Nations Chart

Author

Maisha Subin

# Loading the packages to view nations dataset
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.1     ✔ tibble    3.2.1
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(RColorBrewer)
library(plotly)

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':

    last_plot

The following object is masked from 'package:stats':

    filter

The following object is masked from 'package:graphics':

    layout
nations <- read_csv("/Users/maishasubin/Desktop/DATA110/nations.csv")
Rows: 5275 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (5): iso2c, iso3c, country, region, income
dbl (5): year, gdp_percap, population, birth_rate, neonat_mortal_rate

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Create GDP in trillions
nations <- nations %>%
  mutate(gdp_trillions = (gdp_percap * population) / 1e12)
# Selecting four countries
selected_countries <- c("United States", "Russian Federation", "China", "India")
# Filter dataset for selected countries
data_filtered <- nations %>%
  filter(country %in% selected_countries)
# Create interactive plot using plotly
p <- ggplot(data_filtered, 
            aes(x = year, 
                y = gdp_trillions, 
                color = country, 
                group = country)) +
  geom_line() +
  geom_point() +
  scale_color_brewer(palette = "RdGy") +
  labs(title = "GDP Trends and China's Growth", 
       x = "Year", 
       y = "GDP (Trillions)") +
  theme_minimal()
 p <- ggplotly(p)
 p
# Summarize GDP by region and year
regional_gdp <- nations %>%
  group_by(region, year) %>%
  summarise(GDP = sum(gdp_trillions, na.rm = TRUE))
`summarise()` has grouped output by 'region'. You can override using the
`.groups` argument.
# Create area plot
ggplot(regional_gdp, 
       aes(x = year, 
           y = GDP, 
           fill = region)) +
  geom_area(color = "white", size = 0.2) +
  scale_fill_brewer(palette = "RdBu") +
  labs(title = "Regional GDP Trends", x = "Year", y = "GDP (Trillions)") +
  theme_minimal()
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.