data_kor <- read.csv("C:/Users/FAQIH/Downloads/2023 Maret JABAR - SUSENAS KOR INDIVIDU PART1.csv")
head(data_kor)
##   X   URUT   PSU    SSU   WI1    WI2 R101 R102 R105 R401 R403 R404 R405 R407
## 1 0 500001 12448 123442 12435 123427   32    7    2    1    1    4    2   68
## 2 1 500001 12448 123442 12435 123427   32    7    2    2    3    2    2   46
## 3 2 500001 12448 123442 12435 123427   32    7    2    3    6    1    2   16
## 4 3 500001 12448 123442 12435 123427   32    7    2    4    6    1    1    6
## 5 4 500002 31373 311039 31360 311024   32   72    1    1    1    3    2   62
## 6 5 500002 31373 311039 31360 311024   32   72    1    2    3    1    1   38
##   R408 R409 R406A R406B R406C R410 R501 R502 R503 R504 R506 R507 R508 R509 R601
## 1    0   20     5     4  1954    2    1    1    0    1    2    1    5    1   32
## 2    5   22     2    10  1976    2    1    2    1    1    2    1    2    1   32
## 3    0    0    23     1  2007    2    0    3    2    1    2    1    2    1   32
## 4    0    0    17     8  2016    2    0    4    2    1    1    1    2    1   32
## 5    0   16     6    12  1960    1    2    1    0    1    2    1    2    1   32
## 6    0    0    28     7  1984    1    0    1    1    1    1    1    1    1   32
##   R602 R603 R604 R605 R606 R607 R608 R609 R610 R611 R612 R613 R614 R615 R616
## 1    7   32    7    0    0    1    1    5    3    0    3    8    3    0    0
## 2    7   32    7    0    0    1    1    5    3    0   19    8   19    0    0
## 3    7   32    7    0    0    1    1    5    3    0   15    1    8    5    5
## 4    7   32    7    3    1    1    1    5    2    1    3    1   25    5    5
## 5   72   32   72    0    0    1    5    5    3    0    3    8    3    0    0
## 6   72   32   72    0    0    1    5    5    3    0    3    8    3    0    0
##   R617 R618 R619 R620 R621 R701 R702 R703_A R703_B R703_C R703_D R703_X R704
## 1    0    0    0    0    0    1    1                    C      D           3
## 2    0    0    0    0    0    1    5                    C      D           3
## 3    0    0    3    0    0    5    5                    C      D           3
## 4    0    0    1    0    0    5    5                                       0
## 5    0    0    0    0    0    5    5                    C      D           3
## 6    0    0    0    0    0    1    5      A                    D           1
##   R705 R706 R707 R708 R709 R801 R802 R807_A R807_B R807_C R807_X R808 R809_A
## 1    5    0    0    0    0    5    5                           X    5       
## 2    5    0    0    0    0    1    1                           X    1       
## 3    5    0    0    0    0    1    1             B                  1       
## 4    0    0    0    0    0    5    5                           X    5       
## 5    5    0    0    0    0    1    1                           X    5       
## 6    0   11    5   48   48    1    1                           X    5       
##   R809_B R809_C R809_D R809_E R810_A R810_B R810_C R810_D R810_E R810_F R811_A
## 1                                                                    NA       
## 2                    D             A                           E  FALSE      A
## 3      B             D             A                    D         FALSE       
## 4                                                                    NA       
## 5                                                                    NA       
## 6                                                                    NA       
##   R811_B R811_C R811_D R811_E R811_F R811_G R811_H R811_I R811_J R811_K R811_L
## 1                                 NA                                          
## 2      B             D            NA                           J              
## 3                    D            NA             H             J              
## 4                                 NA                                          
## 5                                 NA                                          
## 6                                 NA                                          
##   R812 R901 R902 R903 R904 R905 R906 R907 R908 R909 R910 R911 R912 R913 R914
## 1    5    5    0    0    0    5    0    0    0    0    0    0    0    0    0
## 2    5    5    0    0    0    5    0    0    0    0    0    0    0    0    0
## 3    1    5    0    0    0    5    0    0    0    0    0    0    0    0    0
## 4    5    5    0    0    0    5    0    0    0    0    0    0    0    0    0
## 5    5    5    0    0    0    5    0    0    0    0    0    0    0    0    0
## 6    5    5    0    0    0    5    0    0    0    0    0    0    0    0    0
##   R915 R916 R1001 R1002 R1003 R1004 R1005 R1006 R1007 R1008 R1009 R1010 R1101_A
## 1    0    0     1     4     8     4     8     4     8     4     8     5        
## 2    0    0     1     4     8     4     8     4     8     4     8     5        
## 3    0    0     1     4     8     4     8     4     8     4     8     5        
## 4    0    0     1     4     8     4     8     4     8     4     8     5        
## 5    0    0     1     4     8     4     8     4     8     4     8     5       A
## 6    0    0     1     4     8     4     8     4     8     4     8     5       A
##   R1101_B R1101_C R1101_D R1101_E R1101_X R1102 R1103 R1104 R1105 R1106 R1107_A
## 1                               E             5     0     0     0     0        
## 2                                       X     5     0     0     0     0        
## 3                                       X     1     5     1     5     5        
## 4                                       X     1     5     1     5     5        
## 5                                             5     0     0     0     0        
## 6                                             5     0     0     0     0        
##   R1107_B R1107_C R1107_D R1107_E R1107_F R1107_G R1107_H R1108 R1109_A R1109_B
## 1                                      NA                     0                
## 2                                      NA                     0                
## 3                                      NA                     0                
## 4                                      NA                     0                
## 5                                      NA                     0                
## 6                                      NA                     0                
##   R1109_C R1109_D R1109_E R1109_X R1110_A R1110_B R1110_C R1110_D R1110_E
## 1                                                                        
## 2                                                                        
## 3                                                                        
## 4                                                                        
## 5                                                                        
## 6                                                                        
##   R1110_F R1110_G R1110_H R1110_I R1201 R1202_A R1202_B R1202_C R1202_D R1202_E
## 1      NA                             5                                        
## 2      NA                             5                                        
## 3      NA                             5                                        
## 4      NA                             5                                        
## 5      NA                             5                                        
## 6      NA                             5                                        
##   R1202_F R1202_G R1203 R1204_A R1204_B R1204_C R1204_D R1204_E R1204_X R1205_A
## 1      NA             0                                                        
## 2      NA             0                                                        
## 3      NA             0                                                        
## 4      NA             0                                                        
## 5      NA             0                                                        
## 6      NA             0                                                        
##   R1205_B R1205_C R1205_D R1205_E R1205_F R1205_G R1205_H R1205_I R1206 R1207
## 1                                      NA                             5     5
## 2                                      NA                             5     5
## 3                                      NA                             5     5
## 4                                      NA                             5     5
## 5                                      NA                             5     5
## 6                                      NA                             5     1
##   R1208 R1209      FWT
## 1     0     5 454.8891
## 2     0     5 454.8891
## 3     0     5 454.8891
## 4     0     5 454.8891
## 5     0     5 172.3768
## 6    35     1 172.3768
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.4.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
df_filter <- data_kor %>% select(R101, R102, ,R905, R906, R907, R908, R909, R910, R911, R912, R913, R914, R915, R916)
head(df_filter)
##   R101 R102 R905 R906 R907 R908 R909 R910 R911 R912 R913 R914 R915 R916
## 1   32    7    5    0    0    0    0    0    0    0    0    0    0    0
## 2   32    7    5    0    0    0    0    0    0    0    0    0    0    0
## 3   32    7    5    0    0    0    0    0    0    0    0    0    0    0
## 4   32    7    5    0    0    0    0    0    0    0    0    0    0    0
## 5   32   72    5    0    0    0    0    0    0    0    0    0    0    0
## 6   32   72    5    0    0    0    0    0    0    0    0    0    0    0
library(dplyr)

data_kejahatan <- df_filter %>%
  group_by(R102) %>%
  summarise(
    total_perkab_kota = n(),  
    korban_kehajatan = sum(R905 == 1, na.rm = TRUE), 
    kejadian_pencurian = sum(R906, na.rm = TRUE),
    kejadian_pencurian_dilaporkan = sum(R907, na.rm = TRUE),
    kejadian_penganiayaan = sum(R908, na.rm = TRUE),
    kejadian_penganiayaan_dilaporkan = sum(R909, na.rm = TRUE),
    kejadian_pencurian_kekerasan =sum(R910, na.rm = TRUE),
    kejadian_pencurian_kekerasan_dilaporkan = sum(R911, na.rm =TRUE),
    kejadian_pelecehan = sum(R912, na.rm = TRUE),
    kejadian_pelecehan_dilaporkan = sum(R913, na.rm = TRUE),
    kejahatan_lain = sum(R914, na.rm = TRUE),
    kejahatan_lainnya_dilaporkan = sum(R915, na.rm = TRUE),
    mendapat_bantuan_hukum = sum(R916 == 1, na.rm = TRUE),
  )

# Tampilkan hasil
print(data_kejahatan)
## # A tibble: 27 × 14
##     R102 total_perkab_kota korban_kehajatan kejadian_pencurian
##    <int>             <int>            <int>              <int>
##  1     1              4582               28                 28
##  2     2              3475               22                 23
##  3     3              3382               17                 22
##  4     4              4051               27                 26
##  5     5              3882               33                 42
##  6     6              3111                9                  5
##  7     7              3062               20                 27
##  8     8              2764               11                 12
##  9     9              3460               22                 41
## 10    10              2784               16                 19
## # ℹ 17 more rows
## # ℹ 10 more variables: kejadian_pencurian_dilaporkan <int>,
## #   kejadian_penganiayaan <int>, kejadian_penganiayaan_dilaporkan <int>,
## #   kejadian_pencurian_kekerasan <int>,
## #   kejadian_pencurian_kekerasan_dilaporkan <int>, kejadian_pelecehan <int>,
## #   kejadian_pelecehan_dilaporkan <int>, kejahatan_lain <int>,
## #   kejahatan_lainnya_dilaporkan <int>, mendapat_bantuan_hukum <int>
par(mfrow=c(1,2))
plot(data_kejahatan$total_perkab_kota, data_kejahatan$korban_kehajatan, pch=19)

jumlah_sampel_penduduk <- sum(data_kejahatan$total_perkab_kota, na.rm = TRUE)
jumlah_sampel_penduduk
## [1] 84688
library(dplyr)
jumlah_kasus <- data_kejahatan %>% mutate(jumlah_kasus_dilaporkan = kejadian_pencurian_dilaporkan  + kejadian_penganiayaan_dilaporkan + kejadian_pencurian_kekerasan_dilaporkan + kejadian_pelecehan_dilaporkan + kejahatan_lainnya_dilaporkan)
jumlah_kasus
## # A tibble: 27 × 15
##     R102 total_perkab_kota korban_kehajatan kejadian_pencurian
##    <int>             <int>            <int>              <int>
##  1     1              4582               28                 28
##  2     2              3475               22                 23
##  3     3              3382               17                 22
##  4     4              4051               27                 26
##  5     5              3882               33                 42
##  6     6              3111                9                  5
##  7     7              3062               20                 27
##  8     8              2764               11                 12
##  9     9              3460               22                 41
## 10    10              2784               16                 19
## # ℹ 17 more rows
## # ℹ 11 more variables: kejadian_pencurian_dilaporkan <int>,
## #   kejadian_penganiayaan <int>, kejadian_penganiayaan_dilaporkan <int>,
## #   kejadian_pencurian_kekerasan <int>,
## #   kejadian_pencurian_kekerasan_dilaporkan <int>, kejadian_pelecehan <int>,
## #   kejadian_pelecehan_dilaporkan <int>, kejahatan_lain <int>,
## #   kejahatan_lainnya_dilaporkan <int>, mendapat_bantuan_hukum <int>, …
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.4.2
library(tidyr)
## Warning: package 'tidyr' was built under R version 4.4.2
library(scales)
## Warning: package 'scales' was built under R version 4.4.2
total_pencurian <- sum(data_kejahatan$kejadian_pencurian_dilaporkan)
total_penganiayaan <- sum(data_kejahatan$kejadian_penganiayaan_dilaporkan)
total_pencurian_kekerasan <- sum(data_kejahatan$kejadian_pencurian_kekerasan_dilaporkan)
total_pelecehan <- sum(data_kejahatan$kejadian_pelecehan_dilaporkan)
total_kejahatan_lain <- sum(data_kejahatan$kejahatan_lainnya_dilaporkan)
total_kasus <- sum(jumlah_kasus$jumlah_kasus_dilaporkan)

# Buat data proporsi
data_proporsi <- data.frame(
  Jenis_Kasus_dilaporkan = c("Pencurian", "Penganiayaan", "Pencurian_dengan_kekerasan", "Pelecehan", "Kejahatan_lainnya"),
  Persentase = c(total_pencurian / total_kasus * 100, 
                 total_penganiayaan / total_kasus * 100,
                 total_pencurian_kekerasan / total_kasus * 100,
                 total_pelecehan / total_kasus * 100,
                 total_kejahatan_lain / total_kasus * 100)
)
ggplot(data_proporsi, aes(x = reorder(Jenis_Kasus_dilaporkan, -Persentase), y = Persentase, fill = Jenis_Kasus_dilaporkan)) +
  geom_bar(stat = "identity", show.legend = FALSE) +
  scale_y_continuous(labels = percent_format(scale = 1)) +  # Ubah ke format persen
  labs(title = "Persentase Kasus Kejahatan yang Dilaporkan di Jawa Barat",
       x = "Jenis Kasus",
       y = "Persentase (%)") +
  theme_minimal()

library(ggplot2)
library(dplyr)

data_aggregat <- data_kejahatan %>%
  mutate(Total_Kejadian = kejadian_pencurian + kejadian_penganiayaan + 
                          kejadian_pencurian_kekerasan + kejadian_pelecehan + kejahatan_lain) %>%
  arrange(desc(Total_Kejadian))  

ggplot(data_aggregat, aes(x = reorder(R102, -Total_Kejadian), 
                          y = Total_Kejadian, fill = Total_Kejadian)) +
  geom_bar(stat = "identity", show.legend = FALSE) +
  coord_flip() +  
  labs(title = "Kabupaten/Kota dengan Kasus Kejahatan Tertinggi",
       x = "Kode Kabupaten/Kota",
       y = "Total Kasus") +
  theme_minimal()