install.packages(c("tidyverse", "rvest", "quantmod", "ggplot2", "xts", "dplyr"))
## Installing packages into '/cloud/lib/x86_64-pc-linux-gnu-library/4.4'
## (as 'lib' is unspecified)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(rvest)
##
## Attaching package: 'rvest'
##
## The following object is masked from 'package:readr':
##
## guess_encoding
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
##
## ######################### Warning from 'xts' package ##########################
## # #
## # The dplyr lag() function breaks how base R's lag() function is supposed to #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or #
## # source() into this session won't work correctly. #
## # #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop #
## # dplyr from breaking base R's lag() function. #
## # #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning. #
## # #
## ###############################################################################
##
## Attaching package: 'xts'
##
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(ggplot2)
library(xts)
library(dplyr)
metaplatform_url <- "https://finviz.com/quote.ashx?t=META&ty=c&ta=1&p=d"
metaplatform_page <- read_html(metaplatform_url)
metaplatform_data <- metaplatform_page %>%
html_nodes("table.snapshot-table2") %>%
html_table(fill = TRUE)
metaplatform_fins <- as.data.frame(metaplatform_data[[1]])
print(metaplatform_fins)
## X1 X2 X3 X4 X5 X6
## 1 Index NDX, S&P 500 P/E 26.15 EPS (ttm) 23.92
## 2 Market Cap 1585.21B Forward P/E 21.77 EPS next Y 28.73
## 3 Income 62.36B PEG 2.28 EPS next Q 5.24
## 4 Sales 164.50B P/S 9.64 EPS this Y 5.68%
## 5 Book/sh 72.07 P/B 8.68 EPS next Y 13.96%
## 6 Cash/sh 30.85 P/C 20.28 EPS next 5Y 11.47%
## 7 Dividend Est. 1.74 (0.28%) P/FCF 29.32 EPS past 5Y 29.99%
## 8 Dividend TTM 1.50 (0.24%) Quick Ratio 2.98 Sales past 5Y 19.06%
## 9 Dividend Ex-Date Mar 14, 2025 Current Ratio 2.98 EPS Y/Y TTM 61.97%
## 10 Employees 74067 Debt/Eq 0.27 Sales Y/Y TTM 21.94%
## 11 Option/Short Yes / Yes LT Debt/Eq 0.26 EPS Q/Q 50.43%
## 12 Sales Surprise 2.94% EPS Surprise 18.71% Sales Q/Q 20.63%
## 13 SMA20 -8.47% SMA50 -4.37% SMA200 10.38%
## X7 X8 X9 X10 X11
## 1 Insider Own 13.72% Shs Outstand 2.19B Perf Week
## 2 Insider Trans -0.54% Shs Float 2.19B Perf Month
## 3 Inst Own 67.61% Short Float 1.26% Perf Quarter
## 4 Inst Trans 1.06% Short Ratio 1.85 Perf Half Y
## 5 ROA 24.66% Short Interest 27.48M Perf Year
## 6 ROE 37.14% 52W Range 414.50 - 740.91 Perf YTD
## 7 ROI 27.07% 52W High -15.56% Beta
## 8 Gross Margin 81.68% 52W Low 50.94% ATR (14)
## 9 Oper. Margin 42.41% RSI (14) 36.52 Volatility
## 10 Profit Margin 37.91% Recom 1.41 Target Price
## 11 Payout 8.38% Rel Volume 1.41 Prev Close
## 12 Earnings Jan 29 AMC Avg Volume 14.89M Price
## 13 Trades Volume 21,375,672 Change
## X12
## 1 -6.37%
## 2 -11.24%
## 3 1.96%
## 4 22.02%
## 5 27.63%
## 6 6.86%
## 7 1.25
## 8 23.86
## 9 4.44% 3.17%
## 10 762.80
## 11 627.93
## 12 625.66
## 13 -0.36%
getSymbols("META", src = "yahoo", from = "2015-01-01", to = Sys.Date())
## [1] "META"
metaplatform_prices <- Cl(META) # Extract closing prices
autoplot(metaplatform_prices) + ggtitle("metaplatform Stock Prices")

metaplatform_returns <- dailyReturn(META, type = "log")
ggplot(data = as.data.frame(metaplatform_returns), aes(x = index(META), y = coredata(metaplatform_returns))) +
geom_line() +
ggtitle("metaplatform Daily Log Returns") +
xlab("Date") +
ylab("Log Returns")

pe_ratio <- metaplatform_fins[metaplatform_fins$X1 == "P/E", "X2"]
debt_eq_ratio <- metaplatform_fins[metaplatform_fins$X1 == "Debt/Eq", "X2"]
roe <- metaplatform_fins[metaplatform_fins$X1 == "ROE", "X2"]
print(paste("P/E Ratio:", pe_ratio))
## [1] "P/E Ratio: "
print(paste("Debt/Equity Ratio:", debt_eq_ratio))
## [1] "Debt/Equity Ratio: "
print(paste("Return on Equity:", roe))
## [1] "Return on Equity: "