library(ISLR2)
## Warning: package 'ISLR2' was built under R version 4.4.3
library(MASS)
## Warning: package 'MASS' was built under R version 4.4.3
##
## Attaching package: 'MASS'
## The following object is masked from 'package:ISLR2':
##
## Boston
library(class)
## Warning: package 'class' was built under R version 4.4.3
library(e1071)
## Warning: package 'e1071' was built under R version 4.4.3
# Load Weekly dataset
data("Weekly")
# View first few rows
head(Weekly)
## Year Lag1 Lag2 Lag3 Lag4 Lag5 Volume Today Direction
## 1 1990 0.816 1.572 -3.936 -0.229 -3.484 0.1549760 -0.270 Down
## 2 1990 -0.270 0.816 1.572 -3.936 -0.229 0.1485740 -2.576 Down
## 3 1990 -2.576 -0.270 0.816 1.572 -3.936 0.1598375 3.514 Up
## 4 1990 3.514 -2.576 -0.270 0.816 1.572 0.1616300 0.712 Up
## 5 1990 0.712 3.514 -2.576 -0.270 0.816 0.1537280 1.178 Up
## 6 1990 1.178 0.712 3.514 -2.576 -0.270 0.1544440 -1.372 Down
# Summary statistics
summary(Weekly)
## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.1950 Min. :-18.1950 Min. :-18.1950
## 1st Qu.:1995 1st Qu.: -1.1540 1st Qu.: -1.1540 1st Qu.: -1.1580
## Median :2000 Median : 0.2410 Median : 0.2410 Median : 0.2410
## Mean :2000 Mean : 0.1506 Mean : 0.1511 Mean : 0.1472
## 3rd Qu.:2005 3rd Qu.: 1.4050 3rd Qu.: 1.4090 3rd Qu.: 1.4090
## Max. :2010 Max. : 12.0260 Max. : 12.0260 Max. : 12.0260
## Lag4 Lag5 Volume Today
## Min. :-18.1950 Min. :-18.1950 Min. :0.08747 Min. :-18.1950
## 1st Qu.: -1.1580 1st Qu.: -1.1660 1st Qu.:0.33202 1st Qu.: -1.1540
## Median : 0.2380 Median : 0.2340 Median :1.00268 Median : 0.2410
## Mean : 0.1458 Mean : 0.1399 Mean :1.57462 Mean : 0.1499
## 3rd Qu.: 1.4090 3rd Qu.: 1.4050 3rd Qu.:2.05373 3rd Qu.: 1.4050
## Max. : 12.0260 Max. : 12.0260 Max. :9.32821 Max. : 12.0260
## Direction
## Down:484
## Up :605
##
##
##
##
# Check structure of data
str(Weekly)
## 'data.frame': 1089 obs. of 9 variables:
## $ Year : num 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 ...
## $ Lag1 : num 0.816 -0.27 -2.576 3.514 0.712 ...
## $ Lag2 : num 1.572 0.816 -0.27 -2.576 3.514 ...
## $ Lag3 : num -3.936 1.572 0.816 -0.27 -2.576 ...
## $ Lag4 : num -0.229 -3.936 1.572 0.816 -0.27 ...
## $ Lag5 : num -3.484 -0.229 -3.936 1.572 0.816 ...
## $ Volume : num 0.155 0.149 0.16 0.162 0.154 ...
## $ Today : num -0.27 -2.576 3.514 0.712 1.178 ...
## $ Direction: Factor w/ 2 levels "Down","Up": 1 1 2 2 2 1 2 2 2 1 ...
# Summary statistics
summary(Weekly)
## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.1950 Min. :-18.1950 Min. :-18.1950
## 1st Qu.:1995 1st Qu.: -1.1540 1st Qu.: -1.1540 1st Qu.: -1.1580
## Median :2000 Median : 0.2410 Median : 0.2410 Median : 0.2410
## Mean :2000 Mean : 0.1506 Mean : 0.1511 Mean : 0.1472
## 3rd Qu.:2005 3rd Qu.: 1.4050 3rd Qu.: 1.4090 3rd Qu.: 1.4090
## Max. :2010 Max. : 12.0260 Max. : 12.0260 Max. : 12.0260
## Lag4 Lag5 Volume Today
## Min. :-18.1950 Min. :-18.1950 Min. :0.08747 Min. :-18.1950
## 1st Qu.: -1.1580 1st Qu.: -1.1660 1st Qu.:0.33202 1st Qu.: -1.1540
## Median : 0.2380 Median : 0.2340 Median :1.00268 Median : 0.2410
## Mean : 0.1458 Mean : 0.1399 Mean :1.57462 Mean : 0.1499
## 3rd Qu.: 1.4090 3rd Qu.: 1.4050 3rd Qu.:2.05373 3rd Qu.: 1.4050
## Max. : 12.0260 Max. : 12.0260 Max. :9.32821 Max. : 12.0260
## Direction
## Down:484
## Up :605
##
##
##
##
# Plot correlations between numerical variables
pairs(Weekly[, -9], main="Scatterplot Matrix for Weekly Data")
# Plot Direction over time
plot(Weekly$Year, Weekly$Volume, type="l", main="Weekly Volume Over Time", xlab="Year", ylab="Volume")
# Histogram of Weekly Returns
hist(Weekly$Today, breaks=30, main="Histogram of Weekly Returns", xlab="Weekly Returns", col="lightblue")
Based on the numerical and graphical summaries, the following patterns can be observed:
The scatterplot matrix does not show strong linear relationships
between the predictor variables (Lag1
to Lag5
)
and the response variable (Today
or
Direction
).
Most points appear to be randomly scattered, indicating weak correlations between the lag variables and weekly returns.
However, there may be some slight trends or patterns in certain lag variables that need further statistical testing.
The dataset consists of 605 “Up” movements and 484 “Down” movements, suggesting a slightly higher frequency of upward market movements.
The Volume
variable has increased over time, as seen
in the time-series plot.
The trading volume has increased significantly over the years, especially after 2005.
There are noticeable spikes in 2008–2010, which may correspond to financial events such as the 2008 financial crisis.
The histogram shows that weekly returns are approximately normally distributed, with most values centered around 0.
There is a slight skew towards negative returns, indicating that large negative movements happen occasionally, though most returns are close to zero.
The distribution has some extreme values (outliers) on both ends.
# Fit logistic regression model
glm.fit <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume,
data=Weekly, family=binomial)
# Print summary
summary(glm.fit)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
## Volume, family = binomial, data = Weekly)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686 0.08593 3.106 0.0019 **
## Lag1 -0.04127 0.02641 -1.563 0.1181
## Lag2 0.05844 0.02686 2.175 0.0296 *
## Lag3 -0.01606 0.02666 -0.602 0.5469
## Lag4 -0.02779 0.02646 -1.050 0.2937
## Lag5 -0.01447 0.02638 -0.549 0.5833
## Volume -0.02274 0.03690 -0.616 0.5377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
# Identifying significant predictors (p-value < 0.05)
significant_predictors <- summary(glm.fit)$coefficients[,4] < 0.05
names(significant_predictors)[significant_predictors]
## [1] "(Intercept)" "Lag2"
From the logistic regression output:
Lag2 (p = 0.0296, significant at 5% level)
Intercept (p = 0.0019, highly significant)
All other predictors (Lag1, Lag3, Lag4, Lag5, Volume) have p-values > 0.05, meaning they are not statistically significant.
# Predict probabilities
glm.probs <- predict(glm.fit, type="response")
# Convert to class labels
glm.pred <- ifelse(glm.probs > 0.5, "Up", "Down")
# Create confusion matrix
conf_matrix <- table(glm.pred, Weekly$Direction)
print(conf_matrix)
##
## glm.pred Down Up
## Down 54 48
## Up 430 557
# Compute accuracy
accuracy <- sum(diag(conf_matrix)) / sum(conf_matrix)
print(paste("Overall Accuracy:", round(accuracy * 100, 2), "%"))
## [1] "Overall Accuracy: 56.11 %"
True Negatives (TN) = 54 → Correctly predicted “Down”.
False Negatives (FN) = 48 → Market went “Up,” but predicted “Down” (missed opportunities).
False Positives (FP) = 430 → Market went “Down,” but predicted “Up” (high mistake rate).
True Positives (TP) = 557 → Correctly predicted “Up”.
Overall Accuracy = 56.11% → The model performs only slightly better than random guessing (50%).
Key Issue: High false positive rate (430 FP) → The model frequently predicts “Up” when the market actually goes “Down”.
# Split data into training (1990-2008) and test (2009-2010)
train <- Weekly$Year < 2009
Weekly.train <- Weekly[train, ]
Weekly.test <- Weekly[!train, ]
# Fit logistic regression with Lag2 as predictor
glm.fit2 <- glm(Direction ~ Lag2, data=Weekly.train, family=binomial)
# Predict on test set
glm.probs2 <- predict(glm.fit2, Weekly.test, type="response")
glm.pred2 <- ifelse(glm.probs2 > 0.5, "Up", "Down")
# Confusion matrix
conf_matrix2 <- table(glm.pred2, Weekly.test$Direction)
print(conf_matrix2)
##
## glm.pred2 Down Up
## Down 9 5
## Up 34 56
# Accuracy
accuracy2 <- sum(diag(conf_matrix2)) / sum(conf_matrix2)
print(paste("Accuracy for Logistic Regression (Lag2 only):", round(accuracy2 * 100, 2), "%"))
## [1] "Accuracy for Logistic Regression (Lag2 only): 62.5 %"
lda.fit <- lda(Direction ~ Lag2, data=Weekly.train)
lda.pred <- predict(lda.fit, Weekly.test)
conf_matrix_lda <- table(lda.pred$class, Weekly.test$Direction)
print(conf_matrix_lda)
##
## Down Up
## Down 9 5
## Up 34 56
accuracy_lda <- sum(diag(conf_matrix_lda)) / sum(conf_matrix_lda)
print(paste("Accuracy for LDA:", round(accuracy_lda * 100, 2), "%"))
## [1] "Accuracy for LDA: 62.5 %"
qda.fit <- qda(Direction ~ Lag2, data=Weekly.train)
qda.pred <- predict(qda.fit, Weekly.test)
conf_matrix_qda <- table(qda.pred$class, Weekly.test$Direction)
print(conf_matrix_qda)
##
## Down Up
## Down 0 0
## Up 43 61
accuracy_qda <- sum(diag(conf_matrix_qda)) / sum(conf_matrix_qda)
print(paste("Accuracy for QDA:", round(accuracy_qda * 100, 2), "%"))
## [1] "Accuracy for QDA: 58.65 %"
# Create feature matrix and labels
train.X <- Weekly.train$Lag2
test.X <- Weekly.test$Lag2
train.Y <- Weekly.train$Direction
# Use KNN with k=1
knn.pred <- knn(as.matrix(train.X), as.matrix(test.X), train.Y, k=1)
# Confusion matrix
conf_matrix_knn <- table(knn.pred, Weekly.test$Direction)
print(conf_matrix_knn)
##
## knn.pred Down Up
## Down 21 29
## Up 22 32
accuracy_knn <- sum(diag(conf_matrix_knn)) / sum(conf_matrix_knn)
print(paste("Accuracy for KNN (k=1):", round(accuracy_knn * 100, 2), "%"))
## [1] "Accuracy for KNN (k=1): 50.96 %"
nb.fit <- naiveBayes(Direction ~ Lag2, data=Weekly.train)
nb.pred <- predict(nb.fit, Weekly.test)
conf_matrix_nb <- table(nb.pred, Weekly.test$Direction)
print(conf_matrix_nb)
##
## nb.pred Down Up
## Down 0 0
## Up 43 61
accuracy_nb <- sum(diag(conf_matrix_nb)) / sum(conf_matrix_nb)
print(paste("Accuracy for Naive Bayes:", round(accuracy_nb * 100, 2), "%"))
## [1] "Accuracy for Naive Bayes: 58.65 %"
# Print all accuracy results
accuracy_results <- data.frame(
Method = c("Logistic Regression", "LDA", "QDA", "KNN (k=1)", "Naive Bayes"),
Accuracy = c(accuracy2, accuracy_lda, accuracy_qda, accuracy_knn, accuracy_nb)
)
print(accuracy_results)
## Method Accuracy
## 1 Logistic Regression 0.6250000
## 2 LDA 0.6250000
## 3 QDA 0.5865385
## 4 KNN (k=1) 0.5096154
## 5 Naive Bayes 0.5865385
Logistic Regression and LDA (both 62.5%) provide the best results in terms of accuracy.
QDA and Naive Bayes perform slightly worse (~58.65% accuracy).
KNN (k=1) performs the worst (50%), indicating poor predictive power for this dataset.
Thus, Logistic Regression or LDA would be the best choices for this dataset.
# Try using multiple predictors in logistic regression
glm.fit3 <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Volume, data=Weekly.train, family=binomial)
glm.probs3 <- predict(glm.fit3, Weekly.test, type="response")
glm.pred3 <- ifelse(glm.probs3 > 0.5, "Up", "Down")
conf_matrix3 <- table(glm.pred3, Weekly.test$Direction)
accuracy3 <- sum(diag(conf_matrix3)) / sum(conf_matrix3)
print(paste("Accuracy for Logistic Regression (Lag1, Lag2, Lag3, Volume):", round(accuracy3 * 100, 2), "%"))
## [1] "Accuracy for Logistic Regression (Lag1, Lag2, Lag3, Volume): 51.92 %"
# Load the Auto dataset
data("Auto")
# Create the binary variable mpg01
Auto$mpg01 <- ifelse(Auto$mpg > median(Auto$mpg), 1, 0)
# Convert mpg01 to a factor (binary classification)
Auto$mpg01 <- as.factor(Auto$mpg01)
# View dataset with new mpg01 column
head(Auto)
## mpg cylinders displacement horsepower weight acceleration year origin
## 1 18 8 307 130 3504 12.0 70 1
## 2 15 8 350 165 3693 11.5 70 1
## 3 18 8 318 150 3436 11.0 70 1
## 4 16 8 304 150 3433 12.0 70 1
## 5 17 8 302 140 3449 10.5 70 1
## 6 15 8 429 198 4341 10.0 70 1
## name mpg01
## 1 chevrolet chevelle malibu 0
## 2 buick skylark 320 0
## 3 plymouth satellite 0
## 4 amc rebel sst 0
## 5 ford torino 0
## 6 ford galaxie 500 0
# Summary of dataset
summary(Auto)
## mpg cylinders displacement horsepower weight
## Min. : 9.00 Min. :3.000 Min. : 68.0 Min. : 46.0 Min. :1613
## 1st Qu.:17.00 1st Qu.:4.000 1st Qu.:105.0 1st Qu.: 75.0 1st Qu.:2225
## Median :22.75 Median :4.000 Median :151.0 Median : 93.5 Median :2804
## Mean :23.45 Mean :5.472 Mean :194.4 Mean :104.5 Mean :2978
## 3rd Qu.:29.00 3rd Qu.:8.000 3rd Qu.:275.8 3rd Qu.:126.0 3rd Qu.:3615
## Max. :46.60 Max. :8.000 Max. :455.0 Max. :230.0 Max. :5140
##
## acceleration year origin name
## Min. : 8.00 Min. :70.00 Min. :1.000 amc matador : 5
## 1st Qu.:13.78 1st Qu.:73.00 1st Qu.:1.000 ford pinto : 5
## Median :15.50 Median :76.00 Median :1.000 toyota corolla : 5
## Mean :15.54 Mean :75.98 Mean :1.577 amc gremlin : 4
## 3rd Qu.:17.02 3rd Qu.:79.00 3rd Qu.:2.000 amc hornet : 4
## Max. :24.80 Max. :82.00 Max. :3.000 chevrolet chevette: 4
## (Other) :365
## mpg01
## 0:196
## 1:196
##
##
##
##
##
# Pairs plot to visualize correlations
pairs(Auto[, c("mpg01", "cylinders", "displacement", "horsepower", "weight", "acceleration")])
# Boxplots to compare mpg01 with other variables
boxplot(Auto$weight ~ Auto$mpg01, main="Weight vs mpg01", xlab="mpg01", ylab="Weight", col=c("red", "blue"))
boxplot(Auto$horsepower ~ Auto$mpg01, main="Horsepower vs mpg01", xlab="mpg01", ylab="Horsepower", col=c("red", "blue"))
boxplot(Auto$displacement ~ Auto$mpg01, main="Displacement vs mpg01", xlab="mpg01", ylab="Displacement", col=c("red", "blue"))
# Correlation matrix
cor(Auto[, c("mpg", "cylinders", "displacement", "horsepower", "weight", "acceleration")])
## mpg cylinders displacement horsepower weight
## mpg 1.0000000 -0.7776175 -0.8051269 -0.7784268 -0.8322442
## cylinders -0.7776175 1.0000000 0.9508233 0.8429834 0.8975273
## displacement -0.8051269 0.9508233 1.0000000 0.8972570 0.9329944
## horsepower -0.7784268 0.8429834 0.8972570 1.0000000 0.8645377
## weight -0.8322442 0.8975273 0.9329944 0.8645377 1.0000000
## acceleration 0.4233285 -0.5046834 -0.5438005 -0.6891955 -0.4168392
## acceleration
## mpg 0.4233285
## cylinders -0.5046834
## displacement -0.5438005
## horsepower -0.6891955
## weight -0.4168392
## acceleration 1.0000000
mpg01
(lower values correspond to
mpg01=1
, meaning higher fuel efficiency).set.seed(42) # Set seed for reproducibility
train <- sample(1:nrow(Auto), nrow(Auto) * 0.7) # 70% training data
Auto.train <- Auto[train, ]
Auto.test <- Auto[-train, ]
lda.fit <- lda(mpg01 ~ weight + horsepower + displacement, data=Auto.train)
lda.pred <- predict(lda.fit, Auto.test)
conf_matrix_lda <- table(lda.pred$class, Auto.test$mpg01)
# Compute test error
lda_accuracy <- sum(diag(conf_matrix_lda)) / sum(conf_matrix_lda)
lda_error <- 1 - lda_accuracy
print(conf_matrix_lda)
##
## 0 1
## 0 41 3
## 1 6 68
print(paste("LDA Test Error:", round(lda_error * 100, 2), "%"))
## [1] "LDA Test Error: 7.63 %"
qda.fit <- qda(mpg01 ~ weight + horsepower + displacement, data=Auto.train)
qda.pred <- predict(qda.fit, Auto.test)
conf_matrix_qda <- table(qda.pred$class, Auto.test$mpg01)
# Compute test error
qda_accuracy <- sum(diag(conf_matrix_qda)) / sum(conf_matrix_qda)
qda_error <- 1 - qda_accuracy
print(conf_matrix_qda)
##
## 0 1
## 0 42 4
## 1 5 67
print(paste("QDA Test Error:", round(qda_error * 100, 2), "%"))
## [1] "QDA Test Error: 7.63 %"
glm.fit <- glm(mpg01 ~ weight + horsepower + displacement, data=Auto.train, family=binomial)
glm.probs <- predict(glm.fit, Auto.test, type="response")
glm.pred <- ifelse(glm.probs > 0.5, 1, 0)
conf_matrix_glm <- table(glm.pred, Auto.test$mpg01)
# Compute test error
glm_accuracy <- sum(diag(conf_matrix_glm)) / sum(conf_matrix_glm)
glm_error <- 1 - glm_accuracy
print(conf_matrix_glm)
##
## glm.pred 0 1
## 0 43 5
## 1 4 66
print(paste("Logistic Regression Test Error:", round(glm_error * 100, 2), "%"))
## [1] "Logistic Regression Test Error: 7.63 %"
nb.fit <- naiveBayes(mpg01 ~ weight + horsepower + displacement, data=Auto.train)
nb.pred <- predict(nb.fit, Auto.test)
conf_matrix_nb <- table(nb.pred, Auto.test$mpg01)
# Compute test error
nb_accuracy <- sum(diag(conf_matrix_nb)) / sum(conf_matrix_nb)
nb_error <- 1 - nb_accuracy
print(conf_matrix_nb)
##
## nb.pred 0 1
## 0 42 3
## 1 5 68
print(paste("Naive Bayes Test Error:", round(nb_error * 100, 2), "%"))
## [1] "Naive Bayes Test Error: 6.78 %"
# Prepare feature matrix and labels
train.X <- Auto.train[, c("weight", "horsepower", "displacement")]
test.X <- Auto.test[, c("weight", "horsepower", "displacement")]
train.Y <- Auto.train$mpg01
# Try different K values
k_values <- c(1, 3, 5, 10)
knn_results <- data.frame(K = k_values, Accuracy = NA, Error = NA)
for (i in 1:length(k_values)) {
knn.pred <- knn(train.X, test.X, train.Y, k = k_values[i])
conf_matrix_knn <- table(knn.pred, Auto.test$mpg01)
# Compute test error
knn_accuracy <- sum(diag(conf_matrix_knn)) / sum(conf_matrix_knn)
knn_error <- 1 - knn_accuracy
knn_results$Accuracy[i] <- knn_accuracy
knn_results$Error[i] <- knn_error
print(paste("K =", k_values[i], "Test Error:", round(knn_error * 100, 2), "%"))
}
## [1] "K = 1 Test Error: 11.86 %"
## [1] "K = 3 Test Error: 11.02 %"
## [1] "K = 5 Test Error: 12.71 %"
## [1] "K = 10 Test Error: 15.25 %"
# Find best K
best_k <- knn_results$K[which.max(knn_results$Accuracy)]
print(paste("Best K value:", best_k))
## [1] "Best K value: 3"