options(repos = c(CRAN = "https://cloud.r-project.org/"))
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
install.packages("ISLR")
##
## The downloaded binary packages are in
## /var/folders/f0/_tzkn76d17q62jmq3q6qztsw0000gn/T//RtmpDQSVCi/downloaded_packages
library(ISLR)
help(package="ISLR")
Auto
## mpg cylinders displacement horsepower weight acceleration year origin
## 1 18.0 8 307.0 130 3504 12.0 70 1
## 2 15.0 8 350.0 165 3693 11.5 70 1
## 3 18.0 8 318.0 150 3436 11.0 70 1
## 4 16.0 8 304.0 150 3433 12.0 70 1
## 5 17.0 8 302.0 140 3449 10.5 70 1
## 6 15.0 8 429.0 198 4341 10.0 70 1
## 7 14.0 8 454.0 220 4354 9.0 70 1
## 8 14.0 8 440.0 215 4312 8.5 70 1
## 9 14.0 8 455.0 225 4425 10.0 70 1
## 10 15.0 8 390.0 190 3850 8.5 70 1
## 11 15.0 8 383.0 170 3563 10.0 70 1
## 12 14.0 8 340.0 160 3609 8.0 70 1
## 13 15.0 8 400.0 150 3761 9.5 70 1
## 14 14.0 8 455.0 225 3086 10.0 70 1
## 15 24.0 4 113.0 95 2372 15.0 70 3
## 16 22.0 6 198.0 95 2833 15.5 70 1
## 17 18.0 6 199.0 97 2774 15.5 70 1
## 18 21.0 6 200.0 85 2587 16.0 70 1
## 19 27.0 4 97.0 88 2130 14.5 70 3
## 20 26.0 4 97.0 46 1835 20.5 70 2
## 21 25.0 4 110.0 87 2672 17.5 70 2
## 22 24.0 4 107.0 90 2430 14.5 70 2
## 23 25.0 4 104.0 95 2375 17.5 70 2
## 24 26.0 4 121.0 113 2234 12.5 70 2
## 25 21.0 6 199.0 90 2648 15.0 70 1
## 26 10.0 8 360.0 215 4615 14.0 70 1
## 27 10.0 8 307.0 200 4376 15.0 70 1
## 28 11.0 8 318.0 210 4382 13.5 70 1
## 29 9.0 8 304.0 193 4732 18.5 70 1
## 30 27.0 4 97.0 88 2130 14.5 71 3
## 31 28.0 4 140.0 90 2264 15.5 71 1
## 32 25.0 4 113.0 95 2228 14.0 71 3
## 34 19.0 6 232.0 100 2634 13.0 71 1
## 35 16.0 6 225.0 105 3439 15.5 71 1
## 36 17.0 6 250.0 100 3329 15.5 71 1
## 37 19.0 6 250.0 88 3302 15.5 71 1
## 38 18.0 6 232.0 100 3288 15.5 71 1
## 39 14.0 8 350.0 165 4209 12.0 71 1
## 40 14.0 8 400.0 175 4464 11.5 71 1
## 41 14.0 8 351.0 153 4154 13.5 71 1
## 42 14.0 8 318.0 150 4096 13.0 71 1
## 43 12.0 8 383.0 180 4955 11.5 71 1
## 44 13.0 8 400.0 170 4746 12.0 71 1
## 45 13.0 8 400.0 175 5140 12.0 71 1
## 46 18.0 6 258.0 110 2962 13.5 71 1
## 47 22.0 4 140.0 72 2408 19.0 71 1
## 48 19.0 6 250.0 100 3282 15.0 71 1
## 49 18.0 6 250.0 88 3139 14.5 71 1
## 50 23.0 4 122.0 86 2220 14.0 71 1
## 51 28.0 4 116.0 90 2123 14.0 71 2
## 52 30.0 4 79.0 70 2074 19.5 71 2
## 53 30.0 4 88.0 76 2065 14.5 71 2
## 54 31.0 4 71.0 65 1773 19.0 71 3
## 55 35.0 4 72.0 69 1613 18.0 71 3
## 56 27.0 4 97.0 60 1834 19.0 71 2
## 57 26.0 4 91.0 70 1955 20.5 71 1
## 58 24.0 4 113.0 95 2278 15.5 72 3
## 59 25.0 4 97.5 80 2126 17.0 72 1
## 60 23.0 4 97.0 54 2254 23.5 72 2
## 61 20.0 4 140.0 90 2408 19.5 72 1
## 62 21.0 4 122.0 86 2226 16.5 72 1
## 63 13.0 8 350.0 165 4274 12.0 72 1
## 64 14.0 8 400.0 175 4385 12.0 72 1
## 65 15.0 8 318.0 150 4135 13.5 72 1
## 66 14.0 8 351.0 153 4129 13.0 72 1
## 67 17.0 8 304.0 150 3672 11.5 72 1
## 68 11.0 8 429.0 208 4633 11.0 72 1
## 69 13.0 8 350.0 155 4502 13.5 72 1
## 70 12.0 8 350.0 160 4456 13.5 72 1
## 71 13.0 8 400.0 190 4422 12.5 72 1
## 72 19.0 3 70.0 97 2330 13.5 72 3
## 73 15.0 8 304.0 150 3892 12.5 72 1
## 74 13.0 8 307.0 130 4098 14.0 72 1
## 75 13.0 8 302.0 140 4294 16.0 72 1
## 76 14.0 8 318.0 150 4077 14.0 72 1
## 77 18.0 4 121.0 112 2933 14.5 72 2
## 78 22.0 4 121.0 76 2511 18.0 72 2
## 79 21.0 4 120.0 87 2979 19.5 72 2
## 80 26.0 4 96.0 69 2189 18.0 72 2
## 81 22.0 4 122.0 86 2395 16.0 72 1
## 82 28.0 4 97.0 92 2288 17.0 72 3
## 83 23.0 4 120.0 97 2506 14.5 72 3
## 84 28.0 4 98.0 80 2164 15.0 72 1
## 85 27.0 4 97.0 88 2100 16.5 72 3
## 86 13.0 8 350.0 175 4100 13.0 73 1
## 87 14.0 8 304.0 150 3672 11.5 73 1
## 88 13.0 8 350.0 145 3988 13.0 73 1
## 89 14.0 8 302.0 137 4042 14.5 73 1
## 90 15.0 8 318.0 150 3777 12.5 73 1
## 91 12.0 8 429.0 198 4952 11.5 73 1
## 92 13.0 8 400.0 150 4464 12.0 73 1
## 93 13.0 8 351.0 158 4363 13.0 73 1
## 94 14.0 8 318.0 150 4237 14.5 73 1
## 95 13.0 8 440.0 215 4735 11.0 73 1
## 96 12.0 8 455.0 225 4951 11.0 73 1
## 97 13.0 8 360.0 175 3821 11.0 73 1
## 98 18.0 6 225.0 105 3121 16.5 73 1
## 99 16.0 6 250.0 100 3278 18.0 73 1
## 100 18.0 6 232.0 100 2945 16.0 73 1
## 101 18.0 6 250.0 88 3021 16.5 73 1
## 102 23.0 6 198.0 95 2904 16.0 73 1
## 103 26.0 4 97.0 46 1950 21.0 73 2
## 104 11.0 8 400.0 150 4997 14.0 73 1
## 105 12.0 8 400.0 167 4906 12.5 73 1
## 106 13.0 8 360.0 170 4654 13.0 73 1
## 107 12.0 8 350.0 180 4499 12.5 73 1
## 108 18.0 6 232.0 100 2789 15.0 73 1
## 109 20.0 4 97.0 88 2279 19.0 73 3
## 110 21.0 4 140.0 72 2401 19.5 73 1
## 111 22.0 4 108.0 94 2379 16.5 73 3
## 112 18.0 3 70.0 90 2124 13.5 73 3
## 113 19.0 4 122.0 85 2310 18.5 73 1
## 114 21.0 6 155.0 107 2472 14.0 73 1
## 115 26.0 4 98.0 90 2265 15.5 73 2
## 116 15.0 8 350.0 145 4082 13.0 73 1
## 117 16.0 8 400.0 230 4278 9.5 73 1
## 118 29.0 4 68.0 49 1867 19.5 73 2
## 119 24.0 4 116.0 75 2158 15.5 73 2
## 120 20.0 4 114.0 91 2582 14.0 73 2
## 121 19.0 4 121.0 112 2868 15.5 73 2
## 122 15.0 8 318.0 150 3399 11.0 73 1
## 123 24.0 4 121.0 110 2660 14.0 73 2
## 124 20.0 6 156.0 122 2807 13.5 73 3
## 125 11.0 8 350.0 180 3664 11.0 73 1
## 126 20.0 6 198.0 95 3102 16.5 74 1
## 128 19.0 6 232.0 100 2901 16.0 74 1
## 129 15.0 6 250.0 100 3336 17.0 74 1
## 130 31.0 4 79.0 67 1950 19.0 74 3
## 131 26.0 4 122.0 80 2451 16.5 74 1
## 132 32.0 4 71.0 65 1836 21.0 74 3
## 133 25.0 4 140.0 75 2542 17.0 74 1
## 134 16.0 6 250.0 100 3781 17.0 74 1
## 135 16.0 6 258.0 110 3632 18.0 74 1
## 136 18.0 6 225.0 105 3613 16.5 74 1
## 137 16.0 8 302.0 140 4141 14.0 74 1
## 138 13.0 8 350.0 150 4699 14.5 74 1
## 139 14.0 8 318.0 150 4457 13.5 74 1
## 140 14.0 8 302.0 140 4638 16.0 74 1
## 141 14.0 8 304.0 150 4257 15.5 74 1
## 142 29.0 4 98.0 83 2219 16.5 74 2
## 143 26.0 4 79.0 67 1963 15.5 74 2
## 144 26.0 4 97.0 78 2300 14.5 74 2
## 145 31.0 4 76.0 52 1649 16.5 74 3
## 146 32.0 4 83.0 61 2003 19.0 74 3
## 147 28.0 4 90.0 75 2125 14.5 74 1
## 148 24.0 4 90.0 75 2108 15.5 74 2
## 149 26.0 4 116.0 75 2246 14.0 74 2
## 150 24.0 4 120.0 97 2489 15.0 74 3
## 151 26.0 4 108.0 93 2391 15.5 74 3
## 152 31.0 4 79.0 67 2000 16.0 74 2
## 153 19.0 6 225.0 95 3264 16.0 75 1
## 154 18.0 6 250.0 105 3459 16.0 75 1
## 155 15.0 6 250.0 72 3432 21.0 75 1
## 156 15.0 6 250.0 72 3158 19.5 75 1
## 157 16.0 8 400.0 170 4668 11.5 75 1
## 158 15.0 8 350.0 145 4440 14.0 75 1
## 159 16.0 8 318.0 150 4498 14.5 75 1
## 160 14.0 8 351.0 148 4657 13.5 75 1
## 161 17.0 6 231.0 110 3907 21.0 75 1
## 162 16.0 6 250.0 105 3897 18.5 75 1
## 163 15.0 6 258.0 110 3730 19.0 75 1
## 164 18.0 6 225.0 95 3785 19.0 75 1
## 165 21.0 6 231.0 110 3039 15.0 75 1
## 166 20.0 8 262.0 110 3221 13.5 75 1
## 167 13.0 8 302.0 129 3169 12.0 75 1
## 168 29.0 4 97.0 75 2171 16.0 75 3
## 169 23.0 4 140.0 83 2639 17.0 75 1
## 170 20.0 6 232.0 100 2914 16.0 75 1
## 171 23.0 4 140.0 78 2592 18.5 75 1
## 172 24.0 4 134.0 96 2702 13.5 75 3
## 173 25.0 4 90.0 71 2223 16.5 75 2
## 174 24.0 4 119.0 97 2545 17.0 75 3
## 175 18.0 6 171.0 97 2984 14.5 75 1
## 176 29.0 4 90.0 70 1937 14.0 75 2
## 177 19.0 6 232.0 90 3211 17.0 75 1
## 178 23.0 4 115.0 95 2694 15.0 75 2
## 179 23.0 4 120.0 88 2957 17.0 75 2
## 180 22.0 4 121.0 98 2945 14.5 75 2
## 181 25.0 4 121.0 115 2671 13.5 75 2
## 182 33.0 4 91.0 53 1795 17.5 75 3
## 183 28.0 4 107.0 86 2464 15.5 76 2
## 184 25.0 4 116.0 81 2220 16.9 76 2
## 185 25.0 4 140.0 92 2572 14.9 76 1
## 186 26.0 4 98.0 79 2255 17.7 76 1
## 187 27.0 4 101.0 83 2202 15.3 76 2
## 188 17.5 8 305.0 140 4215 13.0 76 1
## 189 16.0 8 318.0 150 4190 13.0 76 1
## 190 15.5 8 304.0 120 3962 13.9 76 1
## 191 14.5 8 351.0 152 4215 12.8 76 1
## 192 22.0 6 225.0 100 3233 15.4 76 1
## 193 22.0 6 250.0 105 3353 14.5 76 1
## 194 24.0 6 200.0 81 3012 17.6 76 1
## 195 22.5 6 232.0 90 3085 17.6 76 1
## 196 29.0 4 85.0 52 2035 22.2 76 1
## 197 24.5 4 98.0 60 2164 22.1 76 1
## 198 29.0 4 90.0 70 1937 14.2 76 2
## 199 33.0 4 91.0 53 1795 17.4 76 3
## 200 20.0 6 225.0 100 3651 17.7 76 1
## 201 18.0 6 250.0 78 3574 21.0 76 1
## 202 18.5 6 250.0 110 3645 16.2 76 1
## 203 17.5 6 258.0 95 3193 17.8 76 1
## 204 29.5 4 97.0 71 1825 12.2 76 2
## 205 32.0 4 85.0 70 1990 17.0 76 3
## 206 28.0 4 97.0 75 2155 16.4 76 3
## 207 26.5 4 140.0 72 2565 13.6 76 1
## 208 20.0 4 130.0 102 3150 15.7 76 2
## 209 13.0 8 318.0 150 3940 13.2 76 1
## 210 19.0 4 120.0 88 3270 21.9 76 2
## 211 19.0 6 156.0 108 2930 15.5 76 3
## 212 16.5 6 168.0 120 3820 16.7 76 2
## 213 16.5 8 350.0 180 4380 12.1 76 1
## 214 13.0 8 350.0 145 4055 12.0 76 1
## 215 13.0 8 302.0 130 3870 15.0 76 1
## 216 13.0 8 318.0 150 3755 14.0 76 1
## 217 31.5 4 98.0 68 2045 18.5 77 3
## 218 30.0 4 111.0 80 2155 14.8 77 1
## 219 36.0 4 79.0 58 1825 18.6 77 2
## 220 25.5 4 122.0 96 2300 15.5 77 1
## 221 33.5 4 85.0 70 1945 16.8 77 3
## 222 17.5 8 305.0 145 3880 12.5 77 1
## 223 17.0 8 260.0 110 4060 19.0 77 1
## 224 15.5 8 318.0 145 4140 13.7 77 1
## 225 15.0 8 302.0 130 4295 14.9 77 1
## 226 17.5 6 250.0 110 3520 16.4 77 1
## 227 20.5 6 231.0 105 3425 16.9 77 1
## 228 19.0 6 225.0 100 3630 17.7 77 1
## 229 18.5 6 250.0 98 3525 19.0 77 1
## 230 16.0 8 400.0 180 4220 11.1 77 1
## 231 15.5 8 350.0 170 4165 11.4 77 1
## 232 15.5 8 400.0 190 4325 12.2 77 1
## 233 16.0 8 351.0 149 4335 14.5 77 1
## 234 29.0 4 97.0 78 1940 14.5 77 2
## 235 24.5 4 151.0 88 2740 16.0 77 1
## 236 26.0 4 97.0 75 2265 18.2 77 3
## 237 25.5 4 140.0 89 2755 15.8 77 1
## 238 30.5 4 98.0 63 2051 17.0 77 1
## 239 33.5 4 98.0 83 2075 15.9 77 1
## 240 30.0 4 97.0 67 1985 16.4 77 3
## 241 30.5 4 97.0 78 2190 14.1 77 2
## 242 22.0 6 146.0 97 2815 14.5 77 3
## 243 21.5 4 121.0 110 2600 12.8 77 2
## 244 21.5 3 80.0 110 2720 13.5 77 3
## 245 43.1 4 90.0 48 1985 21.5 78 2
## 246 36.1 4 98.0 66 1800 14.4 78 1
## 247 32.8 4 78.0 52 1985 19.4 78 3
## 248 39.4 4 85.0 70 2070 18.6 78 3
## 249 36.1 4 91.0 60 1800 16.4 78 3
## 250 19.9 8 260.0 110 3365 15.5 78 1
## 251 19.4 8 318.0 140 3735 13.2 78 1
## 252 20.2 8 302.0 139 3570 12.8 78 1
## 253 19.2 6 231.0 105 3535 19.2 78 1
## 254 20.5 6 200.0 95 3155 18.2 78 1
## 255 20.2 6 200.0 85 2965 15.8 78 1
## 256 25.1 4 140.0 88 2720 15.4 78 1
## 257 20.5 6 225.0 100 3430 17.2 78 1
## 258 19.4 6 232.0 90 3210 17.2 78 1
## 259 20.6 6 231.0 105 3380 15.8 78 1
## 260 20.8 6 200.0 85 3070 16.7 78 1
## 261 18.6 6 225.0 110 3620 18.7 78 1
## 262 18.1 6 258.0 120 3410 15.1 78 1
## 263 19.2 8 305.0 145 3425 13.2 78 1
## 264 17.7 6 231.0 165 3445 13.4 78 1
## 265 18.1 8 302.0 139 3205 11.2 78 1
## 266 17.5 8 318.0 140 4080 13.7 78 1
## 267 30.0 4 98.0 68 2155 16.5 78 1
## 268 27.5 4 134.0 95 2560 14.2 78 3
## 269 27.2 4 119.0 97 2300 14.7 78 3
## 270 30.9 4 105.0 75 2230 14.5 78 1
## 271 21.1 4 134.0 95 2515 14.8 78 3
## 272 23.2 4 156.0 105 2745 16.7 78 1
## 273 23.8 4 151.0 85 2855 17.6 78 1
## 274 23.9 4 119.0 97 2405 14.9 78 3
## 275 20.3 5 131.0 103 2830 15.9 78 2
## 276 17.0 6 163.0 125 3140 13.6 78 2
## 277 21.6 4 121.0 115 2795 15.7 78 2
## 278 16.2 6 163.0 133 3410 15.8 78 2
## 279 31.5 4 89.0 71 1990 14.9 78 2
## 280 29.5 4 98.0 68 2135 16.6 78 3
## 281 21.5 6 231.0 115 3245 15.4 79 1
## 282 19.8 6 200.0 85 2990 18.2 79 1
## 283 22.3 4 140.0 88 2890 17.3 79 1
## 284 20.2 6 232.0 90 3265 18.2 79 1
## 285 20.6 6 225.0 110 3360 16.6 79 1
## 286 17.0 8 305.0 130 3840 15.4 79 1
## 287 17.6 8 302.0 129 3725 13.4 79 1
## 288 16.5 8 351.0 138 3955 13.2 79 1
## 289 18.2 8 318.0 135 3830 15.2 79 1
## 290 16.9 8 350.0 155 4360 14.9 79 1
## 291 15.5 8 351.0 142 4054 14.3 79 1
## 292 19.2 8 267.0 125 3605 15.0 79 1
## 293 18.5 8 360.0 150 3940 13.0 79 1
## 294 31.9 4 89.0 71 1925 14.0 79 2
## 295 34.1 4 86.0 65 1975 15.2 79 3
## 296 35.7 4 98.0 80 1915 14.4 79 1
## 297 27.4 4 121.0 80 2670 15.0 79 1
## 298 25.4 5 183.0 77 3530 20.1 79 2
## 299 23.0 8 350.0 125 3900 17.4 79 1
## 300 27.2 4 141.0 71 3190 24.8 79 2
## 301 23.9 8 260.0 90 3420 22.2 79 1
## 302 34.2 4 105.0 70 2200 13.2 79 1
## 303 34.5 4 105.0 70 2150 14.9 79 1
## 304 31.8 4 85.0 65 2020 19.2 79 3
## 305 37.3 4 91.0 69 2130 14.7 79 2
## 306 28.4 4 151.0 90 2670 16.0 79 1
## 307 28.8 6 173.0 115 2595 11.3 79 1
## 308 26.8 6 173.0 115 2700 12.9 79 1
## 309 33.5 4 151.0 90 2556 13.2 79 1
## 310 41.5 4 98.0 76 2144 14.7 80 2
## 311 38.1 4 89.0 60 1968 18.8 80 3
## 312 32.1 4 98.0 70 2120 15.5 80 1
## 313 37.2 4 86.0 65 2019 16.4 80 3
## 314 28.0 4 151.0 90 2678 16.5 80 1
## 315 26.4 4 140.0 88 2870 18.1 80 1
## 316 24.3 4 151.0 90 3003 20.1 80 1
## 317 19.1 6 225.0 90 3381 18.7 80 1
## 318 34.3 4 97.0 78 2188 15.8 80 2
## 319 29.8 4 134.0 90 2711 15.5 80 3
## 320 31.3 4 120.0 75 2542 17.5 80 3
## 321 37.0 4 119.0 92 2434 15.0 80 3
## 322 32.2 4 108.0 75 2265 15.2 80 3
## 323 46.6 4 86.0 65 2110 17.9 80 3
## 324 27.9 4 156.0 105 2800 14.4 80 1
## 325 40.8 4 85.0 65 2110 19.2 80 3
## 326 44.3 4 90.0 48 2085 21.7 80 2
## 327 43.4 4 90.0 48 2335 23.7 80 2
## 328 36.4 5 121.0 67 2950 19.9 80 2
## 329 30.0 4 146.0 67 3250 21.8 80 2
## 330 44.6 4 91.0 67 1850 13.8 80 3
## 332 33.8 4 97.0 67 2145 18.0 80 3
## 333 29.8 4 89.0 62 1845 15.3 80 2
## 334 32.7 6 168.0 132 2910 11.4 80 3
## 335 23.7 3 70.0 100 2420 12.5 80 3
## 336 35.0 4 122.0 88 2500 15.1 80 2
## 338 32.4 4 107.0 72 2290 17.0 80 3
## 339 27.2 4 135.0 84 2490 15.7 81 1
## 340 26.6 4 151.0 84 2635 16.4 81 1
## 341 25.8 4 156.0 92 2620 14.4 81 1
## 342 23.5 6 173.0 110 2725 12.6 81 1
## 343 30.0 4 135.0 84 2385 12.9 81 1
## 344 39.1 4 79.0 58 1755 16.9 81 3
## 345 39.0 4 86.0 64 1875 16.4 81 1
## 346 35.1 4 81.0 60 1760 16.1 81 3
## 347 32.3 4 97.0 67 2065 17.8 81 3
## 348 37.0 4 85.0 65 1975 19.4 81 3
## 349 37.7 4 89.0 62 2050 17.3 81 3
## 350 34.1 4 91.0 68 1985 16.0 81 3
## 351 34.7 4 105.0 63 2215 14.9 81 1
## 352 34.4 4 98.0 65 2045 16.2 81 1
## 353 29.9 4 98.0 65 2380 20.7 81 1
## 354 33.0 4 105.0 74 2190 14.2 81 2
## 356 33.7 4 107.0 75 2210 14.4 81 3
## 357 32.4 4 108.0 75 2350 16.8 81 3
## 358 32.9 4 119.0 100 2615 14.8 81 3
## 359 31.6 4 120.0 74 2635 18.3 81 3
## 360 28.1 4 141.0 80 3230 20.4 81 2
## 361 30.7 6 145.0 76 3160 19.6 81 2
## 362 25.4 6 168.0 116 2900 12.6 81 3
## 363 24.2 6 146.0 120 2930 13.8 81 3
## 364 22.4 6 231.0 110 3415 15.8 81 1
## 365 26.6 8 350.0 105 3725 19.0 81 1
## 366 20.2 6 200.0 88 3060 17.1 81 1
## 367 17.6 6 225.0 85 3465 16.6 81 1
## 368 28.0 4 112.0 88 2605 19.6 82 1
## 369 27.0 4 112.0 88 2640 18.6 82 1
## 370 34.0 4 112.0 88 2395 18.0 82 1
## 371 31.0 4 112.0 85 2575 16.2 82 1
## 372 29.0 4 135.0 84 2525 16.0 82 1
## 373 27.0 4 151.0 90 2735 18.0 82 1
## 374 24.0 4 140.0 92 2865 16.4 82 1
## 375 36.0 4 105.0 74 1980 15.3 82 2
## 376 37.0 4 91.0 68 2025 18.2 82 3
## 377 31.0 4 91.0 68 1970 17.6 82 3
## 378 38.0 4 105.0 63 2125 14.7 82 1
## 379 36.0 4 98.0 70 2125 17.3 82 1
## 380 36.0 4 120.0 88 2160 14.5 82 3
## 381 36.0 4 107.0 75 2205 14.5 82 3
## 382 34.0 4 108.0 70 2245 16.9 82 3
## 383 38.0 4 91.0 67 1965 15.0 82 3
## 384 32.0 4 91.0 67 1965 15.7 82 3
## 385 38.0 4 91.0 67 1995 16.2 82 3
## 386 25.0 6 181.0 110 2945 16.4 82 1
## 387 38.0 6 262.0 85 3015 17.0 82 1
## 388 26.0 4 156.0 92 2585 14.5 82 1
## 389 22.0 6 232.0 112 2835 14.7 82 1
## 390 32.0 4 144.0 96 2665 13.9 82 3
## 391 36.0 4 135.0 84 2370 13.0 82 1
## 392 27.0 4 151.0 90 2950 17.3 82 1
## 393 27.0 4 140.0 86 2790 15.6 82 1
## 394 44.0 4 97.0 52 2130 24.6 82 2
## 395 32.0 4 135.0 84 2295 11.6 82 1
## 396 28.0 4 120.0 79 2625 18.6 82 1
## 397 31.0 4 119.0 82 2720 19.4 82 1
## name
## 1 chevrolet chevelle malibu
## 2 buick skylark 320
## 3 plymouth satellite
## 4 amc rebel sst
## 5 ford torino
## 6 ford galaxie 500
## 7 chevrolet impala
## 8 plymouth fury iii
## 9 pontiac catalina
## 10 amc ambassador dpl
## 11 dodge challenger se
## 12 plymouth 'cuda 340
## 13 chevrolet monte carlo
## 14 buick estate wagon (sw)
## 15 toyota corona mark ii
## 16 plymouth duster
## 17 amc hornet
## 18 ford maverick
## 19 datsun pl510
## 20 volkswagen 1131 deluxe sedan
## 21 peugeot 504
## 22 audi 100 ls
## 23 saab 99e
## 24 bmw 2002
## 25 amc gremlin
## 26 ford f250
## 27 chevy c20
## 28 dodge d200
## 29 hi 1200d
## 30 datsun pl510
## 31 chevrolet vega 2300
## 32 toyota corona
## 34 amc gremlin
## 35 plymouth satellite custom
## 36 chevrolet chevelle malibu
## 37 ford torino 500
## 38 amc matador
## 39 chevrolet impala
## 40 pontiac catalina brougham
## 41 ford galaxie 500
## 42 plymouth fury iii
## 43 dodge monaco (sw)
## 44 ford country squire (sw)
## 45 pontiac safari (sw)
## 46 amc hornet sportabout (sw)
## 47 chevrolet vega (sw)
## 48 pontiac firebird
## 49 ford mustang
## 50 mercury capri 2000
## 51 opel 1900
## 52 peugeot 304
## 53 fiat 124b
## 54 toyota corolla 1200
## 55 datsun 1200
## 56 volkswagen model 111
## 57 plymouth cricket
## 58 toyota corona hardtop
## 59 dodge colt hardtop
## 60 volkswagen type 3
## 61 chevrolet vega
## 62 ford pinto runabout
## 63 chevrolet impala
## 64 pontiac catalina
## 65 plymouth fury iii
## 66 ford galaxie 500
## 67 amc ambassador sst
## 68 mercury marquis
## 69 buick lesabre custom
## 70 oldsmobile delta 88 royale
## 71 chrysler newport royal
## 72 mazda rx2 coupe
## 73 amc matador (sw)
## 74 chevrolet chevelle concours (sw)
## 75 ford gran torino (sw)
## 76 plymouth satellite custom (sw)
## 77 volvo 145e (sw)
## 78 volkswagen 411 (sw)
## 79 peugeot 504 (sw)
## 80 renault 12 (sw)
## 81 ford pinto (sw)
## 82 datsun 510 (sw)
## 83 toyouta corona mark ii (sw)
## 84 dodge colt (sw)
## 85 toyota corolla 1600 (sw)
## 86 buick century 350
## 87 amc matador
## 88 chevrolet malibu
## 89 ford gran torino
## 90 dodge coronet custom
## 91 mercury marquis brougham
## 92 chevrolet caprice classic
## 93 ford ltd
## 94 plymouth fury gran sedan
## 95 chrysler new yorker brougham
## 96 buick electra 225 custom
## 97 amc ambassador brougham
## 98 plymouth valiant
## 99 chevrolet nova custom
## 100 amc hornet
## 101 ford maverick
## 102 plymouth duster
## 103 volkswagen super beetle
## 104 chevrolet impala
## 105 ford country
## 106 plymouth custom suburb
## 107 oldsmobile vista cruiser
## 108 amc gremlin
## 109 toyota carina
## 110 chevrolet vega
## 111 datsun 610
## 112 maxda rx3
## 113 ford pinto
## 114 mercury capri v6
## 115 fiat 124 sport coupe
## 116 chevrolet monte carlo s
## 117 pontiac grand prix
## 118 fiat 128
## 119 opel manta
## 120 audi 100ls
## 121 volvo 144ea
## 122 dodge dart custom
## 123 saab 99le
## 124 toyota mark ii
## 125 oldsmobile omega
## 126 plymouth duster
## 128 amc hornet
## 129 chevrolet nova
## 130 datsun b210
## 131 ford pinto
## 132 toyota corolla 1200
## 133 chevrolet vega
## 134 chevrolet chevelle malibu classic
## 135 amc matador
## 136 plymouth satellite sebring
## 137 ford gran torino
## 138 buick century luxus (sw)
## 139 dodge coronet custom (sw)
## 140 ford gran torino (sw)
## 141 amc matador (sw)
## 142 audi fox
## 143 volkswagen dasher
## 144 opel manta
## 145 toyota corona
## 146 datsun 710
## 147 dodge colt
## 148 fiat 128
## 149 fiat 124 tc
## 150 honda civic
## 151 subaru
## 152 fiat x1.9
## 153 plymouth valiant custom
## 154 chevrolet nova
## 155 mercury monarch
## 156 ford maverick
## 157 pontiac catalina
## 158 chevrolet bel air
## 159 plymouth grand fury
## 160 ford ltd
## 161 buick century
## 162 chevroelt chevelle malibu
## 163 amc matador
## 164 plymouth fury
## 165 buick skyhawk
## 166 chevrolet monza 2+2
## 167 ford mustang ii
## 168 toyota corolla
## 169 ford pinto
## 170 amc gremlin
## 171 pontiac astro
## 172 toyota corona
## 173 volkswagen dasher
## 174 datsun 710
## 175 ford pinto
## 176 volkswagen rabbit
## 177 amc pacer
## 178 audi 100ls
## 179 peugeot 504
## 180 volvo 244dl
## 181 saab 99le
## 182 honda civic cvcc
## 183 fiat 131
## 184 opel 1900
## 185 capri ii
## 186 dodge colt
## 187 renault 12tl
## 188 chevrolet chevelle malibu classic
## 189 dodge coronet brougham
## 190 amc matador
## 191 ford gran torino
## 192 plymouth valiant
## 193 chevrolet nova
## 194 ford maverick
## 195 amc hornet
## 196 chevrolet chevette
## 197 chevrolet woody
## 198 vw rabbit
## 199 honda civic
## 200 dodge aspen se
## 201 ford granada ghia
## 202 pontiac ventura sj
## 203 amc pacer d/l
## 204 volkswagen rabbit
## 205 datsun b-210
## 206 toyota corolla
## 207 ford pinto
## 208 volvo 245
## 209 plymouth volare premier v8
## 210 peugeot 504
## 211 toyota mark ii
## 212 mercedes-benz 280s
## 213 cadillac seville
## 214 chevy c10
## 215 ford f108
## 216 dodge d100
## 217 honda accord cvcc
## 218 buick opel isuzu deluxe
## 219 renault 5 gtl
## 220 plymouth arrow gs
## 221 datsun f-10 hatchback
## 222 chevrolet caprice classic
## 223 oldsmobile cutlass supreme
## 224 dodge monaco brougham
## 225 mercury cougar brougham
## 226 chevrolet concours
## 227 buick skylark
## 228 plymouth volare custom
## 229 ford granada
## 230 pontiac grand prix lj
## 231 chevrolet monte carlo landau
## 232 chrysler cordoba
## 233 ford thunderbird
## 234 volkswagen rabbit custom
## 235 pontiac sunbird coupe
## 236 toyota corolla liftback
## 237 ford mustang ii 2+2
## 238 chevrolet chevette
## 239 dodge colt m/m
## 240 subaru dl
## 241 volkswagen dasher
## 242 datsun 810
## 243 bmw 320i
## 244 mazda rx-4
## 245 volkswagen rabbit custom diesel
## 246 ford fiesta
## 247 mazda glc deluxe
## 248 datsun b210 gx
## 249 honda civic cvcc
## 250 oldsmobile cutlass salon brougham
## 251 dodge diplomat
## 252 mercury monarch ghia
## 253 pontiac phoenix lj
## 254 chevrolet malibu
## 255 ford fairmont (auto)
## 256 ford fairmont (man)
## 257 plymouth volare
## 258 amc concord
## 259 buick century special
## 260 mercury zephyr
## 261 dodge aspen
## 262 amc concord d/l
## 263 chevrolet monte carlo landau
## 264 buick regal sport coupe (turbo)
## 265 ford futura
## 266 dodge magnum xe
## 267 chevrolet chevette
## 268 toyota corona
## 269 datsun 510
## 270 dodge omni
## 271 toyota celica gt liftback
## 272 plymouth sapporo
## 273 oldsmobile starfire sx
## 274 datsun 200-sx
## 275 audi 5000
## 276 volvo 264gl
## 277 saab 99gle
## 278 peugeot 604sl
## 279 volkswagen scirocco
## 280 honda accord lx
## 281 pontiac lemans v6
## 282 mercury zephyr 6
## 283 ford fairmont 4
## 284 amc concord dl 6
## 285 dodge aspen 6
## 286 chevrolet caprice classic
## 287 ford ltd landau
## 288 mercury grand marquis
## 289 dodge st. regis
## 290 buick estate wagon (sw)
## 291 ford country squire (sw)
## 292 chevrolet malibu classic (sw)
## 293 chrysler lebaron town @ country (sw)
## 294 vw rabbit custom
## 295 maxda glc deluxe
## 296 dodge colt hatchback custom
## 297 amc spirit dl
## 298 mercedes benz 300d
## 299 cadillac eldorado
## 300 peugeot 504
## 301 oldsmobile cutlass salon brougham
## 302 plymouth horizon
## 303 plymouth horizon tc3
## 304 datsun 210
## 305 fiat strada custom
## 306 buick skylark limited
## 307 chevrolet citation
## 308 oldsmobile omega brougham
## 309 pontiac phoenix
## 310 vw rabbit
## 311 toyota corolla tercel
## 312 chevrolet chevette
## 313 datsun 310
## 314 chevrolet citation
## 315 ford fairmont
## 316 amc concord
## 317 dodge aspen
## 318 audi 4000
## 319 toyota corona liftback
## 320 mazda 626
## 321 datsun 510 hatchback
## 322 toyota corolla
## 323 mazda glc
## 324 dodge colt
## 325 datsun 210
## 326 vw rabbit c (diesel)
## 327 vw dasher (diesel)
## 328 audi 5000s (diesel)
## 329 mercedes-benz 240d
## 330 honda civic 1500 gl
## 332 subaru dl
## 333 vokswagen rabbit
## 334 datsun 280-zx
## 335 mazda rx-7 gs
## 336 triumph tr7 coupe
## 338 honda accord
## 339 plymouth reliant
## 340 buick skylark
## 341 dodge aries wagon (sw)
## 342 chevrolet citation
## 343 plymouth reliant
## 344 toyota starlet
## 345 plymouth champ
## 346 honda civic 1300
## 347 subaru
## 348 datsun 210 mpg
## 349 toyota tercel
## 350 mazda glc 4
## 351 plymouth horizon 4
## 352 ford escort 4w
## 353 ford escort 2h
## 354 volkswagen jetta
## 356 honda prelude
## 357 toyota corolla
## 358 datsun 200sx
## 359 mazda 626
## 360 peugeot 505s turbo diesel
## 361 volvo diesel
## 362 toyota cressida
## 363 datsun 810 maxima
## 364 buick century
## 365 oldsmobile cutlass ls
## 366 ford granada gl
## 367 chrysler lebaron salon
## 368 chevrolet cavalier
## 369 chevrolet cavalier wagon
## 370 chevrolet cavalier 2-door
## 371 pontiac j2000 se hatchback
## 372 dodge aries se
## 373 pontiac phoenix
## 374 ford fairmont futura
## 375 volkswagen rabbit l
## 376 mazda glc custom l
## 377 mazda glc custom
## 378 plymouth horizon miser
## 379 mercury lynx l
## 380 nissan stanza xe
## 381 honda accord
## 382 toyota corolla
## 383 honda civic
## 384 honda civic (auto)
## 385 datsun 310 gx
## 386 buick century limited
## 387 oldsmobile cutlass ciera (diesel)
## 388 chrysler lebaron medallion
## 389 ford granada l
## 390 toyota celica gt
## 391 dodge charger 2.2
## 392 chevrolet camaro
## 393 ford mustang gl
## 394 vw pickup
## 395 dodge rampage
## 396 ford ranger
## 397 chevy s-10
It looks like there are 9 variables out of which 8 of them are quantitative and 1 is qualitative. Quantitative variables are mpg, cylinders, displacement, horsepower, weight, acceleration, year, and origin. Qualitative variable is name.
str(Auto)
## 'data.frame': 392 obs. of 9 variables:
## $ mpg : num 18 15 18 16 17 15 14 14 14 15 ...
## $ cylinders : num 8 8 8 8 8 8 8 8 8 8 ...
## $ displacement: num 307 350 318 304 302 429 454 440 455 390 ...
## $ horsepower : num 130 165 150 150 140 198 220 215 225 190 ...
## $ weight : num 3504 3693 3436 3433 3449 ...
## $ acceleration: num 12 11.5 11 12 10.5 10 9 8.5 10 8.5 ...
## $ year : num 70 70 70 70 70 70 70 70 70 70 ...
## $ origin : num 1 1 1 1 1 1 1 1 1 1 ...
## $ name : Factor w/ 304 levels "amc ambassador brougham",..: 49 36 231 14 161 141 54 223 241 2 ...
Below are the range of each quantitative predictors.
range(Auto$mpg)
## [1] 9.0 46.6
range(Auto$cylinders)
## [1] 3 8
range(Auto$displacement)
## [1] 68 455
range(Auto$horsepower)
## [1] 46 230
range(Auto$weight)
## [1] 1613 5140
range(Auto$acceleration)
## [1] 8.0 24.8
range(Auto$year)
## [1] 70 82
range(Auto$origin)
## [1] 1 3
Below are given the mean and standard deviation of each quantitative predictors.
mean(Auto$mpg)
## [1] 23.44592
sd(Auto$mpg)
## [1] 7.805007
mean(Auto$cylinders)
## [1] 5.471939
sd(Auto$cylinders)
## [1] 1.705783
mean(Auto$displacement)
## [1] 194.412
sd(Auto$displacement)
## [1] 104.644
mean(Auto$horsepower)
## [1] 104.4694
sd(Auto$horsepower)
## [1] 38.49116
mean(Auto$weight)
## [1] 2977.584
sd(Auto$weight)
## [1] 849.4026
mean(Auto$acceleration)
## [1] 15.54133
sd(Auto$acceleration)
## [1] 2.758864
mean(Auto$year)
## [1] 75.97959
sd(Auto$year)
## [1] 3.683737
mean(Auto$origin)
## [1] 1.576531
sd(Auto$origin)
## [1] 0.8055182
Below are given the mean, standard deviation and range of each quantitative predictors after excluding 10th to 85th observations.
# Excluding 10th to 85th observations:
library(dplyr)
new_Auto <- Auto |>
slice(-c(10:84))
mean(new_Auto$mpg)
## [1] 24.36845
sd(new_Auto$mpg)
## [1] 7.880898
range(new_Auto$mpg)
## [1] 11.0 46.6
mean(new_Auto$cylinders)
## [1] 5.381703
sd(new_Auto$cylinders)
## [1] 1.658135
range(new_Auto$cylinders)
## [1] 3 8
mean(new_Auto$displacement)
## [1] 187.7539
sd(new_Auto$displacement)
## [1] 99.93949
range(new_Auto$displacement)
## [1] 68 455
mean(new_Auto$horsepower)
## [1] 100.9558
sd(new_Auto$horsepower)
## [1] 35.89557
range(new_Auto$horsepower)
## [1] 46 230
mean(new_Auto$weight)
## [1] 2939.644
sd(new_Auto$weight)
## [1] 812.6496
range(new_Auto$weight)
## [1] 1649 4997
mean(new_Auto$acceleration)
## [1] 15.7183
sd(new_Auto$acceleration)
## [1] 2.693813
range(new_Auto$acceleration)
## [1] 8.5 24.8
mean(new_Auto$year)
## [1] 77.13249
sd(new_Auto$year)
## [1] 3.110026
range(new_Auto$year)
## [1] 70 82
mean(new_Auto$origin)
## [1] 1.599369
sd(new_Auto$origin)
## [1] 0.8193079
range(new_Auto$origin)
## [1] 1 3
Below are some examples of visualization created among mpg and various other predictors to determine how other variables affect the mileage of different cars.
ggplot(Auto, aes(x=horsepower,
y=mpg))+
geom_point(color = 'blue')+
geom_smooth(method = "lm", se = FALSE, color = "red")
## `geom_smooth()` using formula = 'y ~ x'
labs(x="Horsepower",
y="mpg",
title="Miles per gallon (mpg) vs. Horsepower")+
theme_minimal()
## NULL
The horsepower has negative correlation with mpg. The red line of fit shows a declining trend in the scatter plot. However, the distribution of the data in the plot is not well distributed ( a slight declining curve) which may suggest some different parameters to fit the data in the plot above.
Auto |>
ggplot(aes(x = factor(year), y = mpg)) +
geom_boxplot(fill = "lightgreen", color = "black") +
labs(title = "Miles per gallon (mpg) vs Year",
x = "Year", y = "mpg") +
theme_minimal()
The above box plot show the positive correlation between mpg and model year of cars. These box plot here is good another great way to visualize each year’s car to their mileage capacity.
ggplot(Auto, aes(x=horsepower,
y=mpg))+
geom_point(color = 'blue')+
geom_smooth(method = "lm", se = FALSE, color = "red")
## `geom_smooth()` using formula = 'y ~ x'
labs(x="Horsepower",
y="mpg",
title="Miles per gallon (mpg) vs. Horsepower")+
theme_minimal()
## NULL
ggplot(Auto, aes(x=weight,
y=mpg))+
geom_point(color = 'blue')+
geom_smooth(method = "lm", se = FALSE, color = "red")
## `geom_smooth()` using formula = 'y ~ x'
labs(x="Weight",
y="mpg",
title="Miles per gallon (mpg) vs. Weight")+
theme_minimal()
## NULL
ggplot(Auto, aes(x=displacement,
y=mpg))+
geom_point(color = 'blue')+
geom_smooth(method = "lm", se = FALSE, color = "red")
## `geom_smooth()` using formula = 'y ~ x'
labs(x="Horsepower",
y="mpg",
title="Miles per gallon (mpg) vs. Horsepower")+
theme_minimal()
## NULL
ggplot(Auto, aes(x=acceleration,
y=mpg))+
geom_point(color = 'blue')+
geom_smooth(method = "lm", se = FALSE, color = "red")
## `geom_smooth()` using formula = 'y ~ x'
labs(x="Horsepower",
y="mpg",
title="Miles per gallon (mpg) vs. Horsepower")+
theme_minimal()
## NULL
From the above four scatter plots, we can clearly see that second plot is showing a better distribution of data as well as the trend/relationship between weight of the car and their mileages. The first plot is also a promising plot, however the trend between horsepower and mpg is slightly curvy in nature, which suggest the use of better parameters to fit the data in the plot. The third plot has a clustering of data around each displacement showing a poor distribution of data. And the last plot is basically a good distributed data but mostly in the center, therefore, it can also misguide the insights/conclusions.
install.packages("ISLR2")
##
## The downloaded binary packages are in
## /var/folders/f0/_tzkn76d17q62jmq3q6qztsw0000gn/T//RtmpDQSVCi/downloaded_packages
library(ISLR2)
##
## Attaching package: 'ISLR2'
## The following objects are masked from 'package:ISLR':
##
## Auto, Credit
help(package="ISLR2")
Boston
## crim zn indus chas nox rm age dis rad tax ptratio lstat
## 1 0.00632 18.0 2.31 0 0.5380 6.575 65.2 4.0900 1 296 15.3 4.98
## 2 0.02731 0.0 7.07 0 0.4690 6.421 78.9 4.9671 2 242 17.8 9.14
## 3 0.02729 0.0 7.07 0 0.4690 7.185 61.1 4.9671 2 242 17.8 4.03
## 4 0.03237 0.0 2.18 0 0.4580 6.998 45.8 6.0622 3 222 18.7 2.94
## 5 0.06905 0.0 2.18 0 0.4580 7.147 54.2 6.0622 3 222 18.7 5.33
## 6 0.02985 0.0 2.18 0 0.4580 6.430 58.7 6.0622 3 222 18.7 5.21
## 7 0.08829 12.5 7.87 0 0.5240 6.012 66.6 5.5605 5 311 15.2 12.43
## 8 0.14455 12.5 7.87 0 0.5240 6.172 96.1 5.9505 5 311 15.2 19.15
## 9 0.21124 12.5 7.87 0 0.5240 5.631 100.0 6.0821 5 311 15.2 29.93
## 10 0.17004 12.5 7.87 0 0.5240 6.004 85.9 6.5921 5 311 15.2 17.10
## 11 0.22489 12.5 7.87 0 0.5240 6.377 94.3 6.3467 5 311 15.2 20.45
## 12 0.11747 12.5 7.87 0 0.5240 6.009 82.9 6.2267 5 311 15.2 13.27
## 13 0.09378 12.5 7.87 0 0.5240 5.889 39.0 5.4509 5 311 15.2 15.71
## 14 0.62976 0.0 8.14 0 0.5380 5.949 61.8 4.7075 4 307 21.0 8.26
## 15 0.63796 0.0 8.14 0 0.5380 6.096 84.5 4.4619 4 307 21.0 10.26
## 16 0.62739 0.0 8.14 0 0.5380 5.834 56.5 4.4986 4 307 21.0 8.47
## 17 1.05393 0.0 8.14 0 0.5380 5.935 29.3 4.4986 4 307 21.0 6.58
## 18 0.78420 0.0 8.14 0 0.5380 5.990 81.7 4.2579 4 307 21.0 14.67
## 19 0.80271 0.0 8.14 0 0.5380 5.456 36.6 3.7965 4 307 21.0 11.69
## 20 0.72580 0.0 8.14 0 0.5380 5.727 69.5 3.7965 4 307 21.0 11.28
## 21 1.25179 0.0 8.14 0 0.5380 5.570 98.1 3.7979 4 307 21.0 21.02
## 22 0.85204 0.0 8.14 0 0.5380 5.965 89.2 4.0123 4 307 21.0 13.83
## 23 1.23247 0.0 8.14 0 0.5380 6.142 91.7 3.9769 4 307 21.0 18.72
## 24 0.98843 0.0 8.14 0 0.5380 5.813 100.0 4.0952 4 307 21.0 19.88
## 25 0.75026 0.0 8.14 0 0.5380 5.924 94.1 4.3996 4 307 21.0 16.30
## 26 0.84054 0.0 8.14 0 0.5380 5.599 85.7 4.4546 4 307 21.0 16.51
## 27 0.67191 0.0 8.14 0 0.5380 5.813 90.3 4.6820 4 307 21.0 14.81
## 28 0.95577 0.0 8.14 0 0.5380 6.047 88.8 4.4534 4 307 21.0 17.28
## 29 0.77299 0.0 8.14 0 0.5380 6.495 94.4 4.4547 4 307 21.0 12.80
## 30 1.00245 0.0 8.14 0 0.5380 6.674 87.3 4.2390 4 307 21.0 11.98
## 31 1.13081 0.0 8.14 0 0.5380 5.713 94.1 4.2330 4 307 21.0 22.60
## 32 1.35472 0.0 8.14 0 0.5380 6.072 100.0 4.1750 4 307 21.0 13.04
## 33 1.38799 0.0 8.14 0 0.5380 5.950 82.0 3.9900 4 307 21.0 27.71
## 34 1.15172 0.0 8.14 0 0.5380 5.701 95.0 3.7872 4 307 21.0 18.35
## 35 1.61282 0.0 8.14 0 0.5380 6.096 96.9 3.7598 4 307 21.0 20.34
## 36 0.06417 0.0 5.96 0 0.4990 5.933 68.2 3.3603 5 279 19.2 9.68
## 37 0.09744 0.0 5.96 0 0.4990 5.841 61.4 3.3779 5 279 19.2 11.41
## 38 0.08014 0.0 5.96 0 0.4990 5.850 41.5 3.9342 5 279 19.2 8.77
## 39 0.17505 0.0 5.96 0 0.4990 5.966 30.2 3.8473 5 279 19.2 10.13
## 40 0.02763 75.0 2.95 0 0.4280 6.595 21.8 5.4011 3 252 18.3 4.32
## 41 0.03359 75.0 2.95 0 0.4280 7.024 15.8 5.4011 3 252 18.3 1.98
## 42 0.12744 0.0 6.91 0 0.4480 6.770 2.9 5.7209 3 233 17.9 4.84
## 43 0.14150 0.0 6.91 0 0.4480 6.169 6.6 5.7209 3 233 17.9 5.81
## 44 0.15936 0.0 6.91 0 0.4480 6.211 6.5 5.7209 3 233 17.9 7.44
## 45 0.12269 0.0 6.91 0 0.4480 6.069 40.0 5.7209 3 233 17.9 9.55
## 46 0.17142 0.0 6.91 0 0.4480 5.682 33.8 5.1004 3 233 17.9 10.21
## 47 0.18836 0.0 6.91 0 0.4480 5.786 33.3 5.1004 3 233 17.9 14.15
## 48 0.22927 0.0 6.91 0 0.4480 6.030 85.5 5.6894 3 233 17.9 18.80
## 49 0.25387 0.0 6.91 0 0.4480 5.399 95.3 5.8700 3 233 17.9 30.81
## 50 0.21977 0.0 6.91 0 0.4480 5.602 62.0 6.0877 3 233 17.9 16.20
## 51 0.08873 21.0 5.64 0 0.4390 5.963 45.7 6.8147 4 243 16.8 13.45
## 52 0.04337 21.0 5.64 0 0.4390 6.115 63.0 6.8147 4 243 16.8 9.43
## 53 0.05360 21.0 5.64 0 0.4390 6.511 21.1 6.8147 4 243 16.8 5.28
## 54 0.04981 21.0 5.64 0 0.4390 5.998 21.4 6.8147 4 243 16.8 8.43
## 55 0.01360 75.0 4.00 0 0.4100 5.888 47.6 7.3197 3 469 21.1 14.80
## 56 0.01311 90.0 1.22 0 0.4030 7.249 21.9 8.6966 5 226 17.9 4.81
## 57 0.02055 85.0 0.74 0 0.4100 6.383 35.7 9.1876 2 313 17.3 5.77
## 58 0.01432 100.0 1.32 0 0.4110 6.816 40.5 8.3248 5 256 15.1 3.95
## 59 0.15445 25.0 5.13 0 0.4530 6.145 29.2 7.8148 8 284 19.7 6.86
## 60 0.10328 25.0 5.13 0 0.4530 5.927 47.2 6.9320 8 284 19.7 9.22
## 61 0.14932 25.0 5.13 0 0.4530 5.741 66.2 7.2254 8 284 19.7 13.15
## 62 0.17171 25.0 5.13 0 0.4530 5.966 93.4 6.8185 8 284 19.7 14.44
## 63 0.11027 25.0 5.13 0 0.4530 6.456 67.8 7.2255 8 284 19.7 6.73
## 64 0.12650 25.0 5.13 0 0.4530 6.762 43.4 7.9809 8 284 19.7 9.50
## 65 0.01951 17.5 1.38 0 0.4161 7.104 59.5 9.2229 3 216 18.6 8.05
## 66 0.03584 80.0 3.37 0 0.3980 6.290 17.8 6.6115 4 337 16.1 4.67
## 67 0.04379 80.0 3.37 0 0.3980 5.787 31.1 6.6115 4 337 16.1 10.24
## 68 0.05789 12.5 6.07 0 0.4090 5.878 21.4 6.4980 4 345 18.9 8.10
## 69 0.13554 12.5 6.07 0 0.4090 5.594 36.8 6.4980 4 345 18.9 13.09
## 70 0.12816 12.5 6.07 0 0.4090 5.885 33.0 6.4980 4 345 18.9 8.79
## 71 0.08826 0.0 10.81 0 0.4130 6.417 6.6 5.2873 4 305 19.2 6.72
## 72 0.15876 0.0 10.81 0 0.4130 5.961 17.5 5.2873 4 305 19.2 9.88
## 73 0.09164 0.0 10.81 0 0.4130 6.065 7.8 5.2873 4 305 19.2 5.52
## 74 0.19539 0.0 10.81 0 0.4130 6.245 6.2 5.2873 4 305 19.2 7.54
## 75 0.07896 0.0 12.83 0 0.4370 6.273 6.0 4.2515 5 398 18.7 6.78
## 76 0.09512 0.0 12.83 0 0.4370 6.286 45.0 4.5026 5 398 18.7 8.94
## 77 0.10153 0.0 12.83 0 0.4370 6.279 74.5 4.0522 5 398 18.7 11.97
## 78 0.08707 0.0 12.83 0 0.4370 6.140 45.8 4.0905 5 398 18.7 10.27
## 79 0.05646 0.0 12.83 0 0.4370 6.232 53.7 5.0141 5 398 18.7 12.34
## 80 0.08387 0.0 12.83 0 0.4370 5.874 36.6 4.5026 5 398 18.7 9.10
## 81 0.04113 25.0 4.86 0 0.4260 6.727 33.5 5.4007 4 281 19.0 5.29
## 82 0.04462 25.0 4.86 0 0.4260 6.619 70.4 5.4007 4 281 19.0 7.22
## 83 0.03659 25.0 4.86 0 0.4260 6.302 32.2 5.4007 4 281 19.0 6.72
## 84 0.03551 25.0 4.86 0 0.4260 6.167 46.7 5.4007 4 281 19.0 7.51
## 85 0.05059 0.0 4.49 0 0.4490 6.389 48.0 4.7794 3 247 18.5 9.62
## 86 0.05735 0.0 4.49 0 0.4490 6.630 56.1 4.4377 3 247 18.5 6.53
## 87 0.05188 0.0 4.49 0 0.4490 6.015 45.1 4.4272 3 247 18.5 12.86
## 88 0.07151 0.0 4.49 0 0.4490 6.121 56.8 3.7476 3 247 18.5 8.44
## 89 0.05660 0.0 3.41 0 0.4890 7.007 86.3 3.4217 2 270 17.8 5.50
## 90 0.05302 0.0 3.41 0 0.4890 7.079 63.1 3.4145 2 270 17.8 5.70
## 91 0.04684 0.0 3.41 0 0.4890 6.417 66.1 3.0923 2 270 17.8 8.81
## 92 0.03932 0.0 3.41 0 0.4890 6.405 73.9 3.0921 2 270 17.8 8.20
## 93 0.04203 28.0 15.04 0 0.4640 6.442 53.6 3.6659 4 270 18.2 8.16
## 94 0.02875 28.0 15.04 0 0.4640 6.211 28.9 3.6659 4 270 18.2 6.21
## 95 0.04294 28.0 15.04 0 0.4640 6.249 77.3 3.6150 4 270 18.2 10.59
## 96 0.12204 0.0 2.89 0 0.4450 6.625 57.8 3.4952 2 276 18.0 6.65
## 97 0.11504 0.0 2.89 0 0.4450 6.163 69.6 3.4952 2 276 18.0 11.34
## 98 0.12083 0.0 2.89 0 0.4450 8.069 76.0 3.4952 2 276 18.0 4.21
## 99 0.08187 0.0 2.89 0 0.4450 7.820 36.9 3.4952 2 276 18.0 3.57
## 100 0.06860 0.0 2.89 0 0.4450 7.416 62.5 3.4952 2 276 18.0 6.19
## 101 0.14866 0.0 8.56 0 0.5200 6.727 79.9 2.7778 5 384 20.9 9.42
## 102 0.11432 0.0 8.56 0 0.5200 6.781 71.3 2.8561 5 384 20.9 7.67
## 103 0.22876 0.0 8.56 0 0.5200 6.405 85.4 2.7147 5 384 20.9 10.63
## 104 0.21161 0.0 8.56 0 0.5200 6.137 87.4 2.7147 5 384 20.9 13.44
## 105 0.13960 0.0 8.56 0 0.5200 6.167 90.0 2.4210 5 384 20.9 12.33
## 106 0.13262 0.0 8.56 0 0.5200 5.851 96.7 2.1069 5 384 20.9 16.47
## 107 0.17120 0.0 8.56 0 0.5200 5.836 91.9 2.2110 5 384 20.9 18.66
## 108 0.13117 0.0 8.56 0 0.5200 6.127 85.2 2.1224 5 384 20.9 14.09
## 109 0.12802 0.0 8.56 0 0.5200 6.474 97.1 2.4329 5 384 20.9 12.27
## 110 0.26363 0.0 8.56 0 0.5200 6.229 91.2 2.5451 5 384 20.9 15.55
## 111 0.10793 0.0 8.56 0 0.5200 6.195 54.4 2.7778 5 384 20.9 13.00
## 112 0.10084 0.0 10.01 0 0.5470 6.715 81.6 2.6775 6 432 17.8 10.16
## 113 0.12329 0.0 10.01 0 0.5470 5.913 92.9 2.3534 6 432 17.8 16.21
## 114 0.22212 0.0 10.01 0 0.5470 6.092 95.4 2.5480 6 432 17.8 17.09
## 115 0.14231 0.0 10.01 0 0.5470 6.254 84.2 2.2565 6 432 17.8 10.45
## 116 0.17134 0.0 10.01 0 0.5470 5.928 88.2 2.4631 6 432 17.8 15.76
## 117 0.13158 0.0 10.01 0 0.5470 6.176 72.5 2.7301 6 432 17.8 12.04
## 118 0.15098 0.0 10.01 0 0.5470 6.021 82.6 2.7474 6 432 17.8 10.30
## 119 0.13058 0.0 10.01 0 0.5470 5.872 73.1 2.4775 6 432 17.8 15.37
## 120 0.14476 0.0 10.01 0 0.5470 5.731 65.2 2.7592 6 432 17.8 13.61
## 121 0.06899 0.0 25.65 0 0.5810 5.870 69.7 2.2577 2 188 19.1 14.37
## 122 0.07165 0.0 25.65 0 0.5810 6.004 84.1 2.1974 2 188 19.1 14.27
## 123 0.09299 0.0 25.65 0 0.5810 5.961 92.9 2.0869 2 188 19.1 17.93
## 124 0.15038 0.0 25.65 0 0.5810 5.856 97.0 1.9444 2 188 19.1 25.41
## 125 0.09849 0.0 25.65 0 0.5810 5.879 95.8 2.0063 2 188 19.1 17.58
## 126 0.16902 0.0 25.65 0 0.5810 5.986 88.4 1.9929 2 188 19.1 14.81
## 127 0.38735 0.0 25.65 0 0.5810 5.613 95.6 1.7572 2 188 19.1 27.26
## 128 0.25915 0.0 21.89 0 0.6240 5.693 96.0 1.7883 4 437 21.2 17.19
## 129 0.32543 0.0 21.89 0 0.6240 6.431 98.8 1.8125 4 437 21.2 15.39
## 130 0.88125 0.0 21.89 0 0.6240 5.637 94.7 1.9799 4 437 21.2 18.34
## 131 0.34006 0.0 21.89 0 0.6240 6.458 98.9 2.1185 4 437 21.2 12.60
## 132 1.19294 0.0 21.89 0 0.6240 6.326 97.7 2.2710 4 437 21.2 12.26
## 133 0.59005 0.0 21.89 0 0.6240 6.372 97.9 2.3274 4 437 21.2 11.12
## 134 0.32982 0.0 21.89 0 0.6240 5.822 95.4 2.4699 4 437 21.2 15.03
## 135 0.97617 0.0 21.89 0 0.6240 5.757 98.4 2.3460 4 437 21.2 17.31
## 136 0.55778 0.0 21.89 0 0.6240 6.335 98.2 2.1107 4 437 21.2 16.96
## 137 0.32264 0.0 21.89 0 0.6240 5.942 93.5 1.9669 4 437 21.2 16.90
## 138 0.35233 0.0 21.89 0 0.6240 6.454 98.4 1.8498 4 437 21.2 14.59
## 139 0.24980 0.0 21.89 0 0.6240 5.857 98.2 1.6686 4 437 21.2 21.32
## 140 0.54452 0.0 21.89 0 0.6240 6.151 97.9 1.6687 4 437 21.2 18.46
## 141 0.29090 0.0 21.89 0 0.6240 6.174 93.6 1.6119 4 437 21.2 24.16
## 142 1.62864 0.0 21.89 0 0.6240 5.019 100.0 1.4394 4 437 21.2 34.41
## 143 3.32105 0.0 19.58 1 0.8710 5.403 100.0 1.3216 5 403 14.7 26.82
## 144 4.09740 0.0 19.58 0 0.8710 5.468 100.0 1.4118 5 403 14.7 26.42
## 145 2.77974 0.0 19.58 0 0.8710 4.903 97.8 1.3459 5 403 14.7 29.29
## 146 2.37934 0.0 19.58 0 0.8710 6.130 100.0 1.4191 5 403 14.7 27.80
## 147 2.15505 0.0 19.58 0 0.8710 5.628 100.0 1.5166 5 403 14.7 16.65
## 148 2.36862 0.0 19.58 0 0.8710 4.926 95.7 1.4608 5 403 14.7 29.53
## 149 2.33099 0.0 19.58 0 0.8710 5.186 93.8 1.5296 5 403 14.7 28.32
## 150 2.73397 0.0 19.58 0 0.8710 5.597 94.9 1.5257 5 403 14.7 21.45
## 151 1.65660 0.0 19.58 0 0.8710 6.122 97.3 1.6180 5 403 14.7 14.10
## 152 1.49632 0.0 19.58 0 0.8710 5.404 100.0 1.5916 5 403 14.7 13.28
## 153 1.12658 0.0 19.58 1 0.8710 5.012 88.0 1.6102 5 403 14.7 12.12
## 154 2.14918 0.0 19.58 0 0.8710 5.709 98.5 1.6232 5 403 14.7 15.79
## 155 1.41385 0.0 19.58 1 0.8710 6.129 96.0 1.7494 5 403 14.7 15.12
## 156 3.53501 0.0 19.58 1 0.8710 6.152 82.6 1.7455 5 403 14.7 15.02
## 157 2.44668 0.0 19.58 0 0.8710 5.272 94.0 1.7364 5 403 14.7 16.14
## 158 1.22358 0.0 19.58 0 0.6050 6.943 97.4 1.8773 5 403 14.7 4.59
## 159 1.34284 0.0 19.58 0 0.6050 6.066 100.0 1.7573 5 403 14.7 6.43
## 160 1.42502 0.0 19.58 0 0.8710 6.510 100.0 1.7659 5 403 14.7 7.39
## 161 1.27346 0.0 19.58 1 0.6050 6.250 92.6 1.7984 5 403 14.7 5.50
## 162 1.46336 0.0 19.58 0 0.6050 7.489 90.8 1.9709 5 403 14.7 1.73
## 163 1.83377 0.0 19.58 1 0.6050 7.802 98.2 2.0407 5 403 14.7 1.92
## 164 1.51902 0.0 19.58 1 0.6050 8.375 93.9 2.1620 5 403 14.7 3.32
## 165 2.24236 0.0 19.58 0 0.6050 5.854 91.8 2.4220 5 403 14.7 11.64
## 166 2.92400 0.0 19.58 0 0.6050 6.101 93.0 2.2834 5 403 14.7 9.81
## 167 2.01019 0.0 19.58 0 0.6050 7.929 96.2 2.0459 5 403 14.7 3.70
## 168 1.80028 0.0 19.58 0 0.6050 5.877 79.2 2.4259 5 403 14.7 12.14
## 169 2.30040 0.0 19.58 0 0.6050 6.319 96.1 2.1000 5 403 14.7 11.10
## 170 2.44953 0.0 19.58 0 0.6050 6.402 95.2 2.2625 5 403 14.7 11.32
## 171 1.20742 0.0 19.58 0 0.6050 5.875 94.6 2.4259 5 403 14.7 14.43
## 172 2.31390 0.0 19.58 0 0.6050 5.880 97.3 2.3887 5 403 14.7 12.03
## 173 0.13914 0.0 4.05 0 0.5100 5.572 88.5 2.5961 5 296 16.6 14.69
## 174 0.09178 0.0 4.05 0 0.5100 6.416 84.1 2.6463 5 296 16.6 9.04
## 175 0.08447 0.0 4.05 0 0.5100 5.859 68.7 2.7019 5 296 16.6 9.64
## 176 0.06664 0.0 4.05 0 0.5100 6.546 33.1 3.1323 5 296 16.6 5.33
## 177 0.07022 0.0 4.05 0 0.5100 6.020 47.2 3.5549 5 296 16.6 10.11
## 178 0.05425 0.0 4.05 0 0.5100 6.315 73.4 3.3175 5 296 16.6 6.29
## 179 0.06642 0.0 4.05 0 0.5100 6.860 74.4 2.9153 5 296 16.6 6.92
## 180 0.05780 0.0 2.46 0 0.4880 6.980 58.4 2.8290 3 193 17.8 5.04
## 181 0.06588 0.0 2.46 0 0.4880 7.765 83.3 2.7410 3 193 17.8 7.56
## 182 0.06888 0.0 2.46 0 0.4880 6.144 62.2 2.5979 3 193 17.8 9.45
## 183 0.09103 0.0 2.46 0 0.4880 7.155 92.2 2.7006 3 193 17.8 4.82
## 184 0.10008 0.0 2.46 0 0.4880 6.563 95.6 2.8470 3 193 17.8 5.68
## 185 0.08308 0.0 2.46 0 0.4880 5.604 89.8 2.9879 3 193 17.8 13.98
## 186 0.06047 0.0 2.46 0 0.4880 6.153 68.8 3.2797 3 193 17.8 13.15
## 187 0.05602 0.0 2.46 0 0.4880 7.831 53.6 3.1992 3 193 17.8 4.45
## 188 0.07875 45.0 3.44 0 0.4370 6.782 41.1 3.7886 5 398 15.2 6.68
## 189 0.12579 45.0 3.44 0 0.4370 6.556 29.1 4.5667 5 398 15.2 4.56
## 190 0.08370 45.0 3.44 0 0.4370 7.185 38.9 4.5667 5 398 15.2 5.39
## 191 0.09068 45.0 3.44 0 0.4370 6.951 21.5 6.4798 5 398 15.2 5.10
## 192 0.06911 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 4.69
## 193 0.08664 45.0 3.44 0 0.4370 7.178 26.3 6.4798 5 398 15.2 2.87
## 194 0.02187 60.0 2.93 0 0.4010 6.800 9.9 6.2196 1 265 15.6 5.03
## 195 0.01439 60.0 2.93 0 0.4010 6.604 18.8 6.2196 1 265 15.6 4.38
## 196 0.01381 80.0 0.46 0 0.4220 7.875 32.0 5.6484 4 255 14.4 2.97
## 197 0.04011 80.0 1.52 0 0.4040 7.287 34.1 7.3090 2 329 12.6 4.08
## 198 0.04666 80.0 1.52 0 0.4040 7.107 36.6 7.3090 2 329 12.6 8.61
## 199 0.03768 80.0 1.52 0 0.4040 7.274 38.3 7.3090 2 329 12.6 6.62
## 200 0.03150 95.0 1.47 0 0.4030 6.975 15.3 7.6534 3 402 17.0 4.56
## 201 0.01778 95.0 1.47 0 0.4030 7.135 13.9 7.6534 3 402 17.0 4.45
## 202 0.03445 82.5 2.03 0 0.4150 6.162 38.4 6.2700 2 348 14.7 7.43
## 203 0.02177 82.5 2.03 0 0.4150 7.610 15.7 6.2700 2 348 14.7 3.11
## 204 0.03510 95.0 2.68 0 0.4161 7.853 33.2 5.1180 4 224 14.7 3.81
## 205 0.02009 95.0 2.68 0 0.4161 8.034 31.9 5.1180 4 224 14.7 2.88
## 206 0.13642 0.0 10.59 0 0.4890 5.891 22.3 3.9454 4 277 18.6 10.87
## 207 0.22969 0.0 10.59 0 0.4890 6.326 52.5 4.3549 4 277 18.6 10.97
## 208 0.25199 0.0 10.59 0 0.4890 5.783 72.7 4.3549 4 277 18.6 18.06
## 209 0.13587 0.0 10.59 1 0.4890 6.064 59.1 4.2392 4 277 18.6 14.66
## 210 0.43571 0.0 10.59 1 0.4890 5.344 100.0 3.8750 4 277 18.6 23.09
## 211 0.17446 0.0 10.59 1 0.4890 5.960 92.1 3.8771 4 277 18.6 17.27
## 212 0.37578 0.0 10.59 1 0.4890 5.404 88.6 3.6650 4 277 18.6 23.98
## 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 16.03
## 214 0.14052 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 9.38
## 215 0.28955 0.0 10.59 0 0.4890 5.412 9.8 3.5875 4 277 18.6 29.55
## 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 4 277 18.6 9.47
## 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 13.51
## 218 0.07013 0.0 13.89 0 0.5500 6.642 85.1 3.4211 5 276 16.4 9.69
## 219 0.11069 0.0 13.89 1 0.5500 5.951 93.8 2.8893 5 276 16.4 17.92
## 220 0.11425 0.0 13.89 1 0.5500 6.373 92.4 3.3633 5 276 16.4 10.50
## 221 0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 9.71
## 222 0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 21.46
## 223 0.62356 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 9.93
## 224 0.61470 0.0 6.20 0 0.5070 6.618 80.8 3.2721 8 307 17.4 7.60
## 225 0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 4.14
## 226 0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 4.63
## 227 0.38214 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 3.13
## 228 0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 6.36
## 229 0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 3.92
## 230 0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 3.76
## 231 0.53700 0.0 6.20 0 0.5040 5.981 68.1 3.6715 8 307 17.4 11.65
## 232 0.46296 0.0 6.20 0 0.5040 7.412 76.9 3.6715 8 307 17.4 5.25
## 233 0.57529 0.0 6.20 0 0.5070 8.337 73.3 3.8384 8 307 17.4 2.47
## 234 0.33147 0.0 6.20 0 0.5070 8.247 70.4 3.6519 8 307 17.4 3.95
## 235 0.44791 0.0 6.20 1 0.5070 6.726 66.5 3.6519 8 307 17.4 8.05
## 236 0.33045 0.0 6.20 0 0.5070 6.086 61.5 3.6519 8 307 17.4 10.88
## 237 0.52058 0.0 6.20 1 0.5070 6.631 76.5 4.1480 8 307 17.4 9.54
## 238 0.51183 0.0 6.20 0 0.5070 7.358 71.6 4.1480 8 307 17.4 4.73
## 239 0.08244 30.0 4.93 0 0.4280 6.481 18.5 6.1899 6 300 16.6 6.36
## 240 0.09252 30.0 4.93 0 0.4280 6.606 42.2 6.1899 6 300 16.6 7.37
## 241 0.11329 30.0 4.93 0 0.4280 6.897 54.3 6.3361 6 300 16.6 11.38
## 242 0.10612 30.0 4.93 0 0.4280 6.095 65.1 6.3361 6 300 16.6 12.40
## 243 0.10290 30.0 4.93 0 0.4280 6.358 52.9 7.0355 6 300 16.6 11.22
## 244 0.12757 30.0 4.93 0 0.4280 6.393 7.8 7.0355 6 300 16.6 5.19
## 245 0.20608 22.0 5.86 0 0.4310 5.593 76.5 7.9549 7 330 19.1 12.50
## 246 0.19133 22.0 5.86 0 0.4310 5.605 70.2 7.9549 7 330 19.1 18.46
## 247 0.33983 22.0 5.86 0 0.4310 6.108 34.9 8.0555 7 330 19.1 9.16
## 248 0.19657 22.0 5.86 0 0.4310 6.226 79.2 8.0555 7 330 19.1 10.15
## 249 0.16439 22.0 5.86 0 0.4310 6.433 49.1 7.8265 7 330 19.1 9.52
## 250 0.19073 22.0 5.86 0 0.4310 6.718 17.5 7.8265 7 330 19.1 6.56
## 251 0.14030 22.0 5.86 0 0.4310 6.487 13.0 7.3967 7 330 19.1 5.90
## 252 0.21409 22.0 5.86 0 0.4310 6.438 8.9 7.3967 7 330 19.1 3.59
## 253 0.08221 22.0 5.86 0 0.4310 6.957 6.8 8.9067 7 330 19.1 3.53
## 254 0.36894 22.0 5.86 0 0.4310 8.259 8.4 8.9067 7 330 19.1 3.54
## 255 0.04819 80.0 3.64 0 0.3920 6.108 32.0 9.2203 1 315 16.4 6.57
## 256 0.03548 80.0 3.64 0 0.3920 5.876 19.1 9.2203 1 315 16.4 9.25
## 257 0.01538 90.0 3.75 0 0.3940 7.454 34.2 6.3361 3 244 15.9 3.11
## 258 0.61154 20.0 3.97 0 0.6470 8.704 86.9 1.8010 5 264 13.0 5.12
## 259 0.66351 20.0 3.97 0 0.6470 7.333 100.0 1.8946 5 264 13.0 7.79
## 260 0.65665 20.0 3.97 0 0.6470 6.842 100.0 2.0107 5 264 13.0 6.90
## 261 0.54011 20.0 3.97 0 0.6470 7.203 81.8 2.1121 5 264 13.0 9.59
## 262 0.53412 20.0 3.97 0 0.6470 7.520 89.4 2.1398 5 264 13.0 7.26
## 263 0.52014 20.0 3.97 0 0.6470 8.398 91.5 2.2885 5 264 13.0 5.91
## 264 0.82526 20.0 3.97 0 0.6470 7.327 94.5 2.0788 5 264 13.0 11.25
## 265 0.55007 20.0 3.97 0 0.6470 7.206 91.6 1.9301 5 264 13.0 8.10
## 266 0.76162 20.0 3.97 0 0.6470 5.560 62.8 1.9865 5 264 13.0 10.45
## 267 0.78570 20.0 3.97 0 0.6470 7.014 84.6 2.1329 5 264 13.0 14.79
## 268 0.57834 20.0 3.97 0 0.5750 8.297 67.0 2.4216 5 264 13.0 7.44
## 269 0.54050 20.0 3.97 0 0.5750 7.470 52.6 2.8720 5 264 13.0 3.16
## 270 0.09065 20.0 6.96 1 0.4640 5.920 61.5 3.9175 3 223 18.6 13.65
## 271 0.29916 20.0 6.96 0 0.4640 5.856 42.1 4.4290 3 223 18.6 13.00
## 272 0.16211 20.0 6.96 0 0.4640 6.240 16.3 4.4290 3 223 18.6 6.59
## 273 0.11460 20.0 6.96 0 0.4640 6.538 58.7 3.9175 3 223 18.6 7.73
## 274 0.22188 20.0 6.96 1 0.4640 7.691 51.8 4.3665 3 223 18.6 6.58
## 275 0.05644 40.0 6.41 1 0.4470 6.758 32.9 4.0776 4 254 17.6 3.53
## 276 0.09604 40.0 6.41 0 0.4470 6.854 42.8 4.2673 4 254 17.6 2.98
## 277 0.10469 40.0 6.41 1 0.4470 7.267 49.0 4.7872 4 254 17.6 6.05
## 278 0.06127 40.0 6.41 1 0.4470 6.826 27.6 4.8628 4 254 17.6 4.16
## 279 0.07978 40.0 6.41 0 0.4470 6.482 32.1 4.1403 4 254 17.6 7.19
## 280 0.21038 20.0 3.33 0 0.4429 6.812 32.2 4.1007 5 216 14.9 4.85
## 281 0.03578 20.0 3.33 0 0.4429 7.820 64.5 4.6947 5 216 14.9 3.76
## 282 0.03705 20.0 3.33 0 0.4429 6.968 37.2 5.2447 5 216 14.9 4.59
## 283 0.06129 20.0 3.33 1 0.4429 7.645 49.7 5.2119 5 216 14.9 3.01
## 284 0.01501 90.0 1.21 1 0.4010 7.923 24.8 5.8850 1 198 13.6 3.16
## 285 0.00906 90.0 2.97 0 0.4000 7.088 20.8 7.3073 1 285 15.3 7.85
## 286 0.01096 55.0 2.25 0 0.3890 6.453 31.9 7.3073 1 300 15.3 8.23
## 287 0.01965 80.0 1.76 0 0.3850 6.230 31.5 9.0892 1 241 18.2 12.93
## 288 0.03871 52.5 5.32 0 0.4050 6.209 31.3 7.3172 6 293 16.6 7.14
## 289 0.04590 52.5 5.32 0 0.4050 6.315 45.6 7.3172 6 293 16.6 7.60
## 290 0.04297 52.5 5.32 0 0.4050 6.565 22.9 7.3172 6 293 16.6 9.51
## 291 0.03502 80.0 4.95 0 0.4110 6.861 27.9 5.1167 4 245 19.2 3.33
## 292 0.07886 80.0 4.95 0 0.4110 7.148 27.7 5.1167 4 245 19.2 3.56
## 293 0.03615 80.0 4.95 0 0.4110 6.630 23.4 5.1167 4 245 19.2 4.70
## 294 0.08265 0.0 13.92 0 0.4370 6.127 18.4 5.5027 4 289 16.0 8.58
## 295 0.08199 0.0 13.92 0 0.4370 6.009 42.3 5.5027 4 289 16.0 10.40
## 296 0.12932 0.0 13.92 0 0.4370 6.678 31.1 5.9604 4 289 16.0 6.27
## 297 0.05372 0.0 13.92 0 0.4370 6.549 51.0 5.9604 4 289 16.0 7.39
## 298 0.14103 0.0 13.92 0 0.4370 5.790 58.0 6.3200 4 289 16.0 15.84
## 299 0.06466 70.0 2.24 0 0.4000 6.345 20.1 7.8278 5 358 14.8 4.97
## 300 0.05561 70.0 2.24 0 0.4000 7.041 10.0 7.8278 5 358 14.8 4.74
## 301 0.04417 70.0 2.24 0 0.4000 6.871 47.4 7.8278 5 358 14.8 6.07
## 302 0.03537 34.0 6.09 0 0.4330 6.590 40.4 5.4917 7 329 16.1 9.50
## 303 0.09266 34.0 6.09 0 0.4330 6.495 18.4 5.4917 7 329 16.1 8.67
## 304 0.10000 34.0 6.09 0 0.4330 6.982 17.7 5.4917 7 329 16.1 4.86
## 305 0.05515 33.0 2.18 0 0.4720 7.236 41.1 4.0220 7 222 18.4 6.93
## 306 0.05479 33.0 2.18 0 0.4720 6.616 58.1 3.3700 7 222 18.4 8.93
## 307 0.07503 33.0 2.18 0 0.4720 7.420 71.9 3.0992 7 222 18.4 6.47
## 308 0.04932 33.0 2.18 0 0.4720 6.849 70.3 3.1827 7 222 18.4 7.53
## 309 0.49298 0.0 9.90 0 0.5440 6.635 82.5 3.3175 4 304 18.4 4.54
## 310 0.34940 0.0 9.90 0 0.5440 5.972 76.7 3.1025 4 304 18.4 9.97
## 311 2.63548 0.0 9.90 0 0.5440 4.973 37.8 2.5194 4 304 18.4 12.64
## 312 0.79041 0.0 9.90 0 0.5440 6.122 52.8 2.6403 4 304 18.4 5.98
## 313 0.26169 0.0 9.90 0 0.5440 6.023 90.4 2.8340 4 304 18.4 11.72
## 314 0.26938 0.0 9.90 0 0.5440 6.266 82.8 3.2628 4 304 18.4 7.90
## 315 0.36920 0.0 9.90 0 0.5440 6.567 87.3 3.6023 4 304 18.4 9.28
## 316 0.25356 0.0 9.90 0 0.5440 5.705 77.7 3.9450 4 304 18.4 11.50
## 317 0.31827 0.0 9.90 0 0.5440 5.914 83.2 3.9986 4 304 18.4 18.33
## 318 0.24522 0.0 9.90 0 0.5440 5.782 71.7 4.0317 4 304 18.4 15.94
## 319 0.40202 0.0 9.90 0 0.5440 6.382 67.2 3.5325 4 304 18.4 10.36
## 320 0.47547 0.0 9.90 0 0.5440 6.113 58.8 4.0019 4 304 18.4 12.73
## 321 0.16760 0.0 7.38 0 0.4930 6.426 52.3 4.5404 5 287 19.6 7.20
## 322 0.18159 0.0 7.38 0 0.4930 6.376 54.3 4.5404 5 287 19.6 6.87
## 323 0.35114 0.0 7.38 0 0.4930 6.041 49.9 4.7211 5 287 19.6 7.70
## 324 0.28392 0.0 7.38 0 0.4930 5.708 74.3 4.7211 5 287 19.6 11.74
## 325 0.34109 0.0 7.38 0 0.4930 6.415 40.1 4.7211 5 287 19.6 6.12
## 326 0.19186 0.0 7.38 0 0.4930 6.431 14.7 5.4159 5 287 19.6 5.08
## 327 0.30347 0.0 7.38 0 0.4930 6.312 28.9 5.4159 5 287 19.6 6.15
## 328 0.24103 0.0 7.38 0 0.4930 6.083 43.7 5.4159 5 287 19.6 12.79
## 329 0.06617 0.0 3.24 0 0.4600 5.868 25.8 5.2146 4 430 16.9 9.97
## 330 0.06724 0.0 3.24 0 0.4600 6.333 17.2 5.2146 4 430 16.9 7.34
## 331 0.04544 0.0 3.24 0 0.4600 6.144 32.2 5.8736 4 430 16.9 9.09
## 332 0.05023 35.0 6.06 0 0.4379 5.706 28.4 6.6407 1 304 16.9 12.43
## 333 0.03466 35.0 6.06 0 0.4379 6.031 23.3 6.6407 1 304 16.9 7.83
## 334 0.05083 0.0 5.19 0 0.5150 6.316 38.1 6.4584 5 224 20.2 5.68
## 335 0.03738 0.0 5.19 0 0.5150 6.310 38.5 6.4584 5 224 20.2 6.75
## 336 0.03961 0.0 5.19 0 0.5150 6.037 34.5 5.9853 5 224 20.2 8.01
## 337 0.03427 0.0 5.19 0 0.5150 5.869 46.3 5.2311 5 224 20.2 9.80
## 338 0.03041 0.0 5.19 0 0.5150 5.895 59.6 5.6150 5 224 20.2 10.56
## 339 0.03306 0.0 5.19 0 0.5150 6.059 37.3 4.8122 5 224 20.2 8.51
## 340 0.05497 0.0 5.19 0 0.5150 5.985 45.4 4.8122 5 224 20.2 9.74
## 341 0.06151 0.0 5.19 0 0.5150 5.968 58.5 4.8122 5 224 20.2 9.29
## 342 0.01301 35.0 1.52 0 0.4420 7.241 49.3 7.0379 1 284 15.5 5.49
## 343 0.02498 0.0 1.89 0 0.5180 6.540 59.7 6.2669 1 422 15.9 8.65
## 344 0.02543 55.0 3.78 0 0.4840 6.696 56.4 5.7321 5 370 17.6 7.18
## 345 0.03049 55.0 3.78 0 0.4840 6.874 28.1 6.4654 5 370 17.6 4.61
## 346 0.03113 0.0 4.39 0 0.4420 6.014 48.5 8.0136 3 352 18.8 10.53
## 347 0.06162 0.0 4.39 0 0.4420 5.898 52.3 8.0136 3 352 18.8 12.67
## 348 0.01870 85.0 4.15 0 0.4290 6.516 27.7 8.5353 4 351 17.9 6.36
## 349 0.01501 80.0 2.01 0 0.4350 6.635 29.7 8.3440 4 280 17.0 5.99
## 350 0.02899 40.0 1.25 0 0.4290 6.939 34.5 8.7921 1 335 19.7 5.89
## 351 0.06211 40.0 1.25 0 0.4290 6.490 44.4 8.7921 1 335 19.7 5.98
## 352 0.07950 60.0 1.69 0 0.4110 6.579 35.9 10.7103 4 411 18.3 5.49
## 353 0.07244 60.0 1.69 0 0.4110 5.884 18.5 10.7103 4 411 18.3 7.79
## 354 0.01709 90.0 2.02 0 0.4100 6.728 36.1 12.1265 5 187 17.0 4.50
## 355 0.04301 80.0 1.91 0 0.4130 5.663 21.9 10.5857 4 334 22.0 8.05
## 356 0.10659 80.0 1.91 0 0.4130 5.936 19.5 10.5857 4 334 22.0 5.57
## 357 8.98296 0.0 18.10 1 0.7700 6.212 97.4 2.1222 24 666 20.2 17.60
## 358 3.84970 0.0 18.10 1 0.7700 6.395 91.0 2.5052 24 666 20.2 13.27
## 359 5.20177 0.0 18.10 1 0.7700 6.127 83.4 2.7227 24 666 20.2 11.48
## 360 4.26131 0.0 18.10 0 0.7700 6.112 81.3 2.5091 24 666 20.2 12.67
## 361 4.54192 0.0 18.10 0 0.7700 6.398 88.0 2.5182 24 666 20.2 7.79
## 362 3.83684 0.0 18.10 0 0.7700 6.251 91.1 2.2955 24 666 20.2 14.19
## 363 3.67822 0.0 18.10 0 0.7700 5.362 96.2 2.1036 24 666 20.2 10.19
## 364 4.22239 0.0 18.10 1 0.7700 5.803 89.0 1.9047 24 666 20.2 14.64
## 365 3.47428 0.0 18.10 1 0.7180 8.780 82.9 1.9047 24 666 20.2 5.29
## 366 4.55587 0.0 18.10 0 0.7180 3.561 87.9 1.6132 24 666 20.2 7.12
## 367 3.69695 0.0 18.10 0 0.7180 4.963 91.4 1.7523 24 666 20.2 14.00
## 368 13.52220 0.0 18.10 0 0.6310 3.863 100.0 1.5106 24 666 20.2 13.33
## 369 4.89822 0.0 18.10 0 0.6310 4.970 100.0 1.3325 24 666 20.2 3.26
## 370 5.66998 0.0 18.10 1 0.6310 6.683 96.8 1.3567 24 666 20.2 3.73
## 371 6.53876 0.0 18.10 1 0.6310 7.016 97.5 1.2024 24 666 20.2 2.96
## 372 9.23230 0.0 18.10 0 0.6310 6.216 100.0 1.1691 24 666 20.2 9.53
## 373 8.26725 0.0 18.10 1 0.6680 5.875 89.6 1.1296 24 666 20.2 8.88
## 374 11.10810 0.0 18.10 0 0.6680 4.906 100.0 1.1742 24 666 20.2 34.77
## 375 18.49820 0.0 18.10 0 0.6680 4.138 100.0 1.1370 24 666 20.2 37.97
## 376 19.60910 0.0 18.10 0 0.6710 7.313 97.9 1.3163 24 666 20.2 13.44
## 377 15.28800 0.0 18.10 0 0.6710 6.649 93.3 1.3449 24 666 20.2 23.24
## 378 9.82349 0.0 18.10 0 0.6710 6.794 98.8 1.3580 24 666 20.2 21.24
## 379 23.64820 0.0 18.10 0 0.6710 6.380 96.2 1.3861 24 666 20.2 23.69
## 380 17.86670 0.0 18.10 0 0.6710 6.223 100.0 1.3861 24 666 20.2 21.78
## 381 88.97620 0.0 18.10 0 0.6710 6.968 91.9 1.4165 24 666 20.2 17.21
## 382 15.87440 0.0 18.10 0 0.6710 6.545 99.1 1.5192 24 666 20.2 21.08
## 383 9.18702 0.0 18.10 0 0.7000 5.536 100.0 1.5804 24 666 20.2 23.60
## 384 7.99248 0.0 18.10 0 0.7000 5.520 100.0 1.5331 24 666 20.2 24.56
## 385 20.08490 0.0 18.10 0 0.7000 4.368 91.2 1.4395 24 666 20.2 30.63
## 386 16.81180 0.0 18.10 0 0.7000 5.277 98.1 1.4261 24 666 20.2 30.81
## 387 24.39380 0.0 18.10 0 0.7000 4.652 100.0 1.4672 24 666 20.2 28.28
## 388 22.59710 0.0 18.10 0 0.7000 5.000 89.5 1.5184 24 666 20.2 31.99
## 389 14.33370 0.0 18.10 0 0.7000 4.880 100.0 1.5895 24 666 20.2 30.62
## 390 8.15174 0.0 18.10 0 0.7000 5.390 98.9 1.7281 24 666 20.2 20.85
## 391 6.96215 0.0 18.10 0 0.7000 5.713 97.0 1.9265 24 666 20.2 17.11
## 392 5.29305 0.0 18.10 0 0.7000 6.051 82.5 2.1678 24 666 20.2 18.76
## 393 11.57790 0.0 18.10 0 0.7000 5.036 97.0 1.7700 24 666 20.2 25.68
## 394 8.64476 0.0 18.10 0 0.6930 6.193 92.6 1.7912 24 666 20.2 15.17
## 395 13.35980 0.0 18.10 0 0.6930 5.887 94.7 1.7821 24 666 20.2 16.35
## 396 8.71675 0.0 18.10 0 0.6930 6.471 98.8 1.7257 24 666 20.2 17.12
## 397 5.87205 0.0 18.10 0 0.6930 6.405 96.0 1.6768 24 666 20.2 19.37
## 398 7.67202 0.0 18.10 0 0.6930 5.747 98.9 1.6334 24 666 20.2 19.92
## 399 38.35180 0.0 18.10 0 0.6930 5.453 100.0 1.4896 24 666 20.2 30.59
## 400 9.91655 0.0 18.10 0 0.6930 5.852 77.8 1.5004 24 666 20.2 29.97
## 401 25.04610 0.0 18.10 0 0.6930 5.987 100.0 1.5888 24 666 20.2 26.77
## 402 14.23620 0.0 18.10 0 0.6930 6.343 100.0 1.5741 24 666 20.2 20.32
## 403 9.59571 0.0 18.10 0 0.6930 6.404 100.0 1.6390 24 666 20.2 20.31
## 404 24.80170 0.0 18.10 0 0.6930 5.349 96.0 1.7028 24 666 20.2 19.77
## 405 41.52920 0.0 18.10 0 0.6930 5.531 85.4 1.6074 24 666 20.2 27.38
## 406 67.92080 0.0 18.10 0 0.6930 5.683 100.0 1.4254 24 666 20.2 22.98
## 407 20.71620 0.0 18.10 0 0.6590 4.138 100.0 1.1781 24 666 20.2 23.34
## 408 11.95110 0.0 18.10 0 0.6590 5.608 100.0 1.2852 24 666 20.2 12.13
## 409 7.40389 0.0 18.10 0 0.5970 5.617 97.9 1.4547 24 666 20.2 26.40
## 410 14.43830 0.0 18.10 0 0.5970 6.852 100.0 1.4655 24 666 20.2 19.78
## 411 51.13580 0.0 18.10 0 0.5970 5.757 100.0 1.4130 24 666 20.2 10.11
## 412 14.05070 0.0 18.10 0 0.5970 6.657 100.0 1.5275 24 666 20.2 21.22
## 413 18.81100 0.0 18.10 0 0.5970 4.628 100.0 1.5539 24 666 20.2 34.37
## 414 28.65580 0.0 18.10 0 0.5970 5.155 100.0 1.5894 24 666 20.2 20.08
## 415 45.74610 0.0 18.10 0 0.6930 4.519 100.0 1.6582 24 666 20.2 36.98
## 416 18.08460 0.0 18.10 0 0.6790 6.434 100.0 1.8347 24 666 20.2 29.05
## 417 10.83420 0.0 18.10 0 0.6790 6.782 90.8 1.8195 24 666 20.2 25.79
## 418 25.94060 0.0 18.10 0 0.6790 5.304 89.1 1.6475 24 666 20.2 26.64
## 419 73.53410 0.0 18.10 0 0.6790 5.957 100.0 1.8026 24 666 20.2 20.62
## 420 11.81230 0.0 18.10 0 0.7180 6.824 76.5 1.7940 24 666 20.2 22.74
## 421 11.08740 0.0 18.10 0 0.7180 6.411 100.0 1.8589 24 666 20.2 15.02
## 422 7.02259 0.0 18.10 0 0.7180 6.006 95.3 1.8746 24 666 20.2 15.70
## 423 12.04820 0.0 18.10 0 0.6140 5.648 87.6 1.9512 24 666 20.2 14.10
## 424 7.05042 0.0 18.10 0 0.6140 6.103 85.1 2.0218 24 666 20.2 23.29
## 425 8.79212 0.0 18.10 0 0.5840 5.565 70.6 2.0635 24 666 20.2 17.16
## 426 15.86030 0.0 18.10 0 0.6790 5.896 95.4 1.9096 24 666 20.2 24.39
## 427 12.24720 0.0 18.10 0 0.5840 5.837 59.7 1.9976 24 666 20.2 15.69
## 428 37.66190 0.0 18.10 0 0.6790 6.202 78.7 1.8629 24 666 20.2 14.52
## 429 7.36711 0.0 18.10 0 0.6790 6.193 78.1 1.9356 24 666 20.2 21.52
## 430 9.33889 0.0 18.10 0 0.6790 6.380 95.6 1.9682 24 666 20.2 24.08
## 431 8.49213 0.0 18.10 0 0.5840 6.348 86.1 2.0527 24 666 20.2 17.64
## 432 10.06230 0.0 18.10 0 0.5840 6.833 94.3 2.0882 24 666 20.2 19.69
## 433 6.44405 0.0 18.10 0 0.5840 6.425 74.8 2.2004 24 666 20.2 12.03
## 434 5.58107 0.0 18.10 0 0.7130 6.436 87.9 2.3158 24 666 20.2 16.22
## 435 13.91340 0.0 18.10 0 0.7130 6.208 95.0 2.2222 24 666 20.2 15.17
## 436 11.16040 0.0 18.10 0 0.7400 6.629 94.6 2.1247 24 666 20.2 23.27
## 437 14.42080 0.0 18.10 0 0.7400 6.461 93.3 2.0026 24 666 20.2 18.05
## 438 15.17720 0.0 18.10 0 0.7400 6.152 100.0 1.9142 24 666 20.2 26.45
## 439 13.67810 0.0 18.10 0 0.7400 5.935 87.9 1.8206 24 666 20.2 34.02
## 440 9.39063 0.0 18.10 0 0.7400 5.627 93.9 1.8172 24 666 20.2 22.88
## 441 22.05110 0.0 18.10 0 0.7400 5.818 92.4 1.8662 24 666 20.2 22.11
## 442 9.72418 0.0 18.10 0 0.7400 6.406 97.2 2.0651 24 666 20.2 19.52
## 443 5.66637 0.0 18.10 0 0.7400 6.219 100.0 2.0048 24 666 20.2 16.59
## 444 9.96654 0.0 18.10 0 0.7400 6.485 100.0 1.9784 24 666 20.2 18.85
## 445 12.80230 0.0 18.10 0 0.7400 5.854 96.6 1.8956 24 666 20.2 23.79
## 446 10.67180 0.0 18.10 0 0.7400 6.459 94.8 1.9879 24 666 20.2 23.98
## 447 6.28807 0.0 18.10 0 0.7400 6.341 96.4 2.0720 24 666 20.2 17.79
## 448 9.92485 0.0 18.10 0 0.7400 6.251 96.6 2.1980 24 666 20.2 16.44
## 449 9.32909 0.0 18.10 0 0.7130 6.185 98.7 2.2616 24 666 20.2 18.13
## 450 7.52601 0.0 18.10 0 0.7130 6.417 98.3 2.1850 24 666 20.2 19.31
## 451 6.71772 0.0 18.10 0 0.7130 6.749 92.6 2.3236 24 666 20.2 17.44
## 452 5.44114 0.0 18.10 0 0.7130 6.655 98.2 2.3552 24 666 20.2 17.73
## 453 5.09017 0.0 18.10 0 0.7130 6.297 91.8 2.3682 24 666 20.2 17.27
## 454 8.24809 0.0 18.10 0 0.7130 7.393 99.3 2.4527 24 666 20.2 16.74
## 455 9.51363 0.0 18.10 0 0.7130 6.728 94.1 2.4961 24 666 20.2 18.71
## 456 4.75237 0.0 18.10 0 0.7130 6.525 86.5 2.4358 24 666 20.2 18.13
## 457 4.66883 0.0 18.10 0 0.7130 5.976 87.9 2.5806 24 666 20.2 19.01
## 458 8.20058 0.0 18.10 0 0.7130 5.936 80.3 2.7792 24 666 20.2 16.94
## 459 7.75223 0.0 18.10 0 0.7130 6.301 83.7 2.7831 24 666 20.2 16.23
## 460 6.80117 0.0 18.10 0 0.7130 6.081 84.4 2.7175 24 666 20.2 14.70
## 461 4.81213 0.0 18.10 0 0.7130 6.701 90.0 2.5975 24 666 20.2 16.42
## 462 3.69311 0.0 18.10 0 0.7130 6.376 88.4 2.5671 24 666 20.2 14.65
## 463 6.65492 0.0 18.10 0 0.7130 6.317 83.0 2.7344 24 666 20.2 13.99
## 464 5.82115 0.0 18.10 0 0.7130 6.513 89.9 2.8016 24 666 20.2 10.29
## 465 7.83932 0.0 18.10 0 0.6550 6.209 65.4 2.9634 24 666 20.2 13.22
## 466 3.16360 0.0 18.10 0 0.6550 5.759 48.2 3.0665 24 666 20.2 14.13
## 467 3.77498 0.0 18.10 0 0.6550 5.952 84.7 2.8715 24 666 20.2 17.15
## 468 4.42228 0.0 18.10 0 0.5840 6.003 94.5 2.5403 24 666 20.2 21.32
## 469 15.57570 0.0 18.10 0 0.5800 5.926 71.0 2.9084 24 666 20.2 18.13
## 470 13.07510 0.0 18.10 0 0.5800 5.713 56.7 2.8237 24 666 20.2 14.76
## 471 4.34879 0.0 18.10 0 0.5800 6.167 84.0 3.0334 24 666 20.2 16.29
## 472 4.03841 0.0 18.10 0 0.5320 6.229 90.7 3.0993 24 666 20.2 12.87
## 473 3.56868 0.0 18.10 0 0.5800 6.437 75.0 2.8965 24 666 20.2 14.36
## 474 4.64689 0.0 18.10 0 0.6140 6.980 67.6 2.5329 24 666 20.2 11.66
## 475 8.05579 0.0 18.10 0 0.5840 5.427 95.4 2.4298 24 666 20.2 18.14
## 476 6.39312 0.0 18.10 0 0.5840 6.162 97.4 2.2060 24 666 20.2 24.10
## 477 4.87141 0.0 18.10 0 0.6140 6.484 93.6 2.3053 24 666 20.2 18.68
## 478 15.02340 0.0 18.10 0 0.6140 5.304 97.3 2.1007 24 666 20.2 24.91
## 479 10.23300 0.0 18.10 0 0.6140 6.185 96.7 2.1705 24 666 20.2 18.03
## 480 14.33370 0.0 18.10 0 0.6140 6.229 88.0 1.9512 24 666 20.2 13.11
## 481 5.82401 0.0 18.10 0 0.5320 6.242 64.7 3.4242 24 666 20.2 10.74
## 482 5.70818 0.0 18.10 0 0.5320 6.750 74.9 3.3317 24 666 20.2 7.74
## 483 5.73116 0.0 18.10 0 0.5320 7.061 77.0 3.4106 24 666 20.2 7.01
## 484 2.81838 0.0 18.10 0 0.5320 5.762 40.3 4.0983 24 666 20.2 10.42
## 485 2.37857 0.0 18.10 0 0.5830 5.871 41.9 3.7240 24 666 20.2 13.34
## 486 3.67367 0.0 18.10 0 0.5830 6.312 51.9 3.9917 24 666 20.2 10.58
## 487 5.69175 0.0 18.10 0 0.5830 6.114 79.8 3.5459 24 666 20.2 14.98
## 488 4.83567 0.0 18.10 0 0.5830 5.905 53.2 3.1523 24 666 20.2 11.45
## 489 0.15086 0.0 27.74 0 0.6090 5.454 92.7 1.8209 4 711 20.1 18.06
## 490 0.18337 0.0 27.74 0 0.6090 5.414 98.3 1.7554 4 711 20.1 23.97
## 491 0.20746 0.0 27.74 0 0.6090 5.093 98.0 1.8226 4 711 20.1 29.68
## 492 0.10574 0.0 27.74 0 0.6090 5.983 98.8 1.8681 4 711 20.1 18.07
## 493 0.11132 0.0 27.74 0 0.6090 5.983 83.5 2.1099 4 711 20.1 13.35
## 494 0.17331 0.0 9.69 0 0.5850 5.707 54.0 2.3817 6 391 19.2 12.01
## 495 0.27957 0.0 9.69 0 0.5850 5.926 42.6 2.3817 6 391 19.2 13.59
## 496 0.17899 0.0 9.69 0 0.5850 5.670 28.8 2.7986 6 391 19.2 17.60
## 497 0.28960 0.0 9.69 0 0.5850 5.390 72.9 2.7986 6 391 19.2 21.14
## 498 0.26838 0.0 9.69 0 0.5850 5.794 70.6 2.8927 6 391 19.2 14.10
## 499 0.23912 0.0 9.69 0 0.5850 6.019 65.3 2.4091 6 391 19.2 12.92
## 500 0.17783 0.0 9.69 0 0.5850 5.569 73.5 2.3999 6 391 19.2 15.10
## 501 0.22438 0.0 9.69 0 0.5850 6.027 79.7 2.4982 6 391 19.2 14.33
## 502 0.06263 0.0 11.93 0 0.5730 6.593 69.1 2.4786 1 273 21.0 9.67
## 503 0.04527 0.0 11.93 0 0.5730 6.120 76.7 2.2875 1 273 21.0 9.08
## 504 0.06076 0.0 11.93 0 0.5730 6.976 91.0 2.1675 1 273 21.0 5.64
## 505 0.10959 0.0 11.93 0 0.5730 6.794 89.3 2.3889 1 273 21.0 6.48
## 506 0.04741 0.0 11.93 0 0.5730 6.030 80.8 2.5050 1 273 21.0 7.88
## medv
## 1 24.0
## 2 21.6
## 3 34.7
## 4 33.4
## 5 36.2
## 6 28.7
## 7 22.9
## 8 27.1
## 9 16.5
## 10 18.9
## 11 15.0
## 12 18.9
## 13 21.7
## 14 20.4
## 15 18.2
## 16 19.9
## 17 23.1
## 18 17.5
## 19 20.2
## 20 18.2
## 21 13.6
## 22 19.6
## 23 15.2
## 24 14.5
## 25 15.6
## 26 13.9
## 27 16.6
## 28 14.8
## 29 18.4
## 30 21.0
## 31 12.7
## 32 14.5
## 33 13.2
## 34 13.1
## 35 13.5
## 36 18.9
## 37 20.0
## 38 21.0
## 39 24.7
## 40 30.8
## 41 34.9
## 42 26.6
## 43 25.3
## 44 24.7
## 45 21.2
## 46 19.3
## 47 20.0
## 48 16.6
## 49 14.4
## 50 19.4
## 51 19.7
## 52 20.5
## 53 25.0
## 54 23.4
## 55 18.9
## 56 35.4
## 57 24.7
## 58 31.6
## 59 23.3
## 60 19.6
## 61 18.7
## 62 16.0
## 63 22.2
## 64 25.0
## 65 33.0
## 66 23.5
## 67 19.4
## 68 22.0
## 69 17.4
## 70 20.9
## 71 24.2
## 72 21.7
## 73 22.8
## 74 23.4
## 75 24.1
## 76 21.4
## 77 20.0
## 78 20.8
## 79 21.2
## 80 20.3
## 81 28.0
## 82 23.9
## 83 24.8
## 84 22.9
## 85 23.9
## 86 26.6
## 87 22.5
## 88 22.2
## 89 23.6
## 90 28.7
## 91 22.6
## 92 22.0
## 93 22.9
## 94 25.0
## 95 20.6
## 96 28.4
## 97 21.4
## 98 38.7
## 99 43.8
## 100 33.2
## 101 27.5
## 102 26.5
## 103 18.6
## 104 19.3
## 105 20.1
## 106 19.5
## 107 19.5
## 108 20.4
## 109 19.8
## 110 19.4
## 111 21.7
## 112 22.8
## 113 18.8
## 114 18.7
## 115 18.5
## 116 18.3
## 117 21.2
## 118 19.2
## 119 20.4
## 120 19.3
## 121 22.0
## 122 20.3
## 123 20.5
## 124 17.3
## 125 18.8
## 126 21.4
## 127 15.7
## 128 16.2
## 129 18.0
## 130 14.3
## 131 19.2
## 132 19.6
## 133 23.0
## 134 18.4
## 135 15.6
## 136 18.1
## 137 17.4
## 138 17.1
## 139 13.3
## 140 17.8
## 141 14.0
## 142 14.4
## 143 13.4
## 144 15.6
## 145 11.8
## 146 13.8
## 147 15.6
## 148 14.6
## 149 17.8
## 150 15.4
## 151 21.5
## 152 19.6
## 153 15.3
## 154 19.4
## 155 17.0
## 156 15.6
## 157 13.1
## 158 41.3
## 159 24.3
## 160 23.3
## 161 27.0
## 162 50.0
## 163 50.0
## 164 50.0
## 165 22.7
## 166 25.0
## 167 50.0
## 168 23.8
## 169 23.8
## 170 22.3
## 171 17.4
## 172 19.1
## 173 23.1
## 174 23.6
## 175 22.6
## 176 29.4
## 177 23.2
## 178 24.6
## 179 29.9
## 180 37.2
## 181 39.8
## 182 36.2
## 183 37.9
## 184 32.5
## 185 26.4
## 186 29.6
## 187 50.0
## 188 32.0
## 189 29.8
## 190 34.9
## 191 37.0
## 192 30.5
## 193 36.4
## 194 31.1
## 195 29.1
## 196 50.0
## 197 33.3
## 198 30.3
## 199 34.6
## 200 34.9
## 201 32.9
## 202 24.1
## 203 42.3
## 204 48.5
## 205 50.0
## 206 22.6
## 207 24.4
## 208 22.5
## 209 24.4
## 210 20.0
## 211 21.7
## 212 19.3
## 213 22.4
## 214 28.1
## 215 23.7
## 216 25.0
## 217 23.3
## 218 28.7
## 219 21.5
## 220 23.0
## 221 26.7
## 222 21.7
## 223 27.5
## 224 30.1
## 225 44.8
## 226 50.0
## 227 37.6
## 228 31.6
## 229 46.7
## 230 31.5
## 231 24.3
## 232 31.7
## 233 41.7
## 234 48.3
## 235 29.0
## 236 24.0
## 237 25.1
## 238 31.5
## 239 23.7
## 240 23.3
## 241 22.0
## 242 20.1
## 243 22.2
## 244 23.7
## 245 17.6
## 246 18.5
## 247 24.3
## 248 20.5
## 249 24.5
## 250 26.2
## 251 24.4
## 252 24.8
## 253 29.6
## 254 42.8
## 255 21.9
## 256 20.9
## 257 44.0
## 258 50.0
## 259 36.0
## 260 30.1
## 261 33.8
## 262 43.1
## 263 48.8
## 264 31.0
## 265 36.5
## 266 22.8
## 267 30.7
## 268 50.0
## 269 43.5
## 270 20.7
## 271 21.1
## 272 25.2
## 273 24.4
## 274 35.2
## 275 32.4
## 276 32.0
## 277 33.2
## 278 33.1
## 279 29.1
## 280 35.1
## 281 45.4
## 282 35.4
## 283 46.0
## 284 50.0
## 285 32.2
## 286 22.0
## 287 20.1
## 288 23.2
## 289 22.3
## 290 24.8
## 291 28.5
## 292 37.3
## 293 27.9
## 294 23.9
## 295 21.7
## 296 28.6
## 297 27.1
## 298 20.3
## 299 22.5
## 300 29.0
## 301 24.8
## 302 22.0
## 303 26.4
## 304 33.1
## 305 36.1
## 306 28.4
## 307 33.4
## 308 28.2
## 309 22.8
## 310 20.3
## 311 16.1
## 312 22.1
## 313 19.4
## 314 21.6
## 315 23.8
## 316 16.2
## 317 17.8
## 318 19.8
## 319 23.1
## 320 21.0
## 321 23.8
## 322 23.1
## 323 20.4
## 324 18.5
## 325 25.0
## 326 24.6
## 327 23.0
## 328 22.2
## 329 19.3
## 330 22.6
## 331 19.8
## 332 17.1
## 333 19.4
## 334 22.2
## 335 20.7
## 336 21.1
## 337 19.5
## 338 18.5
## 339 20.6
## 340 19.0
## 341 18.7
## 342 32.7
## 343 16.5
## 344 23.9
## 345 31.2
## 346 17.5
## 347 17.2
## 348 23.1
## 349 24.5
## 350 26.6
## 351 22.9
## 352 24.1
## 353 18.6
## 354 30.1
## 355 18.2
## 356 20.6
## 357 17.8
## 358 21.7
## 359 22.7
## 360 22.6
## 361 25.0
## 362 19.9
## 363 20.8
## 364 16.8
## 365 21.9
## 366 27.5
## 367 21.9
## 368 23.1
## 369 50.0
## 370 50.0
## 371 50.0
## 372 50.0
## 373 50.0
## 374 13.8
## 375 13.8
## 376 15.0
## 377 13.9
## 378 13.3
## 379 13.1
## 380 10.2
## 381 10.4
## 382 10.9
## 383 11.3
## 384 12.3
## 385 8.8
## 386 7.2
## 387 10.5
## 388 7.4
## 389 10.2
## 390 11.5
## 391 15.1
## 392 23.2
## 393 9.7
## 394 13.8
## 395 12.7
## 396 13.1
## 397 12.5
## 398 8.5
## 399 5.0
## 400 6.3
## 401 5.6
## 402 7.2
## 403 12.1
## 404 8.3
## 405 8.5
## 406 5.0
## 407 11.9
## 408 27.9
## 409 17.2
## 410 27.5
## 411 15.0
## 412 17.2
## 413 17.9
## 414 16.3
## 415 7.0
## 416 7.2
## 417 7.5
## 418 10.4
## 419 8.8
## 420 8.4
## 421 16.7
## 422 14.2
## 423 20.8
## 424 13.4
## 425 11.7
## 426 8.3
## 427 10.2
## 428 10.9
## 429 11.0
## 430 9.5
## 431 14.5
## 432 14.1
## 433 16.1
## 434 14.3
## 435 11.7
## 436 13.4
## 437 9.6
## 438 8.7
## 439 8.4
## 440 12.8
## 441 10.5
## 442 17.1
## 443 18.4
## 444 15.4
## 445 10.8
## 446 11.8
## 447 14.9
## 448 12.6
## 449 14.1
## 450 13.0
## 451 13.4
## 452 15.2
## 453 16.1
## 454 17.8
## 455 14.9
## 456 14.1
## 457 12.7
## 458 13.5
## 459 14.9
## 460 20.0
## 461 16.4
## 462 17.7
## 463 19.5
## 464 20.2
## 465 21.4
## 466 19.9
## 467 19.0
## 468 19.1
## 469 19.1
## 470 20.1
## 471 19.9
## 472 19.6
## 473 23.2
## 474 29.8
## 475 13.8
## 476 13.3
## 477 16.7
## 478 12.0
## 479 14.6
## 480 21.4
## 481 23.0
## 482 23.7
## 483 25.0
## 484 21.8
## 485 20.6
## 486 21.2
## 487 19.1
## 488 20.6
## 489 15.2
## 490 7.0
## 491 8.1
## 492 13.6
## 493 20.1
## 494 21.8
## 495 24.5
## 496 23.1
## 497 19.7
## 498 18.3
## 499 21.2
## 500 17.5
## 501 16.8
## 502 22.4
## 503 20.6
## 504 23.9
## 505 22.0
## 506 11.9
nrow(Boston)
## [1] 506
ncol(Boston)
## [1] 13
Here, Rows are collection of information alongside the price of houses in different places in Boston. The columns are representing various information related with the houses such as crime, average number of rooms, tax rate etc.
str(Boston)
## 'data.frame': 506 obs. of 13 variables:
## $ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
## $ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
## $ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
## $ chas : int 0 0 0 0 0 0 0 0 0 0 ...
## $ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
## $ rm : num 6.58 6.42 7.18 7 7.15 ...
## $ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
## $ dis : num 4.09 4.97 4.97 6.06 6.06 ...
## $ rad : int 1 2 2 3 3 3 5 5 5 5 ...
## $ tax : num 296 242 242 222 222 222 311 311 311 311 ...
## $ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
## $ lstat : num 4.98 9.14 4.03 2.94 5.33 ...
## $ medv : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
Boston$chas <- as.numeric(Boston$chas)
Boston$rad <- as.numeric(Boston$rad)
pairs(Boston)
It is really difficult ot extract information from the pairwise scatter plots. We can observe some correlation, however a detailed correlation matrix can help extract more information about it.
cor(Boston$crim, Boston)
## crim zn indus chas nox rm age
## [1,] 1 -0.2004692 0.4065834 -0.05589158 0.4209717 -0.2192467 0.3527343
## dis rad tax ptratio lstat medv
## [1,] -0.3796701 0.6255051 0.5827643 0.2899456 0.4556215 -0.3883046
Yes, by observing the above correlation between per capita crime rate with all other predictors, we can see the existence of correlation, where a positive value is showing a positive correlation and negative value showing a negative correlation.
For example, average number of room per dwelling has a negative correlation with per capita crime rate, while proportion of non-retail business acres per town has a positive correlation with per capita crime rate.
summary(Boston$crim)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00632 0.08204 0.25651 3.61352 3.67708 88.97620
summary(Boston$tax)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 187.0 279.0 330.0 408.2 666.0 711.0
summary(Boston$ptratio)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 12.60 17.40 19.05 18.46 20.20 22.00
library(ggplot2)
qplot(Boston$crim, binwidth=5, xlab= "Crime Rate", ylab= "Count of Suburbs")
## Warning: `qplot()` was deprecated in ggplot2 3.4.0.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
qplot(Boston$tax, binwidth=50, xlab="Full-value property-tax rate per $10,000", ylab="Count of Suburbs")
qplot(Boston$ptratio, binwidth=5, xlab="Pupil-teacher ratio by town", ylab="Count of Suburbs")
selection <- subset(Boston, crim>50)
nrow(selection) / nrow(Boston)
## [1] 0.007905138
As we know that, the max crime rate is 89%, we can see that only 0.8% of the neighborhood has crime rate over 50%.
selection <- subset(Boston, tax>600)
nrow(selection) / nrow(Boston)
## [1] 0.270751
As we know that, the max tax is 711, we can see that 27% of the neighborhood has pay tax over 600.
selection <- subset(Boston, ptratio>20)
nrow(selection) / nrow(Boston)
## [1] 0.3972332
As we know that, the max pupil-teacher ratio is 22, we can see that 40% of the neighborhood has pupil-teacher ratio over 20.
nrow(subset(Boston, chas==1))
## [1] 35
There are 35 suburbs that bound the Charles river.
summary(Boston$ptratio)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 12.60 17.40 19.05 18.46 20.20 22.00
The median pupil-teacher ratio is 19 pupils per teacher.
summary(Boston$crim)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00632 0.08204 0.25651 3.61352 3.67708 88.97620
summary(Boston$zn)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 0.00 0.00 11.36 12.50 100.00
summary(Boston$indus)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.46 5.19 9.69 11.14 18.10 27.74
summary(Boston$chas)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00000 0.00000 0.00000 0.06917 0.00000 1.00000
summary(Boston$nox)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3850 0.4490 0.5380 0.5547 0.6240 0.8710
summary(Boston$rm)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.561 5.886 6.208 6.285 6.623 8.780
summary(Boston$age)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.90 45.02 77.50 68.57 94.08 100.00
summary(Boston$dis)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.130 2.100 3.207 3.795 5.188 12.127
summary(Boston$rad)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 4.000 5.000 9.549 24.000 24.000
summary(Boston$lstat)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.73 6.95 11.36 12.65 16.95 37.97
summary(Boston$tax)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 187.0 279.0 330.0 408.2 666.0 711.0
summary(Boston$ptratio)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 12.60 17.40 19.05 18.46 20.20 22.00
selection <- Boston[order(Boston$medv),]
selection[1,]
## crim zn indus chas nox rm age dis rad tax ptratio lstat medv
## 399 38.3518 0 18.1 0 0.693 5.453 100 1.4896 24 666 20.2 30.59 5
Suburbs number 399 has the lowest median value of owner-occupied homes of $5000.
Following are the comparison of suburb 399 with the range of other predictors as given below,
Compared to the median and average rates of all Boston neighbourhoods, crime is quite high.
There is no residential land zone for properties larger than 25,000 square feet. This is true for over half of Boston’s neighborhoods.
Compared to most suburbs, the percentage of non-retail business acres per town is extremely high.
The suburbs that surround the Charles River do not include this one.
Nitrogen oxides concentration (parts per 10 million) is one of the highest.
Average number of rooms per dwelling is one of the lowest.
The largest percentage of owner-occupied units constructed before 1940.
The weighted mean distances to five Boston employment hubs are among the lowest.
Highest index of accessibility to radial highways.
One of the highest full-value property-tax rate per $10,000.
One of the highest pupil-teacher ratio by town.
Highest value for 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town.
One of the highest lower status of the population (percent).
Lowest median value of owner-occupied homes in $1000s.
over_7_room <- subset(Boston, rm>7)
nrow(over_7_room)
## [1] 64
over_8_room <- subset(Boston, rm>8)
nrow(over_8_room)
## [1] 13
There are 64 suburbs with more than 7 rooms per dwelling and 13 suburbs with more than 8 rooms per dwelling.
summary(over_8_room)
## crim zn indus chas
## Min. :0.02009 Min. : 0.00 Min. : 2.680 Min. :0.0000
## 1st Qu.:0.33147 1st Qu.: 0.00 1st Qu.: 3.970 1st Qu.:0.0000
## Median :0.52014 Median : 0.00 Median : 6.200 Median :0.0000
## Mean :0.71879 Mean :13.62 Mean : 7.078 Mean :0.1538
## 3rd Qu.:0.57834 3rd Qu.:20.00 3rd Qu.: 6.200 3rd Qu.:0.0000
## Max. :3.47428 Max. :95.00 Max. :19.580 Max. :1.0000
## nox rm age dis
## Min. :0.4161 Min. :8.034 Min. : 8.40 Min. :1.801
## 1st Qu.:0.5040 1st Qu.:8.247 1st Qu.:70.40 1st Qu.:2.288
## Median :0.5070 Median :8.297 Median :78.30 Median :2.894
## Mean :0.5392 Mean :8.349 Mean :71.54 Mean :3.430
## 3rd Qu.:0.6050 3rd Qu.:8.398 3rd Qu.:86.50 3rd Qu.:3.652
## Max. :0.7180 Max. :8.780 Max. :93.90 Max. :8.907
## rad tax ptratio lstat medv
## Min. : 2.000 Min. :224.0 Min. :13.00 Min. :2.47 Min. :21.9
## 1st Qu.: 5.000 1st Qu.:264.0 1st Qu.:14.70 1st Qu.:3.32 1st Qu.:41.7
## Median : 7.000 Median :307.0 Median :17.40 Median :4.14 Median :48.3
## Mean : 7.462 Mean :325.1 Mean :16.36 Mean :4.31 Mean :44.2
## 3rd Qu.: 8.000 3rd Qu.:307.0 3rd Qu.:17.40 3rd Qu.:5.12 3rd Qu.:50.0
## Max. :24.000 Max. :666.0 Max. :20.20 Max. :7.44 Max. :50.0
The crime rate is relatively low compared to the overall range, and the lstat (percentage of lower-status population) is also on the lower side. The median home value is generally high, with one exception falling below the average. The pupil-teacher ratio is typically low. The property tax rate per $10,000 is also low, suggesting that taxation is not based on house value. There are few non-retail businesses, implying that these areas are primarily residential. Most houses are older, though there are some exceptions with a very low proportion of aging buildings. These areas tend to be farther from highways, reinforcing the idea that they are predominantly residential neighborhoods, possibly located on the outskirts.