install.packages(c("tidyverse", "rvest", "quantmod", "ggplot2", "xts", "dplyr"))
## Installing packages into '/cloud/lib/x86_64-pc-linux-gnu-library/4.4'
## (as 'lib' is unspecified)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(rvest)
## 
## Attaching package: 'rvest'
## 
## The following object is masked from 'package:readr':
## 
##     guess_encoding
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## ######################### Warning from 'xts' package ##########################
## #                                                                             #
## # The dplyr lag() function breaks how base R's lag() function is supposed to  #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or       #
## # source() into this session won't work correctly.                            #
## #                                                                             #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop           #
## # dplyr from breaking base R's lag() function.                                #
## #                                                                             #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.  #
## #                                                                             #
## ###############################################################################
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(ggplot2)
library(xts)
library(dplyr)

netflix_url <- "https://finviz.com/quote.ashx?t=NFLX"
netflix_page <- read_html(netflix_url)

netflix_data <- netflix_page %>%
  html_nodes("table.snapshot-table2") %>%
  html_table(fill = TRUE)

netflix_fins <- as.data.frame(netflix_data[[1]])
print(netflix_fins)
##                  X1           X2            X3     X4            X5      X6
## 1             Index NDX, S&P 500           P/E  44.94     EPS (ttm)   19.83
## 2        Market Cap      381.18B   Forward P/E  29.28    EPS next Y   30.44
## 3            Income        8.71B           PEG   1.97    EPS next Q    5.73
## 4             Sales       38.88B           P/S   9.80    EPS this Y  25.12%
## 5           Book/sh        57.84           P/B  15.41    EPS next Y  22.68%
## 6           Cash/sh        22.41           P/C  39.76   EPS next 5Y  22.77%
## 7     Dividend Est.            -         P/FCF  55.07   EPS past 5Y  36.85%
## 8      Dividend TTM            -   Quick Ratio   1.22 Sales past 5Y  14.25%
## 9  Dividend Ex-Date            - Current Ratio   1.22   EPS Y/Y TTM  65.72%
## 10        Employees        14000       Debt/Eq   0.73 Sales Y/Y TTM  15.28%
## 11     Option/Short    Yes / Yes    LT Debt/Eq   0.64       EPS Q/Q 102.15%
## 12   Sales Surprise        1.37%  EPS Surprise  1.71%     Sales Q/Q  15.40%
## 13            SMA20      -10.53%         SMA50 -6.21%        SMA200  14.32%
##               X7         X8             X9              X10          X11
## 1    Insider Own      0.72%   Shs Outstand          427.76M    Perf Week
## 2  Insider Trans    -20.28%      Shs Float          424.69M   Perf Month
## 3       Inst Own     83.75%    Short Float            1.66% Perf Quarter
## 4     Inst Trans      0.04%    Short Ratio             1.84  Perf Half Y
## 5            ROA     16.64% Short Interest            7.04M    Perf Year
## 6            ROE     38.43%      52W Range 542.01 - 1064.50     Perf YTD
## 7            ROI     21.50%       52W High          -16.29%         Beta
## 8   Gross Margin     45.88%        52W Low           64.41%     ATR (14)
## 9   Oper. Margin     26.47%       RSI (14)            33.40   Volatility
## 10 Profit Margin     22.41%          Recom             1.78 Target Price
## 11        Payout      0.00%     Rel Volume             2.02   Prev Close
## 12      Earnings Jan 21 AMC     Avg Volume            3.83M        Price
## 13        Trades                    Volume        7,725,055       Change
##            X12
## 1       -9.12%
## 2      -11.87%
## 3       -1.23%
## 4       31.11%
## 5       48.89%
## 6       -0.02%
## 7         1.58
## 8        34.26
## 9  4.72% 3.15%
## 10     1081.36
## 11      906.36
## 12      891.11
## 13      -1.68%
getSymbols("NFLX", src = "yahoo", from = "2020-01-01", to = Sys.Date())
## [1] "NFLX"
netflix_prices <- Cl(NFLX)  # Extract closing prices
autoplot(netflix_prices) + ggtitle("Netflix Stock Prices")

netflix_returns <- dailyReturn(NFLX, type = "log")
ggplot(data = as.data.frame(netflix_returns), aes(x = index(NFLX), y = coredata(netflix_returns))) +
  geom_line() +
  ggtitle("Netflix Daily Log Returns") +
  xlab("Date") +
  ylab("Log Returns")

pe_ratio <- netflix_fins[netflix_fins$X1 == "P/E", "X2"]
debt_eq_ratio <- netflix_fins[netflix_fins$X1 == "Debt/Eq", "X2"]
roe <- netflix_fins[netflix_fins$X1 == "ROE", "X2"]

print(paste("P/E Ratio:", pe_ratio))
## [1] "P/E Ratio: "
print(paste("Debt/Equity Ratio:", debt_eq_ratio))
## [1] "Debt/Equity Ratio: "
print(paste("Return on Equity:", roe))
## [1] "Return on Equity: "