This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.
install.packages('xlsx', repos = 'https://cran.rstudio.com/')
## Installing package into 'C:/Users/gonza/AppData/Local/R/win-library/4.4'
## (as 'lib' is unspecified)
## package 'xlsx' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'xlsx'
## Warning: restored 'xlsx'
##
## The downloaded binary packages are in
## C:\Users\gonza\AppData\Local\Temp\RtmpU14fiR\downloaded_packages
library(xlsx)
## Warning: package 'xlsx' was built under R version 4.4.3
Shrimp_Data_Gonzalo <- read.xlsx(file = 'C:\\Users\\gonza\\OneDrive\\Desktop\\Gonzalo_ASUS_laptop\\Gonzalo_TRABAJO\\UOC_Univ_Oberta_Catalunya\\Asignaturas\\02_SAD_Software_Analisis_Datos\\Actividades_SAD\\Reto_01\\archivos_LAB1_y_LAB2\\Shrimp_Data_Gonzalo.xlsx', sheetName = 'DATOS')
head(Shrimp_Data_Gonzalo)
## ID NA. ESPECIE PRESENT PR_COLA TRAT LONG_TOTAL LONG_COLA
## 1 R001 1 Penaeus stylirostris Entero <NA> Crudo 113 81
## 2 R010 2 Penaeus monodon Entero <NA> Crudo 167 112
## 3 R100 3 Penaeus japonicus Entero <NA> Crudo 155 124
## 4 R101 4 Penaeus japonicus Entero <NA> Crudo 152 31
## 5 R102 5 Penaeus japonicus Cola Pelado Cosido 72 72
## 6 R103 6 Penaeus japonicus Cola Pelado Cocido 88 88
## PESO ASPECTO PAIS NA..1 NA..2 NA..3 NA..4 NA..5 NA..6 NA..7 NA..8
## 1 19.6 BUENO Nicaragua NA NA NA NA NA NA NA NA
## 2 19.2 BUENO Vietnam NA NA NA NA NA NA NA NA
## 3 35.6 BUENO España NA NA NA NA NA NA NA NA
## 4 17.5 BUENO España NA NA NA NA NA NA NA NA
## 5 9.9 BUENO Tailandia NA NA NA NA NA NA NA NA
## 6 83 BUENO Tailandia NA NA NA NA NA NA NA NA
str(Shrimp_Data_Gonzalo)
## 'data.frame': 300 obs. of 19 variables:
## $ ID : chr "R001" "R010" "R100" "R101" ...
## $ NA. : num 1 2 3 4 5 6 7 8 9 10 ...
## $ ESPECIE : chr "Penaeus stylirostris" "Penaeus monodon" "Penaeus japonicus" "Penaeus japonicus" ...
## $ PRESENT : chr "Entero" "Entero" "Entero" "Entero" ...
## $ PR_COLA : chr NA NA NA NA ...
## $ TRAT : chr "Crudo" "Crudo" "Crudo" "Crudo" ...
## $ LONG_TOTAL: chr "113" "167" "155" "152" ...
## $ LONG_COLA : chr "81" "112" "124" "31" ...
## $ PESO : chr "19.6" "19.2" "35.6" "17.5" ...
## $ ASPECTO : chr "BUENO" "BUENO" "BUENO" "BUENO" ...
## $ PAIS : chr "Nicaragua" "Vietnam" "España" "España" ...
## $ NA..1 : logi NA NA NA NA NA NA ...
## $ NA..2 : logi NA NA NA NA NA NA ...
## $ NA..3 : logi NA NA NA NA NA NA ...
## $ NA..4 : logi NA NA NA NA NA NA ...
## $ NA..5 : logi NA NA NA NA NA NA ...
## $ NA..6 : logi NA NA NA NA NA NA ...
## $ NA..7 : logi NA NA NA NA NA NA ...
## $ NA..8 : logi NA NA NA NA NA NA ...
class(Shrimp_Data_Gonzalo$ESPECIE)
## [1] "character"
class(Shrimp_Data_Gonzalo$PRESENT)
## [1] "character"
class(Shrimp_Data_Gonzalo$PR_COLA)
## [1] "character"
class(Shrimp_Data_Gonzalo$TRAT)
## [1] "character"
class(Shrimp_Data_Gonzalo$LONG_TOTAL)
## [1] "character"
class(Shrimp_Data_Gonzalo$LONG_COLA)
## [1] "character"
class(Shrimp_Data_Gonzalo$PESO)
## [1] "character"
class(Shrimp_Data_Gonzalo$ASPECTO)
## [1] "character"
class(Shrimp_Data_Gonzalo$PAIS)
## [1] "character"
Shrimp_Data_Gonzalo <- Shrimp_Data_Gonzalo[!is.na(Shrimp_Data_Gonzalo$LONG_TOTAL), ]
Shrimp_Data_Gonzalo$PAIS <- as.factor(Shrimp_Data_Gonzalo$PAIS) # Creates a factor version of PAIS (if not already a factor)
class(Shrimp_Data_Gonzalo$PAIS)
## [1] "factor"
country_labels <- levels(Shrimp_Data_Gonzalo$PAIS) # Stores the mapping
Shrimp_Data_Gonzalo$PAIS <- as.numeric(Shrimp_Data_Gonzalo$PAIS) # Converts PAIS to numeric
# Now, Shrimp_Data_Gonzalo$PAIS contains numbers, and country_labels stores the original country names in the same order as factor levels.
class(Shrimp_Data_Gonzalo$PAIS)
## [1] "numeric"
Shrimp_Data_Gonzalo$ESPECIE <- as.factor(Shrimp_Data_Gonzalo$ESPECIE) # Creates a factor version of ESPECIE (if not already a factor)
class(Shrimp_Data_Gonzalo$ESPECIE)
## [1] "factor"
Shrimp_Data_Gonzalo$PRESENT <- as.factor(Shrimp_Data_Gonzalo$PRESENT) # Creates a factor version of ESPECIE (if not already a factor)
class(Shrimp_Data_Gonzalo$PRESENT)
## [1] "factor"
Shrimp_Data_Gonzalo$PR_COLA <- as.factor(Shrimp_Data_Gonzalo$PRESENT) # Creates a factor version of PR_COLA (if not already a factor)
class(Shrimp_Data_Gonzalo$PR_COLA)
## [1] "factor"
Shrimp_Data_Gonzalo$TRAT <- as.factor(Shrimp_Data_Gonzalo$PRESENT) # Creates a factor version of TRAT (if not already a factor)
class(Shrimp_Data_Gonzalo$TRAT)
## [1] "factor"
Shrimp_Data_Gonzalo$LONG_TOTAL <- as.numeric(Shrimp_Data_Gonzalo$LONG_TOTAL)
## Warning: NAs introducidos por coerción
class(Shrimp_Data_Gonzalo$LONG_TOTAL)
## [1] "numeric"
Shrimp_Data_Gonzalo$LONG_COLA <- as.numeric(Shrimp_Data_Gonzalo$LONG_COLA) # Creates a numeric version of LONG_COLA (if not already a numeric value)
## Warning: NAs introducidos por coerción
class(Shrimp_Data_Gonzalo$LONG_COLA)
## [1] "numeric"
Shrimp_Data_Gonzalo$PESO <- as.numeric(Shrimp_Data_Gonzalo$PESO) # Creates a numeric version of PESO (if not already a numeric value)
## Warning: NAs introducidos por coerción
class(Shrimp_Data_Gonzalo$PESO)
## [1] "numeric"
Shrimp_Data_Gonzalo$ASPECTO <- as.factor(Shrimp_Data_Gonzalo$ASPECTO) # Creates a factor version of ASPECTO (if not already a factor)
class(Shrimp_Data_Gonzalo$ASPECTO)
## [1] "factor"
fivenum(Shrimp_Data_Gonzalo$LONG_TOTAL, na.rm = TRUE)
## [1] 29.0 74.0 103.5 136.0 222.0
fivenum(Shrimp_Data_Gonzalo\(LONG_COLA) fivenum(Shrimp_Data_Gonzalo\)PESO)
## Observamos que la función fivenum() nos da un resumen de las variables de tipo numérico (longitud total, longitud de la cola y peso.
## The five-number summary is a set of descriptive statistics that provides information about a dataset. It consists of the five most important sample percentiles: (Ref: Wikipedia)
# 1. the sample minimum (smallest observation)
# 2. the lower quartile or first quartile
# 3. the median (the middle value)
# 4. the upper quartile or third quartile
# 5. the sample maximum (largest observation)
## Como es lógico, np sirve para hacer un resumen de las variables que se han convertido en factores (ESPECIE, PAÍS, etc.). Vamos a utilizar otra función: summary()
``` r
summary(Shrimp_Data_Gonzalo$ESPECIE)
## Litopenaeus vannamei Penaeus japonics Penaeus japonicus
## 20 1 57
## Penaeus monodon Penaeus stylirostris Penaus stylirostris
## 38 43 1
summary(Shrimp_Data_Gonzalo$PRESENT)
## Cola ?? Cola COLA Entero Entero
## 1 1 72 1 84 1
summary(Shrimp_Data_Gonzalo$TRAT)
## Cola ?? Cola COLA Entero Entero
## 1 1 72 1 84 1
summary(Shrimp_Data_Gonzalo$ASPECTO)
## - BUEN BUEN0 BUENO MALO REGULAR
## 1 1 1 132 3 22
summary(Shrimp_Data_Gonzalo$PAIS)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 5.000 6.000 5.575 7.000 9.000