Rows: 5275 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (5): iso2c, iso3c, country, region, income
dbl (5): year, gdp_percap, population, birth_rate, neonat_mortal_rate
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
nations
# A tibble: 5,275 × 10
iso2c iso3c country year gdp_percap population birth_rate neonat_mortal_rate
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 AD AND Andorra 1996 NA 64291 10.9 2.8
2 AD AND Andorra 1994 NA 62707 10.9 3.2
3 AD AND Andorra 2003 NA 74783 10.3 2
4 AD AND Andorra 1990 NA 54511 11.9 4.3
5 AD AND Andorra 2009 NA 85474 9.9 1.7
6 AD AND Andorra 2011 NA 82326 NA 1.6
7 AD AND Andorra 2004 NA 78337 10.9 2
8 AD AND Andorra 2010 NA 84419 9.8 1.7
9 AD AND Andorra 2001 NA 67770 11.8 2.1
10 AD AND Andorra 2002 NA 71046 11.2 2.1
# ℹ 5,265 more rows
# ℹ 2 more variables: region <chr>, income <chr>
# A tibble: 100 × 11
iso2c iso3c country year gdp_percap population birth_rate neonat_mortal_rate
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 CN CHN China 1992 1260. 1164970000 18.3 29.4
2 CN CHN China 2005 5053. 1303720000 12.4 14
3 CN CHN China 2000 2915. 1262645000 14.0 21.2
4 CN CHN China 1991 1091. 1150780000 19.7 29.7
5 CN CHN China 2013 12219. 1357380000 12.1 6.3
6 CN CHN China 1999 2650. 1252735000 14.6 22.2
7 CN CHN China 2014 13255. 1364270000 12.4 5.9
8 CN CHN China 2003 3934. 1288400000 12.4 17.1
9 CN CHN China 2004 4423. 1296075000 12.3 15.5
10 CN CHN China 1993 1453. 1178440000 18.1 28.8
# ℹ 90 more rows
# ℹ 3 more variables: region <chr>, income <chr>, gdp_in_trillions <dbl>
plot_num_1 <-ggplot(first_plot, aes(x = year, y = gdp_in_trillions, color = country, fill = country)) +labs(title ="China's Rise to Become The Largest Economy") +xlab("Year") +ylab("GDP ($trillions)") +theme_minimal(base_size =14) +geom_line() +geom_point() +scale_color_brewer(palette ="Set1")plot_num_1
`summarise()` has grouped output by 'region'. You can override using the
`.groups` argument.
second_plot
# A tibble: 175 × 3
# Groups: region [7]
region year GDP
<chr> <dbl> <dbl>
1 East Asia & Pacific 1990 5.52
2 East Asia & Pacific 1991 6.03
3 East Asia & Pacific 1992 6.50
4 East Asia & Pacific 1993 7.04
5 East Asia & Pacific 1994 7.64
6 East Asia & Pacific 1995 8.29
7 East Asia & Pacific 1996 8.96
8 East Asia & Pacific 1997 9.55
9 East Asia & Pacific 1998 9.60
10 East Asia & Pacific 1999 10.1
# ℹ 165 more rows
plot_num_2 <-ggplot(second_plot, aes(x = year, y = GDP, color = region, fill = region)) +labs(title ="GDP By World Bank Region") +geom_area(color ='white', linewidth =0.4) +scale_fill_brewer(palette ="Set2") +xlab("Year") +ylab("GDP ($trillions)") plot_num_2