
#> 1 132.0045 25.61313 368.8874
#> UHM1225.20811_S12_sd UHM1227.20812_S24_sd UHM1228.20813_S36_sd
#> 1 105.148 49.84736 342.4407
#> UHM1237.20814_S48_sd UHM1240.20566_S41_sd UHM1246.20815_S60_sd
#> 1 88.53489 107.3952 43.69519
#> UHM1247.20816_S72_sd UHM1248.20575_S54_sd UHM1256.20570_S89_sd
#> 1 93.54648 33.85625 133.8458
#> UHM1260.20596_S21_sd UHM1270.20577_S78_sd UHM1271.20397_S32_sd
#> 1 119.9599 50.01793 68.88877
#> UHM1272.20398_S44_sd UHM1274.20554_S87_sd UHM1275.20597_S33_sd
#> 1 49.13817 229.7002 37.93416
#> UHM1282.20599_S57_sd UHM1287.20543_S50_sd UHM1291.20416_S70_sd
#> 1 22.26787 65.59865 196.0903
#> UHM1296.20550_S39_sd UHM1319.20561_S76_sd UHM1324.20413_S34_sd
#> 1 1028.087 47.15055 83.69937
#> UHM1327.20545_S74_sd UHM1328.20572_S18_sd UHM1334.20417_S82_sd
#> 1 851.0073 34.8352 297.2343
#> UHM1338.20399_S56_sd UHM1341.20602_S93_sd UHM1356.20541_S26_sd
#> 1 124.0839 25.00839 52.47891
#> UHM1380.20580_S19_sd UHM1383.20594_S92_sd UHM1385.20563_S5_sd
#> 1 234.9112 89.97152 19.24118
#> UHM1399.20756_S17_sd UHM1400.20757_S29_sd UHM1401.20758_S41_sd
#> 1 36.75585 319.9697 22.30779
#> UHM1402.20759_S53_sd UHM1403.20760_S65_sd UHM1405.20761_S77_sd
#> 1 191.0761 133.7241 125.8234
#> UHM1406.20762_S89_sd UHM1414.20763_S6_sd UHM1419.20764_S18_sd
#> 1 176.6388 275.7595 56.67871
#> UHM1427.20389_S31_sd UHM1428.20390_S43_sd UHM1429.20391_S55_sd
#> 1 417.0892 13.64804 1495.366
#> UHM1430.20392_S67_sd UHM1432.20393_S79_sd UHM1435.20388_S19_sd
#> 1 3136.821 1847.109 35.92044
#> UHM162.20560_S64_sd UHM198.20585_S79_sd UHM20.3314_S52_sd UHM20.3315_S64_sd
#> 1 138.2289 25.62098 10688.68 2104.592
#> UHM204.20409_S81_sd UHM206.20410_S93_sd UHM207.20593_S80_sd
#> 1 757.8052 2.096145 538.2722
#> UHM208.20411_S10_sd UHM211.20406_S45_sd UHM215.20408_S69_sd
#> 1 84.48942 700.0161 39573.74
#> UHM216.20429_S36_sd UHM219.20430_S48_sd UHM236.20431_S60_sd
#> 1 1788.612 19.13491 1012.656
#> UHM238.20407_S57_sd UHM245.20538_S85_sd UHM252.20558_S40_sd
#> 1 367.4016 3699.979 35.07222
#> UHM267.20400_S68_sd UHM274.20581_S31_sd UHM276.20586_S91_sd
#> 1 922.643 42.82979 104.0571
#> UHM280.20401_S80_sd UHM286.20425_S83_sd UHM289.20426_S95_sd
#> 1 193.8901 804.7789 47.10995
#> UHM294.20427_S12_sd UHM298.20600_S69_sd UHM325.20548_S15_sd
#> 1 53.40157 655.8324 85.02035
#> UHM337.20412_S22_sd UHM354.20535_S49_sd UHM356.20415_S58_sd
#> 1 69.99359 135.4667 134.8594
#> UHM369.20773_S31_sd UHM370.20774_S43_sd UHM372.20775_S55_sd
#> 1 179.4205 269.2813 69.98738
#> UHM373.20776_S67_sd UHM374.20777_S79_sd UHM375.20778_S91_sd
#> 1 389.8585 228.4251 49.65481
#> UHM377.20779_S8_sd UHM38.3376_S36_sd UHM386.20781_S32_sd UHM387.20782_S44_sd
#> 1 115.8597 216.5197 133.6554 227.6595
#> UHM414.20583_S55_sd UHM418.20765_S30_sd UHM422.20766_S42_sd
#> 1 1008.865 122.4824 31.83723
#> UHM425.20767_S54_sd UHM426.20534_S37_sd UHM428.20544_S62_sd
#> 1 169.2548 21.08198 81.53644
#> UHM429.20559_S52_sd UHM435.20547_S3_sd UHM437.20768_S66_sd
#> 1 49.87358 33.8204 475.3522
#> UHM439.20564_S17_sd UHM44.3526_S31_sd UHM445.20569_S77_sd UHM447.20783_S56_sd
#> 1 347.2478 32.22866 317.3092 367.2804
#> UHM448.20769_S78_sd UHM45.3539_S92_sd UHM454.20770_S90_sd UHM455.20785_S80_sd
#> 1 102.3915 252.4649 158.5003 45.90983
#> UHM458.20786_S92_sd UHM459.20787_S9_sd UHM461.20771_S7_sd UHM467.20772_S19_sd
#> 1 351.8423 461.4113 230.9941 704.8089
#> UHM470.20533_S25_sd UHM476.20414_S46_sd UHM478.20549_S27_sd
#> 1 54.77053 88.39812 232.8045
#> UHM479.20551_S51_sd UHM481.20403_S9_sd UHM482.20590_S44_sd
#> 1 19.27435 41.84811 19.16044
#> UHM483.20603_S10_sd UHM519.20582_S43_sd UHM520.20573_S30_sd
#> 1 496.7822 1148.985 217.3543
#> UHM746.21478_S117_sd UHM747.21477_S106_sd UHM748.21467_S170_sd
#> 1 9.571675 9.571661 9.571661
#> UHM748.21487_S129_sd UHM749.21479_S128_sd UHM759.21466_S159_sd
#> 1 9.57169 9.571666 9.571661
#> UHM759.21486_S118_sd UHM775.21485_S107_sd UHM776.21482_S161_sd
#> 1 9.571802 9.561302 9.561302
#> UHM777.21484_S183_sd UHM779.21468_S181_sd UHM779.21488_S140_sd
#> 1 9.571666 9.571679 9.571661
#> UHM782.21480_S139_sd UHM810.21472_S138_sd UHM811.21471_S127_sd
#> 1 9.571661 9.561302 9.571686
#> UHM813.21481_S150_sd UHM818.21469_S105_sd UHM818.21489_S151_sd
#> 1 9.571661 9.571661 9.973697
#> UHM819.21473_S149_sd UHM820.21470_S116_sd UHM820.21490_S162_sd
#> 1 9.561302 9.571661 9.571796
#> UHM827.21474_S160_sd UHM829.21476_S182_sd UHM832.21483_S172_sd
#> 1 9.572024 9.571675 9.631984
#> UHM836.20385_S78_sd UHM837.20386_S90_sd UHM838.20387_S7_sd
#> 1 15.39253 11.95027 2404.314
#> UHM891.20384_S66_sd UHM892.20532_S13_sd UHM893.20595_S9_sd
#> 1 229.0652 54.37307 4917.516
#> UHM894.20540_S14_sd UHM895.20536_S61_sd UHM896.20601_S81_sd
#> 1 1660.413 24.94491 30.44526
#> UHM897.20591_S56_sd UHM898.20394_S91_sd UHM899.20588_S20_sd
#> 1 73.43847 2.858507 1962.12
#> UHM900.20395_S8_sd UHM901.20542_S38_sd UHM902.20584_S67_sd UHM903.20587_S8_sd
#> 1 20.02182 910.6987 30.14459 90.61732
#> UHM904.20567_S53_sd UHM905.20598_S45_sd UHM906.20565_S29_sd
#> 1 4545.268 169.3084 48.374
#> UHM907.20592_S68_sd UHM908.20396_S20_sd UHM909.20557_S28_sd
#> 1 1852.122 30.94928 300.3736
#> UHM910.20562_S88_sd UHM965.20537_S73_sd UHM966.20743_S51_sd
#> 1 1237.545 26.14523 82.9602
#> UHM967.20744_S63_sd UHM968.20571_S6_sd UHM969.20745_S75_sd
#> 1 11.91557 19.13539 1222.199
#> UHM971.20746_S87_sd UHM973.20578_S90_sd UHM974.20432_S72_sd
#> 1 7852.579 464.5197 7.369624
#> UHM975.20747_S4_sd UHM977.20748_S16_sd UHM978.20749_S28_sd
#> 1 918.8867 397.3849 501.1021
#> UHM979.20750_S40_sd UHM980.20731_S2_sd UHM981.20539_S2_sd UHM982.20740_S15_sd
#> 1 680.8112 182.0777 203.6353 226.6291
#> UHM983.20556_S16_sd UHM984.20751_S52_sd UHM985.20752_S64_sd
#> 1 19.13322 906.354 23.1853
#> UHM988.20753_S76_sd UHM989.20754_S88_sd UHM991.20755_S5_sd
#> 1 74.59242 1255.675 23.54237
#> UHM993.20741_S27_sd UHM996.20610_S94_sd UHM997.20553_S75_sd
#> 1 640.533 114.962 101.8932
#> UHM998.20618_S95_sd UHM999.20617_S83_sd spiked.blank.20433_S84_se
#> 1 16.04605 366.2543 0.1981972
#> spiked.blank.20817_S84_se Std2uL.20625_S84_se StdSwab1uL.20624_S72_se
#> 1 0.1981972 0.1981972 0.1003388
#> STP1719.20422_S47_se STP213.20423_S59_se STP268.20424_S71_se
#> 1 0.1993392 6.147319 20.91806
#> STP544.20419_S11_se STP570.20420_S23_se STP579.20421_S35_se
#> 1 0.1982798 0.4446323 0.280287
#> STP614.20418_S94_se UHM1000.20604_S22_se UHM1001.20609_S82_se
#> 1 0.0003868841 1.011036 0.9248924
#> UHM1007.20622_S48_se UHM1009.20614_S47_se UHM1010.20621_S36_se
#> 1 4.481138 15.42938 0.1474916
#> UHM1011.20606_S46_se UHM1024.20620_S24_se UHM1026.20607_S58_se
#> 1 7.358849 0.1215248 0.4701721
#> UHM1028.20613_S35_se UHM1032.20605_S34_se UHM1033.20619_S12_se
#> 1 0.1132613 0.1048245 0.09916978
#> UHM1034.20616_S71_se UHM1035.20611_S11_se UHM1036.20612_S23_se
#> 1 33.36244 0.3842116 0.4346153
#> UHM1052.20615_S59_se UHM1060.20723_S1_se UHM1065.20724_S13_se
#> 1 5.674928 0.1983007 0.1988148
#> UHM1068.20732_S14_se UHM1069.20742_S39_se UHM1070.20725_S25_se
#> 1 0.458184 7.520787 0.5420463
#> UHM1071.20733_S26_se UHM1072.20734_S38_se UHM1073.20735_S50_se
#> 1 4.136542 0.2035237 3.270424
#> UHM1075.20726_S37_se UHM1077.20736_S62_se UHM1078.20727_S49_se
#> 1 0.4963314 23.2707 1.605026
#> UHM1080.20737_S74_se UHM1081.20728_S61_se UHM1088.20738_S86_se
#> 1 8.706148 0.2000607 1.389822
#> UHM1090.20739_S3_se UHM1093.20729_S73_se UHM1095.20730_S85_se
#> 1 0.2060149 0.5738986 0.2086359
#> UHM1097.20623_S60_se UHM1099.20608_S70_se UHM1100.20788_S21_se
#> 1 0.1031479 15.00141 5.787767
#> UHM1102.20789_S33_se UHM1104.20790_S45_se UHM1105.20791_S57_se
#> 1 0.9544211 4.642032 1.203926
#> UHM1109.20531_S1_se UHM1110.20568_S65_se UHM1113.20792_S69_se
#> 1 4.999016 5.448842 33.94847
#> UHM1114.20793_S81_se UHM1115.20794_S93_se UHM1117.20795_S10_se
#> 1 1.279081 3.318593 4.014013
#> UHM1118.20796_S22_se UHM1120.20797_S34_se UHM1124.20798_S46_se
#> 1 1.340796 0.37254 0.4223823
#> UHM1126.20799_S58_se UHM1128.20800_S70_se UHM1140.20555_S4_se
#> 1 1.472395 5.425852 9.77807
#> UHM1145.20801_S82_se UHM1163.20405_S33_se UHM1164.20402_S92_se
#> 1 8.150354 2.050219 34.06245
#> UHM1169.20552_S63_se UHM1171.20579_S7_se UHM1176.20404_S21_se
#> 1 0.1987188 2.086139 6.621474
#> UHM1177.20546_S86_se UHM1182.20576_S66_se UHM1210.20802_S94_se
#> 1 0.2346341 0.8232424 1.917499
#> UHM1212.20803_S11_se UHM1217.20804_S23_se UHM1218.20805_S35_se
#> 1 1.092577 3.02466 1.418063
#> UHM1219.20806_S47_se UHM1220.20807_S59_se UHM1221.20808_S71_se
#> 1 2.853048 3.533546 1.367427
#> UHM1222.20809_S83_se UHM1223.20810_S95_se UHM1225.20811_S12_se
#> 1 0.2653249 3.821282 1.089221
#> UHM1227.20812_S24_se UHM1228.20813_S36_se UHM1237.20814_S48_se
#> 1 0.5163658 3.547323 0.9171277
#> UHM1240.20566_S41_se UHM1246.20815_S60_se UHM1247.20816_S72_se
#> 1 1.112501 0.4526359 0.9690424
#> UHM1248.20575_S54_se UHM1256.20570_S89_se UHM1260.20596_S21_se
#> 1 0.3507149 1.386501 1.242658
#> UHM1270.20577_S78_se UHM1271.20397_S32_se UHM1272.20398_S44_se
#> 1 0.5181327 0.7136147 0.5090194
#> UHM1274.20554_S87_se UHM1275.20597_S33_se UHM1282.20599_S57_se
#> 1 2.37945 0.3929578 0.2306715
#> UHM1287.20543_S50_se UHM1291.20416_S70_se UHM1296.20550_S39_se
#> 1 0.6795325 2.031288 10.64989
#> UHM1319.20561_S76_se UHM1324.20413_S34_se UHM1327.20545_S74_se
#> 1 0.4884298 0.8670368 8.815534
#> UHM1328.20572_S18_se UHM1334.20417_S82_se UHM1338.20399_S56_se
#> 1 0.3608558 3.079033 1.285378
#> UHM1341.20602_S93_se UHM1356.20541_S26_se UHM1380.20580_S19_se
#> 1 0.2590604 0.5436259 2.433431
#> UHM1383.20594_S92_se UHM1385.20563_S5_se UHM1399.20756_S17_se
#> 1 0.9320096 0.1993182 0.3807517
#> UHM1400.20757_S29_se UHM1401.20758_S41_se UHM1402.20759_S53_se
#> 1 3.314547 0.2310851 1.979346
#> UHM1403.20760_S65_se UHM1405.20761_S77_se UHM1406.20762_S89_se
#> 1 1.385241 1.303397 1.829791
#> UHM1414.20763_S6_se UHM1419.20764_S18_se UHM1427.20389_S31_se
#> 1 2.856576 0.5871314 4.320603
#> UHM1428.20390_S43_se UHM1429.20391_S55_se UHM1430.20392_S67_se
#> 1 0.1413792 15.4904 32.49415
#> UHM1432.20393_S79_se UHM1435.20388_S19_se UHM162.20560_S64_se
#> 1 19.13409 0.3720977 1.431905
#> UHM198.20585_S79_se UHM20.3314_S52_se UHM20.3315_S64_se UHM204.20409_S81_se
#> 1 0.2654062 110.7234 21.80134 7.850059
#> UHM206.20410_S93_se UHM207.20593_S80_se UHM208.20411_S10_se
#> 1 0.02171384 5.57593 0.8752209
#> UHM211.20406_S45_se UHM215.20408_S69_se UHM216.20429_S36_se
#> 1 7.251425 409.942 18.52813
#> UHM219.20430_S48_se UHM236.20431_S60_se UHM238.20407_S57_se
#> 1 0.1982174 10.49004 3.805892
#> UHM245.20538_S85_se UHM252.20558_S40_se UHM267.20400_S68_se
#> 1 38.32786 0.3633111 9.557605
#> UHM274.20581_S31_se UHM276.20586_S91_se UHM280.20401_S80_se
#> 1 0.4436713 1.077922 2.008496
#> UHM286.20425_S83_se UHM289.20426_S95_se UHM294.20427_S12_se
#> 1 8.336656 0.4880092 0.5531837
#> UHM298.20600_S69_se UHM325.20548_S15_se UHM337.20412_S22_se
#> 1 6.793729 0.8807207 0.7250595
#> UHM354.20535_S49_se UHM356.20415_S58_se UHM369.20773_S31_se
#> 1 1.403291 1.397001 1.858607
#> UHM370.20774_S43_se UHM372.20775_S55_se UHM373.20776_S67_se
#> 1 2.789469 0.7249951 4.038521
#> UHM374.20777_S79_se UHM375.20778_S91_se UHM377.20779_S8_se UHM38.3376_S36_se
#> 1 2.366242 0.5143713 1.200184 2.242914
#> UHM386.20781_S32_se UHM387.20782_S44_se UHM414.20583_S55_se
#> 1 1.384529 2.358311 10.45078
#> UHM418.20765_S30_se UHM422.20766_S42_se UHM425.20767_S54_se
#> 1 1.268788 0.3298 1.753301
#> UHM426.20534_S37_se UHM428.20544_S62_se UHM429.20559_S52_se
#> 1 0.218387 0.8446311 0.5166375
#> UHM435.20547_S3_se UHM437.20768_S66_se UHM439.20564_S17_se UHM44.3526_S31_se
#> 1 0.3503435 4.924145 3.59712 0.3338548
#> UHM445.20569_S77_se UHM447.20783_S56_se UHM448.20769_S78_se UHM45.3539_S92_se
#> 1 3.286987 3.804636 1.060668 2.615269
#> UHM454.20770_S90_se UHM455.20785_S80_se UHM458.20786_S92_se
#> 1 1.641896 0.4755773 3.644714
#> UHM459.20787_S9_se UHM461.20771_S7_se UHM467.20772_S19_se UHM470.20533_S25_se
#> 1 4.779732 2.392855 7.301074 0.5673647
#> UHM476.20414_S46_se UHM478.20549_S27_se UHM479.20551_S51_se
#> 1 0.9157109 2.411608 0.1996618
#> UHM481.20403_S9_se UHM482.20590_S44_se UHM483.20603_S10_se
#> 1 0.4335021 0.1984819 5.146137
#> UHM519.20582_S43_se UHM520.20573_S30_se UHM746.21478_S117_se
#> 1 11.90226 2.25156 0.09915241
#> UHM747.21477_S106_se UHM748.21467_S170_se UHM748.21487_S129_se
#> 1 0.09915227 0.09915227 0.09915257
#> UHM749.21479_S128_se UHM759.21466_S159_se UHM759.21486_S118_se
#> 1 0.09915232 0.09915227 0.09915373
#> UHM775.21485_S107_se UHM776.21482_S161_se UHM777.21484_S183_se
#> 1 0.09904496 0.09904496 0.09915232
#> UHM779.21468_S181_se UHM779.21488_S140_se UHM782.21480_S139_se
#> 1 0.09915246 0.09915227 0.09915227
#> UHM810.21472_S138_se UHM811.21471_S127_se UHM813.21481_S150_se
#> 1 0.09904496 0.09915253 0.09915227
#> UHM818.21469_S105_se UHM818.21489_S151_se UHM819.21473_S149_se
#> 1 0.09915227 0.1033169 0.09904496
#> UHM820.21470_S116_se UHM820.21490_S162_se UHM827.21474_S160_se
#> 1 0.09915227 0.09915366 0.09915603
#> UHM829.21476_S182_se UHM832.21483_S172_se UHM836.20385_S78_se
#> 1 0.09915241 0.09977715 0.1594503
#> UHM837.20386_S90_se UHM838.20387_S7_se UHM891.20384_S66_se
#> 1 0.1237921 24.90614 2.372873
#> UHM892.20532_S13_se UHM893.20595_S9_se UHM894.20540_S14_se
#> 1 0.5632474 50.94025 17.20012
#> UHM895.20536_S61_se UHM896.20601_S81_se UHM897.20591_S56_se
#> 1 0.2584028 0.3153806 0.7607448
#> UHM898.20394_S91_se UHM899.20588_S20_se UHM900.20395_S8_se
#> 1 0.02961111 20.32548 0.2074048
#> UHM901.20542_S38_se UHM902.20584_S67_se UHM903.20587_S8_se
#> 1 9.433874 0.312266 0.9386994
#> UHM904.20567_S53_se UHM905.20598_S45_se UHM906.20565_S29_se
#> 1 47.08416 1.753855 0.5011034
#> UHM907.20592_S68_se UHM908.20396_S20_se UHM909.20557_S28_se
#> 1 19.18602 0.3206017 3.111553
#> UHM910.20562_S88_se UHM965.20537_S73_se UHM966.20743_S51_se
#> 1 12.81966 0.2708369 0.8593798
#> UHM967.20744_S63_se UHM968.20571_S6_se UHM969.20745_S75_se
#> 1 0.1234327 0.1982224 12.66069
#> UHM971.20746_S87_se UHM973.20578_S90_se UHM974.20432_S72_se
#> 1 81.3444 4.811932 0.0763415
#> UHM975.20747_S4_se UHM977.20748_S16_se UHM978.20749_S28_se
#> 1 9.518693 4.116487 5.190887
#> UHM979.20750_S40_se UHM980.20731_S2_se UHM981.20539_S2_se UHM982.20740_S15_se
#> 1 7.052483 1.886132 2.109446 2.347637
#> UHM983.20556_S16_se UHM984.20751_S52_se UHM985.20752_S64_se
#> 1 0.1981999 9.388868 0.2401751
#> UHM988.20753_S76_se UHM989.20754_S88_se UHM991.20755_S5_se
#> 1 0.7726984 13.00746 0.243874
#> UHM993.20741_S27_se UHM996.20610_S94_se UHM997.20553_S75_se
#> 1 6.635243 1.190885 1.055506
#> UHM998.20618_S95_se UHM999.20617_S83_se spiked.blank.20433_S84_q25
#> 1 0.16622 3.794007 0
#> spiked.blank.20817_S84_q25 Std2uL.20625_S84_q25 StdSwab1uL.20624_S72_q25
#> 1 0 0 0
#> STP1719.20422_S47_q25 STP213.20423_S59_q25 STP268.20424_S71_q25
#> 1 0 0 0
#> STP544.20419_S11_q25 STP570.20420_S23_q25 STP579.20421_S35_q25
#> 1 0 0 0
#> STP614.20418_S94_q25 UHM1000.20604_S22_q25 UHM1001.20609_S82_q25
#> 1 0 0 0
#> UHM1007.20622_S48_q25 UHM1009.20614_S47_q25 UHM1010.20621_S36_q25
#> 1 0 0 0
#> UHM1011.20606_S46_q25 UHM1024.20620_S24_q25 UHM1026.20607_S58_q25
#> 1 0 0 0
#> UHM1028.20613_S35_q25 UHM1032.20605_S34_q25 UHM1033.20619_S12_q25
#> 1 0 0 0
#> UHM1034.20616_S71_q25 UHM1035.20611_S11_q25 UHM1036.20612_S23_q25
#> 1 0 0 0
#> UHM1052.20615_S59_q25 UHM1060.20723_S1_q25 UHM1065.20724_S13_q25
#> 1 0 0 0
#> UHM1068.20732_S14_q25 UHM1069.20742_S39_q25 UHM1070.20725_S25_q25
#> 1 0 0 0
#> UHM1071.20733_S26_q25 UHM1072.20734_S38_q25 UHM1073.20735_S50_q25
#> 1 0 0 0
#> UHM1075.20726_S37_q25 UHM1077.20736_S62_q25 UHM1078.20727_S49_q25
#> 1 0 0 0
#> UHM1080.20737_S74_q25 UHM1081.20728_S61_q25 UHM1088.20738_S86_q25
#> 1 0 0 0
#> UHM1090.20739_S3_q25 UHM1093.20729_S73_q25 UHM1095.20730_S85_q25
#> 1 0 0 0
#> UHM1097.20623_S60_q25 UHM1099.20608_S70_q25 UHM1100.20788_S21_q25
#> 1 0 0 0
#> UHM1102.20789_S33_q25 UHM1104.20790_S45_q25 UHM1105.20791_S57_q25
#> 1 0 0 0
#> UHM1109.20531_S1_q25 UHM1110.20568_S65_q25 UHM1113.20792_S69_q25
#> 1 0 0 0
#> UHM1114.20793_S81_q25 UHM1115.20794_S93_q25 UHM1117.20795_S10_q25
#> 1 0 0 0
#> UHM1118.20796_S22_q25 UHM1120.20797_S34_q25 UHM1124.20798_S46_q25
#> 1 0 0 0
#> UHM1126.20799_S58_q25 UHM1128.20800_S70_q25 UHM1140.20555_S4_q25
#> 1 0 0 0
#> UHM1145.20801_S82_q25 UHM1163.20405_S33_q25 UHM1164.20402_S92_q25
#> 1 0 0 0
#> UHM1169.20552_S63_q25 UHM1171.20579_S7_q25 UHM1176.20404_S21_q25
#> 1 0 0 0
#> UHM1177.20546_S86_q25 UHM1182.20576_S66_q25 UHM1210.20802_S94_q25
#> 1 0 0 0
#> UHM1212.20803_S11_q25 UHM1217.20804_S23_q25 UHM1218.20805_S35_q25
#> 1 0 0 0
#> UHM1219.20806_S47_q25 UHM1220.20807_S59_q25 UHM1221.20808_S71_q25
#> 1 0 0 0
#> UHM1222.20809_S83_q25 UHM1223.20810_S95_q25 UHM1225.20811_S12_q25
#> 1 0 0 0
#> UHM1227.20812_S24_q25 UHM1228.20813_S36_q25 UHM1237.20814_S48_q25
#> 1 0 0 0
#> UHM1240.20566_S41_q25 UHM1246.20815_S60_q25 UHM1247.20816_S72_q25
#> 1 0 0 0
#> UHM1248.20575_S54_q25 UHM1256.20570_S89_q25 UHM1260.20596_S21_q25
#> 1 0 0 0
#> UHM1270.20577_S78_q25 UHM1271.20397_S32_q25 UHM1272.20398_S44_q25
#> 1 0 0 0
#> UHM1274.20554_S87_q25 UHM1275.20597_S33_q25 UHM1282.20599_S57_q25
#> 1 0 0 0
#> UHM1287.20543_S50_q25 UHM1291.20416_S70_q25 UHM1296.20550_S39_q25
#> 1 0 0 0
#> UHM1319.20561_S76_q25 UHM1324.20413_S34_q25 UHM1327.20545_S74_q25
#> 1 0 0 0
#> UHM1328.20572_S18_q25 UHM1334.20417_S82_q25 UHM1338.20399_S56_q25
#> 1 0 0 0
#> UHM1341.20602_S93_q25 UHM1356.20541_S26_q25 UHM1380.20580_S19_q25
#> 1 0 0 0
#> UHM1383.20594_S92_q25 UHM1385.20563_S5_q25 UHM1399.20756_S17_q25
#> 1 0 0 0
#> UHM1400.20757_S29_q25 UHM1401.20758_S41_q25 UHM1402.20759_S53_q25
#> 1 0 0 0
#> UHM1403.20760_S65_q25 UHM1405.20761_S77_q25 UHM1406.20762_S89_q25
#> 1 0 0 0
#> UHM1414.20763_S6_q25 UHM1419.20764_S18_q25 UHM1427.20389_S31_q25
#> 1 0 0 0
#> UHM1428.20390_S43_q25 UHM1429.20391_S55_q25 UHM1430.20392_S67_q25
#> 1 0 0 0
#> UHM1432.20393_S79_q25 UHM1435.20388_S19_q25 UHM162.20560_S64_q25
#> 1 0 0 0
#> UHM198.20585_S79_q25 UHM20.3314_S52_q25 UHM20.3315_S64_q25
#> 1 0 0 0
#> UHM204.20409_S81_q25 UHM206.20410_S93_q25 UHM207.20593_S80_q25
#> 1 0 0 0
#> UHM208.20411_S10_q25 UHM211.20406_S45_q25 UHM215.20408_S69_q25
#> 1 0 0 0
#> UHM216.20429_S36_q25 UHM219.20430_S48_q25 UHM236.20431_S60_q25
#> 1 0 0 0
#> UHM238.20407_S57_q25 UHM245.20538_S85_q25 UHM252.20558_S40_q25
#> 1 0 0 0
#> UHM267.20400_S68_q25 UHM274.20581_S31_q25 UHM276.20586_S91_q25
#> 1 0 0 0
#> UHM280.20401_S80_q25 UHM286.20425_S83_q25 UHM289.20426_S95_q25
#> 1 0 0 0
#> UHM294.20427_S12_q25 UHM298.20600_S69_q25 UHM325.20548_S15_q25
#> 1 0 0 0
#> UHM337.20412_S22_q25 UHM354.20535_S49_q25 UHM356.20415_S58_q25
#> 1 0 0 0
#> UHM369.20773_S31_q25 UHM370.20774_S43_q25 UHM372.20775_S55_q25
#> 1 0 0 0
#> UHM373.20776_S67_q25 UHM374.20777_S79_q25 UHM375.20778_S91_q25
#> 1 0 0 0
#> UHM377.20779_S8_q25 UHM38.3376_S36_q25 UHM386.20781_S32_q25
#> 1 0 0 0
#> UHM387.20782_S44_q25 UHM414.20583_S55_q25 UHM418.20765_S30_q25
#> 1 0 0 0
#> UHM422.20766_S42_q25 UHM425.20767_S54_q25 UHM426.20534_S37_q25
#> 1 0 0 0
#> UHM428.20544_S62_q25 UHM429.20559_S52_q25 UHM435.20547_S3_q25
#> 1 0 0 0
#> UHM437.20768_S66_q25 UHM439.20564_S17_q25 UHM44.3526_S31_q25
#> 1 0 0 0
#> UHM445.20569_S77_q25 UHM447.20783_S56_q25 UHM448.20769_S78_q25
#> 1 0 0 0
#> UHM45.3539_S92_q25 UHM454.20770_S90_q25 UHM455.20785_S80_q25
#> 1 0 0 0
#> UHM458.20786_S92_q25 UHM459.20787_S9_q25 UHM461.20771_S7_q25
#> 1 0 0 0
#> UHM467.20772_S19_q25 UHM470.20533_S25_q25 UHM476.20414_S46_q25
#> 1 0 0 0
#> UHM478.20549_S27_q25 UHM479.20551_S51_q25 UHM481.20403_S9_q25
#> 1 0 0 0
#> UHM482.20590_S44_q25 UHM483.20603_S10_q25 UHM519.20582_S43_q25
#> 1 0 0 0
#> UHM520.20573_S30_q25 UHM746.21478_S117_q25 UHM747.21477_S106_q25
#> 1 0 0 0
#> UHM748.21467_S170_q25 UHM748.21487_S129_q25 UHM749.21479_S128_q25
#> 1 0 0 0
#> UHM759.21466_S159_q25 UHM759.21486_S118_q25 UHM775.21485_S107_q25
#> 1 0 0 0
#> UHM776.21482_S161_q25 UHM777.21484_S183_q25 UHM779.21468_S181_q25
#> 1 0 0 0
#> UHM779.21488_S140_q25 UHM782.21480_S139_q25 UHM810.21472_S138_q25
#> 1 0 0 0
#> UHM811.21471_S127_q25 UHM813.21481_S150_q25 UHM818.21469_S105_q25
#> 1 0 0 0
#> UHM818.21489_S151_q25 UHM819.21473_S149_q25 UHM820.21470_S116_q25
#> 1 0 0 0
#> UHM820.21490_S162_q25 UHM827.21474_S160_q25 UHM829.21476_S182_q25
#> 1 0 0 0
#> UHM832.21483_S172_q25 UHM836.20385_S78_q25 UHM837.20386_S90_q25
#> 1 0 0 0
#> UHM838.20387_S7_q25 UHM891.20384_S66_q25 UHM892.20532_S13_q25
#> 1 0 0 0
#> UHM893.20595_S9_q25 UHM894.20540_S14_q25 UHM895.20536_S61_q25
#> 1 0 0 0
#> UHM896.20601_S81_q25 UHM897.20591_S56_q25 UHM898.20394_S91_q25
#> 1 0 0 0
#> UHM899.20588_S20_q25 UHM900.20395_S8_q25 UHM901.20542_S38_q25
#> 1 0 0 0
#> UHM902.20584_S67_q25 UHM903.20587_S8_q25 UHM904.20567_S53_q25
#> 1 0 0 0
#> UHM905.20598_S45_q25 UHM906.20565_S29_q25 UHM907.20592_S68_q25
#> 1 0 0 0
#> UHM908.20396_S20_q25 UHM909.20557_S28_q25 UHM910.20562_S88_q25
#> 1 0 0 0
#> UHM965.20537_S73_q25 UHM966.20743_S51_q25 UHM967.20744_S63_q25
#> 1 0 0 0
#> UHM968.20571_S6_q25 UHM969.20745_S75_q25 UHM971.20746_S87_q25
#> 1 0 0 0
#> UHM973.20578_S90_q25 UHM974.20432_S72_q25 UHM975.20747_S4_q25
#> 1 0 0 0
#> UHM977.20748_S16_q25 UHM978.20749_S28_q25 UHM979.20750_S40_q25
#> 1 0 0 0
#> UHM980.20731_S2_q25 UHM981.20539_S2_q25 UHM982.20740_S15_q25
#> 1 0 0 0
#> UHM983.20556_S16_q25 UHM984.20751_S52_q25 UHM985.20752_S64_q25
#> 1 0 0 0
#> UHM988.20753_S76_q25 UHM989.20754_S88_q25 UHM991.20755_S5_q25
#> 1 0 0 0
#> UHM993.20741_S27_q25 UHM996.20610_S94_q25 UHM997.20553_S75_q25
#> 1 0 0 0
#> UHM998.20618_S95_q25 UHM999.20617_S83_q25 spiked.blank.20433_S84_median
#> 1 0 0 0
#> spiked.blank.20817_S84_median Std2uL.20625_S84_median
#> 1 0 0
#> StdSwab1uL.20624_S72_median STP1719.20422_S47_median STP213.20423_S59_median
#> 1 0 0 0
#> STP268.20424_S71_median STP544.20419_S11_median STP570.20420_S23_median
#> 1 0 0 0
#> STP579.20421_S35_median STP614.20418_S94_median UHM1000.20604_S22_median
#> 1 0 0 0
#> UHM1001.20609_S82_median UHM1007.20622_S48_median UHM1009.20614_S47_median
#> 1 0 0 0
#> UHM1010.20621_S36_median UHM1011.20606_S46_median UHM1024.20620_S24_median
#> 1 0 0 0
#> UHM1026.20607_S58_median UHM1028.20613_S35_median UHM1032.20605_S34_median
#> 1 0 0 0
#> UHM1033.20619_S12_median UHM1034.20616_S71_median UHM1035.20611_S11_median
#> 1 0 0 0
#> UHM1036.20612_S23_median UHM1052.20615_S59_median UHM1060.20723_S1_median
#> 1 0 0 0
#> UHM1065.20724_S13_median UHM1068.20732_S14_median UHM1069.20742_S39_median
#> 1 0 0 0
#> UHM1070.20725_S25_median UHM1071.20733_S26_median UHM1072.20734_S38_median
#> 1 0 0 0
#> UHM1073.20735_S50_median UHM1075.20726_S37_median UHM1077.20736_S62_median
#> 1 0 0 0
#> UHM1078.20727_S49_median UHM1080.20737_S74_median UHM1081.20728_S61_median
#> 1 0 0 0
#> UHM1088.20738_S86_median UHM1090.20739_S3_median UHM1093.20729_S73_median
#> 1 0 0 0
#> UHM1095.20730_S85_median UHM1097.20623_S60_median UHM1099.20608_S70_median
#> 1 0 0 0
#> UHM1100.20788_S21_median UHM1102.20789_S33_median UHM1104.20790_S45_median
#> 1 0 0 0
#> UHM1105.20791_S57_median UHM1109.20531_S1_median UHM1110.20568_S65_median
#> 1 0 0 0
#> UHM1113.20792_S69_median UHM1114.20793_S81_median UHM1115.20794_S93_median
#> 1 0 0 0
#> UHM1117.20795_S10_median UHM1118.20796_S22_median UHM1120.20797_S34_median
#> 1 0 0 0
#> UHM1124.20798_S46_median UHM1126.20799_S58_median UHM1128.20800_S70_median
#> 1 0 0 0
#> UHM1140.20555_S4_median UHM1145.20801_S82_median UHM1163.20405_S33_median
#> 1 0 0 0
#> UHM1164.20402_S92_median UHM1169.20552_S63_median UHM1171.20579_S7_median
#> 1 0 0 0
#> UHM1176.20404_S21_median UHM1177.20546_S86_median UHM1182.20576_S66_median
#> 1 0 0 0
#> UHM1210.20802_S94_median UHM1212.20803_S11_median UHM1217.20804_S23_median
#> 1 0 0 0
#> UHM1218.20805_S35_median UHM1219.20806_S47_median UHM1220.20807_S59_median
#> 1 0 0 0
#> UHM1221.20808_S71_median UHM1222.20809_S83_median UHM1223.20810_S95_median
#> 1 0 0 0
#> UHM1225.20811_S12_median UHM1227.20812_S24_median UHM1228.20813_S36_median
#> 1 0 0 0
#> UHM1237.20814_S48_median UHM1240.20566_S41_median UHM1246.20815_S60_median
#> 1 0 0 0
#> UHM1247.20816_S72_median UHM1248.20575_S54_median UHM1256.20570_S89_median
#> 1 0 0 0
#> UHM1260.20596_S21_median UHM1270.20577_S78_median UHM1271.20397_S32_median
#> 1 0 0 0
#> UHM1272.20398_S44_median UHM1274.20554_S87_median UHM1275.20597_S33_median
#> 1 0 0 0
#> UHM1282.20599_S57_median UHM1287.20543_S50_median UHM1291.20416_S70_median
#> 1 0 0 0
#> UHM1296.20550_S39_median UHM1319.20561_S76_median UHM1324.20413_S34_median
#> 1 0 0 0
#> UHM1327.20545_S74_median UHM1328.20572_S18_median UHM1334.20417_S82_median
#> 1 0 0 0
#> UHM1338.20399_S56_median UHM1341.20602_S93_median UHM1356.20541_S26_median
#> 1 0 0 0
#> UHM1380.20580_S19_median UHM1383.20594_S92_median UHM1385.20563_S5_median
#> 1 0 0 0
#> UHM1399.20756_S17_median UHM1400.20757_S29_median UHM1401.20758_S41_median
#> 1 0 0 0
#> UHM1402.20759_S53_median UHM1403.20760_S65_median UHM1405.20761_S77_median
#> 1 0 0 0
#> UHM1406.20762_S89_median UHM1414.20763_S6_median UHM1419.20764_S18_median
#> 1 0 0 0
#> UHM1427.20389_S31_median UHM1428.20390_S43_median UHM1429.20391_S55_median
#> 1 0 0 0
#> UHM1430.20392_S67_median UHM1432.20393_S79_median UHM1435.20388_S19_median
#> 1 0 0 0
#> UHM162.20560_S64_median UHM198.20585_S79_median UHM20.3314_S52_median
#> 1 0 0 0
#> UHM20.3315_S64_median UHM204.20409_S81_median UHM206.20410_S93_median
#> 1 0 0 0
#> UHM207.20593_S80_median UHM208.20411_S10_median UHM211.20406_S45_median
#> 1 0 0 0
#> UHM215.20408_S69_median UHM216.20429_S36_median UHM219.20430_S48_median
#> 1 0 0 0
#> UHM236.20431_S60_median UHM238.20407_S57_median UHM245.20538_S85_median
#> 1 0 0 0
#> UHM252.20558_S40_median UHM267.20400_S68_median UHM274.20581_S31_median
#> 1 0 0 0
#> UHM276.20586_S91_median UHM280.20401_S80_median UHM286.20425_S83_median
#> 1 0 0 0
#> UHM289.20426_S95_median UHM294.20427_S12_median UHM298.20600_S69_median
#> 1 0 0 0
#> UHM325.20548_S15_median UHM337.20412_S22_median UHM354.20535_S49_median
#> 1 0 0 0
#> UHM356.20415_S58_median UHM369.20773_S31_median UHM370.20774_S43_median
#> 1 0 0 0
#> UHM372.20775_S55_median UHM373.20776_S67_median UHM374.20777_S79_median
#> 1 0 0 0
#> UHM375.20778_S91_median UHM377.20779_S8_median UHM38.3376_S36_median
#> 1 0 0 0
#> UHM386.20781_S32_median UHM387.20782_S44_median UHM414.20583_S55_median
#> 1 0 0 0
#> UHM418.20765_S30_median UHM422.20766_S42_median UHM425.20767_S54_median
#> 1 0 0 0
#> UHM426.20534_S37_median UHM428.20544_S62_median UHM429.20559_S52_median
#> 1 0 0 0
#> UHM435.20547_S3_median UHM437.20768_S66_median UHM439.20564_S17_median
#> 1 0 0 0
#> UHM44.3526_S31_median UHM445.20569_S77_median UHM447.20783_S56_median
#> 1 0 0 0
#> UHM448.20769_S78_median UHM45.3539_S92_median UHM454.20770_S90_median
#> 1 0 0 0
#> UHM455.20785_S80_median UHM458.20786_S92_median UHM459.20787_S9_median
#> 1 0 0 0
#> UHM461.20771_S7_median UHM467.20772_S19_median UHM470.20533_S25_median
#> 1 0 0 0
#> UHM476.20414_S46_median UHM478.20549_S27_median UHM479.20551_S51_median
#> 1 0 0 0
#> UHM481.20403_S9_median UHM482.20590_S44_median UHM483.20603_S10_median
#> 1 0 0 0
#> UHM519.20582_S43_median UHM520.20573_S30_median UHM746.21478_S117_median
#> 1 0 0 0
#> UHM747.21477_S106_median UHM748.21467_S170_median UHM748.21487_S129_median
#> 1 0 0 0
#> UHM749.21479_S128_median UHM759.21466_S159_median UHM759.21486_S118_median
#> 1 0 0 0
#> UHM775.21485_S107_median UHM776.21482_S161_median UHM777.21484_S183_median
#> 1 0 0 0
#> UHM779.21468_S181_median UHM779.21488_S140_median UHM782.21480_S139_median
#> 1 0 0 0
#> UHM810.21472_S138_median UHM811.21471_S127_median UHM813.21481_S150_median
#> 1 0 0 0
#> UHM818.21469_S105_median UHM818.21489_S151_median UHM819.21473_S149_median
#> 1 0 0 0
#> UHM820.21470_S116_median UHM820.21490_S162_median UHM827.21474_S160_median
#> 1 0 0 0
#> UHM829.21476_S182_median UHM832.21483_S172_median UHM836.20385_S78_median
#> 1 0 0 0
#> UHM837.20386_S90_median UHM838.20387_S7_median UHM891.20384_S66_median
#> 1 0 0 0
#> UHM892.20532_S13_median UHM893.20595_S9_median UHM894.20540_S14_median
#> 1 0 0 0
#> UHM895.20536_S61_median UHM896.20601_S81_median UHM897.20591_S56_median
#> 1 0 0 0
#> UHM898.20394_S91_median UHM899.20588_S20_median UHM900.20395_S8_median
#> 1 0 0 0
#> UHM901.20542_S38_median UHM902.20584_S67_median UHM903.20587_S8_median
#> 1 0 0 0
#> UHM904.20567_S53_median UHM905.20598_S45_median UHM906.20565_S29_median
#> 1 0 0 0
#> UHM907.20592_S68_median UHM908.20396_S20_median UHM909.20557_S28_median
#> 1 0 0 0
#> UHM910.20562_S88_median UHM965.20537_S73_median UHM966.20743_S51_median
#> 1 0 0 0
#> UHM967.20744_S63_median UHM968.20571_S6_median UHM969.20745_S75_median
#> 1 0 0 0
#> UHM971.20746_S87_median UHM973.20578_S90_median UHM974.20432_S72_median
#> 1 0 0 0
#> UHM975.20747_S4_median UHM977.20748_S16_median UHM978.20749_S28_median
#> 1 0 0 0
#> UHM979.20750_S40_median UHM980.20731_S2_median UHM981.20539_S2_median
#> 1 0 0 0
#> UHM982.20740_S15_median UHM983.20556_S16_median UHM984.20751_S52_median
#> 1 0 0 0
#> UHM985.20752_S64_median UHM988.20753_S76_median UHM989.20754_S88_median
#> 1 0 0 0
#> UHM991.20755_S5_median UHM993.20741_S27_median UHM996.20610_S94_median
#> 1 0 0 0
#> UHM997.20553_S75_median UHM998.20618_S95_median UHM999.20617_S83_median
#> 1 0 0 0
#> spiked.blank.20433_S84_q75 spiked.blank.20817_S84_q75 Std2uL.20625_S84_q75
#> 1 0 0 0
#> StdSwab1uL.20624_S72_q75 STP1719.20422_S47_q75 STP213.20423_S59_q75
#> 1 0 0 0
#> STP268.20424_S71_q75 STP544.20419_S11_q75 STP570.20420_S23_q75
#> 1 0 0 0
#> STP579.20421_S35_q75 STP614.20418_S94_q75 UHM1000.20604_S22_q75
#> 1 0 0 0
#> UHM1001.20609_S82_q75 UHM1007.20622_S48_q75 UHM1009.20614_S47_q75
#> 1 0 0 0
#> UHM1010.20621_S36_q75 UHM1011.20606_S46_q75 UHM1024.20620_S24_q75
#> 1 0 0 0
#> UHM1026.20607_S58_q75 UHM1028.20613_S35_q75 UHM1032.20605_S34_q75
#> 1 0 0 0
#> UHM1033.20619_S12_q75 UHM1034.20616_S71_q75 UHM1035.20611_S11_q75
#> 1 0 0 0
#> UHM1036.20612_S23_q75 UHM1052.20615_S59_q75 UHM1060.20723_S1_q75
#> 1 0 0 0
#> UHM1065.20724_S13_q75 UHM1068.20732_S14_q75 UHM1069.20742_S39_q75
#> 1 0 0 0
#> UHM1070.20725_S25_q75 UHM1071.20733_S26_q75 UHM1072.20734_S38_q75
#> 1 0 0 0
#> UHM1073.20735_S50_q75 UHM1075.20726_S37_q75 UHM1077.20736_S62_q75
#> 1 0 0 0
#> UHM1078.20727_S49_q75 UHM1080.20737_S74_q75 UHM1081.20728_S61_q75
#> 1 0 0 0
#> UHM1088.20738_S86_q75 UHM1090.20739_S3_q75 UHM1093.20729_S73_q75
#> 1 0 0 0
#> UHM1095.20730_S85_q75 UHM1097.20623_S60_q75 UHM1099.20608_S70_q75
#> 1 0 0 0
#> UHM1100.20788_S21_q75 UHM1102.20789_S33_q75 UHM1104.20790_S45_q75
#> 1 0 0 0
#> UHM1105.20791_S57_q75 UHM1109.20531_S1_q75 UHM1110.20568_S65_q75
#> 1 0 0 0
#> UHM1113.20792_S69_q75 UHM1114.20793_S81_q75 UHM1115.20794_S93_q75
#> 1 0 0 0
#> UHM1117.20795_S10_q75 UHM1118.20796_S22_q75 UHM1120.20797_S34_q75
#> 1 0 0 0
#> UHM1124.20798_S46_q75 UHM1126.20799_S58_q75 UHM1128.20800_S70_q75
#> 1 0 0 0
#> UHM1140.20555_S4_q75 UHM1145.20801_S82_q75 UHM1163.20405_S33_q75
#> 1 0 0 0
#> UHM1164.20402_S92_q75 UHM1169.20552_S63_q75 UHM1171.20579_S7_q75
#> 1 0 0 0
#> UHM1176.20404_S21_q75 UHM1177.20546_S86_q75 UHM1182.20576_S66_q75
#> 1 0 0 0
#> UHM1210.20802_S94_q75 UHM1212.20803_S11_q75 UHM1217.20804_S23_q75
#> 1 0 0 0
#> UHM1218.20805_S35_q75 UHM1219.20806_S47_q75 UHM1220.20807_S59_q75
#> 1 0 0 0
#> UHM1221.20808_S71_q75 UHM1222.20809_S83_q75 UHM1223.20810_S95_q75
#> 1 0 0 0
#> UHM1225.20811_S12_q75 UHM1227.20812_S24_q75 UHM1228.20813_S36_q75
#> 1 0 0 0
#> UHM1237.20814_S48_q75 UHM1240.20566_S41_q75 UHM1246.20815_S60_q75
#> 1 0 0 0
#> UHM1247.20816_S72_q75 UHM1248.20575_S54_q75 UHM1256.20570_S89_q75
#> 1 0 0 0
#> UHM1260.20596_S21_q75 UHM1270.20577_S78_q75 UHM1271.20397_S32_q75
#> 1 0 0 0
#> UHM1272.20398_S44_q75 UHM1274.20554_S87_q75 UHM1275.20597_S33_q75
#> 1 0 0 0
#> UHM1282.20599_S57_q75 UHM1287.20543_S50_q75 UHM1291.20416_S70_q75
#> 1 0 0 0
#> UHM1296.20550_S39_q75 UHM1319.20561_S76_q75 UHM1324.20413_S34_q75
#> 1 0 0 0
#> UHM1327.20545_S74_q75 UHM1328.20572_S18_q75 UHM1334.20417_S82_q75
#> 1 0 0 0
#> UHM1338.20399_S56_q75 UHM1341.20602_S93_q75 UHM1356.20541_S26_q75
#> 1 0 0 0
#> UHM1380.20580_S19_q75 UHM1383.20594_S92_q75 UHM1385.20563_S5_q75
#> 1 0 0 0
#> UHM1399.20756_S17_q75 UHM1400.20757_S29_q75 UHM1401.20758_S41_q75
#> 1 0 0 0
#> UHM1402.20759_S53_q75 UHM1403.20760_S65_q75 UHM1405.20761_S77_q75
#> 1 0 0 0
#> UHM1406.20762_S89_q75 UHM1414.20763_S6_q75 UHM1419.20764_S18_q75
#> 1 0 0 0
#> UHM1427.20389_S31_q75 UHM1428.20390_S43_q75 UHM1429.20391_S55_q75
#> 1 0 0 0
#> UHM1430.20392_S67_q75 UHM1432.20393_S79_q75 UHM1435.20388_S19_q75
#> 1 0 0 0
#> UHM162.20560_S64_q75 UHM198.20585_S79_q75 UHM20.3314_S52_q75
#> 1 0 0 0
#> UHM20.3315_S64_q75 UHM204.20409_S81_q75 UHM206.20410_S93_q75
#> 1 0 0 0
#> UHM207.20593_S80_q75 UHM208.20411_S10_q75 UHM211.20406_S45_q75
#> 1 0 0 0
#> UHM215.20408_S69_q75 UHM216.20429_S36_q75 UHM219.20430_S48_q75
#> 1 0 0 0
#> UHM236.20431_S60_q75 UHM238.20407_S57_q75 UHM245.20538_S85_q75
#> 1 0 0 0
#> UHM252.20558_S40_q75 UHM267.20400_S68_q75 UHM274.20581_S31_q75
#> 1 0 0 0
#> UHM276.20586_S91_q75 UHM280.20401_S80_q75 UHM286.20425_S83_q75
#> 1 0 0 0
#> UHM289.20426_S95_q75 UHM294.20427_S12_q75 UHM298.20600_S69_q75
#> 1 0 0 0
#> UHM325.20548_S15_q75 UHM337.20412_S22_q75 UHM354.20535_S49_q75
#> 1 0 0 0
#> UHM356.20415_S58_q75 UHM369.20773_S31_q75 UHM370.20774_S43_q75
#> 1 0 0 0
#> UHM372.20775_S55_q75 UHM373.20776_S67_q75 UHM374.20777_S79_q75
#> 1 0 0 0
#> UHM375.20778_S91_q75 UHM377.20779_S8_q75 UHM38.3376_S36_q75
#> 1 0 0 0
#> UHM386.20781_S32_q75 UHM387.20782_S44_q75 UHM414.20583_S55_q75
#> 1 0 0 0
#> UHM418.20765_S30_q75 UHM422.20766_S42_q75 UHM425.20767_S54_q75
#> 1 0 0 0
#> UHM426.20534_S37_q75 UHM428.20544_S62_q75 UHM429.20559_S52_q75
#> 1 0 0 0
#> UHM435.20547_S3_q75 UHM437.20768_S66_q75 UHM439.20564_S17_q75
#> 1 0 0 0
#> UHM44.3526_S31_q75 UHM445.20569_S77_q75 UHM447.20783_S56_q75
#> 1 0 0 0
#> UHM448.20769_S78_q75 UHM45.3539_S92_q75 UHM454.20770_S90_q75
#> 1 0 0 0
#> UHM455.20785_S80_q75 UHM458.20786_S92_q75 UHM459.20787_S9_q75
#> 1 0 0 0
#> UHM461.20771_S7_q75 UHM467.20772_S19_q75 UHM470.20533_S25_q75
#> 1 0 0 0
#> UHM476.20414_S46_q75 UHM478.20549_S27_q75 UHM479.20551_S51_q75
#> 1 0 0 0
#> UHM481.20403_S9_q75 UHM482.20590_S44_q75 UHM483.20603_S10_q75
#> 1 0 0 0
#> UHM519.20582_S43_q75 UHM520.20573_S30_q75 UHM746.21478_S117_q75
#> 1 0 0 0
#> UHM747.21477_S106_q75 UHM748.21467_S170_q75 UHM748.21487_S129_q75
#> 1 0 0 0
#> UHM749.21479_S128_q75 UHM759.21466_S159_q75 UHM759.21486_S118_q75
#> 1 0 0 0
#> UHM775.21485_S107_q75 UHM776.21482_S161_q75 UHM777.21484_S183_q75
#> 1 0 0 0
#> UHM779.21468_S181_q75 UHM779.21488_S140_q75 UHM782.21480_S139_q75
#> 1 0 0 0
#> UHM810.21472_S138_q75 UHM811.21471_S127_q75 UHM813.21481_S150_q75
#> 1 0 0 0
#> UHM818.21469_S105_q75 UHM818.21489_S151_q75 UHM819.21473_S149_q75
#> 1 0 0 0
#> UHM820.21470_S116_q75 UHM820.21490_S162_q75 UHM827.21474_S160_q75
#> 1 0 0 0
#> UHM829.21476_S182_q75 UHM832.21483_S172_q75 UHM836.20385_S78_q75
#> 1 0 0 0
#> UHM837.20386_S90_q75 UHM838.20387_S7_q75 UHM891.20384_S66_q75
#> 1 0 0 0
#> UHM892.20532_S13_q75 UHM893.20595_S9_q75 UHM894.20540_S14_q75
#> 1 0 0 0
#> UHM895.20536_S61_q75 UHM896.20601_S81_q75 UHM897.20591_S56_q75
#> 1 0 0 0
#> UHM898.20394_S91_q75 UHM899.20588_S20_q75 UHM900.20395_S8_q75
#> 1 0 0 0
#> UHM901.20542_S38_q75 UHM902.20584_S67_q75 UHM903.20587_S8_q75
#> 1 0 0 0
#> UHM904.20567_S53_q75 UHM905.20598_S45_q75 UHM906.20565_S29_q75
#> 1 0 0 0
#> UHM907.20592_S68_q75 UHM908.20396_S20_q75 UHM909.20557_S28_q75
#> 1 0 0 0
#> UHM910.20562_S88_q75 UHM965.20537_S73_q75 UHM966.20743_S51_q75
#> 1 0 0 0
#> UHM967.20744_S63_q75 UHM968.20571_S6_q75 UHM969.20745_S75_q75
#> 1 0 0 0
#> UHM971.20746_S87_q75 UHM973.20578_S90_q75 UHM974.20432_S72_q75
#> 1 0 0 0
#> UHM975.20747_S4_q75 UHM977.20748_S16_q75 UHM978.20749_S28_q75
#> 1 0 0 0
#> UHM979.20750_S40_q75 UHM980.20731_S2_q75 UHM981.20539_S2_q75
#> 1 0 0 0
#> UHM982.20740_S15_q75 UHM983.20556_S16_q75 UHM984.20751_S52_q75
#> 1 0 0 0
#> UHM985.20752_S64_q75 UHM988.20753_S76_q75 UHM989.20754_S88_q75
#> 1 0 0 0
#> UHM991.20755_S5_q75 UHM993.20741_S27_q75 UHM996.20610_S94_q75
#> 1 0 0 0
#> UHM997.20553_S75_q75 UHM998.20618_S95_q75 UHM999.20617_S83_q75
#> 1 0 0 0
# Back normal
# the scaling factor was computed based on spiked species reads and fixed cell count.
# Multiplying the spiked species read count by this scaling factor restores the exact spiked cell count.
# lets check it
# BackNormal <- calculate_spike_percentage(
# physeq_absolute,
# merged_spiked_species,
# passed_range = c(0.1, 20)
# )
#**Time to filter out unsuccessful spiked samples**
library(phyloseq)
library(dplyr)
library(tibble)
library(microbiome)
filtered_sample_data <- microbiome::meta(physeq_absolute) %>%
as.data.frame() %>%
tibble::rownames_to_column(var = "Sample") %>%
dplyr::mutate(Sample = as.character(Sample)) %>%
dplyr::left_join(Perc, by = "Sample")
filtered_sample_data <- tibble::column_to_rownames(filtered_sample_data, "Sample")
filtered_sample_data <- sample_data(as.data.frame(filtered_sample_data))
# Assign back to phyloseq obj
sample_data(physeq_absolute) <- filtered_sample_data
#**The acceptable range of spiked species retrieval is system-dependent**
# Spiked species become centroid of the community (Distance to Centroid)
# Spiked species become dominant and imbalance the community (Evenness)
# What range of spiked species retrieval is appropriate for your system?
# Calculate Pielou's Evenness using Shannon index and species richness (Observed)
# Load required libraries
library(vegan)
# Calculate Pielou's Evenness using Shannon index and species richness (Observed)
alphab <- estimate_richness(physeq_absolute, measures = c("Observed", "Shannon"))
alphab$Pielou_evenness <- alphab$Shannon / alphab$Observed
# Normalize values
alphab <- alphab %>%
mutate(across(c("Observed", "Shannon", "Pielou_evenness"), ~ as.numeric(scale(.))))
metadata <- as.data.frame(microbiome::meta(physeq_absolute))
metadata$Sample <- rownames(metadata)
alphab$Sample <- rownames(alphab)
# Merge alpha diversity metrics into metadata
metadata <- dplyr::left_join(metadata, alphab[, c("Sample", "Observed", "Shannon", "Pielou_evenness")], by = "Sample")
metadata <- metadata %>%
column_to_rownames(var = "Sample")
# Updated metadata back to the phyloseq obj
sample_data(physeq_absolute) <- sample_data(metadata)
if (!"Spiked_Reads" %in% colnames(metadata)) {
stop("Column 'Spiked_Reads' not found in metadata.")
}
# Generate regression plot
plot_object <- regression_plot(
data = metadata,
x_var = "Pielou_evenness",
y_var = "Spiked_Reads",
custom_range = c(0.1, 20, 30, 50, 100),
plot_title = NULL
)
plot_object
#*Calculate the percentage of spiked species retrieval per sample***
absolute_abundance_16S_OTU_perc <- phyloseq::subset_samples(physeq_absolute, sample.or.blank != "blank")
# Adjust the threshold range as needed based on system specifications
result_perc <- calculate_spike_percentage(
absolute_abundance_16S_OTU_perc,
merged_spiked_species,
passed_range = c(0.1, 20)
)
#> 📂 Table saved in docx format: merged_data.docx
#> 📂 Merged data saved as CSV: merged_data.csv
conclusion(absolute_abundance_16S_OTU_perc,
merged_spiked_species,
max_passed_range=20,
output_path)
#> 📂 Table saved in docx format: merged_data.docx
#> 📂 Merged data saved as CSV: merged_data.csv
#> $summary_stats
#> a flextable object.
#> col_keys: `mean_total_reads_spiked`, `sd_total_reads_spiked`, `median_total_reads_spiked`, `mean_percentage`, `sd_percentage`, `median_percentage`, `passed_count`, `failed_count`
#> header has 1 row(s)
#> body has 1 row(s)
#> original dataset sample:
#> mean_total_reads_spiked sd_total_reads_spiked median_total_reads_spiked
#> 1 113318.1 306390 29400
#> mean_percentage sd_percentage median_percentage passed_count failed_count
#> 1 20.20095 32.41997 4.153584 178 82
#>
#> $full_report
#> Sample Total_Reads Spiked_Reads Percentage Result
#> 1 STP1719.20422_S47 2432 1847 75.94572368 failed
#> 2 STP213.20423_S59 188314 1847 0.98080865 passed
#> 3 STP268.20424_S71 757488 1847 0.24383225 passed
#> 4 STP544.20419_S11 1913 1847 96.54992159 failed
#> 5 STP570.20420_S23 5948 1847 31.05245461 failed
#> 6 STP579.20421_S35 5452 1847 33.87747616 failed
#> 7 STP614.20418_S94 5 0 0.00000000 failed
#> 8 UHM1000.20604_S22 43527 924 2.12282032 passed
#> 9 UHM1001.20609_S82 39329 924 2.34941138 passed
#> 10 UHM1007.20622_S48 86473 924 1.06854163 passed
#> 11 UHM1009.20614_S47 181742 924 0.50841303 passed
#> 12 UHM1010.20621_S36 6127 924 15.08078995 passed
#> 13 UHM1011.20606_S46 81060 924 1.13989637 passed
#> 14 UHM1024.20620_S24 2722 924 33.94562821 failed
#> 15 UHM1026.20607_S58 7504 924 12.31343284 passed
#> 16 UHM1028.20613_S35 2624 924 35.21341463 failed
#> 17 UHM1032.20605_S34 1410 924 65.53191489 failed
#> 18 UHM1033.20619_S12 966 924 95.65217391 failed
#> 19 UHM1034.20616_S71 782439 924 0.11809227 passed
#> 20 UHM1035.20611_S11 8100 924 11.40740741 passed
#> 21 UHM1036.20612_S23 8639 924 10.69568237 passed
#> 22 UHM1052.20615_S59 98625 924 0.93688213 passed
#> 23 UHM1060.20723_S1 2077 1847 88.92633606 failed
#> 24 UHM1065.20724_S13 2384 1847 77.47483221 failed
#> 25 UHM1068.20732_S14 19213 1847 9.61328267 passed
#> 26 UHM1069.20742_S39 88462 1847 2.08790215 passed
#> 27 UHM1070.20725_S25 11119 1847 16.61120604 passed
#> 28 UHM1071.20733_S26 66892 1847 2.76116725 passed
#> 29 UHM1072.20734_S38 4265 1847 43.30597890 failed
#> 30 UHM1073.20735_S50 129333 1847 1.42809646 passed
#> 31 UHM1075.20726_S37 12121 1847 15.23801667 passed
#> 32 UHM1077.20736_S62 240090 1847 0.76929485 passed
#> 33 UHM1078.20727_S49 48860 1847 3.78018829 passed
#> 34 UHM1080.20737_S74 238039 1847 0.77592327 passed
#> 35 UHM1081.20728_S61 2118 1847 87.20491029 failed
#> 36 UHM1088.20738_S86 48344 1847 3.82053616 passed
#> 37 UHM1090.20739_S3 4264 1847 43.31613508 failed
#> 38 UHM1093.20729_S73 11145 1847 16.57245402 passed
#> 39 UHM1095.20730_S85 3480 1847 53.07471264 failed
#> 40 UHM1097.20623_S60 1656 924 55.79710145 failed
#> 41 UHM1099.20608_S70 141219 924 0.65430289 passed
#> 42 UHM1100.20788_S21 120205 1847 1.53654174 passed
#> 43 UHM1102.20789_S33 41207 1847 4.48224816 passed
#> 44 UHM1104.20790_S45 75900 1847 2.43346509 passed
#> 45 UHM1105.20791_S57 29520 1847 6.25677507 passed
#> 46 UHM1109.20531_S1 49710 1847 3.71555019 passed
#> 47 UHM1110.20568_S65 258015 1847 0.71584985 passed
#> 48 UHM1113.20792_S69 374668 1847 0.49296978 passed
#> 49 UHM1114.20793_S81 25789 1847 7.16196828 passed
#> 50 UHM1115.20794_S93 53637 1847 3.44351847 passed
#> 51 UHM1117.20795_S10 120503 1847 1.53274192 passed
#> 52 UHM1118.20796_S22 39863 1847 4.63336929 passed
#> 53 UHM1120.20797_S34 6447 1847 28.64898402 failed
#> 54 UHM1124.20798_S46 20011 1847 9.22992354 passed
#> 55 UHM1126.20799_S58 56948 1847 3.24330969 passed
#> 56 UHM1128.20800_S70 75987 1847 2.43067893 passed
#> 57 UHM1140.20555_S4 144990 1847 1.27388096 passed
#> 58 UHM1145.20801_S82 136223 1847 1.35586502 passed
#> 59 UHM1163.20405_S33 66686 1847 2.76969679 passed
#> 60 UHM1164.20402_S92 560873 1847 0.32930806 passed
#> 61 UHM1169.20552_S63 2087 1847 88.50023958 failed
#> 62 UHM1171.20579_S7 94636 1847 1.95168858 passed
#> 63 UHM1176.20404_S21 153994 1847 1.19939738 passed
#> 64 UHM1177.20546_S86 7001 1847 26.38194544 failed
#> 65 UHM1182.20576_S66 19322 1847 9.55905186 passed
#> 66 UHM1210.20802_S94 107631 1847 1.71604835 passed
#> 67 UHM1212.20803_S11 35517 1847 5.20032660 passed
#> 68 UHM1217.20804_S23 66857 1847 2.76261274 passed
#> 69 UHM1218.20805_S35 42728 1847 4.32269238 passed
#> 70 UHM1219.20806_S47 73751 1847 2.50437282 passed
#> 71 UHM1220.20807_S59 85934 1847 2.14932390 passed
#> 72 UHM1221.20808_S71 37595 1847 4.91288735 passed
#> 73 UHM1222.20809_S83 5442 1847 33.93972804 failed
#> 74 UHM1223.20810_S95 114277 1847 1.61624824 passed
#> 75 UHM1225.20811_S12 48275 1847 3.82599689 passed
#> 76 UHM1227.20812_S24 20972 1847 8.80698074 passed
#> 77 UHM1228.20813_S36 147351 1847 1.25346961 passed
#> 78 UHM1237.20814_S48 24999 1847 7.38829553 passed
#> 79 UHM1240.20566_S41 35116 1847 5.25971067 passed
#> 80 UHM1246.20815_S60 16138 1847 11.44503656 passed
#> 81 UHM1247.20816_S72 26551 1847 6.95642349 passed
#> 82 UHM1248.20575_S54 7646 1847 24.15642166 failed
#> 83 UHM1256.20570_S89 35459 1847 5.20883274 passed
#> 84 UHM1260.20596_S21 34301 1847 5.38468266 passed
#> 85 UHM1270.20577_S78 12183 1847 15.16046951 passed
#> 86 UHM1271.20397_S32 19173 1847 9.63333855 passed
#> 87 UHM1272.20398_S44 10451 1847 17.67294996 passed
#> 88 UHM1274.20554_S87 32450 1847 5.69183359 passed
#> 89 UHM1275.20597_S33 15061 1847 12.26346192 passed
#> 90 UHM1282.20599_S57 6536 1847 28.25887393 failed
#> 91 UHM1287.20543_S50 10739 1847 17.19899432 passed
#> 92 UHM1291.20416_S70 74309 1847 2.48556702 passed
#> 93 UHM1296.20550_S39 207620 1847 0.88960601 passed
#> 94 UHM1319.20561_S76 11679 1847 15.81471016 passed
#> 95 UHM1324.20413_S34 45222 1847 4.08429525 passed
#> 96 UHM1327.20545_S74 272806 1847 0.67703790 passed
#> 97 UHM1328.20572_S18 9273 1847 19.91804163 passed
#> 98 UHM1334.20417_S82 76551 1847 2.41277057 passed
#> 99 UHM1338.20399_S56 26324 1847 7.01641088 passed
#> 100 UHM1341.20602_S93 4830 1847 38.24016563 failed
#> 101 UHM1356.20541_S26 21091 1847 8.75728984 passed
#> 102 UHM1380.20580_S19 71993 1847 2.56552720 passed
#> 103 UHM1383.20594_S92 28316 1847 6.52281396 passed
#> 104 UHM1385.20563_S5 2166 1847 85.27239151 failed
#> 105 UHM1399.20756_S17 11403 1847 16.19749189 passed
#> 106 UHM1400.20757_S29 49300 1847 3.74645030 passed
#> 107 UHM1401.20758_S41 4986 1847 37.04372242 failed
#> 108 UHM1402.20759_S53 78898 1847 2.34099724 passed
#> 109 UHM1403.20760_S65 48290 1847 3.82480845 passed
#> 110 UHM1405.20761_S77 51126 1847 3.61264327 passed
#> 111 UHM1406.20762_S89 90444 1847 2.04214763 passed
#> 112 UHM1414.20763_S6 113476 1847 1.62765695 passed
#> 113 UHM1419.20764_S18 22190 1847 8.32356918 passed
#> 114 UHM1427.20389_S31 93753 1847 1.97007029 passed
#> 115 UHM1428.20390_S43 4532 0 0.00000000 failed
#> 116 UHM1429.20391_S55 246415 1847 0.74954853 passed
#> 117 UHM1430.20392_S67 846266 1847 0.21825289 passed
#> 118 UHM1432.20393_S79 415880 1847 0.44411850 passed
#> 119 UHM1435.20388_S19 9292 0 0.00000000 failed
#> 120 UHM162.20560_S64 37096 1847 4.97897347 passed
#> 121 UHM198.20585_S79 5611 1847 32.91748351 failed
#> 122 UHM20.3314_S52 1335639 1847 0.13828587 passed
#> 123 UHM20.3315_S64 352109 1847 0.52455348 passed
#> 124 UHM204.20409_S81 160159 1847 1.15322898 passed
#> 125 UHM206.20410_S93 523 0 0.00000000 failed
#> 126 UHM207.20593_S80 76828 1847 2.40407143 passed
#> 127 UHM208.20411_S10 34089 1847 5.41817008 passed
#> 128 UHM211.20406_S45 87997 1847 2.09893519 passed
#> 129 UHM215.20408_S69 3948887 1847 0.04677267 failed
#> 130 UHM216.20429_S36 207777 1847 0.88893381 passed
#> 131 UHM219.20430_S48 1910 1847 96.70157068 failed
#> 132 UHM236.20431_S60 199606 1847 0.92532289 passed
#> 133 UHM238.20407_S57 64127 1847 2.88022206 passed
#> 134 UHM245.20538_S85 554919 1847 0.33284137 passed
#> 135 UHM252.20558_S40 14250 1847 12.96140351 passed
#> 136 UHM267.20400_S68 183380 1847 1.00719817 passed
#> 137 UHM274.20581_S31 13695 1847 13.48667397 passed
#> 138 UHM276.20586_S91 21571 1847 8.56242177 passed
#> 139 UHM280.20401_S80 35361 1847 5.22326857 passed
#> 140 UHM286.20425_S83 130953 1847 1.41042970 passed
#> 141 UHM289.20426_S95 6003 1847 30.76794936 failed
#> 142 UHM294.20427_S12 17177 1847 10.75275077 passed
#> 143 UHM298.20600_S69 101187 1847 1.82533329 passed
#> 144 UHM325.20548_S15 24562 1847 7.51974595 passed
#> 145 UHM337.20412_S22 32632 1847 5.66008826 passed
#> 146 UHM354.20535_S49 58805 1847 3.14088938 passed
#> 147 UHM356.20415_S58 43688 1847 4.22770555 passed
#> 148 UHM369.20773_S31 79551 1847 2.32178100 passed
#> 149 UHM370.20774_S43 88455 1847 2.08806738 passed
#> 150 UHM372.20775_S55 21119 1847 8.74567925 passed
#> 151 UHM373.20776_S67 113026 1847 1.63413728 passed
#> 152 UHM374.20777_S79 96042 1847 1.92311697 passed
#> 153 UHM375.20778_S91 19035 1847 9.70317836 passed
#> 154 UHM377.20779_S8 29280 1847 6.30806011 passed
#> 155 UHM38.3376_S36 29112 0 0.00000000 failed
#> 156 UHM386.20781_S32 54216 1847 3.40674340 passed
#> 157 UHM387.20782_S44 68442 1847 2.69863534 passed
#> 158 UHM414.20583_S55 278355 1847 0.66354116 passed
#> 159 UHM418.20765_S30 46656 1847 3.95876200 passed
#> 160 UHM422.20766_S42 10422 1847 17.72212627 passed
#> 161 UHM425.20767_S54 66208 1847 2.78969309 passed
#> 162 UHM426.20534_S37 5428 1847 34.02726603 failed
#> 163 UHM428.20544_S62 13689 1847 13.49258529 passed
#> 164 UHM429.20559_S52 21213 1847 8.70692500 passed
#> 165 UHM435.20547_S3 13367 1847 13.81761053 passed
#> 166 UHM437.20768_S66 148581 1847 1.24309299 passed
#> 167 UHM439.20564_S17 96401 1847 1.91595523 passed
#> 168 UHM44.3526_S31 5511 1847 33.51478860 failed
#> 169 UHM445.20569_S77 90006 1847 2.05208542 passed
#> 170 UHM447.20783_S56 168350 1847 1.09711910 passed
#> 171 UHM448.20769_S78 28168 1847 6.55708606 passed
#> 172 UHM45.3539_S92 35221 0 0.00000000 failed
#> 173 UHM454.20770_S90 43738 1847 4.22287256 passed
#> 174 UHM455.20785_S80 15021 1847 12.29611877 passed
#> 175 UHM458.20786_S92 102660 1847 1.79914280 passed
#> 176 UHM459.20787_S9 106958 1847 1.72684605 passed
#> 177 UHM461.20771_S7 77668 1847 2.37807076 passed
#> 178 UHM467.20772_S19 195394 1847 0.94526956 passed
#> 179 UHM470.20533_S25 9227 1847 20.01734041 failed
#> 180 UHM476.20414_S46 20146 1847 9.16807307 passed
#> 181 UHM478.20549_S27 27792 1847 6.64579735 passed
#> 182 UHM479.20551_S51 2119 1847 87.16375649 failed
#> 183 UHM481.20403_S9 15762 1847 11.71805608 passed
#> 184 UHM482.20590_S44 2014 1847 91.70804369 failed
#> 185 UHM483.20603_S10 90381 1847 2.04357110 passed
#> 186 UHM519.20582_S43 220582 1847 0.83733034 passed
#> 187 UHM520.20573_S30 68381 1847 2.70104269 passed
#> 188 UHM746.21478_S117 927 924 99.67637540 failed
#> 189 UHM747.21477_S106 924 924 100.00000000 failed
#> 190 UHM748.21467_S170 924 924 100.00000000 failed
#> 191 UHM748.21487_S129 928 924 99.56896552 failed
#> 192 UHM749.21479_S128 925 924 99.89189189 failed
#> 193 UHM759.21466_S159 924 924 100.00000000 failed
#> 194 UHM759.21486_S118 938 924 98.50746269 failed
#> 195 UHM775.21485_S107 923 923 100.00000000 failed
#> 196 UHM776.21482_S161 923 923 100.00000000 failed
#> 197 UHM777.21484_S183 925 924 99.89189189 failed
#> 198 UHM779.21468_S181 928 924 99.56896552 failed
#> 199 UHM779.21488_S140 924 924 100.00000000 failed
#> 200 UHM782.21480_S139 924 924 100.00000000 failed
#> 201 UHM810.21472_S138 923 923 100.00000000 failed
#> 202 UHM811.21471_S127 927 924 99.67637540 failed
#> 203 UHM813.21481_S150 924 924 100.00000000 failed
#> 204 UHM818.21469_S105 924 924 100.00000000 failed
#> 205 UHM818.21489_S151 1459 924 63.33104866 failed
#> 206 UHM819.21473_S149 923 923 100.00000000 failed
#> 207 UHM820.21470_S116 924 924 100.00000000 failed
#> 208 UHM820.21490_S162 929 924 99.46178687 failed
#> 209 UHM827.21474_S160 935 924 98.82352941 failed
#> 210 UHM829.21476_S182 927 924 99.67637540 failed
#> 211 UHM832.21483_S172 1028 924 89.88326848 failed
#> 212 UHM836.20385_S78 3026 0 0.00000000 failed
#> 213 UHM837.20386_S90 2442 0 0.00000000 failed
#> 214 UHM838.20387_S7 727048 1847 0.25404100 passed
#> 215 UHM891.20384_S66 70359 1847 2.62510837 passed
#> 216 UHM892.20532_S13 11192 1847 16.50285919 passed
#> 217 UHM893.20595_S9 1153339 1847 0.16014372 passed
#> 218 UHM894.20540_S14 291315 1847 0.63402159 passed
#> 219 UHM895.20536_S61 5903 1847 31.28917500 failed
#> 220 UHM896.20601_S81 10057 0 0.00000000 failed
#> 221 UHM897.20591_S56 13724 0 0.00000000 failed
#> 222 UHM898.20394_S91 603 0 0.00000000 failed
#> 223 UHM899.20588_S20 815235 1847 0.22656044 passed
#> 224 UHM900.20395_S8 6596 0 0.00000000 failed
#> 225 UHM901.20542_S38 246778 1847 0.74844597 passed
#> 226 UHM902.20584_S67 6341 1847 29.12789781 failed
#> 227 UHM903.20587_S8 18503 1847 9.98216505 passed
#> 228 UHM904.20567_S53 663477 1847 0.27838192 passed
#> 229 UHM905.20598_S45 67720 1847 2.72740697 passed
#> 230 UHM906.20565_S29 11360 0 0.00000000 failed
#> 231 UHM907.20592_S68 378942 1847 0.48740968 passed
#> 232 UHM908.20396_S20 8212 0 0.00000000 failed
#> 233 UHM909.20557_S28 58573 1847 3.15333003 passed
#> 234 UHM910.20562_S88 346860 1847 0.53249150 passed
#> 235 UHM965.20537_S73 7079 1847 26.09125583 failed
#> 236 UHM966.20743_S51 28447 1847 6.49277604 passed
#> 237 UHM967.20744_S63 4222 0 0.00000000 failed
#> 238 UHM968.20571_S6 1895 1847 97.46701847 failed
#> 239 UHM969.20745_S75 376613 1847 0.49042386 passed
#> 240 UHM971.20746_S87 1276457 1847 0.14469739 passed
#> 241 UHM973.20578_S90 107686 1847 1.71517189 passed
#> 242 UHM974.20432_S72 1133 0 0.00000000 failed
#> 243 UHM975.20747_S4 346189 1847 0.53352360 passed
#> 244 UHM977.20748_S16 145666 1847 1.26796919 passed
#> 245 UHM978.20749_S28 128603 1847 1.43620289 passed
#> 246 UHM979.20750_S40 287549 1847 0.64232531 passed
#> 247 UHM980.20731_S2 28511 1847 6.47820140 passed
#> 248 UHM981.20539_S2 40199 1847 4.59464166 passed
#> 249 UHM982.20740_S15 65909 1847 2.80234869 passed
#> 250 UHM983.20556_S16 1885 1847 97.98408488 failed
#> 251 UHM984.20751_S52 330025 1847 0.55965457 passed
#> 252 UHM985.20752_S64 5973 1847 30.92248451 failed
#> 253 UHM988.20753_S76 23740 1847 7.78011794 passed
#> 254 UHM989.20754_S88 634827 1847 0.29094541 passed
#> 255 UHM991.20755_S5 8326 1847 22.18352150 failed
#> 256 UHM993.20741_S27 237536 1847 0.77756635 passed
#> 257 UHM996.20610_S94 14720 0 0.00000000 failed
#> 258 UHM997.20553_S75 12276 0 0.00000000 failed
#> 259 UHM998.20618_S95 5969 924 15.47997990 passed
#> 260 UHM999.20617_S83 92857 924 0.99507845 passed
#>
#> $phy_tree
#>
#> Phylogenetic tree with 8831 tips and 8830 internal nodes.
#>
#> Tip labels:
#> 020e00d90ba97c5898944ab6f7b1b7c9, b00466354053c9065c8aa3d6fbb33eaa, f872c4bf84bcf44434fa2023788f6517, df13f71584d4a579c81d909eaba11a74, ed285eb1aac505a1f062b482300b69f7, 63f5509575600a9e7afb6847d6296976, ...
#> Node labels:
#> 0.782, 0.000, 0.773, 0.922, 0.211, 0.617, ...
#>
#> Rooted; includes branch length(s).
physeq_absolute <- absolute$obj_adj
pps_Abs <- get_long_format_data(physeq_absolute)
# calculation for relative abundance needs sum of total reads
# total_reads <- sum(pps_Abs$Abundance)
# Generate an alluvial plot using the extended palette
alluvial_plot_abs <- alluvial_plot(
data = pps_Abs,
axes = c( "Host.genus","Ecoregion.III", "Diet"),
abundance_threshold = 10000,
fill_variable = "Family",
silent = TRUE,
abundance_type = "absolute",
top_taxa = 15,
text_size = 4,
legend_ncol = 1,
custom_colors = DspikeIn::color_palette$light_MG # Use the extended palette from your package
)
alluvial_plot_abs
you may select to transform your data befor moving forward with Differential Abundance
ps <- physeq_16SOTU
# TC Normalization
result_TC <- normalization_set(ps, method = "TC", groups = "Host.species")
normalized_ps_TC <- result_TC$dat.normed
scaling_factors_TC <- result_TC$scaling.factor
# UQ Normalization
data("physeq_16SOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_UQ <- normalization_set(ps, method = "UQ", groups = "Host.species")
normalized_ps_UQ <- result_UQ$dat.normed
scaling_factors_UQ <- result_UQ$scaling.factor
# Median Normalization
data("physeq_16SOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_med <- normalization_set(ps, method = "med", groups = "Host.species")
normalized_ps_med <- result_med$dat.normed
scaling_factors_med <- result_med$scaling.factor
# DESeq Normalization
data("physeq_16SOTU", package = "DspikeIn")
ps <- physeq_16SOTU
ps_n <- remove_zero_negative_count_samples(ps)
result_DESeq <- normalization_set(ps_n, method = "DESeq", groups = "Animal.type")
normalized_ps_DESeq <- result_DESeq$dat.normed
scaling_factors_DESeq <- result_DESeq$scaling.factor
# Poisson Normalization
data("physeq_16SOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_Poisson <- normalization_set(ps, method = "Poisson", groups = "Host.genus")
normalized_ps_Poisson <- result_Poisson$dat.normed
scaling_factors_Poisson <- result_Poisson$scaling.factor
# Quantile Normalization
data("physeq_16SOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_QN <- normalization_set(ps, method = "QN")
normalized_ps_QN <- result_QN$dat.normed
scaling_factors_QN <- result_QN$scaling.factor
# TMM Normalization
data("physeq_16SOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_TMM <- normalization_set(ps, method = "TMM", groups = "Animal.type")
normalized_ps_TMM <- result_TMM$dat.normed
scaling_factors_TMM <- result_TMM$scaling.factor
# CLR Normalization
data("physeq_16SOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_clr <- normalization_set(ps, method = "clr")
normalized_ps_clr <- result_clr$dat.normed
scaling_factors_clr <- result_clr$scaling.factor
# Rarefying
data("physeq_16SOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_rar <- normalization_set(ps, method = "rar")
normalized_ps_rar <- result_rar$dat.normed
scaling_factors_rar <- result_rar$scaling.factor
# CSS Normalization
data("physeq_16SOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_css <- normalization_set(ps, method = "css")
normalized_ps_css <- result_css$dat.normed
scaling_factors_css <- result_css$scaling.factor
# TSS Normalization
data("physeq_16SOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_tss <- normalization_set(ps, method = "tss")
normalized_ps_tss <- result_tss$dat.normed
scaling_factors_tss <- result_tss$scaling.factor
# RLE Normalization
data("physeq_16SOTU", package = "DspikeIn")
ps <- physeq_16SOTU
result_rle <- normalization_set(ps, method = "rle")
normalized_ps_rle <- result_rle$dat.normed
scaling_factors_rle <- result_rle$scaling.factor
Ridge plot
ps <- physeq_16SOTU
result_css <- normalization_set(ps, method = "css")
normalized_ps_css <- result_css$dat.normed
ridge_physeq <- ridge_plot_it(normalized_ps_css, taxrank = "Family", top_n = 10)
ridge_physeq
remove the spike-in sp before further analysis
absolute <- phyloseq::subset_taxa(physeq_absolute, Genus!="Tetragenococcus")
Caudate_abs <- phyloseq::subset_samples(absolute, Clade.Order == "Caudate" )
Three_Genara_abs <- phyloseq::subset_samples(Caudate_abs, Host.genus %in% c("Desmognathus", "Plethodon", "Eurycea"))
Three_Genara_abs_BlueRidge<- phyloseq::subset_samples(Three_Genara_abs,Ecoregion.III=="Blue Ridge" )
Desmog_Blue_Ins_16_abs<- phyloseq::subset_samples(Three_Genara_abs_BlueRidge,Host.genus=="Desmognathus")
results_DESeq2 <- perform_and_visualize_DA(
obj = Desmog_Blue_Ins_16_abs,
method = "DESeq2",
group_var = "Host.taxon",
contrast = c("Desmognathus monticola", "Desmognathus imitator" ),
output_csv_path = "DA_DESeq2.csv",
target_glom = "Genus",
significance_level = 0.05
)
results_DESeq2$plot
head(results_DESeq2$results)
#> # A tibble: 6 × 17
#> baseMean logFC lfcSE stat pvalue padj FDR Significance group
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <fct>
#> 1 9 2.32e-15 0.256 9.05e-15 1.00 1.00 1 Not Significant Desmog…
#> 2 2 9.76e-15 0.536 1.82e-14 1.00 1.00 1 Not Significant Desmog…
#> 3 1.36 -1.60e-13 0.752 -2.13e-13 1.00 NA 1 Not Significant Desmog…
#> 4 2 9.76e-15 0.536 1.82e-14 1.00 1.00 1 Not Significant Desmog…
#> 5 10 1.15e-15 0.244 4.71e-15 1.00 1.00 1 Not Significant Desmog…
#> 6 10.8 4.62e- 1 0.284 1.63e+ 0 0.104 0.563 0.874 Not Significant Desmog…
#> # ℹ 8 more variables: OTU <chr>, Kingdom <chr>, Phylum <chr>, Class <chr>,
#> # Order <chr>, Family <chr>, Genus <chr>, Species <chr>
results_DESeq2$obj_significant
#> phyloseq-class experiment-level object
#> otu_table() OTU Table: [ 28 taxa and 42 samples ]:
#> sample_data() Sample Data: [ 42 samples by 41 sample variables ]:
#> tax_table() Taxonomy Table: [ 28 taxa by 7 taxonomic ranks ]:
#> phy_tree() Phylogenetic Tree: [ 28 tips and 27 internal nodes ]:
#> refseq() DNAStringSet: [ 28 reference sequences ]
#> taxa are rows
# Relative abundance
data("physeq_16SOTU",package = "DspikeIn")
relative <- phyloseq::subset_taxa(physeq_16SOTU, Genus!="Tetragenococcus")
Caudate_rel <- phyloseq::subset_samples(relative, Clade.Order == "Caudate" )
Three_Genara_rel <- phyloseq::subset_samples(Caudate_rel, Host.genus %in% c("Desmognathus", "Plethodon", "Eurycea"))
Three_Genara_rel_BlueRidge<- phyloseq::subset_samples(Three_Genara_rel,Ecoregion.III=="Blue Ridge" )
Desmog_Blue_Ins_16_rel<- phyloseq::subset_samples(Three_Genara_rel_BlueRidge,Host.genus=="Desmognathus")
results_DESeq2_rel <- perform_and_visualize_DA(
obj = Desmog_Blue_Ins_16_rel,
method = "DESeq2",
group_var = "Host.taxon",
contrast = c("Desmognathus monticola", "Desmognathus imitator" ),
output_csv_path = "DA_DESeq2.csv",
target_glom = "Genus",
significance_level = 0.05
)
print(results_DESeq2_rel$plot)
head(results_DESeq2_rel$results) # sig taxa
#> # A tibble: 6 × 17
#> baseMean logFC lfcSE stat pvalue padj FDR Significance group OTU
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <fct> <chr>
#> 1 10 3.15e-15 0.237 1.33e-14 1.00 NA 1 Not Signifi… Desm… b004…
#> 2 2 9.18e-15 0.522 1.76e-14 1.00 NA 1 Not Signifi… Desm… f872…
#> 3 1.05 -5.74e-14 0.735 -7.81e-14 1.00 NA 1 Not Signifi… Desm… df13…
#> 4 2 9.18e-15 0.522 1.76e-14 1.00 NA 1 Not Signifi… Desm… ed28…
#> 5 12 -4.74e-16 0.217 -2.18e-15 1.00 1.00 1 Not Signifi… Desm… 63f5…
#> 6 13.0 1.23e- 2 0.209 5.89e- 2 0.953 1.00 1 Not Signifi… Desm… fea9…
#> # ℹ 7 more variables: Kingdom <chr>, Phylum <chr>, Class <chr>, Order <chr>,
#> # Family <chr>, Genus <chr>, Species <chr>
results_DESeq2_rel$obj_significant
#> phyloseq-class experiment-level object
#> otu_table() OTU Table: [ 4 taxa and 42 samples ]:
#> sample_data() Sample Data: [ 42 samples by 34 sample variables ]:
#> tax_table() Taxonomy Table: [ 4 taxa by 7 taxonomic ranks ]:
#> phy_tree() Phylogenetic Tree: [ 4 tips and 3 internal nodes ]:
#> refseq() DNAStringSet: [ 4 reference sequences ]
#> taxa are rows
# ===========================================================
# Visualization of community composition
# ===========================================================
Rel <- phyloseq::subset_taxa(physeq_16SOTU, Genus!="Tetragenococcus")
Prok_OTU_spiked <- phyloseq::subset_samples(Rel, spiked.volume %in% c("2", "1"))
Prok_OTU_spiked <- phyloseq::subset_samples(Prok_OTU_spiked, sample.or.blank != "blank")
Prok_OTU_sal <- phyloseq::subset_samples(Prok_OTU_spiked, Animal.type == "Salamander")
Prok_OTU_sal<-tidy_phyloseq_tse(Prok_OTU_sal)
taxa_barplot(
Prok_OTU_sal,
target_glom = "Genus",
custom_tax_names = NULL,
normalize = TRUE,
treatment_variable = "Habitat",
abundance_type = "relative",
x_angle = 25,
fill_variable = "Family",
facet_variable = "Diet",
top_n_taxa = 20,
palette = DspikeIn::color_palette$MG,
legend_size = 11,
legend_columns = 1,
x_scale = "free",
xlab = NULL
)
#> $barplot
#>
#> $taxa_data
#> phyloseq-class experiment-level object
#> otu_table() OTU Table: [ 21 taxa and 146 samples ]:
#> sample_data() Sample Data: [ 146 samples by 34 sample variables ]:
#> tax_table() Taxonomy Table: [ 21 taxa by 7 taxonomic ranks ]:
#> taxa are rows
Plot core microbiome
custom_detections <- list(
prevalences = seq(0.03, 1, 0.01),
thresholds = 10^seq(log10(0.03), log10(1), length = 10),
min_prevalence = 0.3,
taxa_order = "decending"
)
Prok_OTU_sal<- tidy_phyloseq_tse(Prok_OTU_sal)
plot_result <- plot_core_microbiome_custom(
obj = Prok_OTU_sal,
detections = custom_detections,
taxrank = "Phylum",
output_core_rds = "core_microbiome.rds",
output_core_csv = "core_microbiome.csv"
)
#> Core microbiome saved as CSV to: core_microbiome.csv
#> Core microbiome saved as RDS to: core_microbiome.rds
plot_result
# ===========================================================
# 1. Initialization and loading NetWorks for Comparision
# ===========================================================
#library(SpiecEasi)
#library(ggnet)
library(igraph)
library(tidyr)
library(dplyr)
library(ggpubr)
# To create a microbial co-occurrence network, you can refer to the SpiecEasi package available at:
# SpiecEasi GitHub Repository https://github.com/zdk123/SpiecEasi
# herp.Bas.rel.f is a merged phyloseq object for both bacterial and fungal domains
# herp.spiec <- spiec.easi(herp.Bas.rel.f, method='mb', lambda.min.ratio=1e-3, nlambda=250,pulsar.select=TRUE )
# write_graph(herp.spiec, "Complete.graphml", "graphml")
Complete <- load_graphml("Complete.graphml")
NoBasid <- load_graphml("NoBasid.graphml")
NoHubs <- load_graphml("NoHubs.graphml")
# ===========================================================
# 2. Metrics Calculation
# ===========================================================
? node_level_metrics
result_Complete <- node_level_metrics(Complete)
result_NoHubs <- node_level_metrics(NoHubs)
result_NoBasid <- node_level_metrics(NoBasid)
Complete_metrics<-result_Complete$metrics
Nohub_metrics<-result_NoHubs$metrics
Nobasid_metrics<-result_NoBasid$metrics
Complete_metrics <- data.frame(lapply(Complete_metrics, as.character), stringsAsFactors = FALSE)
Nohub_metrics <- data.frame(lapply(Nohub_metrics, as.character), stringsAsFactors = FALSE)
Nobasid_metrics <- data.frame(lapply(Nobasid_metrics, as.character), stringsAsFactors = FALSE)
print(vcount(Complete)) # Number of nodes
#> [1] 308
print(ecount(Complete)) # Number of edges
#> [1] 1144
print(vcount(NoBasid))
#> [1] 307
print(ecount(NoBasid))
#> [1] 1187
print(vcount(NoHubs))
#> [1] 286
print(ecount(NoHubs))
#> [1] 916
metrics_scaled <- bind_rows(
Complete_metrics %>% mutate(Network = "Complete"),
Nohub_metrics %>% mutate(Network = "NoHubs"),
Nobasid_metrics %>% mutate(Network = "NoBasid")
) %>%
dplyr::mutate(dplyr::across(where(is.numeric), scale))
metrics_long_scaled <- metrics_scaled %>%
tidyr::pivot_longer(cols = -c(Node, Network), names_to = "Metric", values_to = "Value")
bind the metrics to plot them
# ===========================================================
# 3. Visualization
# ===========================================================
# Remove missing values
metrics_long_scaled <- na.omit(metrics_long_scaled)
# We visualize only six metrics
selected_metrics <- c("Degree", "Closeness", "Betweenness",
"EigenvectorCentrality", "PageRank", "Transitivity")
metrics_long_filtered <- metrics_long_scaled %>%
filter(Metric %in% selected_metrics) %>%
mutate(
Value = as.numeric(as.character(Value)),
Network = recode(Network,
"Complete" = "Complete Network",
"NoHubs" = "Network & Module Hubs Removed",
"NoBasid" = "Basidiobolus Subnetwork Removed") ) %>%
na.omit() # Remove any NA
metrics_long_filtered$Network <- factor(metrics_long_filtered$Network,
levels = c("Complete Network",
"Network & Module Hubs Removed",
"Basidiobolus Subnetwork Removed"))
# DspikeIn::color_palette$light_MG
network_colors <- c(
"Complete Network" = "#F1E0C5",
"Network & Module Hubs Removed" = "#D2A5A1",
"Basidiobolus Subnetwork Removed" = "#B2C3A8"
)
# statistical comparisons a vs b
comparisons <- list(
c("Complete Network", "Network & Module Hubs Removed"),
c("Complete Network", "Basidiobolus Subnetwork Removed"),
c("Network & Module Hubs Removed", "Basidiobolus Subnetwork Removed")
)
networks_in_data <- unique(metrics_long_filtered$Network)
comparisons <- comparisons[sapply(comparisons, function(pair) all(pair %in% networks_in_data))]
ggplot(metrics_long_filtered, aes(x = Network, y = Value, fill = Network)) +
geom_boxplot(outlier.shape = NA) +
geom_jitter(aes(color = Network),
position = position_jitter(0.2), alpha = 0.2, size = 1.5) +
scale_fill_manual(values = network_colors) +
scale_color_manual(values = network_colors) +
facet_wrap(~ Metric, scales = "free_y", labeller = label_wrap_gen(width = 20)) +
ggpubr::stat_compare_means(method = "wilcox.test", label = "p.signif", comparisons = comparisons) +
theme_minimal() +
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(size = 10, angle = 25, hjust = 0.9),
strip.text = element_text(size = 12),
legend.position = "top",
legend.text = element_text(size = 14),
legend.title = element_text(size = 14, face = "bold"),
plot.title = element_text(size = 14, face = "bold")
) +
labs(title = "Selected Node Metrics Across Networks", fill = "Network Type", color = "Network Type")
Complete <- load_graphml("Complete.graphml")
result2 <- extract_neighbors(graph = Complete,
target_node = "OTU69:Basidiobolus_sp", mode = "all")
print(result2$summary)
#> Type Node
#> 1 First Neighbor OTU8:Mortierella_sp
#> 2 First Neighbor OTU13:Mortierella_sp
#> 3 First Neighbor OTU15:Mortierella_sp
#> 4 First Neighbor OTU16:Ascomycota_sp
#> 5 First Neighbor OTU18:Helotiales_sp
#> 6 First Neighbor OTU19:Margaritispora_monticola
#> 7 First Neighbor OTU20:Scytalidium_sp
#> 8 First Neighbor OTU27:Penicillium_glaucoalbidum
#> 9 First Neighbor OTU40:Tremella_sp
#> 10 First Neighbor OTU50:Taphrina_sp
#> 11 First Neighbor OTU135:uncultured_bacterium
#> 12 First Neighbor OTU146:uncultured_bacterium
#> 13 First Neighbor OTU153:uncultured_bacterium
#> 14 First Neighbor OTU230:uncultured_bacterium
#> 15 First Neighbor OTU247:uncultured_Firmicutes
#> 16 First Neighbor OTU287:uncultured_bacterium
#> 17 First Neighbor OTU300:Robinsoniella_peoriensis
#> 18 First Neighbor OTU312:uncultured_Verrucomicrobia
#> 19 Second Neighbor OTU4:Mortierella_pulchella
#> 20 Second Neighbor OTU12:Mortierella_gemmifera
#> 21 Second Neighbor OTU36:Inocybe_sp
#> 22 Second Neighbor OTU7:Mortierella_pulchella
#> 23 Second Neighbor OTU66:Tausonia_pullulans
#> 24 Second Neighbor OTU141:uncultured_bacterium
#> 25 Second Neighbor OTU268:uncultured_bacterium
#> 26 Second Neighbor OTU1:Lilapila_jurana
#> 27 Second Neighbor OTU11:Podila_humilis
#> 28 Second Neighbor OTU22:Sclerotiniaceae_sp
#> 29 Second Neighbor OTU51:Tremellales_sp
#> 30 Second Neighbor OTU42:Armillaria_borealis
#> 31 Second Neighbor OTU44:Kuehneromyces_rostratus
#> 32 Second Neighbor OTU67:Rhodosporidiobolus_colostri
#> 33 Second Neighbor OTU86:Fungi_sp
#> 34 Second Neighbor OTU28:Penicillium_glaucoalbidum
#> 35 Second Neighbor OTU29:Cladophialophora_sp
#> 36 Second Neighbor OTU85:Mucorales_sp
#> 37 Second Neighbor OTU25:Cryptosporiopsis_sp
#> 38 Second Neighbor OTU34:Paraboeremia_selaginellae
#> 39 Second Neighbor OTU61:Rozellomycota_sp
#> 40 Second Neighbor OTU82:Mycoacia_fuscoatra
#> 41 Second Neighbor OTU151:Ruminococcaceae_bacterium
#> 42 Second Neighbor OTU198:uncultured_bacterium
#> 43 Second Neighbor OTU289:uncultured_Bacteroidetes
#> 44 Second Neighbor OTU10:Dissophora_globulifera
#> 45 Second Neighbor OTU31:Clonostachys_krabiensis
#> 46 Second Neighbor OTU45:Ganoderma_carnosum
#> 47 Second Neighbor OTU78:Rozellomycota_sp
#> 48 Second Neighbor OTU79:Rozellomycota_sp
#> 49 Second Neighbor OTU14:Mortierella_sp
#> 50 Second Neighbor OTU39:Fungi_sp
#> 51 Second Neighbor OTU64:Curvibasidium_cygneicollum
#> 52 Second Neighbor OTU60:Chytriomycetaceae_sp
#> 53 Second Neighbor OTU68:Fungi_sp
#> 54 Second Neighbor OTU70:Rozellomycota_sp
#> 55 Second Neighbor OTU54:Papiliotrema_flavescens
#> 56 Second Neighbor OTU55:Papiliotrema_sp
#> 57 Second Neighbor OTU62:Tremellales_sp
#> 58 Second Neighbor OTU73:Chytridiomycota_sp
#> 59 Second Neighbor OTU105:uncultured_bacterium
#> 60 Second Neighbor OTU200:uncultured_bacterium
#> 61 Second Neighbor OTU224:Breznakia_pachnodae
#> 62 Second Neighbor OTU310:uncultured_bacterium
#> 63 Second Neighbor OTU100:uncultured_proteobacterium
#> 64 Second Neighbor OTU107:uncultured_bacterium
#> 65 Second Neighbor OTU123:anaerobic_digester
#> 66 Second Neighbor OTU124:uncultured_bacterium
#> 67 Second Neighbor OTU199:uncultured_bacterium
#> 68 Second Neighbor OTU206:uncultured_bacterium
#> 69 Second Neighbor OTU238:uncultured_bacterium
#> 70 Second Neighbor OTU261:uncultured_bacterium
#> 71 Second Neighbor OTU269:uncultured_Bacteroidetes
#> 72 Second Neighbor OTU270:Alistipes_sp.
#> 73 Second Neighbor OTU290:uncultured_bacterium
#> 74 Second Neighbor OTU104:uncultured_bacterium
#> 75 Second Neighbor OTU112:uncultured_bacterium
#> 76 Second Neighbor OTU120:uncultured_bacterium
#> 77 Second Neighbor OTU148:uncultured_bacterium
#> 78 Second Neighbor OTU175:uncultured_Firmicutes
#> 79 Second Neighbor OTU215:uncultured_bacterium
#> 80 Second Neighbor OTU236:uncultured_bacterium
#> 81 Second Neighbor OTU239:uncultured_bacterium
#> 82 Second Neighbor OTU251:uncultured_bacterium
#> 83 Second Neighbor OTU254:uncultured_Rikenella
#> 84 Second Neighbor OTU164:uncultured_Anaerotruncus
#> 85 Second Neighbor OTU165:uncultured_bacterium
#> 86 Second Neighbor OTU204:uncultured_organism
#> 87 Second Neighbor OTU205:uncultured_bacterium
#> 88 Second Neighbor OTU292:uncultured_bacterium
#> 89 Second Neighbor OTU309:Akkermansia_glycaniphila
#> 90 Second Neighbor OTU197:uncultured_bacterium
#> 91 Second Neighbor OTU285:uncultured_bacterium
#> 92 Second Neighbor OTU91:uncultured_Conexibacteraceae
#> 93 Second Neighbor OTU181:uncultured_bacterium
#> 94 Second Neighbor OTU194:Christensenella_minuta
#> 95 Second Neighbor OTU235:Paenibacillus_taiwanensis
#> 96 Second Neighbor OTU243:Bacteroides_sp.
#> 97 Second Neighbor OTU280:uncultured_bacterium
#> 98 Second Neighbor OTU282:uncultured_bacterium
#> 99 Second Neighbor OTU291:uncultured_bacterium
#> 100 Second Neighbor OTU172:uncultured_Firmicutes
#> 101 Second Neighbor OTU183:uncultured_Clostridiales
#> 102 Second Neighbor OTU185:unidentified
#> 103 Second Neighbor OTU196:uncultured_bacterium
#> 104 Second Neighbor OTU203:uncultured_bacterium
#> 105 Second Neighbor OTU226:Erysipelotrichaceae_bacterium
#> 106 Second Neighbor OTU253:uncultured_bacterium
#> 107 Second Neighbor OTU277:Mucinivorans_hirudinis
#> 108 Second Neighbor OTU297:uncultured_bacterium
#> 109 Second Neighbor OTU306:uncultured_bacterium
#> 110 Second Neighbor OTU106:Mucinivorans_hirudinis
#> 111 Second Neighbor OTU111:Coprobacter_secundus
#> 112 Second Neighbor OTU126:Actinomycetales_bacterium
#> 113 Second Neighbor OTU154:Hydrogenoanaerobacterium_saccharovorans
#> 114 Second Neighbor OTU166:uncultured_bacterium
#> 115 Second Neighbor OTU187:bacterium_endosymbiont
#> 116 Second Neighbor OTU208:uncultured_bacterium
#> 117 Second Neighbor OTU210:uncultured_bacterium
#> 118 Second Neighbor OTU262:uncultured_bacterium
# Load required libraries
library(igraph)
library(dplyr)
library(tidyr)
library(ggplot2)
library(ggrepel)
# Compute Node-Level Metrics
completeMetrics <- node_level_metrics(Complete)
NoHubsMetrics <- node_level_metrics(NoHubs)
NoBasidMetrics <- node_level_metrics(NoBasid)
# Ensure each dataset has a "Network" column before combining
completeMetrics$metrics <- completeMetrics$metrics %>% mutate(Network = "Complete Network")
NoHubsMetrics$metrics <- NoHubsMetrics$metrics %>% mutate(Network = "Network & Module Hubs Removed")
NoBasidMetrics$metrics <- NoBasidMetrics$metrics %>% mutate(Network = "Basidiobolus Subnetwork Removed")
# Combine All Data
combined_data <- bind_rows(
completeMetrics$metrics,
NoHubsMetrics$metrics,
NoBasidMetrics$metrics
)
# Add Node Identifier if missing
if (!"Node" %in% colnames(combined_data)) {
combined_data <- combined_data %>% mutate(Node = rownames(.))
}
# Convert `Network` into Factor
combined_data$Network <- factor(combined_data$Network, levels = c(
"Complete Network",
"Network & Module Hubs Removed",
"Basidiobolus Subnetwork Removed"
))
# Convert Data to Long Format
metrics_long <- combined_data %>%
pivot_longer(cols = c("Redundancy", "Efficiency", "Betweenness"),
names_to = "Metric", values_to = "Value")
# Define Custom Colors and Shapes
network_colors <- c(
"Complete Network" = "#F1E0C5",
"Network & Module Hubs Removed" = "#D2A5A1",
"Basidiobolus Subnetwork Removed" = "#B2C3A8"
)
network_shapes <- c(
"Complete Network" = 21, # Circle
"Network & Module Hubs Removed" = 22, # Square
"Basidiobolus Subnetwork Removed" = 23 # Diamond
)
# Determine Top 30% of Nodes to Label/Optional
metrics_long <- metrics_long %>%
group_by(Network, Metric) %>%
mutate(Label = ifelse(rank(-Value, ties.method = "random") / n() <= 0.3, Node, NA))
#?quadrant_plot() can creat plot for indivisual network
# plot <- quadrant_plot(metrics, x_metric = "Degree", y_metric = "Efficiency")
# Create comparision Plots
create_metric_plot <- function(metric_name, data, title) {
data_filtered <- data %>% filter(Metric == metric_name)
median_degree <- median(data_filtered$Degree, na.rm = TRUE)
median_value <- median(data_filtered$Value, na.rm = TRUE)
ggplot(data_filtered, aes(x = Degree, y = Value, fill = Network)) +
geom_point(aes(shape = Network), size = 3, stroke = 1, color = "black") +
geom_text_repel(aes(label = Label), size = 3, max.overlaps = 50) +
scale_fill_manual(values = network_colors) +
scale_shape_manual(values = network_shapes) +
geom_vline(xintercept = median_degree, linetype = "dashed", color = "black", size = 1) +
geom_hline(yintercept = median_value, linetype = "dashed", color = "black", size = 1) +
labs(
title = title,
x = "Degree",
y = metric_name,
fill = "Network",
shape = "Network"
) +
theme_minimal() +
theme(
plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),
axis.title = element_text(size = 14, face = "bold"),
legend.position = "top",
legend.title = element_text(size = 14, face = "bold"),
legend.text = element_text(size = 12)
)
}
# Generate Plots
plot_redundancy <- create_metric_plot("Redundancy", metrics_long, "Redundancy vs. Degree Across Networks")
plot_efficiency <- create_metric_plot("Efficiency", metrics_long, "Efficiency vs. Degree Across Networks")
plot_betweenness <- create_metric_plot("Betweenness", metrics_long, "Betweenness vs. Degree Across Networks")
# Save Plots
#ggsave("plot_redundancy_20percent.png", plot_redundancy, width = 8, height = 6)
#ggsave("plot_efficiency_20percent.png", plot_efficiency, width = 8, height = 6)
#ggsave("plot_betweenness_20percent.png", plot_betweenness, width = 8, height = 6)
# Print Plots
print(plot_redundancy)
# Compute degree metrics and visualize the network
# Options: `"stress"` (default), `"graphopt"`, `"fr"`
result <- degree_network(graph_path = Complete, save_metrics = TRUE)
print(result$metrics)
print(result$plot)
# Compute network weights for different graph structures
NH <- weight_Network(graph_path = "NoHubs.graphml")
NB <- weight_Network(graph_path = "NoBasid.graphml")
C <- weight_Network(graph_path = "Complete.graphml")
# Extract metrics from the computed network weights
CompleteM <- C$metrics
NoHubsM <- NH$metrics
NoBasidM <- NB$metrics
# Combine metrics into a single dataframe for comparison
df <- bind_rows(
CompleteM %>% mutate(Group = "CompleteM"),
NoHubsM %>% mutate(Group = "NoHubsM"),
NoBasidM %>% mutate(Group = "NoBasidM")
) %>%
pivot_longer(cols = -Group, names_to = "Metric", values_to = "Value")
# Aggregate the total values by metric and group
df_bar <- df %>%
group_by(Metric, Group) %>%
summarise(Total_Value = sum(Value), .groups = "drop")
# Plot the metrics comparison
ggplot(df_bar, aes(x = Metric, y = log1p(Total_Value), fill = Group)) +
geom_bar(stat = "identity", position = "dodge", alpha = 0.8) +
theme_minimal(base_size = 14) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_manual(values = c("#F1E0C5", "#D2A5A1", "#B2C3A8")) +
labs(title = "Total Network Metrics Comparison",
x = "Metric",
y = "Total Value (log-scaled)",
fill = "Group")
Spike-in volume Protocol; To get support for the whole-cell spike-in protocol, please contact Donnald Walker at Donald.Walker@mtsu.edu.
The species Tetragenococcus halophilus (bacterial spike; ATCC33315) and Dekkera bruxellensis (fungal spike; WLP4642-White Labs) were selected as taxa to spike into gut microbiome samples as they were not found in an extensive collection of wildlife skin (GenBank BioProjects: PRJNA1114724, PRJNA 1114659) or gut microbiome samples. Stock cell suspensions of both microbes were grown in either static tryptic soy broth (T. halophilus) or potato dextrose broth (D. bruxellensis) for 72 hours then serially diluted and optical density (OD600) determined on a ClarioStar plate reader. Cell suspensions with an optical density of 1.0, 0.1, 0.01, 0.001 were DNA extracted using the Qiagen DNeasy Powersoil Pro Kit. These DNA isolations were used as standards to determine the proper spike in volume of cells to represent 0.1-10% of a sample (Rao et al., 2021b) Fecal pellets (3.1 ± 1.6 mg; range = 1 – 5.1 mg) from an ongoing live animal study using wood frogs (Lithobates sylvaticus) were used to standardize the input material for the development of this protocol. A total of (n=9) samples were used to validate the spike in protocol. Each fecal sample was homogenized in 1mL of sterile molecular grade water then 250uL of fecal slurry was DNA extracted as above with and without spiked cells. Two approaches were used to evaluate the target spike-in of 0.1-10%, the range of effective spike-in percentage described in (Rao et al., 2021b), including 1) an expected increase of qPCR cycle threshold (Ct) value that is proportional to the amount of spiked cells and 2) the expected increase in copy number of T. halophilus and D. bruxellensis in spiked vs. unspiked samples. A standard curve was generated using a synthetic fragment of DNA for the 16S-V4 rRNA and ITS1 rDNA regions of T. halophilus and D. bruxellensis, respectively. The standard curve was used to convert Ct values into log copy number for statistical analyses (detailed approach in[2, 3]) using the formula y = -0.2426x + 10.584 for T. halophilus and y = -0.3071x + 10.349 for D. bruxellensis, where x is the average Ct for each unknown sample. Quantitative PCR (qPCR) was used to compare known copy numbers from synthetic DNA sequences of T. halophilus and D. bruxellensis to DNA extractions of T. halophilus and D. bruxellensis independently, and wood frog fecal samples with and without spiked cells. SYBR qPCR assays were run at 20ul total volume including 10ul 2X Quantabio PerfeCTa SYBR Green Fastmix, 1ul of 10uM forward and reverse primers, 1ul of ArcticEnzymes dsDNAse master mix clean up kit, and either 1ul of DNA for D. bruxellensis or 3ul for T. halophilus. Different volumes of DNA were chosen for amplification of bacteria and fungi due to previous optimization of library preparation and sequencing steps [3]. The 515F [4] and 806R [5] primers were chosen to amplify bacteria and ITS1FI2 [6] and ITS2 for fungi, as these are the same primers used during amplicon library preparation and sequencing. Cycling conditions on an Agilent AriaMX consisted of 95 C for 3 mins followed by 40 cycles of 95 C for 15 sec, 60 C for 30 sec and 72 C for 30 sec. Following amplification, a melt curve was generated under the following conditions including 95 C for 30 sec, and a melt from 60 C to 90 C increasing in resolution of 0.5 C in increments of a 5 sec soak time. To validate the spike in protocol we selected two sets of fecal samples including 360 samples from a diverse species pool of frogs, lizards, salamanders and snakes and a more targeted approach of 122 fecal samples from three genera of salamanders from the Plethodontidae. (Supplemental Table #). FFecal samples were not weighed in the field, rather, a complete fecal pellet was diluted in an equal volume of sterile water and standardized volume of fecal slurry (250µL) extracted for independent samples.. A volume of 1ul T. halophilus (1847 copies) and 1ul D. bruxellensis (733 copies) were spiked into each fecal sample then DNA was extracted as above, libraries constructed, and amplicon sequenced on an Illumina MiSeq as in [7] .