attach(LSD_dataset2)
The following objects are masked from LSD_dataset1:

    AffectedAnimal, Age_Cat, Ageofanimal, AgeOfOwner (Integer), Amino_Acid, Antibiotics,
    Antihistaminic, Antiviral, Breed, Breeding_System, Common_Utensils, CommonCaretaker,
    CommonSyringe, Consultant, ContactswithAffected, disease, Disinfectant_Use, Distance,
    Diuretics, Ectoparasitic, EducationalLevel, Experience, FarmingSystem, FeedingType,
    FloorType, FloorWashing, Genderofanimal, GenderOfOwner, Genotype, Grazing, HerdSize,
    HerdSize_Cat, IfFemale, Knowledge, Land_type, Location, Manure_Disposal,
    MarketORHospitalORBathan, MosquitoCoil, MosqutoNet, Moved_Cattle, NewCattle,
    Nomortality, NSAID, ProtectionMeasures, Recovery_time, Same_Separated, Season,
    Seperate, SingleORBooster, Steroid, Tick_Present, Vaccination, VitE_Se
names(LSD_dataset2)
 [1] "Location"                 "GenderOfOwner"            "AgeOfOwner (Integer)"    
 [4] "Age_Cat"                  "EducationalLevel"         "Experience"              
 [7] "Knowledge"                "HerdSize"                 "HerdSize_Cat"            
[10] "disease"                  "AffectedAnimal"           "Nomortality"             
[13] "Ageofanimal"              "Genderofanimal"           "IfFemale"                
[16] "Breed"                    "Genotype"                 "Vaccination"             
[19] "SingleORBooster"          "NewCattle"                "ContactswithAffected"    
[22] "Distance"                 "CommonCaretaker"          "Seperate"                
[25] "Same_Separated"           "CommonSyringe"            "Common_Utensils"         
[28] "Moved_Cattle"             "MarketORHospitalORBathan" "FarmingSystem"           
[31] "FeedingType"              "Grazing"                  "FloorType"               
[34] "FloorWashing"             "Disinfectant_Use"         "Tick_Present"            
[37] "ProtectionMeasures"       "MosquitoCoil"             "MosqutoNet"              
[40] "Manure_Disposal"          "Breeding_System"          "Land_type"               
[43] "Recovery_time"            "Season"                   "NSAID"                   
[46] "Antihistaminic"           "Antibiotics"              "Antiviral"               
[49] "Steroid"                  "Ectoparasitic"            "Diuretics"               
[52] "Amino_Acid"               "VitE_Se"                  "Consultant"              
niloy=table(disease, Location)
niloy
          Location
disease    Bishanath Companiganj Golapganj Gowainghat Jaintiapur Kanaighat Sylhet Sadar
  positive        70          55        54         50         55        55           49
barplot(niloy)

chisq.test(niloy)

    Chi-squared test for given probabilities

data:  niloy
X-squared = 5.1546, df = 6, p-value = 0.5241
niloy1= table(disease, GenderOfOwner)
niloy1
          GenderOfOwner
disease    Female Male
  positive    159  229
barplot(niloy1)

chisq.test(niloy1)

    Chi-squared test for given probabilities

data:  niloy1
X-squared = 12.629, df = 1, p-value = 0.0003798
niloy2=table(disease,Age_Cat)/388
niloy2
          Age_Cat
disease         Adult        Old      Young
  positive 0.79896907 0.18556701 0.01546392
barplot(niloy2)

chisq.test(niloy2)
Warning: Chi-squared approximation may be incorrect

    Chi-squared test for given probabilities

data:  niloy2
X-squared = 1.0191, df = 2, p-value = 0.6008
niloy3= table(disease, EducationalLevel)
niloy3
          EducationalLevel
disease    Graduate Higher Secondary Illiterate Primary Secondary Technical University
  positive        7               28        182      68        31        44         28
barplot(niloy3)

chisq.test(niloy3)

    Chi-squared test for given probabilities

data:  niloy3
X-squared = 374.46, df = 6, p-value < 2.2e-16
niloy4= table(disease, Experience)
niloy4
          Experience
disease     No Yes
  positive  33 355
barplot(niloy4)

chisq.test(niloy4)

    Chi-squared test for given probabilities

data:  niloy4
X-squared = 267.23, df = 1, p-value < 2.2e-16
niloy5= table(disease, Genderofanimal)
niloy5
          Genderofanimal
disease    Female Male
  positive    152  236
barplot(niloy5)

chisq.test(niloy5)

    Chi-squared test for given probabilities

data:  niloy5
X-squared = 18.186, df = 1, p-value = 2.004e-05
niloy6= table(disease, Genotype)
niloy6
          Genotype
disease    Indigenous × HF Indigenous × Sahiwal Local
  positive             147                  185    56
barplot(niloy6)

chisq.test(niloy6)

    Chi-squared test for given probabilities

data:  niloy6
X-squared = 67.954, df = 2, p-value = 1.754e-15
niloy7= table(disease, Vaccination)
niloy7
          Vaccination
disease     No Yes
  positive 360  25
barplot(niloy7)

chisq.test(niloy7)

    Chi-squared test for given probabilities

data:  niloy7
X-squared = 291.49, df = 1, p-value < 2.2e-16
niloy8= table(disease, HerdSize_Cat)
niloy8
          HerdSize_Cat
disease    Large Small
  positive   136   252
barplot(niloy8)

chisq.test(niloy8)

    Chi-squared test for given probabilities

data:  niloy8
X-squared = 34.68, df = 1, p-value = 3.885e-09
niloy9= table(disease, Breed)
niloy9
          Breed
disease    Cross Indigenous
  positive   325         63
barplot(niloy9)

chisq.test(niloy9)

    Chi-squared test for given probabilities

data:  niloy9
X-squared = 176.92, df = 1, p-value < 2.2e-16
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCg0KYGBge3J9DQphdHRhY2goTFNEX2RhdGFzZXQyKQ0KbmFtZXMoTFNEX2RhdGFzZXQyKQ0KDQpuaWxveT10YWJsZShkaXNlYXNlLCBMb2NhdGlvbikNCm5pbG95DQpiYXJwbG90KG5pbG95KQ0KY2hpc3EudGVzdChuaWxveSkNCg0KDQpuaWxveTE9IHRhYmxlKGRpc2Vhc2UsIEdlbmRlck9mT3duZXIpDQpuaWxveTENCmJhcnBsb3Qobmlsb3kxKQ0KY2hpc3EudGVzdChuaWxveTEpDQoNCm5pbG95Mj10YWJsZShkaXNlYXNlLEFnZV9DYXQpLzM4OA0Kbmlsb3kyDQpiYXJwbG90KG5pbG95MikNCmNoaXNxLnRlc3Qobmlsb3kyKQ0KDQpuaWxveTM9IHRhYmxlKGRpc2Vhc2UsIEVkdWNhdGlvbmFsTGV2ZWwpDQpuaWxveTMNCmJhcnBsb3Qobmlsb3kzKQ0KY2hpc3EudGVzdChuaWxveTMpDQoNCm5pbG95ND0gdGFibGUoZGlzZWFzZSwgRXhwZXJpZW5jZSkNCm5pbG95NA0KYmFycGxvdChuaWxveTQpDQpjaGlzcS50ZXN0KG5pbG95NCkNCg0Kbmlsb3k1PSB0YWJsZShkaXNlYXNlLCBHZW5kZXJvZmFuaW1hbCkNCm5pbG95NQ0KYmFycGxvdChuaWxveTUpDQpjaGlzcS50ZXN0KG5pbG95NSkNCg0Kbmlsb3k2PSB0YWJsZShkaXNlYXNlLCBHZW5vdHlwZSkNCm5pbG95Ng0KYmFycGxvdChuaWxveTYpDQpjaGlzcS50ZXN0KG5pbG95NikNCg0Kbmlsb3k3PSB0YWJsZShkaXNlYXNlLCBWYWNjaW5hdGlvbikNCm5pbG95Nw0KYmFycGxvdChuaWxveTcpDQpjaGlzcS50ZXN0KG5pbG95NykNCg0Kbmlsb3k4PSB0YWJsZShkaXNlYXNlLCBIZXJkU2l6ZV9DYXQpDQpuaWxveTgNCmJhcnBsb3Qobmlsb3k4KQ0KY2hpc3EudGVzdChuaWxveTgpDQoNCm5pbG95OT0gdGFibGUoZGlzZWFzZSwgQnJlZWQpDQpuaWxveTkNCmJhcnBsb3Qobmlsb3k5KQ0KY2hpc3EudGVzdChuaWxveTkpDQoNCmBgYA0K