Nations Dataset
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.1
✔ purrr 1.0.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
setwd ("/Users/Lucinda/Downloads/data110" )
nations <- read_csv ("nations.csv" )
Rows: 5275 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (5): iso2c, iso3c, country, region, income
dbl (5): year, gdp_percap, population, birth_rate, neonat_mortal_rate
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Use mutate
to make a new GDP column
nations <- nations |>
mutate (GDP = (gdp_percap* population)/ 1000000000000 )
Chart 1: dplyr commands
givencountries <- nations |>
filter (country %in% c ("China" , "Germany" , "Japan" , "United States" ))
Plot chart 1
ggplot (givencountries,
aes (x = year,
y = GDP,
color = country)) +
labs (title = "GDP in Trillions of $ by Country" ,
x = "Year" ,
y = "GDP" ) +
geom_line () +
geom_point () +
scale_color_brewer (palette = "Set1" ) +
theme_minimal ()
Chart 2: dplyr commands
nations2 <- nations |>
group_by (region, year) |>
summarise (GDP = sum (GDP, na.rm = TRUE ))
`summarise()` has grouped output by 'region'. You can override using the
`.groups` argument.
ggplot (nations2, aes (x= year, y= GDP, fill= region)) +
geom_area (color = "white" ,
lwd = 0.5 ,
linetype = 1 ) +
labs (x = "Year" , y = "GDP" ,
title = "GDP in Trillions of $ by Region" ) +
scale_fill_brewer (palette = "Set2" ) +
theme_minimal ()