# Home-runs so far
HR_before <- c(11, 13, 12)
# Average Number of Home-runs per season wanted
wanted_HR <- 20
# Number of seasons
n_seasons <- 4
# Needed Home-runs on season 4
x_4 <- n_seasons*wanted_HR - sum(HR_before)
# Minimum number of Home-runs needed by Robert
x_4
[1] 44
# Robert's performance
Robert_HRs <- c(11, 13, 12,44)
# Find mean
mean(Robert_HRs)
[1] 20
sd(Robert_HRs)
[1] 16.02082
# Find the maximum number of home-runs during the four seasons period
max(Robert_HRs)
[1] 44
# Find the minimum number of home-runs during the four seasons period
min(Robert_HRs)
[1] 11
summary(Robert_HRs)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  11.00   11.75   12.50   20.00   20.75   44.00 
n_1 <- 10
n_2 <- 4
y_1 <- 72000
y_2 <- 84000
# Mean salary overall
salary_ave <-  (n_1*y_1 + n_2*y_2)/(n_1+n_2)
salary_ave
[1] 75428.57
Soto_Walks<-c(79,108,41,145,135)
wanted_walks<-100
number_seasons<-6
#Needed Wlks on season 6
walks_6<-number_seasons*wanted_walks-sum(Soto_Walks)
walks_6
[1] 92
n_1
[1] 10
n_2<-4
y_1<-72000
y_2<84000
[1] FALSE
#Mean Salary Overall
salary_ave<-(n_1*y_1+n_2*y_2)/(n_1+n_2)
salary_ave
[1] 75428.57
bp_1<-7
fp_1<-9
w_1<-102000
w_2<-91000
#Mean Salary Overall
w_salary_ave<-(bp_1*w_1+fp_1*w_2)/(bp_1+fp_1)
w_salary_ave
[1] 95812.5
getwd ()
[1] "C:/Users/benav/Downloads"
contract_length <- read.table("allcontracts.csv", header = TRUE, sep = ",")
contract_years <- contract_length$years
# Mean 
contracts_mean  <- mean(contract_years)
contracts_mean
[1] 3.458918
# Median
contracts_median <- median(contract_years)
contracts_median
[1] 3
# Find number of observations
contracts_n <- length(contract_years)
# Find standard deviation
contracts_sd <- sd(contract_years)
contracts_w1sd <- sum((contract_years - contracts_mean)/contracts_sd < 1)/ contracts_n
# Percentage of observation within one standard deviation of the mean
contracts_w1sd
[1] 0.8416834
## Difference from empirical 
contracts_w1sd - 0.68
[1] 0.1616834
contracts_w2sd <- sum((contract_years - contracts_mean)/ contracts_sd < 2)/contracts_n
contracts_w2sd
[1] 1
## Difference from empirical 
contracts_w2sd - 0.95
[1] 0.05
## Within 3 sd 
contracts_w3sd <- sum((contract_years - contracts_mean)/ contracts_sd < 3)/contracts_n
contracts_w3sd
[1] 1
## Difference from empirical 
contracts_w3sd - 0.9973
[1] 0.0027
# Create histogram
hist(contract_years,xlab = "Years Left in Contract",col = "green",border = "red", xlim = c(0,8), ylim = c(0,250),
   breaks = 3)

boxplot(contract_years,main= "Years Left in Contract" ,ylab="Years")

boxplot(contract_years,main="Years Left in Contract",ylab="years",col= "lightblue",
        border = "blue",horizontal = FALSE)

doubles<-read.table("doubles_hit.csv",header = TRUE,sep = ",")
doubles_hit<-doubles$doubles_hit
doubles_hit_mean<-mean(doubles_hit)
doubles_hit_mean
[1] 23.55
double_hit_median<-median(doubles_hit)
doubles_hit_mean
[1] 23.55
doubles_hit_n<-length(doubles_hit)
doubles_hit_sd<-sd(doubles_hit)
doubles_hit_w3sd<-sum((doubles_hit-doubles_hit_mean)/doubles_hit_sd<1)/doubles_hit_n
doubles_hit_w3sd
[1] 0.79
doubles_hit_w3sd-0.9973
[1] -0.2073
hist(doubles_hit,xlab = "Number of Doubles",col = "blue" , border = "lightblue", xlim = c (0,60),ylim = c (0,50),breaks=5)

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCg0KYGBge3J9DQojIEhvbWUtcnVucyBzbyBmYXINCkhSX2JlZm9yZSA8LSBjKDExLCAxMywgMTIpDQojIEF2ZXJhZ2UgTnVtYmVyIG9mIEhvbWUtcnVucyBwZXIgc2Vhc29uIHdhbnRlZA0Kd2FudGVkX0hSIDwtIDIwDQojIE51bWJlciBvZiBzZWFzb25zDQpuX3NlYXNvbnMgPC0gNA0KIyBOZWVkZWQgSG9tZS1ydW5zIG9uIHNlYXNvbiA0DQp4XzQgPC0gbl9zZWFzb25zKndhbnRlZF9IUiAtIHN1bShIUl9iZWZvcmUpDQojIE1pbmltdW0gbnVtYmVyIG9mIEhvbWUtcnVucyBuZWVkZWQgYnkgUm9iZXJ0DQp4XzQNCmBgYA0KYGBge3J9DQojIFJvYmVydCdzIHBlcmZvcm1hbmNlDQpSb2JlcnRfSFJzIDwtIGMoMTEsIDEzLCAxMiw0NCkNCiMgRmluZCBtZWFuDQptZWFuKFJvYmVydF9IUnMpDQpgYGANCg0KYGBge3J9DQpzZChSb2JlcnRfSFJzKQ0KYGBgDQoNCg0KYGBge3J9DQojIEZpbmQgdGhlIG1heGltdW0gbnVtYmVyIG9mIGhvbWUtcnVucyBkdXJpbmcgdGhlIGZvdXIgc2Vhc29ucyBwZXJpb2QNCm1heChSb2JlcnRfSFJzKQ0KYGBgDQoNCg0KYGBge3J9DQojIEZpbmQgdGhlIG1pbmltdW0gbnVtYmVyIG9mIGhvbWUtcnVucyBkdXJpbmcgdGhlIGZvdXIgc2Vhc29ucyBwZXJpb2QNCm1pbihSb2JlcnRfSFJzKQ0KYGBgDQoNCg0KYGBge3J9DQpzdW1tYXJ5KFJvYmVydF9IUnMpDQpgYGANCg0KYGBge3J9DQpuXzEgPC0gMTANCm5fMiA8LSA0DQp5XzEgPC0gNzIwMDANCnlfMiA8LSA4NDAwMA0KIyBNZWFuIHNhbGFyeSBvdmVyYWxsDQpzYWxhcnlfYXZlIDwtICAobl8xKnlfMSArIG5fMip5XzIpLyhuXzErbl8yKQ0Kc2FsYXJ5X2F2ZQ0KYGBgDQoNCmBgYHtyfQ0KU290b19XYWxrczwtYyg3OSwxMDgsNDEsMTQ1LDEzNSkNCndhbnRlZF93YWxrczwtMTAwDQpudW1iZXJfc2Vhc29uczwtNg0KI05lZWRlZCBXbGtzIG9uIHNlYXNvbiA2DQp3YWxrc182PC1udW1iZXJfc2Vhc29ucyp3YW50ZWRfd2Fsa3Mtc3VtKFNvdG9fV2Fsa3MpDQp3YWxrc182DQpgYGANCg0KYGBge3J9DQpuXzENCm5fMjwtNA0KeV8xPC03MjAwMA0KeV8yPDg0MDAwDQojTWVhbiBTYWxhcnkgT3ZlcmFsbA0Kc2FsYXJ5X2F2ZTwtKG5fMSp5XzErbl8yKnlfMikvKG5fMStuXzIpDQpzYWxhcnlfYXZlDQpgYGANCg0KYGBge3J9DQpicF8xPC03DQpmcF8xPC05DQp3XzE8LTEwMjAwMA0Kd18yPC05MTAwMA0KI01lYW4gU2FsYXJ5IE92ZXJhbGwNCndfc2FsYXJ5X2F2ZTwtKGJwXzEqd18xK2ZwXzEqd18yKS8oYnBfMStmcF8xKQ0Kd19zYWxhcnlfYXZlDQpgYGANCg0KYGBge3J9DQpnZXR3ZCAoKQ0KYGBgDQoNCg0KYGBge3J9DQpjb250cmFjdF9sZW5ndGggPC0gcmVhZC50YWJsZSgiYWxsY29udHJhY3RzLmNzdiIsIGhlYWRlciA9IFRSVUUsIHNlcCA9ICIsIikNCmNvbnRyYWN0X3llYXJzIDwtIGNvbnRyYWN0X2xlbmd0aCR5ZWFycw0KYGBgDQoNCg0KYGBge3J9DQojIE1lYW4gDQpjb250cmFjdHNfbWVhbiAgPC0gbWVhbihjb250cmFjdF95ZWFycykNCmNvbnRyYWN0c19tZWFuDQpgYGANCg0KDQoNCmBgYHtyfQ0KIyBNZWRpYW4NCmNvbnRyYWN0c19tZWRpYW4gPC0gbWVkaWFuKGNvbnRyYWN0X3llYXJzKQ0KY29udHJhY3RzX21lZGlhbg0KYGBgDQoNCg0KYGBge3J9DQojIEZpbmQgbnVtYmVyIG9mIG9ic2VydmF0aW9ucw0KY29udHJhY3RzX24gPC0gbGVuZ3RoKGNvbnRyYWN0X3llYXJzKQ0KIyBGaW5kIHN0YW5kYXJkIGRldmlhdGlvbg0KY29udHJhY3RzX3NkIDwtIHNkKGNvbnRyYWN0X3llYXJzKQ0KYGBgDQoNCg0KDQpgYGB7cn0NCmNvbnRyYWN0c193MXNkIDwtIHN1bSgoY29udHJhY3RfeWVhcnMgLSBjb250cmFjdHNfbWVhbikvY29udHJhY3RzX3NkIDwgMSkvIGNvbnRyYWN0c19uDQojIFBlcmNlbnRhZ2Ugb2Ygb2JzZXJ2YXRpb24gd2l0aGluIG9uZSBzdGFuZGFyZCBkZXZpYXRpb24gb2YgdGhlIG1lYW4NCmNvbnRyYWN0c193MXNkDQpgYGANCg0KDQoNCmBgYHtyfQ0KIyMgRGlmZmVyZW5jZSBmcm9tIGVtcGlyaWNhbCANCmNvbnRyYWN0c193MXNkIC0gMC42OA0KYGBgDQoNCmBgYHtyfQ0KY29udHJhY3RzX3cyc2QgPC0gc3VtKChjb250cmFjdF95ZWFycyAtIGNvbnRyYWN0c19tZWFuKS8gY29udHJhY3RzX3NkIDwgMikvY29udHJhY3RzX24NCmNvbnRyYWN0c193MnNkDQpgYGANCg0KDQoNCmBgYHtyfQ0KIyMgRGlmZmVyZW5jZSBmcm9tIGVtcGlyaWNhbCANCmNvbnRyYWN0c193MnNkIC0gMC45NQ0KYGBgDQoNCg0KYGBge3J9DQojIyBXaXRoaW4gMyBzZCANCmNvbnRyYWN0c193M3NkIDwtIHN1bSgoY29udHJhY3RfeWVhcnMgLSBjb250cmFjdHNfbWVhbikvIGNvbnRyYWN0c19zZCA8IDMpL2NvbnRyYWN0c19uDQpjb250cmFjdHNfdzNzZA0KYGBgDQoNCg0KYGBge3J9DQojIyBEaWZmZXJlbmNlIGZyb20gZW1waXJpY2FsIA0KY29udHJhY3RzX3czc2QgLSAwLjk5NzMNCmBgYA0KDQoNCmBgYHtyfQ0KIyBDcmVhdGUgaGlzdG9ncmFtDQpoaXN0KGNvbnRyYWN0X3llYXJzLHhsYWIgPSAiWWVhcnMgTGVmdCBpbiBDb250cmFjdCIsY29sID0gImdyZWVuIixib3JkZXIgPSAicmVkIiwgeGxpbSA9IGMoMCw4KSwgeWxpbSA9IGMoMCwyNTApLA0KICAgYnJlYWtzID0gMykNCmBgYA0KDQoNCmBgYHtyfQ0KYm94cGxvdChjb250cmFjdF95ZWFycyxtYWluPSAiWWVhcnMgTGVmdCBpbiBDb250cmFjdCIgLHlsYWI9IlllYXJzIikNCmBgYA0KDQpgYGB7cn0NCmJveHBsb3QoY29udHJhY3RfeWVhcnMsbWFpbj0iWWVhcnMgTGVmdCBpbiBDb250cmFjdCIseWxhYj0ieWVhcnMiLGNvbD0gImxpZ2h0Ymx1ZSIsDQogICAgICAgIGJvcmRlciA9ICJibHVlIixob3Jpem9udGFsID0gRkFMU0UpDQpgYGANCg0KDQpgYGB7cn0NCmRvdWJsZXM8LXJlYWQudGFibGUoImRvdWJsZXNfaGl0LmNzdiIsaGVhZGVyID0gVFJVRSxzZXAgPSAiLCIpDQpkb3VibGVzX2hpdDwtZG91YmxlcyRkb3VibGVzX2hpdA0KYGBgDQoNCg0KDQpgYGB7cn0NCmRvdWJsZXNfaGl0X21lYW48LW1lYW4oZG91Ymxlc19oaXQpDQpkb3VibGVzX2hpdF9tZWFuDQpkb3VibGVfaGl0X21lZGlhbjwtbWVkaWFuKGRvdWJsZXNfaGl0KQ0KZG91Ymxlc19oaXRfbWVhbg0KYGBgDQoNCmBgYHtyfQ0KZG91Ymxlc19oaXRfbjwtbGVuZ3RoKGRvdWJsZXNfaGl0KQ0KZG91Ymxlc19oaXRfc2Q8LXNkKGRvdWJsZXNfaGl0KQ0KYGBgDQoNCg0KYGBge3J9DQpkb3VibGVzX2hpdF93M3NkPC1zdW0oKGRvdWJsZXNfaGl0LWRvdWJsZXNfaGl0X21lYW4pL2RvdWJsZXNfaGl0X3NkPDEpL2RvdWJsZXNfaGl0X24NCmRvdWJsZXNfaGl0X3czc2QNCmBgYA0KDQpgYGB7cn0NCmRvdWJsZXNfaGl0X3czc2QtMC45OTczDQpgYGANCg0KDQpgYGB7cn0NCmhpc3QoZG91Ymxlc19oaXQseGxhYiA9ICJOdW1iZXIgb2YgRG91YmxlcyIsY29sID0gImJsdWUiICwgYm9yZGVyID0gImxpZ2h0Ymx1ZSIsIHhsaW0gPSBjICgwLDYwKSx5bGltID0gYyAoMCw1MCksYnJlYWtzPTUpDQpgYGANCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0K