#Case-scenario 1 #This is the fourth season of outfielder Luis Robert
with #the Chicago White Socks. If during the first three #seasons he hit
11, 13, and 12 home runs, how many does he #need on this season for his
overall average to be at #least 20?
# Home-runs so far
HR_before <- c(11, 13, 12)
# Average Number of Home-runs per season wanted
Wanted_Homeruns <- 20
# Number of seasons
n_seasons <- 4
#how to answer the question above
#20=(11+13+12+x/4)
#80-36=x
# Needed Home-runs on season 4
x_4 <- n_seasons*Wanted_Hoemruns - sum(HR_before)
# Minimum number of Home-runs needed by Robert
x_4
[1] 44
remove(Wanted_Hoemruns)
# Robert's performance
Robert_HRs <- c(11, 13, 12,44)
# Find mean
mean(Robert_HRs)
[1] 20
# Find standard deviation
sd(Robert_HRs)
[1] 16.02082
# Find the maximum number of home-runs during the four seasons period
max(Robert_HRs)
[1] 44
summary(Robert_HRs)
Min. 1st Qu. Median Mean 3rd Qu. Max.
11.00 11.75 12.50 20.00 20.75 44.00
Question 1 This is the sixth season of outfielder
Juan Soto in the majors. If during the first five seasons he received
79, 108,41,145, and 135 walks, how many does he need on this season for
his overall number of walks per season to be at least 100?
Soto_Walks<-c(79,108,41,145,135)
wanted_walks<-100
number_seasons<-6
#Needed walks on season 6
walks_6<-number_seasons*wanted_walks-sum(Soto_Walks)
walks_6
[1] 92
Answer:Soto needs 92 walks in his sixth season
Case Scenario 2
The average salary of 10 baseball players is 72,000 dollars a week
and the average salary of 4 soccer players is 84,000. Find the mean
salary of all 14 professional players.
n_1<-10
n_2<-4
y_1<-72000
y_2<-84000
#Mean Salary Overall
salary_ave<-(n_1*y_1+n_2*y_2)/(n_1+n_2)
salary_ave
[1] 75428.57
Question 2 The average salary of 7 basketball
players is 102,000 dollars a week and the average salary of 9 NFL
players is 91,000. Find the mean salary of all 16 professional
players.
bp_1<-7
fp_1<-9
w_1<-102000
w_2<-91000
#Mean Salary Overall
w_salary_ave<-(bp_1*w_1+fp_1*w_2)/(bp_1+fp_1)
w_salary_ave
[1] 95812.5
Answer:mean salary of all 16 professional players is $95,812.50
Case Scenario 3
getwd()
[1] "/cloud/project"
contract_length<-read.csv("allcontracts.csv",header=TRUE,sep=",")
contract_years<-contract_length$years
contracts_mean<-mean(contract_years,digits=3)
contracts_mean
[1] 3.46
#Median
contracts_median<-median(contract_years)
contracts_median
[1] 3
#SD
#Find the number of observations
contracts_n<-length(contract_years)
contracts_n
[1] 500
#Find the standard deviation
contracts_sd<-sd(contract_years)
contracts_sd
[1] 1.695331
contracts_w1sd<-sum((contract_years-contracts_mean)/contracts_sd<1)/contracts_n
#Percentage of observations within one sd from the mean
contracts_w1sd
[1] 0.842
#Difference from emperical
contracts_w1sd-.68
[1] 0.162
#Percentage of observations within two sd from the mean
contracts_w2sd<-sum((contract_years-contracts_mean)/contracts_sd<2)/contracts_n
contracts_w2sd
[1] 1
So this means that 100% of the contracts are within 2 Standard
Deviations
#Difference from emperical
contracts_w2sd-.95
[1] 0.05
#Within 3 SD
#Percentage of observations within three sd from the mean
contracts_w3sd<-sum((contract_years-contracts_mean)/contracts_sd<3)/contracts_n
contracts_w3sd
[1] 1
#Difference from empirical
contracts_w2sd-.9973
[1] 0.0027
Create a Histogram
summary(cars)
speed dist
Min. : 4.0 Min. : 2.00
1st Qu.:12.0 1st Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. :25.0 Max. :120.00
hist(cars$dist)
#graph appears
Create a Histogram
hist(contract_years,xlab = "Years Left in Contract",col="green",border = "red",
xlim = c(0,8),ylim = c(0,200),breaks =5)

#boxplot
boxplot(contract_years,main="Years left in Contract",ylab="Years")

#boxplot
boxplot(contract_years,main="Years left in Contract",ylab="Years",col="lightblue",
border = "blue",horizontal = FALSE )

Question_3 Use the skills learned in case scenario
number 3 on one the following data sets. You may choose only one
dataset.
doubles<-read.table("doubles_hit.csv",header=TRUE,sep=",")
doubles_hit<-doubles$doubles_hit
doubles_hit_mean<-mean(doubles_hit)
doubles_hit_median<-median(doubles_hit)
doubles_hit_mean
[1] 23.55
doubles_hit_median
[1] 23.5
doubles_hit_n<-length(doubles_hit)
doubles_hit_sd<-sd(doubles_hit)
doubles_hit_n
[1] 100
doubles_hit_sd
[1] 13.37371
doubles_hit_w1sd<-sum((doubles_hit - doubles_hit_mean)/doubles_hit_sd<1)/doubles_hit_n
doubles_hit_w1sd
[1] 0.79
#Difference from empirical
doubles_hit_w1sd-.68
[1] 0.11
doubles_hit_w2sd<-sum((doubles_hit - doubles_hit_mean)/doubles_hit_sd<2)/doubles_hit_n
doubles_hit_w2sd
[1] 1
#Difference from empirical
doubles_hit_w2sd-.95
[1] 0.05
doubles_hit_w3sd<-sum((doubles_hit - doubles_hit_mean)/doubles_hit_sd<3)/doubles_hit_n
doubles_hit_w3sd
[1] 1
#Difference from empirical
doubles_hit_w2sd-.9973
[1] 0.0027
Double hits Histogram
hist(doubles_hit,xlab = "Number of Doubles",
ylab="Years",col="lightblue",border = "blue",
xlim=c(0,60),ylim=c(0,30),breaks=7
)

#boxplot
boxplot(doubles_hit,main="Boxplot of Double Hits by Player",ylab="Doubles",
col="lightblue",border = "blue" )

LS0tCnRpdGxlOiAiR2V0dGluZyBTdGFydGVkIHdpdGggUjpDb25jZXB0ZXMgaW4gU3BvcnRzIEFuYWx5dGljcyBwYXJ0IDIiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KI0Nhc2Utc2NlbmFyaW8gMQojVGhpcyBpcyB0aGUgZm91cnRoIHNlYXNvbiBvZiBvdXRmaWVsZGVyIEx1aXMgUm9iZXJ0IHdpdGggI3RoZSBDaGljYWdvIFdoaXRlIFNvY2tzLiBJZiBkdXJpbmcgdGhlIGZpcnN0IHRocmVlICNzZWFzb25zIGhlIGhpdCAxMSwgMTMsIGFuZCAxMiBob21lIHJ1bnMsIGhvdyBtYW55IGRvZXMgaGUgI25lZWQgb24gdGhpcyBzZWFzb24gZm9yIGhpcyBvdmVyYWxsIGF2ZXJhZ2UgdG8gYmUgYXQgI2xlYXN0IDIwPwpgYGB7cn0KIyBIb21lLXJ1bnMgc28gZmFyCkhSX2JlZm9yZSA8LSBjKDExLCAxMywgMTIpCiMgQXZlcmFnZSBOdW1iZXIgb2YgSG9tZS1ydW5zIHBlciBzZWFzb24gd2FudGVkCldhbnRlZF9Ib21lcnVucyA8LSAyMAojIE51bWJlciBvZiBzZWFzb25zCm5fc2Vhc29ucyA8LSA0CiNob3cgdG8gYW5zd2VyIHRoZSBxdWVzdGlvbiBhYm92ZQojMjA9KDExKzEzKzEyK3gvNCkKIzgwLTM2PXgKIyBOZWVkZWQgSG9tZS1ydW5zIG9uIHNlYXNvbiA0CnhfNCA8LSBuX3NlYXNvbnMqV2FudGVkX0hvZW1ydW5zIC0gc3VtKEhSX2JlZm9yZSkKIyBNaW5pbXVtIG51bWJlciBvZiBIb21lLXJ1bnMgbmVlZGVkIGJ5IFJvYmVydAp4XzQKYGBgCmBgYHtyfQojIFJvYmVydCdzIHBlcmZvcm1hbmNlClJvYmVydF9IUnMgPC0gYygxMSwgMTMsIDEyLDQ0KQojIEZpbmQgbWVhbgptZWFuKFJvYmVydF9IUnMpCmBgYApgYGB7cn0KIyBGaW5kIHN0YW5kYXJkIGRldmlhdGlvbgpzZChSb2JlcnRfSFJzKQpgYGAKYGBge3J9CiMgRmluZCB0aGUgbWF4aW11bSBudW1iZXIgb2YgaG9tZS1ydW5zIGR1cmluZyB0aGUgZm91ciBzZWFzb25zIHBlcmlvZAptYXgoUm9iZXJ0X0hScykKYGBgCmBgYHtyfQpzdW1tYXJ5KFJvYmVydF9IUnMpCmBgYAoKKipRdWVzdGlvbiAxKioKVGhpcyBpcyB0aGUgc2l4dGggc2Vhc29uIG9mIG91dGZpZWxkZXIgSnVhbiBTb3RvIGluIHRoZSBtYWpvcnMuIElmIGR1cmluZyB0aGUgZmlyc3QgZml2ZSBzZWFzb25zIGhlIHJlY2VpdmVkIDc5LCAxMDgsNDEsMTQ1LCBhbmQgMTM1IHdhbGtzLCBob3cgbWFueSBkb2VzIGhlIG5lZWQgb24gdGhpcyBzZWFzb24gZm9yIGhpcyBvdmVyYWxsIG51bWJlciBvZiB3YWxrcyBwZXIgc2Vhc29uIHRvIGJlIGF0IGxlYXN0IDEwMD8KCmBgYHtyfQpTb3RvX1dhbGtzPC1jKDc5LDEwOCw0MSwxNDUsMTM1KQp3YW50ZWRfd2Fsa3M8LTEwMApudW1iZXJfc2Vhc29uczwtNgojTmVlZGVkIHdhbGtzIG9uIHNlYXNvbiA2CndhbGtzXzY8LW51bWJlcl9zZWFzb25zKndhbnRlZF93YWxrcy1zdW0oU290b19XYWxrcykKd2Fsa3NfNgojI1NvdG8gbmVlZHMgOTIgd2Fsa3MgaW4gaGlzIHNpeHRoIHNlYXNvbgpgYGAKQW5zd2VyOlNvdG8gbmVlZHMgOTIgd2Fsa3MgaW4gaGlzIHNpeHRoIHNlYXNvbgoKKipDYXNlIFNjZW5hcmlvIDIqKgoKVGhlIGF2ZXJhZ2Ugc2FsYXJ5IG9mIDEwIGJhc2ViYWxsIHBsYXllcnMgaXMgNzIsMDAwIGRvbGxhcnMgYSB3ZWVrIGFuZCB0aGUgYXZlcmFnZSBzYWxhcnkgb2YgNCBzb2NjZXIgcGxheWVycyBpcyA4NCwwMDAuIEZpbmQgdGhlIG1lYW4gc2FsYXJ5IG9mIGFsbCAxNCBwcm9mZXNzaW9uYWwgcGxheWVycy4KYGBge3J9Cm5fMTwtMTAKbl8yPC00CnlfMTwtNzIwMDAKeV8yPC04NDAwMAojTWVhbiBTYWxhcnkgT3ZlcmFsbApzYWxhcnlfYXZlPC0obl8xKnlfMStuXzIqeV8yKS8obl8xK25fMikKc2FsYXJ5X2F2ZQpgYGAKKipRdWVzdGlvbiAyKioKVGhlIGF2ZXJhZ2Ugc2FsYXJ5IG9mIDcgYmFza2V0YmFsbCBwbGF5ZXJzIGlzIDEwMiwwMDAgZG9sbGFycyBhIHdlZWsgYW5kIHRoZSBhdmVyYWdlIHNhbGFyeSBvZiA5IE5GTCBwbGF5ZXJzIGlzIDkxLDAwMC4gRmluZCB0aGUgbWVhbiBzYWxhcnkgb2YgYWxsIDE2IHByb2Zlc3Npb25hbCBwbGF5ZXJzLgoKYGBge3J9CmJwXzE8LTcKZnBfMTwtOQp3XzE8LTEwMjAwMAp3XzI8LTkxMDAwCiNNZWFuIFNhbGFyeSBPdmVyYWxsCndfc2FsYXJ5X2F2ZTwtKGJwXzEqd18xK2ZwXzEqd18yKS8oYnBfMStmcF8xKQp3X3NhbGFyeV9hdmUKYGBgCkFuc3dlcjptZWFuIHNhbGFyeSBvZiBhbGwgMTYgcHJvZmVzc2lvbmFsIHBsYXllcnMgaXMgJDk1LDgxMi41MAoKKipDYXNlIFNjZW5hcmlvIDMqKgpgYGB7cn0KZ2V0d2QoKQpgYGAKYGBge3J9CmNvbnRyYWN0X2xlbmd0aDwtcmVhZC5jc3YoImFsbGNvbnRyYWN0cy5jc3YiLGhlYWRlcj1UUlVFLHNlcD0iLCIpCmNvbnRyYWN0X3llYXJzPC1jb250cmFjdF9sZW5ndGgkeWVhcnMKYGBgCgoKYGBge3J9CmNvbnRyYWN0c19tZWFuPC1tZWFuKGNvbnRyYWN0X3llYXJzLGRpZ2l0cz0zKQpjb250cmFjdHNfbWVhbgpgYGAKCmBgYHtyfQojTWVkaWFuCmNvbnRyYWN0c19tZWRpYW48LW1lZGlhbihjb250cmFjdF95ZWFycykKY29udHJhY3RzX21lZGlhbgpgYGAKYGBge3J9CiNTRAojRmluZCB0aGUgbnVtYmVyIG9mIG9ic2VydmF0aW9ucwpjb250cmFjdHNfbjwtbGVuZ3RoKGNvbnRyYWN0X3llYXJzKQpjb250cmFjdHNfbgojRmluZCB0aGUgc3RhbmRhcmQgZGV2aWF0aW9uCmNvbnRyYWN0c19zZDwtc2QoY29udHJhY3RfeWVhcnMpCmNvbnRyYWN0c19zZApgYGAKCmBgYHtyfQpjb250cmFjdHNfdzFzZDwtc3VtKChjb250cmFjdF95ZWFycy1jb250cmFjdHNfbWVhbikvY29udHJhY3RzX3NkPDEpL2NvbnRyYWN0c19uCiNQZXJjZW50YWdlIG9mIG9ic2VydmF0aW9ucyB3aXRoaW4gb25lIHNkIGZyb20gdGhlIG1lYW4KY29udHJhY3RzX3cxc2QKYGBgCgpgYGB7cn0KI0RpZmZlcmVuY2UgZnJvbSBlbXBpcmljYWwKY29udHJhY3RzX3cxc2QtLjY4CmBgYAoKYGBge3J9CiNXaXRoaW4gMiBTRAojUGVyY2VudGFnZSBvZiBvYnNlcnZhdGlvbnMgd2l0aGluIHR3byBzZCBmcm9tIHRoZSBtZWFuCmNvbnRyYWN0c193MnNkPC1zdW0oKGNvbnRyYWN0X3llYXJzLWNvbnRyYWN0c19tZWFuKS9jb250cmFjdHNfc2Q8MikvY29udHJhY3RzX24gCmNvbnRyYWN0c193MnNkCmBgYApTbyB0aGlzIG1lYW5zIHRoYXQgMTAwJSBvZiB0aGUgY29udHJhY3RzIGFyZSB3aXRoaW4gMiBTdGFuZGFyZCBEZXZpYXRpb25zIAoKYGBge3J9CiNEaWZmZXJlbmNlIGZyb20gZW1waXJpY2FsCmNvbnRyYWN0c193MnNkLS45NQpgYGAKYGBge3J9CiNXaXRoaW4gMyBTRAojUGVyY2VudGFnZSBvZiBvYnNlcnZhdGlvbnMgd2l0aGluIHRocmVlIHNkIGZyb20gdGhlIG1lYW4KY29udHJhY3RzX3czc2Q8LXN1bSgoY29udHJhY3RfeWVhcnMtY29udHJhY3RzX21lYW4pL2NvbnRyYWN0c19zZDwzKS9jb250cmFjdHNfbiAKY29udHJhY3RzX3czc2QKYGBgCgpgYGB7cn0KI0RpZmZlcmVuY2UgZnJvbSBlbXBpcmljYWwKY29udHJhY3RzX3cyc2QtLjk5NzMKYGBgCioqQ3JlYXRlIGEgSGlzdG9ncmFtKioKYGBge3J9CiNzYW1wbGUgLSBDYXJzIGFzIHRoZSBkYXRhIHNldApzdW1tYXJ5KGNhcnMpCmBgYAoKYGBge3J9Cmhpc3QoY2FycyRkaXN0KQojZ3JhcGggYXBwZWFycwpgYGAKKipDcmVhdGUgYSBIaXN0b2dyYW0qKgpgYGB7cn0KaGlzdChjb250cmFjdF95ZWFycyx4bGFiID0gIlllYXJzIExlZnQgaW4gQ29udHJhY3QiLGNvbD0iZ3JlZW4iLGJvcmRlciA9ICJyZWQiLAogICAgIHhsaW0gPSBjKDAsOCkseWxpbSA9IGMoMCwyMDApLGJyZWFrcyA9NSkKYGBgCgpgYGB7cn0KI2JveHBsb3QKYm94cGxvdChjb250cmFjdF95ZWFycyxtYWluPSJZZWFycyBsZWZ0IGluIENvbnRyYWN0Iix5bGFiPSJZZWFycyIpCmBgYApgYGB7cn0KI2JveHBsb3QKYm94cGxvdChjb250cmFjdF95ZWFycyxtYWluPSJZZWFycyBsZWZ0IGluIENvbnRyYWN0Iix5bGFiPSJZZWFycyIsY29sPSJsaWdodGJsdWUiLAogICAgICAgIGJvcmRlciA9ICJibHVlIixob3Jpem9udGFsID0gRkFMU0UgKQpgYGAKKipRdWVzdGlvbl8zKioKVXNlIHRoZSBza2lsbHMgbGVhcm5lZCBpbiBjYXNlIHNjZW5hcmlvIG51bWJlciAzIG9uIG9uZSB0aGUgZm9sbG93aW5nIGRhdGEgc2V0cy4gWW91IG1heSBjaG9vc2Ugb25seSBvbmUgZGF0YXNldC4KYGBge3J9CmRvdWJsZXM8LXJlYWQudGFibGUoImRvdWJsZXNfaGl0LmNzdiIsaGVhZGVyPVRSVUUsc2VwPSIsIikKZG91Ymxlc19oaXQ8LWRvdWJsZXMkZG91Ymxlc19oaXQKYGBgCmBgYHtyfQpkb3VibGVzX2hpdF9tZWFuPC1tZWFuKGRvdWJsZXNfaGl0KQpkb3VibGVzX2hpdF9tZWRpYW48LW1lZGlhbihkb3VibGVzX2hpdCkKCmRvdWJsZXNfaGl0X21lYW4KZG91Ymxlc19oaXRfbWVkaWFuCmBgYApgYGB7cn0KZG91Ymxlc19oaXRfbjwtbGVuZ3RoKGRvdWJsZXNfaGl0KQpkb3VibGVzX2hpdF9zZDwtc2QoZG91Ymxlc19oaXQpCgpkb3VibGVzX2hpdF9uCmRvdWJsZXNfaGl0X3NkCmBgYApgYGB7cn0KZG91Ymxlc19oaXRfdzFzZDwtc3VtKChkb3VibGVzX2hpdCAtIGRvdWJsZXNfaGl0X21lYW4pL2RvdWJsZXNfaGl0X3NkPDEpL2RvdWJsZXNfaGl0X24KZG91Ymxlc19oaXRfdzFzZApgYGAKCmBgYHtyfQojRGlmZmVyZW5jZSBmcm9tIGVtcGlyaWNhbApkb3VibGVzX2hpdF93MXNkLS42OApgYGAKCmBgYHtyfQpkb3VibGVzX2hpdF93MnNkPC1zdW0oKGRvdWJsZXNfaGl0IC0gZG91Ymxlc19oaXRfbWVhbikvZG91Ymxlc19oaXRfc2Q8MikvZG91Ymxlc19oaXRfbgpkb3VibGVzX2hpdF93MnNkCmBgYApgYGB7cn0KI0RpZmZlcmVuY2UgZnJvbSBlbXBpcmljYWwKZG91Ymxlc19oaXRfdzJzZC0uOTUKYGBgCmBgYHtyfQpkb3VibGVzX2hpdF93M3NkPC1zdW0oKGRvdWJsZXNfaGl0IC0gZG91Ymxlc19oaXRfbWVhbikvZG91Ymxlc19oaXRfc2Q8MykvZG91Ymxlc19oaXRfbgpkb3VibGVzX2hpdF93M3NkCmBgYApgYGB7cn0KI0RpZmZlcmVuY2UgZnJvbSBlbXBpcmljYWwKZG91Ymxlc19oaXRfdzJzZC0uOTk3MwpgYGAKKipEb3VibGUgaGl0cyBIaXN0b2dyYW0qKgpgYGB7cn0KaGlzdChkb3VibGVzX2hpdCx4bGFiID0gIk51bWJlciBvZiBEb3VibGVzIiwKICAgICB5bGFiPSJZZWFycyIsY29sPSJsaWdodGJsdWUiLGJvcmRlciA9ICJibHVlIiwKICAgICB4bGltPWMoMCw2MCkseWxpbT1jKDAsMzApLGJyZWFrcz03CiAgICAgKQpgYGAKCmBgYHtyfQojYm94cGxvdApib3hwbG90KGRvdWJsZXNfaGl0LG1haW49IkJveHBsb3Qgb2YgRG91YmxlIEhpdHMgYnkgUGxheWVyIix5bGFiPSJEb3VibGVzIiwKICAgICAgICBjb2w9ImxpZ2h0Ymx1ZSIsYm9yZGVyID0gImJsdWUiICkKCiNQZXJzb25hbCB0aG91Z3RodHMgCmBgYAoK