data <- read_excel("../00_data/MyData.xlsx")
data
## # A tibble: 32 × 7
## Team `Avg Home Capacity` PF PD SoS WL Playoffs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 Arizona Cardinals 0.967 361 -81 1.8 0.344 None
## 2 Atlanta Falcons 1.01 381 -18 1.1 0.438 None
## 3 Baltimore Ravens* 0.995 531 249 0.1 0.875 Divisional
## 4 Buffalo Bills+ 0.961 314 55 -1.3 0.625 Wildcard
## 5 Carolina Panthers 0.965 340 -130 1.1 0.313 None
## 6 Chicago Bears 1.01 280 -18 0.2 0.5 None
## 7 Cincinnati Bengals 0.720 279 -141 1.5 0.125 None
## 8 Cleveland Browns 1 335 -58 1.7 0.375 None
## 9 Dallas Cowboys 1.14 434 113 -1.8 0.5 None
## 10 Denver Broncos 0.998 282 -34 0 0.438 None
## # ℹ 22 more rows
How do NFL teams’ scored points (PF) affect their performance?
ggplot(data = data) +
geom_histogram(mapping = aes(x = PF))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
data %>%
ggplot(aes(x = PF)) +
geom_histogram(binwidth = 12.5)
ggplot(data = data, mapping = aes(x = Playoffs, y = PF)) +
geom_boxplot()
ggplot(data = data) +
geom_point(mapping = aes(x = PF, y = WL)) +
geom_smooth(aes(x = PF, y = WL))
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
library(modelr)
## Warning: package 'modelr' was built under R version 4.4.3
mod <- lm(log(WL) ~ log(PF), data = data)
PF_Mod <- data %>%
modelr::add_residuals(mod) %>%
mutate(resid = exp(resid))
PF_Mod %>%
ggplot(aes(WL, resid)) +
geom_point() +
geom_smooth()
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'