This analysis is focused on identifying relationship between mpg and transmission mode. We have used mtcars dataset for this analysis. The following are the findings of this study: - Vehicles with manual transmission have higher mpg compared to the vehicles with automatic transmission. - The best multivariate linear regression model to predict mpg includes transmission, weight and qsec as regressors.
require(dplyr)
require(ggplot2)
require(GGally)
data("mtcars")
mtcars$am <- factor(mtcars$am,
levels = c(0,1),
labels = c("Automatic", "Manual"))
g <- ggplot(mtcars, aes(x = am, y = mpg))
g <- g + geom_boxplot(colour = "steelblue", aes(fill=am))
g + labs(x = "Transmission Mode", y = "Miles per Galon (mpg)", title = "MPG Comparision")
mean(mtcars$mpg)
## [1] 20.09062
aggdata <- aggregate(mtcars$mpg,
by=list(Transmission = mtcars$am),
FUN= mean)
names(aggdata) = c("Transmission", "Mean")
aggdata
## Transmission Mean
## 1 Automatic 17.14737
## 2 Manual 24.39231
fit1 <- lm(mpg ~ am, data = mtcars)
summary(fit1)$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.147368 1.124603 15.247492 1.133983e-15
## amManual 7.244939 1.764422 4.106127 2.850207e-04
summary(fit1)$r.squared
## [1] 0.3597989
summary(fit1)$adj.r.squared
## [1] 0.3384589
fit2 <- update(fit1, mpg ~ am + wt)
fit3 <- update(fit2, mpg ~ am + wt + qsec)
fit4 <- update(fit2, mpg ~ am + wt + qsec + gear)
fit5 <- update(fit1, mpg ~ am + wt + qsec + gear + carb)
comptab <- matrix(c(summary(fit1)$adj.r.squared, summary(fit2)$adj.r.squared, summary(fit3)$adj.r.squared, summary(fit4)$adj.r.squared, summary(fit5)$adj.r.squared), nrow = 1)
colnames(comptab) <- c("Fit1", "Fit2", "Fit3", "Fit4", "Fit5")
rownames(comptab) <- "Adj R Sqr"
comptab
## Fit1 Fit2 Fit3 Fit4 Fit5
## Adj R Sqr 0.3384589 0.7357889 0.8335561 0.8275166 0.8323171
summary(fit3)$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.617781 6.9595930 1.381946 1.779152e-01
## amManual 2.935837 1.4109045 2.080819 4.671551e-02
## wt -3.916504 0.7112016 -5.506882 6.952711e-06
## qsec 1.225886 0.2886696 4.246676 2.161737e-04
#Getting Confidence Interval
sumCoef <- summary(fit3)$coefficients
sumCoef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.617781 6.9595930 1.381946 1.779152e-01
## amManual 2.935837 1.4109045 2.080819 4.671551e-02
## wt -3.916504 0.7112016 -5.506882 6.952711e-06
## qsec 1.225886 0.2886696 4.246676 2.161737e-04
anova(fit1, fit2, fit3, fit4, fit5)
## Analysis of Variance Table
##
## Model 1: mpg ~ am
## Model 2: mpg ~ am + wt
## Model 3: mpg ~ am + wt + qsec
## Model 4: mpg ~ am + wt + qsec + gear
## Model 5: mpg ~ am + wt + qsec + gear + carb
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 30 720.90
## 2 29 278.32 1 442.58 72.6616 5.273e-09 ***
## 3 28 169.29 1 109.03 17.9010 0.0002554 ***
## 4 27 169.16 1 0.12 0.0201 0.8882207
## 5 26 158.36 1 10.80 1.7730 0.1945735
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mtcars$am <- as.numeric(mtcars$am)
cor(mtcars)
## mpg cyl disp hp drat wt
## mpg 1.0000000 -0.8521620 -0.8475514 -0.7761684 0.68117191 -0.8676594
## cyl -0.8521620 1.0000000 0.9020329 0.8324475 -0.69993811 0.7824958
## disp -0.8475514 0.9020329 1.0000000 0.7909486 -0.71021393 0.8879799
## hp -0.7761684 0.8324475 0.7909486 1.0000000 -0.44875912 0.6587479
## drat 0.6811719 -0.6999381 -0.7102139 -0.4487591 1.00000000 -0.7124406
## wt -0.8676594 0.7824958 0.8879799 0.6587479 -0.71244065 1.0000000
## qsec 0.4186840 -0.5912421 -0.4336979 -0.7082234 0.09120476 -0.1747159
## vs 0.6640389 -0.8108118 -0.7104159 -0.7230967 0.44027846 -0.5549157
## am 0.5998324 -0.5226070 -0.5912270 -0.2432043 0.71271113 -0.6924953
## gear 0.4802848 -0.4926866 -0.5555692 -0.1257043 0.69961013 -0.5832870
## carb -0.5509251 0.5269883 0.3949769 0.7498125 -0.09078980 0.4276059
## qsec vs am gear carb
## mpg 0.41868403 0.6640389 0.59983243 0.4802848 -0.55092507
## cyl -0.59124207 -0.8108118 -0.52260705 -0.4926866 0.52698829
## disp -0.43369788 -0.7104159 -0.59122704 -0.5555692 0.39497686
## hp -0.70822339 -0.7230967 -0.24320426 -0.1257043 0.74981247
## drat 0.09120476 0.4402785 0.71271113 0.6996101 -0.09078980
## wt -0.17471588 -0.5549157 -0.69249526 -0.5832870 0.42760594
## qsec 1.00000000 0.7445354 -0.22986086 -0.2126822 -0.65624923
## vs 0.74453544 1.0000000 0.16834512 0.2060233 -0.56960714
## am -0.22986086 0.1683451 1.00000000 0.7940588 0.05753435
## gear -0.21268223 0.2060233 0.79405876 1.0000000 0.27407284
## carb -0.65624923 -0.5696071 0.05753435 0.2740728 1.00000000
#g <- ggpairs(mtcars, lower = list(continuous = "smooth"), params = c(method = "loess"))
x <- mtcars$wt
y <- mtcars$mpg
g <- ggplot(data.frame(mtcars$mpg, y = resid(fit3)), aes(x = x, y = y))
g <- g + geom_hline(yintercept = 0, size =2)
g <- g + geom_point(size = 7, colour = "black", alpha = 0.4)
g <- g + geom_point(size = 5, colour = "red", alpha = 0.4)
g <- g + xlab("X") + ylab("Residuals")
#Getting all residual plot
par(mfrow = c(2, 2))
plot(fit3)
sumCoef[1,1] + c(-1, 1) * qt(.975, df = fit3$df) * sumCoef[1, 2]
## [1] -4.638299 23.873860
sumCoef[2,1] + c(-1, 1) * qt(.975, df = fit3$df) * sumCoef[2, 2]
## [1] 0.04573031 5.82594408
sumCoef[3,1] + c(-1, 1) * qt(.975, df = fit3$df) * sumCoef[3, 2]
## [1] -5.373334 -2.459673
sumCoef[4,1] + c(-1, 1) * qt(.975, df = fit3$df) * sumCoef[4, 2]
## [1] 0.6345732 1.8171987