library(ISLR2)
library(readr)
Auto <- read_csv("Auto.csv")
## Rows: 397 Columns: 9
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): horsepower, name
## dbl (7): mpg, cylinders, displacement, weight, acceleration, year, origin
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(Auto)
## # A tibble: 6 × 9
## mpg cylinders displacement horsepower weight acceleration year origin name
## <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 18 8 307 130 3504 12 70 1 chev…
## 2 15 8 350 165 3693 11.5 70 1 buic…
## 3 18 8 318 150 3436 11 70 1 plym…
## 4 16 8 304 150 3433 12 70 1 amc …
## 5 17 8 302 140 3449 10.5 70 1 ford…
## 6 15 8 429 198 4341 10 70 1 ford…
data(Auto)
lm_fit=lm(mpg~horsepower,Auto)
summary(lm_fit)
##
## Call:
## lm(formula = mpg ~ horsepower, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.5710 -3.2592 -0.3435 2.7630 16.9240
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.935861 0.717499 55.66 <2e-16 ***
## horsepower -0.157845 0.006446 -24.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.906 on 390 degrees of freedom
## Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
## F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16
#i.Yes, there is a relationship between horsepower and mpg as deterined by testing the null hypothesis of all regression coefficients equal to zero. Since the F-statistic is far larger than 1 and the p-value of the F-statistic is close to zero we can reject the null hypothesis and state there is a statistically significant relationship between horsepower and mpg.
#ii.The relationship between horsepower and mpg is moderately strong, with an R-squared value of 60.59%, meaning horsepower explains about 60.59% of the variation in mpg. The negative coefficient indicates that as horsepower increases, mpg decreases, showing an inverse relationship.
#iii.MPG has a negative linear relationship with horsepower. For every unit increase in horsepower, the mpg falls by -0.158mpg.
#iv.
predict(lm_fit, data.frame(horsepower=c(98)), interval='prediction')
## fit lwr upr
## 1 24.46708 14.8094 34.12476
predict(lm_fit, data.frame(horsepower=c(98)), interval='confidence')
## fit lwr upr
## 1 24.46708 23.97308 24.96108
#b
attach(Auto)
plot(horsepower, mpg)
abline(lm_fit)

#c
par(mfrow=c(2,2))
plot(lm_fit)
