Praktikum

  1. Membaca tabel dataset
#Load dan read tabel dataset
hmohiv<-read.table("https://stats.idre.ucla.edu/stat/r/examples/asa/hmohiv.csv", sep=",", header = TRUE)

#Cek isian dataset
hmohiv
##      ID time age drug censor     entdate     enddate
## 1     1    5  46    0      1  5/15/1990  10/14/1990 
## 2     2    6  35    1      0  9/19/1989   3/20/1990 
## 3     3    8  30    1      1  4/21/1991  12/20/1991 
## 4     4    3  30    1      1   1/3/1991    4/4/1991 
## 5     5   22  36    0      1  9/18/1989   7/19/1991 
## 6     6    1  32    1      0  3/18/1991   4/17/1991 
## 7     7    7  36    1      1 11/11/1989   6/11/1990 
## 8     8    9  31    1      1 11/25/1989   8/25/1990 
## 9     9    3  48    0      1  2/11/1991   5/13/1991 
## 10   10   12  47    0      1  8/11/1989   8/11/1990 
## 11   11    2  28    1      0  4/11/1990   6/10/1990 
## 12   12   12  34    0      1  5/11/1991   5/10/1992 
## 13   13    1  44    1      1  1/17/1989   2/16/1989 
## 14   14   15  32    1      1  2/16/1991   5/17/1992 
## 15   15   34  36    0      1   4/9/1991    2/6/1994 
## 16   16    1  36    0      1   3/9/1991    4/8/1991 
## 17   17    4  54    0      1   8/3/1990   12/2/1990 
## 18   18   19  35    0      0  6/10/1990    1/8/1992 
## 19   19    3  44    1      0  6/12/1991   9/11/1991 
## 20   20    2  38    0      1   1/7/1991    3/8/1991 
## 21   21    2  40    0      0  8/29/1989  10/28/1989 
## 22   22    6  34    1      1  5/29/1989  11/27/1989 
## 23   23   60  25    0      0 11/16/1990  11/14/1995 
## 24   24   11  32    0      1   5/9/1990    4/8/1991 
## 25   25    2  42    1      0  9/10/1991   11/9/1991 
## 26   26    5  47    0      1 12/26/1991   5/26/1992 
## 27   27    4  30    0      0  5/29/1991   9/27/1991 
## 28   28    1  47    1      1   5/1/1990   5/31/1990 
## 29   29   13  41    0      1  3/24/1991   4/22/1992 
## 30   30    3  40    1      1  7/18/1989  10/17/1989 
## 31   31    2  43    0      1  9/16/1990  11/15/1990 
## 32   32    1  41    0      1  6/22/1989   7/22/1989 
## 33   33   30  30    0      1  4/27/1990  10/25/1992 
## 34   34    7  37    0      1  5/16/1990  12/14/1990 
## 35   35    4  42    1      1  2/19/1989   6/20/1989 
## 36   36    8  31    1      1  2/17/1990  10/18/1990 
## 37   37    5  39    1      1   8/6/1991    1/5/1992 
## 38   38   10  32    0      1  8/10/1989   6/10/1990 
## 39   39    2  51    0      1 12/27/1990   2/25/1991 
## 40   40    9  36    0      1  4/26/1989   1/24/1990 
## 41   41   36  43    0      1  12/4/1990   12/3/1993 
## 42   42    3  39    0      1  4/28/1991   7/28/1991 
## 43   43    9  33    0      1   7/9/1991    4/7/1992 
## 44   44    3  45    1      1 12/31/1989    4/1/1990 
## 45   45   35  33    0      1 12/20/1989  11/18/1992 
## 46   46    8  28    0      1  6/22/1991   2/20/1992 
## 47   47   11  31    0      1  4/11/1990   3/11/1991 
## 48   48   56  20    1      0  5/22/1990   1/19/1995 
## 49   49    2  44    0      0 11/11/1991   1/10/1992 
## 50   50    3  39    1      1  1/18/1991   4/19/1991 
## 51   51   15  33    0      1 11/11/1989   2/10/1991 
## 52   52    1  31    0      1  10/1/1990  10/31/1990 
## 53   53   10  33    0      1  3/20/1990   1/18/1991 
## 54   54    1  50    1      1  7/30/1990   8/29/1990 
## 55   55    7  36    1      1  7/17/1989   2/14/1990 
## 56   56    3  30    1      1 11/10/1990    2/9/1991 
## 57   57    3  42    1      1   3/5/1989    6/4/1989 
## 58   58    2  32    1      1   3/2/1991    5/1/1991 
## 59   59   32  34    0      1  9/11/1989   5/11/1992 
## 60   60    3  38    1      1  9/12/1989  12/12/1989 
## 61   61   10  33    0      0   4/8/1990    2/6/1991 
## 62   62   11  39    1      1  4/20/1989   3/20/1990 
## 63   63    3  39    1      1  1/31/1991    5/2/1991 
## 64   64    7  33    1      1  9/15/1989   4/15/1990 
## 65   65    5  34    1      1  12/7/1991    5/7/1992 
## 66   66   31  34    0      1   3/4/1990   10/1/1992 
## 67   67    5  46    1      1  4/20/1989   9/19/1989 
## 68   68   58  22    0      1  6/16/1989   4/15/1994 
## 69   69    1  44    1      1  10/1/1990  10/31/1990 
## 70   70    3  37    0      0   2/1/1991    5/3/1991 
## 71   71   43  25    0      1  5/13/1989  12/10/1992 
## 72   72    1  38    0      1   8/9/1990    9/8/1990 
## 73   73    6  32    0      1 12/18/1991   6/17/1992 
## 74   74   53  34    0      1  8/23/1990   1/21/1995 
## 75   75   14  29    0      1  1/19/1991   3/19/1992 
## 76   76    4  36    1      1  8/26/1991  12/25/1991 
## 77   77   54  21    0      1  5/16/1991  11/13/1995 
## 78   78    1  26    1      1  3/20/1989   4/19/1989 
## 79   79    1  32    1      1  10/5/1991   11/4/1991 
## 80   80    8  42    0      1  5/21/1991   1/19/1992 
## 81   81    5  40    1      1  6/10/1991   11/9/1991 
## 82   82    1  37    1      1  8/31/1989   9/30/1989 
## 83   83    1  47    0      1 12/28/1991   1/27/1992 
## 84   84    2  32    1      1  9/29/1990  11/28/1990 
## 85   85    7  41    1      0 11/20/1991   6/19/1992 
## 86   86    1  46    1      0   7/2/1989    8/1/1989 
## 87   87   10  26    1      1 10/11/1991   8/10/1992 
## 88   88   24  30    0      0 10/11/1990  10/10/1992 
## 89   89    7  32    1      1  12/5/1990    7/5/1991 
## 90   90   12  31    1      0   9/8/1989    9/8/1990 
## 91   91    4  35    0      1  4/10/1990    8/9/1990 
## 92   92   57  36    0      1 12/11/1990    9/9/1995 
## 93   93    1  41    1      1 12/15/1990   1/14/1991 
## 94   94   12  36    1      0  1/13/1989   1/13/1990 
## 95   95    7  35    1      1  8/22/1991   3/21/1992 
## 96   96    1  34    1      1   8/2/1991    9/1/1991 
## 97   97    5  28    0      1  5/22/1991  10/21/1991 
## 98   98   60  29    0      0   4/2/1990    4/1/1995 
## 99   99    2  35    1      0   5/1/1991   6/30/1991 
## 100 100    1  34    1      1  5/11/1989   6/10/1989
hmohiv$time
##   [1]  5  6  8  3 22  1  7  9  3 12  2 12  1 15 34  1  4 19  3  2  2  6 60 11  2
##  [26]  5  4  1 13  3  2  1 30  7  4  8  5 10  2  9 36  3  9  3 35  8 11 56  2  3
##  [51] 15  1 10  1  7  3  3  2 32  3 10 11  3  7  5 31  5 58  1  3 43  1  6 53 14
##  [76]  4 54  1  1  8  5  1  1  2  7  1 10 24  7 12  4 57  1 12  7  1  5 60  2  1
hmohiv$censor
##   [1] 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1
##  [38] 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1
##  [75] 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 0 1
  1. Membuat Survival Object
#Membuat survival objek berdasarkan variable ‘time’ (survival time) dan ‘censor’
library(survival)
s_obj<-Surv(hmohiv$time,hmohiv$censor)
s_obj
##   [1]  5   6+  8   3  22   1+  7   9   3  12   2+ 12   1  15  34   1   4  19+
##  [19]  3+  2   2+  6  60+ 11   2+  5   4+  1  13   3   2   1  30   7   4   8 
##  [37]  5  10   2   9  36   3   9   3  35   8  11  56+  2+  3  15   1  10   1 
##  [55]  7   3   3   2  32   3  10+ 11   3   7   5  31   5  58   1   3+ 43   1 
##  [73]  6  53  14   4  54   1   1   8   5   1   1   2   7+  1+ 10  24+  7  12+
##  [91]  4  57   1  12+  7   1   5  60+  2+  1
#Menambahkan kolom survival object pada dataset
hmohiv["s_obj"]<-NA
hmohiv$s_obj<-Surv(hmohiv$time,hmohiv$censor)
hmohiv
##      ID time age drug censor     entdate     enddate s_obj
## 1     1    5  46    0      1  5/15/1990  10/14/1990      5
## 2     2    6  35    1      0  9/19/1989   3/20/1990     6+
## 3     3    8  30    1      1  4/21/1991  12/20/1991      8
## 4     4    3  30    1      1   1/3/1991    4/4/1991      3
## 5     5   22  36    0      1  9/18/1989   7/19/1991     22
## 6     6    1  32    1      0  3/18/1991   4/17/1991     1+
## 7     7    7  36    1      1 11/11/1989   6/11/1990      7
## 8     8    9  31    1      1 11/25/1989   8/25/1990      9
## 9     9    3  48    0      1  2/11/1991   5/13/1991      3
## 10   10   12  47    0      1  8/11/1989   8/11/1990     12
## 11   11    2  28    1      0  4/11/1990   6/10/1990     2+
## 12   12   12  34    0      1  5/11/1991   5/10/1992     12
## 13   13    1  44    1      1  1/17/1989   2/16/1989      1
## 14   14   15  32    1      1  2/16/1991   5/17/1992     15
## 15   15   34  36    0      1   4/9/1991    2/6/1994     34
## 16   16    1  36    0      1   3/9/1991    4/8/1991      1
## 17   17    4  54    0      1   8/3/1990   12/2/1990      4
## 18   18   19  35    0      0  6/10/1990    1/8/1992    19+
## 19   19    3  44    1      0  6/12/1991   9/11/1991     3+
## 20   20    2  38    0      1   1/7/1991    3/8/1991      2
## 21   21    2  40    0      0  8/29/1989  10/28/1989     2+
## 22   22    6  34    1      1  5/29/1989  11/27/1989      6
## 23   23   60  25    0      0 11/16/1990  11/14/1995    60+
## 24   24   11  32    0      1   5/9/1990    4/8/1991     11
## 25   25    2  42    1      0  9/10/1991   11/9/1991     2+
## 26   26    5  47    0      1 12/26/1991   5/26/1992      5
## 27   27    4  30    0      0  5/29/1991   9/27/1991     4+
## 28   28    1  47    1      1   5/1/1990   5/31/1990      1
## 29   29   13  41    0      1  3/24/1991   4/22/1992     13
## 30   30    3  40    1      1  7/18/1989  10/17/1989      3
## 31   31    2  43    0      1  9/16/1990  11/15/1990      2
## 32   32    1  41    0      1  6/22/1989   7/22/1989      1
## 33   33   30  30    0      1  4/27/1990  10/25/1992     30
## 34   34    7  37    0      1  5/16/1990  12/14/1990      7
## 35   35    4  42    1      1  2/19/1989   6/20/1989      4
## 36   36    8  31    1      1  2/17/1990  10/18/1990      8
## 37   37    5  39    1      1   8/6/1991    1/5/1992      5
## 38   38   10  32    0      1  8/10/1989   6/10/1990     10
## 39   39    2  51    0      1 12/27/1990   2/25/1991      2
## 40   40    9  36    0      1  4/26/1989   1/24/1990      9
## 41   41   36  43    0      1  12/4/1990   12/3/1993     36
## 42   42    3  39    0      1  4/28/1991   7/28/1991      3
## 43   43    9  33    0      1   7/9/1991    4/7/1992      9
## 44   44    3  45    1      1 12/31/1989    4/1/1990      3
## 45   45   35  33    0      1 12/20/1989  11/18/1992     35
## 46   46    8  28    0      1  6/22/1991   2/20/1992      8
## 47   47   11  31    0      1  4/11/1990   3/11/1991     11
## 48   48   56  20    1      0  5/22/1990   1/19/1995    56+
## 49   49    2  44    0      0 11/11/1991   1/10/1992     2+
## 50   50    3  39    1      1  1/18/1991   4/19/1991      3
## 51   51   15  33    0      1 11/11/1989   2/10/1991     15
## 52   52    1  31    0      1  10/1/1990  10/31/1990      1
## 53   53   10  33    0      1  3/20/1990   1/18/1991     10
## 54   54    1  50    1      1  7/30/1990   8/29/1990      1
## 55   55    7  36    1      1  7/17/1989   2/14/1990      7
## 56   56    3  30    1      1 11/10/1990    2/9/1991      3
## 57   57    3  42    1      1   3/5/1989    6/4/1989      3
## 58   58    2  32    1      1   3/2/1991    5/1/1991      2
## 59   59   32  34    0      1  9/11/1989   5/11/1992     32
## 60   60    3  38    1      1  9/12/1989  12/12/1989      3
## 61   61   10  33    0      0   4/8/1990    2/6/1991    10+
## 62   62   11  39    1      1  4/20/1989   3/20/1990     11
## 63   63    3  39    1      1  1/31/1991    5/2/1991      3
## 64   64    7  33    1      1  9/15/1989   4/15/1990      7
## 65   65    5  34    1      1  12/7/1991    5/7/1992      5
## 66   66   31  34    0      1   3/4/1990   10/1/1992     31
## 67   67    5  46    1      1  4/20/1989   9/19/1989      5
## 68   68   58  22    0      1  6/16/1989   4/15/1994     58
## 69   69    1  44    1      1  10/1/1990  10/31/1990      1
## 70   70    3  37    0      0   2/1/1991    5/3/1991     3+
## 71   71   43  25    0      1  5/13/1989  12/10/1992     43
## 72   72    1  38    0      1   8/9/1990    9/8/1990      1
## 73   73    6  32    0      1 12/18/1991   6/17/1992      6
## 74   74   53  34    0      1  8/23/1990   1/21/1995     53
## 75   75   14  29    0      1  1/19/1991   3/19/1992     14
## 76   76    4  36    1      1  8/26/1991  12/25/1991      4
## 77   77   54  21    0      1  5/16/1991  11/13/1995     54
## 78   78    1  26    1      1  3/20/1989   4/19/1989      1
## 79   79    1  32    1      1  10/5/1991   11/4/1991      1
## 80   80    8  42    0      1  5/21/1991   1/19/1992      8
## 81   81    5  40    1      1  6/10/1991   11/9/1991      5
## 82   82    1  37    1      1  8/31/1989   9/30/1989      1
## 83   83    1  47    0      1 12/28/1991   1/27/1992      1
## 84   84    2  32    1      1  9/29/1990  11/28/1990      2
## 85   85    7  41    1      0 11/20/1991   6/19/1992     7+
## 86   86    1  46    1      0   7/2/1989    8/1/1989     1+
## 87   87   10  26    1      1 10/11/1991   8/10/1992     10
## 88   88   24  30    0      0 10/11/1990  10/10/1992    24+
## 89   89    7  32    1      1  12/5/1990    7/5/1991      7
## 90   90   12  31    1      0   9/8/1989    9/8/1990    12+
## 91   91    4  35    0      1  4/10/1990    8/9/1990      4
## 92   92   57  36    0      1 12/11/1990    9/9/1995     57
## 93   93    1  41    1      1 12/15/1990   1/14/1991      1
## 94   94   12  36    1      0  1/13/1989   1/13/1990    12+
## 95   95    7  35    1      1  8/22/1991   3/21/1992      7
## 96   96    1  34    1      1   8/2/1991    9/1/1991      1
## 97   97    5  28    0      1  5/22/1991  10/21/1991      5
## 98   98   60  29    0      0   4/2/1990    4/1/1995    60+
## 99   99    2  35    1      0   5/1/1991   6/30/1991     2+
## 100 100    1  34    1      1  5/11/1989   6/10/1989      1

Penugasan

  1. Membaca tabel dataset
#Ambil ovarian dataset di R:
data(ovarian)
## Warning in data(ovarian): data set 'ovarian' not found
ovarian
##    futime fustat     age resid.ds rx ecog.ps
## 1      59      1 72.3315        2  1       1
## 2     115      1 74.4932        2  1       1
## 3     156      1 66.4658        2  1       2
## 4     421      0 53.3644        2  2       1
## 5     431      1 50.3397        2  1       1
## 6     448      0 56.4301        1  1       2
## 7     464      1 56.9370        2  2       2
## 8     475      1 59.8548        2  2       2
## 9     477      0 64.1753        2  1       1
## 10    563      1 55.1781        1  2       2
## 11    638      1 56.7562        1  1       2
## 12    744      0 50.1096        1  2       1
## 13    769      0 59.6301        2  2       2
## 14    770      0 57.0521        2  2       1
## 15    803      0 39.2712        1  1       1
## 16    855      0 43.1233        1  1       2
## 17   1040      0 38.8932        2  1       2
## 18   1106      0 44.6000        1  1       1
## 19   1129      0 53.9068        1  2       1
## 20   1206      0 44.2055        2  2       1
## 21   1227      0 59.5890        1  2       2
## 22    268      1 74.5041        2  1       2
## 23    329      1 43.1370        2  1       1
## 24    353      1 63.2192        1  2       2
## 25    365      1 64.4247        2  2       1
## 26    377      0 58.3096        1  2       1
  1. Membuat Survival Object
#Membuat survival objek berdasarkan variable ‘futime’ (survival time) dan ‘fustat’
library(survival)
s_obj2<-Surv(ovarian$futime,ovarian$fustat)
s_obj2
##  [1]   59   115   156   421+  431   448+  464   475   477+  563   638   744+
## [13]  769+  770+  803+  855+ 1040+ 1106+ 1129+ 1206+ 1227+  268   329   353 
## [25]  365   377+
#Menambahkan kolom survival object pada dataset
ovarian["s_obj2"]<-NA
ovarian$s_obj2<-Surv(ovarian$futime,ovarian$fustat)
ovarian
##    futime fustat     age resid.ds rx ecog.ps s_obj2
## 1      59      1 72.3315        2  1       1     59
## 2     115      1 74.4932        2  1       1    115
## 3     156      1 66.4658        2  1       2    156
## 4     421      0 53.3644        2  2       1   421+
## 5     431      1 50.3397        2  1       1    431
## 6     448      0 56.4301        1  1       2   448+
## 7     464      1 56.9370        2  2       2    464
## 8     475      1 59.8548        2  2       2    475
## 9     477      0 64.1753        2  1       1   477+
## 10    563      1 55.1781        1  2       2    563
## 11    638      1 56.7562        1  1       2    638
## 12    744      0 50.1096        1  2       1   744+
## 13    769      0 59.6301        2  2       2   769+
## 14    770      0 57.0521        2  2       1   770+
## 15    803      0 39.2712        1  1       1   803+
## 16    855      0 43.1233        1  1       2   855+
## 17   1040      0 38.8932        2  1       2  1040+
## 18   1106      0 44.6000        1  1       1  1106+
## 19   1129      0 53.9068        1  2       1  1129+
## 20   1206      0 44.2055        2  2       1  1206+
## 21   1227      0 59.5890        1  2       2  1227+
## 22    268      1 74.5041        2  1       2    268
## 23    329      1 43.1370        2  1       1    329
## 24    353      1 63.2192        1  2       2    353
## 25    365      1 64.4247        2  2       1    365
## 26    377      0 58.3096        1  2       1   377+