Sys.setenv(LANG = "en") # make R environment in english

require(haven)
require(srvyr)
require(tidyverse)
require(MASS)
require(MVN)
require(RVAideMemoire)
require(lavaan) # get SEM, CFA, MGCFA programs
require(leaps) # FactoMineR() doesn't seem to work without leaps installed or loaded
require(FactoMineR) # get PCA() function
require(nFactors) # get nScree() and parallel() functions
require(GPArotation) # get quartimax rotation
require(psych) # get fa.parallel() and VSS() functions 
require(semPlot)
require(psy)
require(dplyr)
require(mice)
require(rms) # for rcs() but it may require install.packages("rstudioapi")
require(NlsyLinks)
require(floor) # to create bins
## Loading required package: floor
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'floor'
Mc<-function(object, digits=3){ # McDonald's NC Index, from Beaujean
fit<-inspect(object, "fit")
chisq=unlist(fit["chisq"])
df<-unlist(fit["df"])
n<-object@SampleStats@ntotal
ncp<-max(chisq-df,0)
d<-ncp/(n-1)
Mc=exp((d)*-.5)
Mc
}

# RMSEAd functions taken from Savalei et al. (2023) : https://osf.io/ne5ar for RMSEA CI and https://osf.io/cfubt for RMSEAd
# make sure you DO NOT FORGET TO ADJUST the sample size in the N function or it will produce wrong numbers

RMSEA.CI<-function(T,df,N,G){
  
#functions taken from lavaan (lav_fit_measures.R)
lower.lambda <- function(lambda) {
  (pchisq(T, df=df, ncp=lambda) - 0.95)
}
upper.lambda <- function(lambda) {
  (pchisq(T, df=df, ncp=lambda) - 0.05)
}

#RMSEA CI
lambda.l <- try(uniroot(f=lower.lambda, lower=0, upper=T)$root,silent=TRUE) 
if(inherits(lambda.l, "try-error")) { lambda.l <- NA; RMSEA.CI.l<-NA 
} else { if(lambda.l<0){
  RMSEA.CI.l=0
} else {
  RMSEA.CI.l<-sqrt(lambda.l*G/((N-1)*df))
}
}

N.RMSEA <- max(N, T*4) 
lambda.u <- try(uniroot(f=upper.lambda, lower=0,upper=N.RMSEA)$root,silent=TRUE)
if(inherits(lambda.u, "try-error")) { lambda.u <- NA; RMSEA.CI.u<-NA 
} else { if(lambda.u<0){
  RMSEA.CI.u=0
} else {
  RMSEA.CI.u<-sqrt(lambda.u*G/((N-1)*df))
}
}
RMSEA.CI<-c(RMSEA.CI.l,RMSEA.CI.u)
return(RMSEA.CI)
}

#p-values associated with the critical values of the RMSEA for most common cutoffs
pvals<-function(T,df,N,G){
  RMSEA0<-c(0,.01,.05,.06,.08,.1)
  eps0<-df*RMSEA0^2/G 
  nonc<-eps0*(N-G) 
  pvals<-pchisq(T,df=df,ncp=nonc)
  names(pvals)<-c("RMSEA>0","RMSEA>.01","RMSEA>.05","RMSEA>.06","RMSEA>.08","RMSEA>.10")
  return(pvals)
}  

#based on Yuan & Chan (2016)
min.tol<-function(T,df,N,G){

 lower.lambda.mintol <- function(lambda) {
 (pchisq(T, df=df, ncp=lambda) - 0.05)
}

l.min.tol<-try(uniroot(f=lower.lambda.mintol, lower=0, upper=T)$root)
l.min.tol
RMSEA.mintol<-sqrt(l.min.tol*G/((N-1)*df))
RMSEA.mintol
out<-c(l.min.tol,RMSEA.mintol)
names(out)<-c("ncp(T)","RMSEA.pop")
return(out)
}

d<-read_csv(file = "C:\\Users\\mh198\\OneDrive\\Documents\\Data\\NLSY\\NLSY97 IQ wage.csv")
## Rows: 8984 Columns: 76
## ── Column specification ────────────────────────────────────────────────
## Delimiter: ","
## dbl (76): R0000100, R0536300, R0536401, R0536402, R0538700, R0554500...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#Users should note that the final abilitly estimates may have positive or negative values because the scores are on the scale of the original calibration study, which set the mean of the latent ability distribution to 0 and the standard deviation to 1 in the calibration population of respondents.
#Because negative codes are reserved for missing data in the NLSY97 data set, one variable cannot contain both positive and negative scores. Therefore, the final ability estimates are reported in two separate variables, one for positive scores and one for negative scores.
#Each respondent will have a valid value for only one of the two variables. Researchers must combine the variables to examine the scores for the full set of respondents.

d$R9705200[d$R9705200<0] <- NA 
d$R9705300[d$R9705300<0] <- NA 
d$R9705400[d$R9705400<0] <- NA 
d$R9705500[d$R9705500<0] <- NA 
d$R9705600[d$R9705600<0] <- NA 
d$R9705700[d$R9705700<0] <- NA 
d$R9705800[d$R9705800<0] <- NA 
d$R9705900[d$R9705900<0] <- NA 
d$R9706000[d$R9706000<0] <- NA 
d$R9706100[d$R9706100<0] <- NA 
d$R9706200[d$R9706200<0] <- NA 
d$R9706300[d$R9706300<0] <- NA 

d$R9706400[d$R9706400<0] <- NA 
d$R9706500[d$R9706500<0] <- NA 
d$R9706600[d$R9706600<0] <- NA 
d$R9706700[d$R9706700<0] <- NA 
d$R9706800[d$R9706800<0] <- NA 
d$R9706900[d$R9706900<0] <- NA 
d$R9707000[d$R9707000<0] <- NA 
d$R9707100[d$R9707100<0] <- NA 
d$R9707200[d$R9707200<0] <- NA 
d$R9707300[d$R9707300<0] <- NA 
d$R9707400[d$R9707400<0] <- NA 
d$R9707500[d$R9707500<0] <- NA 

d$R9706400<-d$R9706400*-1
d$R9706500<-d$R9706500*-1
d$R9706600<-d$R9706600*-1
d$R9706700<-d$R9706700*-1
d$R9706800<-d$R9706800*-1 
d$R9706900<-d$R9706900*-1 
d$R9707000<-d$R9707000*-1
d$R9707100<-d$R9707100*-1
d$R9707200<-d$R9707200*-1 
d$R9707300<-d$R9707300*-1
d$R9707400<-d$R9707400*-1 
d$R9707500<-d$R9707500*-1 

d$ssgs<- rowSums(cbind(d$R9705200, d$R9706400), na.rm = TRUE)
d$ssar<- rowSums(cbind(d$R9705300, d$R9706500), na.rm = TRUE)
d$sswk<- rowSums(cbind(d$R9705400, d$R9706600), na.rm = TRUE)
d$sspc<- rowSums(cbind(d$R9705500, d$R9706700), na.rm = TRUE)
d$ssno<- rowSums(cbind(d$R9705600, d$R9706800), na.rm = TRUE)
d$sscs<- rowSums(cbind(d$R9705700, d$R9706900), na.rm = TRUE)
d$ssai<- rowSums(cbind(d$R9705800, d$R9707000), na.rm = TRUE)
d$sssi<- rowSums(cbind(d$R9705900, d$R9707100), na.rm = TRUE)
d$ssmk<- rowSums(cbind(d$R9706000, d$R9707200), na.rm = TRUE)
d$ssmc<- rowSums(cbind(d$R9706100, d$R9707300), na.rm = TRUE)
d$ssei<- rowSums(cbind(d$R9706200, d$R9707400), na.rm = TRUE)
d$ssao<- rowSums(cbind(d$R9706300, d$R9707500), na.rm = TRUE)

d$bw<- rep(NA)
d$bw[d$R0538700==2] <- 1
d$bw[d$R0538700==1 & d$R1482600==4] <- 3
d$bhw<- rep(NA)
d$bhw[d$R0538700==2] <- 1
d$bhw[d$R1482600==2] <- 2
d$bhw[d$R0538700==1 & d$R1482600==4] <- 3

d$sweight<- d$R3923701 
d$id<-d$R0000100
d$hhid<-d$R1193000
d$dadeduc<-ifelse(d$R1302400 < 0, NA, d$R1302400)
d$momeduc<-ifelse(d$R1302500 < 0, NA, d$R1302500)
d$pareduc<- rowMeans(d[, c("momeduc", "dadeduc")], na.rm = TRUE)
d$educ2011<- ifelse(d$T6656500 < 0, NA, d$T6656500)
d$birth<-d$R0536401/100*8.333
d$age<-1997-(d$birth+d$R0536402)
d$agebin<- floor(d$age)
d$agec<-d$age-14.50002
d$agec2<- d$agec^2
d$sex<-d$R0536300-1 # hence 0=male 1=female
d$sexage<-d$agec*d$sex

d$R9829600 <- ifelse(d$R9829600 >= 0, d$R9829600, NA) # ASVAB original variable
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw) %>% summarise(MEAN = survey_mean(R9829600, na.rm = TRUE), SD = survey_sd(R9829600, na.rm = TRUE))
## # A tibble: 4 Ă— 4
##     bhw   MEAN MEAN_se     SD
##   <dbl>  <dbl>   <dbl>  <dbl>
## 1     1 30206.    666. 24531.
## 2     2 38799.    838. 26668.
## 3     3 57207.    470. 27438.
## 4    NA 55223.   1762. 27876.
d$asvab1<-(d$R9829600-56544)/27608 # uses the White non-weighted mean and SD
d$asvabz<- scale(d$R9829600, center = TRUE, scale = TRUE)
d$asvab<- d$asvabz*15+100
cor(d$asvabz, d$asvab, use="pairwise.complete.obs", method="pearson")
##      [,1]
## [1,]    1
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(asvab, na.rm = TRUE), SD = survey_sd(asvab, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  102.   0.280  15.2
## 2     1  103.   0.269  14.4
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex, bhw) %>% summarise(MEAN = survey_mean(asvab, na.rm = TRUE), SD = survey_sd(asvab, na.rm = TRUE))
## # A tibble: 8 Ă— 5
## # Groups:   sex [2]
##     sex   bhw  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     0     1  91.0   0.476  12.1
## 2     0     2  96.3   0.620  14.0
## 3     0     3 106.    0.348  14.6
## 4     0    NA 105.    1.34   15.0
## 5     1     1  93.5   0.489  13.0
## 6     1     2  97.0   0.592  13.4
## 7     1     3 107.    0.334  13.6
## 8     1    NA 105.    1.22   13.7
d <- filter(d, as.vector(!is.na(R0536401)) & as.vector(!is.na(R0536402)) & as.vector(!is.na(asvab)))
nrow(d) # n=7093
## [1] 7093
d <- d %>% mutate(across(starts_with("ss"), ~scale(.x, center = TRUE, scale = TRUE)))
datagroup <- dplyr::select(d, starts_with("ss"))
nrow(datagroup) # N=7093
## [1] 7093
efa_fit = fa(datagroup[,1:10], nfactors=1, rotate="none", scores="Bartlett") # Bartlett necessary if the factor is used as dependent variable in a regression but here produces same numbers as the default "regression", also could use weight=datagroup$sweight but it didn't change the results
d$efa = efa_fit$scores[, 1]
d$efa<- d$efa*15+100
describeBy(d$efa) 
## Warning in describeBy(d$efa): no grouping variable requested
##    vars    n mean    sd median trimmed   mad   min    max range  skew
## X1    1 7093  100 15.39 100.73  100.25 16.55 58.73 146.25 87.52 -0.12
##    kurtosis   se
## X1    -0.54 0.18
describeBy(d$asvab) 
## Warning in describeBy(d$asvab): no grouping variable requested
##    vars    n mean sd median trimmed   mad  min    max range skew
## X1    1 7093  100 15  98.75   99.56 19.14 76.7 128.12 51.42  0.2
##    kurtosis   se
## X1    -1.19 0.18
cor(d$efa, d$asvab, use="pairwise.complete.obs", method="pearson")
##          [,1]
## [1,] 0.904695
datagroup<- na.omit(datagroup)
describeBy(d$efa, d$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n   mean   sd median trimmed   mad  min    max range  skew
## X1    1 3590 100.12 16.2 100.81  100.33 17.63 61.4 146.25 84.85 -0.08
##    kurtosis   se
## X1    -0.62 0.27
## ------------------------------------------------------ 
## group: 1
##    vars    n  mean    sd median trimmed   mad   min    max range  skew
## X1    1 3503 99.87 14.52 100.59   100.2 15.45 58.73 142.07 83.34 -0.17
##    kurtosis   se
## X1    -0.49 0.25
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(efa, na.rm = TRUE), SD = survey_sd(efa, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  103.   0.289  15.9
## 2     1  103.   0.260  14.1
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex, bhw) %>% summarise(MEAN = survey_mean(efa, na.rm = TRUE), SD = survey_sd(efa, na.rm = TRUE))
## # A tibble: 8 Ă— 5
## # Groups:   sex [2]
##     sex   bhw  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     0     1  90.7   0.553  14.2
## 2     0     2  97.2   0.635  14.5
## 3     0     3 107.    0.352  14.7
## 4     0    NA 105.    1.42   15.9
## 5     1     1  92.4   0.491  13.4
## 6     1     2  96.5   0.584  13.3
## 7     1     3 106.    0.319  12.9
## 8     1    NA 104.    1.19   13.3
d<- d %>% mutate(sibling = case_when(
R1309100>=13 & R1309100<=14 ~ 0, # brother and sister
R1309100>=15 & R1309100<=28 ~ 1, # brother/sister (half, step, adoptive, foster)
R1309100>=82 & R1309100<=83 ~ 1, # cousin
R1309100==85 ~ 1)) # other non-relative
#d <- d %>% filter(!(R4521500 %in% c(1))) ## remove twins and triplets
#d$ssno<- scale(d$ssno, center = TRUE, scale = TRUE)
#d$sscs<- scale(d$sscs, center = TRUE, scale = TRUE)
dk<-d

d %>%
as_survey_design(ids = id, weights = sweight) %>%
group_by(sex) %>%
summarise(across(starts_with("ss"), list(MEAN = ~ survey_mean(.), SD = ~ survey_sd(.)),
.names = "{.col}_{.fn}")) %>%
pivot_longer(cols = starts_with("ss"), names_to = c(".value", "variable"), names_sep = "_")
## Warning: Expected 2 pieces. Additional pieces discarded in 12 rows [2, 5, 8, 11,
## 14, 17, 20, 23, 26, 29, 32, 35].
## # A tibble: 6 Ă— 14
##     sex variable   ssgs   ssar   sswk   sspc     ssno    sscs    ssai
##   <dbl> <chr>     <dbl>  <dbl>  <dbl>  <dbl>    <dbl>   <dbl>   <dbl>
## 1     0 MEAN     0.276  0.194  0.179  0.0415 -0.00164 -0.0803  0.382 
## 2     0 MEAN     0.0190 0.0187 0.0184 0.0188  0.0198   0.0189  0.0210
## 3     0 SD       1.04   1.02   1.01   1.02    1.06     1.02    1.12  
## 4     1 MEAN     0.120  0.148  0.181  0.284   0.173    0.271  -0.0974
## 5     1 MEAN     0.0169 0.0169 0.0175 0.0172  0.0181   0.0178  0.0147
## 6     1 SD       0.913  0.911  0.944  0.928   0.946    0.932   0.789 
## # ℹ 5 more variables: sssi <dbl>, ssmk <dbl>, ssmc <dbl>, ssei <dbl>,
## #   ssao <dbl>
# NORMALITY TEST

dblack<- subset(dk, bhw==1)
dwhite<- subset(dk, bhw==3)
datablack<- dplyr::select(dblack, starts_with("ss"))
datawhite<- dplyr::select(dwhite, starts_with("ss"))

mqqnorm(datablack, main = "Multi-normal Q-Q Plot")

## [1] 1335  694
mqqnorm(datawhite, main = "Multi-normal Q-Q Plot")

## [1]  665 3086
mqqnorm(datagroup, main = "Multi-normal Q-Q Plot")

## [1] 6253 6124
mvn(data = datablack, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic               p value Result
## 1 Mardia Skewness 1622.23319173653 6.75193866317596e-158     NO
## 2 Mardia Kurtosis 22.1629188613151                     0     NO
## 3             MVN             <NA>                  <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs       2.5309  <0.001      NO    
## 2  Anderson-Darling   ssar      11.3667  <0.001      NO    
## 3  Anderson-Darling   sswk       1.2237  0.0035      NO    
## 4  Anderson-Darling   sspc       9.1587  <0.001      NO    
## 5  Anderson-Darling   ssno       0.9503  0.0163      NO    
## 6  Anderson-Darling   sscs       6.4711  <0.001      NO    
## 7  Anderson-Darling   ssai       1.1573   0.005      NO    
## 8  Anderson-Darling   sssi       1.0132  0.0114      NO    
## 9  Anderson-Darling   ssmk       3.3560  <0.001      NO    
## 10 Anderson-Darling   ssmc       6.9602  <0.001      NO    
## 11 Anderson-Darling   ssei       4.5376  <0.001      NO    
## 12 Anderson-Darling   ssao      20.4252  <0.001      NO    
## 
## $Descriptives
##         n       Mean   Std.Dev     Median       Min      Max       25th
## ssgs 1808 -0.5602749 0.8576911 -0.6075809 -2.628479 2.406451 -1.1766371
## ssar 1808 -0.5569764 0.9427041 -0.4368357 -2.692580 2.042919 -1.2042228
## sswk 1808 -0.5135819 0.9374915 -0.5076726 -2.739342 2.335238 -1.1348322
## sspc 1808 -0.4689775 0.9372254 -0.5168520 -2.173948 2.284316 -1.2382764
## ssno 1808 -0.1874061 1.0012540 -0.1971845 -3.869159 3.504552 -0.8454621
## sscs 1808 -0.2540052 1.0188066 -0.3296052 -4.658058 3.461256 -0.8210782
## ssai 1808 -0.4578721 0.8821322 -0.4922414 -2.476341 3.838862 -1.0696654
## sssi 1808 -0.5825558 0.7825301 -0.6081880 -2.832183 3.125798 -1.1075435
## ssmk 1808 -0.4479258 0.9393551 -0.5110345 -2.528175 2.411681 -1.1290023
## ssmc 1808 -0.6302241 0.8953393 -0.6398287 -2.548375 2.611383 -1.3344587
## ssei 1808 -0.4674670 0.8509563 -0.4737383 -2.399650 3.403434 -1.1407629
## ssao 1808 -0.5233415 0.8768762 -0.6426025 -1.986244 2.380850 -1.2641016
##             75th        Skew    Kurtosis
## ssgs  0.05069296  0.25764209 -0.27775177
## ssar  0.12243361 -0.22962800 -0.54907858
## sswk  0.12797639 -0.01276827 -0.37488761
## sspc  0.23248302  0.23730319 -0.78094218
## ssno  0.53957292 -0.15109539 -0.06602827
## sscs  0.43696961 -0.24589209  1.04824126
## ssai  0.10807604  0.33615417  0.36643910
## sssi -0.03728319  0.20999732  0.16548201
## ssmk  0.22644591  0.17786234 -0.57563052
## ssmc  0.08055108  0.06346339 -0.77652385
## ssei  0.15319995  0.20552507 -0.20354453
## ssao  0.03674057  0.56662284 -0.44582337
mvn(data = datawhite, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic p value Result
## 1 Mardia Skewness 3016.82103024417       0     NO
## 2 Mardia Kurtosis  31.884830888758       0     NO
## 3             MVN             <NA>    <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs       3.2255  <0.001      NO    
## 2  Anderson-Darling   ssar      21.6763  <0.001      NO    
## 3  Anderson-Darling   sswk      10.6275  <0.001      NO    
## 4  Anderson-Darling   sspc      19.6277  <0.001      NO    
## 5  Anderson-Darling   ssno       2.0834  <0.001      NO    
## 6  Anderson-Darling   sscs       4.4825  <0.001      NO    
## 7  Anderson-Darling   ssai       9.8908  <0.001      NO    
## 8  Anderson-Darling   sssi       6.1793  <0.001      NO    
## 9  Anderson-Darling   ssmk       3.4318  <0.001      NO    
## 10 Anderson-Darling   ssmc      33.3151  <0.001      NO    
## 11 Anderson-Darling   ssei       8.7225  <0.001      NO    
## 12 Anderson-Darling   ssao      10.8813  <0.001      NO    
## 
## $Descriptives
##         n      Mean   Std.Dev    Median       Min      Max        25th
## ssgs 3659 0.4060491 0.9185653 0.4589225 -2.529870 3.536933 -0.21666660
## ssar 3659 0.3407109 0.9042484 0.4052216 -2.707716 2.847137 -0.11746946
## sswk 3659 0.3655980 0.9119170 0.4611881 -2.672487 3.369893 -0.26360039
## sspc 3659 0.3052834 0.9459662 0.3970231 -2.146304 2.310898 -0.33024927
## ssno 3659 0.1592336 1.0044293 0.1907158 -3.646253 4.197971 -0.49027670
## sscs 3659 0.1626818 0.9752993 0.1585684 -4.658058 3.424302 -0.50352341
## ssai 3659 0.3261749 0.9800041 0.2793531 -2.422075 4.869916 -0.30570209
## sssi 3659 0.4135998 0.9469105 0.3607105 -2.496795 4.552315 -0.22062861
## ssmk 3659 0.2879194 0.9365134 0.3197241 -2.552466 2.766332 -0.34245367
## ssmc 3659 0.3858658 0.9020433 0.5146182 -2.583934 4.145332 -0.08620917
## ssei 3659 0.3456966 0.9727177 0.3226826 -2.253453 4.508166 -0.25503205
## ssao 3659 0.2630017 0.9678218 0.3078034 -1.953042 2.525071 -0.42212081
##           75th       Skew    Kurtosis
## ssgs 0.9642937 -0.1068977  0.05359687
## ssar 0.8855322 -0.5128211  0.56131939
## sswk 0.9949635 -0.3120768  0.18241960
## sspc 1.0333864 -0.3678016 -0.49818087
## ssno 0.8233837 -0.1557867  0.18661806
## sscs 0.8389906 -0.2095849  0.36781600
## ssai 0.8889975  0.4682245  0.91818357
## sssi 0.9800603  0.2763817  0.33420160
## ssmk 0.9386635 -0.2242105 -0.22864838
## ssmc 0.9437807 -0.4375366  0.66375991
## ssei 0.9086502  0.3345275  0.72133889
## ssao 1.0123073 -0.1449285 -0.71302655
mvn(data = datagroup, mvnTest = "mardia") 
## $multivariateNormality
##              Test        Statistic p value Result
## 1 Mardia Skewness 4942.51741584424       0     NO
## 2 Mardia Kurtosis 42.2408822487633       0     NO
## 3             MVN             <NA>    <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs       5.3718  <0.001      NO    
## 2  Anderson-Darling   ssar      37.6577  <0.001      NO    
## 3  Anderson-Darling   sswk       9.3056  <0.001      NO    
## 4  Anderson-Darling   sspc      27.4902  <0.001      NO    
## 5  Anderson-Darling   ssno       1.5272   6e-04      NO    
## 6  Anderson-Darling   sscs      14.1867  <0.001      NO    
## 7  Anderson-Darling   ssai       9.2228  <0.001      NO    
## 8  Anderson-Darling   sssi       7.8235  <0.001      NO    
## 9  Anderson-Darling   ssmk       6.8879  <0.001      NO    
## 10 Anderson-Darling   ssmc      40.3322  <0.001      NO    
## 11 Anderson-Darling   ssei       7.6968  <0.001      NO    
## 12 Anderson-Darling   ssao      30.1132  <0.001      NO    
## 
## $Descriptives
##         n          Mean Std.Dev       Median       Min      Max
## ssgs 7093  1.982538e-17       1  0.019877641 -2.628479 3.536933
## ssar 7093  2.190755e-17       1  0.098468532 -2.778350 2.847137
## sswk 7093  3.844688e-17       1  0.017613285 -2.739342 3.369893
## sspc 7093  1.931346e-17       1  0.056778698 -2.185644 2.310898
## ssno 7093 -1.105101e-16       1  0.013525797 -3.869159 4.197971
## sscs 7093 -1.016029e-17       1 -0.069314348 -4.658058 3.709082
## ssai 7093 -1.128737e-16       1 -0.036067982 -2.552653 4.869916
## sssi 7093  6.646381e-17       1 -0.017905221 -2.832183 4.552315
## ssmk 7093 -2.356424e-18       1  0.044747838 -2.584530 2.766332
## ssmc 7093  1.589501e-17       1  0.146764716 -2.620720 4.145332
## ssei 7093 -9.580385e-18       1  0.003171008 -2.399650 4.508166
## ssao 7093 -5.972471e-17       1 -0.039779561 -2.013221 2.525071
##            25th      75th        Skew    Kurtosis
## ssgs -0.7220378 0.6831407  0.07343529 -0.35365437
## ssar -0.5594360 0.6352863 -0.36902714 -0.06902024
## sswk -0.6679114 0.7583195 -0.15732864 -0.22306138
## sspc -0.7555547 0.7957469 -0.11591752 -0.80536063
## ssno -0.6582620 0.6756487 -0.08978372  0.09562429
## sscs -0.6385813 0.6958673 -0.19457332  0.65434610
## ssai -0.6753891 0.6117322  0.41686112  0.67724495
## sssi -0.7110403 0.6170960  0.31719836  0.16371979
## ssmk -0.7160521 0.7093547 -0.06424753 -0.52193664
## ssmc -0.6968460 0.7206162 -0.21736702 -0.29067932
## ssei -0.6912655 0.6362991  0.33506407  0.35832505
## ssao -0.7795606 0.7861190  0.09525610 -0.85873214
mvn(data = datablack, mvnTest = "hz", multivariatePlot = "qq", multivariateOutlierMethod = "quan") 

## $multivariateNormality
##            Test       HZ p value MVN
## 1 Henze-Zirkler 1.063951       0  NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs       2.5309  <0.001      NO    
## 2  Anderson-Darling   ssar      11.3667  <0.001      NO    
## 3  Anderson-Darling   sswk       1.2237  0.0035      NO    
## 4  Anderson-Darling   sspc       9.1587  <0.001      NO    
## 5  Anderson-Darling   ssno       0.9503  0.0163      NO    
## 6  Anderson-Darling   sscs       6.4711  <0.001      NO    
## 7  Anderson-Darling   ssai       1.1573   0.005      NO    
## 8  Anderson-Darling   sssi       1.0132  0.0114      NO    
## 9  Anderson-Darling   ssmk       3.3560  <0.001      NO    
## 10 Anderson-Darling   ssmc       6.9602  <0.001      NO    
## 11 Anderson-Darling   ssei       4.5376  <0.001      NO    
## 12 Anderson-Darling   ssao      20.4252  <0.001      NO    
## 
## $Descriptives
##         n       Mean   Std.Dev     Median       Min      Max       25th
## ssgs 1808 -0.5602749 0.8576911 -0.6075809 -2.628479 2.406451 -1.1766371
## ssar 1808 -0.5569764 0.9427041 -0.4368357 -2.692580 2.042919 -1.2042228
## sswk 1808 -0.5135819 0.9374915 -0.5076726 -2.739342 2.335238 -1.1348322
## sspc 1808 -0.4689775 0.9372254 -0.5168520 -2.173948 2.284316 -1.2382764
## ssno 1808 -0.1874061 1.0012540 -0.1971845 -3.869159 3.504552 -0.8454621
## sscs 1808 -0.2540052 1.0188066 -0.3296052 -4.658058 3.461256 -0.8210782
## ssai 1808 -0.4578721 0.8821322 -0.4922414 -2.476341 3.838862 -1.0696654
## sssi 1808 -0.5825558 0.7825301 -0.6081880 -2.832183 3.125798 -1.1075435
## ssmk 1808 -0.4479258 0.9393551 -0.5110345 -2.528175 2.411681 -1.1290023
## ssmc 1808 -0.6302241 0.8953393 -0.6398287 -2.548375 2.611383 -1.3344587
## ssei 1808 -0.4674670 0.8509563 -0.4737383 -2.399650 3.403434 -1.1407629
## ssao 1808 -0.5233415 0.8768762 -0.6426025 -1.986244 2.380850 -1.2641016
##             75th        Skew    Kurtosis
## ssgs  0.05069296  0.25764209 -0.27775177
## ssar  0.12243361 -0.22962800 -0.54907858
## sswk  0.12797639 -0.01276827 -0.37488761
## sspc  0.23248302  0.23730319 -0.78094218
## ssno  0.53957292 -0.15109539 -0.06602827
## sscs  0.43696961 -0.24589209  1.04824126
## ssai  0.10807604  0.33615417  0.36643910
## sssi -0.03728319  0.20999732  0.16548201
## ssmk  0.22644591  0.17786234 -0.57563052
## ssmc  0.08055108  0.06346339 -0.77652385
## ssei  0.15319995  0.20552507 -0.20354453
## ssao  0.03674057  0.56662284 -0.44582337
mvn(data = datawhite, mvnTest = "hz", multivariatePlot = "qq", multivariateOutlierMethod = "quan") 

## $multivariateNormality
##            Test       HZ p value MVN
## 1 Henze-Zirkler 1.132594       0  NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs       3.2255  <0.001      NO    
## 2  Anderson-Darling   ssar      21.6763  <0.001      NO    
## 3  Anderson-Darling   sswk      10.6275  <0.001      NO    
## 4  Anderson-Darling   sspc      19.6277  <0.001      NO    
## 5  Anderson-Darling   ssno       2.0834  <0.001      NO    
## 6  Anderson-Darling   sscs       4.4825  <0.001      NO    
## 7  Anderson-Darling   ssai       9.8908  <0.001      NO    
## 8  Anderson-Darling   sssi       6.1793  <0.001      NO    
## 9  Anderson-Darling   ssmk       3.4318  <0.001      NO    
## 10 Anderson-Darling   ssmc      33.3151  <0.001      NO    
## 11 Anderson-Darling   ssei       8.7225  <0.001      NO    
## 12 Anderson-Darling   ssao      10.8813  <0.001      NO    
## 
## $Descriptives
##         n      Mean   Std.Dev    Median       Min      Max        25th
## ssgs 3659 0.4060491 0.9185653 0.4589225 -2.529870 3.536933 -0.21666660
## ssar 3659 0.3407109 0.9042484 0.4052216 -2.707716 2.847137 -0.11746946
## sswk 3659 0.3655980 0.9119170 0.4611881 -2.672487 3.369893 -0.26360039
## sspc 3659 0.3052834 0.9459662 0.3970231 -2.146304 2.310898 -0.33024927
## ssno 3659 0.1592336 1.0044293 0.1907158 -3.646253 4.197971 -0.49027670
## sscs 3659 0.1626818 0.9752993 0.1585684 -4.658058 3.424302 -0.50352341
## ssai 3659 0.3261749 0.9800041 0.2793531 -2.422075 4.869916 -0.30570209
## sssi 3659 0.4135998 0.9469105 0.3607105 -2.496795 4.552315 -0.22062861
## ssmk 3659 0.2879194 0.9365134 0.3197241 -2.552466 2.766332 -0.34245367
## ssmc 3659 0.3858658 0.9020433 0.5146182 -2.583934 4.145332 -0.08620917
## ssei 3659 0.3456966 0.9727177 0.3226826 -2.253453 4.508166 -0.25503205
## ssao 3659 0.2630017 0.9678218 0.3078034 -1.953042 2.525071 -0.42212081
##           75th       Skew    Kurtosis
## ssgs 0.9642937 -0.1068977  0.05359687
## ssar 0.8855322 -0.5128211  0.56131939
## sswk 0.9949635 -0.3120768  0.18241960
## sspc 1.0333864 -0.3678016 -0.49818087
## ssno 0.8233837 -0.1557867  0.18661806
## sscs 0.8389906 -0.2095849  0.36781600
## ssai 0.8889975  0.4682245  0.91818357
## sssi 0.9800603  0.2763817  0.33420160
## ssmk 0.9386635 -0.2242105 -0.22864838
## ssmc 0.9437807 -0.4375366  0.66375991
## ssei 0.9086502  0.3345275  0.72133889
## ssao 1.0123073 -0.1449285 -0.71302655
mvn(data = datagroup, mvnTest = "hz", multivariatePlot = "qq", multivariateOutlierMethod = "quan") 

## $multivariateNormality
##            Test       HZ p value MVN
## 1 Henze-Zirkler 1.157528       0  NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs       5.3718  <0.001      NO    
## 2  Anderson-Darling   ssar      37.6577  <0.001      NO    
## 3  Anderson-Darling   sswk       9.3056  <0.001      NO    
## 4  Anderson-Darling   sspc      27.4902  <0.001      NO    
## 5  Anderson-Darling   ssno       1.5272   6e-04      NO    
## 6  Anderson-Darling   sscs      14.1867  <0.001      NO    
## 7  Anderson-Darling   ssai       9.2228  <0.001      NO    
## 8  Anderson-Darling   sssi       7.8235  <0.001      NO    
## 9  Anderson-Darling   ssmk       6.8879  <0.001      NO    
## 10 Anderson-Darling   ssmc      40.3322  <0.001      NO    
## 11 Anderson-Darling   ssei       7.6968  <0.001      NO    
## 12 Anderson-Darling   ssao      30.1132  <0.001      NO    
## 
## $Descriptives
##         n          Mean Std.Dev       Median       Min      Max
## ssgs 7093  1.982538e-17       1  0.019877641 -2.628479 3.536933
## ssar 7093  2.190755e-17       1  0.098468532 -2.778350 2.847137
## sswk 7093  3.844688e-17       1  0.017613285 -2.739342 3.369893
## sspc 7093  1.931346e-17       1  0.056778698 -2.185644 2.310898
## ssno 7093 -1.105101e-16       1  0.013525797 -3.869159 4.197971
## sscs 7093 -1.016029e-17       1 -0.069314348 -4.658058 3.709082
## ssai 7093 -1.128737e-16       1 -0.036067982 -2.552653 4.869916
## sssi 7093  6.646381e-17       1 -0.017905221 -2.832183 4.552315
## ssmk 7093 -2.356424e-18       1  0.044747838 -2.584530 2.766332
## ssmc 7093  1.589501e-17       1  0.146764716 -2.620720 4.145332
## ssei 7093 -9.580385e-18       1  0.003171008 -2.399650 4.508166
## ssao 7093 -5.972471e-17       1 -0.039779561 -2.013221 2.525071
##            25th      75th        Skew    Kurtosis
## ssgs -0.7220378 0.6831407  0.07343529 -0.35365437
## ssar -0.5594360 0.6352863 -0.36902714 -0.06902024
## sswk -0.6679114 0.7583195 -0.15732864 -0.22306138
## sspc -0.7555547 0.7957469 -0.11591752 -0.80536063
## ssno -0.6582620 0.6756487 -0.08978372  0.09562429
## sscs -0.6385813 0.6958673 -0.19457332  0.65434610
## ssai -0.6753891 0.6117322  0.41686112  0.67724495
## sssi -0.7110403 0.6170960  0.31719836  0.16371979
## ssmk -0.7160521 0.7093547 -0.06424753 -0.52193664
## ssmc -0.6968460 0.7206162 -0.21736702 -0.29067932
## ssei -0.6912655 0.6362991  0.33506407  0.35832505
## ssao -0.7795606 0.7861190  0.09525610 -0.85873214
dwhitem<- subset(dk, sex==0 & bhw==3)
dwhitef<- subset(dk, sex==1 & bhw==3)
datawhitem<- dplyr::select(dwhitem, starts_with("ss"))
datawhitef<- dplyr::select(dwhitef, starts_with("ss"))
mqqnorm(datawhitem, main = "Multi-normal Q-Q Plot")

## [1] 333 945
mqqnorm(datawhitef, main = "Multi-normal Q-Q Plot")

## [1] 920  74
mvn(data = datawhitem, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic               p value Result
## 1 Mardia Skewness 1805.09743096755 3.19643493183969e-189     NO
## 2 Mardia Kurtosis 21.8295923002114                     0     NO
## 3             MVN             <NA>                  <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs       1.6659   3e-04      NO    
## 2  Anderson-Darling   ssar      12.8480  <0.001      NO    
## 3  Anderson-Darling   sswk       7.8069  <0.001      NO    
## 4  Anderson-Darling   sspc      12.0398  <0.001      NO    
## 5  Anderson-Darling   ssno       0.3827  0.3975      YES   
## 6  Anderson-Darling   sscs       2.6129  <0.001      NO    
## 7  Anderson-Darling   ssai       3.0204  <0.001      NO    
## 8  Anderson-Darling   sssi       1.4020  0.0013      NO    
## 9  Anderson-Darling   ssmk       1.4068  0.0012      NO    
## 10 Anderson-Darling   ssmc      18.0639  <0.001      NO    
## 11 Anderson-Darling   ssei       2.1029  <0.001      NO    
## 12 Anderson-Darling   ssao       6.5919  <0.001      NO    
## 
## $Descriptives
##         n        Mean   Std.Dev      Median       Min      Max
## ssgs 1889  0.49647856 0.9724641  0.55518372 -2.529870 3.536933
## ssar 1889  0.36621078 0.9652107  0.45769247 -2.707716 2.847137
## sswk 1889  0.36715955 0.9381782  0.48984002 -2.672487 3.161901
## sspc 1889  0.18610173 0.9822521  0.28963344 -2.146304 2.310898
## ssno 1889  0.08080787 1.0542697  0.08839048 -3.646253 4.197971
## sscs 1889 -0.01351932 1.0012591 -0.04174552 -4.658058 3.424302
## ssai 1889  0.59419415 1.0955753  0.59307827 -2.406813 4.869916
## sssi 1889  0.75265341 0.9838194  0.72143891 -2.392452 4.552315
## ssmk 1889  0.21505104 0.9555505  0.24393557 -2.552466 2.766332
## ssmc 1889  0.54080482 0.9540743  0.66053345 -2.583934 4.145332
## ssei 1889  0.55309432 1.0916696  0.57263255 -2.190965 4.508166
## ssao 1889  0.19512613 1.0122913  0.18329607 -1.944742 2.525071
##             25th      75th        Skew   Kurtosis
## ssgs -0.16207947 1.1210116 -0.14372453 -0.0228568
## ssar -0.12049662 0.9874469 -0.55013252  0.4544226
## sswk -0.27845696 1.0193707 -0.39957046  0.1538084
## sspc -0.51951020 0.9616161 -0.28367765 -0.7086257
## ssno -0.59781797 0.7669284 -0.01831289  0.1415563
## sscs -0.63946120 0.6512879 -0.16357940  0.5229429
## ssai -0.13272927 1.2154413  0.28161160  0.3704136
## sssi  0.14755284 1.3966867  0.00861978  0.2486403
## ssmk -0.45565060 0.8628750 -0.12897625 -0.3001803
## ssmc  0.04989663 1.1154456 -0.43496068  0.6678097
## ssei -0.16306932 1.1833594  0.18610911  0.2543486
## ssao -0.56478546 1.0123073 -0.01864938 -0.8438983
mvn(data = datawhitef, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic               p value Result
## 1 Mardia Skewness 1316.30617111177 7.30458519912656e-108     NO
## 2 Mardia Kurtosis  18.282671398268                     0     NO
## 3             MVN             <NA>                  <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs       2.4013  <0.001      NO    
## 2  Anderson-Darling   ssar       9.6307  <0.001      NO    
## 3  Anderson-Darling   sswk       3.4747  <0.001      NO    
## 4  Anderson-Darling   sspc       6.8677  <0.001      NO    
## 5  Anderson-Darling   ssno       2.0614  <0.001      NO    
## 6  Anderson-Darling   sscs       2.7013  <0.001      NO    
## 7  Anderson-Darling   ssai       0.9661  0.0149      NO    
## 8  Anderson-Darling   sssi       1.6453   3e-04      NO    
## 9  Anderson-Darling   ssmk       2.5222  <0.001      NO    
## 10 Anderson-Darling   ssmc      22.6328  <0.001      NO    
## 11 Anderson-Darling   ssei       3.3324  <0.001      NO    
## 12 Anderson-Darling   ssao       6.0167  <0.001      NO    
## 
## $Descriptives
##         n       Mean   Std.Dev     Median       Min      Max       25th
## ssgs 1770 0.30953996 0.8469990 0.36853094 -2.486435 2.742191 -0.2630363
## ssar 1770 0.31349666 0.8337019 0.36132762 -2.663318 2.586801 -0.1131810
## sswk 1770 0.36393148 0.8832912 0.42563841 -2.548329 3.369893 -0.2484785
## sspc 1770 0.43247780 0.8884416 0.51451370 -2.080381 2.303455 -0.1471021
## ssno 1770 0.24293210 0.9414683 0.30822878 -2.808934 3.431528 -0.3523984
## sscs 1770 0.35072920 0.9101917 0.37178692 -3.642411 2.855328 -0.3302650
## ssai 1770 0.04013625 0.7391656 0.04448309 -2.422075 2.687406 -0.4294964
## sssi 1770 0.05175105 0.7532114 0.03352093 -2.496795 3.401561 -0.4322957
## ssmk 1770 0.36568684 0.9096095 0.40182828 -2.507770 2.708034 -0.2229410
## ssmc 1770 0.22050999 0.8112195 0.38035169 -2.489519 2.823512 -0.2256870
## ssei 1770 0.12435519 0.7679073 0.14642065 -2.253453 2.824540 -0.3328467
## ssao 1770 0.33544062 0.9127215 0.40481535 -1.953042 2.481494 -0.2802343
##           75th        Skew    Kurtosis
## ssgs 0.8492499 -0.15826093  0.06355653
## ssar 0.7846266 -0.47487682  0.60011112
## sswk 0.9564955 -0.19966651  0.19234139
## sspc 1.1048908 -0.41355811 -0.25374777
## ssno 0.8832908 -0.29600410  0.25518568
## sscs 1.0118824 -0.17154111  0.08470877
## ssai 0.5218542 -0.10449743  0.29927042
## sssi 0.5172249  0.11111652  0.60828008
## ssmk 1.0146949 -0.31979405 -0.10257049
## ssmc 0.7632259 -0.72160807  0.50307178
## ssei 0.6091818 -0.04459034  0.49823261
## ssao 1.0146419 -0.27534831 -0.50685222
mvn(data = datawhitem, mvnTest = "hz", multivariatePlot = "qq", multivariateOutlierMethod = "quan") 

## $multivariateNormality
##            Test      HZ p value MVN
## 1 Henze-Zirkler 1.09975       0  NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs       1.6659   3e-04      NO    
## 2  Anderson-Darling   ssar      12.8480  <0.001      NO    
## 3  Anderson-Darling   sswk       7.8069  <0.001      NO    
## 4  Anderson-Darling   sspc      12.0398  <0.001      NO    
## 5  Anderson-Darling   ssno       0.3827  0.3975      YES   
## 6  Anderson-Darling   sscs       2.6129  <0.001      NO    
## 7  Anderson-Darling   ssai       3.0204  <0.001      NO    
## 8  Anderson-Darling   sssi       1.4020  0.0013      NO    
## 9  Anderson-Darling   ssmk       1.4068  0.0012      NO    
## 10 Anderson-Darling   ssmc      18.0639  <0.001      NO    
## 11 Anderson-Darling   ssei       2.1029  <0.001      NO    
## 12 Anderson-Darling   ssao       6.5919  <0.001      NO    
## 
## $Descriptives
##         n        Mean   Std.Dev      Median       Min      Max
## ssgs 1889  0.49647856 0.9724641  0.55518372 -2.529870 3.536933
## ssar 1889  0.36621078 0.9652107  0.45769247 -2.707716 2.847137
## sswk 1889  0.36715955 0.9381782  0.48984002 -2.672487 3.161901
## sspc 1889  0.18610173 0.9822521  0.28963344 -2.146304 2.310898
## ssno 1889  0.08080787 1.0542697  0.08839048 -3.646253 4.197971
## sscs 1889 -0.01351932 1.0012591 -0.04174552 -4.658058 3.424302
## ssai 1889  0.59419415 1.0955753  0.59307827 -2.406813 4.869916
## sssi 1889  0.75265341 0.9838194  0.72143891 -2.392452 4.552315
## ssmk 1889  0.21505104 0.9555505  0.24393557 -2.552466 2.766332
## ssmc 1889  0.54080482 0.9540743  0.66053345 -2.583934 4.145332
## ssei 1889  0.55309432 1.0916696  0.57263255 -2.190965 4.508166
## ssao 1889  0.19512613 1.0122913  0.18329607 -1.944742 2.525071
##             25th      75th        Skew   Kurtosis
## ssgs -0.16207947 1.1210116 -0.14372453 -0.0228568
## ssar -0.12049662 0.9874469 -0.55013252  0.4544226
## sswk -0.27845696 1.0193707 -0.39957046  0.1538084
## sspc -0.51951020 0.9616161 -0.28367765 -0.7086257
## ssno -0.59781797 0.7669284 -0.01831289  0.1415563
## sscs -0.63946120 0.6512879 -0.16357940  0.5229429
## ssai -0.13272927 1.2154413  0.28161160  0.3704136
## sssi  0.14755284 1.3966867  0.00861978  0.2486403
## ssmk -0.45565060 0.8628750 -0.12897625 -0.3001803
## ssmc  0.04989663 1.1154456 -0.43496068  0.6678097
## ssei -0.16306932 1.1833594  0.18610911  0.2543486
## ssao -0.56478546 1.0123073 -0.01864938 -0.8438983
mvn(data = datawhitef, mvnTest = "hz", multivariatePlot = "qq", multivariateOutlierMethod = "quan") 

## $multivariateNormality
##            Test       HZ p value MVN
## 1 Henze-Zirkler 1.041362       0  NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs       2.4013  <0.001      NO    
## 2  Anderson-Darling   ssar       9.6307  <0.001      NO    
## 3  Anderson-Darling   sswk       3.4747  <0.001      NO    
## 4  Anderson-Darling   sspc       6.8677  <0.001      NO    
## 5  Anderson-Darling   ssno       2.0614  <0.001      NO    
## 6  Anderson-Darling   sscs       2.7013  <0.001      NO    
## 7  Anderson-Darling   ssai       0.9661  0.0149      NO    
## 8  Anderson-Darling   sssi       1.6453   3e-04      NO    
## 9  Anderson-Darling   ssmk       2.5222  <0.001      NO    
## 10 Anderson-Darling   ssmc      22.6328  <0.001      NO    
## 11 Anderson-Darling   ssei       3.3324  <0.001      NO    
## 12 Anderson-Darling   ssao       6.0167  <0.001      NO    
## 
## $Descriptives
##         n       Mean   Std.Dev     Median       Min      Max       25th
## ssgs 1770 0.30953996 0.8469990 0.36853094 -2.486435 2.742191 -0.2630363
## ssar 1770 0.31349666 0.8337019 0.36132762 -2.663318 2.586801 -0.1131810
## sswk 1770 0.36393148 0.8832912 0.42563841 -2.548329 3.369893 -0.2484785
## sspc 1770 0.43247780 0.8884416 0.51451370 -2.080381 2.303455 -0.1471021
## ssno 1770 0.24293210 0.9414683 0.30822878 -2.808934 3.431528 -0.3523984
## sscs 1770 0.35072920 0.9101917 0.37178692 -3.642411 2.855328 -0.3302650
## ssai 1770 0.04013625 0.7391656 0.04448309 -2.422075 2.687406 -0.4294964
## sssi 1770 0.05175105 0.7532114 0.03352093 -2.496795 3.401561 -0.4322957
## ssmk 1770 0.36568684 0.9096095 0.40182828 -2.507770 2.708034 -0.2229410
## ssmc 1770 0.22050999 0.8112195 0.38035169 -2.489519 2.823512 -0.2256870
## ssei 1770 0.12435519 0.7679073 0.14642065 -2.253453 2.824540 -0.3328467
## ssao 1770 0.33544062 0.9127215 0.40481535 -1.953042 2.481494 -0.2802343
##           75th        Skew    Kurtosis
## ssgs 0.8492499 -0.15826093  0.06355653
## ssar 0.7846266 -0.47487682  0.60011112
## sswk 0.9564955 -0.19966651  0.19234139
## sspc 1.1048908 -0.41355811 -0.25374777
## ssno 0.8832908 -0.29600410  0.25518568
## sscs 1.0118824 -0.17154111  0.08470877
## ssai 0.5218542 -0.10449743  0.29927042
## sssi 0.5172249  0.11111652  0.60828008
## ssmk 1.0146949 -0.31979405 -0.10257049
## ssmc 0.7632259 -0.72160807  0.50307178
## ssei 0.6091818 -0.04459034  0.49823261
## ssao 1.0146419 -0.27534831 -0.50685222
dfullm<- subset(dk, sex==0)
dfullf<- subset(dk, sex==1)
datafullm<- dplyr::select(dfullm, starts_with("ss"))
datafullf<- dplyr::select(dfullf, starts_with("ss"))
mqqnorm(datafullm, main = "Multi-normal Q-Q Plot")

## [1] 3184 2396
mqqnorm(datafullf, main = "Multi-normal Q-Q Plot")

## [1] 3005  130
mvn(data = datafullm, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic p value Result
## 1 Mardia Skewness 2793.80067787689       0     NO
## 2 Mardia Kurtosis 29.0379761670123       0     NO
## 3             MVN             <NA>    <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs       2.7040  <0.001      NO    
## 2  Anderson-Darling   ssar      18.4978  <0.001      NO    
## 3  Anderson-Darling   sswk       7.3432  <0.001      NO    
## 4  Anderson-Darling   sspc      18.4602  <0.001      NO    
## 5  Anderson-Darling   ssno       0.6630  0.0834      YES   
## 6  Anderson-Darling   sscs       8.7314  <0.001      NO    
## 7  Anderson-Darling   ssai       3.6458  <0.001      NO    
## 8  Anderson-Darling   sssi       1.7177   2e-04      NO    
## 9  Anderson-Darling   ssmk       3.1254  <0.001      NO    
## 10 Anderson-Darling   ssmc      26.9472  <0.001      NO    
## 11 Anderson-Darling   ssei       3.5225  <0.001      NO    
## 12 Anderson-Darling   ssao      19.8002  <0.001      NO    
## 
## $Descriptives
##         n         Mean  Std.Dev      Median       Min      Max
## ssgs 3590  0.072654196 1.052161  0.09853007 -2.628479 3.536933
## ssar 3590  0.015191054 1.051973  0.13176738 -2.778350 2.847137
## sswk 3590 -0.005213396 1.031023  0.01549092 -2.690527 3.161901
## sspc 3590 -0.119498863 1.025404 -0.10217922 -2.185644 2.310898
## ssno 3590 -0.099733402 1.045060 -0.11641352 -3.869159 4.197971
## sscs 3590 -0.181391941 1.021915 -0.26156294 -4.658058 3.424302
## ssai 3590  0.214504538 1.116535  0.18947501 -2.552653 4.869916
## sssi 3590  0.273620101 1.079264  0.29214232 -2.832183 4.552315
## ssmk 3590 -0.072718114 1.013231 -0.04172879 -2.552466 2.766332
## ssmc 3590  0.122757578 1.074592  0.31107262 -2.620720 4.145332
## ssei 3590  0.145231459 1.125225  0.13993610 -2.399650 4.508166
## ssao 3590 -0.052083186 1.022771 -0.12278445 -2.013221 2.525071
##            25th      75th          Skew     Kurtosis
## ssgs -0.6935703 0.7840975  0.0609376986 -0.391510574
## ssar -0.5985369 0.7056680 -0.3448930451 -0.212859909
## sswk -0.6878086 0.7869715 -0.2084181729 -0.308855826
## sspc -0.9421575 0.7109517 -0.0058749424 -0.920176965
## ssno -0.7767722 0.6147061  0.0005396258  0.122389795
## sscs -0.7685068 0.5063316 -0.2511461820  0.851363553
## ssai -0.5549865 0.9063795  0.3437899586  0.265047056
## sssi -0.4975100 0.9685080  0.1322130065 -0.134801224
## ssmk -0.7906261 0.6342949  0.0023743017 -0.507529778
## ssmc -0.6438138 0.8649987 -0.2465863805 -0.324689532
## ssei -0.6464632 0.8859543  0.2758184354 -0.001697834
## ssao -0.8812416 0.7409851  0.1945848633 -0.868331637
mvn(data = datafullf, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic               p value Result
## 1 Mardia Skewness 1729.20286503675 4.10441555806517e-176     NO
## 2 Mardia Kurtosis 21.7315526252497                     0     NO
## 3             MVN             <NA>                  <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs       3.5640  <0.001      NO    
## 2  Anderson-Darling   ssar      20.5756  <0.001      NO    
## 3  Anderson-Darling   sswk       2.7142  <0.001      NO    
## 4  Anderson-Darling   sspc      10.0051  <0.001      NO    
## 5  Anderson-Darling   ssno       1.6095   4e-04      NO    
## 6  Anderson-Darling   sscs       7.3979  <0.001      NO    
## 7  Anderson-Darling   ssai       1.4092  0.0012      NO    
## 8  Anderson-Darling   sssi       0.5749  0.1354      YES   
## 9  Anderson-Darling   ssmk       4.3820  <0.001      NO    
## 10 Anderson-Darling   ssmc      22.8413  <0.001      NO    
## 11 Anderson-Darling   ssei       5.3910  <0.001      NO    
## 12 Anderson-Darling   ssao      12.6820  <0.001      NO    
## 
## $Descriptives
##         n         Mean   Std.Dev       Median       Min      Max
## ssgs 3503 -0.074458625 0.9378840 -0.064644372 -2.579174 2.742191
## ssar 3503 -0.015568337 0.9436683  0.080305523 -2.743033 2.586801
## sswk 3503  0.005342876 0.9672932  0.019735653 -2.739342 3.369893
## sspc 3503  0.122466719 0.9580778  0.181180544 -2.173948 2.303455
## ssno 3503  0.102210366 0.9408498  0.137328663 -2.954215 3.449631
## sscs 3503  0.185896965 0.9415825  0.144197438 -4.217250 3.709082
## ssai 3503 -0.219831942 0.8074651 -0.198865935 -2.547566 2.687406
## sssi 3503 -0.280415690 0.8221771 -0.281743753 -2.616044 3.401561
## ssmk 3503  0.074524131 0.9808211  0.118593045 -2.584530 2.708034
## ssmc 3503 -0.125806368 0.9002292 -0.004055222 -2.548375 2.823512
## ssei 3503 -0.148838407 0.8268980 -0.100581818 -2.253453 3.012003
## ssao 3503  0.053376716 0.9733703  0.069164350 -1.973793 2.481494
##            25th      75th         Skew    Kurtosis
## ssgs -0.7461031 0.5980317  0.030528040 -0.41086027
## ssar -0.5332005 0.5828154 -0.411530231  0.07343937
## sswk -0.6323617 0.7301981 -0.091074791 -0.14101114
## sspc -0.5508765 0.8574162 -0.203835091 -0.63018652
## ssno -0.5308540 0.7368598 -0.142929524  0.03445009
## sscs -0.4869528 0.8408970 -0.037929716  0.20837040
## ssai -0.7491569 0.3370107 -0.071978903 -0.07074088
## sssi -0.8414690 0.2593488  0.111324492  0.14727545
## ssmk -0.6412353 0.7919447 -0.125265270 -0.51919734
## ssmc -0.7440539 0.5697963 -0.351415475 -0.45644974
## ssei -0.7195617 0.4205403  0.028168182 -0.01901502
## ssao -0.6882552 0.8188022 -0.005091041 -0.81986617
mvn(data = datafullm, mvnTest = "hz", multivariatePlot = "qq", multivariateOutlierMethod = "quan") 

## $multivariateNormality
##            Test       HZ p value MVN
## 1 Henze-Zirkler 1.126711       0  NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs       2.7040  <0.001      NO    
## 2  Anderson-Darling   ssar      18.4978  <0.001      NO    
## 3  Anderson-Darling   sswk       7.3432  <0.001      NO    
## 4  Anderson-Darling   sspc      18.4602  <0.001      NO    
## 5  Anderson-Darling   ssno       0.6630  0.0834      YES   
## 6  Anderson-Darling   sscs       8.7314  <0.001      NO    
## 7  Anderson-Darling   ssai       3.6458  <0.001      NO    
## 8  Anderson-Darling   sssi       1.7177   2e-04      NO    
## 9  Anderson-Darling   ssmk       3.1254  <0.001      NO    
## 10 Anderson-Darling   ssmc      26.9472  <0.001      NO    
## 11 Anderson-Darling   ssei       3.5225  <0.001      NO    
## 12 Anderson-Darling   ssao      19.8002  <0.001      NO    
## 
## $Descriptives
##         n         Mean  Std.Dev      Median       Min      Max
## ssgs 3590  0.072654196 1.052161  0.09853007 -2.628479 3.536933
## ssar 3590  0.015191054 1.051973  0.13176738 -2.778350 2.847137
## sswk 3590 -0.005213396 1.031023  0.01549092 -2.690527 3.161901
## sspc 3590 -0.119498863 1.025404 -0.10217922 -2.185644 2.310898
## ssno 3590 -0.099733402 1.045060 -0.11641352 -3.869159 4.197971
## sscs 3590 -0.181391941 1.021915 -0.26156294 -4.658058 3.424302
## ssai 3590  0.214504538 1.116535  0.18947501 -2.552653 4.869916
## sssi 3590  0.273620101 1.079264  0.29214232 -2.832183 4.552315
## ssmk 3590 -0.072718114 1.013231 -0.04172879 -2.552466 2.766332
## ssmc 3590  0.122757578 1.074592  0.31107262 -2.620720 4.145332
## ssei 3590  0.145231459 1.125225  0.13993610 -2.399650 4.508166
## ssao 3590 -0.052083186 1.022771 -0.12278445 -2.013221 2.525071
##            25th      75th          Skew     Kurtosis
## ssgs -0.6935703 0.7840975  0.0609376986 -0.391510574
## ssar -0.5985369 0.7056680 -0.3448930451 -0.212859909
## sswk -0.6878086 0.7869715 -0.2084181729 -0.308855826
## sspc -0.9421575 0.7109517 -0.0058749424 -0.920176965
## ssno -0.7767722 0.6147061  0.0005396258  0.122389795
## sscs -0.7685068 0.5063316 -0.2511461820  0.851363553
## ssai -0.5549865 0.9063795  0.3437899586  0.265047056
## sssi -0.4975100 0.9685080  0.1322130065 -0.134801224
## ssmk -0.7906261 0.6342949  0.0023743017 -0.507529778
## ssmc -0.6438138 0.8649987 -0.2465863805 -0.324689532
## ssei -0.6464632 0.8859543  0.2758184354 -0.001697834
## ssao -0.8812416 0.7409851  0.1945848633 -0.868331637
mvn(data = datafullf, mvnTest = "hz", multivariatePlot = "qq", multivariateOutlierMethod = "quan") 

## $multivariateNormality
##            Test       HZ p value MVN
## 1 Henze-Zirkler 1.059078       0  NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs       3.5640  <0.001      NO    
## 2  Anderson-Darling   ssar      20.5756  <0.001      NO    
## 3  Anderson-Darling   sswk       2.7142  <0.001      NO    
## 4  Anderson-Darling   sspc      10.0051  <0.001      NO    
## 5  Anderson-Darling   ssno       1.6095   4e-04      NO    
## 6  Anderson-Darling   sscs       7.3979  <0.001      NO    
## 7  Anderson-Darling   ssai       1.4092  0.0012      NO    
## 8  Anderson-Darling   sssi       0.5749  0.1354      YES   
## 9  Anderson-Darling   ssmk       4.3820  <0.001      NO    
## 10 Anderson-Darling   ssmc      22.8413  <0.001      NO    
## 11 Anderson-Darling   ssei       5.3910  <0.001      NO    
## 12 Anderson-Darling   ssao      12.6820  <0.001      NO    
## 
## $Descriptives
##         n         Mean   Std.Dev       Median       Min      Max
## ssgs 3503 -0.074458625 0.9378840 -0.064644372 -2.579174 2.742191
## ssar 3503 -0.015568337 0.9436683  0.080305523 -2.743033 2.586801
## sswk 3503  0.005342876 0.9672932  0.019735653 -2.739342 3.369893
## sspc 3503  0.122466719 0.9580778  0.181180544 -2.173948 2.303455
## ssno 3503  0.102210366 0.9408498  0.137328663 -2.954215 3.449631
## sscs 3503  0.185896965 0.9415825  0.144197438 -4.217250 3.709082
## ssai 3503 -0.219831942 0.8074651 -0.198865935 -2.547566 2.687406
## sssi 3503 -0.280415690 0.8221771 -0.281743753 -2.616044 3.401561
## ssmk 3503  0.074524131 0.9808211  0.118593045 -2.584530 2.708034
## ssmc 3503 -0.125806368 0.9002292 -0.004055222 -2.548375 2.823512
## ssei 3503 -0.148838407 0.8268980 -0.100581818 -2.253453 3.012003
## ssao 3503  0.053376716 0.9733703  0.069164350 -1.973793 2.481494
##            25th      75th         Skew    Kurtosis
## ssgs -0.7461031 0.5980317  0.030528040 -0.41086027
## ssar -0.5332005 0.5828154 -0.411530231  0.07343937
## sswk -0.6323617 0.7301981 -0.091074791 -0.14101114
## sspc -0.5508765 0.8574162 -0.203835091 -0.63018652
## ssno -0.5308540 0.7368598 -0.142929524  0.03445009
## sscs -0.4869528 0.8408970 -0.037929716  0.20837040
## ssai -0.7491569 0.3370107 -0.071978903 -0.07074088
## sssi -0.8414690 0.2593488  0.111324492  0.14727545
## ssmk -0.6412353 0.7919447 -0.125265270 -0.51919734
## ssmc -0.7440539 0.5697963 -0.351415475 -0.45644974
## ssei -0.7195617 0.4205403  0.028168182 -0.01901502
## ssao -0.6882552 0.8188022 -0.005091041 -0.81986617
# NLSYLINKS

d<- dplyr::select(d, id, hhid, starts_with("ss"), asvab, efa, dadeduc, momeduc, pareduc, educ2011, T6665000, age, agebin, agec, agec2, sex, sexage, bhw, bw, sweight, sibling)
links97<- subset(Links97PairExpanded)
links97$hhid<-links97$ExtendedID
links97<- dplyr::select(links97, hhid, RelationshipPath, R, RFull)
matching_indices<- match(d$hhid, links97$hhid)
d$R<- links97$R[matching_indices]
d<- subset(d, R==0.5)
nrow(d) # N=2809
## [1] 2809
result <- d %>% group_by(hhid) %>% summarise(identical_count = n()) %>% group_by(identical_count) %>% summarise(case_count = n())
print(result)
## # A tibble: 5 Ă— 2
##   identical_count case_count
##             <int>      <int>
## 1               1         72
## 2               2       1133
## 3               3        136
## 4               4         12
## 5               5          3
d<- d %>% group_by(hhid) %>% filter(n() > 1) %>% ungroup() # remove cases with one count in hhid
d<- d %>% group_by(hhid) %>% filter(any(sex == 0) & any(sex == 1)) %>% ungroup() # retain hhid with 2 distinct sexes
nrow(d) # N=1443
## [1] 1443
result <- d %>% group_by(hhid) %>% summarise(identical_count = n()) %>% group_by(identical_count) %>% summarise(case_count = n())
print(result)
## # A tibble: 4 Ă— 2
##   identical_count case_count
##             <int>      <int>
## 1               2        555
## 2               3         93
## 3               4         11
## 4               5          2
result <- d %>% group_by(hhid) %>% summarise(sex_distinct = n_distinct(sex)) %>% ungroup() # calculates the number of distinct values of sex within each group
result$all_same_sex <- result$sex_distinct == 1
result$all_same_sex # check if number of distinct sex = 1
##   [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [56] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [67] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [78] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [89] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [100] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [111] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [122] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [144] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [155] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [166] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [177] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [188] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [199] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [210] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [221] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [232] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [243] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [254] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [276] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [287] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [298] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [309] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [320] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [331] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [342] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [353] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [364] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [375] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [386] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [408] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [419] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [430] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [441] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [452] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [463] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [474] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [485] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [496] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [507] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [518] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [540] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [551] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [562] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [573] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [584] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [595] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [606] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [617] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [628] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [639] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [650] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [661] FALSE
# SELECTING HOUSEHOLDS WITH EQUAL NUMBER OF OPPOSITE SEX SIBLINGS

two<- d %>% group_by(hhid) %>% filter(n() == 2) %>% ungroup() # keep hhid with 2 members

# among cases sharing the same hhid value, if there are 2 individuals with sex=0 or sex=1, removes the youngest individual in the respective category.
three<- d %>% group_by(hhid) %>% filter(n() == 3) %>% ungroup() # keep hhid with 3 members
three <- three %>%
  group_by(hhid, sex) %>%
  arrange(desc(age)) %>%
  filter(row_number() <= ifelse(n() == 2, 1, n())) %>%
  arrange(hhid) %>%
  ungroup()

four<- d %>% group_by(hhid) %>% filter(n() == 4) %>% ungroup() # keep hhid with 4 members
four <- four %>%
  group_by(hhid, sex) %>%
  arrange(desc(age)) %>%
  filter(row_number() <= ifelse(n() == 3, 1, n())) %>%
  arrange(hhid) %>%
  ungroup()

# among cases sharing the same hhid value, if there are 4 same sex individuals then remove 3 of youngest individuals in the respective categories, if there are 3 same sex individuals then remove the 1 youngest individual in the respective categories.
five<- d %>% group_by(hhid) %>% filter(n() == 5) %>% ungroup() # keep hhid with 5 members
five <- five %>%
  group_by(hhid, sex) %>%
  arrange(desc(age)) %>%
  filter(row_number() <= ifelse(n() == 3, 2, ifelse(n() == 4, 1, n()))) %>%
  arrange(hhid) %>%
  ungroup()

d<- bind_rows(two, three, four, five) %>% arrange(id)
nrow(d) # N=1336
## [1] 1336
result <- d %>% group_by(hhid) %>% summarise(identical_count = n()) %>% group_by(identical_count) %>% summarise(case_count = n())
print(result)
## # A tibble: 2 Ă— 2
##   identical_count case_count
##             <int>      <int>
## 1               2        654
## 2               4          7
result <- d %>% group_by(hhid) %>% summarise(sex_distinct = n_distinct(sex)) %>% ungroup() # calculates the number of distinct values of sex within each group
result$all_same_sex <- result$sex_distinct == 1
result$all_same_sex # check if number of distinct sex = 1
##   [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [56] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [67] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [78] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [89] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [100] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [111] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [122] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [144] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [155] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [166] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [177] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [188] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [199] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [210] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [221] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [232] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [243] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [254] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [276] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [287] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [298] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [309] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [320] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [331] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [342] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [353] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [364] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [375] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [386] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [408] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [419] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [430] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [441] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [452] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [463] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [474] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [485] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [496] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [507] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [518] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [540] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [551] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [562] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [573] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [584] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [595] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [606] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [617] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [628] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [639] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [650] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [661] FALSE
hist(d$age)

find_mismatches <- function(data) {
  mismatches <- data %>%
    group_by(hhid) %>%
    filter(n_distinct(bhw) > 1) %>%
    summarise(ids = list(id), .groups = 'drop')
  return(mismatches$ids)
}

mismatch_ids <- find_mismatches(d)
mismatch <- d[d$id %in% unlist(mismatch_ids), ]
View(mismatch) # found a total of 12 pairs of biological siblings with different self reported race: 8 pairs of H/W, 2 pairs of W/NA, 1 pair of B/W, 1 pair of B/H.
ds <- d %>% filter(!(id %in% unlist(mismatch_ids))) 
nrow(ds) # N=1312
## [1] 1312
find_mismatches_dk <- function(data) {
  mismatches <- data %>%
    group_by(hhid) %>%
    filter(n_distinct(bhw) > 1) %>%
    summarise(hhids = first(hhid), .groups = 'drop')
  return(mismatches$hhids)
}

dw<- subset(ds, bhw==3)
nrow(dw) # N=670
## [1] 670
mismatch_hhids_dk <- find_mismatches_dk(dk)
mismatch_dk <- dk %>% filter(hhid %in% mismatch_hhids_dk)
View(mismatch_dk) # 92 cases with same hhid but different bhw values
dkw <- dk %>% filter(!(hhid %in% mismatch_hhids_dk))
nrow(dkw) # N=7001, same as dk but minus potential white misclassification
## [1] 7001
dw<- subset(dk, bhw==3)
nrow(dw) # N=3659, dw is the total white
## [1] 3659
dw<- subset(dkw, bhw==3)
nrow(dw) # N=3621, total white minus misclassification, which is a loss of 38 whites who could potentially be misclassified
## [1] 3621
# DESCRIPTIVE STATS

describeBy(d$age, d$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n  mean   sd median trimmed  mad min   max range  skew
## X1    1 668 14.51 1.41   14.5   14.51 1.85  12 16.92  4.92 -0.02
##    kurtosis   se
## X1    -1.17 0.05
## ------------------------------------------------------ 
## group: 1
##    vars   n  mean   sd median trimmed  mad min   max range  skew
## X1    1 668 14.52 1.46  14.54   14.53 1.92  12 16.92  4.92 -0.07
##    kurtosis   se
## X1    -1.23 0.06
describeBy(dk$age, dk$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min   max range skew
## X1    1 3590 14.39 1.41  14.33   14.38 1.73  12 16.92  4.92 0.05
##    kurtosis   se
## X1    -1.14 0.02
## ------------------------------------------------------ 
## group: 1
##    vars    n  mean   sd median trimmed  mad min   max range  skew
## X1    1 3503 14.47 1.43   14.5   14.47 1.85  12 16.92  4.92 -0.03
##    kurtosis   se
## X1    -1.17 0.02
describeBy(d$pareduc, d$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis
## X1    1 638 12.29 2.88     12   12.44 2.22   2  20    18 -0.53     1.02
##      se
## X1 0.11
## ------------------------------------------------------ 
## group: 1
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis
## X1    1 637 12.33 2.89     12   12.48 2.22   2  20    18 -0.54     1.03
##      se
## X1 0.11
describeBy(dk$pareduc, dk$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 3424 12.68 3.41     12   12.67 2.22   1  95    94 6.34   126.88
##      se
## X1 0.06
## ------------------------------------------------------ 
## group: 1
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 3336 12.59 3.17     12   12.66 2.22   1  95    94 5.61   145.37
##      se
## X1 0.05
describeBy(d$momeduc, d$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis
## X1    1 628 12.26 3.04     12   12.48 1.48   1  20    19 -0.66     1.41
##      se
## X1 0.12
## ------------------------------------------------------ 
## group: 1
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis
## X1    1 626 12.27 3.04     12   12.49 1.48   1  20    19 -0.66     1.41
##      se
## X1 0.12
describeBy(dk$momeduc, dk$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 3336 12.74 3.71     12   12.75 1.48   1  95    94 9.61   214.66
##      se
## X1 0.06
## ------------------------------------------------------ 
## group: 1
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 3267 12.61 3.23     12   12.73 2.97   1  95    94  4.7    130.3
##      se
## X1 0.06
describeBy(d$dadeduc, d$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis
## X1    1 547 12.51 3.32     12   12.62 2.97   2  20    18 -0.35     0.79
##      se
## X1 0.14
## ------------------------------------------------------ 
## group: 1
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis
## X1    1 543 12.55 3.32     12   12.67 2.97   2  20    18 -0.36     0.83
##      se
## X1 0.14
describeBy(dk$dadeduc, dk$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 2927 12.81 4.11     12   12.78 2.97   1  95    94 8.07    162.8
##      se
## X1 0.08
## ------------------------------------------------------ 
## group: 1
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 2815 12.78 3.44     12    12.8 2.97   2  95    93 4.69   115.89
##      se
## X1 0.06
t.test(age ~ sex, data = d)
## 
##  Welch Two Sample t-test
## 
## data:  age by sex
## t = -0.17615, df = 1332.3, p-value = 0.8602
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.1680758  0.1403793
## sample estimates:
## mean in group 0 mean in group 1 
##        14.50713        14.52098
t.test(age ~ sex, data = dk)
## 
##  Welch Two Sample t-test
## 
## data:  age by sex
## t = -2.2688, df = 7080.3, p-value = 0.02331
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.14238243 -0.01038558
## sample estimates:
## mean in group 0 mean in group 1 
##        14.39167        14.46805
t.test(pareduc ~ sex, data = d)
## 
##  Welch Two Sample t-test
## 
## data:  pareduc by sex
## t = -0.20692, df = 1273, p-value = 0.8361
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.3503448  0.2834929
## sample estimates:
## mean in group 0 mean in group 1 
##        12.29232        12.32575
t.test(pareduc ~ sex, data = dk)
## 
##  Welch Two Sample t-test
## 
## data:  pareduc by sex
## t = 1.1335, df = 6742.8, p-value = 0.257
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.06611981  0.24742150
## sample estimates:
## mean in group 0 mean in group 1 
##        12.68283        12.59218
t.test(momeduc ~ sex, data = d)
## 
##  Welch Two Sample t-test
## 
## data:  momeduc by sex
## t = -0.079246, df = 1252, p-value = 0.9368
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.3505153  0.3232977
## sample estimates:
## mean in group 0 mean in group 1 
##        12.25955        12.27316
t.test(momeduc ~ sex, data = dk)
## 
##  Welch Two Sample t-test
## 
## data:  momeduc by sex
## t = 1.5338, df = 6507.9, p-value = 0.1251
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.03649209  0.29893778
## sample estimates:
## mean in group 0 mean in group 1 
##        12.74341        12.61218
t.test(dadeduc ~ sex, data = d)
## 
##  Welch Two Sample t-test
## 
## data:  dadeduc by sex
## t = -0.18358, df = 1088, p-value = 0.8544
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.4315256  0.3576857
## sample estimates:
## mean in group 0 mean in group 1 
##        12.51188        12.54880
t.test(dadeduc ~ sex, data = dk)
## 
##  Welch Two Sample t-test
## 
## data:  dadeduc by sex
## t = 0.29766, df = 5633.1, p-value = 0.766
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.1659320  0.2253419
## sample estimates:
## mean in group 0 mean in group 1 
##        12.80697        12.77726
describeBy(d$educ2011, d$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 556 13.29 2.82     13   13.28 2.97   6  20    14 0.12    -0.52
##      se
## X1 0.12
## ------------------------------------------------------ 
## group: 1
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 580 14.01 2.86     14   14.02 2.97   6  20    14 0.02    -0.61
##      se
## X1 0.12
describeBy(dk$educ2011, dk$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 2960 13.42 3.54     13   13.32 2.97   6  95    89 8.36   189.11
##      se
## X1 0.07
## ------------------------------------------------------ 
## group: 1
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 2950 14.13 3.89     14   14.08 2.97   6  95    89 9.07    187.2
##      se
## X1 0.07
t.test(educ2011 ~ sex, data = dk)
## 
##  Welch Two Sample t-test
## 
## data:  educ2011 by sex
## t = -7.3044, df = 5850.9, p-value = 3.156e-13
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.8965643 -0.5171508
## sample estimates:
## mean in group 0 mean in group 1 
##        13.42297        14.12983
t.test(educ2011 ~ sex, data = d)
## 
##  Welch Two Sample t-test
## 
## data:  educ2011 by sex
## t = -4.2771, df = 1132.9, p-value = 2.053e-05
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -1.0514217 -0.3901313
## sample estimates:
## mean in group 0 mean in group 1 
##        13.28957        14.01034
# FACTOR ANALYSIS (fa uses "minres" by default while factanal uses "ml")

ds %>% group_by(bhw, sex) %>% summarise(mean=mean(age), sd=sd(age))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  14.6  1.32
## 2     1     1  14.7  1.48
## 3     2     0  14.7  1.44
## 4     2     1  14.4  1.40
## 5     3     0  14.4  1.41
## 6     3     1  14.5  1.49
## 7    NA     0  14.7  1.56
## 8    NA     1  14.3  1.20
ds %>% group_by(bhw, sex) %>% summarise(mean=mean(ssgs), sd=sd(ssgs))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex   mean    sd
##   <dbl> <dbl>  <dbl> <dbl>
## 1     1     0 -0.673 0.914
## 2     1     1 -0.623 0.859
## 3     2     0 -0.343 0.926
## 4     2     1 -0.575 0.794
## 5     3     0  0.510 1.01 
## 6     3     1  0.343 0.937
## 7    NA     0  0.670 0.947
## 8    NA     1  0.173 0.921
ds %>% group_by(bhw, sex) %>% summarise(mean=mean(ssar), sd=sd(ssar))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex   mean    sd
##   <dbl> <dbl>  <dbl> <dbl>
## 1     1     0 -0.709 0.991
## 2     1     1 -0.594 0.879
## 3     2     0 -0.227 0.983
## 4     2     1 -0.317 0.841
## 5     3     0  0.356 0.977
## 6     3     1  0.370 0.875
## 7    NA     0  0.708 0.914
## 8    NA     1  0.416 1.01
ds %>% group_by(bhw, sex) %>% summarise(mean=mean(sswk), sd=sd(sswk))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.724  0.931
## 2     1     1 -0.615  0.994
## 3     2     0 -0.393  0.884
## 4     2     1 -0.480  0.811
## 5     3     0  0.344  1.01 
## 6     3     1  0.345  0.952
## 7    NA     0  0.330  1.16 
## 8    NA     1  0.0240 1.00
ds %>% group_by(bhw, sex) %>% summarise(mean=mean(sspc), sd=sd(sspc))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex   mean    sd
##   <dbl> <dbl>  <dbl> <dbl>
## 1     1     0 -0.738 0.870
## 2     1     1 -0.433 0.915
## 3     2     0 -0.366 0.997
## 4     2     1 -0.271 0.865
## 5     3     0  0.124 0.967
## 6     3     1  0.404 0.937
## 7    NA     0  0.162 0.831
## 8    NA     1  0.339 0.906
ds %>% group_by(bhw, sex) %>% summarise(mean=mean(ssno), sd=sd(ssno))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.434  1.07 
## 2     1     1 -0.0941 0.984
## 3     2     0 -0.307  0.919
## 4     2     1 -0.190  0.814
## 5     3     0  0.0982 1.07 
## 6     3     1  0.265  0.986
## 7    NA     0  0.585  0.803
## 8    NA     1  0.0978 0.795
ds %>% group_by(bhw, sex) %>% summarise(mean=mean(sscs), sd=sd(sscs))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.588  0.959
## 2     1     1 -0.110  1.04 
## 3     2     0 -0.360  1.11 
## 4     2     1 -0.0724 0.789
## 5     3     0 -0.0423 1.02 
## 6     3     1  0.326  0.950
## 7    NA     0  0.503  0.873
## 8    NA     1  0.243  1.24
ds %>% group_by(bhw, sex) %>% summarise(mean=mean(ssai), sd=sd(ssai))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.460  0.950
## 2     1     1 -0.632  0.801
## 3     2     0 -0.0228 1.00 
## 4     2     1 -0.520  0.753
## 5     3     0  0.661  1.14 
## 6     3     1  0.0422 0.756
## 7    NA     0  0.426  0.934
## 8    NA     1 -0.332  0.729
ds %>% group_by(bhw, sex) %>% summarise(mean=mean(sssi), sd=sd(sssi))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex   mean    sd
##   <dbl> <dbl>  <dbl> <dbl>
## 1     1     0 -0.503 0.815
## 2     1     1 -0.846 0.669
## 3     2     0 -0.169 0.948
## 4     2     1 -0.627 0.734
## 5     3     0  0.817 1.01 
## 6     3     1  0.129 0.797
## 7    NA     0  0.130 1.06 
## 8    NA     1 -0.274 0.831
ds %>% group_by(bhw, sex) %>% summarise(mean=mean(ssmk), sd=sd(ssmk))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex   mean    sd
##   <dbl> <dbl>  <dbl> <dbl>
## 1     1     0 -0.716 0.939
## 2     1     1 -0.499 0.976
## 3     2     0 -0.241 1.00 
## 4     2     1 -0.314 0.888
## 5     3     0  0.229 0.950
## 6     3     1  0.410 0.972
## 7    NA     0  0.686 0.998
## 8    NA     1  0.337 1.24
ds %>% group_by(bhw, sex) %>% summarise(mean=mean(ssmc), sd=sd(ssmc))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.705  0.950
## 2     1     1 -0.771  0.846
## 3     2     0 -0.158  0.957
## 4     2     1 -0.486  0.822
## 5     3     0  0.559  0.996
## 6     3     1  0.239  0.871
## 7    NA     0  0.419  1.08 
## 8    NA     1  0.0700 0.939
ds %>% group_by(bhw, sex) %>% summarise(mean=mean(ssei), sd=sd(ssei))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex     mean    sd
##   <dbl> <dbl>    <dbl> <dbl>
## 1     1     0 -0.697   0.869
## 2     1     1 -0.590   0.815
## 3     2     0 -0.214   1.01 
## 4     2     1 -0.592   0.758
## 5     3     0  0.565   1.13 
## 6     3     1  0.156   0.862
## 7    NA     0  0.363   1.34 
## 8    NA     1  0.00944 1.11
ds %>% group_by(bhw, sex) %>% summarise(mean=mean(ssao), sd=sd(ssao))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.644  0.857
## 2     1     1 -0.513  0.908
## 3     2     0 -0.0935 0.967
## 4     2     1 -0.200  0.935
## 5     3     0  0.229  1.00 
## 6     3     1  0.322  0.923
## 7    NA     0  0.477  1.18 
## 8    NA     1  0.377  1.18
ds %>% group_by(bhw, sex) %>% summarise(mean=mean(asvab), sd=sd(asvab))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  87.9  11.1
## 2     1     1  90.4  12.2
## 3     2     0  93.5  12.9
## 4     2     1  92.9  11.3
## 5     3     0 105.   14.4
## 6     3     1 106.   13.9
## 7    NA     0 107.   14.2
## 8    NA     1 105.   15.8
ds %>% group_by(bhw, sex) %>% summarise(mean=mean(efa), sd=sd(efa))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  87.6  14.0
## 2     1     1  89.8  13.9
## 3     2     0  94.8  14.6
## 4     2     1  92.7  12.1
## 5     3     0 106.   15.2
## 6     3     1 106.   14.1
## 7    NA     0 109.   15.9
## 8    NA     1 103.   15.8
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(age), SD = survey_sd(age))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  14.5  0.122   1.35
## 2     1     1  14.7  0.125   1.46
## 3     2     0  14.8  0.126   1.42
## 4     2     1  14.4  0.132   1.45
## 5     3     0  14.4  0.0824  1.43
## 6     3     1  14.6  0.0863  1.52
## 7    NA     0  14.7  0.359   1.55
## 8    NA     1  14.3  0.279   1.22
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssgs), SD = survey_sd(ssgs))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex   MEAN MEAN_se    SD
##   <dbl> <dbl>  <dbl>   <dbl> <dbl>
## 1     1     0 -0.619  0.0829 0.909
## 2     1     1 -0.573  0.0784 0.867
## 3     2     0 -0.236  0.0881 0.954
## 4     2     1 -0.500  0.0741 0.813
## 5     3     0  0.542  0.0565 0.995
## 6     3     1  0.378  0.0509 0.912
## 7    NA     0  0.730  0.220  0.961
## 8    NA     1  0.163  0.214  0.938
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssar), SD = survey_sd(ssar))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex   MEAN MEAN_se    SD
##   <dbl> <dbl>  <dbl>   <dbl> <dbl>
## 1     1     0 -0.687  0.0895 0.978
## 2     1     1 -0.567  0.0810 0.896
## 3     2     0 -0.164  0.0962 1.02 
## 4     2     1 -0.257  0.0710 0.823
## 5     3     0  0.392  0.0549 0.970
## 6     3     1  0.384  0.0493 0.874
## 7    NA     0  0.763  0.202  0.906
## 8    NA     1  0.416  0.227  1.01
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(sswk), SD = survey_sd(sswk))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex    MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl>   <dbl> <dbl>
## 1     1     0 -0.672   0.0886 0.958
## 2     1     1 -0.537   0.0867 0.992
## 3     2     0 -0.313   0.0864 0.922
## 4     2     1 -0.388   0.0738 0.829
## 5     3     0  0.371   0.0572 1.01 
## 6     3     1  0.382   0.0525 0.940
## 7    NA     0  0.380   0.273  1.19 
## 8    NA     1  0.0125  0.229  1.01
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(sspc), SD = survey_sd(sspc))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex   MEAN MEAN_se    SD
##   <dbl> <dbl>  <dbl>   <dbl> <dbl>
## 1     1     0 -0.704  0.0779 0.870
## 2     1     1 -0.396  0.0810 0.918
## 3     2     0 -0.231  0.0944 1.01 
## 4     2     1 -0.207  0.0748 0.850
## 5     3     0  0.143  0.0557 0.979
## 6     3     1  0.445  0.0512 0.916
## 7    NA     0  0.206  0.189  0.835
## 8    NA     1  0.329  0.201  0.902
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssno), SD = survey_sd(ssno))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex    MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl>   <dbl> <dbl>
## 1     1     0 -0.376   0.0932 1.04 
## 2     1     1 -0.0732  0.0869 0.994
## 3     2     0 -0.260   0.0908 0.969
## 4     2     1 -0.170   0.0738 0.822
## 5     3     0  0.122   0.0611 1.08 
## 6     3     1  0.285   0.0557 0.989
## 7    NA     0  0.638   0.184  0.809
## 8    NA     1  0.0923  0.175  0.789
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(sscs), SD = survey_sd(sscs))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex     MEAN MEAN_se    SD
##   <dbl> <dbl>    <dbl>   <dbl> <dbl>
## 1     1     0 -0.528    0.0808 0.925
## 2     1     1 -0.125    0.103  1.10 
## 3     2     0 -0.337    0.112  1.17 
## 4     2     1 -0.00486  0.0690 0.781
## 5     3     0 -0.0261   0.0583 1.03 
## 6     3     1  0.358    0.0530 0.939
## 7    NA     0  0.501    0.211  0.905
## 8    NA     1  0.208    0.274  1.23
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssai), SD = survey_sd(ssai))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex      MEAN MEAN_se    SD
##   <dbl> <dbl>     <dbl>   <dbl> <dbl>
## 1     1     0 -0.455     0.0841 0.946
## 2     1     1 -0.666     0.0693 0.800
## 3     2     0 -0.000914  0.0933 1.01 
## 4     2     1 -0.475     0.0681 0.750
## 5     3     0  0.684     0.0668 1.16 
## 6     3     1  0.0692    0.0426 0.758
## 7    NA     0  0.454     0.220  0.959
## 8    NA     1 -0.333     0.161  0.725
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(sssi), SD = survey_sd(sssi))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex   MEAN MEAN_se    SD
##   <dbl> <dbl>  <dbl>   <dbl> <dbl>
## 1     1     0 -0.505  0.0755 0.823
## 2     1     1 -0.823  0.0571 0.663
## 3     2     0 -0.111  0.0978 1.02 
## 4     2     1 -0.543  0.0712 0.750
## 5     3     0  0.827  0.0586 1.03 
## 6     3     1  0.163  0.0437 0.781
## 7    NA     0  0.143  0.248  1.09 
## 8    NA     1 -0.277  0.184  0.825
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssmk), SD = survey_sd(ssmk))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex   MEAN MEAN_se    SD
##   <dbl> <dbl>  <dbl>   <dbl> <dbl>
## 1     1     0 -0.671  0.0863 0.939
## 2     1     1 -0.452  0.0890 0.999
## 3     2     0 -0.162  0.0913 1.01 
## 4     2     1 -0.264  0.0758 0.871
## 5     3     0  0.259  0.0544 0.957
## 6     3     1  0.448  0.0542 0.964
## 7    NA     0  0.708  0.231  1.01 
## 8    NA     1  0.331  0.274  1.23
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssmc), SD = survey_sd(ssmc))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex    MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl>   <dbl> <dbl>
## 1     1     0 -0.658   0.0848 0.943
## 2     1     1 -0.740   0.0670 0.804
## 3     2     0 -0.0567  0.0889 0.972
## 4     2     1 -0.450   0.0722 0.822
## 5     3     0  0.578   0.0565 0.997
## 6     3     1  0.263   0.0483 0.859
## 7    NA     0  0.382   0.238  1.06 
## 8    NA     1  0.0577  0.210  0.940
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssei), SD = survey_sd(ssei))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex     MEAN MEAN_se    SD
##   <dbl> <dbl>    <dbl>   <dbl> <dbl>
## 1     1     0 -0.663    0.0827 0.897
## 2     1     1 -0.543    0.0734 0.822
## 3     2     0 -0.129    0.103  1.07 
## 4     2     1 -0.513    0.0696 0.761
## 5     3     0  0.595    0.0631 1.11 
## 6     3     1  0.188    0.0482 0.859
## 7    NA     0  0.371    0.308  1.36 
## 8    NA     1  0.00575  0.252  1.12
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssao), SD = survey_sd(ssao))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex    MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl>   <dbl> <dbl>
## 1     1     0 -0.631   0.0731 0.834
## 2     1     1 -0.523   0.0759 0.893
## 3     2     0 -0.0343  0.0896 0.986
## 4     2     1 -0.169   0.0788 0.912
## 5     3     0  0.225   0.0576 1.02 
## 6     3     1  0.343   0.0520 0.923
## 7    NA     0  0.440   0.266  1.18 
## 8    NA     1  0.368   0.263  1.18
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(asvab), SD = survey_sd(asvab))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  88.4   1.02   11.2
## 2     1     1  91.1   1.09   12.4
## 3     2     0  94.8   1.25   13.3
## 4     2     1  94.2   1.03   11.5
## 5     3     0 106.    0.817  14.4
## 6     3     1 106.    0.774  13.8
## 7    NA     0 108.    3.12   13.8
## 8    NA     1 105.    3.57   15.8
ds %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  88.4   1.30   14.1
## 2     1     1  90.5   1.22   13.9
## 3     2     0  96.4   1.43   15.3
## 4     2     1  93.9   1.05   12.0
## 5     3     0 107.    0.862  15.2
## 6     3     1 107.    0.774  13.8
## 7    NA     0 110.    3.66   16.1
## 8    NA     1 103.    3.55   15.8
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(age), sd=sd(age))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  14.4  1.36
## 2     1     1  14.5  1.47
## 3     2     0  14.4  1.43
## 4     2     1  14.4  1.39
## 5     3     0  14.4  1.42
## 6     3     1  14.5  1.42
## 7    NA     0  14.3  1.45
## 8    NA     1  14.4  1.38
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssgs), sd=sd(ssgs))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.571  0.886
## 2     1     1 -0.550  0.830
## 3     2     0 -0.294  0.913
## 4     2     1 -0.462  0.858
## 5     3     0  0.496  0.972
## 6     3     1  0.310  0.847
## 7    NA     0  0.219  0.975
## 8    NA     1  0.0800 0.884
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssar), sd=sd(ssar))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex   mean    sd
##   <dbl> <dbl>  <dbl> <dbl>
## 1     1     0 -0.603 0.975
## 2     1     1 -0.514 0.910
## 3     2     0 -0.222 0.943
## 4     2     1 -0.251 0.902
## 5     3     0  0.366 0.965
## 6     3     1  0.313 0.834
## 7    NA     0  0.357 1.05 
## 8    NA     1  0.261 0.895
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(sswk), sd=sd(sswk))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex   mean    sd
##   <dbl> <dbl>  <dbl> <dbl>
## 1     1     0 -0.577 0.952
## 2     1     1 -0.454 0.920
## 3     2     0 -0.330 0.918
## 4     2     1 -0.333 0.866
## 5     3     0  0.367 0.938
## 6     3     1  0.364 0.883
## 7    NA     0  0.174 1.08 
## 8    NA     1  0.139 0.893
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(sspc), sd=sd(sspc))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex   mean    sd
##   <dbl> <dbl>  <dbl> <dbl>
## 1     1     0 -0.643 0.916
## 2     1     1 -0.304 0.928
## 3     2     0 -0.333 0.954
## 4     2     1 -0.146 0.892
## 5     3     0  0.186 0.982
## 6     3     1  0.432 0.888
## 7    NA     0  0.118 1.01 
## 8    NA     1  0.318 0.845
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssno), sd=sd(ssno))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.361  1.03 
## 2     1     1 -0.0231 0.950
## 3     2     0 -0.314  0.921
## 4     2     1 -0.137  0.835
## 5     3     0  0.0808 1.05 
## 6     3     1  0.243  0.941
## 7    NA     0  0.185  1.07 
## 8    NA     1  0.302  1.01
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(sscs), sd=sd(sscs))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex     mean    sd
##   <dbl> <dbl>    <dbl> <dbl>
## 1     1     0 -0.502   1.01 
## 2     1     1 -0.0193  0.973
## 3     2     0 -0.302   0.976
## 4     2     1 -0.00361 0.861
## 5     3     0 -0.0135  1.00 
## 6     3     1  0.351   0.910
## 7    NA     0  0.188   1.02 
## 8    NA     1  0.373   1.06
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssai), sd=sd(ssai))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.361  0.949
## 2     1     1 -0.550  0.803
## 3     2     0 -0.0891 0.964
## 4     2     1 -0.442  0.775
## 5     3     0  0.594  1.10 
## 6     3     1  0.0401 0.739
## 7    NA     0  0.204  1.07 
## 8    NA     1 -0.261  0.689
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(sssi), sd=sd(sssi))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.437  0.840
## 2     1     1 -0.721  0.697
## 3     2     0 -0.117  0.963
## 4     2     1 -0.557  0.789
## 5     3     0  0.753  0.984
## 6     3     1  0.0518 0.753
## 7    NA     0  0.196  0.925
## 8    NA     1 -0.238  0.722
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssmk), sd=sd(ssmk))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex   mean    sd
##   <dbl> <dbl>  <dbl> <dbl>
## 1     1     0 -0.583 0.920
## 2     1     1 -0.320 0.940
## 3     2     0 -0.284 0.956
## 4     2     1 -0.213 0.933
## 5     3     0  0.215 0.956
## 6     3     1  0.366 0.910
## 7    NA     0  0.323 1.08 
## 8    NA     1  0.392 1.02
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssmc), sd=sd(ssmc))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex   mean    sd
##   <dbl> <dbl>  <dbl> <dbl>
## 1     1     0 -0.603 0.968
## 2     1     1 -0.656 0.821
## 3     2     0 -0.134 0.969
## 4     2     1 -0.355 0.811
## 5     3     0  0.541 0.954
## 6     3     1  0.221 0.811
## 7    NA     0  0.321 0.925
## 8    NA     1  0.113 0.833
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssei), sd=sd(ssei))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex     mean    sd
##   <dbl> <dbl>    <dbl> <dbl>
## 1     1     0 -0.479   0.926
## 2     1     1 -0.457   0.773
## 3     2     0 -0.187   0.980
## 4     2     1 -0.474   0.770
## 5     3     0  0.553   1.09 
## 6     3     1  0.124   0.768
## 7    NA     0  0.204   1.06 
## 8    NA     1 -0.00528 0.891
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssao), sd=sd(ssao))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.600  0.852
## 2     1     1 -0.451  0.894
## 3     2     0 -0.110  0.950
## 4     2     1 -0.0521 0.933
## 5     3     0  0.195  1.01 
## 6     3     1  0.335  0.913
## 7    NA     0  0.363  1.09 
## 8    NA     1  0.348  0.965
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(asvab), sd=sd(asvab))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  90.1  11.7
## 2     1     1  92.7  12.6
## 3     2     0  94.6  13.4
## 4     2     1  95.3  13.1
## 5     3     0 105.   14.6
## 6     3     1 106.   13.7
## 7    NA     0 105.   14.9
## 8    NA     1 105.   13.9
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(efa), sd=sd(efa))
## `summarise()` has grouped output by 'bhw'. You can override using the
## `.groups` argument.
## # A tibble: 8 Ă— 4
## # Groups:   bhw [4]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  89.6  13.9
## 2     1     1  92.0  13.4
## 3     2     0  95.2  14.1
## 4     2     1  94.6  13.1
## 5     3     0 107.   14.7
## 6     3     1 106.   12.9
## 7    NA     0 104.   15.7
## 8    NA     1 104.   13.3
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(age), SD = survey_sd(age))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  14.4  0.0554  1.41
## 2     1     1  14.5  0.0504  1.43
## 3     2     0  14.5  0.0619  1.43
## 4     2     1  14.4  0.0638  1.43
## 5     3     0  14.4  0.0351  1.44
## 6     3     1  14.5  0.0365  1.45
## 7    NA     0  14.3  0.134   1.47
## 8    NA     1  14.3  0.128   1.40
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssgs), SD = survey_sd(ssgs))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex   MEAN MEAN_se    SD
##   <dbl> <dbl>  <dbl>   <dbl> <dbl>
## 1     1     0 -0.505  0.0335 0.887
## 2     1     1 -0.513  0.0314 0.843
## 3     2     0 -0.174  0.0411 0.940
## 4     2     1 -0.333  0.0386 0.878
## 5     3     0  0.523  0.0234 0.974
## 6     3     1  0.331  0.0207 0.843
## 7    NA     0  0.243  0.0871 0.975
## 8    NA     1  0.126  0.0784 0.875
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssar), SD = survey_sd(ssar))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex   MEAN MEAN_se    SD
##   <dbl> <dbl>  <dbl>   <dbl> <dbl>
## 1     1     0 -0.551  0.0382 0.988
## 2     1     1 -0.502  0.0329 0.910
## 3     2     0 -0.128  0.0410 0.952
## 4     2     1 -0.146  0.0405 0.908
## 5     3     0  0.395  0.0228 0.953
## 6     3     1  0.327  0.0209 0.835
## 7    NA     0  0.382  0.0945 1.06 
## 8    NA     1  0.292  0.0780 0.883
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(sswk), SD = survey_sd(sswk))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex   MEAN MEAN_se    SD
##   <dbl> <dbl>  <dbl>   <dbl> <dbl>
## 1     1     0 -0.517  0.0369 0.965
## 2     1     1 -0.409  0.0341 0.929
## 3     2     0 -0.203  0.0405 0.937
## 4     2     1 -0.233  0.0386 0.882
## 5     3     0  0.392  0.0225 0.937
## 6     3     1  0.379  0.0217 0.882
## 7    NA     0  0.202  0.0960 1.08 
## 8    NA     1  0.160  0.0805 0.901
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(sspc), SD = survey_sd(sspc))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex    MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl>   <dbl> <dbl>
## 1     1     0 -0.590   0.0357 0.928
## 2     1     1 -0.266   0.0338 0.929
## 3     2     0 -0.203   0.0430 0.979
## 4     2     1 -0.0428  0.0381 0.887
## 5     3     0  0.211   0.0236 0.985
## 6     3     1  0.453   0.0216 0.880
## 7    NA     0  0.140   0.0908 1.02 
## 8    NA     1  0.345   0.0741 0.835
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssno), SD = survey_sd(ssno))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex    MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl>   <dbl> <dbl>
## 1     1     0 -0.316   0.0388 1.02 
## 2     1     1 -0.0252  0.0339 0.943
## 3     2     0 -0.263   0.0401 0.929
## 4     2     1 -0.0720  0.0353 0.826
## 5     3     0  0.0964  0.0256 1.07 
## 6     3     1  0.244   0.0234 0.947
## 7    NA     0  0.205   0.0986 1.10 
## 8    NA     1  0.334   0.0912 1.02
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(sscs), SD = survey_sd(sscs))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex     MEAN MEAN_se    SD
##   <dbl> <dbl>    <dbl>   <dbl> <dbl>
## 1     1     0 -0.458    0.0381 1.00 
## 2     1     1 -0.0178   0.0355 0.971
## 3     2     0 -0.234    0.0444 1.00 
## 4     2     1  0.0621   0.0381 0.869
## 5     3     0  0.00735  0.0240 1.00 
## 6     3     1  0.358    0.0227 0.906
## 7    NA     0  0.188    0.0925 1.03 
## 8    NA     1  0.405    0.0936 1.04
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssai), SD = survey_sd(ssai))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex    MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl>   <dbl> <dbl>
## 1     1     0 -0.336   0.0360 0.944
## 2     1     1 -0.546   0.0299 0.814
## 3     2     0 -0.0191  0.0424 0.976
## 4     2     1 -0.363   0.0348 0.783
## 5     3     0  0.614   0.0265 1.10 
## 6     3     1  0.0551  0.0182 0.738
## 7    NA     0  0.251   0.0975 1.09 
## 8    NA     1 -0.246   0.0607 0.689
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(sssi), SD = survey_sd(sssi))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex     MEAN MEAN_se    SD
##   <dbl> <dbl>    <dbl>   <dbl> <dbl>
## 1     1     0 -0.396    0.0329 0.855
## 2     1     1 -0.713    0.0256 0.699
## 3     2     0  0.00643  0.0443 0.996
## 4     2     1 -0.471    0.0348 0.797
## 5     3     0  0.769    0.0238 0.990
## 6     3     1  0.0594   0.0186 0.751
## 7    NA     0  0.235    0.0823 0.928
## 8    NA     1 -0.237    0.0641 0.722
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssmk), SD = survey_sd(ssmk))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex   MEAN MEAN_se    SD
##   <dbl> <dbl>  <dbl>   <dbl> <dbl>
## 1     1     0 -0.517  0.0375 0.948
## 2     1     1 -0.315  0.0341 0.940
## 3     2     0 -0.173  0.0426 0.973
## 4     2     1 -0.105  0.0405 0.931
## 5     3     0  0.242  0.0230 0.959
## 6     3     1  0.382  0.0225 0.911
## 7    NA     0  0.343  0.0975 1.09 
## 8    NA     1  0.414  0.0929 1.04
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssmc), SD = survey_sd(ssmc))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex     MEAN MEAN_se    SD
##   <dbl> <dbl>    <dbl>   <dbl> <dbl>
## 1     1     0 -0.544    0.0375 0.979
## 2     1     1 -0.650    0.0293 0.813
## 3     2     0 -0.00804  0.0428 0.986
## 4     2     1 -0.277    0.0358 0.821
## 5     3     0  0.563    0.0228 0.953
## 6     3     1  0.235    0.0200 0.812
## 7    NA     0  0.338    0.0818 0.923
## 8    NA     1  0.118    0.0744 0.828
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssei), SD = survey_sd(ssei))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex    MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl>   <dbl> <dbl>
## 1     1     0 -0.428   0.0360 0.946
## 2     1     1 -0.436   0.0286 0.777
## 3     2     0 -0.0728  0.0456 1.02 
## 4     2     1 -0.384   0.0344 0.786
## 5     3     0  0.582   0.0264 1.10 
## 6     3     1  0.139   0.0190 0.766
## 7    NA     0  0.226   0.0941 1.06 
## 8    NA     1  0.0509  0.0793 0.883
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssao), SD = survey_sd(ssao))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex    MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl>   <dbl> <dbl>
## 1     1     0 -0.561   0.0332 0.856
## 2     1     1 -0.437   0.0327 0.895
## 3     2     0 -0.0242  0.0421 0.971
## 4     2     1  0.0212  0.0405 0.930
## 5     3     0  0.214   0.0243 1.02 
## 6     3     1  0.356   0.0222 0.907
## 7    NA     0  0.386   0.0973 1.09 
## 8    NA     1  0.328   0.0865 0.972
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(asvab), SD = survey_sd(asvab))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  91.0   0.476  12.1
## 2     1     1  93.5   0.489  13.0
## 3     2     0  96.3   0.620  14.0
## 4     2     1  97.0   0.592  13.4
## 5     3     0 106.    0.348  14.6
## 6     3     1 107.    0.334  13.6
## 7    NA     0 105.    1.34   15.0
## 8    NA     1 105.    1.22   13.7
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 8 Ă— 5
## # Groups:   bhw [4]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  90.7   0.553  14.2
## 2     1     1  92.4   0.491  13.4
## 3     2     0  97.2   0.635  14.5
## 4     2     1  96.5   0.584  13.3
## 5     3     0 107.    0.352  14.7
## 6     3     1 106.    0.319  12.9
## 7    NA     0 105.    1.42   15.9
## 8    NA     1 104.    1.19   13.3
# white sibling sample

dw<- subset(ds, bhw==3)
m<- subset(dw, sex==0)
f<- subset(dw, sex==1) 
dm<- dplyr::select(m, starts_with("ss"), sweight)
df<- dplyr::select(f, starts_with("ss"), sweight)

ev <- eigen(cor(dm)) # get eigenvalues
ev$values
##  [1] 7.2136264 1.4095444 1.0143387 0.6508700 0.5509553 0.4241368
##  [7] 0.3575865 0.3195064 0.2866785 0.2381929 0.2060529 0.1776118
## [13] 0.1508995
ev <- eigen(cor(df)) # get eigenvalues
ev$values
##  [1] 7.2067447 1.0929905 0.9671518 0.6564131 0.6294458 0.4779097
##  [7] 0.4250565 0.3820870 0.2952830 0.2674813 0.2516615 0.1757482
## [13] 0.1720268
fa3<-fa(dm[,1:12], nfactors=3, rotate="promax", fm="minres", weight=dm$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:12], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR2   MR3   h2   u2 com
## ssgs  0.84  0.14 -0.10 0.78 0.22 1.1
## ssar  0.71 -0.03  0.23 0.75 0.25 1.2
## sswk  0.71  0.17  0.02 0.71 0.29 1.1
## sspc  0.99 -0.16  0.00 0.78 0.22 1.1
## ssno -0.11  0.04  0.91 0.73 0.27 1.0
## sscs  0.23  0.00  0.56 0.54 0.46 1.3
## ssai -0.11  0.87  0.07 0.68 0.32 1.0
## sssi -0.04  0.87 -0.01 0.71 0.29 1.0
## ssmk  0.61  0.00  0.36 0.82 0.18 1.6
## ssmc  0.61  0.34 -0.04 0.73 0.27 1.6
## ssei  0.45  0.49 -0.02 0.72 0.28 2.0
## ssao  0.66 -0.02  0.07 0.48 0.52 1.0
## 
##                        MR1  MR2  MR3
## SS loadings           4.63 2.19 1.61
## Proportion Var        0.39 0.18 0.13
## Cumulative Var        0.39 0.57 0.70
## Proportion Explained  0.55 0.26 0.19
## Cumulative Proportion 0.55 0.81 1.00
## 
##  With factor correlations of 
##      MR1  MR2  MR3
## MR1 1.00 0.68 0.69
## MR2 0.68 1.00 0.31
## MR3 0.69 0.31 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  66  with the objective function =  9.71 with Chi Square =  3194.86
## df of  the model are 33  and the objective function was  0.35 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  335 with the empirical chi square  20.22  with prob <  0.96 
## The total n.obs was  335  with Likelihood Chi Square =  113.7  with prob <  8.5e-11 
## 
## Tucker Lewis Index of factoring reliability =  0.948
## RMSEA index =  0.085  and the 90 % confidence intervals are  0.069 0.103
## BIC =  -78.17
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR2  MR3
## Correlation of (regression) scores with factors   0.97 0.94 0.92
## Multiple R square of scores with factors          0.95 0.88 0.85
## Minimum correlation of possible factor scores     0.90 0.77 0.71
fa3<-fa(df[,1:12], nfactors=3, rotate="promax", fm="minres", weight=df$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:12], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR2   MR3   h2   u2 com
## ssgs  0.75  0.25 -0.09 0.79 0.21 1.3
## ssar  0.32  0.44  0.22 0.75 0.25 2.3
## sswk  0.76  0.38 -0.25 0.82 0.18 1.7
## sspc  0.47  0.41  0.02 0.69 0.31 2.0
## ssno -0.16  0.89 -0.03 0.59 0.41 1.1
## sscs -0.09  0.64  0.13 0.44 0.56 1.1
## ssai  0.62 -0.04  0.03 0.38 0.62 1.0
## sssi  0.81 -0.33  0.15 0.51 0.49 1.4
## ssmk  0.20  0.63  0.16 0.80 0.20 1.3
## ssmc  0.46  0.09  0.37 0.69 0.31 2.0
## ssei  0.69  0.12  0.01 0.62 0.38 1.1
## ssao  0.04  0.15  0.69 0.67 0.33 1.1
## 
##                        MR1  MR2  MR3
## SS loadings           3.80 2.88 1.06
## Proportion Var        0.32 0.24 0.09
## Cumulative Var        0.32 0.56 0.65
## Proportion Explained  0.49 0.37 0.14
## Cumulative Proportion 0.49 0.86 1.00
## 
##  With factor correlations of 
##      MR1  MR2  MR3
## MR1 1.00 0.70 0.68
## MR2 0.70 1.00 0.59
## MR3 0.68 0.59 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  66  with the objective function =  8.65 with Chi Square =  2846.23
## df of  the model are 33  and the objective function was  0.25 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  335 with the empirical chi square  25.42  with prob <  0.82 
## The total n.obs was  335  with Likelihood Chi Square =  81.29  with prob <  5.9e-06 
## 
## Tucker Lewis Index of factoring reliability =  0.965
## RMSEA index =  0.066  and the 90 % confidence intervals are  0.048 0.084
## BIC =  -110.58
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR2  MR3
## Correlation of (regression) scores with factors   0.96 0.94 0.88
## Multiple R square of scores with factors          0.92 0.89 0.78
## Minimum correlation of possible factor scores     0.84 0.78 0.55
fa4<-fa(dm[,1:12], nfactors=4, rotate="promax", fm="minres", weight=dm$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:12], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR4   MR2   MR3   h2   u2 com
## ssgs  0.13  0.78  0.10 -0.08 0.82 0.18 1.1
## ssar  0.54  0.17 -0.03  0.25 0.76 0.24 1.6
## sswk -0.10  0.87  0.12  0.06 0.82 0.18 1.1
## sspc  0.47  0.51 -0.15  0.04 0.77 0.23 2.2
## ssno -0.11 -0.08  0.04  0.98 0.75 0.25 1.0
## sscs  0.15  0.06  0.00  0.57 0.53 0.47 1.2
## ssai -0.10  0.05  0.83  0.07 0.68 0.32 1.0
## sssi  0.07 -0.04  0.83 -0.02 0.71 0.29 1.0
## ssmk  0.46  0.15  0.00  0.38 0.82 0.18 2.2
## ssmc  0.83 -0.12  0.33 -0.10 0.82 0.18 1.4
## ssei  0.20  0.30  0.46  0.00 0.72 0.28 2.1
## ssao  0.70  0.01 -0.03  0.05 0.52 0.48 1.0
## 
##                        MR1  MR4  MR2  MR3
## SS loadings           2.66 2.29 2.03 1.75
## Proportion Var        0.22 0.19 0.17 0.15
## Cumulative Var        0.22 0.41 0.58 0.73
## Proportion Explained  0.30 0.26 0.23 0.20
## Cumulative Proportion 0.30 0.57 0.80 1.00
## 
##  With factor correlations of 
##      MR1  MR4  MR2  MR3
## MR1 1.00 0.84 0.60 0.70
## MR4 0.84 1.00 0.63 0.67
## MR2 0.60 0.63 1.00 0.31
## MR3 0.70 0.67 0.31 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  66  with the objective function =  9.71 with Chi Square =  3194.86
## df of  the model are 24  and the objective function was  0.13 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  335 with the empirical chi square  6.55  with prob <  1 
## The total n.obs was  335  with Likelihood Chi Square =  42.75  with prob <  0.011 
## 
## Tucker Lewis Index of factoring reliability =  0.983
## RMSEA index =  0.048  and the 90 % confidence intervals are  0.023 0.072
## BIC =  -96.79
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR4  MR2  MR3
## Correlation of (regression) scores with factors   0.96 0.96 0.93 0.93
## Multiple R square of scores with factors          0.92 0.92 0.87 0.87
## Minimum correlation of possible factor scores     0.84 0.85 0.75 0.75
fa4<-fa(df[,1:12], nfactors=4, rotate="promax", fm="minres", weight=df$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:12], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR3   MR2   MR4   h2   u2 com
## ssgs  0.91 -0.02 -0.06  0.06 0.81 0.19 1.0
## ssar  0.50  0.37  0.12 -0.07 0.76 0.24 2.0
## sswk  1.01 -0.23  0.06  0.05 0.83 0.17 1.1
## sspc  0.65  0.12  0.11 -0.01 0.69 0.31 1.1
## ssno  0.03 -0.10  0.88 -0.02 0.70 0.30 1.0
## sscs -0.03  0.15  0.58  0.05 0.46 0.54 1.1
## ssai  0.03 -0.08  0.17  0.64 0.49 0.51 1.2
## sssi  0.04  0.13 -0.14  0.71 0.60 0.40 1.1
## ssmk  0.43  0.27  0.32 -0.07 0.79 0.21 2.7
## ssmc  0.33  0.51 -0.08  0.12 0.69 0.31 1.9
## ssei  0.60  0.06 -0.03  0.20 0.61 0.39 1.2
## ssao -0.15  0.88  0.03  0.04 0.66 0.34 1.1
## 
##                        MR1  MR3  MR2  MR4
## SS loadings           3.71 1.66 1.53 1.21
## Proportion Var        0.31 0.14 0.13 0.10
## Cumulative Var        0.31 0.45 0.57 0.68
## Proportion Explained  0.46 0.20 0.19 0.15
## Cumulative Proportion 0.46 0.66 0.85 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2  MR4
## MR1 1.00 0.80 0.71 0.71
## MR3 0.80 1.00 0.66 0.63
## MR2 0.71 0.66 1.00 0.41
## MR4 0.71 0.63 0.41 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  66  with the objective function =  8.65 with Chi Square =  2846.23
## df of  the model are 24  and the objective function was  0.15 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  335 with the empirical chi square  8.83  with prob <  1 
## The total n.obs was  335  with Likelihood Chi Square =  48.42  with prob <  0.0022 
## 
## Tucker Lewis Index of factoring reliability =  0.976
## RMSEA index =  0.055  and the 90 % confidence intervals are  0.032 0.078
## BIC =  -91.12
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2  MR4
## Correlation of (regression) scores with factors   0.97 0.93 0.91 0.88
## Multiple R square of scores with factors          0.95 0.87 0.84 0.77
## Minimum correlation of possible factor scores     0.90 0.73 0.67 0.55
fact3<- factanal(dm[,1:12], 3, rotation="promax")
print(fact3, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = dm[, 1:12], factors = 3, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.13 0.23 0.23 0.27 0.49 0.51 0.37 0.30 0.15 0.26 0.28 0.54 
## 
## Loadings:
##      Factor1 Factor2 Factor3
## ssgs                  0.80  
## ssar  0.78                  
## sswk  0.21            0.67  
## sspc  0.52            0.42  
## ssno  0.86                  
## sscs  0.77                  
## ssai          0.85          
## sssi          0.92          
## ssmk  0.85                  
## ssmc  0.41    0.54          
## ssei          0.46    0.35  
## ssao  0.53                  
## 
##                Factor1 Factor2 Factor3
## SS loadings       3.45    2.14    1.41
## Proportion Var    0.29    0.18    0.12
## Cumulative Var    0.29    0.47    0.58
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1    1.00   -0.57   -0.75
## Factor2   -0.57    1.00    0.72
## Factor3   -0.75    0.72    1.00
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 91.9 on 33 degrees of freedom.
## The p-value is 1.84e-07
fact3<- factanal(df[,1:12], 3, rotation="promax")
print(fact3, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = df[, 1:12], factors = 3, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.19 0.23 0.16 0.31 0.42 0.56 0.64 0.53 0.19 0.28 0.38 0.38 
## 
## Loadings:
##      Factor1 Factor2 Factor3
## ssgs  0.83                  
## ssar  0.29    0.41    0.31  
## sswk  0.92    0.29   -0.26  
## sspc  0.51    0.34          
## ssno          0.76          
## sscs          0.56          
## ssai  0.49                  
## sssi  0.53   -0.21    0.30  
## ssmk  0.23    0.55    0.26  
## ssmc  0.30            0.55  
## ssei  0.68                  
## ssao                  0.79  
## 
##                Factor1 Factor2 Factor3
## SS loadings       3.03    1.67    1.32
## Proportion Var    0.25    0.14    0.11
## Cumulative Var    0.25    0.39    0.50
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1    1.00   -0.57   -0.80
## Factor2   -0.57    1.00    0.57
## Factor3   -0.80    0.57    1.00
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 64.52 on 33 degrees of freedom.
## The p-value is 0.000839
fact4<- factanal(dm[,1:12], 4, rotation="promax")
print(fact4, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = dm[, 1:12], factors = 4, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.16 0.23 0.19 0.24 0.31 0.48 0.32 0.32 0.16 0.17 0.29 0.50 
## 
## Loadings:
##      Factor1 Factor2 Factor3 Factor4
## ssgs          0.80                  
## ssar  0.53            0.32          
## sswk          0.84                  
## sspc  0.47    0.46                  
## ssno                  0.94          
## sscs                  0.60          
## ssai                          0.82  
## sssi                          0.76  
## ssmk  0.42            0.45          
## ssmc  0.82                    0.32  
## ssei          0.37            0.39  
## ssao  0.66                          
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings       1.90    1.76    1.58    1.55
## Proportion Var    0.16    0.15    0.13    0.13
## Cumulative Var    0.16    0.30    0.44    0.57
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3 Factor4
## Factor1    1.00   -0.57    0.82   -0.70
## Factor2   -0.57    1.00   -0.60    0.29
## Factor3    0.82   -0.60    1.00   -0.67
## Factor4   -0.70    0.29   -0.67    1.00
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 34.17 on 24 degrees of freedom.
## The p-value is 0.0817
fact4<- factanal(df[,1:12], 4, rotation="promax")
print(fact4, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = df[, 1:12], factors = 4, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.19 0.22 0.16 0.30 0.25 0.54 0.56 0.37 0.20 0.30 0.38 0.39 
## 
## Loadings:
##      Factor1 Factor2 Factor3 Factor4
## ssgs  0.78                          
## ssar  0.36    0.53                  
## sswk  0.92                          
## sspc  0.59    0.29                  
## ssno                  0.93          
## sscs          0.22    0.52          
## ssai                          0.56  
## sssi                          0.79  
## ssmk  0.31    0.45    0.26          
## ssmc  0.21    0.60                  
## ssei  0.50                    0.28  
## ssao          0.88                  
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings       2.37    1.79    1.27    1.09
## Proportion Var    0.20    0.15    0.11    0.09
## Cumulative Var    0.20    0.35    0.45    0.54
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3 Factor4
## Factor1    1.00   -0.69    0.81    0.71
## Factor2   -0.69    1.00   -0.70   -0.42
## Factor3    0.81   -0.70    1.00    0.66
## Factor4    0.71   -0.42    0.66    1.00
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 35.5 on 24 degrees of freedom.
## The p-value is 0.0613
mfa<-fa(r=dm, nfactors=4, max.iter=100, warnings=TRUE, rotate="none", fm="pa", weight=dm$sweight)
print(mfa, digits=2, cutoff=.10)
## Factor Analysis using method =  pa
## Call: fa(r = dm, nfactors = 4, rotate = "none", max.iter = 100, warnings = TRUE, 
##     fm = "pa", weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##          PA1   PA2   PA3   PA4   h2   u2 com
## ssgs    0.87  0.07 -0.13 -0.25 0.84 0.16 1.2
## ssar    0.84 -0.22 -0.04  0.05 0.75 0.25 1.1
## sswk    0.85  0.03 -0.01 -0.28 0.80 0.20 1.2
## sspc    0.83 -0.19 -0.13 -0.11 0.76 0.24 1.2
## ssno    0.59 -0.43  0.28  0.10 0.62 0.38 2.4
## sscs    0.63 -0.33  0.22  0.07 0.57 0.43 1.8
## ssai    0.64  0.54  0.24  0.07 0.76 0.24 2.3
## sssi    0.63  0.51  0.04  0.12 0.67 0.33 2.0
## ssmk    0.87 -0.26  0.06  0.05 0.83 0.17 1.2
## ssmc    0.84  0.16 -0.21  0.21 0.82 0.18 1.3
## ssei    0.81  0.26 -0.04 -0.01 0.72 0.28 1.2
## ssao    0.68 -0.14 -0.21  0.15 0.54 0.46 1.4
## sweight 0.22  0.13  0.39 -0.11 0.22 0.78 2.0
## 
##                        PA1  PA2  PA3  PA4
## SS loadings           7.03 1.13 0.46 0.27
## Proportion Var        0.54 0.09 0.04 0.02
## Cumulative Var        0.54 0.63 0.66 0.68
## Proportion Explained  0.79 0.13 0.05 0.03
## Cumulative Proportion 0.79 0.92 0.97 1.00
## 
## Mean item complexity =  1.6
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  78  with the objective function =  9.87 0.1 with Chi Square =  3246.08
## df of  the model are 32  and the objective function was  0.18 
##  0.1
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
##  0.1
## The harmonic n.obs is  335 with the empirical chi square  10.67  with prob <  1 
##  0.1The total n.obs was  335  with Likelihood Chi Square =  58.45  with prob <  0.0029 
##  0.1
## Tucker Lewis Index of factoring reliability =  0.979
## RMSEA index =  0.05  and the 90 % confidence intervals are  0.029 0.07 0.1
## BIC =  -127.6
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    PA1  PA2  PA3  PA4
## Correlation of (regression) scores with factors   0.98 0.89 0.75 0.74
## Multiple R square of scores with factors          0.97 0.80 0.56 0.55
## Minimum correlation of possible factor scores     0.93 0.59 0.13 0.10
ffa<-fa(r=df, nfactors=4, max.iter=100, warnings=TRUE, rotate="none", fm="pa", weight=df$sweight)
print(ffa, digits=2, cutoff=.10)
## Factor Analysis using method =  pa
## Call: fa(r = df, nfactors = 4, rotate = "none", max.iter = 100, warnings = TRUE, 
##     fm = "pa", weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##          PA1   PA2   PA3   PA4   h2   u2 com
## ssgs    0.87  0.11  0.05 -0.21 0.81 0.19 1.2
## ssar    0.86 -0.09 -0.16 -0.07 0.78 0.22 1.1
## sswk    0.86  0.05  0.16 -0.25 0.83 0.17 1.2
## sspc    0.82 -0.04  0.02 -0.08 0.69 0.31 1.0
## ssno    0.62 -0.45  0.15  0.07 0.61 0.39 2.0
## sscs    0.60 -0.33  0.10  0.20 0.51 0.49 1.9
## ssai    0.59  0.26  0.23  0.23 0.52 0.48 2.1
## sssi    0.59  0.44  0.04  0.16 0.56 0.44 2.0
## ssmk    0.87 -0.20 -0.04 -0.02 0.79 0.21 1.1
## ssmc    0.80  0.12 -0.18  0.05 0.69 0.31 1.2
## ssei    0.76  0.15  0.04 -0.07 0.61 0.39 1.1
## ssao    0.70 -0.02 -0.37  0.21 0.66 0.34 1.7
## sweight 0.11 -0.01  0.27  0.14 0.11 0.89 1.9
## 
##                        PA1  PA2  PA3  PA4
## SS loadings           6.81 0.67 0.39 0.31
## Proportion Var        0.52 0.05 0.03 0.02
## Cumulative Var        0.52 0.58 0.61 0.63
## Proportion Explained  0.83 0.08 0.05 0.04
## Cumulative Proportion 0.83 0.92 0.96 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  78  with the objective function =  8.71 0.1 with Chi Square =  2863.27
## df of  the model are 32  and the objective function was  0.16 
##  0.1
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
##  0.1
## The harmonic n.obs is  335 with the empirical chi square  11.12  with prob <  1 
##  0.1The total n.obs was  335  with Likelihood Chi Square =  53.43  with prob <  0.01 
##  0.1
## Tucker Lewis Index of factoring reliability =  0.981
## RMSEA index =  0.045  and the 90 % confidence intervals are  0.022 0.065 0.1
## BIC =  -132.62
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    PA1  PA2  PA3   PA4
## Correlation of (regression) scores with factors   0.98 0.79 0.71  0.70
## Multiple R square of scores with factors          0.96 0.63 0.51  0.48
## Minimum correlation of possible factor scores     0.92 0.26 0.02 -0.03
# all race sibling sample, includes misclassification because we treat all groups as one

m<- subset(d, sex==0) 
f<- subset(d, sex==1)
dm<- dplyr::select(m, starts_with("ss"), sweight)
df<- dplyr::select(f, starts_with("ss"), sweight)

ev <- eigen(cor(dm)) # get eigenvalues
ev$values
##  [1] 7.9802503 1.2554933 0.7879969 0.5627465 0.5063920 0.3884197
##  [7] 0.3055296 0.2764156 0.2411000 0.2117469 0.1864291 0.1599634
## [13] 0.1375168
ev <- eigen(cor(df)) # get eigenvalues
ev$values
##  [1] 7.9829611 1.0579828 0.6709219 0.5897234 0.5229690 0.4395253
##  [7] 0.4025920 0.2882278 0.2708462 0.2406037 0.2069460 0.1673035
## [13] 0.1593974
fa3<-fa(dm[,1:12], nfactors=3, rotate="promax", fm="minres", weight=dm$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:12], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR2   MR3   h2    u2 com
## ssgs  0.74  0.25 -0.06 0.81 0.193 1.2
## ssar  0.79  0.00  0.13 0.77 0.231 1.1
## sswk  0.68  0.24  0.02 0.76 0.236 1.2
## sspc  0.97 -0.08 -0.03 0.80 0.203 1.0
## ssno -0.07  0.08  0.98 0.92 0.081 1.0
## sscs  0.43 -0.07  0.38 0.49 0.509 2.0
## ssai -0.07  0.85  0.05 0.67 0.328 1.0
## sssi -0.07  0.91  0.01 0.75 0.250 1.0
## ssmk  0.74 -0.01  0.24 0.82 0.184 1.2
## ssmc  0.62  0.36 -0.07 0.77 0.232 1.6
## ssei  0.43  0.52  0.00 0.76 0.236 1.9
## ssao  0.75 -0.02 -0.02 0.52 0.482 1.0
## 
##                        MR1  MR2  MR3
## SS loadings           4.98 2.49 1.37
## Proportion Var        0.41 0.21 0.11
## Cumulative Var        0.41 0.62 0.74
## Proportion Explained  0.56 0.28 0.15
## Cumulative Proportion 0.56 0.85 1.00
## 
##  With factor correlations of 
##      MR1  MR2  MR3
## MR1 1.00 0.71 0.65
## MR2 0.71 1.00 0.29
## MR3 0.65 0.29 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  66  with the objective function =  10.73 with Chi Square =  7105.02
## df of  the model are 33  and the objective function was  0.29 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  668 with the empirical chi square  27.35  with prob <  0.74 
## The total n.obs was  668  with Likelihood Chi Square =  193.78  with prob <  1.2e-24 
## 
## Tucker Lewis Index of factoring reliability =  0.954
## RMSEA index =  0.085  and the 90 % confidence intervals are  0.074 0.097
## BIC =  -20.87
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR2  MR3
## Correlation of (regression) scores with factors   0.98 0.95 0.96
## Multiple R square of scores with factors          0.96 0.90 0.93
## Minimum correlation of possible factor scores     0.91 0.80 0.86
fa3<-fa(df[,1:12], nfactors=3, rotate="promax", fm="minres", weight=df$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:12], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR2   MR3   h2   u2 com
## ssgs  0.84  0.16 -0.06 0.82 0.18 1.1
## ssar  0.28  0.37  0.33 0.78 0.22 2.9
## sswk  0.84  0.31 -0.24 0.83 0.17 1.5
## sspc  0.49  0.34  0.10 0.73 0.27 1.9
## ssno -0.12  0.90 -0.04 0.63 0.37 1.0
## sscs -0.01  0.61  0.09 0.44 0.56 1.0
## ssai  0.62 -0.06  0.09 0.43 0.57 1.1
## sssi  0.77 -0.25  0.16 0.54 0.46 1.3
## ssmk  0.18  0.55  0.26 0.82 0.18 1.7
## ssmc  0.45  0.00  0.47 0.75 0.25 2.0
## ssei  0.70  0.12  0.04 0.67 0.33 1.1
## ssao  0.04  0.12  0.69 0.66 0.34 1.1
## 
##                        MR1  MR2  MR3
## SS loadings           4.10 2.51 1.49
## Proportion Var        0.34 0.21 0.12
## Cumulative Var        0.34 0.55 0.68
## Proportion Explained  0.51 0.31 0.18
## Cumulative Proportion 0.51 0.82 1.00
## 
##  With factor correlations of 
##      MR1  MR2  MR3
## MR1 1.00 0.72 0.77
## MR2 0.72 1.00 0.68
## MR3 0.77 0.68 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  66  with the objective function =  9.66 with Chi Square =  6399.49
## df of  the model are 33  and the objective function was  0.16 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  668 with the empirical chi square  30.63  with prob <  0.59 
## The total n.obs was  668  with Likelihood Chi Square =  105.74  with prob <  1.5e-09 
## 
## Tucker Lewis Index of factoring reliability =  0.977
## RMSEA index =  0.057  and the 90 % confidence intervals are  0.045 0.07
## BIC =  -108.9
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR2  MR3
## Correlation of (regression) scores with factors   0.97 0.94 0.92
## Multiple R square of scores with factors          0.94 0.88 0.84
## Minimum correlation of possible factor scores     0.87 0.76 0.68
fa4<-fa(dm[,1:12], nfactors=4, rotate="promax", fm="minres", weight=dm$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:12], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR2   MR4   MR3   h2    u2 com
## ssgs  0.20  0.18  0.64 -0.05 0.84 0.155 1.4
## ssar  0.59  0.01  0.20  0.14 0.77 0.233 1.4
## sswk  0.02  0.12  0.80  0.03 0.86 0.144 1.1
## sspc  0.56 -0.10  0.45 -0.01 0.79 0.207 2.0
## ssno -0.11  0.06 -0.04  1.04 0.93 0.067 1.0
## sscs  0.39 -0.06  0.01  0.40 0.49 0.506 2.0
## ssai -0.05  0.83  0.01  0.05 0.67 0.329 1.0
## sssi -0.03  0.89 -0.01  0.01 0.75 0.247 1.0
## ssmk  0.58  0.00  0.14  0.26 0.82 0.183 1.5
## ssmc  0.67  0.40 -0.05 -0.08 0.80 0.196 1.7
## ssei  0.24  0.49  0.23  0.01 0.76 0.239 1.9
## ssao  0.89  0.02 -0.12 -0.05 0.58 0.419 1.0
## 
##                        MR1  MR2  MR4  MR3
## SS loadings           3.24 2.34 2.00 1.49
## Proportion Var        0.27 0.20 0.17 0.12
## Cumulative Var        0.27 0.47 0.63 0.76
## Proportion Explained  0.36 0.26 0.22 0.16
## Cumulative Proportion 0.36 0.62 0.84 1.00
## 
##  With factor correlations of 
##      MR1  MR2  MR4  MR3
## MR1 1.00 0.66 0.84 0.69
## MR2 0.66 1.00 0.70 0.32
## MR4 0.84 0.70 1.00 0.62
## MR3 0.69 0.32 0.62 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  66  with the objective function =  10.73 with Chi Square =  7105.02
## df of  the model are 24  and the objective function was  0.12 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  668 with the empirical chi square  9.63  with prob <  1 
## The total n.obs was  668  with Likelihood Chi Square =  76.45  with prob <  2.2e-07 
## 
## Tucker Lewis Index of factoring reliability =  0.979
## RMSEA index =  0.057  and the 90 % confidence intervals are  0.043 0.072
## BIC =  -79.65
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR2  MR4  MR3
## Correlation of (regression) scores with factors   0.96 0.95 0.96 0.97
## Multiple R square of scores with factors          0.93 0.90 0.92 0.95
## Minimum correlation of possible factor scores     0.86 0.79 0.84 0.89
fa4<-fa(df[,1:12], nfactors=4, rotate="promax", fm="minres", weight=df$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:12], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR3   MR4   MR2   h2   u2 com
## ssgs  0.79  0.04  0.15 -0.05 0.82 0.18 1.1
## ssar  0.30  0.56 -0.03  0.11 0.79 0.21 1.6
## sswk  0.98 -0.17  0.07  0.05 0.86 0.14 1.1
## sspc  0.58  0.29 -0.03  0.06 0.75 0.25 1.5
## ssno -0.02 -0.11  0.00  0.97 0.78 0.22 1.0
## sscs  0.02  0.16  0.04  0.49 0.44 0.56 1.2
## ssai  0.02 -0.02  0.65  0.12 0.51 0.49 1.1
## sssi  0.05  0.07  0.73 -0.07 0.62 0.38 1.1
## ssmk  0.28  0.47 -0.06  0.27 0.82 0.18 2.4
## ssmc  0.13  0.61  0.23 -0.08 0.74 0.26 1.4
## ssei  0.53  0.13  0.22  0.00 0.67 0.33 1.5
## ssao -0.15  0.91  0.05 -0.01 0.66 0.34 1.1
## 
##                        MR1  MR3  MR4  MR2
## SS loadings           3.06 2.43 1.49 1.48
## Proportion Var        0.25 0.20 0.12 0.12
## Cumulative Var        0.25 0.46 0.58 0.70
## Proportion Explained  0.36 0.29 0.18 0.17
## Cumulative Proportion 0.36 0.65 0.83 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR4  MR2
## MR1 1.00 0.84 0.76 0.71
## MR3 0.84 1.00 0.72 0.72
## MR4 0.76 0.72 1.00 0.48
## MR2 0.71 0.72 0.48 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  66  with the objective function =  9.66 with Chi Square =  6399.49
## df of  the model are 24  and the objective function was  0.07 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  668 with the empirical chi square  7.57  with prob <  1 
## The total n.obs was  668  with Likelihood Chi Square =  47.3  with prob <  0.0031 
## 
## Tucker Lewis Index of factoring reliability =  0.99
## RMSEA index =  0.038  and the 90 % confidence intervals are  0.022 0.054
## BIC =  -108.81
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR4  MR2
## Correlation of (regression) scores with factors   0.97 0.95 0.90 0.93
## Multiple R square of scores with factors          0.94 0.91 0.81 0.87
## Minimum correlation of possible factor scores     0.89 0.82 0.63 0.74
fact3<- factanal(dm[,1:12], 3, rotation="promax")
print(fact3, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = dm[, 1:12], factors = 3, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.14 0.21 0.16 0.23 0.44 0.55 0.36 0.27 0.15 0.23 0.22 0.49 
## 
## Loadings:
##      Factor1 Factor2 Factor3
## ssgs  0.21    0.27    0.54  
## ssar  0.74                  
## sswk  0.24            0.57  
## sspc  0.51            0.38  
## ssno  0.88                  
## sscs  0.73                  
## ssai          0.86          
## sssi          0.91          
## ssmk  0.86                  
## ssmc  0.36    0.56          
## ssei  0.21    0.55    0.22  
## ssao  0.54    0.24          
## 
##                Factor1 Factor2 Factor3
## SS loadings       3.42    2.42    0.82
## Proportion Var    0.29    0.20    0.07
## Cumulative Var    0.29    0.49    0.56
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1    1.00   -0.73    0.74
## Factor2   -0.73    1.00   -0.64
## Factor3    0.74   -0.64    1.00
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 154.6 on 33 degrees of freedom.
## The p-value is 1.19e-17
fact3<- factanal(df[,1:12], 3, rotation="promax")
print(fact3, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = df[, 1:12], factors = 3, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.17 0.20 0.15 0.23 0.39 0.57 0.57 0.47 0.16 0.24 0.31 0.35 
## 
## Loadings:
##      Factor1 Factor2 Factor3
## ssgs  0.83                  
## ssar  0.23    0.39    0.38  
## sswk  0.91    0.26   -0.21  
## sspc  0.51    0.32          
## ssno          0.79          
## sscs          0.54          
## ssai  0.46            0.25  
## sssi  0.59            0.26  
## ssmk          0.55    0.32  
## ssmc  0.29            0.61  
## ssei  0.66                  
## ssao                  0.72  
## 
##                Factor1 Factor2 Factor3
## SS loadings       2.95    1.62    1.37
## Proportion Var    0.25    0.14    0.11
## Cumulative Var    0.25    0.38    0.49
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1    1.00   -0.64    0.82
## Factor2   -0.64    1.00   -0.64
## Factor3    0.82   -0.64    1.00
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 75.31 on 33 degrees of freedom.
## The p-value is 3.76e-05
fact4<- factanal(dm[,1:12], 4, rotation="promax")
print(fact4, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = dm[, 1:12], factors = 4, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.15 0.21 0.14 0.22 0.06 0.54 0.35 0.27 0.18 0.21 0.22 0.43 
## 
## Loadings:
##      Factor1 Factor2 Factor3 Factor4
## ssgs  0.34    0.24            0.47  
## ssar  0.77                          
## sswk  0.22                    0.60  
## sspc  0.66                    0.30  
## ssno                  1.00          
## sscs  0.43            0.35          
## ssai          0.83                  
## sssi          0.87                  
## ssmk  0.74                          
## ssmc  0.61    0.42                  
## ssei  0.25    0.51                  
## ssao  0.87                          
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings       3.11    1.98    1.17    0.73
## Proportion Var    0.26    0.17    0.10    0.06
## Cumulative Var    0.26    0.42    0.52    0.58
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3 Factor4
## Factor1    1.00   -0.69    0.68    0.75
## Factor2   -0.69    1.00   -0.33   -0.54
## Factor3    0.68   -0.33    1.00    0.66
## Factor4    0.75   -0.54    0.66    1.00
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 72.21 on 24 degrees of freedom.
## The p-value is 1.01e-06
fact4<- factanal(df[,1:12], 4, rotation="promax")
print(fact4, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = df[, 1:12], factors = 4, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.17 0.19 0.14 0.22 0.17 0.56 0.52 0.40 0.17 0.26 0.30 0.35 
## 
## Loadings:
##      Factor1 Factor2 Factor3 Factor4
## ssgs          0.38    0.54          
## ssar  0.60                          
## sswk          0.25    0.74          
## sspc  0.38            0.45          
## ssno                          0.98  
## sscs  0.21                    0.46  
## ssai          0.63                  
## sssi          0.77                  
## ssmk  0.61                          
## ssmc  0.56    0.40                  
## ssei          0.39    0.37          
## ssao  0.84                          
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings       2.00    1.56    1.27    1.24
## Proportion Var    0.17    0.13    0.11    0.10
## Cumulative Var    0.17    0.30    0.40    0.51
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3 Factor4
## Factor1    1.00   -0.68    0.79    0.72
## Factor2   -0.68    1.00   -0.73   -0.53
## Factor3    0.79   -0.73    1.00    0.76
## Factor4    0.72   -0.53    0.76    1.00
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 28.74 on 24 degrees of freedom.
## The p-value is 0.23
mfa<-fa(r=dm, nfactors=4, max.iter=100, warnings=TRUE, rotate="none", fm="pa", weight=dm$sweight)
print(mfa, digits=2, cutoff=.10)
## Factor Analysis using method =  pa
## Call: fa(r = dm, nfactors = 4, rotate = "none", max.iter = 100, warnings = TRUE, 
##     fm = "pa", weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##          PA1   PA2   PA3   PA4   h2   u2 com
## ssgs    0.89  0.09 -0.11 -0.20 0.86 0.14 1.1
## ssar    0.85 -0.18 -0.06  0.01 0.76 0.24 1.1
## sswk    0.88  0.03 -0.07 -0.24 0.83 0.17 1.2
## sspc    0.85 -0.16 -0.19 -0.07 0.79 0.21 1.2
## ssno    0.63 -0.52  0.36  0.00 0.80 0.20 2.6
## sscs    0.62 -0.34  0.11  0.07 0.51 0.49 1.7
## ssai    0.67  0.43  0.16  0.05 0.66 0.34 1.8
## sssi    0.70  0.50  0.18  0.07 0.78 0.22 2.0
## ssmk    0.87 -0.26  0.00  0.03 0.82 0.18 1.2
## ssmc    0.86  0.15 -0.10  0.16 0.80 0.20 1.2
## ssei    0.84  0.22  0.00  0.01 0.76 0.24 1.1
## ssao    0.70 -0.12 -0.21  0.24 0.61 0.39 1.5
## sweight 0.46  0.17  0.15 -0.07 0.27 0.73 1.6
## 
##                        PA1  PA2  PA3  PA4
## SS loadings           7.65 1.06 0.33 0.20
## Proportion Var        0.59 0.08 0.03 0.02
## Cumulative Var        0.59 0.67 0.70 0.71
## Proportion Explained  0.83 0.11 0.04 0.02
## Cumulative Proportion 0.83 0.94 0.98 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  78  with the objective function =  11.02 0.1 with Chi Square =  7294.95
## df of  the model are 32  and the objective function was  0.14 
##  0.1
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
##  0.1
## The harmonic n.obs is  668 with the empirical chi square  13.2  with prob <  1 
##  0.1The total n.obs was  668  with Likelihood Chi Square =  90.02  with prob <  2e-07 
##  0.1
## Tucker Lewis Index of factoring reliability =  0.98
## RMSEA index =  0.052  and the 90 % confidence intervals are  0.04 0.065 0.1
## BIC =  -118.12
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    PA1  PA2  PA3   PA4
## Correlation of (regression) scores with factors   0.99 0.90 0.75  0.69
## Multiple R square of scores with factors          0.97 0.81 0.57  0.48
## Minimum correlation of possible factor scores     0.94 0.62 0.14 -0.04
ffa<-fa(r=df, nfactors=4, max.iter=100, warnings=TRUE, rotate="none", fm="pa", weight=df$sweight)
print(ffa, digits=2, cutoff=.10)
## Factor Analysis using method =  pa
## Call: fa(r = df, nfactors = 4, rotate = "none", max.iter = 100, warnings = TRUE, 
##     fm = "pa", weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##          PA1   PA2   PA3   PA4   h2   u2 com
## ssgs    0.88  0.13  0.10 -0.16 0.83 0.17 1.1
## ssar    0.87 -0.10 -0.13 -0.04 0.78 0.22 1.1
## sswk    0.87  0.04  0.20 -0.23 0.85 0.15 1.2
## sspc    0.85 -0.05 -0.02 -0.14 0.75 0.25 1.1
## ssno    0.65 -0.53  0.20  0.19 0.77 0.23 2.3
## sscs    0.59 -0.27  0.04  0.10 0.44 0.56 1.5
## ssai    0.63  0.21  0.09  0.17 0.49 0.51 1.4
## sssi    0.67  0.40  0.07  0.23 0.67 0.33 1.9
## ssmk    0.88 -0.20 -0.07 -0.01 0.81 0.19 1.1
## ssmc    0.83  0.11 -0.18  0.03 0.73 0.27 1.1
## ssei    0.80  0.11  0.04 -0.08 0.67 0.33 1.1
## ssao    0.74 -0.04 -0.34  0.07 0.67 0.33 1.4
## sweight 0.43  0.24  0.09  0.11 0.27 0.73 1.8
## 
##                        PA1  PA2  PA3  PA4
## SS loadings           7.49 0.71 0.29 0.25
## Proportion Var        0.58 0.05 0.02 0.02
## Cumulative Var        0.58 0.63 0.65 0.67
## Proportion Explained  0.86 0.08 0.03 0.03
## Cumulative Proportion 0.86 0.94 0.97 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  78  with the objective function =  9.92 0.1 with Chi Square =  6566.09
## df of  the model are 32  and the objective function was  0.08 
##  0.1
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.01 
##  0.1
## The harmonic n.obs is  668 with the empirical chi square  8.95  with prob <  1 
##  0.1The total n.obs was  668  with Likelihood Chi Square =  53.32  with prob <  0.01 
##  0.1
## Tucker Lewis Index of factoring reliability =  0.992
## RMSEA index =  0.032  and the 90 % confidence intervals are  0.015 0.046 0.1
## BIC =  -154.81
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    PA1  PA2  PA3   PA4
## Correlation of (regression) scores with factors   0.98 0.84 0.72  0.69
## Multiple R square of scores with factors          0.97 0.70 0.53  0.48
## Minimum correlation of possible factor scores     0.94 0.41 0.05 -0.05
# entire white sample

dw<- subset(dkw, bhw==3)
m<- subset(dw, sex==0)
f<- subset(dw, sex==1) 
dm<- dplyr::select(m, starts_with("ss"), sweight)
df<- dplyr::select(f, starts_with("ss"), sweight)

ev <- eigen(cor(dm)) # get eigenvalues
ev$values
##  [1] 7.1260114 1.4477942 0.9884043 0.6579831 0.5861015 0.4185320
##  [7] 0.3490381 0.2928635 0.2809029 0.2482966 0.2430386 0.1831544
## [13] 0.1778793
ev <- eigen(cor(df)) # get eigenvalues
ev$values
##  [1] 6.8928697 1.1431403 0.9841614 0.7371083 0.6107010 0.5205273
##  [7] 0.4423190 0.3655205 0.3433207 0.2967630 0.2685093 0.2016999
## [13] 0.1933597
fa3<-fa(dm[,1:12], nfactors=3, rotate="promax", fm="minres", weight=dm$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:12], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR2   MR3   h2   u2 com
## ssgs  0.84  0.13 -0.08 0.77 0.23 1.1
## ssar  0.72 -0.01  0.20 0.75 0.25 1.2
## sswk  0.77  0.11 -0.01 0.71 0.29 1.0
## sspc  0.95 -0.10 -0.02 0.76 0.24 1.0
## ssno -0.12  0.09  0.99 0.87 0.13 1.0
## sscs  0.28 -0.04  0.52 0.52 0.48 1.6
## ssai -0.08  0.82  0.06 0.61 0.39 1.0
## sssi -0.02  0.84  0.00 0.69 0.31 1.0
## ssmk  0.69 -0.06  0.30 0.78 0.22 1.4
## ssmc  0.62  0.31 -0.04 0.70 0.30 1.5
## ssei  0.49  0.46 -0.03 0.73 0.27 2.0
## ssao  0.70 -0.04  0.03 0.49 0.51 1.0
## 
##                        MR1  MR2  MR3
## SS loadings           4.82 1.97 1.59
## Proportion Var        0.40 0.16 0.13
## Cumulative Var        0.40 0.57 0.70
## Proportion Explained  0.58 0.24 0.19
## Cumulative Proportion 0.58 0.81 1.00
## 
##  With factor correlations of 
##      MR1  MR2  MR3
## MR1 1.00 0.65 0.66
## MR2 0.65 1.00 0.23
## MR3 0.66 0.23 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  66  with the objective function =  9.34 with Chi Square =  17419.3
## df of  the model are 33  and the objective function was  0.31 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  1870 with the empirical chi square  123.48  with prob <  2.2e-12 
## The total n.obs was  1870  with Likelihood Chi Square =  568.59  with prob <  7.5e-99 
## 
## Tucker Lewis Index of factoring reliability =  0.938
## RMSEA index =  0.093  and the 90 % confidence intervals are  0.087 0.1
## BIC =  319.98
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR2  MR3
## Correlation of (regression) scores with factors   0.97 0.93 0.95
## Multiple R square of scores with factors          0.95 0.86 0.90
## Minimum correlation of possible factor scores     0.90 0.72 0.81
fa3<-fa(df[,1:12], nfactors=3, rotate="promax", fm="minres", weight=df$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:12], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR3   MR2   h2   u2 com
## ssgs  0.80  0.04  0.07 0.76 0.24 1.0
## ssar  0.15  0.56  0.24 0.75 0.25 1.5
## sswk  0.80 -0.08  0.20 0.77 0.23 1.2
## sspc  0.49  0.23  0.20 0.70 0.30 1.8
## ssno -0.07 -0.13  0.99 0.76 0.24 1.0
## sscs -0.01  0.08  0.65 0.49 0.51 1.0
## ssai  0.66 -0.08  0.00 0.36 0.64 1.0
## sssi  0.65  0.13 -0.20 0.40 0.60 1.3
## ssmk  0.15  0.41  0.41 0.76 0.24 2.2
## ssmc  0.35  0.58 -0.09 0.67 0.33 1.7
## ssei  0.75 -0.01  0.03 0.59 0.41 1.0
## ssao -0.07  0.86 -0.04 0.60 0.40 1.0
## 
##                        MR1  MR3  MR2
## SS loadings           3.55 2.07 2.00
## Proportion Var        0.30 0.17 0.17
## Cumulative Var        0.30 0.47 0.63
## Proportion Explained  0.47 0.27 0.26
## Cumulative Proportion 0.47 0.74 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.79 0.63
## MR3 0.79 1.00 0.69
## MR2 0.63 0.69 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  66  with the objective function =  8.05 with Chi Square =  14041.37
## df of  the model are 33  and the objective function was  0.16 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  1751 with the empirical chi square  83.92  with prob <  2.6e-06 
## The total n.obs was  1751  with Likelihood Chi Square =  271.7  with prob <  2.5e-39 
## 
## Tucker Lewis Index of factoring reliability =  0.966
## RMSEA index =  0.064  and the 90 % confidence intervals are  0.057 0.071
## BIC =  25.26
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.96 0.94 0.94
## Multiple R square of scores with factors          0.92 0.88 0.88
## Minimum correlation of possible factor scores     0.83 0.76 0.76
fa4<-fa(dm[,1:12], nfactors=4, rotate="promax", fm="minres", weight=dm$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:12], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR2   MR3   MR4   h2    u2 com
## ssgs  0.92  0.09 -0.07 -0.04 0.81 0.186 1.0
## ssar  0.43  0.01  0.21  0.30 0.74 0.260 2.3
## sswk  1.02  0.04  0.00 -0.19 0.79 0.205 1.1
## sspc  0.73 -0.10  0.01  0.22 0.75 0.246 1.2
## ssno -0.07  0.08  1.13 -0.20 0.96 0.041 1.1
## sscs  0.05 -0.05  0.50  0.25 0.52 0.483 1.5
## ssai  0.01  0.80  0.06 -0.09 0.60 0.396 1.0
## sssi -0.08  0.85  0.00  0.06 0.69 0.306 1.0
## ssmk  0.42 -0.05  0.31  0.28 0.77 0.226 2.7
## ssmc  0.15  0.36 -0.06  0.50 0.74 0.264 2.1
## ssei  0.45  0.45 -0.01  0.04 0.73 0.271 2.0
## ssao -0.08 -0.01 -0.06  0.92 0.66 0.339 1.0
## 
##                        MR1  MR2  MR3  MR4
## SS loadings           3.41 1.95 1.74 1.68
## Proportion Var        0.28 0.16 0.14 0.14
## Cumulative Var        0.28 0.45 0.59 0.73
## Proportion Explained  0.39 0.22 0.20 0.19
## Cumulative Proportion 0.39 0.61 0.81 1.00
## 
##  With factor correlations of 
##      MR1  MR2  MR3  MR4
## MR1 1.00 0.66 0.67 0.83
## MR2 0.66 1.00 0.28 0.56
## MR3 0.67 0.28 1.00 0.68
## MR4 0.83 0.56 0.68 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  66  with the objective function =  9.34 with Chi Square =  17419.3
## df of  the model are 24  and the objective function was  0.11 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  1870 with the empirical chi square  29.89  with prob <  0.19 
## The total n.obs was  1870  with Likelihood Chi Square =  206.29  with prob <  6.3e-31 
## 
## Tucker Lewis Index of factoring reliability =  0.971
## RMSEA index =  0.064  and the 90 % confidence intervals are  0.056 0.072
## BIC =  25.48
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR2  MR3  MR4
## Correlation of (regression) scores with factors   0.97 0.93 0.98 0.94
## Multiple R square of scores with factors          0.95 0.86 0.97 0.88
## Minimum correlation of possible factor scores     0.89 0.72 0.93 0.75
fa4<-fa(df[,1:12], nfactors=4, rotate="promax", fm="minres", weight=df$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:12], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR3   MR2   MR4   h2   u2 com
## ssgs  0.76  0.03 -0.07  0.18 0.77 0.23 1.1
## ssar  0.32  0.56  0.13 -0.08 0.76 0.24 1.8
## sswk  0.91 -0.13  0.01  0.11 0.81 0.19 1.1
## sspc  0.61  0.23  0.05  0.02 0.72 0.28 1.3
## ssno  0.01 -0.10  0.95 -0.01 0.79 0.21 1.0
## sscs -0.06  0.11  0.64  0.07 0.51 0.49 1.1
## ssai  0.04 -0.08  0.13  0.62 0.43 0.57 1.1
## sssi  0.00  0.16 -0.08  0.61 0.47 0.53 1.2
## ssmk  0.34  0.41  0.28 -0.09 0.77 0.23 2.8
## ssmc  0.10  0.60 -0.06  0.23 0.67 0.33 1.4
## ssei  0.46  0.02  0.00  0.34 0.58 0.42 1.9
## ssao -0.14  0.87 -0.01  0.04 0.60 0.40 1.1
## 
##                        MR1  MR3  MR2  MR4
## SS loadings           2.83 2.12 1.57 1.38
## Proportion Var        0.24 0.18 0.13 0.12
## Cumulative Var        0.24 0.41 0.54 0.66
## Proportion Explained  0.36 0.27 0.20 0.17
## Cumulative Proportion 0.36 0.63 0.83 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2  MR4
## MR1 1.00 0.81 0.67 0.73
## MR3 0.81 1.00 0.65 0.66
## MR2 0.67 0.65 1.00 0.40
## MR4 0.73 0.66 0.40 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  66  with the objective function =  8.05 with Chi Square =  14041.37
## df of  the model are 24  and the objective function was  0.06 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  1751 with the empirical chi square  20.25  with prob <  0.68 
## The total n.obs was  1751  with Likelihood Chi Square =  105.29  with prob <  3.7e-12 
## 
## Tucker Lewis Index of factoring reliability =  0.984
## RMSEA index =  0.044  and the 90 % confidence intervals are  0.036 0.053
## BIC =  -73.94
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2  MR4
## Correlation of (regression) scores with factors   0.96 0.94 0.93 0.88
## Multiple R square of scores with factors          0.93 0.88 0.87 0.77
## Minimum correlation of possible factor scores     0.86 0.77 0.73 0.55
fact3<- factanal(dm[,1:12], 3, rotation="promax")
print(fact3, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = dm[, 1:12], factors = 3, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.17 0.24 0.22 0.26 0.41 0.49 0.43 0.31 0.19 0.30 0.28 0.52 
## 
## Loadings:
##      Factor1 Factor2 Factor3
## ssgs                  0.77  
## ssar  0.66            0.20  
## sswk                  0.80  
## sspc  0.37            0.55  
## ssno  0.91                  
## sscs  0.80                  
## ssai          0.84          
## sssi          0.93          
## ssmk  0.77                  
## ssmc  0.28    0.50          
## ssei          0.48    0.38  
## ssao  0.51    0.20          
## 
##                Factor1 Factor2 Factor3
## SS loadings       2.99    2.12    1.82
## Proportion Var    0.25    0.18    0.15
## Cumulative Var    0.25    0.43    0.58
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1    1.00    0.74   -0.75
## Factor2    0.74    1.00   -0.55
## Factor3   -0.75   -0.55    1.00
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 510.21 on 33 degrees of freedom.
## The p-value is 6.68e-87
fact3<- factanal(df[,1:12], 3, rotation="promax")
print(fact3, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = df[, 1:12], factors = 3, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.22 0.24 0.20 0.28 0.27 0.50 0.67 0.63 0.22 0.35 0.43 0.41 
## 
## Loadings:
##      Factor1 Factor2 Factor3
## ssgs  0.87                  
## ssar          0.59    0.21  
## sswk  0.93                  
## sspc  0.55    0.24          
## ssno                  0.86  
## sscs                  0.60  
## ssai  0.58                  
## sssi  0.52    0.21          
## ssmk          0.45    0.36  
## ssmc  0.29    0.60          
## ssei  0.73                  
## ssao          0.87          
## 
##                Factor1 Factor2 Factor3
## SS loadings       3.21    1.80    1.35
## Proportion Var    0.27    0.15    0.11
## Cumulative Var    0.27    0.42    0.53
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1    1.00   -0.55    0.82
## Factor2   -0.55    1.00   -0.61
## Factor3    0.82   -0.61    1.00
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 251.65 on 33 degrees of freedom.
## The p-value is 1.75e-35
fact4<- factanal(dm[,1:12], 4, rotation="promax")
print(fact4, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = dm[, 1:12], factors = 4, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.19 0.24 0.18 0.25 0.12 0.49 0.41 0.31 0.21 0.26 0.28 0.41 
## 
## Loadings:
##      Factor1 Factor2 Factor3 Factor4
## ssgs          0.76                  
## ssar  0.57    0.20                  
## sswk          0.95                  
## sspc  0.43    0.53                  
## ssno                          1.03  
## sscs  0.29                    0.50  
## ssai                  0.80          
## sssi                  0.83          
## ssmk  0.50    0.23            0.28  
## ssmc  0.62            0.36          
## ssei          0.39    0.45          
## ssao  0.94                          
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings       2.16    2.01    1.68    1.45
## Proportion Var    0.18    0.17    0.14    0.12
## Cumulative Var    0.18    0.35    0.49    0.61
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3 Factor4
## Factor1    1.00   -0.63    0.63   -0.83
## Factor2   -0.63    1.00   -0.26    0.70
## Factor3    0.63   -0.26    1.00   -0.57
## Factor4   -0.83    0.70   -0.57    1.00
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 179.76 on 24 degrees of freedom.
## The p-value is 8.13e-26
fact4<- factanal(df[,1:12], 4, rotation="promax")
print(fact4, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = df[, 1:12], factors = 4, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.23 0.22 0.17 0.27 0.19 0.50 0.58 0.54 0.22 0.34 0.42 0.43 
## 
## Loadings:
##      Factor1 Factor2 Factor3 Factor4
## ssgs          0.39            0.51  
## ssar  0.72                          
## sswk          0.32            0.68  
## sspc  0.35                    0.39  
## ssno                  0.94          
## sscs                  0.60          
## ssai          0.66                  
## sssi          0.68                  
## ssmk  0.57            0.24          
## ssmc  0.55    0.37                  
## ssei          0.52            0.28  
## ssao  0.80                          
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings       1.96    1.61    1.34    1.02
## Proportion Var    0.16    0.13    0.11    0.09
## Cumulative Var    0.16    0.30    0.41    0.49
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3 Factor4
## Factor1    1.00   -0.62    0.72    0.64
## Factor2   -0.62    1.00   -0.67   -0.47
## Factor3    0.72   -0.67    1.00    0.72
## Factor4    0.64   -0.47    0.72    1.00
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 105.04 on 24 degrees of freedom.
## The p-value is 4.1e-12
mfa<-fa(r=dm, nfactors=4, max.iter=100, warnings=TRUE, rotate="none", fm="pa", weight=dm$sweight)
print(mfa, digits=2, cutoff=.10)
## Factor Analysis using method =  pa
## Call: fa(r = dm, nfactors = 4, rotate = "none", max.iter = 100, warnings = TRUE, 
##     fm = "pa", weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##          PA1   PA2   PA3   PA4    h2   u2 com
## ssgs    0.87  0.08 -0.16 -0.19 0.818 0.18 1.2
## ssar    0.84 -0.17 -0.06  0.03 0.743 0.26 1.1
## sswk    0.84  0.03 -0.10 -0.27 0.796 0.20 1.2
## sspc    0.84 -0.11 -0.17 -0.07 0.750 0.25 1.1
## ssno    0.63 -0.50  0.33 -0.03 0.752 0.25 2.5
## sscs    0.62 -0.38  0.19  0.08 0.566 0.43 1.9
## ssai    0.58  0.50  0.26  0.02 0.652 0.35 2.4
## sssi    0.61  0.51  0.15  0.09 0.656 0.34 2.1
## ssmk    0.84 -0.26  0.01  0.01 0.783 0.22 1.2
## ssmc    0.82  0.18 -0.09  0.19 0.747 0.25 1.2
## ssei    0.81  0.28  0.02 -0.05 0.729 0.27 1.2
## ssao    0.70 -0.10 -0.20  0.32 0.644 0.36 1.6
## sweight 0.19  0.05  0.20 -0.05 0.082 0.92 2.3
## 
##                        PA1  PA2  PA3  PA4
## SS loadings           6.90 1.14 0.39 0.28
## Proportion Var        0.53 0.09 0.03 0.02
## Cumulative Var        0.53 0.62 0.65 0.67
## Proportion Explained  0.79 0.13 0.05 0.03
## Cumulative Proportion 0.79 0.92 0.97 1.00
## 
## Mean item complexity =  1.6
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  78  with the objective function =  9.43 0.1 with Chi Square =  17573.34
## df of  the model are 32  and the objective function was  0.15 
##  0.1
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
##  0.1
## The harmonic n.obs is  1870 with the empirical chi square  59.34  with prob <  0.0023 
##  0.1The total n.obs was  1870  with Likelihood Chi Square =  273.84  with prob <  3.3e-40 
##  0.1
## Tucker Lewis Index of factoring reliability =  0.966
## RMSEA index =  0.064  and the 90 % confidence intervals are  0.057 0.071 0.1
## BIC =  32.76
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    PA1  PA2  PA3  PA4
## Correlation of (regression) scores with factors   0.98 0.89 0.75 0.72
## Multiple R square of scores with factors          0.96 0.79 0.56 0.51
## Minimum correlation of possible factor scores     0.93 0.58 0.12 0.02
ffa<-fa(r=df, nfactors=4, max.iter=100, warnings=TRUE, rotate="none", fm="pa", weight=df$sweight)
## maximum iteration exceeded
print(ffa, digits=2, cutoff=.10)
## Factor Analysis using method =  pa
## Call: fa(r = df, nfactors = 4, rotate = "none", max.iter = 100, warnings = TRUE, 
##     fm = "pa", weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##           PA1   PA2   PA3   PA4    h2   u2 com
## ssgs     0.84  0.17 -0.03 -0.20 0.779 0.22 1.2
## ssar     0.84 -0.11 -0.15  0.07 0.753 0.25 1.1
## sswk     0.85  0.10  0.02 -0.28 0.814 0.19 1.2
## sspc     0.84  0.01 -0.05 -0.08 0.711 0.29 1.0
## ssno     0.63 -0.55  0.24 -0.03 0.765 0.24 2.3
## sscs     0.59 -0.36  0.14  0.06 0.503 0.50 1.8
## ssai     0.58  0.34  0.48  0.21 0.725 0.28 2.9
## sssi     0.56  0.29  0.01  0.04 0.397 0.60 1.5
## ssmk     0.85 -0.20 -0.07  0.03 0.760 0.24 1.1
## ssmc     0.78  0.13 -0.17  0.14 0.672 0.33 1.2
## ssei     0.73  0.18  0.03 -0.10 0.572 0.43 1.2
## ssao     0.68 -0.01 -0.25  0.29 0.611 0.39 1.6
## sweight -0.02  0.06  0.08  0.06 0.014 0.99 3.0
## 
##                        PA1  PA2  PA3  PA4
## SS loadings           6.57 0.78 0.43 0.29
## Proportion Var        0.51 0.06 0.03 0.02
## Cumulative Var        0.51 0.57 0.60 0.62
## Proportion Explained  0.81 0.10 0.05 0.04
## Cumulative Proportion 0.81 0.91 0.96 1.00
## 
## Mean item complexity =  1.6
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  78  with the objective function =  8.08 0.1 with Chi Square =  14092.64
## df of  the model are 32  and the objective function was  0.1 
##  0.1
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
##  0.1
## The harmonic n.obs is  1751 with the empirical chi square  56.62  with prob <  0.0046 
##  0.1The total n.obs was  1751  with Likelihood Chi Square =  182.79  with prob <  4.8e-23 
##  0.1
## Tucker Lewis Index of factoring reliability =  0.974
## RMSEA index =  0.052  and the 90 % confidence intervals are  0.045 0.059 0.1
## BIC =  -56.18
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    PA1  PA2  PA3  PA4
## Correlation of (regression) scores with factors   0.98 0.85 0.77 0.72
## Multiple R square of scores with factors          0.96 0.73 0.60 0.52
## Minimum correlation of possible factor scores     0.92 0.46 0.20 0.04
# entire all race sample, includes misclassification because we treat all groups as one

m<- subset(dk, sex==0)
f<- subset(dk, sex==1) 
dm<- dplyr::select(m, starts_with("ss"), sweight)
df<- dplyr::select(f, starts_with("ss"), sweight)

ev <- eigen(cor(dm)) # get eigenvalues
ev$values
##  [1] 7.7727085 1.2792428 0.7730837 0.5883711 0.5558065 0.4010409
##  [7] 0.3333736 0.2662284 0.2525010 0.2299792 0.2200691 0.1699923
## [13] 0.1576029
ev <- eigen(cor(df)) # get eigenvalues
ev$values
##  [1] 7.5897674 1.1259045 0.7294491 0.6589891 0.5329967 0.4936741
##  [7] 0.4021783 0.3217880 0.3055887 0.2588482 0.2258945 0.1842940
## [13] 0.1706274
fa3<-fa(dm[,1:12], nfactors=3, rotate="promax", fm="minres", weight=dm$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:12], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR3   MR2   h2     u2 com
## ssgs  0.71  0.27 -0.06 0.79 0.2144 1.3
## ssar  0.76  0.04  0.13 0.77 0.2308 1.1
## sswk  0.66  0.24  0.02 0.73 0.2663 1.3
## sspc  0.90 -0.01 -0.02 0.77 0.2272 1.0
## ssno -0.07  0.10  1.01 1.00 0.0043 1.0
## sscs  0.47 -0.10  0.36 0.49 0.5115 2.0
## ssai -0.09  0.83  0.07 0.62 0.3845 1.0
## sssi -0.02  0.85  0.00 0.70 0.3019 1.0
## ssmk  0.78 -0.05  0.20 0.80 0.2031 1.1
## ssmc  0.61  0.35 -0.07 0.73 0.2710 1.6
## ssei  0.42  0.52  0.00 0.75 0.2502 1.9
## ssao  0.78 -0.04 -0.05 0.52 0.4771 1.0
## 
##                        MR1  MR3  MR2
## SS loadings           4.89 2.39 1.38
## Proportion Var        0.41 0.20 0.12
## Cumulative Var        0.41 0.61 0.72
## Proportion Explained  0.56 0.28 0.16
## Cumulative Proportion 0.56 0.84 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.70 0.62
## MR3 0.70 1.00 0.24
## MR2 0.62 0.24 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  66  with the objective function =  10.08 with Chi Square =  36130.37
## df of  the model are 33  and the objective function was  0.32 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  3590 with the empirical chi square  212.07  with prob <  5e-28 
## The total n.obs was  3590  with Likelihood Chi Square =  1129.31  with prob <  5.3e-216 
## 
## Tucker Lewis Index of factoring reliability =  0.939
## RMSEA index =  0.096  and the 90 % confidence intervals are  0.091 0.101
## BIC =  859.18
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.97 0.94 1.00
## Multiple R square of scores with factors          0.95 0.88 1.00
## Minimum correlation of possible factor scores     0.90 0.76 0.99
fa3<-fa(df[,1:12], nfactors=3, rotate="promax", fm="minres", weight=df$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:12], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR2   MR3   h2   u2 com
## ssgs  0.84  0.06  0.01 0.79 0.21 1.0
## ssar  0.21  0.24  0.50 0.76 0.24 1.8
## sswk  0.84  0.17 -0.09 0.79 0.21 1.1
## sspc  0.53  0.19  0.22 0.74 0.26 1.6
## ssno -0.08  1.01 -0.13 0.77 0.23 1.0
## sscs  0.02  0.64  0.06 0.49 0.51 1.0
## ssai  0.68 -0.01 -0.05 0.40 0.60 1.0
## sssi  0.72 -0.18  0.10 0.47 0.53 1.2
## ssmk  0.17  0.42  0.39 0.79 0.21 2.3
## ssmc  0.39 -0.08  0.54 0.69 0.31 1.9
## ssei  0.77  0.06 -0.01 0.64 0.36 1.0
## ssao -0.04 -0.06  0.88 0.66 0.34 1.0
## 
##                        MR1  MR2  MR3
## SS loadings           3.99 2.00 2.00
## Proportion Var        0.33 0.17 0.17
## Cumulative Var        0.33 0.50 0.67
## Proportion Explained  0.50 0.25 0.25
## Cumulative Proportion 0.50 0.75 1.00
## 
##  With factor correlations of 
##      MR1  MR2  MR3
## MR1 1.00 0.66 0.81
## MR2 0.66 1.00 0.71
## MR3 0.81 0.71 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  66  with the objective function =  8.97 with Chi Square =  31376.06
## df of  the model are 33  and the objective function was  0.15 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  3503 with the empirical chi square  127.28  with prob <  5.3e-13 
## The total n.obs was  3503  with Likelihood Chi Square =  516.18  with prob <  4e-88 
## 
## Tucker Lewis Index of factoring reliability =  0.969
## RMSEA index =  0.065  and the 90 % confidence intervals are  0.06 0.07
## BIC =  246.86
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR2  MR3
## Correlation of (regression) scores with factors   0.97 0.94 0.94
## Multiple R square of scores with factors          0.93 0.89 0.88
## Minimum correlation of possible factor scores     0.86 0.77 0.77
fa4<-fa(dm[,1:12], nfactors=4, rotate="promax", fm="minres", weight=dm$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:12], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR3   MR2   MR4   h2    u2 com
## ssgs  0.88  0.14 -0.07 -0.03 0.83 0.170 1.1
## ssar  0.44  0.04  0.22  0.26 0.76 0.238 2.2
## sswk  1.01  0.07  0.01 -0.20 0.83 0.172 1.1
## sspc  0.72 -0.06  0.03  0.21 0.77 0.227 1.2
## ssno -0.07  0.07  1.11 -0.21 0.92 0.079 1.1
## sscs  0.02 -0.05  0.49  0.28 0.51 0.491 1.6
## ssai -0.03  0.82  0.06 -0.06 0.62 0.380 1.0
## sssi -0.02  0.85 -0.01  0.03 0.71 0.294 1.0
## ssmk  0.40 -0.03  0.32  0.28 0.79 0.209 2.8
## ssmc  0.15  0.39 -0.05  0.47 0.76 0.244 2.2
## ssei  0.41  0.46  0.00  0.07 0.75 0.253 2.0
## ssao -0.10  0.00 -0.06  0.95 0.69 0.311 1.0
## 
##                        MR1  MR3  MR2  MR4
## SS loadings           3.35 2.15 1.74 1.69
## Proportion Var        0.28 0.18 0.14 0.14
## Cumulative Var        0.28 0.46 0.60 0.74
## Proportion Explained  0.38 0.24 0.19 0.19
## Cumulative Proportion 0.38 0.62 0.81 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2  MR4
## MR1 1.00 0.73 0.70 0.84
## MR3 0.73 1.00 0.36 0.62
## MR2 0.70 0.36 1.00 0.70
## MR4 0.84 0.62 0.70 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  66  with the objective function =  10.08 with Chi Square =  36130.37
## df of  the model are 24  and the objective function was  0.1 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  3590 with the empirical chi square  41.21  with prob <  0.016 
## The total n.obs was  3590  with Likelihood Chi Square =  343.21  with prob <  3e-58 
## 
## Tucker Lewis Index of factoring reliability =  0.976
## RMSEA index =  0.061  and the 90 % confidence intervals are  0.055 0.067
## BIC =  146.74
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2  MR4
## Correlation of (regression) scores with factors   0.97 0.94 0.97 0.94
## Multiple R square of scores with factors          0.95 0.88 0.94 0.88
## Minimum correlation of possible factor scores     0.90 0.75 0.89 0.77
fa4<-fa(df[,1:12], nfactors=4, rotate="promax", fm="minres", weight=df$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:12], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR3   MR4   MR2   h2   u2 com
## ssgs  0.66  0.02  0.31 -0.05 0.79 0.21 1.4
## ssar  0.35  0.52 -0.04  0.11 0.78 0.22 1.9
## sswk  0.83 -0.12  0.23 -0.01 0.84 0.16 1.2
## sspc  0.59  0.22  0.08  0.03 0.76 0.24 1.3
## ssno  0.00 -0.11 -0.03  0.98 0.81 0.19 1.0
## sscs -0.05  0.10  0.08  0.64 0.51 0.49 1.1
## ssai  0.06 -0.04  0.60  0.09 0.44 0.56 1.1
## sssi -0.03  0.12  0.70 -0.05 0.54 0.46 1.1
## ssmk  0.36  0.41 -0.08  0.27 0.80 0.20 2.8
## ssmc  0.03  0.57  0.32 -0.04 0.70 0.30 1.6
## ssei  0.41  0.02  0.40  0.03 0.63 0.37 2.0
## ssao -0.10  0.87  0.05 -0.03 0.65 0.35 1.0
## 
##                        MR1  MR3  MR4  MR2
## SS loadings           2.66 2.10 1.90 1.58
## Proportion Var        0.22 0.18 0.16 0.13
## Cumulative Var        0.22 0.40 0.55 0.69
## Proportion Explained  0.32 0.26 0.23 0.19
## Cumulative Proportion 0.32 0.58 0.81 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR4  MR2
## MR1 1.00 0.81 0.75 0.71
## MR3 0.81 1.00 0.71 0.67
## MR4 0.75 0.71 1.00 0.48
## MR2 0.71 0.67 0.48 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  66  with the objective function =  8.97 with Chi Square =  31376.06
## df of  the model are 24  and the objective function was  0.05 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  3503 with the empirical chi square  29.65  with prob <  0.2 
## The total n.obs was  3503  with Likelihood Chi Square =  184.84  with prob <  8.7e-27 
## 
## Tucker Lewis Index of factoring reliability =  0.986
## RMSEA index =  0.044  and the 90 % confidence intervals are  0.038 0.05
## BIC =  -11.03
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR4  MR2
## Correlation of (regression) scores with factors   0.96 0.94 0.91 0.94
## Multiple R square of scores with factors          0.93 0.89 0.83 0.88
## Minimum correlation of possible factor scores     0.85 0.78 0.65 0.76
fact3<- factanal(dm[,1:12], 3, rotation="promax")
print(fact3, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = dm[, 1:12], factors = 3, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.18 0.21 0.13 0.25 0.41 0.54 0.45 0.33 0.17 0.24 0.25 0.45 
## 
## Loadings:
##      Factor1 Factor2 Factor3
## ssgs  0.24    0.43    0.37  
## ssar  0.68    0.22          
## sswk  0.23    0.28    0.56  
## sspc  0.50    0.25    0.24  
## ssno  0.87   -0.23          
## sscs  0.75                  
## ssai          0.81          
## sssi          0.88          
## ssmk  0.80                  
## ssmc  0.29    0.68          
## ssei          0.64          
## ssao  0.55    0.38          
## 
##                Factor1 Factor2 Factor3
## SS loadings       3.22    2.90    0.59
## Proportion Var    0.27    0.24    0.05
## Cumulative Var    0.27    0.51    0.56
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1    1.00   -0.59   -0.59
## Factor2   -0.59    1.00    0.66
## Factor3   -0.59    0.66    1.00
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 808.18 on 33 degrees of freedom.
## The p-value is 1.61e-148
fact3<- factanal(df[,1:12], 3, rotation="promax")
print(fact3, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = df[, 1:12], factors = 3, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.20 0.23 0.17 0.24 0.26 0.50 0.62 0.54 0.20 0.32 0.35 0.33 
## 
## Loadings:
##      Factor1 Factor2 Factor3
## ssgs  0.89                  
## ssar  0.26    0.46    0.25  
## sswk  0.95                  
## sspc  0.60                  
## ssno                  0.90  
## sscs                  0.61  
## ssai  0.61                  
## sssi  0.63                  
## ssmk  0.23    0.37    0.40  
## ssmc  0.33    0.58          
## ssei  0.77                  
## ssao          0.89          
## 
##                Factor1 Factor2 Factor3
## SS loadings       3.66    1.58    1.47
## Proportion Var    0.30    0.13    0.12
## Cumulative Var    0.30    0.44    0.56
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1    1.00    0.63   -0.84
## Factor2    0.63    1.00   -0.66
## Factor3   -0.84   -0.66    1.00
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 458.77 on 33 degrees of freedom.
## The p-value is 1.92e-76
fact4<- factanal(dm[,1:12], 4, rotation="promax")
print(fact4, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = dm[, 1:12], factors = 4, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.17 0.22 0.15 0.23 0.15 0.51 0.40 0.30 0.20 0.24 0.25 0.35 
## 
## Loadings:
##      Factor1 Factor2 Factor3 Factor4
## ssgs  0.75                          
## ssar  0.31    0.39            0.21  
## sswk  0.92                          
## sspc  0.58    0.32                  
## ssno                          1.06  
## sscs          0.30            0.51  
## ssai                  0.80          
## sssi                  0.82          
## ssmk  0.29    0.39            0.31  
## ssmc          0.56    0.39          
## ssei  0.35            0.47          
## ssao          0.98                  
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings       2.08    1.85    1.75    1.55
## Proportion Var    0.17    0.15    0.15    0.13
## Cumulative Var    0.17    0.33    0.47    0.60
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3 Factor4
## Factor1    1.00   -0.71   -0.71   -0.84
## Factor2   -0.71    1.00    0.41    0.74
## Factor3   -0.71    0.41    1.00    0.66
## Factor4   -0.84    0.74    0.66    1.00
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 287.88 on 24 degrees of freedom.
## The p-value is 4.58e-47
fact4<- factanal(df[,1:12], 4, rotation="promax")
print(fact4, digits=2, cutoff=0.2)
## 
## Call:
## factanal(x = df[, 1:12], factors = 4, rotation = "promax")
## 
## Uniquenesses:
## ssgs ssar sswk sspc ssno sscs ssai sssi ssmk ssmc ssei ssao 
## 0.20 0.21 0.15 0.23 0.17 0.50 0.58 0.46 0.19 0.30 0.35 0.36 
## 
## Loadings:
##      Factor1 Factor2 Factor3 Factor4
## ssgs  0.61                    0.39  
## ssar          0.58            0.25  
## sswk  0.59                    0.53  
## sspc  0.36    0.28            0.37  
## ssno                  0.99          
## sscs                  0.60          
## ssai  0.60                          
## sssi  0.72                          
## ssmk          0.49    0.24    0.23  
## ssmc  0.42    0.53                  
## ssei  0.60                    0.26  
## ssao          0.81                  
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings       2.29    1.61    1.42    0.76
## Proportion Var    0.19    0.13    0.12    0.06
## Cumulative Var    0.19    0.33    0.44    0.51
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3 Factor4
## Factor1    1.00   -0.63    0.63    0.48
## Factor2   -0.63    1.00   -0.69   -0.54
## Factor3    0.63   -0.69    1.00    0.74
## Factor4    0.48   -0.54    0.74    1.00
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 156.47 on 24 degrees of freedom.
## The p-value is 2.06e-21
mfa<-fa(r=dm[,1:12], nfactors=4, max.iter=100, warnings=TRUE, rotate="none", fm="pa", weight=dm$sweight)
print(mfa, digits=2, cutoff=.10)
## Factor Analysis using method =  pa
## Call: fa(r = dm[, 1:12], nfactors = 4, rotate = "none", max.iter = 100, 
##     warnings = TRUE, fm = "pa", weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##       PA1   PA2   PA3   PA4   h2   u2 com
## ssgs 0.88 -0.12 -0.04 -0.21 0.83 0.17 1.2
## ssar 0.86  0.14 -0.05 -0.02 0.76 0.24 1.1
## sswk 0.86 -0.06  0.01 -0.28 0.83 0.17 1.2
## sspc 0.86  0.08 -0.13 -0.13 0.77 0.23 1.1
## ssno 0.65  0.58  0.35  0.07 0.88 0.12 2.6
## sscs 0.61  0.36  0.03  0.11 0.51 0.49 1.7
## ssai 0.62 -0.41  0.22  0.12 0.62 0.38 2.1
## sssi 0.67 -0.46  0.17  0.13 0.71 0.29 2.0
## ssmk 0.85  0.25 -0.04  0.00 0.79 0.21 1.2
## ssmc 0.84 -0.18 -0.10  0.13 0.76 0.24 1.2
## ssei 0.83 -0.24  0.05 -0.01 0.75 0.25 1.2
## ssao 0.71  0.09 -0.33  0.26 0.70 0.30 1.7
## 
##                        PA1  PA2  PA3  PA4
## SS loadings           7.25 1.04 0.35 0.27
## Proportion Var        0.60 0.09 0.03 0.02
## Cumulative Var        0.60 0.69 0.72 0.74
## Proportion Explained  0.81 0.12 0.04 0.03
## Cumulative Proportion 0.81 0.93 0.97 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  66  with the objective function =  10.08 0.1 with Chi Square =  36130.37
## df of  the model are 24  and the objective function was  0.09 
##  0.1
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
##  0.1
## The harmonic n.obs is  3590 with the empirical chi square  41.4  with prob <  0.015 
##  0.1The total n.obs was  3590  with Likelihood Chi Square =  339.36  with prob <  1.8e-57 
##  0.1
## Tucker Lewis Index of factoring reliability =  0.976
## RMSEA index =  0.06  and the 90 % confidence intervals are  0.055 0.066 0.1
## BIC =  142.9
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    PA1  PA2  PA3  PA4
## Correlation of (regression) scores with factors   0.98 0.91 0.78 0.74
## Multiple R square of scores with factors          0.97 0.82 0.61 0.54
## Minimum correlation of possible factor scores     0.94 0.65 0.23 0.09
ffa<-fa(r=df[,1:12], nfactors=4, max.iter=100, warnings=TRUE, rotate="none", fm="pa", weight=df$sweight)
print(ffa, digits=2, cutoff=.10)
## Factor Analysis using method =  pa
## Call: fa(r = df[, 1:12], nfactors = 4, rotate = "none", max.iter = 100, 
##     warnings = TRUE, fm = "pa", weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##       PA1   PA2   PA3   PA4   h2   u2 com
## ssgs 0.86 -0.17  0.12 -0.10 0.80 0.20 1.1
## ssar 0.86  0.08 -0.15 -0.09 0.78 0.22 1.1
## sswk 0.87 -0.12  0.20 -0.17 0.83 0.17 1.2
## sspc 0.86 -0.02  0.01 -0.13 0.75 0.25 1.0
## ssno 0.64  0.57  0.14  0.09 0.76 0.24 2.1
## sscs 0.61  0.37  0.05  0.14 0.53 0.47 1.8
## ssai 0.60 -0.18  0.14  0.18 0.44 0.56 1.5
## sssi 0.63 -0.30  0.06  0.21 0.54 0.46 1.7
## ssmk 0.86  0.19 -0.10 -0.09 0.80 0.20 1.1
## ssmc 0.80 -0.15 -0.18  0.09 0.70 0.30 1.2
## ssei 0.77 -0.15  0.12  0.01 0.63 0.37 1.1
## ssao 0.72 -0.03 -0.36  0.05 0.65 0.35 1.5
## 
##                        PA1  PA2  PA3  PA4
## SS loadings           7.00 0.72 0.31 0.19
## Proportion Var        0.58 0.06 0.03 0.02
## Cumulative Var        0.58 0.64 0.67 0.68
## Proportion Explained  0.85 0.09 0.04 0.02
## Cumulative Proportion 0.85 0.94 0.98 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  66  with the objective function =  8.97 0.1 with Chi Square =  31376.06
## df of  the model are 24  and the objective function was  0.05 
##  0.1
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.01 
##  0.1
## The harmonic n.obs is  3503 with the empirical chi square  30.06  with prob <  0.18 
##  0.1The total n.obs was  3503  with Likelihood Chi Square =  186.87  with prob <  3.5e-27 
##  0.1
## Tucker Lewis Index of factoring reliability =  0.986
## RMSEA index =  0.044  and the 90 % confidence intervals are  0.038 0.05 0.1
## BIC =  -9
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    PA1  PA2  PA3   PA4
## Correlation of (regression) scores with factors   0.98 0.84 0.72  0.60
## Multiple R square of scores with factors          0.96 0.71 0.52  0.36
## Minimum correlation of possible factor scores     0.93 0.42 0.04 -0.28
# MGCFA USING SIBLING DATA

# WHITE RESPONDENTS

dw<- filter(ds, bhw==3)
nrow(dw) # N=670
## [1] 670
dgroup<- dplyr::select(dw, id, starts_with("ss"), asvab, efa, educ2011, T6665000, agec, age, agebin, agec2, sex, sexage, bhw, sweight)

fit<-lm(efa ~ sex + rcs(agec, 3) + sex*rcs(agec, 3), data=dgroup)
summary(fit)
## 
## Call:
## lm(formula = efa ~ sex + rcs(agec, 3) + sex * rcs(agec, 3), data = dgroup)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -45.566  -7.201   0.721   8.433  34.519 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           110.1806     1.9187  57.425  < 2e-16 ***
## sex                    -1.3067     2.7451  -0.476    0.634    
## rcs(agec, 3)agec        6.8323     1.3492   5.064 5.33e-07 ***
## rcs(agec, 3)agec'      -2.8192     1.6706  -1.688    0.092 .  
## sex:rcs(agec, 3)agec   -0.8730     1.8977  -0.460    0.646    
## sex:rcs(agec, 3)agec'   0.2002     2.3373   0.086    0.932    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.18 on 664 degrees of freedom
## Multiple R-squared:  0.1929, Adjusted R-squared:  0.1868 
## F-statistic: 31.74 on 5 and 664 DF,  p-value: < 2.2e-16
dgroup$pred1<-fitted(fit) 

original_age_min <- 12
original_age_max <- 17
mean_centered_min <- min(dgroup$agec)
mean_centered_max <- max(dgroup$agec)
original_age_mean <- (original_age_min + original_age_max) / 2
mean_centered_age_mean <- (mean_centered_min + mean_centered_max) / 2
age_difference <- original_age_mean - mean_centered_age_mean

xyplot(dgroup$pred1 ~ dgroup$agec, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted g", xlab="age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2))

xyplot(dgroup$pred1 ~ dgroup$agec, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted g", xlab="Age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2), scales=list(x=list(at=seq(mean_centered_min, mean_centered_max), labels=seq(original_age_min, original_age_max))))

fit<-lm(asvab ~ sex + rcs(agec, 3) + sex*rcs(agec, 3), data=dgroup)
summary(fit)
## 
## Call:
## lm(formula = asvab ~ sex + rcs(agec, 3) + sex * rcs(agec, 3), 
##     data = dgroup)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -29.9724 -10.8281   0.3089  11.9673  24.9765 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           106.5771     2.0594  51.751   <2e-16 ***
## sex                     1.1552     2.9465   0.392    0.695    
## rcs(agec, 3)agec        1.8148     1.4482   1.253    0.211    
## rcs(agec, 3)agec'      -1.1537     1.7932  -0.643    0.520    
## sex:rcs(agec, 3)agec   -0.2895     2.0368  -0.142    0.887    
## sex:rcs(agec, 3)agec'  -0.2067     2.5087  -0.082    0.934    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.15 on 664 degrees of freedom
## Multiple R-squared:  0.008656,   Adjusted R-squared:  0.001191 
## F-statistic:  1.16 on 5 and 664 DF,  p-value: 0.3276
dgroup$pred2<-fitted(fit) 
xyplot(dgroup$pred2 ~ dgroup$agec, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted ASVAB", xlab="Age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2), scales=list(x=list(at=seq(mean_centered_min, mean_centered_max), labels=seq(original_age_min, original_age_max))))

describeBy(dgroup$pred1, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n   mean   sd median trimmed  mad  min    max range  skew
## X1    1 335 106.48 6.79 107.43  106.82 8.45 93.1 116.14 23.04 -0.36
##    kurtosis   se
## X1    -1.12 0.37
## ------------------------------------------------------ 
## group: 1
##    vars   n   mean   sd median trimmed  mad   min    max range  skew
## X1    1 335 106.06 6.03 108.08  106.55 6.07 93.98 113.48  19.5 -0.56
##    kurtosis   se
## X1    -1.04 0.33
describeBy(dgroup$efa, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n   mean    sd median trimmed   mad   min    max range  skew
## X1    1 335 106.48 15.16 107.64  107.17 14.11 63.82 139.83 76.01 -0.43
##    kurtosis   se
## X1     0.03 0.83
## ------------------------------------------------------ 
## group: 1
##    vars   n   mean    sd median trimmed  mad   min    max range  skew
## X1    1 335 106.06 14.07 107.03  106.37 12.6 66.69 141.79  75.1 -0.25
##    kurtosis   se
## X1     0.06 0.77
describeBy(dgroup$asvab, dgroup$sex) 
## 
##  Descriptive statistics by group 
## INDICES: 0
##    vars   n   mean    sd median trimmed   mad  min    max range  skew
## V1    1 335 105.21 14.37 106.49  105.74 16.57 76.7 128.12 51.42 -0.25
##    kurtosis   se
## V1    -1.06 0.79
## ------------------------------------------------------ 
## INDICES: 1
##    vars   n   mean    sd median trimmed   mad   min    max range  skew
## V1    1 335 106.23 13.95 106.18  106.63 16.64 76.96 128.12 51.16 -0.18
##    kurtosis   se
## V1    -1.05 0.76
describeBy(dgroup$educ2011, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 281 14.07 2.67     14   14.07 2.97   8  20    12 0.03    -0.68
##      se
## X1 0.16
## ------------------------------------------------------ 
## group: 1
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis
## X1    1 280 14.81 2.71     15   14.84 2.97   8  20    12 -0.16    -0.71
##      se
## X1 0.16
cor(dgroup$efa, dgroup$asvab, use="pairwise.complete.obs", method="pearson")
##           [,1]
## [1,] 0.8828078
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(agebin, sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 10 Ă— 5
## # Groups:   agebin [5]
##    agebin   sex  MEAN MEAN_se    SD
##     <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1     12     0  96.5  0.235  1.99 
##  2     12     1  96.6  0.225  1.82 
##  3     13     0 103.   0.209  1.74 
##  4     13     1 102.   0.194  1.49 
##  5     14     0 108.   0.161  1.34 
##  6     14     1 107.   0.142  1.11 
##  7     15     0 112.   0.128  0.952
##  8     15     1 110.   0.0831 0.660
##  9     16     0 115.   0.0963 0.682
## 10     16     1 113.   0.0652 0.569
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(agebin, sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 10 Ă— 5
## # Groups:   agebin [5]
##    agebin   sex  MEAN MEAN_se    SD
##     <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1     12     0  96.6    1.58  13.4
##  2     12     1  95.8    1.51  12.1
##  3     13     0 104.     1.72  14.3
##  4     13     1 103.     1.70  12.9
##  5     14     0 107.     1.62  13.6
##  6     14     1 108.     1.60  12.4
##  7     15     0 113.     1.65  12.5
##  8     15     1 112.     1.68  13.3
##  9     16     0 117.     1.96  13.8
## 10     16     1 112.     1.32  11.5
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(agebin, sex) %>% summarise(MEAN = survey_mean(asvab), SD = survey_sd(asvab))
## # A tibble: 10 Ă— 5
## # Groups:   agebin [5]
##    agebin   sex  MEAN MEAN_se    SD
##     <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1     12     0  103.    1.68  14.3
##  2     12     1  104.    1.67  13.5
##  3     13     0  106.    1.76  14.6
##  4     13     1  107.    1.93  14.6
##  5     14     0  105.    1.70  14.2
##  6     14     1  109.    1.70  13.3
##  7     15     0  106.    1.91  14.4
##  8     15     1  108.    1.79  14.2
##  9     16     0  109.    2.04  14.3
## 10     16     1  106.    1.55  13.5
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  107.   0.392  6.84
## 2     1  106.   0.342  6.07
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  107.   0.863  15.2
## 2     1  107.   0.774  13.8
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(asvab, na.rm = TRUE), SD = survey_sd(asvab, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  106.   0.817  14.4
## 2     1  106.   0.775  13.8
dgroup %>% as_survey_design(ids = id, weights = T6665000) %>% group_by(sex) %>% summarise(MEAN = survey_mean(educ2011, na.rm = TRUE), SD = survey_sd(educ2011, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  14.1   0.162  2.69
## 2     1  14.8   0.164  2.72
# CORRELATED FACTOR MODEL 

cf.model<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
'

cf.lv<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
verbal~~1*verbal
math~~1*math
'

cf.reduced<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
verbal~~1*verbal
math~~1*math
verbal~0*1
math~0*1
'

baseline<-cfa(cf.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   373.206    46.000     0.000     0.946     0.103     0.045 16765.094 
##       bic 
## 16963.414
Mc(baseline)
## [1] 0.7830577
configural<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   331.264    92.000     0.000     0.960     0.088     0.038 16403.455 
##       bic 
## 16800.095
Mc(configural)
## [1] 0.8362545
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               331.264     299.933
##   Degrees of freedom                                92          92
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.104
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          130.642     118.286
##     0                                          200.622     181.647
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.817    0.041   19.853    0.000    0.736
##     sswk              0.837    0.045   18.796    0.000    0.750
##     sspc              0.761    0.042   18.063    0.000    0.678
##     ssei              0.532    0.071    7.471    0.000    0.392
##   math =~                                                      
##     ssar              0.781    0.041   18.848    0.000    0.700
##     ssmk              0.611    0.096    6.355    0.000    0.422
##     ssmc              0.689    0.044   15.591    0.000    0.602
##     ssao              0.651    0.041   15.792    0.000    0.570
##   electronic =~                                                
##     ssai              0.522    0.044   11.851    0.000    0.436
##     sssi              0.585    0.050   11.756    0.000    0.488
##     ssei              0.169    0.068    2.496    0.013    0.036
##   speed =~                                                     
##     ssno              0.782    0.059   13.153    0.000    0.665
##     sscs              0.652    0.050   13.119    0.000    0.555
##     ssmk              0.304    0.100    3.044    0.002    0.108
##  ci.upper   Std.lv  Std.all
##                            
##     0.898    0.817    0.898
##     0.924    0.837    0.892
##     0.843    0.761    0.832
##     0.671    0.532    0.620
##                            
##     0.862    0.781    0.895
##     0.799    0.611    0.635
##     0.775    0.689    0.803
##     0.731    0.651    0.706
##                            
##     0.608    0.522    0.690
##     0.683    0.585    0.751
##     0.301    0.169    0.197
##                            
##     0.899    0.782    0.792
##     0.749    0.652    0.695
##     0.499    0.304    0.316
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.922    0.019   49.140    0.000    0.885
##     electronic        0.772    0.048   15.988    0.000    0.678
##     speed             0.733    0.060   12.279    0.000    0.616
##   math ~~                                                      
##     electronic        0.741    0.053   13.937    0.000    0.637
##     speed             0.755    0.061   12.435    0.000    0.636
##   electronic ~~                                                
##     speed             0.450    0.094    4.775    0.000    0.265
##  ci.upper   Std.lv  Std.all
##                            
##     0.959    0.922    0.922
##     0.867    0.772    0.772
##     0.850    0.733    0.733
##                            
##     0.845    0.741    0.741
##     0.874    0.755    0.755
##                            
##     0.634    0.450    0.450
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.378    0.051    7.429    0.000    0.278
##    .sswk              0.382    0.052    7.278    0.000    0.279
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei              0.188    0.048    3.908    0.000    0.094
##    .ssar              0.384    0.049    7.810    0.000    0.288
##    .ssmk              0.448    0.054    8.275    0.000    0.342
##    .ssmc              0.263    0.048    5.461    0.000    0.169
##    .ssao              0.343    0.052    6.596    0.000    0.241
##    .ssai              0.069    0.043    1.625    0.104   -0.014
##    .sssi              0.163    0.044    3.736    0.000    0.078
##    .ssno              0.285    0.056    5.122    0.000    0.176
##    .sscs              0.358    0.053    6.754    0.000    0.254
##  ci.upper   Std.lv  Std.all
##     0.478    0.378    0.415
##     0.485    0.382    0.407
##     0.545    0.445    0.487
##     0.283    0.188    0.220
##     0.481    0.384    0.440
##     0.554    0.448    0.466
##     0.358    0.263    0.307
##     0.444    0.343    0.372
##     0.153    0.069    0.092
##     0.249    0.163    0.209
##     0.395    0.285    0.289
##     0.462    0.358    0.382
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.161    0.019    8.395    0.000    0.123
##    .sswk              0.180    0.019    9.507    0.000    0.143
##    .sspc              0.257    0.033    7.857    0.000    0.193
##    .ssei              0.285    0.029    9.729    0.000    0.228
##    .ssar              0.152    0.018    8.400    0.000    0.117
##    .ssmk              0.181    0.023    7.900    0.000    0.136
##    .ssmc              0.261    0.027    9.736    0.000    0.208
##    .ssao              0.425    0.036   11.840    0.000    0.355
##    .ssai              0.300    0.036    8.235    0.000    0.229
##    .sssi              0.265    0.038    7.077    0.000    0.192
##    .ssno              0.363    0.049    7.390    0.000    0.267
##    .sscs              0.454    0.058    7.863    0.000    0.341
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.199    0.161    0.194
##     0.217    0.180    0.204
##     0.321    0.257    0.308
##     0.343    0.285    0.388
##     0.187    0.152    0.199
##     0.226    0.181    0.195
##     0.313    0.261    0.355
##     0.495    0.425    0.501
##     0.371    0.300    0.524
##     0.339    0.265    0.437
##     0.459    0.363    0.372
##     0.567    0.454    0.517
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.895    0.045   19.742    0.000    0.806
##     sswk              0.884    0.046   19.306    0.000    0.794
##     sspc              0.831    0.037   22.376    0.000    0.758
##     ssei              0.537    0.071    7.574    0.000    0.398
##   math =~                                                      
##     ssar              0.850    0.050   17.117    0.000    0.753
##     ssmk              0.601    0.083    7.270    0.000    0.439
##     ssmc              0.819    0.052   15.718    0.000    0.717
##     ssao              0.709    0.045   15.843    0.000    0.621
##   electronic =~                                                
##     ssai              0.954    0.056   16.936    0.000    0.844
##     sssi              0.857    0.054   15.943    0.000    0.752
##     ssei              0.497    0.073    6.760    0.000    0.353
##   speed =~                                                     
##     ssno              0.844    0.066   12.887    0.000    0.716
##     sscs              0.782    0.058   13.404    0.000    0.668
##     ssmk              0.326    0.082    3.999    0.000    0.166
##  ci.upper   Std.lv  Std.all
##                            
##     0.984    0.895    0.901
##     0.973    0.884    0.879
##     0.904    0.831    0.850
##     0.675    0.537    0.483
##                            
##     0.947    0.850    0.878
##     0.763    0.601    0.629
##     0.921    0.819    0.823
##     0.797    0.709    0.698
##                            
##     1.065    0.954    0.822
##     0.963    0.857    0.836
##     0.640    0.497    0.447
##                            
##     0.973    0.844    0.785
##     0.896    0.782    0.762
##     0.486    0.326    0.341
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.925    0.016   59.088    0.000    0.894
##     electronic        0.683    0.043   15.964    0.000    0.599
##     speed             0.710    0.047   14.942    0.000    0.617
##   math ~~                                                      
##     electronic        0.665    0.049   13.571    0.000    0.569
##     speed             0.772    0.045   17.177    0.000    0.684
##   electronic ~~                                                
##     speed             0.339    0.071    4.754    0.000    0.200
##  ci.upper   Std.lv  Std.all
##                            
##     0.956    0.925    0.925
##     0.767    0.683    0.683
##     0.803    0.710    0.710
##                            
##     0.762    0.665    0.665
##     0.860    0.772    0.772
##                            
##     0.479    0.339    0.339
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.542    0.056    9.598    0.000    0.431
##    .sswk              0.371    0.057    6.485    0.000    0.259
##    .sspc              0.143    0.056    2.563    0.010    0.034
##    .ssei              0.595    0.063    9.438    0.000    0.472
##    .ssar              0.392    0.055    7.142    0.000    0.284
##    .ssmk              0.259    0.054    4.760    0.000    0.152
##    .ssmc              0.578    0.056   10.233    0.000    0.467
##    .ssao              0.225    0.058    3.904    0.000    0.112
##    .ssai              0.684    0.067   10.241    0.000    0.553
##    .sssi              0.827    0.059   14.131    0.000    0.712
##    .ssno              0.122    0.061    1.990    0.047    0.002
##    .sscs             -0.026    0.058   -0.447    0.655   -0.140
##  ci.upper   Std.lv  Std.all
##     0.653    0.542    0.545
##     0.483    0.371    0.369
##     0.252    0.143    0.146
##     0.719    0.595    0.535
##     0.499    0.392    0.405
##     0.365    0.259    0.271
##     0.689    0.578    0.581
##     0.338    0.225    0.221
##     0.815    0.684    0.590
##     0.942    0.827    0.807
##     0.241    0.122    0.113
##     0.088   -0.026   -0.025
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.186    0.022    8.390    0.000    0.143
##    .sswk              0.230    0.022   10.422    0.000    0.187
##    .sspc              0.265    0.030    8.695    0.000    0.205
##    .ssei              0.338    0.035    9.553    0.000    0.268
##    .ssar              0.215    0.028    7.678    0.000    0.160
##    .ssmk              0.142    0.017    8.165    0.000    0.108
##    .ssmc              0.320    0.032    9.856    0.000    0.256
##    .ssao              0.529    0.052   10.266    0.000    0.428
##    .ssai              0.437    0.061    7.216    0.000    0.318
##    .sssi              0.317    0.049    6.452    0.000    0.221
##    .ssno              0.444    0.057    7.828    0.000    0.333
##    .sscs              0.442    0.076    5.783    0.000    0.292
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.230    0.186    0.189
##     0.273    0.230    0.228
##     0.324    0.265    0.277
##     0.407    0.338    0.273
##     0.270    0.215    0.230
##     0.176    0.142    0.156
##     0.384    0.320    0.323
##     0.630    0.529    0.513
##     0.555    0.437    0.324
##     0.413    0.317    0.301
##     0.556    0.444    0.384
##     0.592    0.442    0.420
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
modificationIndices(configural, sort=T, maximum.number=30)
##            lhs op  rhs block group level     mi    epc sepc.lv sepc.all
## 226 electronic =~ ssmc     2     2     1 77.710  0.516   0.516    0.518
## 235      speed =~ ssmc     2     2     1 45.620 -0.557  -0.557   -0.559
## 234      speed =~ ssar     2     2     1 34.175  0.472   0.472    0.487
## 224 electronic =~ ssar     2     2     1 30.959 -0.307  -0.307   -0.317
## 215       math =~ sspc     2     2     1 27.425  0.743   0.743    0.761
## 223 electronic =~ sspc     2     2     1 26.619 -0.285  -0.285   -0.291
## 232      speed =~ sspc     2     2     1 26.460  0.305   0.305    0.312
## 115       math =~ sspc     1     1     1 18.776  0.559   0.559    0.611
## 126 electronic =~ ssmc     1     1     1 15.711  0.264   0.264    0.308
## 190       ssmc ~~ ssao     1     1     1 14.939  0.080   0.080    0.240
## 230      speed =~ ssgs     2     2     1 14.908 -0.218  -0.218   -0.220
## 292       ssmc ~~ sssi     2     2     1 14.676  0.090   0.090    0.281
## 114       math =~ sswk     1     1     1 14.124 -0.487  -0.487   -0.519
## 277       ssar ~~ ssmk     2     2     1 12.547  0.058   0.058    0.329
## 108     verbal =~ ssao     1     1     1 11.640 -0.520  -0.520   -0.564
## 239       ssgs ~~ sswk     2     2     1  9.765  0.061   0.061    0.297
## 135      speed =~ ssmc     1     1     1  9.318 -0.218  -0.218   -0.254
## 221 electronic =~ ssgs     2     2     1  9.147  0.160   0.160    0.161
## 293       ssmc ~~ ssno     2     2     1  9.125 -0.081  -0.081   -0.215
## 137      speed =~ ssai     1     1     1  8.987  0.180   0.180    0.238
## 162       sspc ~~ ssmk     1     1     1  8.931  0.044   0.044    0.204
## 139       ssgs ~~ sswk     1     1     1  8.908  0.049   0.049    0.286
## 109     verbal =~ ssai     1     1     1  8.833  0.500   0.500    0.660
## 110     verbal =~ sssi     1     1     1  8.833 -0.560  -0.560   -0.719
## 261       sspc ~~ ssar     2     2     1  8.658  0.049   0.049    0.205
## 132      speed =~ sspc     1     1     1  8.617  0.178   0.178    0.195
## 134      speed =~ ssar     1     1     1  8.383  0.213   0.213    0.244
## 171       ssei ~~ ssmc     1     1     1  8.365  0.048   0.048    0.177
## 138      speed =~ sssi     1     1     1  8.352 -0.193  -0.193   -0.247
## 140       ssgs ~~ sspc     1     1     1  8.235 -0.045  -0.045   -0.223
##     sepc.nox
## 226    0.518
## 235   -0.559
## 234    0.487
## 224   -0.317
## 215    0.761
## 223   -0.291
## 232    0.312
## 115    0.611
## 126    0.308
## 190    0.240
## 230   -0.220
## 292    0.281
## 114   -0.519
## 277    0.329
## 108   -0.564
## 239    0.297
## 135   -0.254
## 221    0.161
## 293   -0.215
## 137    0.238
## 162    0.204
## 139    0.286
## 109    0.660
## 110   -0.719
## 261    0.205
## 132    0.195
## 134    0.244
## 171    0.177
## 138   -0.247
## 140   -0.223
metric<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   347.314   102.000     0.000     0.959     0.085     0.044 16399.505 
##       bic 
## 16751.072
Mc(metric)
## [1] 0.8324821
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 76 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        92
##   Number of equality constraints                    14
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               347.314     310.218
##   Degrees of freedom                               102         102
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.120
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          140.877     125.830
##     0                                          206.437     184.387
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.819    0.038   21.715    0.000    0.745
##     sswk    (.p2.)    0.824    0.041   20.324    0.000    0.745
##     sspc    (.p3.)    0.761    0.036   21.361    0.000    0.691
##     ssei    (.p4.)    0.467    0.050    9.406    0.000    0.370
##   math =~                                                      
##     ssar    (.p5.)    0.783    0.039   20.278    0.000    0.707
##     ssmk    (.p6.)    0.581    0.065    9.006    0.000    0.455
##     ssmc    (.p7.)    0.720    0.038   18.732    0.000    0.645
##     ssao    (.p8.)    0.652    0.037   17.845    0.000    0.581
##   electronic =~                                                
##     ssai    (.p9.)    0.541    0.038   14.181    0.000    0.466
##     sssi    (.10.)    0.518    0.042   12.253    0.000    0.436
##     ssei    (.11.)    0.280    0.039    7.245    0.000    0.204
##   speed =~                                                     
##     ssno    (.12.)    0.776    0.050   15.651    0.000    0.679
##     sscs    (.13.)    0.686    0.041   16.641    0.000    0.605
##     ssmk    (.14.)    0.295    0.065    4.524    0.000    0.167
##  ci.upper   Std.lv  Std.all
##                            
##     0.893    0.819    0.898
##     0.904    0.824    0.888
##     0.831    0.761    0.833
##     0.565    0.467    0.529
##                            
##     0.858    0.783    0.895
##     0.707    0.581    0.620
##     0.795    0.720    0.818
##     0.724    0.652    0.708
##                            
##     0.616    0.541    0.705
##     0.601    0.518    0.687
##     0.356    0.280    0.317
##                            
##     0.873    0.776    0.786
##     0.767    0.686    0.718
##     0.423    0.295    0.316
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.923    0.018   50.057    0.000    0.887
##     electronic        0.790    0.049   16.219    0.000    0.694
##     speed             0.743    0.052   14.232    0.000    0.640
##   math ~~                                                      
##     electronic        0.760    0.052   14.754    0.000    0.659
##     speed             0.764    0.056   13.743    0.000    0.655
##   electronic ~~                                                
##     speed             0.488    0.087    5.603    0.000    0.317
##  ci.upper   Std.lv  Std.all
##                            
##     0.959    0.923    0.923
##     0.885    0.790    0.790
##     0.845    0.743    0.743
##                            
##     0.861    0.760    0.760
##     0.873    0.764    0.764
##                            
##     0.659    0.488    0.488
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.378    0.051    7.429    0.000    0.278
##    .sswk              0.382    0.052    7.278    0.000    0.279
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei              0.188    0.048    3.908    0.000    0.094
##    .ssar              0.384    0.049    7.810    0.000    0.288
##    .ssmk              0.448    0.054    8.275    0.000    0.342
##    .ssmc              0.263    0.048    5.461    0.000    0.169
##    .ssao              0.343    0.052    6.596    0.000    0.241
##    .ssai              0.069    0.043    1.625    0.104   -0.014
##    .sssi              0.163    0.044    3.736    0.000    0.078
##    .ssno              0.285    0.056    5.122    0.000    0.176
##    .sscs              0.358    0.053    6.754    0.000    0.254
##  ci.upper   Std.lv  Std.all
##     0.478    0.378    0.415
##     0.485    0.382    0.411
##     0.545    0.445    0.487
##     0.283    0.188    0.213
##     0.481    0.384    0.439
##     0.554    0.448    0.479
##     0.358    0.263    0.299
##     0.444    0.343    0.372
##     0.153    0.069    0.090
##     0.249    0.163    0.216
##     0.395    0.285    0.289
##     0.462    0.358    0.375
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.161    0.019    8.441    0.000    0.124
##    .sswk              0.182    0.019    9.510    0.000    0.144
##    .sspc              0.256    0.031    8.126    0.000    0.194
##    .ssei              0.278    0.030    9.401    0.000    0.220
##    .ssar              0.153    0.018    8.292    0.000    0.117
##    .ssmk              0.189    0.022    8.751    0.000    0.147
##    .ssmc              0.257    0.027    9.645    0.000    0.205
##    .ssao              0.424    0.036   11.921    0.000    0.354
##    .ssai              0.296    0.035    8.406    0.000    0.227
##    .sssi              0.300    0.035    8.699    0.000    0.233
##    .ssno              0.373    0.049    7.609    0.000    0.277
##    .sscs              0.442    0.055    8.006    0.000    0.333
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.198    0.161    0.194
##     0.219    0.182    0.211
##     0.318    0.256    0.306
##     0.336    0.278    0.356
##     0.189    0.153    0.200
##     0.232    0.189    0.216
##     0.309    0.257    0.331
##     0.494    0.424    0.499
##     0.365    0.296    0.503
##     0.368    0.300    0.528
##     0.470    0.373    0.383
##     0.550    0.442    0.484
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.819    0.038   21.715    0.000    0.745
##     sswk    (.p2.)    0.824    0.041   20.324    0.000    0.745
##     sspc    (.p3.)    0.761    0.036   21.361    0.000    0.691
##     ssei    (.p4.)    0.467    0.050    9.406    0.000    0.370
##   math =~                                                      
##     ssar    (.p5.)    0.783    0.039   20.278    0.000    0.707
##     ssmk    (.p6.)    0.581    0.065    9.006    0.000    0.455
##     ssmc    (.p7.)    0.720    0.038   18.732    0.000    0.645
##     ssao    (.p8.)    0.652    0.037   17.845    0.000    0.581
##   electronic =~                                                
##     ssai    (.p9.)    0.541    0.038   14.181    0.000    0.466
##     sssi    (.10.)    0.518    0.042   12.253    0.000    0.436
##     ssei    (.11.)    0.280    0.039    7.245    0.000    0.204
##   speed =~                                                     
##     ssno    (.12.)    0.776    0.050   15.651    0.000    0.679
##     sscs    (.13.)    0.686    0.041   16.641    0.000    0.605
##     ssmk    (.14.)    0.295    0.065    4.524    0.000    0.167
##  ci.upper   Std.lv  Std.all
##                            
##     0.893    0.893    0.901
##     0.904    0.900    0.884
##     0.831    0.831    0.850
##     0.565    0.510    0.470
##                            
##     0.858    0.848    0.878
##     0.707    0.630    0.646
##     0.795    0.780    0.806
##     0.724    0.707    0.696
##                            
##     0.616    0.930    0.809
##     0.601    0.891    0.853
##     0.356    0.481    0.444
##                            
##     0.873    0.848    0.789
##     0.767    0.750    0.744
##     0.423    0.323    0.332
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              1.092    0.130    8.426    0.000    0.838
##     electronic        1.287    0.191    6.742    0.000    0.913
##     speed             0.836    0.111    7.501    0.000    0.618
##   math ~~                                                      
##     electronic        1.235    0.198    6.240    0.000    0.847
##     speed             0.908    0.115    7.861    0.000    0.682
##   electronic ~~                                                
##     speed             0.626    0.156    3.999    0.000    0.319
##  ci.upper   Std.lv  Std.all
##                            
##     1.346    0.923    0.923
##     1.662    0.686    0.686
##     1.055    0.701    0.701
##                            
##     1.623    0.663    0.663
##     1.134    0.766    0.766
##                            
##     0.933    0.333    0.333
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.542    0.056    9.598    0.000    0.431
##    .sswk              0.371    0.057    6.485    0.000    0.259
##    .sspc              0.143    0.056    2.563    0.010    0.034
##    .ssei              0.595    0.063    9.438    0.000    0.472
##    .ssar              0.392    0.055    7.142    0.000    0.284
##    .ssmk              0.259    0.054    4.760    0.000    0.152
##    .ssmc              0.578    0.056   10.233    0.000    0.467
##    .ssao              0.225    0.058    3.904    0.000    0.112
##    .ssai              0.684    0.067   10.241    0.000    0.553
##    .sssi              0.827    0.059   14.131    0.000    0.712
##    .ssno              0.122    0.061    1.990    0.047    0.002
##    .sscs             -0.026    0.058   -0.447    0.655   -0.140
##  ci.upper   Std.lv  Std.all
##     0.653    0.542    0.546
##     0.483    0.371    0.364
##     0.252    0.143    0.146
##     0.719    0.595    0.549
##     0.499    0.392    0.406
##     0.365    0.259    0.265
##     0.689    0.578    0.597
##     0.338    0.225    0.221
##     0.815    0.684    0.595
##     0.942    0.827    0.791
##     0.241    0.122    0.113
##     0.088   -0.026   -0.026
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.186    0.021    8.789    0.000    0.144
##    .sswk              0.227    0.022   10.461    0.000    0.184
##    .sspc              0.266    0.030    8.784    0.000    0.207
##    .ssei              0.347    0.036    9.539    0.000    0.275
##    .ssar              0.213    0.027    7.922    0.000    0.161
##    .ssmk              0.137    0.017    8.239    0.000    0.104
##    .ssmc              0.329    0.033   10.066    0.000    0.265
##    .ssao              0.531    0.051   10.454    0.000    0.431
##    .ssai              0.456    0.060    7.625    0.000    0.339
##    .sssi              0.298    0.049    6.053    0.000    0.202
##    .ssno              0.436    0.056    7.820    0.000    0.327
##    .sscs              0.455    0.075    6.083    0.000    0.308
##     verbal            1.191    0.141    8.437    0.000    0.914
##     math              1.175    0.151    7.754    0.000    0.878
##     electronic        2.955    0.493    5.994    0.000    1.989
##     speed             1.196    0.195    6.115    0.000    0.812
##  ci.upper   Std.lv  Std.all
##     0.227    0.186    0.189
##     0.269    0.227    0.219
##     0.325    0.266    0.278
##     0.418    0.347    0.295
##     0.266    0.213    0.229
##     0.170    0.137    0.144
##     0.393    0.329    0.351
##     0.630    0.531    0.515
##     0.573    0.456    0.345
##     0.395    0.298    0.273
##     0.545    0.436    0.377
##     0.601    0.455    0.447
##     1.467    1.000    1.000
##     1.471    1.000    1.000
##     3.921    1.000    1.000
##     1.579    1.000    1.000
lavTestScore(metric, release = 1:14)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 15.651 14   0.335
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs    X2 df p.value
## 1   .p1. == .p53. 0.023  1   0.881
## 2   .p2. == .p54. 0.921  1   0.337
## 3   .p3. == .p55. 0.001  1   0.973
## 4   .p4. == .p56. 2.728  1   0.099
## 5   .p5. == .p57. 0.049  1   0.825
## 6   .p6. == .p58. 4.443  1   0.035
## 7   .p7. == .p59. 3.147  1   0.076
## 8   .p8. == .p60. 0.001  1   0.974
## 9   .p9. == .p61. 1.137  1   0.286
## 10 .p10. == .p62. 6.132  1   0.013
## 11 .p11. == .p63. 4.888  1   0.027
## 12 .p12. == .p64. 0.003  1   0.956
## 13 .p13. == .p65. 1.932  1   0.164
## 14 .p14. == .p66. 3.845  1   0.050
scalar<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   500.667   110.000     0.000     0.935     0.103     0.052 16536.858 
##       bic 
## 16852.367
Mc(scalar)
## [1] 0.7467846
summary(scalar, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 88 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    26
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               500.667     451.015
##   Degrees of freedom                               110         110
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.110
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          210.266     189.413
##     0                                          290.401     261.602
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.817    0.038   21.322    0.000    0.742
##     sswk    (.p2.)    0.826    0.041   20.300    0.000    0.747
##     sspc    (.p3.)    0.759    0.036   21.120    0.000    0.688
##     ssei    (.p4.)    0.444    0.045    9.973    0.000    0.357
##   math =~                                                      
##     ssar    (.p5.)    0.781    0.039   20.070    0.000    0.705
##     ssmk    (.p6.)    0.515    0.076    6.775    0.000    0.366
##     ssmc    (.p7.)    0.722    0.040   18.065    0.000    0.644
##     ssao    (.p8.)    0.648    0.036   17.882    0.000    0.577
##   electronic =~                                                
##     ssai    (.p9.)    0.530    0.038   14.064    0.000    0.456
##     sssi    (.10.)    0.522    0.040   12.936    0.000    0.443
##     ssei    (.11.)    0.303    0.034    9.033    0.000    0.237
##   speed =~                                                     
##     ssno    (.12.)    0.743    0.049   15.311    0.000    0.648
##     sscs    (.13.)    0.692    0.041   16.778    0.000    0.611
##     ssmk    (.14.)    0.368    0.078    4.715    0.000    0.215
##  ci.upper   Std.lv  Std.all
##                            
##     0.892    0.817    0.893
##     0.906    0.826    0.890
##     0.829    0.759    0.820
##     0.531    0.444    0.503
##                            
##     0.858    0.781    0.894
##     0.664    0.515    0.548
##     0.800    0.722    0.811
##     0.720    0.648    0.703
##                            
##     0.604    0.530    0.694
##     0.601    0.522    0.689
##     0.369    0.303    0.343
##                            
##     0.838    0.743    0.757
##     0.773    0.692    0.717
##     0.522    0.368    0.392
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.922    0.019   48.335    0.000    0.885
##     electronic        0.797    0.048   16.612    0.000    0.703
##     speed             0.767    0.053   14.559    0.000    0.664
##   math ~~                                                      
##     electronic        0.768    0.050   15.219    0.000    0.669
##     speed             0.784    0.058   13.620    0.000    0.672
##   electronic ~~                                                
##     speed             0.512    0.087    5.900    0.000    0.342
##  ci.upper   Std.lv  Std.all
##                            
##     0.959    0.922    0.922
##     0.891    0.797    0.797
##     0.870    0.767    0.767
##                            
##     0.867    0.768    0.768
##     0.897    0.784    0.784
##                            
##     0.682    0.512    0.512
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.454    0.050    9.095    0.000    0.356
##    .sswk    (.38.)    0.380    0.051    7.394    0.000    0.279
##    .sspc    (.39.)    0.304    0.051    5.960    0.000    0.204
##    .ssei    (.40.)    0.203    0.047    4.314    0.000    0.111
##    .ssar    (.41.)    0.366    0.050    7.329    0.000    0.268
##    .ssmk    (.42.)    0.412    0.054    7.581    0.000    0.306
##    .ssmc    (.43.)    0.376    0.047    7.975    0.000    0.284
##    .ssao    (.44.)    0.273    0.048    5.648    0.000    0.178
##    .ssai    (.45.)    0.053    0.041    1.289    0.197   -0.027
##    .sssi    (.46.)    0.171    0.041    4.150    0.000    0.090
##    .ssno    (.47.)    0.358    0.051    6.946    0.000    0.257
##    .sscs    (.48.)    0.320    0.051    6.246    0.000    0.219
##  ci.upper   Std.lv  Std.all
##     0.552    0.454    0.496
##     0.480    0.380    0.409
##     0.404    0.304    0.328
##     0.295    0.203    0.230
##     0.464    0.366    0.419
##     0.519    0.412    0.438
##     0.469    0.376    0.423
##     0.367    0.273    0.296
##     0.132    0.053    0.069
##     0.252    0.171    0.226
##     0.459    0.358    0.365
##     0.420    0.320    0.331
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.170    0.021    8.256    0.000    0.129
##    .sswk              0.180    0.019    9.325    0.000    0.142
##    .sspc              0.281    0.036    7.773    0.000    0.210
##    .ssei              0.276    0.030    9.258    0.000    0.217
##    .ssar              0.153    0.019    7.985    0.000    0.115
##    .ssmk              0.186    0.024    7.592    0.000    0.138
##    .ssmc              0.272    0.030    9.176    0.000    0.214
##    .ssao              0.429    0.036   12.050    0.000    0.359
##    .ssai              0.302    0.035    8.713    0.000    0.234
##    .sssi              0.301    0.035    8.659    0.000    0.233
##    .ssno              0.410    0.054    7.582    0.000    0.304
##    .sscs              0.452    0.058    7.819    0.000    0.338
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.210    0.170    0.203
##     0.218    0.180    0.209
##     0.352    0.281    0.328
##     0.334    0.276    0.354
##     0.190    0.153    0.200
##     0.234    0.186    0.210
##     0.330    0.272    0.343
##     0.499    0.429    0.505
##     0.371    0.302    0.518
##     0.369    0.301    0.525
##     0.516    0.410    0.426
##     0.565    0.452    0.485
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.817    0.038   21.322    0.000    0.742
##     sswk    (.p2.)    0.826    0.041   20.300    0.000    0.747
##     sspc    (.p3.)    0.759    0.036   21.120    0.000    0.688
##     ssei    (.p4.)    0.444    0.045    9.973    0.000    0.357
##   math =~                                                      
##     ssar    (.p5.)    0.781    0.039   20.070    0.000    0.705
##     ssmk    (.p6.)    0.515    0.076    6.775    0.000    0.366
##     ssmc    (.p7.)    0.722    0.040   18.065    0.000    0.644
##     ssao    (.p8.)    0.648    0.036   17.882    0.000    0.577
##   electronic =~                                                
##     ssai    (.p9.)    0.530    0.038   14.064    0.000    0.456
##     sssi    (.10.)    0.522    0.040   12.936    0.000    0.443
##     ssei    (.11.)    0.303    0.034    9.033    0.000    0.237
##   speed =~                                                     
##     ssno    (.12.)    0.743    0.049   15.311    0.000    0.648
##     sscs    (.13.)    0.692    0.041   16.778    0.000    0.611
##     ssmk    (.14.)    0.368    0.078    4.715    0.000    0.215
##  ci.upper   Std.lv  Std.all
##                            
##     0.892    0.890    0.894
##     0.906    0.900    0.885
##     0.829    0.826    0.835
##     0.531    0.484    0.443
##                            
##     0.858    0.848    0.877
##     0.664    0.559    0.574
##     0.800    0.784    0.797
##     0.720    0.704    0.691
##                            
##     0.604    0.908    0.798
##     0.601    0.894    0.853
##     0.369    0.520    0.476
##                            
##     0.838    0.799    0.752
##     0.773    0.745    0.735
##     0.522    0.396    0.406
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              1.093    0.130    8.380    0.000    0.838
##     electronic        1.293    0.191    6.759    0.000    0.918
##     speed             0.852    0.111    7.703    0.000    0.635
##   math ~~                                                      
##     electronic        1.251    0.199    6.275    0.000    0.861
##     speed             0.923    0.115    8.003    0.000    0.697
##   electronic ~~                                                
##     speed             0.652    0.156    4.176    0.000    0.346
##  ci.upper   Std.lv  Std.all
##                            
##     1.349    0.925    0.925
##     1.668    0.693    0.693
##     1.068    0.727    0.727
##                            
##     1.642    0.673    0.673
##     1.149    0.790    0.790
##                            
##     0.958    0.354    0.354
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.454    0.050    9.095    0.000    0.356
##    .sswk    (.38.)    0.380    0.051    7.394    0.000    0.279
##    .sspc    (.39.)    0.304    0.051    5.960    0.000    0.204
##    .ssei    (.40.)    0.203    0.047    4.314    0.000    0.111
##    .ssar    (.41.)    0.366    0.050    7.329    0.000    0.268
##    .ssmk    (.42.)    0.412    0.054    7.581    0.000    0.306
##    .ssmc    (.43.)    0.376    0.047    7.975    0.000    0.284
##    .ssao    (.44.)    0.273    0.048    5.648    0.000    0.178
##    .ssai    (.45.)    0.053    0.041    1.289    0.197   -0.027
##    .sssi    (.46.)    0.171    0.041    4.150    0.000    0.090
##    .ssno    (.47.)    0.358    0.051    6.946    0.000    0.257
##    .sscs    (.48.)    0.320    0.051    6.246    0.000    0.219
##     verbal           -0.007    0.090   -0.081    0.936   -0.183
##     math              0.067    0.093    0.724    0.469   -0.115
##     elctrnc           1.243    0.154    8.088    0.000    0.942
##     speed            -0.439    0.102   -4.311    0.000   -0.638
##  ci.upper   Std.lv  Std.all
##     0.552    0.454    0.456
##     0.480    0.380    0.373
##     0.404    0.304    0.307
##     0.295    0.203    0.186
##     0.464    0.366    0.379
##     0.519    0.412    0.422
##     0.469    0.376    0.382
##     0.367    0.273    0.268
##     0.132    0.053    0.046
##     0.252    0.171    0.163
##     0.459    0.358    0.337
##     0.420    0.320    0.315
##     0.169   -0.007   -0.007
##     0.250    0.062    0.062
##     1.544    0.725    0.725
##    -0.239   -0.408   -0.408
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.199    0.024    8.355    0.000    0.153
##    .sswk              0.224    0.022   10.256    0.000    0.181
##    .sspc              0.298    0.037    8.103    0.000    0.226
##    .ssei              0.341    0.036    9.508    0.000    0.271
##    .ssar              0.216    0.028    7.732    0.000    0.161
##    .ssmk              0.131    0.019    6.814    0.000    0.093
##    .ssmc              0.354    0.036    9.701    0.000    0.282
##    .ssao              0.541    0.053   10.213    0.000    0.437
##    .ssai              0.470    0.058    8.135    0.000    0.357
##    .sssi              0.300    0.048    6.290    0.000    0.206
##    .ssno              0.490    0.062    7.857    0.000    0.368
##    .sscs              0.472    0.081    5.803    0.000    0.312
##     verbal            1.186    0.141    8.394    0.000    0.909
##     math              1.179    0.154    7.677    0.000    0.878
##     electronic        2.935    0.487    6.033    0.000    1.981
##     speed             1.158    0.191    6.072    0.000    0.784
##  ci.upper   Std.lv  Std.all
##     0.246    0.199    0.201
##     0.267    0.224    0.217
##     0.369    0.298    0.303
##     0.411    0.341    0.286
##     0.270    0.216    0.231
##     0.168    0.131    0.137
##     0.425    0.354    0.365
##     0.645    0.541    0.522
##     0.583    0.470    0.363
##     0.393    0.300    0.273
##     0.612    0.490    0.434
##     0.631    0.472    0.460
##     1.463    1.000    1.000
##     1.480    1.000    1.000
##     3.888    1.000    1.000
##     1.531    1.000    1.000
lavTestScore(scalar, release = 15:26)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 147.83 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs     X2 df p.value
## 1  .p37. ==  .p89. 42.854  1   0.000
## 2  .p38. ==  .p90.  0.033  1   0.856
## 3  .p39. ==  .p91. 64.944  1   0.000
## 4  .p40. ==  .p92.  1.342  1   0.247
## 5  .p41. ==  .p93.  3.702  1   0.054
## 6  .p42. ==  .p94.  9.638  1   0.002
## 7  .p43. ==  .p95. 50.311  1   0.000
## 8  .p44. ==  .p96. 10.343  1   0.001
## 9  .p45. ==  .p97.  1.784  1   0.182
## 10 .p46. ==  .p98.  0.352  1   0.553
## 11 .p47. ==  .p99. 18.731  1   0.000
## 12 .p48. == .p100.  4.001  1   0.045
scalar2<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("ssmc~1", "sspc~1", "ssno~1")) 
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   366.230   107.000     0.000     0.957     0.085     0.045 16408.421 
##       bic 
## 16737.452
Mc(scalar2)
## [1] 0.8238685
summary(scalar2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 87 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    23
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               366.230     327.346
##   Degrees of freedom                               107         107
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.119
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          148.593     132.817
##     0                                          217.637     194.529
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.820    0.038   21.693    0.000    0.746
##     sswk    (.p2.)    0.821    0.041   20.122    0.000    0.741
##     sspc    (.p3.)    0.762    0.036   21.392    0.000    0.692
##     ssei    (.p4.)    0.462    0.045   10.237    0.000    0.374
##   math =~                                                      
##     ssar    (.p5.)    0.782    0.039   20.269    0.000    0.707
##     ssmk    (.p6.)    0.579    0.056   10.361    0.000    0.469
##     ssmc    (.p7.)    0.720    0.038   18.740    0.000    0.645
##     ssao    (.p8.)    0.653    0.036   18.006    0.000    0.582
##   electronic =~                                                
##     ssai    (.p9.)    0.533    0.038   14.115    0.000    0.459
##     sssi    (.10.)    0.525    0.041   12.936    0.000    0.446
##     ssei    (.11.)    0.286    0.034    8.469    0.000    0.220
##   speed =~                                                     
##     ssno    (.12.)    0.776    0.050   15.671    0.000    0.679
##     sscs    (.13.)    0.686    0.040   17.000    0.000    0.607
##     ssmk    (.14.)    0.298    0.053    5.608    0.000    0.194
##  ci.upper   Std.lv  Std.all
##                            
##     0.894    0.820    0.897
##     0.901    0.821    0.885
##     0.832    0.762    0.833
##     0.551    0.462    0.523
##                            
##     0.858    0.782    0.894
##     0.688    0.579    0.618
##     0.796    0.720    0.818
##     0.724    0.653    0.707
##                            
##     0.607    0.533    0.698
##     0.605    0.525    0.694
##     0.352    0.286    0.324
##                            
##     0.873    0.776    0.785
##     0.765    0.686    0.718
##     0.403    0.298    0.319
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.924    0.018   50.324    0.000    0.888
##     electronic        0.791    0.048   16.462    0.000    0.697
##     speed             0.744    0.051   14.667    0.000    0.645
##   math ~~                                                      
##     electronic        0.762    0.051   15.024    0.000    0.662
##     speed             0.765    0.055   13.871    0.000    0.657
##   electronic ~~                                                
##     speed             0.487    0.086    5.642    0.000    0.318
##  ci.upper   Std.lv  Std.all
##                            
##     0.960    0.924    0.924
##     0.885    0.791    0.791
##     0.844    0.744    0.744
##                            
##     0.861    0.762    0.762
##     0.873    0.765    0.765
##                            
##     0.656    0.487    0.487
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.413    0.050    8.306    0.000    0.316
##    .sswk    (.38.)    0.340    0.051    6.667    0.000    0.240
##    .sspc              0.445    0.051    8.701    0.000    0.345
##    .ssei    (.40.)    0.192    0.046    4.152    0.000    0.102
##    .ssar    (.41.)    0.398    0.049    8.121    0.000    0.302
##    .ssmk    (.42.)    0.447    0.052    8.566    0.000    0.345
##    .ssmc              0.263    0.048    5.462    0.000    0.169
##    .ssao    (.44.)    0.301    0.048    6.304    0.000    0.207
##    .ssai    (.45.)    0.056    0.041    1.363    0.173   -0.024
##    .sssi    (.46.)    0.175    0.041    4.218    0.000    0.093
##    .ssno              0.285    0.056    5.122    0.000    0.176
##    .sscs    (.48.)    0.359    0.051    6.980    0.000    0.258
##  ci.upper   Std.lv  Std.all
##     0.511    0.413    0.452
##     0.440    0.340    0.367
##     0.545    0.445    0.487
##     0.283    0.192    0.218
##     0.494    0.398    0.455
##     0.549    0.447    0.477
##     0.358    0.263    0.299
##     0.394    0.301    0.326
##     0.136    0.056    0.073
##     0.256    0.175    0.230
##     0.395    0.285    0.289
##     0.460    0.359    0.376
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.163    0.019    8.392    0.000    0.125
##    .sswk              0.186    0.020    9.410    0.000    0.147
##    .sspc              0.255    0.031    8.117    0.000    0.194
##    .ssei              0.277    0.030    9.318    0.000    0.219
##    .ssar              0.154    0.019    8.268    0.000    0.117
##    .ssmk              0.189    0.021    8.894    0.000    0.148
##    .ssmc              0.256    0.027    9.635    0.000    0.204
##    .ssao              0.426    0.035   12.008    0.000    0.356
##    .ssai              0.300    0.035    8.602    0.000    0.231
##    .sssi              0.298    0.035    8.554    0.000    0.230
##    .ssno              0.374    0.050    7.524    0.000    0.276
##    .sscs              0.442    0.055    7.986    0.000    0.334
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.201    0.163    0.195
##     0.224    0.186    0.216
##     0.317    0.255    0.305
##     0.336    0.277    0.354
##     0.190    0.154    0.201
##     0.231    0.189    0.216
##     0.309    0.256    0.331
##     0.495    0.426    0.500
##     0.368    0.300    0.513
##     0.366    0.298    0.519
##     0.471    0.374    0.383
##     0.551    0.442    0.485
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.820    0.038   21.693    0.000    0.746
##     sswk    (.p2.)    0.821    0.041   20.122    0.000    0.741
##     sspc    (.p3.)    0.762    0.036   21.392    0.000    0.692
##     ssei    (.p4.)    0.462    0.045   10.237    0.000    0.374
##   math =~                                                      
##     ssar    (.p5.)    0.782    0.039   20.269    0.000    0.707
##     ssmk    (.p6.)    0.579    0.056   10.361    0.000    0.469
##     ssmc    (.p7.)    0.720    0.038   18.740    0.000    0.645
##     ssao    (.p8.)    0.653    0.036   18.006    0.000    0.582
##   electronic =~                                                
##     ssai    (.p9.)    0.533    0.038   14.115    0.000    0.459
##     sssi    (.10.)    0.525    0.041   12.936    0.000    0.446
##     ssei    (.11.)    0.286    0.034    8.469    0.000    0.220
##   speed =~                                                     
##     ssno    (.12.)    0.776    0.050   15.671    0.000    0.679
##     sscs    (.13.)    0.686    0.040   17.000    0.000    0.607
##     ssmk    (.14.)    0.298    0.053    5.608    0.000    0.194
##  ci.upper   Std.lv  Std.all
##                            
##     0.894    0.894    0.899
##     0.901    0.896    0.881
##     0.832    0.831    0.850
##     0.551    0.504    0.465
##                            
##     0.858    0.848    0.878
##     0.688    0.627    0.643
##     0.796    0.781    0.806
##     0.724    0.708    0.696
##                            
##     0.607    0.913    0.800
##     0.605    0.900    0.857
##     0.352    0.490    0.451
##                            
##     0.873    0.848    0.789
##     0.765    0.749    0.743
##     0.403    0.326    0.334
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              1.093    0.130    8.436    0.000    0.839
##     electronic        1.281    0.190    6.732    0.000    0.908
##     speed             0.838    0.112    7.503    0.000    0.619
##   math ~~                                                      
##     electronic        1.232    0.196    6.273    0.000    0.847
##     speed             0.908    0.115    7.858    0.000    0.681
##   electronic ~~                                                
##     speed             0.623    0.156    3.990    0.000    0.317
##  ci.upper   Std.lv  Std.all
##                            
##     1.348    0.925    0.925
##     1.654    0.686    0.686
##     1.056    0.702    0.702
##                            
##     1.618    0.664    0.664
##     1.134    0.766    0.766
##                            
##     0.928    0.333    0.333
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.413    0.050    8.306    0.000    0.316
##    .sswk    (.38.)    0.340    0.051    6.667    0.000    0.240
##    .sspc              0.063    0.058    1.093    0.274   -0.050
##    .ssei    (.40.)    0.192    0.046    4.152    0.000    0.102
##    .ssar    (.41.)    0.398    0.049    8.121    0.000    0.302
##    .ssmk    (.42.)    0.447    0.052    8.566    0.000    0.345
##    .ssmc              0.601    0.059   10.115    0.000    0.485
##    .ssao    (.44.)    0.301    0.048    6.304    0.000    0.207
##    .ssai    (.45.)    0.056    0.041    1.363    0.173   -0.024
##    .sssi    (.46.)    0.175    0.041    4.218    0.000    0.093
##    .ssno              0.559    0.078    7.126    0.000    0.405
##    .sscs    (.48.)    0.359    0.051    6.980    0.000    0.258
##     verbal            0.104    0.089    1.167    0.243   -0.071
##     math             -0.033    0.092   -0.356    0.722   -0.212
##     elctrnc           1.220    0.152    8.027    0.000    0.922
##     speed            -0.564    0.108   -5.212    0.000   -0.776
##  ci.upper   Std.lv  Std.all
##     0.511    0.413    0.416
##     0.440    0.340    0.334
##     0.176    0.063    0.065
##     0.283    0.192    0.177
##     0.494    0.398    0.412
##     0.549    0.447    0.459
##     0.718    0.601    0.621
##     0.394    0.301    0.296
##     0.136    0.056    0.049
##     0.256    0.175    0.166
##     0.713    0.559    0.520
##     0.460    0.359    0.356
##     0.279    0.096    0.096
##     0.147   -0.030   -0.030
##     1.518    0.713    0.713
##    -0.352   -0.516   -0.516
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.189    0.022    8.663    0.000    0.146
##    .sswk              0.232    0.022   10.470    0.000    0.189
##    .sspc              0.265    0.030    8.746    0.000    0.205
##    .ssei              0.345    0.036    9.643    0.000    0.275
##    .ssar              0.214    0.027    7.985    0.000    0.162
##    .ssmk              0.137    0.016    8.401    0.000    0.105
##    .ssmc              0.328    0.032   10.161    0.000    0.265
##    .ssao              0.534    0.052   10.324    0.000    0.432
##    .ssai              0.467    0.058    8.006    0.000    0.353
##    .sssi              0.293    0.048    6.088    0.000    0.199
##    .ssno              0.437    0.055    7.947    0.000    0.329
##    .sscs              0.455    0.073    6.244    0.000    0.312
##     verbal            1.191    0.141    8.444    0.000    0.914
##     math              1.175    0.151    7.763    0.000    0.878
##     electronic        2.932    0.488    6.006    0.000    1.975
##     speed             1.194    0.194    6.165    0.000    0.815
##  ci.upper   Std.lv  Std.all
##     0.232    0.189    0.191
##     0.276    0.232    0.225
##     0.324    0.265    0.277
##     0.416    0.345    0.293
##     0.267    0.214    0.230
##     0.169    0.137    0.144
##     0.392    0.328    0.350
##     0.635    0.534    0.516
##     0.582    0.467    0.359
##     0.387    0.293    0.266
##     0.545    0.437    0.378
##     0.598    0.455    0.448
##     1.467    1.000    1.000
##     1.471    1.000    1.000
##     3.888    1.000    1.000
##     1.574    1.000    1.000
lavTestScore(scalar2, release = 15:23, standardized=T, epc=T) # with only ssmc and sspc the fit was not satisfactory and other subtests have similar X2 values, but ssno had the highest value in sepc.all earlier
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 18.763  9   0.027
## 
## $uni
## 
## univariate score tests:
## 
##     lhs op    rhs     X2 df p.value
## 1 .p37. ==  .p89. 12.088  1   0.001
## 2 .p38. ==  .p90. 13.259  1   0.000
## 3 .p40. ==  .p92.  0.098  1   0.754
## 4 .p41. ==  .p93.  2.713  1   0.100
## 5 .p42. ==  .p94.  0.014  1   0.906
## 6 .p44. ==  .p96.  3.917  1   0.048
## 7 .p45. ==  .p97.  1.187  1   0.276
## 8 .p46. ==  .p98.  0.775  1   0.379
## 9 .p48. == .p100.  0.014  1   0.906
## 
## $epc
## 
## expected parameter changes (epc) and expected parameter values (epv):
## 
##           lhs op        rhs block group free label plabel   est    epc
## 1      verbal =~       ssgs     1     1    1  .p1.   .p1. 0.820 -0.002
## 2      verbal =~       sswk     1     1    2  .p2.   .p2. 0.821  0.002
## 3      verbal =~       sspc     1     1    3  .p3.   .p3. 0.762  0.000
## 4      verbal =~       ssei     1     1    4  .p4.   .p4. 0.462  0.005
## 5        math =~       ssar     1     1    5  .p5.   .p5. 0.782  0.000
## 6        math =~       ssmk     1     1    6  .p6.   .p6. 0.579  0.002
## 7        math =~       ssmc     1     1    7  .p7.   .p7. 0.720  0.000
## 8        math =~       ssao     1     1    8  .p8.   .p8. 0.653 -0.001
## 9  electronic =~       ssai     1     1    9  .p9.   .p9. 0.533  0.008
## 10 electronic =~       sssi     1     1   10 .p10.  .p10. 0.525 -0.007
## 11 electronic =~       ssei     1     1   11 .p11.  .p11. 0.286 -0.006
## 12      speed =~       ssno     1     1   12 .p12.  .p12. 0.776  0.000
## 13      speed =~       sscs     1     1   13 .p13.  .p13. 0.686  0.001
## 14      speed =~       ssmk     1     1   14 .p14.  .p14. 0.298 -0.002
## 15       ssgs ~~       ssgs     1     1   15        .p15. 0.163  0.000
## 16       sswk ~~       sswk     1     1   16        .p16. 0.186  0.000
## 17       sspc ~~       sspc     1     1   17        .p17. 0.255  0.000
## 18       ssei ~~       ssei     1     1   18        .p18. 0.277  0.001
## 19       ssar ~~       ssar     1     1   19        .p19. 0.154  0.000
## 20       ssmk ~~       ssmk     1     1   20        .p20. 0.189  0.000
## 21       ssmc ~~       ssmc     1     1   21        .p21. 0.256  0.000
## 22       ssao ~~       ssao     1     1   22        .p22. 0.426  0.000
## 23       ssai ~~       ssai     1     1   23        .p23. 0.300 -0.003
## 24       sssi ~~       sssi     1     1   24        .p24. 0.298  0.002
## 25       ssno ~~       ssno     1     1   25        .p25. 0.374  0.000
## 26       sscs ~~       sscs     1     1   26        .p26. 0.442  0.000
## 27     verbal ~~     verbal     1     1    0        .p27. 1.000     NA
## 28       math ~~       math     1     1    0        .p28. 1.000     NA
## 29 electronic ~~ electronic     1     1    0        .p29. 1.000     NA
## 30      speed ~~      speed     1     1    0        .p30. 1.000     NA
## 31     verbal ~~       math     1     1   27        .p31. 0.924  0.000
## 32     verbal ~~ electronic     1     1   28        .p32. 0.791 -0.001
## 33     verbal ~~      speed     1     1   29        .p33. 0.744  0.000
## 34       math ~~ electronic     1     1   30        .p34. 0.762 -0.001
## 35       math ~~      speed     1     1   31        .p35. 0.765  0.000
## 36 electronic ~~      speed     1     1   32        .p36. 0.487 -0.001
## 37       ssgs ~1                1     1   33 .p37.  .p37. 0.413 -0.036
## 38       sswk ~1                1     1   34 .p38.  .p38. 0.340  0.042
## 39       sspc ~1                1     1   35        .p39. 0.445  0.000
## 40       ssei ~1                1     1   36 .p40.  .p40. 0.192 -0.004
## 41       ssar ~1                1     1   37 .p41.  .p41. 0.398 -0.013
## 42       ssmk ~1                1     1   38 .p42.  .p42. 0.447  0.001
## 43       ssmc ~1                1     1   39        .p43. 0.263  0.000
## 44       ssao ~1                1     1   40 .p44.  .p44. 0.301  0.042
## 45       ssai ~1                1     1   41 .p45.  .p45. 0.056  0.014
## 46       sssi ~1                1     1   42 .p46.  .p46. 0.175 -0.011
## 47       ssno ~1                1     1   43        .p47. 0.285  0.000
## 48       sscs ~1                1     1   44 .p48.  .p48. 0.359 -0.001
## 49     verbal ~1                1     1    0        .p49. 0.000     NA
## 50       math ~1                1     1    0        .p50. 0.000     NA
## 51 electronic ~1                1     1    0        .p51. 0.000     NA
## 52      speed ~1                1     1    0        .p52. 0.000     NA
## 53     verbal =~       ssgs     2     2   45  .p1.  .p53. 0.820 -0.002
## 54     verbal =~       sswk     2     2   46  .p2.  .p54. 0.821  0.002
## 55     verbal =~       sspc     2     2   47  .p3.  .p55. 0.762  0.000
## 56     verbal =~       ssei     2     2   48  .p4.  .p56. 0.462  0.005
## 57       math =~       ssar     2     2   49  .p5.  .p57. 0.782  0.000
## 58       math =~       ssmk     2     2   50  .p6.  .p58. 0.579  0.002
## 59       math =~       ssmc     2     2   51  .p7.  .p59. 0.720  0.000
## 60       math =~       ssao     2     2   52  .p8.  .p60. 0.653 -0.001
## 61 electronic =~       ssai     2     2   53  .p9.  .p61. 0.533  0.008
## 62 electronic =~       sssi     2     2   54 .p10.  .p62. 0.525 -0.007
## 63 electronic =~       ssei     2     2   55 .p11.  .p63. 0.286 -0.006
## 64      speed =~       ssno     2     2   56 .p12.  .p64. 0.776  0.000
## 65      speed =~       sscs     2     2   57 .p13.  .p65. 0.686  0.001
## 66      speed =~       ssmk     2     2   58 .p14.  .p66. 0.298 -0.002
## 67       ssgs ~~       ssgs     2     2   59        .p67. 0.189  0.001
## 68       sswk ~~       sswk     2     2   60        .p68. 0.232  0.000
## 69       sspc ~~       sspc     2     2   61        .p69. 0.265  0.000
## 70       ssei ~~       ssei     2     2   62        .p70. 0.345  0.001
## 71       ssar ~~       ssar     2     2   63        .p71. 0.214  0.000
##      epv sepc.lv sepc.all sepc.nox
## 1  0.818  -0.002   -0.002   -0.002
## 2  0.823   0.002    0.003    0.003
## 3  0.762   0.000    0.000    0.000
## 4  0.467   0.005    0.006    0.006
## 5  0.782   0.000    0.000    0.000
## 6  0.580   0.002    0.002    0.002
## 7  0.720   0.000    0.000    0.000
## 8  0.652  -0.001   -0.001   -0.001
## 9  0.541   0.008    0.010    0.010
## 10 0.519  -0.007   -0.009   -0.009
## 11 0.280  -0.006   -0.007   -0.007
## 12 0.776   0.000    0.000    0.000
## 13 0.686   0.001    0.001    0.001
## 14 0.296  -0.002   -0.002   -0.002
## 15 0.164   0.163    0.195    0.195
## 16 0.185  -0.186   -0.216   -0.216
## 17 0.255   0.255    0.305    0.305
## 18 0.278   0.277    0.354    0.354
## 19 0.154   0.154    0.201    0.201
## 20 0.189   0.189    0.216    0.216
## 21 0.257   0.256    0.331    0.331
## 22 0.426   0.426    0.500    0.500
## 23 0.296  -0.300   -0.513   -0.513
## 24 0.300   0.298    0.519    0.519
## 25 0.373  -0.374   -0.383   -0.383
## 26 0.442  -0.442   -0.485   -0.485
## 27    NA      NA       NA       NA
## 28    NA      NA       NA       NA
## 29    NA      NA       NA       NA
## 30    NA      NA       NA       NA
## 31 0.924   0.000    0.000    0.000
## 32 0.790  -0.001   -0.001   -0.001
## 33 0.744   0.000    0.000    0.000
## 34 0.761  -0.001   -0.001   -0.001
## 35 0.765   0.000    0.000    0.000
## 36 0.486  -0.001   -0.001   -0.001
## 37 0.378  -0.036   -0.039   -0.039
## 38 0.382   0.042    0.045    0.045
## 39 0.445   0.000    0.000    0.000
## 40 0.188  -0.004   -0.005   -0.005
## 41 0.384  -0.013   -0.015   -0.015
## 42 0.448   0.001    0.001    0.001
## 43 0.263   0.000    0.000    0.000
## 44 0.343   0.042    0.045    0.045
## 45 0.069   0.014    0.018    0.018
## 46 0.163  -0.011   -0.015   -0.015
## 47 0.285   0.000    0.000    0.000
## 48 0.358  -0.001   -0.001   -0.001
## 49    NA      NA       NA       NA
## 50    NA      NA       NA       NA
## 51    NA      NA       NA       NA
## 52    NA      NA       NA       NA
## 53 0.818  -0.002   -0.002   -0.002
## 54 0.823   0.003    0.003    0.003
## 55 0.762   0.000    0.000    0.000
## 56 0.467   0.006    0.005    0.005
## 57 0.782   0.000    0.000    0.000
## 58 0.580   0.002    0.002    0.002
## 59 0.720   0.000    0.000    0.000
## 60 0.652  -0.001   -0.001   -0.001
## 61 0.541   0.014    0.012    0.012
## 62 0.519  -0.011   -0.011   -0.011
## 63 0.280  -0.010   -0.009   -0.009
## 64 0.776   0.000    0.000    0.000
## 65 0.686   0.001    0.001    0.001
## 66 0.296  -0.002   -0.002   -0.002
## 67 0.190   0.189    0.191    0.191
## 68 0.232  -0.232   -0.225   -0.225
## 69 0.265   0.265    0.277    0.277
## 70 0.346   0.345    0.293    0.293
## 71 0.214   0.214    0.230    0.230
##  [ reached 'max' / getOption("max.print") -- omitted 33 rows ]
strict<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("ssmc~1", "sspc~1", "ssno~1")) 
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   398.883   119.000     0.000     0.953     0.084     0.049 16417.074 
##       bic 
## 16692.018
Mc(strict) 
## [1] 0.811249
cf.cov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("ssmc~1", "sspc~1", "ssno~1")) 
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   384.354   113.000     0.000     0.955     0.085     0.084 16414.545 
##       bic 
## 16716.532
Mc(cf.cov)
## [1] 0.8164369
summary(cf.cov, standardized=T, ci=T)
## lavaan 0.6-18 ended normally after 65 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    29
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               384.354     342.964
##   Degrees of freedom                               113         113
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.121
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          153.607     137.065
##     0                                          230.747     205.898
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.852    0.032   27.020    0.000    0.790
##     sswk    (.p2.)    0.853    0.034   25.241    0.000    0.787
##     sspc    (.p3.)    0.794    0.029   27.497    0.000    0.737
##     ssei    (.p4.)    0.482    0.044   10.848    0.000    0.395
##   math =~                                                      
##     ssar    (.p5.)    0.818    0.033   25.103    0.000    0.754
##     ssmk    (.p6.)    0.608    0.053   11.418    0.000    0.504
##     ssmc    (.p7.)    0.751    0.035   21.720    0.000    0.683
##     ssao    (.p8.)    0.683    0.032   21.422    0.000    0.621
##   electronic =~                                                
##     ssai    (.p9.)    0.587    0.037   15.902    0.000    0.514
##     sssi    (.10.)    0.589    0.039   15.006    0.000    0.512
##     ssei    (.11.)    0.316    0.037    8.657    0.000    0.245
##   speed =~                                                     
##     ssno    (.12.)    0.796    0.047   17.053    0.000    0.704
##     sscs    (.13.)    0.703    0.041   17.046    0.000    0.623
##     ssmk    (.14.)    0.303    0.050    6.094    0.000    0.205
##  ci.upper   Std.lv  Std.all
##                            
##     0.914    0.852    0.904
##     0.920    0.853    0.893
##     0.851    0.794    0.843
##     0.569    0.482    0.519
##                            
##     0.882    0.818    0.901
##     0.713    0.608    0.629
##     0.819    0.751    0.829
##     0.746    0.683    0.723
##                            
##     0.659    0.587    0.728
##     0.666    0.589    0.737
##     0.388    0.316    0.341
##                            
##     0.887    0.796    0.793
##     0.784    0.703    0.725
##     0.400    0.303    0.313
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.31.)    0.927    0.017   55.872    0.000    0.895
##     elctrnc (.32.)    0.827    0.037   22.550    0.000    0.755
##     speed   (.33.)    0.742    0.044   16.804    0.000    0.655
##   math ~~                                                      
##     elctrnc (.34.)    0.795    0.040   20.088    0.000    0.717
##     speed   (.35.)    0.778    0.045   17.313    0.000    0.690
##   electronic ~~                                                
##     speed   (.36.)    0.480    0.071    6.738    0.000    0.341
##  ci.upper   Std.lv  Std.all
##                            
##     0.960    0.927    0.927
##     0.899    0.827    0.827
##     0.829    0.742    0.742
##                            
##     0.872    0.795    0.795
##     0.866    0.778    0.778
##                            
##     0.620    0.480    0.480
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.413    0.050    8.303    0.000    0.316
##    .sswk    (.38.)    0.340    0.051    6.671    0.000    0.240
##    .sspc              0.445    0.051    8.701    0.000    0.345
##    .ssei    (.40.)    0.193    0.046    4.163    0.000    0.102
##    .ssar    (.41.)    0.398    0.049    8.135    0.000    0.302
##    .ssmk    (.42.)    0.446    0.052    8.559    0.000    0.344
##    .ssmc              0.263    0.048    5.461    0.000    0.169
##    .ssao    (.44.)    0.301    0.048    6.307    0.000    0.207
##    .ssai    (.45.)    0.058    0.041    1.413    0.158   -0.022
##    .sssi    (.46.)    0.172    0.041    4.151    0.000    0.091
##    .ssno              0.285    0.056    5.122    0.000    0.176
##    .sscs    (.48.)    0.360    0.051    6.995    0.000    0.259
##  ci.upper   Std.lv  Std.all
##     0.511    0.413    0.438
##     0.440    0.340    0.356
##     0.545    0.445    0.472
##     0.284    0.193    0.208
##     0.494    0.398    0.439
##     0.549    0.446    0.461
##     0.358    0.263    0.291
##     0.394    0.301    0.319
##     0.138    0.058    0.072
##     0.253    0.172    0.215
##     0.395    0.285    0.284
##     0.461    0.360    0.371
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.163    0.019    8.436    0.000    0.125
##    .sswk              0.185    0.020    9.374    0.000    0.147
##    .sspc              0.256    0.031    8.142    0.000    0.195
##    .ssei              0.277    0.030    9.392    0.000    0.220
##    .ssar              0.155    0.018    8.405    0.000    0.119
##    .ssmk              0.188    0.021    8.882    0.000    0.146
##    .ssmc              0.257    0.026    9.752    0.000    0.206
##    .ssao              0.425    0.035   12.027    0.000    0.356
##    .ssai              0.305    0.035    8.795    0.000    0.237
##    .sssi              0.291    0.034    8.508    0.000    0.224
##    .ssno              0.374    0.050    7.514    0.000    0.276
##    .sscs              0.446    0.056    7.992    0.000    0.336
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.201    0.163    0.183
##     0.224    0.185    0.203
##     0.318    0.256    0.289
##     0.335    0.277    0.322
##     0.191    0.155    0.188
##     0.229    0.188    0.200
##     0.309    0.257    0.313
##     0.495    0.425    0.477
##     0.373    0.305    0.470
##     0.358    0.291    0.456
##     0.472    0.374    0.371
##     0.555    0.446    0.474
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.852    0.032   27.020    0.000    0.790
##     sswk    (.p2.)    0.853    0.034   25.241    0.000    0.787
##     sspc    (.p3.)    0.794    0.029   27.497    0.000    0.737
##     ssei    (.p4.)    0.482    0.044   10.848    0.000    0.395
##   math =~                                                      
##     ssar    (.p5.)    0.818    0.033   25.103    0.000    0.754
##     ssmk    (.p6.)    0.608    0.053   11.418    0.000    0.504
##     ssmc    (.p7.)    0.751    0.035   21.720    0.000    0.683
##     ssao    (.p8.)    0.683    0.032   21.422    0.000    0.621
##   electronic =~                                                
##     ssai    (.p9.)    0.587    0.037   15.902    0.000    0.514
##     sssi    (.10.)    0.589    0.039   15.006    0.000    0.512
##     ssei    (.11.)    0.316    0.037    8.657    0.000    0.245
##   speed =~                                                     
##     ssno    (.12.)    0.796    0.047   17.053    0.000    0.704
##     sscs    (.13.)    0.703    0.041   17.046    0.000    0.623
##     ssmk    (.14.)    0.303    0.050    6.094    0.000    0.205
##  ci.upper   Std.lv  Std.all
##                            
##     0.914    0.862    0.891
##     0.920    0.863    0.872
##     0.851    0.803    0.845
##     0.569    0.488    0.479
##                            
##     0.882    0.812    0.870
##     0.713    0.604    0.640
##     0.819    0.746    0.791
##     0.746    0.678    0.681
##                            
##     0.659    0.824    0.767
##     0.666    0.827    0.842
##     0.388    0.445    0.436
##                            
##     0.887    0.830    0.784
##     0.784    0.734    0.739
##     0.400    0.316    0.335
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.31.)    0.927    0.017   55.872    0.000    0.895
##     elctrnc (.32.)    0.827    0.037   22.550    0.000    0.755
##     speed   (.33.)    0.742    0.044   16.804    0.000    0.655
##   math ~~                                                      
##     elctrnc (.34.)    0.795    0.040   20.088    0.000    0.717
##     speed   (.35.)    0.778    0.045   17.313    0.000    0.690
##   electronic ~~                                                
##     speed   (.36.)    0.480    0.071    6.738    0.000    0.341
##  ci.upper   Std.lv  Std.all
##                            
##     0.960    0.923    0.923
##     0.899    0.582    0.582
##     0.829    0.703    0.703
##                            
##     0.872    0.570    0.570
##     0.866    0.751    0.751
##                            
##     0.620    0.328    0.328
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.413    0.050    8.303    0.000    0.316
##    .sswk    (.38.)    0.340    0.051    6.671    0.000    0.240
##    .sspc              0.063    0.058    1.086    0.277   -0.051
##    .ssei    (.40.)    0.193    0.046    4.163    0.000    0.102
##    .ssar    (.41.)    0.398    0.049    8.135    0.000    0.302
##    .ssmk    (.42.)    0.446    0.052    8.559    0.000    0.344
##    .ssmc              0.602    0.059   10.141    0.000    0.486
##    .ssao    (.44.)    0.301    0.048    6.307    0.000    0.207
##    .ssai    (.45.)    0.058    0.041    1.413    0.158   -0.022
##    .sssi    (.46.)    0.172    0.041    4.151    0.000    0.091
##    .ssno              0.560    0.078    7.157    0.000    0.407
##    .sscs    (.48.)    0.360    0.051    6.995    0.000    0.259
##     verbal            0.100    0.086    1.165    0.244   -0.069
##     math             -0.032    0.087   -0.364    0.716   -0.203
##     elctrnc           1.100    0.138    7.956    0.000    0.829
##     speed            -0.551    0.106   -5.205    0.000   -0.759
##  ci.upper   Std.lv  Std.all
##     0.511    0.413    0.427
##     0.440    0.340    0.344
##     0.176    0.063    0.066
##     0.284    0.193    0.189
##     0.494    0.398    0.427
##     0.549    0.446    0.473
##     0.718    0.602    0.638
##     0.394    0.301    0.302
##     0.138    0.058    0.054
##     0.253    0.172    0.175
##     0.714    0.560    0.529
##     0.461    0.360    0.362
##     0.269    0.099    0.099
##     0.139   -0.032   -0.032
##     1.370    0.783    0.783
##    -0.344   -0.529   -0.529
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.192    0.022    8.706    0.000    0.149
##    .sswk              0.235    0.023   10.431    0.000    0.191
##    .sspc              0.258    0.029    8.806    0.000    0.200
##    .ssei              0.350    0.036    9.656    0.000    0.279
##    .ssar              0.211    0.027    7.959    0.000    0.159
##    .ssmk              0.139    0.016    8.630    0.000    0.108
##    .ssmc              0.332    0.032   10.373    0.000    0.270
##    .ssao              0.532    0.052   10.312    0.000    0.431
##    .ssai              0.476    0.060    7.883    0.000    0.358
##    .sssi              0.280    0.049    5.730    0.000    0.184
##    .ssno              0.432    0.055    7.853    0.000    0.324
##    .sscs              0.448    0.071    6.298    0.000    0.308
##     verbal            1.024    0.039   25.915    0.000    0.946
##     math              0.986    0.040   24.926    0.000    0.909
##     electronic        1.974    0.239    8.270    0.000    1.506
##     speed             1.088    0.129    8.411    0.000    0.834
##  ci.upper   Std.lv  Std.all
##     0.236    0.192    0.206
##     0.279    0.235    0.240
##     0.315    0.258    0.285
##     0.421    0.350    0.337
##     0.263    0.211    0.242
##     0.171    0.139    0.156
##     0.395    0.332    0.374
##     0.633    0.532    0.536
##     0.595    0.476    0.412
##     0.376    0.280    0.290
##     0.540    0.432    0.385
##     0.587    0.448    0.454
##     1.101    1.000    1.000
##     1.064    1.000    1.000
##     2.442    1.000    1.000
##     1.341    1.000    1.000
cf.vcov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("ssmc~1", "sspc~1", "ssno~1")) 
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   433.382   117.000     0.000     0.947     0.090     0.106 16455.573 
##       bic 
## 16739.531
Mc(cf.vcov)
## [1] 0.7894185
summary(cf.vcov, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 51 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        92
##   Number of equality constraints                    29
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               433.382     385.769
##   Degrees of freedom                               117         117
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.123
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          183.784     163.593
##     0                                          249.597     222.175
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.857    0.031   28.034    0.000    0.797
##     sswk    (.p2.)    0.859    0.032   26.527    0.000    0.795
##     sspc    (.p3.)    0.795    0.028   28.299    0.000    0.740
##     ssei    (.p4.)    0.495    0.044   11.261    0.000    0.409
##   math =~                                                      
##     ssar    (.p5.)    0.815    0.032   25.454    0.000    0.752
##     ssmk    (.p6.)    0.598    0.054   10.979    0.000    0.491
##     ssmc    (.p7.)    0.752    0.034   22.084    0.000    0.685
##     ssao    (.p8.)    0.680    0.030   22.466    0.000    0.621
##   electronic =~                                                
##     ssai    (.p9.)    0.707    0.038   18.805    0.000    0.633
##     sssi    (.10.)    0.729    0.035   20.556    0.000    0.660
##     ssei    (.11.)    0.376    0.043    8.766    0.000    0.292
##   speed =~                                                     
##     ssno    (.12.)    0.811    0.044   18.551    0.000    0.725
##     sscs    (.13.)    0.717    0.037   19.186    0.000    0.643
##     ssmk    (.14.)    0.318    0.052    6.102    0.000    0.216
##  ci.upper   Std.lv  Std.all
##                            
##     0.917    0.857    0.906
##     0.922    0.859    0.895
##     0.851    0.795    0.844
##     0.581    0.495    0.512
##                            
##     0.878    0.815    0.902
##     0.705    0.598    0.618
##     0.819    0.752    0.828
##     0.740    0.680    0.722
##                            
##     0.781    0.707    0.798
##     0.799    0.729    0.825
##     0.460    0.376    0.388
##                            
##     0.896    0.811    0.801
##     0.790    0.717    0.733
##     0.421    0.318    0.329
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.31.)    0.925    0.012   75.930    0.000    0.901
##     elctrnc (.32.)    0.719    0.032   22.297    0.000    0.656
##     speed   (.33.)    0.723    0.037   19.687    0.000    0.651
##   math ~~                                                      
##     elctrnc (.34.)    0.694    0.036   19.230    0.000    0.624
##     speed   (.35.)    0.765    0.037   20.572    0.000    0.692
##   electronic ~~                                                
##     speed   (.36.)    0.384    0.057    6.727    0.000    0.272
##  ci.upper   Std.lv  Std.all
##                            
##     0.948    0.925    0.925
##     0.782    0.719    0.719
##     0.795    0.723    0.723
##                            
##     0.765    0.694    0.694
##     0.837    0.765    0.765
##                            
##     0.495    0.384    0.384
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.412    0.050    8.272    0.000    0.315
##    .sswk    (.38.)    0.340    0.051    6.650    0.000    0.240
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei    (.40.)    0.196    0.046    4.253    0.000    0.106
##    .ssar    (.41.)    0.397    0.049    8.119    0.000    0.301
##    .ssmk    (.42.)    0.448    0.052    8.583    0.000    0.346
##    .ssmc              0.263    0.048    5.461    0.000    0.169
##    .ssao    (.44.)    0.300    0.048    6.293    0.000    0.207
##    .ssai    (.45.)    0.062    0.041    1.507    0.132   -0.019
##    .sssi    (.46.)    0.166    0.041    4.010    0.000    0.085
##    .ssno              0.285    0.056    5.122    0.000    0.176
##    .sscs    (.48.)    0.358    0.051    6.963    0.000    0.257
##  ci.upper   Std.lv  Std.all
##     0.510    0.412    0.436
##     0.440    0.340    0.354
##     0.545    0.445    0.472
##     0.287    0.196    0.203
##     0.493    0.397    0.440
##     0.550    0.448    0.463
##     0.358    0.263    0.290
##     0.394    0.300    0.319
##     0.142    0.062    0.070
##     0.247    0.166    0.188
##     0.395    0.285    0.282
##     0.459    0.358    0.366
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.161    0.019    8.360    0.000    0.123
##    .sswk              0.183    0.020    9.389    0.000    0.145
##    .sspc              0.256    0.031    8.194    0.000    0.195
##    .ssei              0.282    0.029    9.583    0.000    0.224
##    .ssar              0.152    0.018    8.506    0.000    0.117
##    .ssmk              0.187    0.021    8.697    0.000    0.145
##    .ssmc              0.258    0.027    9.717    0.000    0.206
##    .ssao              0.426    0.035   12.007    0.000    0.356
##    .ssai              0.286    0.035    8.146    0.000    0.217
##    .sssi              0.250    0.035    7.190    0.000    0.182
##    .ssno              0.366    0.051    7.247    0.000    0.267
##    .sscs              0.443    0.056    7.972    0.000    0.334
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.198    0.161    0.179
##     0.221    0.183    0.199
##     0.317    0.256    0.288
##     0.340    0.282    0.302
##     0.187    0.152    0.186
##     0.229    0.187    0.199
##     0.311    0.258    0.314
##     0.495    0.426    0.479
##     0.355    0.286    0.364
##     0.318    0.250    0.320
##     0.466    0.366    0.358
##     0.552    0.443    0.463
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.857    0.031   28.034    0.000    0.797
##     sswk    (.p2.)    0.859    0.032   26.527    0.000    0.795
##     sspc    (.p3.)    0.795    0.028   28.299    0.000    0.740
##     ssei    (.p4.)    0.495    0.044   11.261    0.000    0.409
##   math =~                                                      
##     ssar    (.p5.)    0.815    0.032   25.454    0.000    0.752
##     ssmk    (.p6.)    0.598    0.054   10.979    0.000    0.491
##     ssmc    (.p7.)    0.752    0.034   22.084    0.000    0.685
##     ssao    (.p8.)    0.680    0.030   22.466    0.000    0.621
##   electronic =~                                                
##     ssai    (.p9.)    0.707    0.038   18.805    0.000    0.633
##     sssi    (.10.)    0.729    0.035   20.556    0.000    0.660
##     ssei    (.11.)    0.376    0.043    8.766    0.000    0.292
##   speed =~                                                     
##     ssno    (.12.)    0.811    0.044   18.551    0.000    0.725
##     sscs    (.13.)    0.717    0.037   19.186    0.000    0.643
##     ssmk    (.14.)    0.318    0.052    6.102    0.000    0.216
##  ci.upper   Std.lv  Std.all
##                            
##     0.917    0.857    0.891
##     0.922    0.859    0.871
##     0.851    0.795    0.838
##     0.581    0.495    0.492
##                            
##     0.878    0.815    0.868
##     0.705    0.598    0.634
##     0.819    0.752    0.798
##     0.740    0.680    0.682
##                            
##     0.781    0.707    0.697
##     0.799    0.729    0.785
##     0.460    0.376    0.374
##                            
##     0.896    0.811    0.772
##     0.790    0.717    0.727
##     0.421    0.318    0.338
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.31.)    0.925    0.012   75.930    0.000    0.901
##     elctrnc (.32.)    0.719    0.032   22.297    0.000    0.656
##     speed   (.33.)    0.723    0.037   19.687    0.000    0.651
##   math ~~                                                      
##     elctrnc (.34.)    0.694    0.036   19.230    0.000    0.624
##     speed   (.35.)    0.765    0.037   20.572    0.000    0.692
##   electronic ~~                                                
##     speed   (.36.)    0.384    0.057    6.727    0.000    0.272
##  ci.upper   Std.lv  Std.all
##                            
##     0.948    0.925    0.925
##     0.782    0.719    0.719
##     0.795    0.723    0.723
##                            
##     0.765    0.694    0.694
##     0.837    0.765    0.765
##                            
##     0.495    0.384    0.384
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.412    0.050    8.272    0.000    0.315
##    .sswk    (.38.)    0.340    0.051    6.650    0.000    0.240
##    .sspc              0.062    0.058    1.070    0.284   -0.051
##    .ssei    (.40.)    0.196    0.046    4.253    0.000    0.106
##    .ssar    (.41.)    0.397    0.049    8.119    0.000    0.301
##    .ssmk    (.42.)    0.448    0.052    8.583    0.000    0.346
##    .ssmc              0.601    0.060   10.084    0.000    0.484
##    .ssao    (.44.)    0.300    0.048    6.293    0.000    0.207
##    .ssai    (.45.)    0.062    0.041    1.507    0.132   -0.019
##    .sssi    (.46.)    0.166    0.041    4.010    0.000    0.085
##    .ssno              0.557    0.078    7.127    0.000    0.404
##    .sscs    (.48.)    0.358    0.051    6.963    0.000    0.257
##     verbal            0.101    0.086    1.180    0.238   -0.067
##     math             -0.030    0.088   -0.342    0.733   -0.202
##     elctrnc           0.901    0.101    8.897    0.000    0.703
##     speed            -0.537    0.104   -5.161    0.000   -0.741
##  ci.upper   Std.lv  Std.all
##     0.510    0.412    0.428
##     0.440    0.340    0.345
##     0.175    0.062    0.065
##     0.287    0.196    0.195
##     0.493    0.397    0.423
##     0.550    0.448    0.475
##     0.717    0.601    0.637
##     0.394    0.300    0.301
##     0.142    0.062    0.061
##     0.247    0.166    0.179
##     0.710    0.557    0.530
##     0.459    0.358    0.364
##     0.270    0.101    0.101
##     0.142   -0.030   -0.030
##     1.100    0.901    0.901
##    -0.333   -0.537   -0.537
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.192    0.021    9.002    0.000    0.150
##    .sswk              0.234    0.022   10.527    0.000    0.191
##    .sspc              0.268    0.030    8.941    0.000    0.209
##    .ssei              0.357    0.037    9.582    0.000    0.284
##    .ssar              0.217    0.027    8.119    0.000    0.165
##    .ssmk              0.139    0.016    8.508    0.000    0.107
##    .ssmc              0.323    0.031   10.272    0.000    0.261
##    .ssao              0.534    0.052   10.330    0.000    0.432
##    .ssai              0.529    0.062    8.498    0.000    0.407
##    .sssi              0.330    0.051    6.504    0.000    0.231
##    .ssno              0.445    0.057    7.784    0.000    0.333
##    .sscs              0.457    0.072    6.348    0.000    0.316
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.233    0.192    0.207
##     0.278    0.234    0.241
##     0.327    0.268    0.297
##     0.430    0.357    0.353
##     0.270    0.217    0.246
##     0.172    0.139    0.157
##     0.384    0.323    0.363
##     0.635    0.534    0.535
##     0.652    0.529    0.514
##     0.430    0.330    0.383
##     0.557    0.445    0.404
##     0.598    0.457    0.471
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
cf.cov2<-cfa(cf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("ssmc~1", "sspc~1", "ssno~1")) 
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   384.732   115.000     0.000     0.955     0.084     0.084 16410.923 
##       bic 
## 16703.896
Mc(cf.cov2)
## [1] 0.817427
summary(cf.cov2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 58 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        94
##   Number of equality constraints                    29
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               384.732     343.639
##   Degrees of freedom                               115         115
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.120
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          153.845     137.413
##     0                                          230.887     206.226
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.856    0.031   27.912    0.000    0.796
##     sswk    (.p2.)    0.858    0.032   26.546    0.000    0.795
##     sspc    (.p3.)    0.798    0.028   28.571    0.000    0.743
##     ssei    (.p4.)    0.484    0.045   10.806    0.000    0.396
##   math =~                                                      
##     ssar    (.p5.)    0.816    0.032   25.488    0.000    0.753
##     ssmk    (.p6.)    0.606    0.053   11.545    0.000    0.503
##     ssmc    (.p7.)    0.749    0.034   22.129    0.000    0.682
##     ssao    (.p8.)    0.681    0.030   22.532    0.000    0.622
##   electronic =~                                                
##     ssai    (.p9.)    0.587    0.037   15.938    0.000    0.515
##     sssi    (.10.)    0.589    0.039   15.051    0.000    0.512
##     ssei    (.11.)    0.317    0.037    8.666    0.000    0.245
##   speed =~                                                     
##     ssno    (.12.)    0.795    0.047   17.061    0.000    0.704
##     sscs    (.13.)    0.703    0.041   17.049    0.000    0.622
##     ssmk    (.14.)    0.303    0.049    6.142    0.000    0.206
##  ci.upper   Std.lv  Std.all
##                            
##     0.916    0.856    0.905
##     0.921    0.858    0.895
##     0.853    0.798    0.844
##     0.572    0.484    0.520
##                            
##     0.878    0.816    0.901
##     0.709    0.606    0.628
##     0.815    0.749    0.828
##     0.740    0.681    0.722
##                            
##     0.659    0.587    0.728
##     0.665    0.589    0.737
##     0.388    0.317    0.340
##                            
##     0.886    0.795    0.792
##     0.784    0.703    0.725
##     0.399    0.303    0.313
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.31.)    0.925    0.012   76.140    0.000    0.901
##     elctrnc (.32.)    0.826    0.037   22.516    0.000    0.754
##     speed   (.33.)    0.738    0.044   16.731    0.000    0.652
##   math ~~                                                      
##     elctrnc (.34.)    0.796    0.039   20.439    0.000    0.719
##     speed   (.35.)    0.780    0.044   17.674    0.000    0.693
##   electronic ~~                                                
##     speed   (.36.)    0.481    0.071    6.756    0.000    0.341
##  ci.upper   Std.lv  Std.all
##                            
##     0.949    0.925    0.925
##     0.898    0.826    0.826
##     0.825    0.738    0.738
##                            
##     0.872    0.796    0.796
##     0.866    0.780    0.780
##                            
##     0.621    0.481    0.481
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.413    0.050    8.301    0.000    0.315
##    .sswk    (.38.)    0.341    0.051    6.674    0.000    0.241
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei    (.40.)    0.193    0.046    4.163    0.000    0.102
##    .ssar    (.41.)    0.398    0.049    8.140    0.000    0.302
##    .ssmk    (.42.)    0.446    0.052    8.557    0.000    0.344
##    .ssmc              0.263    0.048    5.461    0.000    0.169
##    .ssao    (.44.)    0.301    0.048    6.303    0.000    0.207
##    .ssai    (.45.)    0.058    0.041    1.411    0.158   -0.022
##    .sssi    (.46.)    0.172    0.041    4.154    0.000    0.091
##    .ssno              0.285    0.056    5.122    0.000    0.176
##    .sscs    (.48.)    0.360    0.051    6.995    0.000    0.259
##  ci.upper   Std.lv  Std.all
##     0.510    0.413    0.436
##     0.441    0.341    0.355
##     0.545    0.445    0.471
##     0.284    0.193    0.207
##     0.494    0.398    0.440
##     0.549    0.446    0.462
##     0.358    0.263    0.291
##     0.394    0.301    0.319
##     0.138    0.058    0.072
##     0.253    0.172    0.215
##     0.395    0.285    0.285
##     0.461    0.360    0.371
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.162    0.019    8.494    0.000    0.125
##    .sswk              0.184    0.019    9.458    0.000    0.146
##    .sspc              0.257    0.031    8.154    0.000    0.195
##    .ssei              0.278    0.030    9.402    0.000    0.220
##    .ssar              0.155    0.018    8.521    0.000    0.119
##    .ssmk              0.188    0.021    8.857    0.000    0.146
##    .ssmc              0.258    0.026    9.763    0.000    0.206
##    .ssao              0.425    0.035   12.042    0.000    0.356
##    .ssai              0.305    0.035    8.790    0.000    0.237
##    .sssi              0.291    0.034    8.504    0.000    0.224
##    .ssno              0.375    0.050    7.520    0.000    0.277
##    .sscs              0.446    0.056    7.985    0.000    0.337
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.199    0.162    0.181
##     0.222    0.184    0.200
##     0.319    0.257    0.287
##     0.335    0.278    0.321
##     0.190    0.155    0.189
##     0.229    0.188    0.201
##     0.309    0.258    0.315
##     0.494    0.425    0.478
##     0.373    0.305    0.469
##     0.358    0.291    0.456
##     0.472    0.375    0.372
##     0.555    0.446    0.474
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.856    0.031   27.912    0.000    0.796
##     sswk    (.p2.)    0.858    0.032   26.546    0.000    0.795
##     sspc    (.p3.)    0.798    0.028   28.571    0.000    0.743
##     ssei    (.p4.)    0.484    0.045   10.806    0.000    0.396
##   math =~                                                      
##     ssar    (.p5.)    0.816    0.032   25.488    0.000    0.753
##     ssmk    (.p6.)    0.606    0.053   11.545    0.000    0.503
##     ssmc    (.p7.)    0.749    0.034   22.129    0.000    0.682
##     ssao    (.p8.)    0.681    0.030   22.532    0.000    0.622
##   electronic =~                                                
##     ssai    (.p9.)    0.587    0.037   15.938    0.000    0.515
##     sssi    (.10.)    0.589    0.039   15.051    0.000    0.512
##     ssei    (.11.)    0.317    0.037    8.666    0.000    0.245
##   speed =~                                                     
##     ssno    (.12.)    0.795    0.047   17.061    0.000    0.704
##     sscs    (.13.)    0.703    0.041   17.049    0.000    0.622
##     ssmk    (.14.)    0.303    0.049    6.142    0.000    0.206
##  ci.upper   Std.lv  Std.all
##                            
##     0.916    0.856    0.889
##     0.921    0.858    0.870
##     0.853    0.798    0.844
##     0.572    0.484    0.476
##                            
##     0.878    0.816    0.872
##     0.709    0.606    0.641
##     0.815    0.749    0.792
##     0.740    0.681    0.683
##                            
##     0.659    0.825    0.767
##     0.665    0.827    0.842
##     0.388    0.445    0.437
##                            
##     0.886    0.830    0.784
##     0.784    0.735    0.740
##     0.399    0.316    0.335
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.31.)    0.925    0.012   76.140    0.000    0.901
##     elctrnc (.32.)    0.826    0.037   22.516    0.000    0.754
##     speed   (.33.)    0.738    0.044   16.731    0.000    0.652
##   math ~~                                                      
##     elctrnc (.34.)    0.796    0.039   20.439    0.000    0.719
##     speed   (.35.)    0.780    0.044   17.674    0.000    0.693
##   electronic ~~                                                
##     speed   (.36.)    0.481    0.071    6.756    0.000    0.341
##  ci.upper   Std.lv  Std.all
##                            
##     0.949    0.925    0.925
##     0.898    0.588    0.588
##     0.825    0.707    0.707
##                            
##     0.872    0.566    0.566
##     0.866    0.747    0.747
##                            
##     0.621    0.328    0.328
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.413    0.050    8.301    0.000    0.315
##    .sswk    (.38.)    0.341    0.051    6.674    0.000    0.241
##    .sspc              0.063    0.058    1.088    0.276   -0.050
##    .ssei    (.40.)    0.193    0.046    4.163    0.000    0.102
##    .ssar    (.41.)    0.398    0.049    8.140    0.000    0.302
##    .ssmk    (.42.)    0.446    0.052    8.557    0.000    0.344
##    .ssmc              0.602    0.059   10.144    0.000    0.486
##    .ssao    (.44.)    0.301    0.048    6.303    0.000    0.207
##    .ssai    (.45.)    0.058    0.041    1.411    0.158   -0.022
##    .sssi    (.46.)    0.172    0.041    4.154    0.000    0.091
##    .ssno              0.560    0.078    7.159    0.000    0.407
##    .sscs    (.48.)    0.360    0.051    6.995    0.000    0.259
##     verbal            0.100    0.086    1.163    0.245   -0.068
##     math             -0.032    0.088   -0.364    0.716   -0.203
##     elctrnc           1.099    0.138    7.963    0.000    0.829
##     speed            -0.552    0.106   -5.204    0.000   -0.759
##  ci.upper   Std.lv  Std.all
##     0.510    0.413    0.429
##     0.441    0.341    0.345
##     0.176    0.063    0.067
##     0.284    0.193    0.189
##     0.494    0.398    0.426
##     0.549    0.446    0.472
##     0.718    0.602    0.637
##     0.394    0.301    0.301
##     0.138    0.058    0.054
##     0.253    0.172    0.175
##     0.713    0.560    0.529
##     0.461    0.360    0.362
##     0.268    0.100    0.100
##     0.140   -0.032   -0.032
##     1.370    0.782    0.782
##    -0.344   -0.528   -0.528
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.194    0.022    8.940    0.000    0.152
##    .sswk              0.236    0.023   10.448    0.000    0.192
##    .sspc              0.258    0.029    8.867    0.000    0.201
##    .ssei              0.350    0.036    9.641    0.000    0.279
##    .ssar              0.210    0.026    7.999    0.000    0.159
##    .ssmk              0.139    0.016    8.672    0.000    0.108
##    .ssmc              0.333    0.032   10.363    0.000    0.270
##    .ssao              0.532    0.052   10.322    0.000    0.431
##    .ssai              0.475    0.060    7.903    0.000    0.358
##    .sssi              0.281    0.049    5.779    0.000    0.186
##    .ssno              0.431    0.055    7.858    0.000    0.324
##    .sscs              0.446    0.071    6.279    0.000    0.307
##     electronic        1.975    0.238    8.308    0.000    1.509
##     speed             1.091    0.129    8.458    0.000    0.838
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.237    0.194    0.209
##     0.281    0.236    0.243
##     0.315    0.258    0.288
##     0.422    0.350    0.338
##     0.262    0.210    0.240
##     0.171    0.139    0.156
##     0.395    0.333    0.372
##     0.633    0.532    0.534
##     0.593    0.475    0.411
##     0.377    0.281    0.291
##     0.539    0.431    0.385
##     0.586    0.446    0.453
##     2.441    1.000    1.000
##     1.344    1.000    1.000
reduced<-cfa(cf.reduced, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("ssmc~1", "sspc~1", "ssno~1")) 
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   391.261   117.000     0.000     0.954     0.084     0.085 16413.452 
##       bic 
## 16697.411
Mc(reduced)
## [1] 0.8146647
summary(reduced, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 56 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        92
##   Number of equality constraints                    29
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               391.261     349.119
##   Degrees of freedom                               117         117
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.121
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          156.917     140.016
##     0                                          234.344     209.103
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.856    0.031   27.829    0.000    0.795
##     sswk    (.p2.)    0.861    0.032   26.977    0.000    0.798
##     sspc    (.p3.)    0.799    0.028   28.592    0.000    0.744
##     ssei    (.p4.)    0.477    0.044   10.769    0.000    0.390
##   math =~                                                      
##     ssar    (.p5.)    0.816    0.032   25.498    0.000    0.753
##     ssmk    (.p6.)    0.594    0.051   11.555    0.000    0.493
##     ssmc    (.p7.)    0.749    0.034   22.140    0.000    0.683
##     ssao    (.p8.)    0.680    0.030   22.425    0.000    0.621
##   electronic =~                                                
##     ssai    (.p9.)    0.586    0.037   15.945    0.000    0.514
##     sssi    (.10.)    0.588    0.039   15.059    0.000    0.511
##     ssei    (.11.)    0.324    0.036    8.948    0.000    0.253
##   speed =~                                                     
##     ssno    (.12.)    0.794    0.046   17.131    0.000    0.703
##     sscs    (.13.)    0.699    0.041   17.156    0.000    0.619
##     ssmk    (.14.)    0.317    0.047    6.687    0.000    0.224
##  ci.upper   Std.lv  Std.all
##                            
##     0.916    0.856    0.904
##     0.923    0.861    0.896
##     0.853    0.799    0.844
##     0.564    0.477    0.513
##                            
##     0.879    0.816    0.901
##     0.694    0.594    0.614
##     0.816    0.749    0.828
##     0.739    0.680    0.721
##                            
##     0.658    0.586    0.727
##     0.664    0.588    0.736
##     0.395    0.324    0.348
##                            
##     0.885    0.794    0.791
##     0.779    0.699    0.722
##     0.410    0.317    0.328
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.33.)    0.923    0.012   75.054    0.000    0.899
##     elctrnc (.34.)    0.827    0.037   22.569    0.000    0.755
##     speed   (.35.)    0.741    0.044   16.949    0.000    0.656
##   math ~~                                                      
##     elctrnc (.36.)    0.798    0.039   20.602    0.000    0.722
##     speed   (.37.)    0.781    0.044   17.682    0.000    0.694
##   electronic ~~                                                
##     speed   (.38.)    0.484    0.071    6.832    0.000    0.345
##  ci.upper   Std.lv  Std.all
##                            
##     0.947    0.923    0.923
##     0.899    0.827    0.827
##     0.827    0.741    0.741
##                            
##     0.874    0.798    0.798
##     0.867    0.781    0.781
##                            
##     0.623    0.484    0.484
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            0.000                               0.000
##     math              0.000                               0.000
##    .ssgs    (.39.)    0.453    0.038   11.951    0.000    0.379
##    .sswk    (.40.)    0.380    0.039    9.830    0.000    0.305
##    .sspc              0.468    0.043   10.835    0.000    0.384
##    .ssei    (.42.)    0.217    0.039    5.507    0.000    0.140
##    .ssar    (.43.)    0.389    0.037   10.612    0.000    0.317
##    .ssmk    (.44.)    0.447    0.042   10.715    0.000    0.365
##    .ssmc              0.269    0.041    6.528    0.000    0.188
##    .ssao    (.46.)    0.292    0.039    7.501    0.000    0.216
##    .ssai    (.47.)    0.068    0.038    1.782    0.075   -0.007
##    .sssi    (.48.)    0.182    0.038    4.728    0.000    0.107
##    .ssno              0.293    0.052    5.608    0.000    0.190
##    .sscs    (.50.)    0.374    0.048    7.754    0.000    0.280
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.527    0.453    0.478
##     0.456    0.380    0.396
##     0.553    0.468    0.495
##     0.295    0.217    0.234
##     0.460    0.389    0.429
##     0.529    0.447    0.462
##     0.350    0.269    0.298
##     0.368    0.292    0.310
##     0.143    0.068    0.085
##     0.257    0.182    0.228
##     0.395    0.293    0.292
##     0.469    0.374    0.386
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.164    0.019    8.494    0.000    0.126
##    .sswk              0.181    0.019    9.471    0.000    0.144
##    .sspc              0.257    0.031    8.150    0.000    0.195
##    .ssei              0.277    0.030    9.387    0.000    0.219
##    .ssar              0.154    0.018    8.479    0.000    0.119
##    .ssmk              0.187    0.021    8.719    0.000    0.145
##    .ssmc              0.257    0.026    9.742    0.000    0.205
##    .ssao              0.426    0.035   12.055    0.000    0.357
##    .ssai              0.306    0.035    8.831    0.000    0.238
##    .sssi              0.292    0.034    8.535    0.000    0.225
##    .ssno              0.377    0.050    7.463    0.000    0.278
##    .sscs              0.449    0.056    8.020    0.000    0.339
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.202    0.164    0.183
##     0.219    0.181    0.197
##     0.318    0.257    0.287
##     0.335    0.277    0.320
##     0.190    0.154    0.188
##     0.229    0.187    0.200
##     0.309    0.257    0.314
##     0.496    0.426    0.480
##     0.374    0.306    0.471
##     0.359    0.292    0.458
##     0.476    0.377    0.374
##     0.558    0.449    0.478
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.856    0.031   27.829    0.000    0.795
##     sswk    (.p2.)    0.861    0.032   26.977    0.000    0.798
##     sspc    (.p3.)    0.799    0.028   28.592    0.000    0.744
##     ssei    (.p4.)    0.477    0.044   10.769    0.000    0.390
##   math =~                                                      
##     ssar    (.p5.)    0.816    0.032   25.498    0.000    0.753
##     ssmk    (.p6.)    0.594    0.051   11.555    0.000    0.493
##     ssmc    (.p7.)    0.749    0.034   22.140    0.000    0.683
##     ssao    (.p8.)    0.680    0.030   22.425    0.000    0.621
##   electronic =~                                                
##     ssai    (.p9.)    0.586    0.037   15.945    0.000    0.514
##     sssi    (.10.)    0.588    0.039   15.059    0.000    0.511
##     ssei    (.11.)    0.324    0.036    8.948    0.000    0.253
##   speed =~                                                     
##     ssno    (.12.)    0.794    0.046   17.131    0.000    0.703
##     sscs    (.13.)    0.699    0.041   17.156    0.000    0.619
##     ssmk    (.14.)    0.317    0.047    6.687    0.000    0.224
##  ci.upper   Std.lv  Std.all
##                            
##     0.916    0.856    0.887
##     0.923    0.861    0.872
##     0.853    0.799    0.844
##     0.564    0.477    0.468
##                            
##     0.879    0.816    0.872
##     0.694    0.594    0.628
##     0.816    0.749    0.793
##     0.739    0.680    0.681
##                            
##     0.658    0.823    0.767
##     0.664    0.825    0.840
##     0.395    0.455    0.447
##                            
##     0.885    0.828    0.782
##     0.779    0.730    0.736
##     0.410    0.331    0.350
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.33.)    0.923    0.012   75.054    0.000    0.899
##     elctrnc (.34.)    0.827    0.037   22.569    0.000    0.755
##     speed   (.35.)    0.741    0.044   16.949    0.000    0.656
##   math ~~                                                      
##     elctrnc (.36.)    0.798    0.039   20.602    0.000    0.722
##     speed   (.37.)    0.781    0.044   17.682    0.000    0.694
##   electronic ~~                                                
##     speed   (.38.)    0.484    0.071    6.832    0.000    0.345
##  ci.upper   Std.lv  Std.all
##                            
##     0.947    0.923    0.923
##     0.899    0.589    0.589
##     0.827    0.710    0.710
##                            
##     0.874    0.568    0.568
##     0.867    0.748    0.748
##                            
##     0.623    0.330    0.330
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            0.000                               0.000
##     math              0.000                               0.000
##    .ssgs    (.39.)    0.453    0.038   11.951    0.000    0.379
##    .sswk    (.40.)    0.380    0.039    9.830    0.000    0.305
##    .sspc              0.118    0.045    2.656    0.008    0.031
##    .ssei    (.42.)    0.217    0.039    5.507    0.000    0.140
##    .ssar    (.43.)    0.389    0.037   10.612    0.000    0.317
##    .ssmk    (.44.)    0.447    0.042   10.715    0.000    0.365
##    .ssmc              0.572    0.047   12.243    0.000    0.480
##    .ssao    (.46.)    0.292    0.039    7.501    0.000    0.216
##    .ssai    (.47.)    0.068    0.038    1.782    0.075   -0.007
##    .sssi    (.48.)    0.182    0.038    4.728    0.000    0.107
##    .ssno              0.587    0.076    7.776    0.000    0.439
##    .sscs    (.50.)    0.374    0.048    7.754    0.000    0.280
##     elctrnc           1.066    0.118    9.053    0.000    0.835
##     speed            -0.596    0.090   -6.615    0.000   -0.773
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.527    0.453    0.470
##     0.456    0.380    0.385
##     0.205    0.118    0.125
##     0.295    0.217    0.213
##     0.460    0.389    0.415
##     0.529    0.447    0.473
##     0.663    0.572    0.605
##     0.368    0.292    0.293
##     0.143    0.068    0.063
##     0.257    0.182    0.185
##     0.735    0.587    0.555
##     0.469    0.374    0.377
##     1.296    0.759    0.759
##    -0.420   -0.571   -0.571
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.198    0.022    8.884    0.000    0.154
##    .sswk              0.233    0.022   10.469    0.000    0.189
##    .sspc              0.257    0.029    8.850    0.000    0.200
##    .ssei              0.349    0.036    9.584    0.000    0.277
##    .ssar              0.209    0.026    7.954    0.000    0.158
##    .ssmk              0.138    0.016    8.570    0.000    0.107
##    .ssmc              0.332    0.032   10.334    0.000    0.269
##    .ssao              0.534    0.052   10.288    0.000    0.433
##    .ssai              0.476    0.060    7.954    0.000    0.359
##    .sssi              0.284    0.048    5.862    0.000    0.189
##    .ssno              0.435    0.055    7.890    0.000    0.327
##    .sscs              0.450    0.071    6.358    0.000    0.312
##     electronic        1.973    0.237    8.327    0.000    1.509
##     speed             1.089    0.127    8.595    0.000    0.841
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.241    0.198    0.213
##     0.276    0.233    0.239
##     0.314    0.257    0.287
##     0.420    0.349    0.335
##     0.261    0.209    0.239
##     0.170    0.138    0.155
##     0.394    0.332    0.371
##     0.636    0.534    0.536
##     0.593    0.476    0.412
##     0.378    0.284    0.294
##     0.543    0.435    0.388
##     0.589    0.450    0.458
##     2.438    1.000    1.000
##     1.337    1.000    1.000
tests<-lavTestLRT(configural, metric, scalar2, cf.cov, cf.cov2, reduced)
Td=tests[2:6,"Chisq diff"]
Td
## [1] 12.7510927 17.1569424 15.6979297  0.3578327  5.5073741
dfd=tests[2:6,"Df diff"]
dfd
## [1] 10  5  6  2  2
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-335+ 335 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.02869983 0.08532061 0.06956498        NaN 0.07246075
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1]         NA 0.06946337
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.04336727 0.13106688
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.02806026 0.11258857
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1]         NA 0.06227855
RMSEA.CI(T=Td[5],df=dfd[5],N=N,G=2)
## [1]        NA 0.1478016
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.762     0.737     0.235     0.118     0.015     0.001
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.996     0.995     0.922     0.856     0.627     0.332
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.985     0.981     0.813     0.694     0.386     0.133
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.164     0.159     0.076     0.055     0.023     0.008
round(pvals(T=Td[5],df=dfd[5],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.936     0.930     0.774     0.699     0.517     0.327
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 12.75109 17.15694 25.93510
dfd=tests[2:4,"Df diff"]
dfd
## [1] 10  5 12
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-335+ 335 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.02869983 0.08532061 0.05896458
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1]         NA 0.06946337
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.04336727 0.13106688
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.02710490 0.09017467
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.762     0.737     0.235     0.118     0.015     0.001
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.996     0.995     0.922     0.856     0.627     0.332
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.989     0.986     0.716     0.518     0.145     0.014
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]  12.75109 155.04825
dfd=tests[2:3,"Df diff"]
dfd
## [1] 10  8
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-335+ 335 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.02869983 0.23459119
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1]         NA 0.06946337
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.2029950 0.2673459
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.762     0.737     0.235     0.118     0.015     0.001
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
# ONE FACTOR, just for checking if gap direction aligns with HOF

fmodel<-'
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao
'

configural<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   845.152   108.000     0.000     0.877     0.143     0.063 16885.343 
##       bic 
## 17209.867
Mc(configural)
## [1] 0.5764103
metric<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   875.029   119.000     0.000     0.874     0.138     0.077 16893.219 
##       bic 
## 17168.163
Mc(metric)
## [1] 0.5683352
scalar<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1345.680   130.000     0.000     0.798     0.167     0.102 17341.871 
##       bic 
## 17567.235
Mc(scalar)
## [1] 0.4030963
summary(scalar, standardized=T, ci=T) # g=-0.038
## lavaan 0.6-18 ended normally after 42 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        74
##   Number of equality constraints                    24
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1345.680    1201.213
##   Degrees of freedom                               130         130
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.120
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          487.066     434.777
##     0                                          858.614     766.436
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g =~                                                         
##     ssgs    (.p1.)    0.786    0.039   20.199    0.000    0.710
##     ssar    (.p2.)    0.751    0.039   19.446    0.000    0.675
##     sswk    (.p3.)    0.789    0.041   19.314    0.000    0.709
##     sspc    (.p4.)    0.749    0.035   21.213    0.000    0.680
##     ssno    (.p5.)    0.581    0.043   13.496    0.000    0.497
##     sscs    (.p6.)    0.556    0.038   14.473    0.000    0.481
##     ssai    (.p7.)    0.482    0.040   12.078    0.000    0.404
##     sssi    (.p8.)    0.479    0.040   11.868    0.000    0.400
##     ssmk    (.p9.)    0.781    0.038   20.746    0.000    0.708
##     ssmc    (.10.)    0.706    0.039   18.266    0.000    0.630
##     ssei    (.11.)    0.706    0.041   17.374    0.000    0.627
##     ssao    (.12.)    0.623    0.035   17.750    0.000    0.554
##  ci.upper   Std.lv  Std.all
##                            
##     0.862    0.786    0.869
##     0.827    0.751    0.864
##     0.869    0.789    0.855
##     0.819    0.749    0.814
##     0.666    0.581    0.591
##     0.631    0.556    0.575
##     0.561    0.482    0.599
##     0.558    0.479    0.578
##     0.855    0.781    0.837
##     0.782    0.706    0.797
##     0.786    0.706    0.778
##     0.692    0.623    0.674
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.26.)    0.434    0.050    8.702    0.000    0.336
##    .ssar    (.27.)    0.374    0.048    7.713    0.000    0.279
##    .sswk    (.28.)    0.362    0.051    7.074    0.000    0.262
##    .sspc    (.29.)    0.284    0.052    5.449    0.000    0.182
##    .ssno    (.30.)    0.202    0.050    4.063    0.000    0.105
##    .sscs    (.31.)    0.167    0.049    3.448    0.001    0.072
##    .ssai    (.32.)    0.225    0.044    5.177    0.000    0.140
##    .sssi    (.33.)    0.374    0.049    7.562    0.000    0.277
##    .ssmk    (.34.)    0.331    0.053    6.214    0.000    0.227
##    .ssmc    (.35.)    0.385    0.046    8.392    0.000    0.295
##    .ssei    (.36.)    0.322    0.050    6.421    0.000    0.224
##    .ssao    (.37.)    0.278    0.047    5.907    0.000    0.186
##  ci.upper   Std.lv  Std.all
##     0.532    0.434    0.480
##     0.469    0.374    0.430
##     0.463    0.362    0.393
##     0.387    0.284    0.309
##     0.300    0.202    0.205
##     0.262    0.167    0.173
##     0.311    0.225    0.280
##     0.471    0.374    0.451
##     0.435    0.331    0.355
##     0.475    0.385    0.435
##     0.421    0.322    0.355
##     0.370    0.278    0.301
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.199    0.021    9.454    0.000    0.158
##    .ssar              0.192    0.019   10.285    0.000    0.155
##    .sswk              0.228    0.023    9.999    0.000    0.183
##    .sspc              0.286    0.036    7.980    0.000    0.216
##    .ssno              0.630    0.079    8.012    0.000    0.476
##    .sscs              0.627    0.066    9.455    0.000    0.497
##    .ssai              0.417    0.042   10.029    0.000    0.335
##    .sssi              0.458    0.046    9.978    0.000    0.368
##    .ssmk              0.260    0.025   10.557    0.000    0.212
##    .ssmc              0.286    0.028   10.255    0.000    0.231
##    .ssei              0.325    0.035    9.331    0.000    0.257
##    .ssao              0.466    0.037   12.607    0.000    0.394
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.241    0.199    0.244
##     0.228    0.192    0.254
##     0.273    0.228    0.268
##     0.356    0.286    0.337
##     0.784    0.630    0.651
##     0.757    0.627    0.670
##     0.498    0.417    0.642
##     0.548    0.458    0.666
##     0.309    0.260    0.299
##     0.341    0.286    0.365
##     0.394    0.325    0.395
##     0.539    0.466    0.546
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g =~                                                         
##     ssgs    (.p1.)    0.786    0.039   20.199    0.000    0.710
##     ssar    (.p2.)    0.751    0.039   19.446    0.000    0.675
##     sswk    (.p3.)    0.789    0.041   19.314    0.000    0.709
##     sspc    (.p4.)    0.749    0.035   21.213    0.000    0.680
##     ssno    (.p5.)    0.581    0.043   13.496    0.000    0.497
##     sscs    (.p6.)    0.556    0.038   14.473    0.000    0.481
##     ssai    (.p7.)    0.482    0.040   12.078    0.000    0.404
##     sssi    (.p8.)    0.479    0.040   11.868    0.000    0.400
##     ssmk    (.p9.)    0.781    0.038   20.746    0.000    0.708
##     ssmc    (.10.)    0.706    0.039   18.266    0.000    0.630
##     ssei    (.11.)    0.706    0.041   17.374    0.000    0.627
##     ssao    (.12.)    0.623    0.035   17.750    0.000    0.554
##  ci.upper   Std.lv  Std.all
##                            
##     0.862    0.873    0.866
##     0.827    0.834    0.858
##     0.869    0.876    0.855
##     0.819    0.833    0.837
##     0.666    0.646    0.594
##     0.631    0.618    0.598
##     0.561    0.536    0.451
##     0.558    0.532    0.488
##     0.855    0.868    0.878
##     0.782    0.784    0.792
##     0.786    0.785    0.722
##     0.692    0.692    0.681
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.26.)    0.434    0.050    8.702    0.000    0.336
##    .ssar    (.27.)    0.374    0.048    7.713    0.000    0.279
##    .sswk    (.28.)    0.362    0.051    7.074    0.000    0.262
##    .sspc    (.29.)    0.284    0.052    5.449    0.000    0.182
##    .ssno    (.30.)    0.202    0.050    4.063    0.000    0.105
##    .sscs    (.31.)    0.167    0.049    3.448    0.001    0.072
##    .ssai    (.32.)    0.225    0.044    5.177    0.000    0.140
##    .sssi    (.33.)    0.374    0.049    7.562    0.000    0.277
##    .ssmk    (.34.)    0.331    0.053    6.214    0.000    0.227
##    .ssmc    (.35.)    0.385    0.046    8.392    0.000    0.295
##    .ssei    (.36.)    0.322    0.050    6.421    0.000    0.224
##    .ssao    (.37.)    0.278    0.047    5.907    0.000    0.186
##     g                 0.043    0.092    0.462    0.644   -0.138
##  ci.upper   Std.lv  Std.all
##     0.532    0.434    0.431
##     0.469    0.374    0.385
##     0.463    0.362    0.354
##     0.387    0.284    0.286
##     0.300    0.202    0.186
##     0.262    0.167    0.162
##     0.311    0.225    0.190
##     0.471    0.374    0.343
##     0.435    0.331    0.335
##     0.475    0.385    0.389
##     0.421    0.322    0.297
##     0.370    0.278    0.274
##     0.224    0.038    0.038
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.254    0.025   10.175    0.000    0.205
##    .ssar              0.250    0.027    9.241    0.000    0.197
##    .sswk              0.282    0.027   10.550    0.000    0.230
##    .sspc              0.297    0.033    8.976    0.000    0.232
##    .ssno              0.764    0.086    8.853    0.000    0.594
##    .sscs              0.685    0.084    8.170    0.000    0.521
##    .ssai              1.122    0.121    9.256    0.000    0.885
##    .sssi              0.903    0.104    8.653    0.000    0.698
##    .ssmk              0.225    0.024    9.184    0.000    0.177
##    .ssmc              0.366    0.034   10.835    0.000    0.300
##    .ssei              0.565    0.067    8.392    0.000    0.433
##    .ssao              0.553    0.052   10.559    0.000    0.450
##     g                 1.234    0.147    8.404    0.000    0.946
##  ci.upper   Std.lv  Std.all
##     0.303    0.254    0.250
##     0.303    0.250    0.264
##     0.335    0.282    0.269
##     0.361    0.297    0.300
##     0.933    0.764    0.647
##     0.849    0.685    0.642
##     1.360    1.122    0.796
##     1.107    0.903    0.761
##     0.273    0.225    0.230
##     0.432    0.366    0.373
##     0.697    0.565    0.478
##     0.656    0.553    0.536
##     1.522    1.000    1.000
# HIGH ORDER FACTOR

hof.model<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
g =~ verbal + math + electronic + speed 
'

hof.lv<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
g =~ verbal + math + electronic + speed 
speed~~1*speed
'

hof.weak<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
g =~ verbal + math + electronic + speed 
speed~~1*speed
verbal~0*1
'

baseline<-cfa(hof.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   437.113    48.000     0.000     0.936     0.110     0.054 16825.001 
##       bic 
## 17014.307
Mc(baseline)
## [1] 0.7476525
configural<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   369.108    96.000     0.000     0.955     0.092     0.042 16433.298 
##       bic 
## 16811.910
Mc(configural)
## [1] 0.8153676
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 112 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               369.108     332.122
##   Degrees of freedom                                96          96
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.111
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          143.679     129.281
##     0                                          225.429     202.840
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.201    0.066    3.049    0.002    0.072
##     sswk              0.206    0.067    3.052    0.002    0.074
##     sspc              0.187    0.059    3.171    0.002    0.072
##     ssei              0.129    0.044    2.957    0.003    0.043
##   math =~                                                      
##     ssar              0.236    0.054    4.363    0.000    0.130
##     ssmk              0.182    0.049    3.705    0.000    0.086
##     ssmc              0.208    0.048    4.304    0.000    0.114
##     ssao              0.196    0.049    4.033    0.000    0.101
##   electronic =~                                                
##     ssai              0.339    0.039    8.650    0.000    0.263
##     sssi              0.360    0.047    7.614    0.000    0.267
##     ssei              0.113    0.042    2.667    0.008    0.030
##   speed =~                                                     
##     ssno              0.513    0.073    6.996    0.000    0.369
##     sscs              0.432    0.062    7.022    0.000    0.312
##     ssmk              0.209    0.048    4.312    0.000    0.114
##   g =~                                                         
##     verbal            3.947    1.355    2.913    0.004    1.291
##     math              3.161    0.796    3.970    0.000    1.600
##     electronic        1.228    0.193    6.368    0.000    0.850
##     speed             1.149    0.208    5.518    0.000    0.741
##  ci.upper   Std.lv  Std.all
##                            
##     0.330    0.817    0.897
##     0.338    0.837    0.892
##     0.303    0.762    0.834
##     0.214    0.524    0.611
##                            
##     0.342    0.782    0.895
##     0.278    0.602    0.626
##     0.303    0.691    0.806
##     0.292    0.651    0.706
##                            
##     0.416    0.538    0.711
##     0.452    0.570    0.730
##     0.196    0.179    0.209
##                            
##     0.656    0.781    0.791
##     0.553    0.658    0.702
##     0.304    0.318    0.331
##                            
##     6.602    0.969    0.969
##     4.721    0.953    0.953
##     1.605    0.775    0.775
##     1.557    0.754    0.754
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.378    0.051    7.429    0.000    0.278
##    .sswk              0.382    0.052    7.278    0.000    0.279
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei              0.188    0.048    3.908    0.000    0.094
##    .ssar              0.384    0.049    7.810    0.000    0.288
##    .ssmk              0.448    0.054    8.275    0.000    0.342
##    .ssmc              0.263    0.048    5.461    0.000    0.169
##    .ssao              0.343    0.052    6.596    0.000    0.241
##    .ssai              0.069    0.043    1.625    0.104   -0.014
##    .sssi              0.163    0.044    3.736    0.000    0.078
##    .ssno              0.285    0.056    5.122    0.000    0.176
##    .sscs              0.358    0.053    6.754    0.000    0.254
##  ci.upper   Std.lv  Std.all
##     0.478    0.378    0.415
##     0.485    0.382    0.407
##     0.545    0.445    0.487
##     0.283    0.188    0.220
##     0.481    0.384    0.440
##     0.554    0.448    0.466
##     0.358    0.263    0.307
##     0.444    0.343    0.372
##     0.153    0.069    0.092
##     0.249    0.163    0.209
##     0.395    0.285    0.289
##     0.462    0.358    0.382
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.161    0.019    8.325    0.000    0.123
##    .sswk              0.181    0.019    9.439    0.000    0.143
##    .sspc              0.255    0.033    7.825    0.000    0.191
##    .ssei              0.287    0.030    9.625    0.000    0.228
##    .ssar              0.151    0.018    8.228    0.000    0.115
##    .ssmk              0.184    0.022    8.206    0.000    0.140
##    .ssmc              0.257    0.026    9.731    0.000    0.206
##    .ssao              0.425    0.036   11.775    0.000    0.354
##    .ssai              0.283    0.036    7.862    0.000    0.213
##    .sssi              0.284    0.036    7.927    0.000    0.214
##    .ssno              0.365    0.050    7.310    0.000    0.267
##    .sscs              0.446    0.057    7.855    0.000    0.334
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.199    0.161    0.195
##     0.218    0.181    0.205
##     0.319    0.255    0.305
##     0.345    0.287    0.390
##     0.187    0.151    0.198
##     0.228    0.184    0.199
##     0.309    0.257    0.350
##     0.496    0.425    0.501
##     0.354    0.283    0.495
##     0.354    0.284    0.466
##     0.462    0.365    0.374
##     0.557    0.446    0.507
##     1.000    0.060    0.060
##     1.000    0.091    0.091
##     1.000    0.399    0.399
##     1.000    0.431    0.431
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.286    0.053    5.366    0.000    0.181
##     sswk              0.282    0.051    5.584    0.000    0.183
##     sspc              0.268    0.049    5.453    0.000    0.172
##     ssei              0.170    0.039    4.397    0.000    0.094
##   math =~                                                      
##     ssar              0.163    0.080    2.039    0.041    0.006
##     ssmk              0.115    0.058    1.971    0.049    0.001
##     ssmc              0.158    0.078    2.040    0.041    0.006
##     ssao              0.137    0.067    2.042    0.041    0.006
##   electronic =~                                                
##     ssai              0.711    0.052   13.635    0.000    0.609
##     sssi              0.631    0.047   13.438    0.000    0.539
##     ssei              0.378    0.053    7.148    0.000    0.274
##   speed =~                                                     
##     ssno              0.564    0.069    8.171    0.000    0.429
##     sscs              0.529    0.054    9.796    0.000    0.423
##     ssmk              0.224    0.042    5.293    0.000    0.141
##   g =~                                                         
##     verbal            2.957    0.614    4.816    0.000    1.754
##     math              5.103    2.606    1.958    0.050   -0.005
##     electronic        0.909    0.113    8.046    0.000    0.687
##     speed             1.119    0.151    7.415    0.000    0.824
##  ci.upper   Std.lv  Std.all
##                            
##     0.390    0.892    0.898
##     0.381    0.881    0.876
##     0.365    0.837    0.857
##     0.246    0.531    0.479
##                            
##     0.320    0.849    0.876
##     0.229    0.596    0.624
##     0.310    0.823    0.827
##     0.268    0.711    0.700
##                            
##     0.813    0.961    0.828
##     0.723    0.853    0.832
##     0.481    0.510    0.461
##                            
##     0.700    0.847    0.787
##     0.635    0.794    0.774
##     0.307    0.336    0.352
##                            
##     4.161    0.947    0.947
##    10.211    0.981    0.981
##     1.130    0.673    0.673
##     1.415    0.746    0.746
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.542    0.056    9.598    0.000    0.431
##    .sswk              0.371    0.057    6.485    0.000    0.259
##    .sspc              0.143    0.056    2.563    0.010    0.034
##    .ssei              0.595    0.063    9.438    0.000    0.472
##    .ssar              0.392    0.055    7.142    0.000    0.284
##    .ssmk              0.259    0.054    4.760    0.000    0.152
##    .ssmc              0.578    0.056   10.233    0.000    0.467
##    .ssao              0.225    0.058    3.904    0.000    0.112
##    .ssai              0.684    0.067   10.241    0.000    0.553
##    .sssi              0.827    0.059   14.131    0.000    0.712
##    .ssno              0.122    0.061    1.990    0.047    0.002
##    .sscs             -0.026    0.058   -0.447    0.655   -0.140
##  ci.upper   Std.lv  Std.all
##     0.653    0.542    0.545
##     0.483    0.371    0.369
##     0.252    0.143    0.146
##     0.719    0.595    0.537
##     0.499    0.392    0.405
##     0.365    0.259    0.271
##     0.689    0.578    0.581
##     0.338    0.225    0.221
##     0.815    0.684    0.590
##     0.942    0.827    0.807
##     0.241    0.122    0.113
##     0.088   -0.026   -0.025
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.191    0.023    8.414    0.000    0.146
##    .sswk              0.235    0.023   10.318    0.000    0.190
##    .sspc              0.254    0.029    8.697    0.000    0.197
##    .ssei              0.339    0.036    9.434    0.000    0.269
##    .ssar              0.218    0.028    7.773    0.000    0.163
##    .ssmk              0.150    0.017    8.741    0.000    0.116
##    .ssmc              0.314    0.031   10.091    0.000    0.253
##    .ssao              0.526    0.052   10.201    0.000    0.425
##    .ssai              0.424    0.064    6.673    0.000    0.299
##    .sssi              0.324    0.049    6.553    0.000    0.227
##    .ssno              0.440    0.058    7.579    0.000    0.326
##    .sscs              0.422    0.073    5.756    0.000    0.278
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.235    0.191    0.193
##     0.280    0.235    0.232
##     0.311    0.254    0.266
##     0.410    0.339    0.277
##     0.273    0.218    0.232
##     0.183    0.150    0.164
##     0.374    0.314    0.316
##     0.627    0.526    0.510
##     0.549    0.424    0.315
##     0.421    0.324    0.308
##     0.553    0.440    0.380
##     0.566    0.422    0.401
##     1.000    0.103    0.103
##     1.000    0.037    0.037
##     1.000    0.548    0.548
##     1.000    0.444    0.444
##     1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   392.776   109.000     0.000     0.953     0.088     0.057 16430.967 
##       bic 
## 16750.984
Mc(metric)
## [1] 0.8088919
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 100 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        89
##   Number of equality constraints                    18
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               392.776     349.450
##   Degrees of freedom                               109         109
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.124
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          155.364     138.226
##     0                                          237.413     211.224
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.221    0.053    4.209    0.000    0.118
##     sswk    (.p2.)    0.223    0.053    4.208    0.000    0.119
##     sspc    (.p3.)    0.207    0.048    4.283    0.000    0.112
##     ssei    (.p4.)    0.126    0.032    3.905    0.000    0.063
##   math =~                                                      
##     ssar    (.p5.)    0.220    0.052    4.231    0.000    0.118
##     ssmk    (.p6.)    0.162    0.041    3.937    0.000    0.081
##     ssmc    (.p7.)    0.203    0.048    4.211    0.000    0.108
##     ssao    (.p8.)    0.184    0.045    4.050    0.000    0.095
##   electronic =~                                                
##     ssai    (.p9.)    0.332    0.041    8.054    0.000    0.251
##     sssi    (.10.)    0.316    0.042    7.446    0.000    0.233
##     ssei    (.11.)    0.174    0.025    6.891    0.000    0.124
##   speed =~                                                     
##     ssno    (.12.)    0.501    0.060    8.338    0.000    0.383
##     sscs    (.13.)    0.448    0.053    8.525    0.000    0.345
##     ssmk    (.14.)    0.196    0.031    6.266    0.000    0.135
##   g =~                                                         
##     verbal  (.15.)    3.514    0.895    3.925    0.000    1.759
##     math    (.16.)    3.413    0.861    3.964    0.000    1.725
##     elctrnc (.17.)    1.419    0.211    6.730    0.000    1.006
##     speed   (.18.)    1.163    0.170    6.854    0.000    0.831
##  ci.upper   Std.lv  Std.all
##                            
##     0.324    0.808    0.896
##     0.327    0.814    0.885
##     0.302    0.756    0.832
##     0.190    0.461    0.515
##                            
##     0.322    0.783    0.894
##     0.243    0.576    0.618
##     0.297    0.722    0.821
##     0.273    0.653    0.708
##                            
##     0.412    0.576    0.733
##     0.399    0.549    0.704
##     0.223    0.301    0.336
##                            
##     0.618    0.768    0.782
##     0.551    0.687    0.722
##     0.258    0.301    0.323
##                            
##     5.268    0.962    0.962
##     5.100    0.960    0.960
##     1.832    0.817    0.817
##     1.496    0.758    0.758
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.378    0.051    7.429    0.000    0.278
##    .sswk              0.382    0.052    7.278    0.000    0.279
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei              0.188    0.048    3.908    0.000    0.094
##    .ssar              0.384    0.049    7.810    0.000    0.288
##    .ssmk              0.448    0.054    8.275    0.000    0.342
##    .ssmc              0.263    0.048    5.461    0.000    0.169
##    .ssao              0.343    0.052    6.596    0.000    0.241
##    .ssai              0.069    0.043    1.625    0.104   -0.014
##    .sssi              0.163    0.044    3.736    0.000    0.078
##    .ssno              0.285    0.056    5.122    0.000    0.176
##    .sscs              0.358    0.053    6.754    0.000    0.254
##  ci.upper   Std.lv  Std.all
##     0.478    0.378    0.419
##     0.485    0.382    0.415
##     0.545    0.445    0.489
##     0.283    0.188    0.210
##     0.481    0.384    0.439
##     0.554    0.448    0.481
##     0.358    0.263    0.300
##     0.444    0.343    0.372
##     0.153    0.069    0.088
##     0.249    0.163    0.210
##     0.395    0.285    0.291
##     0.462    0.358    0.376
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.161    0.019    8.370    0.000    0.123
##    .sswk              0.183    0.019    9.400    0.000    0.145
##    .sspc              0.255    0.031    8.167    0.000    0.194
##    .ssei              0.280    0.030    9.328    0.000    0.221
##    .ssar              0.153    0.019    8.223    0.000    0.117
##    .ssmk              0.193    0.021    9.099    0.000    0.152
##    .ssmc              0.253    0.026    9.704    0.000    0.202
##    .ssao              0.424    0.036   11.902    0.000    0.354
##    .ssai              0.286    0.035    8.250    0.000    0.218
##    .sssi              0.306    0.034    9.051    0.000    0.240
##    .ssno              0.375    0.051    7.332    0.000    0.275
##    .sscs              0.432    0.054    7.991    0.000    0.326
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.198    0.161    0.197
##     0.221    0.183    0.216
##     0.316    0.255    0.308
##     0.339    0.280    0.349
##     0.190    0.153    0.200
##     0.235    0.193    0.223
##     0.304    0.253    0.327
##     0.493    0.424    0.498
##     0.354    0.286    0.463
##     0.373    0.306    0.504
##     0.475    0.375    0.388
##     0.538    0.432    0.478
##     1.000    0.075    0.075
##     1.000    0.079    0.079
##     1.000    0.332    0.332
##     1.000    0.425    0.425
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.221    0.053    4.209    0.000    0.118
##     sswk    (.p2.)    0.223    0.053    4.208    0.000    0.119
##     sspc    (.p3.)    0.207    0.048    4.283    0.000    0.112
##     ssei    (.p4.)    0.126    0.032    3.905    0.000    0.063
##   math =~                                                      
##     ssar    (.p5.)    0.220    0.052    4.231    0.000    0.118
##     ssmk    (.p6.)    0.162    0.041    3.937    0.000    0.081
##     ssmc    (.p7.)    0.203    0.048    4.211    0.000    0.108
##     ssao    (.p8.)    0.184    0.045    4.050    0.000    0.095
##   electronic =~                                                
##     ssai    (.p9.)    0.332    0.041    8.054    0.000    0.251
##     sssi    (.10.)    0.316    0.042    7.446    0.000    0.233
##     ssei    (.11.)    0.174    0.025    6.891    0.000    0.124
##   speed =~                                                     
##     ssno    (.12.)    0.501    0.060    8.338    0.000    0.383
##     sscs    (.13.)    0.448    0.053    8.525    0.000    0.345
##     ssmk    (.14.)    0.196    0.031    6.266    0.000    0.135
##   g =~                                                         
##     verbal  (.15.)    3.514    0.895    3.925    0.000    1.759
##     math    (.16.)    3.413    0.861    3.964    0.000    1.725
##     elctrnc (.17.)    1.419    0.211    6.730    0.000    1.006
##     speed   (.18.)    1.163    0.170    6.854    0.000    0.831
##  ci.upper   Std.lv  Std.all
##                            
##     0.324    0.903    0.900
##     0.327    0.910    0.884
##     0.302    0.846    0.860
##     0.190    0.516    0.493
##                            
##     0.322    0.849    0.879
##     0.243    0.624    0.639
##     0.297    0.782    0.807
##     0.273    0.708    0.698
##                            
##     0.412    0.879    0.795
##     0.399    0.837    0.838
##     0.223    0.460    0.439
##                            
##     0.618    0.860    0.795
##     0.551    0.769    0.759
##     0.258    0.337    0.345
##                            
##     5.268    0.951    0.951
##     5.100    0.978    0.978
##     1.832    0.592    0.592
##     1.496    0.748    0.748
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.542    0.056    9.598    0.000    0.431
##    .sswk              0.371    0.057    6.485    0.000    0.259
##    .sspc              0.143    0.056    2.563    0.010    0.034
##    .ssei              0.595    0.063    9.438    0.000    0.472
##    .ssar              0.392    0.055    7.142    0.000    0.284
##    .ssmk              0.259    0.054    4.760    0.000    0.152
##    .ssmc              0.578    0.056   10.233    0.000    0.467
##    .ssao              0.225    0.058    3.904    0.000    0.112
##    .ssai              0.684    0.067   10.241    0.000    0.553
##    .sssi              0.827    0.059   14.131    0.000    0.712
##    .ssno              0.122    0.061    1.990    0.047    0.002
##    .sscs             -0.026    0.058   -0.447    0.655   -0.140
##  ci.upper   Std.lv  Std.all
##     0.653    0.542    0.540
##     0.483    0.371    0.360
##     0.252    0.143    0.145
##     0.719    0.595    0.569
##     0.499    0.392    0.406
##     0.365    0.259    0.265
##     0.689    0.578    0.596
##     0.338    0.225    0.222
##     0.815    0.684    0.619
##     0.942    0.827    0.828
##     0.241    0.122    0.112
##     0.088   -0.026   -0.026
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.192    0.022    8.832    0.000    0.149
##    .sswk              0.233    0.022   10.372    0.000    0.189
##    .sspc              0.252    0.029    8.808    0.000    0.196
##    .ssei              0.350    0.037    9.484    0.000    0.278
##    .ssar              0.212    0.027    7.876    0.000    0.160
##    .ssmk              0.143    0.016    8.756    0.000    0.111
##    .ssmc              0.327    0.032   10.314    0.000    0.265
##    .ssao              0.528    0.051   10.401    0.000    0.428
##    .ssai              0.450    0.063    7.081    0.000    0.325
##    .sssi              0.296    0.050    5.869    0.000    0.197
##    .ssno              0.430    0.056    7.725    0.000    0.321
##    .sscs              0.437    0.071    6.153    0.000    0.298
##    .verbal            1.604    0.792    2.024    0.043    0.051
##    .math              0.642    0.511    1.256    0.209   -0.360
##    .electronic        4.563    1.219    3.743    0.000    2.173
##    .speed             1.298    0.364    3.565    0.000    0.584
##     g                 1.221    0.152    8.052    0.000    0.924
##  ci.upper   Std.lv  Std.all
##     0.235    0.192    0.191
##     0.277    0.233    0.219
##     0.308    0.252    0.261
##     0.423    0.350    0.320
##     0.265    0.212    0.228
##     0.175    0.143    0.150
##     0.389    0.327    0.348
##     0.627    0.528    0.513
##     0.574    0.450    0.368
##     0.395    0.296    0.297
##     0.539    0.430    0.368
##     0.576    0.437    0.425
##     3.157    0.096    0.096
##     1.643    0.043    0.043
##     6.952    0.650    0.650
##     2.011    0.440    0.440
##     1.519    1.000    1.000
lavTestScore(metric, release = 1:18)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 23.232 18   0.182
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs    X2 df p.value
## 1   .p1. == .p53. 0.220  1   0.639
## 2   .p2. == .p54. 2.012  1   0.156
## 3   .p3. == .p55. 0.022  1   0.881
## 4   .p4. == .p56. 3.965  1   0.046
## 5   .p5. == .p57. 0.052  1   0.820
## 6   .p6. == .p58. 4.462  1   0.035
## 7   .p7. == .p59. 2.793  1   0.095
## 8   .p8. == .p60. 0.004  1   0.949
## 9   .p9. == .p61. 3.229  1   0.072
## 10 .p10. == .p62. 0.762  1   0.383
## 11 .p11. == .p63. 6.571  1   0.010
## 12 .p12. == .p64. 0.022  1   0.882
## 13 .p13. == .p65. 1.417  1   0.234
## 14 .p14. == .p66. 3.875  1   0.049
## 15 .p15. == .p67. 1.399  1   0.237
## 16 .p16. == .p68. 0.001  1   0.979
## 17 .p17. == .p69. 7.882  1   0.005
## 18 .p18. == .p70. 0.165  1   0.685
scalar<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 1.366400e-12) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   547.240   116.000     0.000     0.928     0.105     0.063 16571.431 
##       bic 
## 16859.897
Mc(scalar)
## [1] 0.7244794
summary(scalar, standardized=T, ci=T) # -.102
## lavaan 0.6-18 ended normally after 120 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        94
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               547.240     485.895
##   Degrees of freedom                               116         116
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.126
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          225.586     200.298
##     0                                          321.654     285.597
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.217    0.054    3.984    0.000    0.110
##     sswk    (.p2.)    0.220    0.055    3.983    0.000    0.112
##     sspc    (.p3.)    0.203    0.050    4.068    0.000    0.105
##     ssei    (.p4.)    0.119    0.032    3.697    0.000    0.056
##   math =~                                                      
##     ssar    (.p5.)    0.224    0.052    4.297    0.000    0.122
##     ssmk    (.p6.)    0.152    0.041    3.717    0.000    0.072
##     ssmc    (.p7.)    0.207    0.048    4.276    0.000    0.112
##     ssao    (.p8.)    0.186    0.045    4.124    0.000    0.098
##   electronic =~                                                
##     ssai    (.p9.)    0.320    0.040    8.023    0.000    0.242
##     sssi    (.10.)    0.315    0.041    7.610    0.000    0.234
##     ssei    (.11.)    0.184    0.025    7.491    0.000    0.136
##   speed =~                                                     
##     ssno    (.12.)    0.467    0.058    8.065    0.000    0.353
##     sscs    (.13.)    0.440    0.054    8.096    0.000    0.334
##     ssmk    (.14.)    0.224    0.031    7.155    0.000    0.162
##   g =~                                                         
##     verbal  (.15.)    3.578    0.959    3.732    0.000    1.699
##     math    (.16.)    3.345    0.832    4.020    0.000    1.714
##     elctrnc (.17.)    1.446    0.216    6.692    0.000    1.022
##     speed   (.18.)    1.219    0.185    6.604    0.000    0.857
##  ci.upper   Std.lv  Std.all
##                            
##     0.324    0.806    0.891
##     0.328    0.816    0.887
##     0.301    0.754    0.818
##     0.182    0.441    0.492
##                            
##     0.327    0.783    0.895
##     0.232    0.529    0.566
##     0.302    0.723    0.813
##     0.275    0.650    0.704
##                            
##     0.399    0.563    0.721
##     0.396    0.553    0.707
##     0.232    0.323    0.361
##                            
##     0.580    0.736    0.756
##     0.547    0.694    0.725
##     0.285    0.353    0.378
##                            
##     5.457    0.963    0.963
##     4.975    0.958    0.958
##     1.869    0.822    0.822
##     1.581    0.773    0.773
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.36.)    0.454    0.050    9.088    0.000    0.356
##    .sswk    (.37.)    0.381    0.051    7.421    0.000    0.281
##    .sspc    (.38.)    0.302    0.051    5.891    0.000    0.201
##    .ssei    (.39.)    0.203    0.047    4.317    0.000    0.111
##    .ssar    (.40.)    0.367    0.050    7.394    0.000    0.270
##    .ssmk    (.41.)    0.410    0.054    7.654    0.000    0.305
##    .ssmc    (.42.)    0.376    0.047    8.008    0.000    0.284
##    .ssao    (.43.)    0.273    0.048    5.691    0.000    0.179
##    .ssai    (.44.)    0.053    0.041    1.289    0.197   -0.027
##    .sssi    (.45.)    0.171    0.041    4.179    0.000    0.091
##    .ssno    (.46.)    0.358    0.052    6.943    0.000    0.257
##    .sscs    (.47.)    0.320    0.052    6.218    0.000    0.219
##  ci.upper   Std.lv  Std.all
##     0.552    0.454    0.502
##     0.482    0.381    0.414
##     0.402    0.302    0.327
##     0.295    0.203    0.227
##     0.464    0.367    0.419
##     0.514    0.410    0.438
##     0.468    0.376    0.423
##     0.367    0.273    0.296
##     0.133    0.053    0.067
##     0.252    0.171    0.219
##     0.459    0.358    0.368
##     0.421    0.320    0.334
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.169    0.021    8.185    0.000    0.128
##    .sswk              0.181    0.020    9.209    0.000    0.142
##    .sspc              0.281    0.036    7.791    0.000    0.210
##    .ssei              0.278    0.030    9.204    0.000    0.219
##    .ssar              0.152    0.019    7.974    0.000    0.115
##    .ssmk              0.192    0.023    8.365    0.000    0.147
##    .ssmc              0.268    0.029    9.209    0.000    0.211
##    .ssao              0.429    0.036   12.033    0.000    0.359
##    .ssai              0.292    0.034    8.527    0.000    0.225
##    .sssi              0.306    0.034    8.948    0.000    0.239
##    .ssno              0.407    0.054    7.499    0.000    0.301
##    .sscs              0.436    0.055    7.873    0.000    0.328
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.209    0.169    0.206
##     0.219    0.181    0.214
##     0.352    0.281    0.330
##     0.337    0.278    0.346
##     0.190    0.152    0.199
##     0.237    0.192    0.220
##     0.326    0.268    0.339
##     0.499    0.429    0.504
##     0.360    0.292    0.480
##     0.373    0.306    0.500
##     0.514    0.407    0.429
##     0.545    0.436    0.475
##     1.000    0.072    0.072
##     1.000    0.082    0.082
##     1.000    0.324    0.324
##     1.000    0.402    0.402
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.217    0.054    3.984    0.000    0.110
##     sswk    (.p2.)    0.220    0.055    3.983    0.000    0.112
##     sspc    (.p3.)    0.203    0.050    4.068    0.000    0.105
##     ssei    (.p4.)    0.119    0.032    3.697    0.000    0.056
##   math =~                                                      
##     ssar    (.p5.)    0.224    0.052    4.297    0.000    0.122
##     ssmk    (.p6.)    0.152    0.041    3.717    0.000    0.072
##     ssmc    (.p7.)    0.207    0.048    4.276    0.000    0.112
##     ssao    (.p8.)    0.186    0.045    4.124    0.000    0.098
##   electronic =~                                                
##     ssai    (.p9.)    0.320    0.040    8.023    0.000    0.242
##     sssi    (.10.)    0.315    0.041    7.610    0.000    0.234
##     ssei    (.11.)    0.184    0.025    7.491    0.000    0.136
##   speed =~                                                     
##     ssno    (.12.)    0.467    0.058    8.065    0.000    0.353
##     sscs    (.13.)    0.440    0.054    8.096    0.000    0.334
##     ssmk    (.14.)    0.224    0.031    7.155    0.000    0.162
##   g =~                                                         
##     verbal  (.15.)    3.578    0.959    3.732    0.000    1.699
##     math    (.16.)    3.345    0.832    4.020    0.000    1.714
##     elctrnc (.17.)    1.446    0.216    6.692    0.000    1.022
##     speed   (.18.)    1.219    0.185    6.604    0.000    0.857
##  ci.upper   Std.lv  Std.all
##                            
##     0.324    0.900    0.893
##     0.328    0.910    0.885
##     0.301    0.842    0.846
##     0.182    0.492    0.468
##                            
##     0.327    0.849    0.879
##     0.232    0.573    0.585
##     0.302    0.783    0.795
##     0.275    0.705    0.693
##                            
##     0.399    0.858    0.782
##     0.396    0.843    0.841
##     0.232    0.492    0.468
##                            
##     0.580    0.820    0.765
##     0.547    0.773    0.758
##     0.285    0.393    0.401
##                            
##     5.457    0.953    0.953
##     4.975    0.976    0.976
##     1.869    0.596    0.596
##     1.581    0.767    0.767
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.36.)    0.454    0.050    9.088    0.000    0.356
##    .sswk    (.37.)    0.381    0.051    7.421    0.000    0.281
##    .sspc    (.38.)    0.302    0.051    5.891    0.000    0.201
##    .ssei    (.39.)    0.203    0.047    4.317    0.000    0.111
##    .ssar    (.40.)    0.367    0.050    7.394    0.000    0.270
##    .ssmk    (.41.)    0.410    0.054    7.654    0.000    0.305
##    .ssmc    (.42.)    0.376    0.047    8.008    0.000    0.284
##    .ssao    (.43.)    0.273    0.048    5.691    0.000    0.179
##    .ssai    (.44.)    0.053    0.041    1.289    0.197   -0.027
##    .sssi    (.45.)    0.171    0.041    4.179    0.000    0.091
##    .ssno    (.46.)    0.358    0.052    6.943    0.000    0.257
##    .sscs    (.47.)    0.320    0.052    6.218    0.000    0.219
##    .verbal           -0.446    0.147   -3.023    0.003   -0.735
##    .math             -0.149    0.143   -1.045    0.296   -0.430
##    .elctrnc           1.895    0.281    6.735    0.000    1.343
##    .speed            -0.833    0.162   -5.148    0.000   -1.150
##     g                 0.112    0.088    1.269    0.204   -0.061
##  ci.upper   Std.lv  Std.all
##     0.552    0.454    0.451
##     0.482    0.381    0.371
##     0.402    0.302    0.303
##     0.295    0.203    0.193
##     0.464    0.367    0.380
##     0.514    0.410    0.418
##     0.468    0.376    0.382
##     0.367    0.273    0.269
##     0.133    0.053    0.048
##     0.252    0.171    0.171
##     0.459    0.358    0.334
##     0.421    0.320    0.314
##    -0.157   -0.108   -0.108
##     0.131   -0.040   -0.040
##     2.446    0.708    0.708
##    -0.516   -0.474   -0.474
##     0.286    0.102    0.102
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.207    0.025    8.371    0.000    0.158
##    .sswk              0.230    0.023   10.153    0.000    0.186
##    .sspc              0.282    0.035    8.145    0.000    0.214
##    .ssei              0.346    0.037    9.482    0.000    0.275
##    .ssar              0.212    0.028    7.672    0.000    0.158
##    .ssmk              0.140    0.017    8.033    0.000    0.106
##    .ssmc              0.356    0.035   10.090    0.000    0.287
##    .ssao              0.537    0.053   10.181    0.000    0.434
##    .ssai              0.466    0.060    7.757    0.000    0.349
##    .sssi              0.293    0.048    6.101    0.000    0.199
##    .ssno              0.475    0.058    8.145    0.000    0.361
##    .sscs              0.443    0.074    6.008    0.000    0.298
##    .verbal            1.569    0.818    1.917    0.055   -0.035
##    .math              0.665    0.517    1.287    0.198   -0.348
##    .electronic        4.615    1.237    3.730    0.000    2.190
##    .speed             1.271    0.354    3.587    0.000    0.577
##     g                 1.220    0.152    8.045    0.000    0.922
##  ci.upper   Std.lv  Std.all
##     0.255    0.207    0.203
##     0.274    0.230    0.217
##     0.350    0.282    0.285
##     0.418    0.346    0.313
##     0.266    0.212    0.227
##     0.174    0.140    0.146
##     0.425    0.356    0.367
##     0.641    0.537    0.520
##     0.584    0.466    0.388
##     0.387    0.293    0.292
##     0.589    0.475    0.414
##     0.587    0.443    0.425
##     3.173    0.091    0.091
##     1.678    0.046    0.046
##     7.041    0.644    0.644
##     1.966    0.412    0.412
##     1.517    1.000    1.000
lavTestScore(scalar, release = 19:30) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 149.118 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1  .p36. == .p88. 43.459  1   0.000
## 2  .p37. == .p89.  0.002  1   0.963
## 3  .p38. == .p90. 66.036  1   0.000
## 4  .p39. == .p91.  1.300  1   0.254
## 5  .p40. == .p92.  3.379  1   0.066
## 6  .p41. == .p93.  9.794  1   0.002
## 7  .p42. == .p94. 50.729  1   0.000
## 8  .p43. == .p95. 10.142  1   0.001
## 9  .p44. == .p96.  1.916  1   0.166
## 10 .p45. == .p97.  0.399  1   0.528
## 11 .p46. == .p98. 18.657  1   0.000
## 12 .p47. == .p99.  4.032  1   0.045
scalar2<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("ssmc~1", "sspc~1", "ssno ~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   411.525   113.000     0.000     0.950     0.089     0.057 16441.716 
##       bic 
## 16743.704
Mc(scalar2)
## [1] 0.8000243
summary(scalar2, standardized=T, ci=T) # -.092
## lavaan 0.6-18 ended normally after 123 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        94
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               411.525     363.543
##   Degrees of freedom                               113         113
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.132
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          162.964     143.963
##     0                                          248.561     219.580
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.219    0.053    4.110    0.000    0.115
##     sswk    (.p2.)    0.219    0.053    4.108    0.000    0.115
##     sspc    (.p3.)    0.205    0.049    4.177    0.000    0.109
##     ssei    (.p4.)    0.124    0.032    3.849    0.000    0.061
##   math =~                                                      
##     ssar    (.p5.)    0.219    0.052    4.199    0.000    0.117
##     ssmk    (.p6.)    0.161    0.041    3.934    0.000    0.081
##     ssmc    (.p7.)    0.202    0.048    4.185    0.000    0.107
##     ssao    (.p8.)    0.183    0.045    4.034    0.000    0.094
##   electronic =~                                                
##     ssai    (.p9.)    0.326    0.040    8.184    0.000    0.248
##     sssi    (.10.)    0.321    0.041    7.744    0.000    0.239
##     ssei    (.11.)    0.176    0.024    7.297    0.000    0.129
##   speed =~                                                     
##     ssno    (.12.)    0.501    0.060    8.385    0.000    0.384
##     sscs    (.13.)    0.448    0.051    8.766    0.000    0.348
##     ssmk    (.14.)    0.197    0.028    7.007    0.000    0.142
##   g =~                                                         
##     verbal  (.15.)    3.556    0.926    3.838    0.000    1.740
##     math    (.16.)    3.428    0.869    3.942    0.000    1.723
##     elctrnc (.17.)    1.420    0.209    6.791    0.000    1.010
##     speed   (.18.)    1.163    0.169    6.894    0.000    0.832
##  ci.upper   Std.lv  Std.all
##                            
##     0.323    0.809    0.895
##     0.324    0.810    0.883
##     0.301    0.757    0.832
##     0.187    0.458    0.511
##                            
##     0.321    0.782    0.894
##     0.241    0.575    0.617
##     0.297    0.722    0.821
##     0.272    0.654    0.708
##                            
##     0.404    0.566    0.725
##     0.402    0.557    0.711
##     0.223    0.306    0.341
##                            
##     0.618    0.768    0.782
##     0.548    0.687    0.722
##     0.252    0.302    0.325
##                            
##     5.372    0.963    0.963
##     5.132    0.960    0.960
##     1.830    0.818    0.818
##     1.493    0.758    0.758
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.36.)    0.413    0.050    8.297    0.000    0.315
##    .sswk    (.37.)    0.341    0.051    6.682    0.000    0.241
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei    (.39.)    0.192    0.046    4.130    0.000    0.101
##    .ssar    (.40.)    0.398    0.049    8.136    0.000    0.302
##    .ssmk    (.41.)    0.447    0.052    8.599    0.000    0.345
##    .ssmc              0.263    0.048    5.461    0.000    0.169
##    .ssao    (.43.)    0.300    0.048    6.304    0.000    0.207
##    .ssai    (.44.)    0.056    0.041    1.367    0.172   -0.024
##    .sssi    (.45.)    0.176    0.041    4.258    0.000    0.095
##    .ssno              0.285    0.056    5.122    0.000    0.176
##    .sscs    (.47.)    0.359    0.051    6.977    0.000    0.258
##  ci.upper   Std.lv  Std.all
##     0.510    0.413    0.457
##     0.441    0.341    0.371
##     0.545    0.445    0.489
##     0.283    0.192    0.214
##     0.494    0.398    0.454
##     0.549    0.447    0.480
##     0.358    0.263    0.300
##     0.394    0.300    0.325
##     0.136    0.056    0.072
##     0.256    0.176    0.224
##     0.395    0.285    0.291
##     0.460    0.359    0.377
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.163    0.020    8.327    0.000    0.124
##    .sswk              0.186    0.020    9.301    0.000    0.147
##    .sspc              0.254    0.031    8.156    0.000    0.193
##    .ssei              0.280    0.030    9.255    0.000    0.220
##    .ssar              0.154    0.019    8.207    0.000    0.117
##    .ssmk              0.193    0.021    9.206    0.000    0.152
##    .ssmc              0.253    0.026    9.701    0.000    0.202
##    .ssao              0.426    0.036   11.984    0.000    0.356
##    .ssai              0.289    0.034    8.433    0.000    0.222
##    .sssi              0.304    0.034    8.888    0.000    0.237
##    .ssno              0.375    0.051    7.304    0.000    0.274
##    .sscs              0.433    0.054    7.957    0.000    0.326
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.201    0.163    0.199
##     0.226    0.186    0.221
##     0.315    0.254    0.307
##     0.339    0.280    0.348
##     0.191    0.154    0.201
##     0.234    0.193    0.222
##     0.304    0.253    0.326
##     0.495    0.426    0.499
##     0.357    0.289    0.474
##     0.371    0.304    0.495
##     0.475    0.375    0.388
##     0.539    0.433    0.478
##     1.000    0.073    0.073
##     1.000    0.078    0.078
##     1.000    0.332    0.332
##     1.000    0.425    0.425
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.219    0.053    4.110    0.000    0.115
##     sswk    (.p2.)    0.219    0.053    4.108    0.000    0.115
##     sspc    (.p3.)    0.205    0.049    4.177    0.000    0.109
##     ssei    (.p4.)    0.124    0.032    3.849    0.000    0.061
##   math =~                                                      
##     ssar    (.p5.)    0.219    0.052    4.199    0.000    0.117
##     ssmk    (.p6.)    0.161    0.041    3.934    0.000    0.081
##     ssmc    (.p7.)    0.202    0.048    4.185    0.000    0.107
##     ssao    (.p8.)    0.183    0.045    4.034    0.000    0.094
##   electronic =~                                                
##     ssai    (.p9.)    0.326    0.040    8.184    0.000    0.248
##     sssi    (.10.)    0.321    0.041    7.744    0.000    0.239
##     ssei    (.11.)    0.176    0.024    7.297    0.000    0.129
##   speed =~                                                     
##     ssno    (.12.)    0.501    0.060    8.385    0.000    0.384
##     sscs    (.13.)    0.448    0.051    8.766    0.000    0.348
##     ssmk    (.14.)    0.197    0.028    7.007    0.000    0.142
##   g =~                                                         
##     verbal  (.15.)    3.556    0.926    3.838    0.000    1.740
##     math    (.16.)    3.428    0.869    3.942    0.000    1.723
##     elctrnc (.17.)    1.420    0.209    6.791    0.000    1.010
##     speed   (.18.)    1.163    0.169    6.894    0.000    0.832
##  ci.upper   Std.lv  Std.all
##                            
##     0.323    0.904    0.898
##     0.324    0.906    0.880
##     0.301    0.846    0.861
##     0.187    0.512    0.489
##                            
##     0.321    0.848    0.878
##     0.241    0.623    0.638
##     0.297    0.782    0.807
##     0.272    0.709    0.697
##                            
##     0.404    0.863    0.785
##     0.402    0.848    0.845
##     0.223    0.466    0.444
##                            
##     0.618    0.860    0.795
##     0.548    0.769    0.758
##     0.252    0.338    0.346
##                            
##     5.372    0.951    0.951
##     5.132    0.979    0.979
##     1.830    0.593    0.593
##     1.493    0.749    0.749
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.36.)    0.413    0.050    8.297    0.000    0.315
##    .sswk    (.37.)    0.341    0.051    6.682    0.000    0.241
##    .sspc              0.063    0.058    1.085    0.278   -0.051
##    .ssei    (.39.)    0.192    0.046    4.130    0.000    0.101
##    .ssar    (.40.)    0.398    0.049    8.136    0.000    0.302
##    .ssmk    (.41.)    0.447    0.052    8.599    0.000    0.345
##    .ssmc              0.601    0.059   10.117    0.000    0.485
##    .ssao    (.43.)    0.300    0.048    6.304    0.000    0.207
##    .ssai    (.44.)    0.056    0.041    1.367    0.172   -0.024
##    .sssi    (.45.)    0.176    0.041    4.258    0.000    0.095
##    .ssno              0.553    0.077    7.186    0.000    0.402
##    .sscs    (.47.)    0.359    0.051    6.977    0.000    0.258
##    .verbal            0.029    0.138    0.208    0.835   -0.242
##    .math             -0.460    0.154   -2.991    0.003   -0.762
##    .elctrnc           1.851    0.275    6.741    0.000    1.313
##    .speed            -0.979    0.161   -6.068    0.000   -1.295
##     g                 0.101    0.088    1.152    0.249   -0.071
##  ci.upper   Std.lv  Std.all
##     0.510    0.413    0.410
##     0.441    0.341    0.331
##     0.177    0.063    0.064
##     0.283    0.192    0.183
##     0.494    0.398    0.412
##     0.549    0.447    0.458
##     0.717    0.601    0.620
##     0.394    0.300    0.296
##     0.136    0.056    0.051
##     0.256    0.176    0.175
##     0.704    0.553    0.511
##     0.460    0.359    0.354
##     0.299    0.007    0.007
##    -0.159   -0.119   -0.119
##     2.390    0.700    0.700
##    -0.663   -0.570   -0.570
##     0.273    0.092    0.092
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.196    0.022    8.711    0.000    0.152
##    .sswk              0.238    0.023   10.386    0.000    0.193
##    .sspc              0.251    0.029    8.774    0.000    0.195
##    .ssei              0.350    0.036    9.630    0.000    0.279
##    .ssar              0.213    0.027    7.903    0.000    0.160
##    .ssmk              0.143    0.016    8.854    0.000    0.112
##    .ssmc              0.327    0.032   10.345    0.000    0.265
##    .ssao              0.531    0.052   10.274    0.000    0.429
##    .ssai              0.465    0.061    7.605    0.000    0.345
##    .sssi              0.287    0.049    5.883    0.000    0.192
##    .ssno              0.430    0.055    7.756    0.000    0.322
##    .sscs              0.437    0.070    6.284    0.000    0.301
##    .verbal            1.616    0.816    1.981    0.048    0.017
##    .math              0.633    0.512    1.236    0.216   -0.370
##    .electronic        4.538    1.200    3.781    0.000    2.185
##    .speed             1.296    0.364    3.564    0.000    0.583
##     g                 1.221    0.151    8.062    0.000    0.924
##  ci.upper   Std.lv  Std.all
##     0.240    0.196    0.193
##     0.283    0.238    0.225
##     0.307    0.251    0.259
##     0.421    0.350    0.319
##     0.266    0.213    0.229
##     0.175    0.143    0.150
##     0.389    0.327    0.348
##     0.632    0.531    0.514
##     0.584    0.465    0.384
##     0.383    0.287    0.285
##     0.539    0.430    0.368
##     0.573    0.437    0.425
##     3.214    0.095    0.095
##     1.636    0.042    0.042
##     6.890    0.648    0.648
##     2.008    0.440    0.440
##     1.518    1.000    1.000
lavTestScore(scalar2, release = 19:27, standardized=T, epc=T) # with only ssmc and sspc the fit was not satisfactory and other subtests have similar X2 values, but ssno had the highest value in sepc.all earlier
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 18.609  9   0.029
## 
## $uni
## 
## univariate score tests:
## 
##     lhs op   rhs     X2 df p.value
## 1 .p36. == .p88. 11.942  1   0.001
## 2 .p37. == .p89. 12.920  1   0.000
## 3 .p39. == .p91.  0.060  1   0.806
## 4 .p40. == .p92.  2.605  1   0.107
## 5 .p41. == .p93.  0.004  1   0.947
## 6 .p43. == .p95.  3.970  1   0.046
## 7 .p44. == .p96.  1.247  1   0.264
## 8 .p45. == .p97.  0.898  1   0.343
## 9 .p47. == .p99.  0.004  1   0.947
## 
## $epc
## 
## expected parameter changes (epc) and expected parameter values (epv):
## 
##           lhs op        rhs block group free label plabel   est    epc
## 1      verbal =~       ssgs     1     1    1  .p1.   .p1. 0.219 -0.001
## 2      verbal =~       sswk     1     1    2  .p2.   .p2. 0.219  0.001
## 3      verbal =~       sspc     1     1    3  .p3.   .p3. 0.205  0.000
## 4      verbal =~       ssei     1     1    4  .p4.   .p4. 0.124  0.001
## 5        math =~       ssar     1     1    5  .p5.   .p5. 0.219  0.000
## 6        math =~       ssmk     1     1    6  .p6.   .p6. 0.161  0.000
## 7        math =~       ssmc     1     1    7  .p7.   .p7. 0.202  0.000
## 8        math =~       ssao     1     1    8  .p8.   .p8. 0.183  0.000
## 9  electronic =~       ssai     1     1    9  .p9.   .p9. 0.326  0.006
## 10 electronic =~       sssi     1     1   10 .p10.  .p10. 0.321 -0.005
## 11 electronic =~       ssei     1     1   11 .p11.  .p11. 0.176 -0.002
## 12      speed =~       ssno     1     1   12 .p12.  .p12. 0.501  0.000
## 13      speed =~       sscs     1     1   13 .p13.  .p13. 0.448  0.000
## 14      speed =~       ssmk     1     1   14 .p14.  .p14. 0.197 -0.001
## 15          g =~     verbal     1     1   15 .p15.  .p15. 3.556  0.002
## 16          g =~       math     1     1   16 .p16.  .p16. 3.428  0.000
## 17          g =~ electronic     1     1   17 .p17.  .p17. 1.420 -0.001
## 18          g =~      speed     1     1   18 .p18.  .p18. 1.163 -0.001
## 19       ssgs ~~       ssgs     1     1   19        .p19. 0.163  0.000
## 20       sswk ~~       sswk     1     1   20        .p20. 0.186  0.000
## 21       sspc ~~       sspc     1     1   21        .p21. 0.254  0.000
## 22       ssei ~~       ssei     1     1   22        .p22. 0.280  0.000
## 23       ssar ~~       ssar     1     1   23        .p23. 0.154  0.000
## 24       ssmk ~~       ssmk     1     1   24        .p24. 0.193  0.000
## 25       ssmc ~~       ssmc     1     1   25        .p25. 0.253  0.000
## 26       ssao ~~       ssao     1     1   26        .p26. 0.426  0.000
## 27       ssai ~~       ssai     1     1   27        .p27. 0.289 -0.004
## 28       sssi ~~       sssi     1     1   28        .p28. 0.304  0.003
## 29       ssno ~~       ssno     1     1   29        .p29. 0.375  0.000
## 30       sscs ~~       sscs     1     1   30        .p30. 0.433  0.000
## 31     verbal ~~     verbal     1     1    0        .p31. 1.000     NA
## 32       math ~~       math     1     1    0        .p32. 1.000     NA
## 33 electronic ~~ electronic     1     1    0        .p33. 1.000     NA
## 34      speed ~~      speed     1     1    0        .p34. 1.000     NA
## 35          g ~~          g     1     1    0        .p35. 1.000     NA
## 36       ssgs ~1                1     1   31 .p36.  .p36. 0.413 -0.035
## 37       sswk ~1                1     1   32 .p37.  .p37. 0.341  0.041
## 38       sspc ~1                1     1   33        .p38. 0.445  0.000
## 39       ssei ~1                1     1   34 .p39.  .p39. 0.192 -0.003
## 40       ssar ~1                1     1   35 .p40.  .p40. 0.398 -0.013
## 41       ssmk ~1                1     1   36 .p41.  .p41. 0.447  0.001
## 42       ssmc ~1                1     1   37        .p42. 0.263  0.000
## 43       ssao ~1                1     1   38 .p43.  .p43. 0.300  0.042
## 44       ssai ~1                1     1   39 .p44.  .p44. 0.056  0.013
## 45       sssi ~1                1     1   40 .p45.  .p45. 0.176 -0.012
## 46       ssno ~1                1     1   41        .p46. 0.285  0.000
## 47       sscs ~1                1     1   42 .p47.  .p47. 0.359 -0.001
## 48     verbal ~1                1     1    0        .p48. 0.000     NA
## 49       math ~1                1     1    0        .p49. 0.000     NA
## 50 electronic ~1                1     1    0        .p50. 0.000     NA
## 51      speed ~1                1     1    0        .p51. 0.000     NA
## 52          g ~1                1     1    0        .p52. 0.000     NA
## 53     verbal =~       ssgs     2     2   43  .p1.  .p53. 0.219 -0.001
## 54     verbal =~       sswk     2     2   44  .p2.  .p54. 0.219  0.001
## 55     verbal =~       sspc     2     2   45  .p3.  .p55. 0.205  0.000
## 56     verbal =~       ssei     2     2   46  .p4.  .p56. 0.124  0.001
## 57       math =~       ssar     2     2   47  .p5.  .p57. 0.219  0.000
## 58       math =~       ssmk     2     2   48  .p6.  .p58. 0.161  0.000
## 59       math =~       ssmc     2     2   49  .p7.  .p59. 0.202  0.000
## 60       math =~       ssao     2     2   50  .p8.  .p60. 0.183  0.000
## 61 electronic =~       ssai     2     2   51  .p9.  .p61. 0.326  0.006
## 62 electronic =~       sssi     2     2   52 .p10.  .p62. 0.321 -0.005
## 63 electronic =~       ssei     2     2   53 .p11.  .p63. 0.176 -0.002
## 64      speed =~       ssno     2     2   54 .p12.  .p64. 0.501  0.000
## 65      speed =~       sscs     2     2   55 .p13.  .p65. 0.448  0.000
## 66      speed =~       ssmk     2     2   56 .p14.  .p66. 0.197 -0.001
## 67          g =~     verbal     2     2   57 .p15.  .p67. 3.556  0.002
## 68          g =~       math     2     2   58 .p16.  .p68. 3.428  0.000
## 69          g =~ electronic     2     2   59 .p17.  .p69. 1.420 -0.001
## 70          g =~      speed     2     2   60 .p18.  .p70. 1.163 -0.001
## 71       ssgs ~~       ssgs     2     2   61        .p71. 0.196  0.001
##      epv sepc.lv sepc.all sepc.nox
## 1  0.218  -0.003   -0.003   -0.003
## 2  0.220   0.002    0.002    0.002
## 3  0.205   0.000    0.000    0.000
## 4  0.125   0.003    0.003    0.003
## 5  0.219   0.000    0.000    0.000
## 6  0.161   0.001    0.001    0.001
## 7  0.202   0.000    0.000    0.000
## 8  0.183  -0.001   -0.001   -0.001
## 9  0.332   0.010    0.013    0.013
## 10 0.316  -0.008   -0.010   -0.010
## 11 0.174  -0.004   -0.004   -0.004
## 12 0.501   0.000    0.000    0.000
## 13 0.448   0.000    0.001    0.001
## 14 0.197  -0.001   -0.001   -0.001
## 15 3.558   0.000    0.000    0.000
## 16 3.427   0.000    0.000    0.000
## 17 1.418  -0.001   -0.001   -0.001
## 18 1.162   0.000    0.000    0.000
## 19 0.163   0.163    0.199    0.199
## 20 0.186  -0.186   -0.221   -0.221
## 21 0.254   0.254    0.307    0.307
## 22 0.280   0.280    0.348    0.348
## 23 0.154  -0.154   -0.201   -0.201
## 24 0.193   0.193    0.222    0.222
## 25 0.253   0.253    0.326    0.326
## 26 0.426   0.426    0.499    0.499
## 27 0.285  -0.289   -0.474   -0.474
## 28 0.307   0.304    0.495    0.495
## 29 0.375  -0.375   -0.388   -0.388
## 30 0.432  -0.433   -0.478   -0.478
## 31    NA      NA       NA       NA
## 32    NA      NA       NA       NA
## 33    NA      NA       NA       NA
## 34    NA      NA       NA       NA
## 35    NA      NA       NA       NA
## 36 0.378  -0.035   -0.039   -0.039
## 37 0.382   0.041    0.045    0.045
## 38 0.445   0.000    0.000    0.000
## 39 0.188  -0.003   -0.004   -0.004
## 40 0.384  -0.013   -0.015   -0.015
## 41 0.448   0.001    0.001    0.001
## 42 0.263   0.000    0.000    0.000
## 43 0.343   0.042    0.046    0.046
## 44 0.069   0.013    0.017    0.017
## 45 0.163  -0.012   -0.016   -0.016
## 46 0.285   0.000    0.000    0.000
## 47 0.358  -0.001   -0.001   -0.001
## 48    NA      NA       NA       NA
## 49    NA      NA       NA       NA
## 50    NA      NA       NA       NA
## 51    NA      NA       NA       NA
## 52    NA      NA       NA       NA
## 53 0.218  -0.003   -0.003   -0.003
## 54 0.220   0.002    0.002    0.002
## 55 0.205   0.000    0.000    0.000
## 56 0.125   0.003    0.003    0.003
## 57 0.219   0.000    0.000    0.000
## 58 0.161   0.001    0.001    0.001
## 59 0.202   0.000    0.000    0.000
## 60 0.183  -0.001   -0.001   -0.001
## 61 0.332   0.016    0.014    0.014
## 62 0.316  -0.012   -0.012   -0.012
## 63 0.174  -0.006   -0.005   -0.005
## 64 0.501   0.000    0.000    0.000
## 65 0.448   0.001    0.001    0.001
## 66 0.197  -0.001   -0.001   -0.001
## 67 3.558   0.000    0.000    0.000
## 68 3.427   0.000    0.000    0.000
## 69 1.418  -0.001   -0.001   -0.001
## 70 1.162   0.000    0.000    0.000
## 71 0.197   0.196    0.193    0.193
##  [ reached 'max' / getOption("max.print") -- omitted 33 rows ]
strict<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("ssmc~1", "sspc~1", "ssno ~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   445.195   125.000     0.000     0.947     0.087     0.061 16451.386 
##       bic 
## 16699.287
Mc(strict) 
## [1] 0.7871716
latent<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("ssmc~1", "sspc~1", "ssno ~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 1.167720e-12) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   472.498   118.000     0.000     0.941     0.095     0.108 16492.689 
##       bic 
## 16772.140
Mc(latent)
## [1] 0.7672474
summary(latent, standardized=T, ci=T) # -.065
## lavaan 0.6-18 ended normally after 78 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        89
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               472.498     416.062
##   Degrees of freedom                               118         118
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.136
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          197.409     173.831
##     0                                          275.088     242.232
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.241    0.043    5.607    0.000    0.157
##     sswk    (.p2.)    0.241    0.042    5.680    0.000    0.158
##     sspc    (.p3.)    0.225    0.039    5.764    0.000    0.148
##     ssei    (.p4.)    0.138    0.028    5.021    0.000    0.084
##   math =~                                                      
##     ssar    (.p5.)    0.207    0.045    4.597    0.000    0.119
##     ssmk    (.p6.)    0.151    0.036    4.198    0.000    0.080
##     ssmc    (.p7.)    0.192    0.042    4.606    0.000    0.110
##     ssao    (.p8.)    0.173    0.039    4.463    0.000    0.097
##   electronic =~                                                
##     ssai    (.p9.)    0.502    0.034   14.634    0.000    0.435
##     sssi    (.10.)    0.508    0.034   14.791    0.000    0.440
##     ssei    (.11.)    0.269    0.030    9.027    0.000    0.210
##   speed =~                                                     
##     ssno    (.12.)    0.538    0.049   10.893    0.000    0.442
##     sscs    (.13.)    0.481    0.040   12.032    0.000    0.403
##     ssmk    (.14.)    0.217    0.027    7.982    0.000    0.163
##   g =~                                                         
##     verbal  (.15.)    3.414    0.653    5.226    0.000    2.134
##     math    (.16.)    3.807    0.887    4.290    0.000    2.067
##     elctrnc (.17.)    1.017    0.099   10.305    0.000    0.823
##     speed   (.18.)    1.132    0.125    9.087    0.000    0.888
##  ci.upper   Std.lv  Std.all
##                            
##     0.325    0.856    0.905
##     0.324    0.857    0.894
##     0.301    0.799    0.846
##     0.192    0.491    0.510
##                            
##     0.295    0.815    0.902
##     0.221    0.594    0.615
##     0.273    0.755    0.831
##     0.249    0.681    0.722
##                            
##     0.569    0.716    0.810
##     0.575    0.724    0.814
##     0.327    0.383    0.398
##                            
##     0.635    0.813    0.804
##     0.559    0.727    0.742
##     0.270    0.327    0.339
##                            
##     4.695    0.960    0.960
##     5.546    0.967    0.967
##     1.210    0.713    0.713
##     1.376    0.749    0.749
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.36.)    0.412    0.050    8.273    0.000    0.315
##    .sswk    (.37.)    0.340    0.051    6.663    0.000    0.240
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei    (.39.)    0.194    0.046    4.206    0.000    0.104
##    .ssar    (.40.)    0.397    0.049    8.121    0.000    0.301
##    .ssmk    (.41.)    0.448    0.052    8.625    0.000    0.347
##    .ssmc              0.263    0.048    5.461    0.000    0.169
##    .ssao    (.43.)    0.300    0.048    6.291    0.000    0.207
##    .ssai    (.44.)    0.060    0.041    1.466    0.143   -0.020
##    .sssi    (.45.)    0.169    0.041    4.105    0.000    0.089
##    .ssno              0.285    0.056    5.122    0.000    0.176
##    .sscs    (.47.)    0.358    0.051    6.957    0.000    0.257
##  ci.upper   Std.lv  Std.all
##     0.510    0.412    0.436
##     0.440    0.340    0.355
##     0.545    0.445    0.471
##     0.285    0.194    0.201
##     0.493    0.397    0.440
##     0.550    0.448    0.464
##     0.358    0.263    0.290
##     0.393    0.300    0.318
##     0.140    0.060    0.068
##     0.250    0.169    0.191
##     0.395    0.285    0.282
##     0.458    0.358    0.365
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.161    0.020    8.263    0.000    0.123
##    .sswk              0.185    0.020    9.369    0.000    0.146
##    .sspc              0.254    0.031    8.172    0.000    0.193
##    .ssei              0.283    0.030    9.462    0.000    0.224
##    .ssar              0.152    0.018    8.241    0.000    0.116
##    .ssmk              0.190    0.021    8.943    0.000    0.149
##    .ssmc              0.254    0.026    9.656    0.000    0.203
##    .ssao              0.426    0.036   11.959    0.000    0.356
##    .ssai              0.268    0.035    7.579    0.000    0.199
##    .sssi              0.266    0.036    7.469    0.000    0.196
##    .ssno              0.361    0.052    6.967    0.000    0.259
##    .sscs              0.431    0.055    7.826    0.000    0.323
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.200    0.161    0.180
##     0.223    0.185    0.201
##     0.314    0.254    0.284
##     0.342    0.283    0.305
##     0.188    0.152    0.186
##     0.232    0.190    0.204
##     0.306    0.254    0.309
##     0.496    0.426    0.479
##     0.337    0.268    0.343
##     0.336    0.266    0.337
##     0.462    0.361    0.353
##     0.539    0.431    0.449
##     1.000    0.079    0.079
##     1.000    0.065    0.065
##     1.000    0.492    0.492
##     1.000    0.438    0.438
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.241    0.043    5.607    0.000    0.157
##     sswk    (.p2.)    0.241    0.042    5.680    0.000    0.158
##     sspc    (.p3.)    0.225    0.039    5.764    0.000    0.148
##     ssei    (.p4.)    0.138    0.028    5.021    0.000    0.084
##   math =~                                                      
##     ssar    (.p5.)    0.207    0.045    4.597    0.000    0.119
##     ssmk    (.p6.)    0.151    0.036    4.198    0.000    0.080
##     ssmc    (.p7.)    0.192    0.042    4.606    0.000    0.110
##     ssao    (.p8.)    0.173    0.039    4.463    0.000    0.097
##   electronic =~                                                
##     ssai    (.p9.)    0.502    0.034   14.634    0.000    0.435
##     sssi    (.10.)    0.508    0.034   14.791    0.000    0.440
##     ssei    (.11.)    0.269    0.030    9.027    0.000    0.210
##   speed =~                                                     
##     ssno    (.12.)    0.538    0.049   10.893    0.000    0.442
##     sscs    (.13.)    0.481    0.040   12.032    0.000    0.403
##     ssmk    (.14.)    0.217    0.027    7.982    0.000    0.163
##   g =~                                                         
##     verbal  (.15.)    3.414    0.653    5.226    0.000    2.134
##     math    (.16.)    3.807    0.887    4.290    0.000    2.067
##     elctrnc (.17.)    1.017    0.099   10.305    0.000    0.823
##     speed   (.18.)    1.132    0.125    9.087    0.000    0.888
##  ci.upper   Std.lv  Std.all
##                            
##     0.325    0.856    0.889
##     0.324    0.857    0.869
##     0.301    0.799    0.844
##     0.192    0.491    0.490
##                            
##     0.295    0.815    0.867
##     0.221    0.594    0.630
##     0.273    0.755    0.801
##     0.249    0.681    0.683
##                            
##     0.569    0.716    0.705
##     0.575    0.724    0.781
##     0.327    0.383    0.382
##                            
##     0.635    0.813    0.773
##     0.559    0.727    0.738
##     0.270    0.327    0.347
##                            
##     4.695    0.960    0.960
##     5.546    0.967    0.967
##     1.210    0.713    0.713
##     1.376    0.749    0.749
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.36.)    0.412    0.050    8.273    0.000    0.315
##    .sswk    (.37.)    0.340    0.051    6.663    0.000    0.240
##    .sspc              0.062    0.058    1.071    0.284   -0.052
##    .ssei    (.39.)    0.194    0.046    4.206    0.000    0.104
##    .ssar    (.40.)    0.397    0.049    8.121    0.000    0.301
##    .ssmk    (.41.)    0.448    0.052    8.625    0.000    0.347
##    .ssmc              0.600    0.060   10.063    0.000    0.483
##    .ssao    (.43.)    0.300    0.048    6.291    0.000    0.207
##    .ssai    (.44.)    0.060    0.041    1.466    0.143   -0.020
##    .sssi    (.45.)    0.169    0.041    4.105    0.000    0.089
##    .ssno              0.551    0.077    7.189    0.000    0.400
##    .sscs    (.47.)    0.358    0.051    6.957    0.000    0.257
##    .verbal            0.137    0.121    1.132    0.258   -0.100
##    .math             -0.362    0.120   -3.007    0.003   -0.598
##    .elctrnc           1.214    0.123    9.843    0.000    0.972
##    .speed            -0.870    0.134   -6.477    0.000   -1.134
##     g                 0.065    0.082    0.787    0.431   -0.097
##  ci.upper   Std.lv  Std.all
##     0.510    0.412    0.428
##     0.440    0.340    0.345
##     0.176    0.062    0.066
##     0.285    0.194    0.193
##     0.493    0.397    0.423
##     0.550    0.448    0.476
##     0.717    0.600    0.637
##     0.393    0.300    0.301
##     0.140    0.060    0.059
##     0.250    0.169    0.183
##     0.701    0.551    0.524
##     0.458    0.358    0.363
##     0.373    0.038    0.038
##    -0.126   -0.092   -0.092
##     1.456    0.851    0.851
##    -0.607   -0.576   -0.576
##     0.226    0.065    0.065
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.195    0.022    9.026    0.000    0.153
##    .sswk              0.237    0.023   10.452    0.000    0.193
##    .sspc              0.258    0.029    8.908    0.000    0.201
##    .ssei              0.361    0.038    9.530    0.000    0.286
##    .ssar              0.218    0.027    8.096    0.000    0.166
##    .ssmk              0.147    0.016    8.951    0.000    0.115
##    .ssmc              0.318    0.031   10.283    0.000    0.258
##    .ssao              0.531    0.052   10.279    0.000    0.430
##    .ssai              0.518    0.062    8.295    0.000    0.396
##    .sssi              0.335    0.051    6.634    0.000    0.236
##    .ssno              0.444    0.058    7.656    0.000    0.330
##    .sscs              0.441    0.069    6.380    0.000    0.305
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.237    0.195    0.210
##     0.282    0.237    0.244
##     0.315    0.258    0.288
##     0.435    0.361    0.358
##     0.271    0.218    0.248
##     0.180    0.147    0.166
##     0.379    0.318    0.359
##     0.632    0.531    0.534
##     0.641    0.518    0.503
##     0.434    0.335    0.390
##     0.558    0.444    0.402
##     0.576    0.441    0.455
##     1.000    0.079    0.079
##     1.000    0.065    0.065
##     1.000    0.492    0.492
##     1.000    0.438    0.438
##     1.000    1.000    1.000
latent2<-cfa(hof.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("ssmc~1", "sspc~1", "ssno ~1"))
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   412.930   114.000     0.000     0.950     0.088     0.057 16441.121 
##       bic 
## 16738.601
Mc(latent2)
## [1] 0.7997824
summary(latent2, standardized=T, ci=T) # g -.093 Std.all
## lavaan 0.6-18 ended normally after 113 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        93
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               412.930     363.572
##   Degrees of freedom                               114         114
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.136
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          163.543     143.995
##     0                                          249.387     219.578
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.217    0.054    4.027    0.000    0.112
##     sswk    (.p2.)    0.218    0.054    4.024    0.000    0.112
##     sspc    (.p3.)    0.204    0.050    4.090    0.000    0.106
##     ssei    (.p4.)    0.123    0.033    3.779    0.000    0.059
##   math =~                                                      
##     ssar    (.p5.)    0.220    0.052    4.196    0.000    0.117
##     ssmk    (.p6.)    0.161    0.041    3.923    0.000    0.081
##     ssmc    (.p7.)    0.203    0.048    4.182    0.000    0.108
##     ssao    (.p8.)    0.184    0.046    4.030    0.000    0.094
##   electronic =~                                                
##     ssai    (.p9.)    0.325    0.040    8.137    0.000    0.247
##     sssi    (.10.)    0.319    0.042    7.697    0.000    0.238
##     ssei    (.11.)    0.176    0.024    7.285    0.000    0.128
##   speed =~                                                     
##     ssno    (.12.)    0.533    0.049   10.789    0.000    0.436
##     sscs    (.13.)    0.476    0.040   11.922    0.000    0.398
##     ssmk    (.14.)    0.211    0.027    7.768    0.000    0.158
##   g =~                                                         
##     verbal  (.15.)    3.579    0.952    3.759    0.000    1.713
##     math    (.16.)    3.416    0.866    3.944    0.000    1.719
##     elctrnc (.17.)    1.424    0.211    6.756    0.000    1.011
##     speed   (.18.)    1.093    0.127    8.606    0.000    0.844
##  ci.upper   Std.lv  Std.all
##                            
##     0.323    0.808    0.895
##     0.324    0.809    0.882
##     0.301    0.756    0.832
##     0.187    0.457    0.511
##                            
##     0.323    0.783    0.894
##     0.242    0.574    0.614
##     0.298    0.722    0.821
##     0.273    0.654    0.708
##                            
##     0.403    0.565    0.724
##     0.401    0.556    0.710
##     0.223    0.305    0.341
##                            
##     0.630    0.790    0.795
##     0.554    0.705    0.732
##     0.264    0.313    0.334
##                            
##     5.446    0.963    0.963
##     5.114    0.960    0.960
##     1.837    0.818    0.818
##     1.342    0.738    0.738
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.36.)    0.413    0.050    8.295    0.000    0.315
##    .sswk    (.37.)    0.341    0.051    6.682    0.000    0.241
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei    (.39.)    0.192    0.046    4.127    0.000    0.101
##    .ssar    (.40.)    0.398    0.049    8.127    0.000    0.302
##    .ssmk    (.41.)    0.448    0.052    8.610    0.000    0.346
##    .ssmc              0.263    0.048    5.461    0.000    0.169
##    .ssao    (.43.)    0.300    0.048    6.300    0.000    0.207
##    .ssai    (.44.)    0.056    0.041    1.368    0.171   -0.024
##    .sssi    (.45.)    0.176    0.041    4.258    0.000    0.095
##    .ssno              0.285    0.056    5.122    0.000    0.176
##    .sscs    (.47.)    0.359    0.051    6.970    0.000    0.258
##  ci.upper   Std.lv  Std.all
##     0.510    0.413    0.457
##     0.441    0.341    0.371
##     0.545    0.445    0.489
##     0.282    0.192    0.214
##     0.494    0.398    0.454
##     0.550    0.448    0.479
##     0.358    0.263    0.300
##     0.394    0.300    0.325
##     0.136    0.056    0.072
##     0.256    0.176    0.224
##     0.395    0.285    0.287
##     0.459    0.359    0.372
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .ssgs              0.162    0.020    8.318    0.000    0.124
##    .sswk              0.187    0.020    9.296    0.000    0.147
##    .sspc              0.254    0.031    8.165    0.000    0.193
##    .ssei              0.279    0.030    9.258    0.000    0.220
##    .ssar              0.154    0.019    8.174    0.000    0.117
##    .ssmk              0.192    0.021    9.038    0.000    0.151
##    .ssmc              0.252    0.026    9.699    0.000    0.201
##    .ssao              0.426    0.036   11.983    0.000    0.356
##    .ssai              0.290    0.034    8.448    0.000    0.222
##    .sssi              0.304    0.034    8.889    0.000    0.237
##    .ssno              0.363    0.052    6.974    0.000    0.261
##    .sscs              0.430    0.055    7.849    0.000    0.323
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.456    0.456
##     0.201    0.162    0.199
##     0.226    0.187    0.222
##     0.315    0.254    0.308
##     0.339    0.279    0.348
##     0.191    0.154    0.201
##     0.234    0.192    0.220
##     0.303    0.252    0.326
##     0.495    0.426    0.499
##     0.357    0.290    0.476
##     0.371    0.304    0.496
##     0.466    0.363    0.368
##     0.538    0.430    0.464
##     1.000    0.072    0.072
##     1.000    0.079    0.079
##     1.000    0.330    0.330
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.217    0.054    4.027    0.000    0.112
##     sswk    (.p2.)    0.218    0.054    4.024    0.000    0.112
##     sspc    (.p3.)    0.204    0.050    4.090    0.000    0.106
##     ssei    (.p4.)    0.123    0.033    3.779    0.000    0.059
##   math =~                                                      
##     ssar    (.p5.)    0.220    0.052    4.196    0.000    0.117
##     ssmk    (.p6.)    0.161    0.041    3.923    0.000    0.081
##     ssmc    (.p7.)    0.203    0.048    4.182    0.000    0.108
##     ssao    (.p8.)    0.184    0.046    4.030    0.000    0.094
##   electronic =~                                                
##     ssai    (.p9.)    0.325    0.040    8.137    0.000    0.247
##     sssi    (.10.)    0.319    0.042    7.697    0.000    0.238
##     ssei    (.11.)    0.176    0.024    7.285    0.000    0.128
##   speed =~                                                     
##     ssno    (.12.)    0.533    0.049   10.789    0.000    0.436
##     sscs    (.13.)    0.476    0.040   11.922    0.000    0.398
##     ssmk    (.14.)    0.211    0.027    7.768    0.000    0.158
##   g =~                                                         
##     verbal  (.15.)    3.579    0.952    3.759    0.000    1.713
##     math    (.16.)    3.416    0.866    3.944    0.000    1.719
##     elctrnc (.17.)    1.424    0.211    6.756    0.000    1.011
##     speed   (.18.)    1.093    0.127    8.606    0.000    0.844
##  ci.upper   Std.lv  Std.all
##                            
##     0.323    0.906    0.898
##     0.324    0.907    0.881
##     0.301    0.848    0.861
##     0.187    0.513    0.489
##                            
##     0.323    0.848    0.879
##     0.242    0.622    0.638
##     0.298    0.781    0.806
##     0.273    0.708    0.697
##                            
##     0.403    0.864    0.785
##     0.401    0.850    0.846
##     0.223    0.467    0.445
##                            
##     0.630    0.836    0.782
##     0.554    0.747    0.747
##     0.264    0.331    0.339
##                            
##     5.446    0.950    0.950
##     5.114    0.980    0.980
##     1.837    0.592    0.592
##     1.342    0.770    0.770
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.36.)    0.413    0.050    8.295    0.000    0.315
##    .sswk    (.37.)    0.341    0.051    6.682    0.000    0.241
##    .sspc              0.063    0.058    1.086    0.277   -0.051
##    .ssei    (.39.)    0.192    0.046    4.127    0.000    0.101
##    .ssar    (.40.)    0.398    0.049    8.127    0.000    0.302
##    .ssmk    (.41.)    0.448    0.052    8.610    0.000    0.346
##    .ssmc              0.601    0.059   10.095    0.000    0.484
##    .ssao    (.43.)    0.300    0.048    6.300    0.000    0.207
##    .ssai    (.44.)    0.056    0.041    1.368    0.171   -0.024
##    .sssi    (.45.)    0.176    0.041    4.258    0.000    0.095
##    .ssno              0.553    0.077    7.190    0.000    0.402
##    .sscs    (.47.)    0.359    0.051    6.970    0.000    0.258
##    .verbal            0.022    0.138    0.157    0.876   -0.249
##    .math             -0.464    0.155   -2.995    0.003   -0.767
##    .elctrnc           1.855    0.276    6.729    0.000    1.315
##    .speed            -0.922    0.140   -6.571    0.000   -1.196
##     g                 0.103    0.088    1.170    0.242   -0.070
##  ci.upper   Std.lv  Std.all
##     0.510    0.413    0.409
##     0.441    0.341    0.331
##     0.177    0.063    0.064
##     0.282    0.192    0.183
##     0.494    0.398    0.412
##     0.550    0.448    0.459
##     0.717    0.601    0.620
##     0.394    0.300    0.295
##     0.136    0.056    0.051
##     0.256    0.176    0.175
##     0.703    0.553    0.517
##     0.459    0.359    0.358
##     0.292    0.005    0.005
##    -0.160   -0.120   -0.120
##     2.396    0.698    0.698
##    -0.647   -0.588   -0.588
##     0.276    0.093    0.093
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .ssgs              0.197    0.023    8.706    0.000    0.152
##    .sswk              0.238    0.023   10.380    0.000    0.193
##    .sspc              0.250    0.028    8.793    0.000    0.194
##    .ssei              0.350    0.036    9.624    0.000    0.279
##    .ssar              0.212    0.027    7.932    0.000    0.159
##    .ssmk              0.143    0.016    8.861    0.000    0.111
##    .ssmc              0.329    0.032   10.367    0.000    0.267
##    .ssao              0.531    0.052   10.286    0.000    0.430
##    .ssai              0.465    0.061    7.596    0.000    0.345
##    .sssi              0.287    0.049    5.878    0.000    0.191
##    .ssno              0.444    0.058    7.679    0.000    0.331
##    .sscs              0.443    0.069    6.388    0.000    0.307
##    .verbal            1.706    0.856    1.994    0.046    0.029
##    .math              0.584    0.491    1.188    0.235   -0.379
##    .electronic        4.596    1.224    3.755    0.000    2.197
##     g                 1.222    0.152    8.064    0.000    0.925
##  ci.upper   Std.lv  Std.all
##     1.000    0.407    0.407
##     0.241    0.197    0.193
##     0.283    0.238    0.224
##     0.306    0.250    0.258
##     0.421    0.350    0.318
##     0.264    0.212    0.228
##     0.175    0.143    0.151
##     0.391    0.329    0.350
##     0.632    0.531    0.514
##     0.585    0.465    0.384
##     0.383    0.287    0.285
##     0.557    0.444    0.389
##     0.579    0.443    0.443
##     3.384    0.098    0.098
##     1.547    0.039    0.039
##     6.995    0.650    0.650
##     1.519    1.000    1.000
weak<-cfa(hof.weak, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("ssmc~1", "sspc~1", "ssno ~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   412.930   115.000     0.000     0.950     0.088     0.057 16439.121 
##       bic 
## 16732.094
Mc(weak)
## [1] 0.8003804
summary(weak, standardized=T, ci=T) # g -.099 Std.all
## lavaan 0.6-18 ended normally after 116 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        92
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               412.930     366.762
##   Degrees of freedom                               115         115
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.126
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          163.543     145.258
##     0                                          249.387     221.504
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.217    0.054    4.027    0.000    0.112
##     sswk    (.p2.)    0.218    0.054    4.024    0.000    0.112
##     sspc    (.p3.)    0.204    0.050    4.090    0.000    0.106
##     ssei    (.p4.)    0.123    0.033    3.779    0.000    0.059
##   math =~                                                      
##     ssar    (.p5.)    0.220    0.052    4.196    0.000    0.117
##     ssmk    (.p6.)    0.161    0.041    3.923    0.000    0.081
##     ssmc    (.p7.)    0.203    0.048    4.182    0.000    0.108
##     ssao    (.p8.)    0.184    0.046    4.030    0.000    0.094
##   electronic =~                                                
##     ssai    (.p9.)    0.325    0.040    8.138    0.000    0.247
##     sssi    (.10.)    0.319    0.042    7.697    0.000    0.238
##     ssei    (.11.)    0.176    0.024    7.285    0.000    0.128
##   speed =~                                                     
##     ssno    (.12.)    0.533    0.049   10.789    0.000    0.436
##     sscs    (.13.)    0.476    0.040   11.922    0.000    0.398
##     ssmk    (.14.)    0.211    0.027    7.768    0.000    0.158
##   g =~                                                         
##     verbal  (.15.)    3.579    0.952    3.759    0.000    1.713
##     math    (.16.)    3.416    0.866    3.945    0.000    1.719
##     elctrnc (.17.)    1.424    0.211    6.756    0.000    1.011
##     speed   (.18.)    1.093    0.127    8.606    0.000    0.844
##  ci.upper   Std.lv  Std.all
##                            
##     0.323    0.808    0.895
##     0.324    0.809    0.882
##     0.301    0.756    0.832
##     0.187    0.457    0.511
##                            
##     0.323    0.783    0.894
##     0.242    0.574    0.614
##     0.298    0.722    0.821
##     0.273    0.654    0.708
##                            
##     0.403    0.565    0.724
##     0.401    0.556    0.710
##     0.223    0.305    0.341
##                            
##     0.630    0.790    0.795
##     0.554    0.705    0.732
##     0.264    0.313    0.334
##                            
##     5.446    0.963    0.963
##     5.113    0.960    0.960
##     1.837    0.818    0.818
##     1.342    0.738    0.738
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.37.)    0.413    0.050    8.295    0.000    0.315
##    .sswk    (.38.)    0.341    0.051    6.682    0.000    0.241
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei    (.40.)    0.192    0.046    4.127    0.000    0.101
##    .ssar    (.41.)    0.398    0.049    8.127    0.000    0.302
##    .ssmk    (.42.)    0.448    0.052    8.610    0.000    0.346
##    .ssmc              0.263    0.048    5.461    0.000    0.169
##    .ssao    (.44.)    0.300    0.048    6.300    0.000    0.207
##    .ssai    (.45.)    0.056    0.041    1.368    0.171   -0.024
##    .sssi    (.46.)    0.176    0.041    4.258    0.000    0.095
##    .ssno              0.285    0.056    5.122    0.000    0.176
##    .sscs    (.48.)    0.359    0.051    6.970    0.000    0.258
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.510    0.413    0.457
##     0.441    0.341    0.371
##     0.545    0.445    0.489
##     0.282    0.192    0.214
##     0.494    0.398    0.454
##     0.550    0.448    0.479
##     0.358    0.263    0.300
##     0.394    0.300    0.325
##     0.136    0.056    0.072
##     0.256    0.176    0.224
##     0.395    0.285    0.287
##     0.459    0.359    0.372
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .ssgs              0.162    0.020    8.318    0.000    0.124
##    .sswk              0.187    0.020    9.296    0.000    0.147
##    .sspc              0.254    0.031    8.165    0.000    0.193
##    .ssei              0.279    0.030    9.258    0.000    0.220
##    .ssar              0.154    0.019    8.174    0.000    0.117
##    .ssmk              0.192    0.021    9.038    0.000    0.151
##    .ssmc              0.252    0.026    9.699    0.000    0.201
##    .ssao              0.426    0.036   11.983    0.000    0.356
##    .ssai              0.290    0.034    8.448    0.000    0.222
##    .sssi              0.304    0.034    8.889    0.000    0.237
##    .ssno              0.363    0.052    6.974    0.000    0.261
##    .sscs              0.430    0.055    7.849    0.000    0.323
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.456    0.456
##     0.201    0.162    0.199
##     0.226    0.187    0.222
##     0.315    0.254    0.308
##     0.339    0.279    0.348
##     0.191    0.154    0.201
##     0.234    0.192    0.220
##     0.303    0.252    0.326
##     0.495    0.426    0.499
##     0.357    0.290    0.476
##     0.371    0.304    0.496
##     0.466    0.363    0.368
##     0.538    0.430    0.464
##     1.000    0.072    0.072
##     1.000    0.079    0.079
##     1.000    0.330    0.330
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.217    0.054    4.027    0.000    0.112
##     sswk    (.p2.)    0.218    0.054    4.024    0.000    0.112
##     sspc    (.p3.)    0.204    0.050    4.090    0.000    0.106
##     ssei    (.p4.)    0.123    0.033    3.779    0.000    0.059
##   math =~                                                      
##     ssar    (.p5.)    0.220    0.052    4.196    0.000    0.117
##     ssmk    (.p6.)    0.161    0.041    3.923    0.000    0.081
##     ssmc    (.p7.)    0.203    0.048    4.182    0.000    0.108
##     ssao    (.p8.)    0.184    0.046    4.030    0.000    0.094
##   electronic =~                                                
##     ssai    (.p9.)    0.325    0.040    8.138    0.000    0.247
##     sssi    (.10.)    0.319    0.042    7.697    0.000    0.238
##     ssei    (.11.)    0.176    0.024    7.285    0.000    0.128
##   speed =~                                                     
##     ssno    (.12.)    0.533    0.049   10.789    0.000    0.436
##     sscs    (.13.)    0.476    0.040   11.922    0.000    0.398
##     ssmk    (.14.)    0.211    0.027    7.768    0.000    0.158
##   g =~                                                         
##     verbal  (.15.)    3.579    0.952    3.759    0.000    1.713
##     math    (.16.)    3.416    0.866    3.945    0.000    1.719
##     elctrnc (.17.)    1.424    0.211    6.756    0.000    1.011
##     speed   (.18.)    1.093    0.127    8.606    0.000    0.844
##  ci.upper   Std.lv  Std.all
##                            
##     0.323    0.906    0.898
##     0.324    0.907    0.881
##     0.301    0.848    0.861
##     0.187    0.513    0.489
##                            
##     0.323    0.848    0.879
##     0.242    0.622    0.638
##     0.298    0.781    0.806
##     0.273    0.708    0.697
##                            
##     0.403    0.864    0.785
##     0.401    0.850    0.846
##     0.223    0.467    0.445
##                            
##     0.630    0.836    0.782
##     0.554    0.747    0.747
##     0.264    0.331    0.339
##                            
##     5.446    0.950    0.950
##     5.113    0.980    0.980
##     1.837    0.592    0.592
##     1.342    0.770    0.770
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.37.)    0.413    0.050    8.295    0.000    0.315
##    .sswk    (.38.)    0.341    0.051    6.682    0.000    0.241
##    .sspc              0.063    0.058    1.086    0.277   -0.051
##    .ssei    (.40.)    0.192    0.046    4.127    0.000    0.101
##    .ssar    (.41.)    0.398    0.049    8.127    0.000    0.302
##    .ssmk    (.42.)    0.448    0.052    8.610    0.000    0.346
##    .ssmc              0.601    0.059   10.095    0.000    0.484
##    .ssao    (.44.)    0.300    0.048    6.300    0.000    0.207
##    .ssai    (.45.)    0.056    0.041    1.368    0.171   -0.024
##    .sssi    (.46.)    0.176    0.041    4.258    0.000    0.095
##    .ssno              0.553    0.077    7.190    0.000    0.402
##    .sscs    (.48.)    0.359    0.051    6.970    0.000    0.258
##    .math             -0.484    0.270   -1.793    0.073   -1.014
##    .elctrnc           1.847    0.297    6.224    0.000    1.265
##    .speed            -0.928    0.147   -6.316    0.000   -1.216
##     g                 0.109    0.094    1.164    0.244   -0.075
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.510    0.413    0.409
##     0.441    0.341    0.331
##     0.177    0.063    0.064
##     0.282    0.192    0.183
##     0.494    0.398    0.412
##     0.550    0.448    0.459
##     0.717    0.601    0.620
##     0.394    0.300    0.295
##     0.136    0.056    0.051
##     0.256    0.176    0.175
##     0.703    0.553    0.517
##     0.459    0.359    0.358
##     0.045   -0.126   -0.126
##     2.428    0.694    0.694
##    -0.640   -0.592   -0.592
##     0.293    0.099    0.099
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .ssgs              0.197    0.023    8.706    0.000    0.152
##    .sswk              0.238    0.023   10.380    0.000    0.193
##    .sspc              0.250    0.028    8.793    0.000    0.194
##    .ssei              0.350    0.036    9.624    0.000    0.279
##    .ssar              0.212    0.027    7.932    0.000    0.159
##    .ssmk              0.143    0.016    8.861    0.000    0.111
##    .ssmc              0.329    0.032   10.367    0.000    0.267
##    .ssao              0.531    0.052   10.286    0.000    0.430
##    .ssai              0.465    0.061    7.596    0.000    0.345
##    .sssi              0.287    0.049    5.878    0.000    0.191
##    .ssno              0.444    0.058    7.679    0.000    0.331
##    .sscs              0.443    0.069    6.388    0.000    0.307
##    .verbal            1.706    0.856    1.993    0.046    0.029
##    .math              0.584    0.491    1.188    0.235   -0.379
##    .electronic        4.596    1.224    3.755    0.000    2.197
##     g                 1.222    0.152    8.064    0.000    0.925
##  ci.upper   Std.lv  Std.all
##     1.000    0.407    0.407
##     0.241    0.197    0.193
##     0.283    0.238    0.224
##     0.306    0.250    0.258
##     0.421    0.350    0.318
##     0.264    0.212    0.228
##     0.175    0.143    0.151
##     0.391    0.329    0.350
##     0.632    0.531    0.514
##     0.585    0.465    0.384
##     0.383    0.287    0.285
##     0.557    0.444    0.389
##     0.579    0.443    0.443
##     3.384    0.098    0.098
##     1.547    0.039    0.039
##     6.995    0.650    0.650
##     1.519    1.000    1.000
tests<-lavTestLRT(configural, metric, scalar2, latent2, weak)
## Warning: lavaan->lav_test_diff_SatorraBentler2001():  
##    scaling factor is negative
Td=tests[2:5,"Chisq diff"]
Td
## [1] 19.4453661 13.8879270  0.8992955         NA
dfd=tests[2:5,"Df diff"]
dfd
## [1] 13  4  1  1
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-335+ 335 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.03852821 0.08602990        NaN         NA
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1]         NA 0.07179863
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.03959879 0.13731095
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]        NA 0.1416794
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1] NA NA
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.890     0.871     0.326     0.162     0.017     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.992     0.991     0.908     0.843     0.634     0.367
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.657     0.649     0.482     0.421     0.296     0.187
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##        NA        NA        NA        NA        NA        NA
tests<-lavTestLRT(configural, metric, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 19.44537 13.88793 50.04972
dfd=tests[2:4,"Df diff"]
dfd
## [1] 13  4  5
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-335+ 335 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.03852821 0.08602990 0.16424335
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.03959879 0.13731095
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.1246301 0.2068771
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.992     0.991     0.908     0.843     0.634     0.367
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     1.000     0.996
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 19.44537 13.88793 26.97381
dfd=tests[2:4,"Df diff"]
dfd
## [1] 13  4 12
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-335+ 335 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.03852821 0.08602990 0.06112266
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1]         NA 0.07179863
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.03959879 0.13731095
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.02997141 0.09209679
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.890     0.871     0.326     0.162     0.017     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.992     0.991     0.908     0.843     0.634     0.367
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.992     0.990     0.754     0.564     0.172     0.018
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]  19.44537 132.98405
dfd=tests[2:3,"Df diff"]
dfd
## [1] 13  7
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-335+ 335 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.03852821 0.23213227
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1]         NA 0.07179863
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1984324 0.2672276
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.890     0.871     0.326     0.162     0.017     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
hof.age<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
g =~ verbal + math + electronic + speed 
speed~~1*speed
verbal~0*1
g ~ agec
'

hof.ageq<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
g =~ verbal + math + electronic + speed 
speed~~1*speed
verbal~0*1
g ~ c(a,a)*agec
'

hof.age2<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
g =~ verbal + math + electronic + speed 
speed~~1*speed
verbal~0*1
g ~ agec+agec2
'

hof.age2q<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
g =~ verbal + math + electronic + speed 
speed~~1*speed
verbal~0*1
g ~ c(a,a)*agec+c(b,b)*agec2
'

sem.age<-sem(hof.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("ssmc~1", "sspc~1", "ssno ~1"))
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   552.412   137.000     0.000     0.934     0.095     0.062     1.024 
##       aic       bic 
## 16297.492 16599.480
Mc(sem.age)
## [1] 0.7331006
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 117 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        94
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               552.412     488.722
##   Degrees of freedom                               137         137
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.130
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          227.553     201.318
##     0                                          324.859     287.404
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.189    0.053    3.555    0.000    0.085
##     sswk    (.p2.)    0.190    0.054    3.543    0.000    0.085
##     sspc    (.p3.)    0.176    0.049    3.582    0.000    0.080
##     ssei    (.p4.)    0.107    0.031    3.412    0.001    0.045
##   math =~                                                      
##     ssar    (.p5.)    0.254    0.042    6.071    0.000    0.172
##     ssmk    (.p6.)    0.188    0.035    5.449    0.000    0.120
##     ssmc    (.p7.)    0.234    0.039    6.044    0.000    0.158
##     ssao    (.p8.)    0.212    0.037    5.710    0.000    0.139
##   electronic =~                                                
##     ssai    (.p9.)    0.319    0.040    7.875    0.000    0.240
##     sssi    (.10.)    0.313    0.042    7.448    0.000    0.231
##     ssei    (.11.)    0.171    0.024    7.122    0.000    0.124
##   speed =~                                                     
##     ssno    (.12.)    0.529    0.050   10.670    0.000    0.432
##     sscs    (.13.)    0.474    0.040   11.833    0.000    0.396
##     ssmk    (.14.)    0.208    0.027    7.834    0.000    0.156
##   g =~                                                         
##     verbal  (.15.)    3.693    1.103    3.348    0.001    1.531
##     math    (.16.)    2.600    0.480    5.419    0.000    1.660
##     elctrnc (.17.)    1.311    0.198    6.636    0.000    0.924
##     speed   (.18.)    0.983    0.115    8.516    0.000    0.756
##  ci.upper   Std.lv  Std.all
##                            
##     0.293    0.807    0.894
##     0.295    0.810    0.884
##     0.273    0.753    0.829
##     0.168    0.456    0.509
##                            
##     0.336    0.784    0.893
##     0.256    0.581    0.621
##     0.310    0.724    0.821
##     0.285    0.655    0.709
##                            
##     0.398    0.568    0.726
##     0.395    0.557    0.710
##     0.219    0.305    0.341
##                            
##     0.626    0.788    0.793
##     0.553    0.706    0.733
##     0.260    0.310    0.332
##                            
##     5.856    0.972    0.972
##     3.541    0.946    0.946
##     1.698    0.827    0.827
##     1.209    0.741    0.741
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.337    0.044    7.694    0.000    0.251
##  ci.upper   Std.lv  Std.all
##                            
##     0.423    0.300    0.455
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.39.)    0.391    0.045    8.603    0.000    0.302
##    .sswk    (.40.)    0.319    0.046    6.926    0.000    0.229
##    .sspc              0.424    0.049    8.733    0.000    0.329
##    .ssei    (.42.)    0.173    0.043    4.025    0.000    0.089
##    .ssar    (.43.)    0.377    0.047    8.020    0.000    0.285
##    .ssmk    (.44.)    0.425    0.047    9.044    0.000    0.333
##    .ssmc              0.244    0.047    5.243    0.000    0.153
##    .ssao    (.46.)    0.283    0.046    6.175    0.000    0.193
##    .ssai    (.47.)    0.042    0.038    1.099    0.272   -0.033
##    .sssi    (.48.)    0.163    0.039    4.140    0.000    0.086
##    .ssno              0.269    0.053    5.082    0.000    0.165
##    .sscs    (.50.)    0.344    0.047    7.249    0.000    0.251
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.480    0.391    0.434
##     0.409    0.319    0.348
##     0.519    0.424    0.467
##     0.257    0.173    0.192
##     0.469    0.377    0.429
##     0.518    0.425    0.455
##     0.335    0.244    0.277
##     0.373    0.283    0.306
##     0.118    0.042    0.054
##     0.240    0.163    0.207
##     0.373    0.269    0.271
##     0.437    0.344    0.357
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .ssgs              0.164    0.019    8.559    0.000    0.126
##    .sswk              0.183    0.020    9.305    0.000    0.144
##    .sspc              0.257    0.031    8.340    0.000    0.197
##    .ssei              0.278    0.030    9.261    0.000    0.219
##    .ssar              0.156    0.019    8.052    0.000    0.118
##    .ssmk              0.189    0.021    9.000    0.000    0.148
##    .ssmc              0.253    0.026    9.563    0.000    0.201
##    .ssao              0.425    0.036   11.943    0.000    0.355
##    .ssai              0.289    0.034    8.490    0.000    0.223
##    .sssi              0.306    0.034    8.980    0.000    0.239
##    .ssno              0.366    0.053    6.958    0.000    0.263
##    .sscs              0.429    0.055    7.853    0.000    0.322
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.451    0.451
##     0.201    0.164    0.201
##     0.221    0.183    0.218
##     0.318    0.257    0.312
##     0.337    0.278    0.346
##     0.194    0.156    0.203
##     0.230    0.189    0.216
##     0.305    0.253    0.326
##     0.494    0.425    0.497
##     0.356    0.289    0.473
##     0.373    0.306    0.497
##     0.469    0.366    0.370
##     0.536    0.429    0.462
##     1.000    0.055    0.055
##     1.000    0.105    0.105
##     1.000    0.316    0.316
##     1.000    0.793    0.793
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.189    0.053    3.555    0.000    0.085
##     sswk    (.p2.)    0.190    0.054    3.543    0.000    0.085
##     sspc    (.p3.)    0.176    0.049    3.582    0.000    0.080
##     ssei    (.p4.)    0.107    0.031    3.412    0.001    0.045
##   math =~                                                      
##     ssar    (.p5.)    0.254    0.042    6.071    0.000    0.172
##     ssmk    (.p6.)    0.188    0.035    5.449    0.000    0.120
##     ssmc    (.p7.)    0.234    0.039    6.044    0.000    0.158
##     ssao    (.p8.)    0.212    0.037    5.710    0.000    0.139
##   electronic =~                                                
##     ssai    (.p9.)    0.319    0.040    7.875    0.000    0.240
##     sssi    (.10.)    0.313    0.042    7.448    0.000    0.231
##     ssei    (.11.)    0.171    0.024    7.122    0.000    0.124
##   speed =~                                                     
##     ssno    (.12.)    0.529    0.050   10.670    0.000    0.432
##     sscs    (.13.)    0.474    0.040   11.833    0.000    0.396
##     ssmk    (.14.)    0.208    0.027    7.834    0.000    0.156
##   g =~                                                         
##     verbal  (.15.)    3.693    1.103    3.348    0.001    1.531
##     math    (.16.)    2.600    0.480    5.419    0.000    1.660
##     elctrnc (.17.)    1.311    0.198    6.636    0.000    0.924
##     speed   (.18.)    0.983    0.115    8.516    0.000    0.756
##  ci.upper   Std.lv  Std.all
##                            
##     0.293    0.908    0.899
##     0.295    0.912    0.883
##     0.273    0.848    0.860
##     0.168    0.514    0.489
##                            
##     0.336    0.844    0.876
##     0.256    0.626    0.643
##     0.310    0.779    0.805
##     0.285    0.706    0.695
##                            
##     0.398    0.860    0.784
##     0.395    0.844    0.843
##     0.219    0.463    0.441
##                            
##     0.626    0.834    0.781
##     0.553    0.748    0.748
##     0.260    0.329    0.338
##                            
##     5.856    0.954    0.954
##     3.541    0.970    0.970
##     1.698    0.603    0.603
##     1.209    0.773    0.773
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.407    0.051    7.951    0.000    0.307
##  ci.upper   Std.lv  Std.all
##                            
##     0.508    0.328    0.467
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.39.)    0.391    0.045    8.603    0.000    0.302
##    .sswk    (.40.)    0.319    0.046    6.926    0.000    0.229
##    .sspc              0.043    0.054    0.796    0.426   -0.063
##    .ssei    (.42.)    0.173    0.043    4.025    0.000    0.089
##    .ssar    (.43.)    0.377    0.047    8.020    0.000    0.285
##    .ssmk    (.44.)    0.425    0.047    9.044    0.000    0.333
##    .ssmc              0.582    0.058   10.082    0.000    0.469
##    .ssao    (.46.)    0.283    0.046    6.175    0.000    0.193
##    .ssai    (.47.)    0.042    0.038    1.099    0.272   -0.033
##    .sssi    (.48.)    0.163    0.039    4.140    0.000    0.086
##    .ssno              0.535    0.073    7.310    0.000    0.392
##    .sscs    (.50.)    0.344    0.047    7.249    0.000    0.251
##    .math             -0.412    0.214   -1.931    0.053   -0.831
##    .elctrnc           1.885    0.309    6.101    0.000    1.280
##    .speed            -0.932    0.148   -6.283    0.000   -1.222
##    .g                 0.202    0.096    2.098    0.036    0.013
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.480    0.391    0.387
##     0.409    0.319    0.309
##     0.150    0.043    0.044
##     0.257    0.173    0.164
##     0.469    0.377    0.391
##     0.518    0.425    0.437
##     0.695    0.582    0.602
##     0.373    0.283    0.279
##     0.118    0.042    0.039
##     0.240    0.163    0.163
##     0.679    0.535    0.501
##     0.437    0.344    0.344
##     0.006   -0.124   -0.124
##     2.491    0.699    0.699
##    -0.641   -0.591   -0.591
##     0.390    0.163    0.163
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .ssgs              0.196    0.022    8.762    0.000    0.152
##    .sswk              0.234    0.023   10.366    0.000    0.190
##    .sspc              0.254    0.029    8.816    0.000    0.197
##    .ssei              0.350    0.036    9.624    0.000    0.279
##    .ssar              0.215    0.027    8.002    0.000    0.162
##    .ssmk              0.139    0.016    8.836    0.000    0.109
##    .ssmc              0.329    0.032   10.347    0.000    0.266
##    .ssao              0.534    0.052   10.241    0.000    0.432
##    .ssai              0.463    0.061    7.587    0.000    0.343
##    .sssi              0.290    0.049    5.960    0.000    0.194
##    .ssno              0.446    0.058    7.702    0.000    0.333
##    .sscs              0.441    0.069    6.404    0.000    0.306
##    .verbal            2.087    1.211    1.724    0.085   -0.286
##    .math              0.645    0.358    1.804    0.071   -0.056
##    .electronic        4.633    1.274    3.636    0.000    2.136
##    .g                 1.203    0.169    7.115    0.000    0.872
##  ci.upper   Std.lv  Std.all
##     1.000    0.402    0.402
##     0.240    0.196    0.192
##     0.279    0.234    0.220
##     0.310    0.254    0.261
##     0.421    0.350    0.318
##     0.268    0.215    0.232
##     0.170    0.139    0.147
##     0.391    0.329    0.351
##     0.636    0.534    0.517
##     0.582    0.463    0.385
##     0.385    0.290    0.289
##     0.560    0.446    0.391
##     0.576    0.441    0.441
##     4.461    0.090    0.090
##     1.346    0.058    0.058
##     7.131    0.636    0.636
##     1.535    0.782    0.782
sem.ageq<-sem(hof.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("ssmc~1", "sspc~1", "ssno ~1"))
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   553.838   138.000     0.000     0.934     0.095     0.069     1.024 
##       aic       bic 
## 16296.918 16594.398
Mc(sem.ageq)
## [1] 0.7328674
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 117 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        94
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               553.838     490.020
##   Degrees of freedom                               138         138
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.130
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          227.992     201.720
##     0                                          325.846     288.299
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.187    0.053    3.531    0.000    0.083
##     sswk    (.p2.)    0.188    0.054    3.518    0.000    0.083
##     sspc    (.p3.)    0.175    0.049    3.557    0.000    0.079
##     ssei    (.p4.)    0.106    0.031    3.392    0.001    0.045
##   math =~                                                      
##     ssar    (.p5.)    0.256    0.041    6.183    0.000    0.175
##     ssmk    (.p6.)    0.190    0.034    5.532    0.000    0.122
##     ssmc    (.p7.)    0.236    0.038    6.151    0.000    0.161
##     ssao    (.p8.)    0.214    0.037    5.802    0.000    0.142
##   electronic =~                                                
##     ssai    (.p9.)    0.319    0.041    7.865    0.000    0.239
##     sssi    (.10.)    0.313    0.042    7.434    0.000    0.230
##     ssei    (.11.)    0.171    0.024    7.119    0.000    0.124
##   speed =~                                                     
##     ssno    (.12.)    0.529    0.050   10.662    0.000    0.432
##     sscs    (.13.)    0.474    0.040   11.825    0.000    0.396
##     ssmk    (.14.)    0.208    0.027    7.825    0.000    0.156
##   g =~                                                         
##     verbal  (.15.)    3.728    1.121    3.325    0.001    1.531
##     math    (.16.)    2.586    0.469    5.514    0.000    1.667
##     elctrnc (.17.)    1.311    0.198    6.623    0.000    0.923
##     speed   (.18.)    0.984    0.116    8.512    0.000    0.757
##  ci.upper   Std.lv  Std.all
##                            
##     0.291    0.821    0.897
##     0.293    0.825    0.888
##     0.272    0.767    0.834
##     0.167    0.464    0.512
##                            
##     0.337    0.798    0.896
##     0.257    0.591    0.624
##     0.311    0.736    0.826
##     0.286    0.667    0.715
##                            
##     0.398    0.574    0.730
##     0.395    0.563    0.713
##     0.219    0.309    0.341
##                            
##     0.626    0.797    0.796
##     0.553    0.714    0.737
##     0.261    0.314    0.331
##                            
##     5.926    0.974    0.974
##     3.505    0.947    0.947
##     1.700    0.832    0.832
##     1.210    0.747    0.747
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.366    0.036   10.266    0.000    0.296
##  ci.upper   Std.lv  Std.all
##                            
##     0.436    0.320    0.485
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.39.)    0.389    0.045    8.559    0.000    0.300
##    .sswk    (.40.)    0.317    0.046    6.895    0.000    0.227
##    .sspc              0.423    0.049    8.687    0.000    0.327
##    .ssei    (.42.)    0.171    0.043    3.988    0.000    0.087
##    .ssar    (.43.)    0.375    0.047    7.946    0.000    0.283
##    .ssmk    (.44.)    0.424    0.047    9.005    0.000    0.331
##    .ssmc              0.243    0.047    5.190    0.000    0.151
##    .ssao    (.46.)    0.282    0.046    6.122    0.000    0.191
##    .ssai    (.47.)    0.041    0.038    1.071    0.284   -0.034
##    .sssi    (.48.)    0.162    0.039    4.116    0.000    0.085
##    .ssno              0.268    0.053    5.060    0.000    0.164
##    .sscs    (.50.)    0.343    0.047    7.247    0.000    0.250
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.479    0.389    0.426
##     0.407    0.317    0.341
##     0.518    0.423    0.460
##     0.255    0.171    0.188
##     0.468    0.375    0.421
##     0.516    0.424    0.447
##     0.334    0.243    0.272
##     0.372    0.282    0.302
##     0.116    0.041    0.052
##     0.239    0.162    0.205
##     0.371    0.268    0.268
##     0.435    0.343    0.354
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .ssgs              0.164    0.019    8.581    0.000    0.126
##    .sswk              0.182    0.020    9.307    0.000    0.144
##    .sspc              0.257    0.031    8.343    0.000    0.197
##    .ssei              0.278    0.030    9.262    0.000    0.219
##    .ssar              0.157    0.019    8.050    0.000    0.118
##    .ssmk              0.189    0.021    9.006    0.000    0.148
##    .ssmc              0.253    0.026    9.558    0.000    0.201
##    .ssao              0.425    0.036   11.942    0.000    0.355
##    .ssai              0.289    0.034    8.493    0.000    0.223
##    .sssi              0.306    0.034    8.981    0.000    0.239
##    .ssno              0.366    0.053    6.958    0.000    0.263
##    .sscs              0.429    0.055    7.854    0.000    0.322
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.441    0.441
##     0.201    0.164    0.196
##     0.221    0.182    0.211
##     0.318    0.257    0.305
##     0.337    0.278    0.339
##     0.195    0.157    0.197
##     0.230    0.189    0.210
##     0.305    0.253    0.318
##     0.494    0.425    0.488
##     0.356    0.289    0.467
##     0.373    0.306    0.491
##     0.469    0.366    0.366
##     0.536    0.429    0.457
##     1.000    0.052    0.052
##     1.000    0.103    0.103
##     1.000    0.308    0.308
##     1.000    0.765    0.765
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.187    0.053    3.531    0.000    0.083
##     sswk    (.p2.)    0.188    0.054    3.518    0.000    0.083
##     sspc    (.p3.)    0.175    0.049    3.557    0.000    0.079
##     ssei    (.p4.)    0.106    0.031    3.392    0.001    0.045
##   math =~                                                      
##     ssar    (.p5.)    0.256    0.041    6.183    0.000    0.175
##     ssmk    (.p6.)    0.190    0.034    5.532    0.000    0.122
##     ssmc    (.p7.)    0.236    0.038    6.151    0.000    0.161
##     ssao    (.p8.)    0.214    0.037    5.802    0.000    0.142
##   electronic =~                                                
##     ssai    (.p9.)    0.319    0.041    7.865    0.000    0.239
##     sssi    (.10.)    0.313    0.042    7.434    0.000    0.230
##     ssei    (.11.)    0.171    0.024    7.119    0.000    0.124
##   speed =~                                                     
##     ssno    (.12.)    0.529    0.050   10.662    0.000    0.432
##     sscs    (.13.)    0.474    0.040   11.825    0.000    0.396
##     ssmk    (.14.)    0.208    0.027    7.825    0.000    0.156
##   g =~                                                         
##     verbal  (.15.)    3.728    1.121    3.325    0.001    1.531
##     math    (.16.)    2.586    0.469    5.514    0.000    1.667
##     elctrnc (.17.)    1.311    0.198    6.623    0.000    0.923
##     speed   (.18.)    0.984    0.116    8.512    0.000    0.757
##  ci.upper   Std.lv  Std.all
##                            
##     0.291    0.892    0.895
##     0.293    0.896    0.880
##     0.272    0.833    0.856
##     0.167    0.504    0.485
##                            
##     0.337    0.828    0.873
##     0.257    0.614    0.641
##     0.311    0.764    0.800
##     0.286    0.693    0.688
##                            
##     0.398    0.855    0.782
##     0.395    0.838    0.842
##     0.219    0.460    0.443
##                            
##     0.626    0.825    0.777
##     0.553    0.739    0.744
##     0.261    0.325    0.339
##                            
##     5.926    0.952    0.952
##     3.505    0.970    0.970
##     1.700    0.594    0.594
##     1.210    0.767    0.767
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.366    0.036   10.266    0.000    0.296
##  ci.upper   Std.lv  Std.all
##                            
##     0.436    0.301    0.429
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.39.)    0.389    0.045    8.559    0.000    0.300
##    .sswk    (.40.)    0.317    0.046    6.895    0.000    0.227
##    .sspc              0.042    0.054    0.765    0.445   -0.065
##    .ssei    (.42.)    0.171    0.043    3.988    0.000    0.087
##    .ssar    (.43.)    0.375    0.047    7.946    0.000    0.283
##    .ssmk    (.44.)    0.424    0.047    9.005    0.000    0.331
##    .ssmc              0.580    0.058   10.027    0.000    0.467
##    .ssao    (.46.)    0.282    0.046    6.122    0.000    0.191
##    .ssai    (.47.)    0.041    0.038    1.071    0.284   -0.034
##    .sssi    (.48.)    0.162    0.039    4.116    0.000    0.085
##    .ssno              0.534    0.073    7.303    0.000    0.391
##    .sscs    (.50.)    0.343    0.047    7.247    0.000    0.250
##    .math             -0.409    0.211   -1.937    0.053   -0.824
##    .elctrnc           1.888    0.310    6.097    0.000    1.281
##    .speed            -0.932    0.148   -6.278    0.000   -1.222
##    .g                 0.199    0.096    2.078    0.038    0.011
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.479    0.389    0.391
##     0.407    0.317    0.311
##     0.148    0.042    0.043
##     0.255    0.171    0.165
##     0.468    0.375    0.395
##     0.516    0.424    0.442
##     0.694    0.580    0.607
##     0.372    0.282    0.280
##     0.116    0.041    0.038
##     0.239    0.162    0.162
##     0.677    0.534    0.503
##     0.435    0.343    0.345
##     0.005   -0.126   -0.126
##     2.494    0.704    0.704
##    -0.641   -0.598   -0.598
##     0.387    0.164    0.164
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .ssgs              0.196    0.022    8.760    0.000    0.152
##    .sswk              0.235    0.023   10.359    0.000    0.190
##    .sspc              0.254    0.029    8.808    0.000    0.197
##    .ssei              0.350    0.036    9.622    0.000    0.279
##    .ssar              0.215    0.027    7.994    0.000    0.162
##    .ssmk              0.140    0.016    8.835    0.000    0.109
##    .ssmc              0.329    0.032   10.336    0.000    0.267
##    .ssao              0.534    0.052   10.246    0.000    0.432
##    .ssai              0.463    0.061    7.589    0.000    0.343
##    .sssi              0.290    0.049    5.956    0.000    0.194
##    .ssno              0.446    0.058    7.701    0.000    0.333
##    .sscs              0.441    0.069    6.403    0.000    0.306
##    .verbal            2.115    1.237    1.710    0.087   -0.309
##    .math              0.629    0.352    1.789    0.074   -0.060
##    .electronic        4.660    1.283    3.632    0.000    2.145
##    .g                 1.204    0.169    7.116    0.000    0.873
##  ci.upper   Std.lv  Std.all
##     1.000    0.412    0.412
##     0.240    0.196    0.198
##     0.279    0.235    0.226
##     0.310    0.254    0.268
##     0.421    0.350    0.325
##     0.267    0.215    0.239
##     0.171    0.140    0.152
##     0.391    0.329    0.360
##     0.636    0.534    0.527
##     0.582    0.463    0.388
##     0.385    0.290    0.292
##     0.560    0.446    0.396
##     0.577    0.441    0.447
##     4.539    0.093    0.093
##     1.319    0.060    0.060
##     7.174    0.647    0.647
##     1.536    0.816    0.816
sem.age2<-sem(hof.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("ssmc~1", "sspc~1", "ssno ~1"))
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   589.641   159.000     0.000     0.932     0.090     0.059     1.086 
##       aic       bic 
## 16295.008 16606.010
Mc(sem.age2)
## [1] 0.7248036
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 119 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               589.641     525.462
##   Degrees of freedom                               159         159
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.122
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          246.106     219.319
##     0                                          343.535     306.143
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.190    0.053    3.574    0.000    0.086
##     sswk    (.p2.)    0.191    0.053    3.562    0.000    0.086
##     sspc    (.p3.)    0.177    0.049    3.599    0.000    0.081
##     ssei    (.p4.)    0.107    0.031    3.427    0.001    0.046
##   math =~                                                      
##     ssar    (.p5.)    0.254    0.042    6.091    0.000    0.172
##     ssmk    (.p6.)    0.188    0.034    5.485    0.000    0.121
##     ssmc    (.p7.)    0.234    0.039    6.064    0.000    0.159
##     ssao    (.p8.)    0.212    0.037    5.733    0.000    0.140
##   electronic =~                                                
##     ssai    (.p9.)    0.319    0.040    7.887    0.000    0.240
##     sssi    (.10.)    0.313    0.042    7.460    0.000    0.231
##     ssei    (.11.)    0.171    0.024    7.126    0.000    0.124
##   speed =~                                                     
##     ssno    (.12.)    0.529    0.050   10.656    0.000    0.432
##     sscs    (.13.)    0.474    0.040   11.811    0.000    0.395
##     ssmk    (.14.)    0.208    0.027    7.833    0.000    0.156
##   g =~                                                         
##     verbal  (.15.)    3.647    1.086    3.358    0.001    1.519
##     math    (.16.)    2.578    0.474    5.443    0.000    1.650
##     elctrnc (.17.)    1.299    0.196    6.634    0.000    0.915
##     speed   (.18.)    0.974    0.115    8.451    0.000    0.748
##  ci.upper   Std.lv  Std.all
##                            
##     0.294    0.807    0.894
##     0.295    0.810    0.884
##     0.274    0.753    0.829
##     0.169    0.456    0.509
##                            
##     0.335    0.784    0.893
##     0.256    0.582    0.622
##     0.310    0.724    0.821
##     0.285    0.656    0.709
##                            
##     0.398    0.568    0.726
##     0.395    0.557    0.710
##     0.219    0.305    0.340
##                            
##     0.627    0.788    0.794
##     0.553    0.706    0.733
##     0.260    0.310    0.331
##                            
##     5.775    0.972    0.972
##     3.507    0.946    0.946
##     1.683    0.827    0.827
##     1.200    0.741    0.741
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.340    0.044    7.693    0.000    0.254
##     agec2            -0.070    0.033   -2.115    0.034   -0.135
##  ci.upper   Std.lv  Std.all
##                            
##     0.427    0.300    0.455
##    -0.005   -0.062   -0.118
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.42.)    0.503    0.068    7.355    0.000    0.369
##    .sswk    (.43.)    0.431    0.069    6.247    0.000    0.296
##    .sspc              0.529    0.067    7.943    0.000    0.398
##    .ssei    (.45.)    0.272    0.063    4.334    0.000    0.149
##    .ssar    (.46.)    0.483    0.066    7.350    0.000    0.354
##    .ssmk    (.47.)    0.537    0.069    7.813    0.000    0.402
##    .ssmc              0.342    0.063    5.393    0.000    0.218
##    .ssao    (.49.)    0.372    0.061    6.105    0.000    0.252
##    .ssai    (.50.)    0.109    0.049    2.241    0.025    0.014
##    .sssi    (.51.)    0.229    0.050    4.614    0.000    0.131
##    .ssno              0.352    0.065    5.384    0.000    0.224
##    .sscs    (.53.)    0.419    0.058    7.230    0.000    0.305
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.637    0.503    0.558
##     0.566    0.431    0.471
##     0.659    0.529    0.582
##     0.395    0.272    0.303
##     0.612    0.483    0.550
##     0.671    0.537    0.574
##     0.466    0.342    0.388
##     0.491    0.372    0.402
##     0.205    0.109    0.140
##     0.326    0.229    0.291
##     0.481    0.352    0.355
##     0.532    0.419    0.435
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .ssgs              0.163    0.019    8.544    0.000    0.126
##    .sswk              0.183    0.020    9.326    0.000    0.145
##    .sspc              0.257    0.031    8.381    0.000    0.197
##    .ssei              0.279    0.030    9.271    0.000    0.220
##    .ssar              0.157    0.019    8.079    0.000    0.119
##    .ssmk              0.188    0.021    8.977    0.000    0.147
##    .ssmc              0.254    0.026    9.579    0.000    0.202
##    .ssao              0.425    0.036   11.943    0.000    0.355
##    .ssai              0.289    0.034    8.488    0.000    0.223
##    .sssi              0.306    0.034    8.979    0.000    0.239
##    .ssno              0.365    0.053    6.953    0.000    0.262
##    .sscs              0.430    0.055    7.863    0.000    0.322
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.451    0.451
##     0.201    0.163    0.201
##     0.221    0.183    0.218
##     0.318    0.257    0.312
##     0.337    0.279    0.347
##     0.194    0.157    0.203
##     0.229    0.188    0.215
##     0.306    0.254    0.326
##     0.494    0.425    0.497
##     0.356    0.289    0.473
##     0.373    0.306    0.496
##     0.468    0.365    0.370
##     0.537    0.430    0.463
##     1.000    0.055    0.055
##     1.000    0.105    0.105
##     1.000    0.316    0.316
##     1.000    0.779    0.779
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.190    0.053    3.574    0.000    0.086
##     sswk    (.p2.)    0.191    0.053    3.562    0.000    0.086
##     sspc    (.p3.)    0.177    0.049    3.599    0.000    0.081
##     ssei    (.p4.)    0.107    0.031    3.427    0.001    0.046
##   math =~                                                      
##     ssar    (.p5.)    0.254    0.042    6.091    0.000    0.172
##     ssmk    (.p6.)    0.188    0.034    5.485    0.000    0.121
##     ssmc    (.p7.)    0.234    0.039    6.064    0.000    0.159
##     ssao    (.p8.)    0.212    0.037    5.733    0.000    0.140
##   electronic =~                                                
##     ssai    (.p9.)    0.319    0.040    7.887    0.000    0.240
##     sssi    (.10.)    0.313    0.042    7.460    0.000    0.231
##     ssei    (.11.)    0.171    0.024    7.126    0.000    0.124
##   speed =~                                                     
##     ssno    (.12.)    0.529    0.050   10.656    0.000    0.432
##     sscs    (.13.)    0.474    0.040   11.811    0.000    0.395
##     ssmk    (.14.)    0.208    0.027    7.833    0.000    0.156
##   g =~                                                         
##     verbal  (.15.)    3.647    1.086    3.358    0.001    1.519
##     math    (.16.)    2.578    0.474    5.443    0.000    1.650
##     elctrnc (.17.)    1.299    0.196    6.634    0.000    0.915
##     speed   (.18.)    0.974    0.115    8.451    0.000    0.748
##  ci.upper   Std.lv  Std.all
##                            
##     0.294    0.908    0.899
##     0.295    0.912    0.883
##     0.274    0.848    0.860
##     0.169    0.514    0.489
##                            
##     0.335    0.843    0.876
##     0.256    0.626    0.643
##     0.310    0.779    0.805
##     0.285    0.706    0.695
##                            
##     0.398    0.860    0.784
##     0.395    0.844    0.843
##     0.219    0.463    0.441
##                            
##     0.627    0.835    0.781
##     0.553    0.747    0.747
##     0.260    0.328    0.337
##                            
##     5.775    0.953    0.953
##     3.507    0.971    0.971
##     1.683    0.603    0.603
##     1.200    0.773    0.773
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.407    0.052    7.783    0.000    0.304
##     agec2            -0.034    0.035   -0.967    0.334   -0.103
##  ci.upper   Std.lv  Std.all
##                            
##     0.509    0.325    0.462
##     0.035   -0.027   -0.050
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.42.)    0.503    0.068    7.355    0.000    0.369
##    .sswk    (.43.)    0.431    0.069    6.247    0.000    0.296
##    .sspc              0.148    0.072    2.048    0.041    0.006
##    .ssei    (.45.)    0.272    0.063    4.334    0.000    0.149
##    .ssar    (.46.)    0.483    0.066    7.350    0.000    0.354
##    .ssmk    (.47.)    0.537    0.069    7.813    0.000    0.402
##    .ssmc              0.680    0.072    9.394    0.000    0.538
##    .ssao    (.49.)    0.372    0.061    6.105    0.000    0.252
##    .ssai    (.50.)    0.109    0.049    2.241    0.025    0.014
##    .sssi    (.51.)    0.229    0.050    4.614    0.000    0.131
##    .ssno              0.619    0.084    7.355    0.000    0.454
##    .sscs    (.53.)    0.419    0.058    7.230    0.000    0.305
##    .math             -0.413    0.214   -1.936    0.053   -0.832
##    .elctrnc           1.885    0.309    6.107    0.000    1.280
##    .speed            -0.932    0.148   -6.285    0.000   -1.223
##    .g                 0.111    0.139    0.793    0.428   -0.162
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.637    0.503    0.498
##     0.566    0.431    0.417
##     0.289    0.148    0.150
##     0.395    0.272    0.259
##     0.612    0.483    0.502
##     0.671    0.537    0.551
##     0.822    0.680    0.703
##     0.491    0.372    0.366
##     0.205    0.109    0.100
##     0.326    0.229    0.228
##     0.784    0.619    0.579
##     0.532    0.419    0.419
##     0.005   -0.124   -0.124
##     2.490    0.699    0.699
##    -0.642   -0.591   -0.591
##     0.383    0.088    0.088
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .ssgs              0.196    0.022    8.756    0.000    0.152
##    .sswk              0.235    0.023   10.371    0.000    0.190
##    .sspc              0.254    0.029    8.816    0.000    0.197
##    .ssei              0.350    0.036    9.626    0.000    0.279
##    .ssar              0.216    0.027    8.029    0.000    0.163
##    .ssmk              0.139    0.016    8.825    0.000    0.108
##    .ssmc              0.329    0.032   10.337    0.000    0.266
##    .ssao              0.534    0.052   10.242    0.000    0.432
##    .ssai              0.463    0.061    7.588    0.000    0.343
##    .sssi              0.289    0.049    5.949    0.000    0.194
##    .ssno              0.446    0.058    7.696    0.000    0.333
##    .sscs              0.442    0.069    6.405    0.000    0.307
##    .verbal            2.094    1.209    1.732    0.083   -0.276
##    .math              0.632    0.355    1.783    0.075   -0.063
##    .electronic        4.633    1.273    3.640    0.000    2.139
##    .g                 1.221    0.173    7.056    0.000    0.882
##  ci.upper   Std.lv  Std.all
##     1.000    0.402    0.402
##     0.240    0.196    0.192
##     0.279    0.235    0.220
##     0.310    0.254    0.261
##     0.422    0.350    0.318
##     0.268    0.216    0.233
##     0.170    0.139    0.147
##     0.391    0.329    0.351
##     0.636    0.534    0.517
##     0.582    0.463    0.385
##     0.385    0.289    0.289
##     0.560    0.446    0.390
##     0.577    0.442    0.442
##     4.464    0.091    0.091
##     1.327    0.057    0.057
##     7.128    0.637    0.637
##     1.560    0.779    0.779
sem.age2q<-sem(hof.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("ssmc~1", "sspc~1", "ssno ~1"))
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   591.443   161.000     0.000     0.932     0.089     0.064     1.083 
##       aic       bic 
## 16292.810 16594.797
Mc(sem.age2q)
## [1] 0.7249112
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 118 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    29
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               591.443     527.118
##   Degrees of freedom                               161         161
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.122
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          246.705     219.873
##     0                                          344.738     307.245
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.188    0.053    3.560    0.000    0.085
##     sswk    (.p2.)    0.189    0.053    3.547    0.000    0.085
##     sspc    (.p3.)    0.176    0.049    3.584    0.000    0.080
##     ssei    (.p4.)    0.106    0.031    3.417    0.001    0.045
##   math =~                                                      
##     ssar    (.p5.)    0.255    0.041    6.183    0.000    0.174
##     ssmk    (.p6.)    0.189    0.034    5.551    0.000    0.123
##     ssmc    (.p7.)    0.236    0.038    6.152    0.000    0.161
##     ssao    (.p8.)    0.214    0.037    5.808    0.000    0.141
##   electronic =~                                                
##     ssai    (.p9.)    0.319    0.040    7.874    0.000    0.239
##     sssi    (.10.)    0.313    0.042    7.443    0.000    0.230
##     ssei    (.11.)    0.171    0.024    7.122    0.000    0.124
##   speed =~                                                     
##     ssno    (.12.)    0.529    0.050   10.654    0.000    0.432
##     sscs    (.13.)    0.474    0.040   11.809    0.000    0.395
##     ssmk    (.14.)    0.208    0.027    7.824    0.000    0.156
##   g =~                                                         
##     verbal  (.15.)    3.676    1.099    3.346    0.001    1.522
##     math    (.16.)    2.568    0.465    5.520    0.000    1.656
##     elctrnc (.17.)    1.300    0.196    6.621    0.000    0.915
##     speed   (.18.)    0.975    0.115    8.451    0.000    0.749
##  ci.upper   Std.lv  Std.all
##                            
##     0.292    0.818    0.896
##     0.294    0.821    0.887
##     0.272    0.763    0.833
##     0.168    0.462    0.511
##                            
##     0.336    0.795    0.895
##     0.256    0.590    0.624
##     0.311    0.734    0.824
##     0.286    0.665    0.714
##                            
##     0.398    0.573    0.729
##     0.395    0.562    0.713
##     0.219    0.308    0.341
##                            
##     0.627    0.795    0.796
##     0.553    0.712    0.736
##     0.260    0.313    0.331
##                            
##     5.829    0.973    0.973
##     3.479    0.947    0.947
##     1.685    0.831    0.831
##     1.201    0.746    0.746
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.366    0.036   10.187    0.000    0.296
##     agec2      (b)   -0.056    0.024   -2.293    0.022   -0.104
##  ci.upper   Std.lv  Std.all
##                            
##     0.436    0.319    0.483
##    -0.008   -0.049   -0.093
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.42.)    0.479    0.059    8.120    0.000    0.363
##    .sswk    (.43.)    0.407    0.059    6.853    0.000    0.290
##    .sspc              0.506    0.059    8.579    0.000    0.390
##    .ssei    (.45.)    0.250    0.055    4.568    0.000    0.143
##    .ssar    (.46.)    0.460    0.058    7.931    0.000    0.346
##    .ssmk    (.47.)    0.513    0.059    8.624    0.000    0.396
##    .ssmc              0.321    0.056    5.682    0.000    0.210
##    .ssao    (.49.)    0.353    0.055    6.443    0.000    0.245
##    .ssai    (.50.)    0.095    0.044    2.142    0.032    0.008
##    .sssi    (.51.)    0.214    0.045    4.772    0.000    0.126
##    .ssno              0.334    0.060    5.573    0.000    0.217
##    .sscs    (.53.)    0.403    0.054    7.520    0.000    0.298
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.594    0.479    0.525
##     0.523    0.407    0.439
##     0.622    0.506    0.552
##     0.358    0.250    0.277
##     0.574    0.460    0.518
##     0.629    0.513    0.542
##     0.431    0.321    0.360
##     0.460    0.353    0.379
##     0.181    0.095    0.121
##     0.302    0.214    0.272
##     0.452    0.334    0.335
##     0.507    0.403    0.416
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .ssgs              0.163    0.019    8.567    0.000    0.126
##    .sswk              0.183    0.020    9.321    0.000    0.144
##    .sspc              0.258    0.031    8.377    0.000    0.197
##    .ssei              0.278    0.030    9.270    0.000    0.220
##    .ssar              0.157    0.019    8.071    0.000    0.119
##    .ssmk              0.188    0.021    8.985    0.000    0.147
##    .ssmc              0.254    0.027    9.571    0.000    0.202
##    .ssao              0.425    0.036   11.942    0.000    0.355
##    .ssai              0.289    0.034    8.492    0.000    0.223
##    .sssi              0.306    0.034    8.978    0.000    0.239
##    .ssno              0.365    0.053    6.954    0.000    0.262
##    .sscs              0.429    0.055    7.862    0.000    0.322
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.443    0.443
##     0.201    0.163    0.196
##     0.221    0.183    0.213
##     0.318    0.258    0.307
##     0.337    0.278    0.341
##     0.195    0.157    0.199
##     0.229    0.188    0.210
##     0.306    0.254    0.320
##     0.494    0.425    0.490
##     0.356    0.289    0.469
##     0.373    0.306    0.492
##     0.468    0.365    0.366
##     0.536    0.429    0.459
##     1.000    0.053    0.053
##     1.000    0.103    0.103
##     1.000    0.310    0.310
##     1.000    0.758    0.758
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.188    0.053    3.560    0.000    0.085
##     sswk    (.p2.)    0.189    0.053    3.547    0.000    0.085
##     sspc    (.p3.)    0.176    0.049    3.584    0.000    0.080
##     ssei    (.p4.)    0.106    0.031    3.417    0.001    0.045
##   math =~                                                      
##     ssar    (.p5.)    0.255    0.041    6.183    0.000    0.174
##     ssmk    (.p6.)    0.189    0.034    5.551    0.000    0.123
##     ssmc    (.p7.)    0.236    0.038    6.152    0.000    0.161
##     ssao    (.p8.)    0.214    0.037    5.808    0.000    0.141
##   electronic =~                                                
##     ssai    (.p9.)    0.319    0.040    7.874    0.000    0.239
##     sssi    (.10.)    0.313    0.042    7.443    0.000    0.230
##     ssei    (.11.)    0.171    0.024    7.122    0.000    0.124
##   speed =~                                                     
##     ssno    (.12.)    0.529    0.050   10.654    0.000    0.432
##     sscs    (.13.)    0.474    0.040   11.809    0.000    0.395
##     ssmk    (.14.)    0.208    0.027    7.824    0.000    0.156
##   g =~                                                         
##     verbal  (.15.)    3.676    1.099    3.346    0.001    1.522
##     math    (.16.)    2.568    0.465    5.520    0.000    1.656
##     elctrnc (.17.)    1.300    0.196    6.621    0.000    0.915
##     speed   (.18.)    0.975    0.115    8.451    0.000    0.749
##  ci.upper   Std.lv  Std.all
##                            
##     0.292    0.896    0.896
##     0.294    0.900    0.880
##     0.272    0.836    0.857
##     0.168    0.506    0.486
##                            
##     0.336    0.831    0.873
##     0.256    0.617    0.641
##     0.311    0.767    0.801
##     0.286    0.695    0.690
##                            
##     0.398    0.856    0.783
##     0.395    0.840    0.842
##     0.219    0.461    0.443
##                            
##     0.627    0.827    0.778
##     0.553    0.741    0.744
##     0.260    0.325    0.338
##                            
##     5.829    0.952    0.952
##     3.479    0.971    0.971
##     1.685    0.596    0.596
##     1.201    0.768    0.768
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.366    0.036   10.187    0.000    0.296
##     agec2      (b)   -0.056    0.024   -2.293    0.022   -0.104
##  ci.upper   Std.lv  Std.all
##                            
##     0.436    0.297    0.423
##    -0.008   -0.045   -0.084
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.42.)    0.479    0.059    8.120    0.000    0.363
##    .sswk    (.43.)    0.407    0.059    6.853    0.000    0.290
##    .sspc              0.125    0.064    1.949    0.051   -0.001
##    .ssei    (.45.)    0.250    0.055    4.568    0.000    0.143
##    .ssar    (.46.)    0.460    0.058    7.931    0.000    0.346
##    .ssmk    (.47.)    0.513    0.059    8.624    0.000    0.396
##    .ssmc              0.659    0.066    9.997    0.000    0.529
##    .ssao    (.49.)    0.353    0.055    6.443    0.000    0.245
##    .ssai    (.50.)    0.095    0.044    2.142    0.032    0.008
##    .sssi    (.51.)    0.214    0.045    4.772    0.000    0.126
##    .ssno              0.601    0.081    7.445    0.000    0.443
##    .sscs    (.53.)    0.403    0.054    7.520    0.000    0.298
##    .math             -0.411    0.212   -1.941    0.052   -0.826
##    .elctrnc           1.887    0.309    6.101    0.000    1.281
##    .speed            -0.932    0.148   -6.281    0.000   -1.223
##    .g                 0.185    0.097    1.919    0.055   -0.004
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.594    0.479    0.479
##     0.523    0.407    0.398
##     0.251    0.125    0.128
##     0.358    0.250    0.240
##     0.574    0.460    0.483
##     0.629    0.513    0.533
##     0.788    0.659    0.688
##     0.460    0.353    0.350
##     0.181    0.095    0.087
##     0.302    0.214    0.215
##     0.759    0.601    0.565
##     0.507    0.403    0.404
##     0.004   -0.126   -0.126
##     2.493    0.702    0.702
##    -0.641   -0.597   -0.597
##     0.375    0.151    0.151
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .ssgs              0.196    0.022    8.752    0.000    0.152
##    .sswk              0.235    0.023   10.372    0.000    0.191
##    .sspc              0.254    0.029    8.808    0.000    0.197
##    .ssei              0.350    0.036    9.630    0.000    0.279
##    .ssar              0.216    0.027    8.023    0.000    0.163
##    .ssmk              0.139    0.016    8.826    0.000    0.108
##    .ssmc              0.329    0.032   10.332    0.000    0.266
##    .ssao              0.533    0.052   10.239    0.000    0.431
##    .ssai              0.463    0.061    7.593    0.000    0.344
##    .sssi              0.289    0.049    5.945    0.000    0.194
##    .ssno              0.446    0.058    7.694    0.000    0.332
##    .sscs              0.442    0.069    6.404    0.000    0.307
##    .verbal            2.128    1.235    1.723    0.085   -0.293
##    .math              0.610    0.348    1.756    0.079   -0.071
##    .electronic        4.659    1.282    3.635    0.000    2.147
##    .g                 1.223    0.173    7.050    0.000    0.883
##  ci.upper   Std.lv  Std.all
##     1.000    0.410    0.410
##     0.240    0.196    0.196
##     0.279    0.235    0.225
##     0.310    0.254    0.266
##     0.422    0.350    0.324
##     0.268    0.216    0.238
##     0.170    0.139    0.151
##     0.391    0.329    0.358
##     0.635    0.533    0.525
##     0.583    0.463    0.387
##     0.384    0.289    0.291
##     0.560    0.446    0.395
##     0.577    0.442    0.446
##     4.549    0.094    0.094
##     1.291    0.058    0.058
##     7.172    0.645    0.645
##     1.563    0.807    0.807
# BIFACTOR MODEL (math not well defined because ar and wk are very small, mc strongly negative and ao near zero loading, but slightly better when removing mc)

bf.notworking<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
'

baseline<-cfa(bf.notworking, data=dgroup, meanstructure=T, sampling.weights="sweight", std.lv=T, orthogonal=T)
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   363.918    40.000     0.000     0.946     0.110     0.052 16767.806 
##       bic 
## 16993.169
Mc(baseline)
## [1] 0.7849848
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 53 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        50
## 
##   Number of observations                           670
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               363.918     331.038
##   Degrees of freedom                                40          40
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.099
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.344    0.043    7.952    0.000    0.259
##     sswk              0.432    0.052    8.360    0.000    0.330
##     sspc              0.166    0.039    4.310    0.000    0.091
##     ssei              0.202    0.044    4.549    0.000    0.115
##   math =~                                                      
##     ssar              0.098    0.065    1.501    0.133   -0.030
##     ssmk              0.129    0.083    1.550    0.121   -0.034
##     ssmc             -0.438    0.294   -1.493    0.135   -1.014
##     ssao             -0.050    0.036   -1.418    0.156   -0.120
##   electronic =~                                                
##     ssai              0.635    0.048   13.307    0.000    0.541
##     sssi              0.623    0.045   13.733    0.000    0.534
##     ssei              0.345    0.036    9.626    0.000    0.275
##   speed =~                                                     
##     ssno              0.666    0.085    7.840    0.000    0.499
##     sscs              0.419    0.062    6.804    0.000    0.298
##     ssmk              0.189    0.036    5.295    0.000    0.119
##   g =~                                                         
##     ssgs              0.784    0.033   23.621    0.000    0.719
##     ssar              0.817    0.034   23.949    0.000    0.750
##     sswk              0.772    0.036   21.731    0.000    0.703
##     sspc              0.772    0.030   25.346    0.000    0.713
##     ssno              0.583    0.041   14.333    0.000    0.503
##     sscs              0.562    0.038   14.790    0.000    0.487
##     ssai              0.525    0.042   12.472    0.000    0.442
##     sssi              0.501    0.041   12.252    0.000    0.421
##     ssmk              0.846    0.031   27.280    0.000    0.785
##     ssmc              0.782    0.036   21.628    0.000    0.711
##     ssei              0.725    0.038   18.923    0.000    0.650
##     ssao              0.677    0.031   21.646    0.000    0.616
##  ci.upper   Std.lv  Std.all
##                            
##     0.428    0.344    0.360
##     0.533    0.432    0.444
##     0.242    0.166    0.174
##     0.290    0.202    0.202
##                            
##     0.227    0.098    0.107
##     0.291    0.129    0.134
##     0.137   -0.438   -0.466
##     0.019   -0.050   -0.052
##                            
##     0.728    0.635    0.621
##     0.712    0.623    0.644
##     0.415    0.345    0.344
##                            
##     0.832    0.666    0.643
##     0.540    0.419    0.419
##     0.259    0.189    0.197
##                            
##     0.849    0.784    0.821
##     0.883    0.817    0.886
##     0.842    0.772    0.795
##     0.832    0.772    0.806
##     0.662    0.583    0.563
##     0.636    0.562    0.562
##     0.607    0.525    0.513
##     0.582    0.501    0.518
##     0.907    0.846    0.882
##     0.853    0.782    0.832
##     0.800    0.725    0.723
##     0.738    0.677    0.698
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.458    0.038   12.032    0.000    0.384
##    .sswk              0.376    0.039    9.717    0.000    0.301
##    .sspc              0.297    0.038    7.775    0.000    0.222
##    .ssei              0.388    0.040    9.601    0.000    0.308
##    .ssar              0.388    0.037   10.550    0.000    0.316
##    .ssmk              0.355    0.039    9.223    0.000    0.280
##    .ssmc              0.417    0.038   11.111    0.000    0.344
##    .ssao              0.285    0.039    7.350    0.000    0.209
##    .ssai              0.370    0.041    8.963    0.000    0.289
##    .sssi              0.488    0.039   12.599    0.000    0.412
##    .ssno              0.205    0.041    4.958    0.000    0.124
##    .sscs              0.170    0.040    4.245    0.000    0.091
##  ci.upper   Std.lv  Std.all
##     0.533    0.458    0.480
##     0.452    0.376    0.387
##     0.372    0.297    0.310
##     0.467    0.388    0.387
##     0.460    0.388    0.421
##     0.431    0.355    0.370
##     0.491    0.417    0.444
##     0.361    0.285    0.294
##     0.451    0.370    0.362
##     0.564    0.488    0.505
##     0.286    0.205    0.198
##     0.248    0.170    0.170
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.179    0.025    7.228    0.000    0.131
##    .sswk              0.162    0.035    4.586    0.000    0.093
##    .sspc              0.293    0.023   12.872    0.000    0.249
##    .ssei              0.319    0.024   13.395    0.000    0.272
##    .ssar              0.172    0.017    9.961    0.000    0.138
##    .ssmk              0.153    0.018    8.617    0.000    0.118
##    .ssmc              0.081    0.253    0.320    0.749   -0.415
##    .ssao              0.481    0.033   14.781    0.000    0.417
##    .ssai              0.368    0.044    8.383    0.000    0.282
##    .sssi              0.296    0.040    7.393    0.000    0.217
##    .ssno              0.288    0.094    3.064    0.002    0.104
##    .sscs              0.510    0.055    9.220    0.000    0.401
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.228    0.179    0.196
##     0.231    0.162    0.171
##     0.338    0.293    0.320
##     0.366    0.319    0.318
##     0.206    0.172    0.203
##     0.188    0.153    0.166
##     0.577    0.081    0.091
##     0.545    0.481    0.511
##     0.454    0.368    0.351
##     0.374    0.296    0.316
##     0.473    0.288    0.269
##     0.618    0.510    0.509
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
bf.model<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
'

bf.lv<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
verbal~~1*verbal
math~~1*math
'

baseline<-cfa(bf.model, data=dgroup, meanstructure=T, sampling.weights="sweight", std.lv=T, orthogonal=T)
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   377.804    41.000     0.000     0.944     0.111     0.052 16779.691 
##       bic 
## 17000.548
Mc(baseline)
## [1] 0.7774612
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 43 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        49
## 
##   Number of observations                           670
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               377.804     356.801
##   Degrees of freedom                                41          41
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.059
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.306    0.100    3.067    0.002    0.110
##     sswk              0.370    0.135    2.743    0.006    0.106
##     sspc              0.098    0.080    1.233    0.218   -0.058
##     ssei              0.167    0.074    2.265    0.024    0.023
##   math =~                                                      
##     ssar              0.213    0.099    2.158    0.031    0.020
##     ssmk              0.240    0.101    2.386    0.017    0.043
##     ssao              0.091    0.059    1.531    0.126   -0.025
##   electronic =~                                                
##     ssai              0.628    0.049   12.775    0.000    0.532
##     sssi              0.621    0.046   13.395    0.000    0.530
##     ssei              0.338    0.037    9.213    0.000    0.266
##   speed =~                                                     
##     ssno              0.643    0.074    8.696    0.000    0.498
##     sscs              0.424    0.058    7.377    0.000    0.312
##     ssmk              0.221    0.033    6.609    0.000    0.155
##   g =~                                                         
##     ssgs              0.804    0.034   23.836    0.000    0.738
##     ssar              0.793    0.034   23.247    0.000    0.726
##     sswk              0.797    0.037   21.355    0.000    0.724
##     sspc              0.789    0.033   24.035    0.000    0.724
##     ssno              0.584    0.041   14.397    0.000    0.505
##     sscs              0.571    0.038   14.996    0.000    0.497
##     ssai              0.532    0.043   12.419    0.000    0.448
##     sssi              0.504    0.041   12.170    0.000    0.423
##     ssmk              0.819    0.031   26.014    0.000    0.757
##     ssmc              0.761    0.035   21.668    0.000    0.692
##     ssei              0.741    0.040   18.652    0.000    0.663
##     ssao              0.669    0.032   21.194    0.000    0.607
##  ci.upper   Std.lv  Std.all
##                            
##     0.501    0.306    0.320
##     0.635    0.370    0.381
##     0.254    0.098    0.102
##     0.312    0.167    0.166
##                            
##     0.407    0.213    0.232
##     0.437    0.240    0.250
##     0.207    0.091    0.094
##                            
##     0.725    0.628    0.614
##     0.712    0.621    0.642
##     0.410    0.338    0.337
##                            
##     0.787    0.643    0.621
##     0.537    0.424    0.424
##     0.287    0.221    0.230
##                            
##     0.870    0.804    0.842
##     0.860    0.793    0.861
##     0.870    0.797    0.820
##     0.853    0.789    0.823
##     0.664    0.584    0.564
##     0.646    0.571    0.571
##     0.616    0.532    0.520
##     0.586    0.504    0.521
##     0.881    0.819    0.853
##     0.830    0.761    0.809
##     0.819    0.741    0.738
##     0.731    0.669    0.690
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.458    0.038   12.032    0.000    0.384
##    .sswk              0.376    0.039    9.717    0.000    0.301
##    .sspc              0.297    0.038    7.775    0.000    0.222
##    .ssei              0.388    0.040    9.601    0.000    0.308
##    .ssar              0.388    0.037   10.550    0.000    0.316
##    .ssmk              0.355    0.039    9.223    0.000    0.280
##    .ssao              0.285    0.039    7.350    0.000    0.209
##    .ssai              0.370    0.041    8.963    0.000    0.289
##    .sssi              0.488    0.039   12.599    0.000    0.412
##    .ssno              0.205    0.041    4.958    0.000    0.124
##    .sscs              0.170    0.040    4.245    0.000    0.091
##    .ssmc              0.417    0.038   11.111    0.000    0.344
##  ci.upper   Std.lv  Std.all
##     0.533    0.458    0.480
##     0.452    0.376    0.387
##     0.372    0.297    0.310
##     0.467    0.388    0.386
##     0.460    0.388    0.421
##     0.431    0.355    0.370
##     0.361    0.285    0.294
##     0.451    0.370    0.362
##     0.564    0.488    0.505
##     0.286    0.205    0.198
##     0.248    0.170    0.170
##     0.491    0.417    0.444
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.173    0.054    3.190    0.001    0.067
##    .sswk              0.172    0.082    2.098    0.036    0.011
##    .sspc              0.286    0.024   11.769    0.000    0.238
##    .ssei              0.318    0.024   12.978    0.000    0.270
##    .ssar              0.174    0.039    4.440    0.000    0.097
##    .ssmk              0.144    0.047    3.066    0.002    0.052
##    .ssao              0.486    0.032   15.364    0.000    0.424
##    .ssai              0.368    0.044    8.321    0.000    0.281
##    .sssi              0.295    0.040    7.300    0.000    0.216
##    .ssno              0.317    0.075    4.194    0.000    0.169
##    .sscs              0.495    0.052    9.575    0.000    0.394
##    .ssmc              0.306    0.025   12.474    0.000    0.258
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.279    0.173    0.189
##     0.333    0.172    0.182
##     0.333    0.286    0.312
##     0.366    0.318    0.315
##     0.250    0.174    0.205
##     0.236    0.144    0.156
##     0.548    0.486    0.516
##     0.455    0.368    0.352
##     0.375    0.295    0.316
##     0.464    0.317    0.296
##     0.596    0.495    0.494
##     0.354    0.306    0.346
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
configural<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   299.869    82.000     0.000     0.964     0.089     0.038 16392.060 
##       bic 
## 16833.773
Mc(configural)
## [1] 0.849734
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 70 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               299.869     273.379
##   Degrees of freedom                                82          82
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.097
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          113.565     103.532
##     0                                          186.304     169.846
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.218    0.070    3.122    0.002    0.081
##     sswk              0.464    0.105    4.394    0.000    0.257
##     sspc              0.097    0.042    2.338    0.019    0.016
##     ssei              0.152    0.068    2.232    0.026    0.019
##   math =~                                                      
##     ssar              0.227    0.101    2.255    0.024    0.030
##     ssmk              0.193    0.081    2.387    0.017    0.035
##     ssao              0.132    0.082    1.618    0.106   -0.028
##   electronic =~                                                
##     ssai              0.258    0.098    2.635    0.008    0.066
##     sssi              0.478    0.173    2.755    0.006    0.138
##     ssei              0.112    0.046    2.415    0.016    0.021
##   speed =~                                                     
##     ssno              0.693    0.154    4.498    0.000    0.391
##     sscs              0.310    0.084    3.702    0.000    0.146
##     ssmk              0.180    0.051    3.558    0.000    0.081
##   g =~                                                         
##     ssgs              0.775    0.045   17.370    0.000    0.688
##     ssar              0.756    0.044   17.301    0.000    0.670
##     sswk              0.772    0.048   16.060    0.000    0.678
##     sspc              0.759    0.043   17.540    0.000    0.674
##     ssno              0.567    0.058    9.810    0.000    0.453
##     sscs              0.527    0.044   11.934    0.000    0.440
##     ssai              0.419    0.045    9.362    0.000    0.331
##     sssi              0.436    0.047    9.300    0.000    0.344
##     ssmk              0.821    0.039   21.278    0.000    0.745
##     ssmc              0.695    0.044   15.921    0.000    0.610
##     ssei              0.636    0.047   13.420    0.000    0.544
##     ssao              0.632    0.041   15.449    0.000    0.551
##  ci.upper   Std.lv  Std.all
##                            
##     0.355    0.218    0.240
##     0.670    0.464    0.494
##     0.178    0.097    0.106
##     0.286    0.152    0.178
##                            
##     0.424    0.227    0.260
##     0.352    0.193    0.201
##     0.292    0.132    0.143
##                            
##     0.449    0.258    0.341
##     0.817    0.478    0.612
##     0.202    0.112    0.131
##                            
##     0.996    0.693    0.702
##     0.474    0.310    0.331
##     0.279    0.180    0.187
##                            
##     0.862    0.775    0.852
##     0.842    0.756    0.866
##     0.866    0.772    0.823
##     0.844    0.759    0.830
##     0.680    0.567    0.574
##     0.613    0.527    0.562
##     0.507    0.419    0.554
##     0.528    0.436    0.559
##     0.896    0.821    0.854
##     0.781    0.695    0.811
##     0.729    0.636    0.744
##     0.712    0.632    0.686
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.378    0.051    7.429    0.000    0.278
##    .sswk              0.382    0.052    7.278    0.000    0.279
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei              0.188    0.048    3.908    0.000    0.094
##    .ssar              0.384    0.049    7.810    0.000    0.288
##    .ssmk              0.448    0.054    8.275    0.000    0.342
##    .ssao              0.343    0.052    6.596    0.000    0.241
##    .ssai              0.069    0.043    1.625    0.104   -0.014
##    .sssi              0.163    0.044    3.736    0.000    0.078
##    .ssno              0.285    0.056    5.122    0.000    0.176
##    .sscs              0.358    0.053    6.754    0.000    0.254
##    .ssmc              0.263    0.048    5.461    0.000    0.169
##  ci.upper   Std.lv  Std.all
##     0.478    0.378    0.415
##     0.485    0.382    0.407
##     0.545    0.445    0.487
##     0.283    0.188    0.220
##     0.481    0.384    0.440
##     0.554    0.448    0.467
##     0.444    0.343    0.372
##     0.153    0.069    0.092
##     0.249    0.163    0.209
##     0.395    0.285    0.289
##     0.462    0.358    0.382
##     0.358    0.263    0.307
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.180    0.024    7.464    0.000    0.133
##    .sswk              0.070    0.092    0.762    0.446   -0.110
##    .sspc              0.251    0.032    7.925    0.000    0.189
##    .ssei              0.292    0.031    9.488    0.000    0.232
##    .ssar              0.139    0.043    3.236    0.001    0.055
##    .ssmk              0.179    0.032    5.623    0.000    0.117
##    .ssao              0.432    0.036   11.847    0.000    0.361
##    .ssai              0.330    0.050    6.588    0.000    0.232
##    .sssi              0.190    0.162    1.173    0.241   -0.127
##    .ssno              0.172    0.181    0.952    0.341   -0.183
##    .sscs              0.505    0.064    7.849    0.000    0.379
##    .ssmc              0.252    0.025    9.949    0.000    0.202
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.227    0.180    0.217
##     0.250    0.070    0.079
##     0.313    0.251    0.300
##     0.352    0.292    0.398
##     0.224    0.139    0.183
##     0.242    0.179    0.194
##     0.504    0.432    0.509
##     0.428    0.330    0.577
##     0.508    0.190    0.312
##     0.528    0.172    0.177
##     0.632    0.505    0.575
##     0.301    0.252    0.342
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.413    0.091    4.549    0.000    0.235
##     sswk              0.309    0.103    3.001    0.003    0.107
##     sspc              0.093    0.083    1.121    0.262   -0.070
##     ssei              0.183    0.060    3.045    0.002    0.065
##   math =~                                                      
##     ssar              0.294    0.421    0.698    0.485   -0.531
##     ssmk              0.215    0.307    0.702    0.483   -0.386
##     ssao              0.036    0.081    0.447    0.655   -0.123
##   electronic =~                                                
##     ssai              0.713    0.067   10.638    0.000    0.582
##     sssi              0.624    0.063    9.868    0.000    0.500
##     ssei              0.363    0.052    6.910    0.000    0.260
##   speed =~                                                     
##     ssno              0.693    0.112    6.215    0.000    0.474
##     sscs              0.426    0.071    6.017    0.000    0.287
##     ssmk              0.205    0.042    4.901    0.000    0.123
##   g =~                                                         
##     ssgs              0.832    0.048   17.160    0.000    0.737
##     ssar              0.822    0.052   15.766    0.000    0.720
##     sswk              0.821    0.053   15.377    0.000    0.717
##     sspc              0.831    0.038   21.896    0.000    0.757
##     ssno              0.598    0.056   10.694    0.000    0.489
##     sscs              0.628    0.053   11.773    0.000    0.523
##     ssai              0.646    0.065    9.872    0.000    0.518
##     sssi              0.578    0.063    9.228    0.000    0.455
##     ssmk              0.823    0.046   18.029    0.000    0.734
##     ssmc              0.830    0.051   16.192    0.000    0.730
##     ssei              0.846    0.056   15.001    0.000    0.735
##     ssao              0.710    0.046   15.378    0.000    0.620
##  ci.upper   Std.lv  Std.all
##                            
##     0.591    0.413    0.416
##     0.510    0.309    0.307
##     0.256    0.093    0.095
##     0.301    0.183    0.166
##                            
##     1.118    0.294    0.303
##     0.817    0.215    0.227
##     0.195    0.036    0.036
##                            
##     0.844    0.713    0.614
##     0.748    0.624    0.608
##     0.466    0.363    0.329
##                            
##     0.912    0.693    0.644
##     0.565    0.426    0.415
##     0.287    0.205    0.216
##                            
##     0.927    0.832    0.838
##     0.925    0.822    0.849
##     0.926    0.821    0.817
##     0.905    0.831    0.850
##     0.708    0.598    0.556
##     0.733    0.628    0.612
##     0.775    0.646    0.557
##     0.701    0.578    0.564
##     0.913    0.823    0.867
##     0.931    0.830    0.834
##     0.956    0.846    0.766
##     0.801    0.710    0.699
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.542    0.056    9.598    0.000    0.431
##    .sswk              0.371    0.057    6.485    0.000    0.259
##    .sspc              0.143    0.056    2.563    0.010    0.034
##    .ssei              0.595    0.063    9.438    0.000    0.472
##    .ssar              0.392    0.055    7.142    0.000    0.284
##    .ssmk              0.259    0.054    4.760    0.000    0.152
##    .ssao              0.225    0.058    3.904    0.000    0.112
##    .ssai              0.684    0.067   10.241    0.000    0.553
##    .sssi              0.827    0.059   14.131    0.000    0.712
##    .ssno              0.122    0.061    1.990    0.047    0.002
##    .sscs             -0.026    0.058   -0.447    0.655   -0.140
##    .ssmc              0.578    0.056   10.233    0.000    0.467
##  ci.upper   Std.lv  Std.all
##     0.653    0.542    0.545
##     0.483    0.371    0.369
##     0.252    0.143    0.146
##     0.719    0.595    0.539
##     0.499    0.392    0.405
##     0.365    0.259    0.272
##     0.338    0.225    0.221
##     0.815    0.684    0.590
##     0.942    0.827    0.807
##     0.241    0.122    0.113
##     0.088   -0.026   -0.025
##     0.689    0.578    0.581
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.124    0.078    1.591    0.112   -0.029
##    .sswk              0.241    0.043    5.551    0.000    0.156
##    .sspc              0.256    0.028    9.222    0.000    0.202
##    .ssei              0.339    0.035    9.588    0.000    0.270
##    .ssar              0.175    0.244    0.719    0.472   -0.303
##    .ssmk              0.136    0.130    1.053    0.292   -0.117
##    .ssao              0.526    0.052   10.115    0.000    0.424
##    .ssai              0.421    0.076    5.522    0.000    0.272
##    .sssi              0.329    0.055    6.005    0.000    0.221
##    .ssno              0.319    0.122    2.622    0.009    0.081
##    .sscs              0.477    0.077    6.170    0.000    0.326
##    .ssmc              0.302    0.031    9.839    0.000    0.241
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.276    0.124    0.125
##     0.326    0.241    0.238
##     0.310    0.256    0.268
##     0.409    0.339    0.278
##     0.654    0.175    0.187
##     0.390    0.136    0.151
##     0.627    0.526    0.509
##     0.571    0.421    0.313
##     0.436    0.329    0.312
##     0.558    0.319    0.276
##     0.629    0.477    0.453
##     0.362    0.302    0.304
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   329.237   102.000     0.000     0.962     0.082     0.054 16381.428 
##       bic 
## 16732.996
Mc(metric)
## [1] 0.8438054
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 90 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       103
##   Number of equality constraints                    25
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               329.237     295.493
##   Degrees of freedom                               102         102
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.114
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          128.545     115.371
##     0                                          200.692     180.123
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.298    0.045    6.551    0.000    0.209
##     sswk    (.p2.)    0.365    0.084    4.368    0.000    0.201
##     sspc    (.p3.)    0.103    0.043    2.420    0.016    0.020
##     ssei    (.p4.)    0.171    0.043    3.982    0.000    0.087
##   math =~                                                      
##     ssar    (.p5.)    0.258    0.139    1.862    0.063   -0.014
##     ssmk    (.p6.)    0.195    0.110    1.770    0.077   -0.021
##     ssao    (.p7.)    0.071    0.067    1.057    0.291   -0.061
##   electronic =~                                                
##     ssai    (.p8.)    0.342    0.044    7.727    0.000    0.255
##     sssi    (.p9.)    0.309    0.045    6.798    0.000    0.220
##     ssei    (.10.)    0.172    0.025    6.992    0.000    0.124
##   speed =~                                                     
##     ssno    (.11.)    0.650    0.098    6.607    0.000    0.457
##     sscs    (.12.)    0.347    0.057    6.059    0.000    0.235
##     ssmk    (.13.)    0.182    0.032    5.759    0.000    0.120
##   g =~                                                         
##     ssgs    (.14.)    0.759    0.039   19.237    0.000    0.682
##     ssar    (.15.)    0.749    0.040   18.668    0.000    0.670
##     sswk    (.16.)    0.754    0.043   17.611    0.000    0.670
##     sspc    (.17.)    0.752    0.037   20.354    0.000    0.679
##     ssno    (.18.)    0.554    0.044   12.700    0.000    0.469
##     sscs    (.19.)    0.549    0.038   14.477    0.000    0.474
##     ssai    (.20.)    0.466    0.037   12.515    0.000    0.393
##     sssi    (.21.)    0.452    0.038   11.822    0.000    0.377
##     ssmk    (.22.)    0.775    0.039   20.032    0.000    0.699
##     ssmc    (.23.)    0.719    0.038   18.965    0.000    0.645
##     ssei    (.24.)    0.679    0.040   16.966    0.000    0.601
##     ssao    (.25.)    0.638    0.036   17.523    0.000    0.566
##  ci.upper   Std.lv  Std.all
##                            
##     0.387    0.298    0.329
##     0.529    0.365    0.396
##     0.187    0.103    0.114
##     0.255    0.171    0.191
##                            
##     0.530    0.258    0.297
##     0.410    0.195    0.210
##     0.203    0.071    0.077
##                            
##     0.428    0.342    0.436
##     0.398    0.309    0.395
##     0.220    0.172    0.192
##                            
##     0.843    0.650    0.664
##     0.459    0.347    0.363
##     0.243    0.182    0.196
##                            
##     0.836    0.759    0.839
##     0.827    0.749    0.863
##     0.837    0.754    0.817
##     0.824    0.752    0.826
##     0.640    0.554    0.566
##     0.623    0.549    0.575
##     0.539    0.466    0.595
##     0.527    0.452    0.578
##     0.851    0.775    0.837
##     0.794    0.719    0.823
##     0.758    0.679    0.760
##     0.709    0.638    0.694
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.378    0.051    7.429    0.000    0.278
##    .sswk              0.382    0.052    7.278    0.000    0.279
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei              0.188    0.048    3.908    0.000    0.094
##    .ssar              0.384    0.049    7.810    0.000    0.288
##    .ssmk              0.448    0.054    8.275    0.000    0.342
##    .ssao              0.343    0.052    6.596    0.000    0.241
##    .ssai              0.069    0.043    1.625    0.104   -0.014
##    .sssi              0.163    0.044    3.736    0.000    0.078
##    .ssno              0.285    0.056    5.122    0.000    0.176
##    .sscs              0.358    0.053    6.754    0.000    0.254
##    .ssmc              0.263    0.048    5.461    0.000    0.169
##  ci.upper   Std.lv  Std.all
##     0.478    0.378    0.418
##     0.485    0.382    0.414
##     0.545    0.445    0.489
##     0.283    0.188    0.211
##     0.481    0.384    0.443
##     0.554    0.448    0.484
##     0.444    0.343    0.373
##     0.153    0.069    0.088
##     0.249    0.163    0.209
##     0.395    0.285    0.291
##     0.462    0.358    0.375
##     0.358    0.263    0.302
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.154    0.026    5.872    0.000    0.103
##    .sswk              0.149    0.042    3.561    0.000    0.067
##    .sspc              0.253    0.030    8.396    0.000    0.194
##    .ssei              0.278    0.030    9.348    0.000    0.220
##    .ssar              0.125    0.071    1.779    0.075   -0.013
##    .ssmk              0.185    0.042    4.460    0.000    0.104
##    .ssao              0.433    0.035   12.276    0.000    0.364
##    .ssai              0.280    0.037    7.620    0.000    0.208
##    .sssi              0.311    0.035    8.818    0.000    0.242
##    .ssno              0.230    0.100    2.297    0.022    0.034
##    .sscs              0.490    0.057    8.539    0.000    0.377
##    .ssmc              0.246    0.025    9.694    0.000    0.196
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.206    0.154    0.188
##     0.230    0.149    0.175
##     0.312    0.253    0.306
##     0.337    0.278    0.349
##     0.264    0.125    0.167
##     0.267    0.185    0.216
##     0.502    0.433    0.512
##     0.352    0.280    0.456
##     0.380    0.311    0.509
##     0.426    0.230    0.240
##     0.602    0.490    0.538
##     0.295    0.246    0.322
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.298    0.045    6.551    0.000    0.209
##     sswk    (.p2.)    0.365    0.084    4.368    0.000    0.201
##     sspc    (.p3.)    0.103    0.043    2.420    0.016    0.020
##     ssei    (.p4.)    0.171    0.043    3.982    0.000    0.087
##   math =~                                                      
##     ssar    (.p5.)    0.258    0.139    1.862    0.063   -0.014
##     ssmk    (.p6.)    0.195    0.110    1.770    0.077   -0.021
##     ssao    (.p7.)    0.071    0.067    1.057    0.291   -0.061
##   electronic =~                                                
##     ssai    (.p8.)    0.342    0.044    7.727    0.000    0.255
##     sssi    (.p9.)    0.309    0.045    6.798    0.000    0.220
##     ssei    (.10.)    0.172    0.025    6.992    0.000    0.124
##   speed =~                                                     
##     ssno    (.11.)    0.650    0.098    6.607    0.000    0.457
##     sscs    (.12.)    0.347    0.057    6.059    0.000    0.235
##     ssmk    (.13.)    0.182    0.032    5.759    0.000    0.120
##   g =~                                                         
##     ssgs    (.14.)    0.759    0.039   19.237    0.000    0.682
##     ssar    (.15.)    0.749    0.040   18.668    0.000    0.670
##     sswk    (.16.)    0.754    0.043   17.611    0.000    0.670
##     sspc    (.17.)    0.752    0.037   20.354    0.000    0.679
##     ssno    (.18.)    0.554    0.044   12.700    0.000    0.469
##     sscs    (.19.)    0.549    0.038   14.477    0.000    0.474
##     ssai    (.20.)    0.466    0.037   12.515    0.000    0.393
##     sssi    (.21.)    0.452    0.038   11.822    0.000    0.377
##     ssmk    (.22.)    0.775    0.039   20.032    0.000    0.699
##     ssmc    (.23.)    0.719    0.038   18.965    0.000    0.645
##     ssei    (.24.)    0.679    0.040   16.966    0.000    0.601
##     ssao    (.25.)    0.638    0.036   17.523    0.000    0.566
##  ci.upper   Std.lv  Std.all
##                            
##     0.387    0.322    0.323
##     0.529    0.395    0.385
##     0.187    0.112    0.114
##     0.255    0.185    0.177
##                            
##     0.530    0.264    0.271
##     0.410    0.199    0.203
##     0.203    0.073    0.071
##                            
##     0.428    0.724    0.654
##     0.398    0.655    0.657
##     0.220    0.365    0.349
##                            
##     0.843    0.725    0.668
##     0.459    0.387    0.383
##     0.243    0.202    0.207
##                            
##     0.836    0.844    0.845
##     0.827    0.833    0.855
##     0.837    0.838    0.818
##     0.824    0.836    0.852
##     0.640    0.616    0.568
##     0.623    0.611    0.604
##     0.539    0.519    0.468
##     0.527    0.503    0.504
##     0.851    0.862    0.880
##     0.794    0.800    0.820
##     0.758    0.756    0.724
##     0.709    0.709    0.697
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.542    0.056    9.598    0.000    0.431
##    .sswk              0.371    0.057    6.485    0.000    0.259
##    .sspc              0.143    0.056    2.563    0.010    0.034
##    .ssei              0.595    0.063    9.438    0.000    0.472
##    .ssar              0.392    0.055    7.142    0.000    0.284
##    .ssmk              0.259    0.054    4.760    0.000    0.152
##    .ssao              0.225    0.058    3.904    0.000    0.112
##    .ssai              0.684    0.067   10.241    0.000    0.553
##    .sssi              0.827    0.059   14.131    0.000    0.712
##    .ssno              0.122    0.061    1.990    0.047    0.002
##    .sscs             -0.026    0.058   -0.447    0.655   -0.140
##    .ssmc              0.578    0.056   10.233    0.000    0.467
##  ci.upper   Std.lv  Std.all
##     0.653    0.542    0.542
##     0.483    0.371    0.362
##     0.252    0.143    0.145
##     0.719    0.595    0.571
##     0.499    0.392    0.403
##     0.365    0.259    0.264
##     0.338    0.225    0.221
##     0.815    0.684    0.618
##     0.942    0.827    0.829
##     0.241    0.122    0.112
##     0.088   -0.026   -0.026
##     0.689    0.578    0.592
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.181    0.037    4.943    0.000    0.109
##    .sswk              0.192    0.043    4.484    0.000    0.108
##    .sspc              0.251    0.027    9.409    0.000    0.199
##    .ssei              0.350    0.037    9.581    0.000    0.279
##    .ssar              0.185    0.076    2.417    0.016    0.035
##    .ssmk              0.136    0.041    3.309    0.001    0.055
##    .ssao              0.528    0.050   10.476    0.000    0.429
##    .ssai              0.433    0.076    5.705    0.000    0.285
##    .sssi              0.313    0.056    5.595    0.000    0.204
##    .ssno              0.271    0.117    2.328    0.020    0.043
##    .sscs              0.499    0.073    6.870    0.000    0.356
##    .ssmc              0.313    0.031   10.193    0.000    0.253
##     verbal            1.170    0.394    2.965    0.003    0.397
##     math              1.044    0.552    1.891    0.059   -0.038
##     electronic        4.494    1.156    3.889    0.000    2.230
##     speed             1.242    0.339    3.660    0.000    0.577
##     g                 1.238    0.151    8.212    0.000    0.942
##  ci.upper   Std.lv  Std.all
##     0.253    0.181    0.181
##     0.277    0.192    0.183
##     0.304    0.251    0.261
##     0.422    0.350    0.322
##     0.334    0.185    0.195
##     0.217    0.136    0.142
##     0.626    0.528    0.509
##     0.582    0.433    0.353
##     0.423    0.313    0.315
##     0.500    0.271    0.231
##     0.641    0.499    0.488
##     0.373    0.313    0.328
##     1.943    1.000    1.000
##     2.127    1.000    1.000
##     6.759    1.000    1.000
##     1.907    1.000    1.000
##     1.533    1.000    1.000
lavTestScore(metric, release = 1:25)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 27.955 25    0.31
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs    X2 df p.value
## 1   .p1. == .p70. 3.292  1   0.070
## 2   .p2. == .p71. 3.578  1   0.059
## 3   .p3. == .p72. 0.005  1   0.946
## 4   .p4. == .p73. 0.015  1   0.904
## 5   .p5. == .p74. 0.418  1   0.518
## 6   .p6. == .p75. 0.263  1   0.608
## 7   .p7. == .p76. 1.041  1   0.308
## 8   .p8. == .p77. 0.023  1   0.880
## 9   .p9. == .p78. 3.238  1   0.072
## 10 .p10. == .p79. 2.403  1   0.121
## 11 .p11. == .p80. 0.188  1   0.665
## 12 .p12. == .p81. 0.726  1   0.394
## 13 .p13. == .p82. 0.314  1   0.575
## 14 .p14. == .p83. 0.131  1   0.717
## 15 .p15. == .p84. 0.016  1   0.899
## 16 .p16. == .p85. 1.166  1   0.280
## 17 .p17. == .p86. 0.032  1   0.859
## 18 .p18. == .p87. 0.016  1   0.899
## 19 .p19. == .p88. 1.121  1   0.290
## 20 .p20. == .p89. 3.106  1   0.078
## 21 .p21. == .p90. 0.033  1   0.856
## 22 .p22. == .p91. 4.609  1   0.032
## 23 .p23. == .p92. 1.485  1   0.223
## 24 .p24. == .p93. 4.539  1   0.033
## 25 .p25. == .p94. 0.000  1   0.987
scalar<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   424.066   109.000     0.000     0.948     0.093     0.058 16462.257 
##       bic 
## 16782.274
Mc(scalar)
## [1] 0.7901951
summary(scalar, standardized=T, ci=T) # -.432
## lavaan 0.6-18 ended normally after 120 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       108
##   Number of equality constraints                    37
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               424.066     380.459
##   Degrees of freedom                               109         109
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.115
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          171.130     153.532
##     0                                          252.936     226.926
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.065    0.043    1.486    0.137   -0.021
##     sswk    (.p2.)    0.115    0.067    1.722    0.085   -0.016
##     sspc    (.p3.)    0.185    0.091    2.036    0.042    0.007
##     ssei    (.p4.)    0.045    0.032    1.399    0.162   -0.018
##   math =~                                                      
##     ssar    (.p5.)    0.273    0.040    6.901    0.000    0.196
##     ssmk    (.p6.)    0.257    0.041    6.328    0.000    0.177
##     ssao    (.p7.)    0.244    0.042    5.738    0.000    0.160
##   electronic =~                                                
##     ssai    (.p8.)    0.320    0.043    7.374    0.000    0.235
##     sssi    (.p9.)    0.320    0.047    6.754    0.000    0.227
##     ssei    (.10.)    0.170    0.025    6.722    0.000    0.120
##   speed =~                                                     
##     ssno    (.11.)    0.476    0.064    7.490    0.000    0.351
##     sscs    (.12.)    0.480    0.060    8.053    0.000    0.363
##     ssmk    (.13.)    0.194    0.033    5.914    0.000    0.130
##   g =~                                                         
##     ssgs    (.14.)    0.798    0.038   20.784    0.000    0.722
##     ssar    (.15.)    0.734    0.040   18.252    0.000    0.655
##     sswk    (.16.)    0.798    0.041   19.424    0.000    0.717
##     sspc    (.17.)    0.750    0.037   20.138    0.000    0.677
##     ssno    (.18.)    0.560    0.044   12.731    0.000    0.474
##     sscs    (.19.)    0.521    0.038   13.857    0.000    0.447
##     ssai    (.20.)    0.472    0.037   12.833    0.000    0.400
##     sssi    (.21.)    0.461    0.038   12.244    0.000    0.387
##     ssmk    (.22.)    0.758    0.039   19.489    0.000    0.682
##     ssmc    (.23.)    0.703    0.038   18.427    0.000    0.629
##     ssei    (.24.)    0.706    0.039   18.123    0.000    0.630
##     ssao    (.25.)    0.594    0.036   16.406    0.000    0.523
##  ci.upper   Std.lv  Std.all
##                            
##     0.150    0.065    0.072
##     0.246    0.115    0.125
##     0.364    0.185    0.203
##     0.108    0.045    0.050
##                            
##     0.351    0.273    0.315
##     0.337    0.257    0.278
##     0.327    0.244    0.265
##                            
##     0.405    0.320    0.407
##     0.413    0.320    0.408
##     0.219    0.170    0.189
##                            
##     0.600    0.476    0.488
##     0.597    0.480    0.501
##     0.259    0.194    0.210
##                            
##     0.873    0.798    0.883
##     0.812    0.734    0.846
##     0.878    0.798    0.865
##     0.822    0.750    0.821
##     0.646    0.560    0.575
##     0.595    0.521    0.544
##     0.544    0.472    0.600
##     0.534    0.461    0.587
##     0.834    0.758    0.821
##     0.778    0.703    0.806
##     0.782    0.706    0.785
##     0.665    0.594    0.645
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.53.)    0.381    0.051    7.457    0.000    0.281
##    .sswk    (.54.)    0.387    0.052    7.384    0.000    0.284
##    .sspc    (.55.)    0.440    0.053    8.361    0.000    0.336
##    .ssei    (.56.)    0.190    0.048    3.947    0.000    0.096
##    .ssar    (.57.)    0.392    0.049    7.981    0.000    0.296
##    .ssmk    (.58.)    0.452    0.053    8.454    0.000    0.347
##    .ssao    (.59.)    0.308    0.052    5.912    0.000    0.206
##    .ssai    (.60.)    0.057    0.041    1.387    0.166   -0.024
##    .sssi    (.61.)    0.175    0.043    4.094    0.000    0.091
##    .ssno    (.62.)    0.330    0.053    6.203    0.000    0.226
##    .sscs    (.63.)    0.310    0.059    5.216    0.000    0.193
##    .ssmc    (.64.)    0.253    0.050    5.032    0.000    0.155
##  ci.upper   Std.lv  Std.all
##     0.482    0.381    0.422
##     0.489    0.387    0.419
##     0.543    0.440    0.481
##     0.284    0.190    0.211
##     0.488    0.392    0.452
##     0.556    0.452    0.489
##     0.410    0.308    0.335
##     0.138    0.057    0.073
##     0.258    0.175    0.222
##     0.434    0.330    0.339
##     0.426    0.310    0.323
##     0.352    0.253    0.290
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.175    0.019    9.154    0.000    0.137
##    .sswk              0.200    0.021    9.666    0.000    0.160
##    .sspc              0.237    0.032    7.408    0.000    0.175
##    .ssei              0.280    0.030    9.218    0.000    0.220
##    .ssar              0.140    0.021    6.585    0.000    0.098
##    .ssmk              0.175    0.020    8.564    0.000    0.135
##    .ssao              0.435    0.039   11.252    0.000    0.359
##    .ssai              0.293    0.035    8.270    0.000    0.224
##    .sssi              0.302    0.036    8.355    0.000    0.231
##    .ssno              0.409    0.059    6.885    0.000    0.292
##    .sscs              0.415    0.068    6.147    0.000    0.283
##    .ssmc              0.267    0.026   10.214    0.000    0.216
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.212    0.175    0.214
##     0.241    0.200    0.236
##     0.300    0.237    0.285
##     0.339    0.280    0.346
##     0.181    0.140    0.186
##     0.214    0.175    0.205
##     0.511    0.435    0.514
##     0.362    0.293    0.474
##     0.373    0.302    0.490
##     0.525    0.409    0.431
##     0.548    0.415    0.453
##     0.318    0.267    0.350
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.065    0.043    1.486    0.137   -0.021
##     sswk    (.p2.)    0.115    0.067    1.722    0.085   -0.016
##     sspc    (.p3.)    0.185    0.091    2.036    0.042    0.007
##     ssei    (.p4.)    0.045    0.032    1.399    0.162   -0.018
##   math =~                                                      
##     ssar    (.p5.)    0.273    0.040    6.901    0.000    0.196
##     ssmk    (.p6.)    0.257    0.041    6.328    0.000    0.177
##     ssao    (.p7.)    0.244    0.042    5.738    0.000    0.160
##   electronic =~                                                
##     ssai    (.p8.)    0.320    0.043    7.374    0.000    0.235
##     sssi    (.p9.)    0.320    0.047    6.754    0.000    0.227
##     ssei    (.10.)    0.170    0.025    6.722    0.000    0.120
##   speed =~                                                     
##     ssno    (.11.)    0.476    0.064    7.490    0.000    0.351
##     sscs    (.12.)    0.480    0.060    8.053    0.000    0.363
##     ssmk    (.13.)    0.194    0.033    5.914    0.000    0.130
##   g =~                                                         
##     ssgs    (.14.)    0.798    0.038   20.784    0.000    0.722
##     ssar    (.15.)    0.734    0.040   18.252    0.000    0.655
##     sswk    (.16.)    0.798    0.041   19.424    0.000    0.717
##     sspc    (.17.)    0.750    0.037   20.138    0.000    0.677
##     ssno    (.18.)    0.560    0.044   12.731    0.000    0.474
##     sscs    (.19.)    0.521    0.038   13.857    0.000    0.447
##     ssai    (.20.)    0.472    0.037   12.833    0.000    0.400
##     sssi    (.21.)    0.461    0.038   12.244    0.000    0.387
##     ssmk    (.22.)    0.758    0.039   19.489    0.000    0.682
##     ssmc    (.23.)    0.703    0.038   18.427    0.000    0.629
##     ssei    (.24.)    0.706    0.039   18.123    0.000    0.630
##     ssao    (.25.)    0.594    0.036   16.406    0.000    0.523
##  ci.upper   Std.lv  Std.all
##                            
##     0.150    0.059    0.059
##     0.246    0.105    0.102
##     0.364    0.168    0.172
##     0.108    0.041    0.039
##                            
##     0.351    0.280    0.288
##     0.337    0.264    0.270
##     0.327    0.250    0.245
##                            
##     0.405    0.671    0.614
##     0.413    0.672    0.672
##     0.219    0.356    0.340
##                            
##     0.600    0.549    0.508
##     0.597    0.553    0.540
##     0.259    0.224    0.229
##                            
##     0.873    0.887    0.885
##     0.812    0.816    0.838
##     0.878    0.887    0.865
##     0.822    0.833    0.850
##     0.646    0.623    0.577
##     0.595    0.579    0.566
##     0.544    0.525    0.480
##     0.534    0.512    0.513
##     0.834    0.843    0.863
##     0.778    0.782    0.803
##     0.782    0.785    0.749
##     0.665    0.660    0.648
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.53.)    0.381    0.051    7.457    0.000    0.281
##    .sswk    (.54.)    0.387    0.052    7.384    0.000    0.284
##    .sspc    (.55.)    0.440    0.053    8.361    0.000    0.336
##    .ssei    (.56.)    0.190    0.048    3.947    0.000    0.096
##    .ssar    (.57.)    0.392    0.049    7.981    0.000    0.296
##    .ssmk    (.58.)    0.452    0.053    8.454    0.000    0.347
##    .ssao    (.59.)    0.308    0.052    5.912    0.000    0.206
##    .ssai    (.60.)    0.057    0.041    1.387    0.166   -0.024
##    .sssi    (.61.)    0.175    0.043    4.094    0.000    0.091
##    .ssno    (.62.)    0.330    0.053    6.203    0.000    0.226
##    .sscs    (.63.)    0.310    0.059    5.216    0.000    0.193
##    .ssmc    (.64.)    0.253    0.050    5.032    0.000    0.155
##     verbal           -3.515    1.768   -1.988    0.047   -6.981
##     math             -1.330    0.303   -4.390    0.000   -1.924
##     elctrnc           1.312    0.256    5.131    0.000    0.811
##     speed            -1.118    0.212   -5.273    0.000   -1.534
##     g                 0.480    0.115    4.165    0.000    0.254
##  ci.upper   Std.lv  Std.all
##     0.482    0.381    0.381
##     0.489    0.387    0.377
##     0.543    0.440    0.448
##     0.284    0.190    0.181
##     0.488    0.392    0.403
##     0.556    0.452    0.462
##     0.410    0.308    0.302
##     0.138    0.057    0.052
##     0.258    0.175    0.175
##     0.434    0.330    0.306
##     0.426    0.310    0.302
##     0.352    0.253    0.260
##    -0.050   -3.869   -3.869
##    -0.736   -1.296   -1.296
##     1.814    0.626    0.626
##    -0.702   -0.970   -0.970
##     0.706    0.432    0.432
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.214    0.022    9.742    0.000    0.171
##    .sswk              0.253    0.025   10.279    0.000    0.205
##    .sspc              0.238    0.034    6.914    0.000    0.171
##    .ssei              0.353    0.037    9.453    0.000    0.279
##    .ssar              0.203    0.028    7.283    0.000    0.149
##    .ssmk              0.125    0.018    6.961    0.000    0.089
##    .ssao              0.539    0.052   10.453    0.000    0.438
##    .ssai              0.470    0.067    6.987    0.000    0.338
##    .sssi              0.284    0.056    5.074    0.000    0.174
##    .ssno              0.478    0.066    7.182    0.000    0.347
##    .sscs              0.408    0.076    5.379    0.000    0.259
##    .ssmc              0.336    0.033   10.257    0.000    0.272
##     verbal            0.825    1.251    0.660    0.509   -1.626
##     math              1.052    0.352    2.991    0.003    0.363
##     electronic        4.395    1.203    3.653    0.000    2.037
##     speed             1.329    0.347    3.831    0.000    0.649
##     g                 1.236    0.151    8.170    0.000    0.940
##  ci.upper   Std.lv  Std.all
##     0.258    0.214    0.214
##     0.301    0.253    0.241
##     0.306    0.238    0.248
##     0.426    0.353    0.321
##     0.258    0.203    0.215
##     0.160    0.125    0.130
##     0.640    0.539    0.520
##     0.601    0.470    0.393
##     0.394    0.284    0.285
##     0.608    0.478    0.409
##     0.557    0.408    0.389
##     0.400    0.336    0.355
##     3.277    1.000    1.000
##     1.742    1.000    1.000
##     6.754    1.000    1.000
##     2.009    1.000    1.000
##     1.533    1.000    1.000
lavTestScore(scalar, release = 26:37) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 93.615 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs     X2 df p.value
## 1  .p53. == .p122.  2.740  1   0.098
## 2  .p54. == .p123. 10.715  1   0.001
## 3  .p55. == .p124. 65.696  1   0.000
## 4  .p56. == .p125.  0.378  1   0.538
## 5  .p57. == .p126.  2.985  1   0.084
## 6  .p58. == .p127.  0.398  1   0.528
## 7  .p59. == .p128.  6.296  1   0.012
## 8  .p60. == .p129.  1.438  1   0.231
## 9  .p61. == .p130.  1.205  1   0.272
## 10 .p62. == .p131. 17.594  1   0.000
## 11 .p63. == .p132. 20.258  1   0.000
## 12 .p64. == .p133. 16.674  1   0.000
scalar2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   339.060   107.000     0.000     0.961     0.080     0.054 16381.251 
##       bic 
## 16710.282
Mc(scalar2)
## [1] 0.8407693
summary(scalar2, standardized=T, ci=T) # g -.416 Std.all
## lavaan 0.6-18 ended normally after 109 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       108
##   Number of equality constraints                    35
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               339.060     304.134
##   Degrees of freedom                               107         107
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.115
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          126.970     113.891
##     0                                          212.090     190.243
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.252    0.035    7.129    0.000    0.183
##     sswk    (.p2.)    0.414    0.057    7.325    0.000    0.304
##     sspc    (.p3.)    0.099    0.035    2.843    0.004    0.031
##     ssei    (.p4.)    0.152    0.038    3.966    0.000    0.077
##   math =~                                                      
##     ssar    (.p5.)    0.189    0.041    4.635    0.000    0.109
##     ssmk    (.p6.)    0.232    0.048    4.876    0.000    0.139
##     ssao    (.p7.)    0.190    0.039    4.834    0.000    0.113
##   electronic =~                                                
##     ssai    (.p8.)    0.327    0.042    7.860    0.000    0.245
##     sssi    (.p9.)    0.328    0.045    7.287    0.000    0.240
##     ssei    (.10.)    0.172    0.024    7.084    0.000    0.124
##   speed =~                                                     
##     ssno    (.11.)    0.669    0.101    6.604    0.000    0.471
##     sscs    (.12.)    0.338    0.057    5.965    0.000    0.227
##     ssmk    (.13.)    0.182    0.031    5.864    0.000    0.121
##   g =~                                                         
##     ssgs    (.14.)    0.766    0.039   19.629    0.000    0.689
##     ssar    (.15.)    0.751    0.040   18.855    0.000    0.673
##     sswk    (.16.)    0.754    0.042   17.764    0.000    0.671
##     sspc    (.17.)    0.752    0.037   20.554    0.000    0.681
##     ssno    (.18.)    0.553    0.044   12.698    0.000    0.468
##     sscs    (.19.)    0.547    0.038   14.423    0.000    0.473
##     ssai    (.20.)    0.465    0.037   12.472    0.000    0.392
##     sssi    (.21.)    0.453    0.038   11.926    0.000    0.379
##     ssmk    (.22.)    0.775    0.039   19.970    0.000    0.699
##     ssmc    (.23.)    0.715    0.038   18.812    0.000    0.641
##     ssei    (.24.)    0.681    0.040   17.125    0.000    0.603
##     ssao    (.25.)    0.621    0.036   17.132    0.000    0.550
##  ci.upper   Std.lv  Std.all
##                            
##     0.321    0.252    0.278
##     0.525    0.414    0.449
##     0.167    0.099    0.109
##     0.227    0.152    0.170
##                            
##     0.269    0.189    0.217
##     0.325    0.232    0.250
##     0.267    0.190    0.206
##                            
##     0.408    0.327    0.417
##     0.416    0.328    0.418
##     0.220    0.172    0.193
##                            
##     0.868    0.669    0.683
##     0.450    0.338    0.355
##     0.243    0.182    0.196
##                            
##     0.842    0.766    0.846
##     0.829    0.751    0.865
##     0.837    0.754    0.817
##     0.824    0.752    0.827
##     0.639    0.553    0.565
##     0.621    0.547    0.573
##     0.538    0.465    0.594
##     0.528    0.453    0.579
##     0.851    0.775    0.837
##     0.790    0.715    0.820
##     0.759    0.681    0.763
##     0.692    0.621    0.675
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.53.)    0.388    0.050    7.744    0.000    0.290
##    .sswk    (.54.)    0.378    0.053    7.197    0.000    0.275
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei    (.56.)    0.186    0.047    3.983    0.000    0.095
##    .ssar    (.57.)    0.391    0.049    7.946    0.000    0.294
##    .ssmk    (.58.)    0.449    0.054    8.328    0.000    0.344
##    .ssao    (.59.)    0.322    0.054    6.006    0.000    0.217
##    .ssai    (.60.)    0.059    0.041    1.431    0.152   -0.022
##    .sssi    (.61.)    0.176    0.042    4.158    0.000    0.093
##    .ssno    (.62.)    0.285    0.056    5.112    0.000    0.176
##    .sscs              0.358    0.053    6.754    0.000    0.254
##    .ssmc    (.64.)    0.256    0.048    5.348    0.000    0.162
##  ci.upper   Std.lv  Std.all
##     0.486    0.388    0.429
##     0.481    0.378    0.410
##     0.545    0.445    0.489
##     0.278    0.186    0.208
##     0.487    0.391    0.450
##     0.555    0.449    0.485
##     0.427    0.322    0.350
##     0.139    0.059    0.075
##     0.258    0.176    0.224
##     0.394    0.285    0.291
##     0.462    0.358    0.375
##     0.350    0.256    0.294
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.170    0.020    8.517    0.000    0.131
##    .sswk              0.111    0.034    3.281    0.001    0.045
##    .sspc              0.252    0.030    8.335    0.000    0.192
##    .ssei              0.281    0.030    9.422    0.000    0.222
##    .ssar              0.154    0.019    7.943    0.000    0.116
##    .ssmk              0.170    0.021    8.265    0.000    0.130
##    .ssao              0.424    0.037   11.523    0.000    0.352
##    .ssai              0.290    0.035    8.158    0.000    0.220
##    .sssi              0.301    0.036    8.289    0.000    0.230
##    .ssno              0.205    0.106    1.932    0.053   -0.003
##    .sscs              0.497    0.057    8.671    0.000    0.385
##    .ssmc              0.249    0.025    9.867    0.000    0.199
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.209    0.170    0.207
##     0.177    0.111    0.131
##     0.311    0.252    0.304
##     0.339    0.281    0.352
##     0.192    0.154    0.204
##     0.211    0.170    0.199
##     0.496    0.424    0.502
##     0.359    0.290    0.473
##     0.372    0.301    0.490
##     0.414    0.205    0.214
##     0.609    0.497    0.546
##     0.298    0.249    0.327
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.252    0.035    7.129    0.000    0.183
##     sswk    (.p2.)    0.414    0.057    7.325    0.000    0.304
##     sspc    (.p3.)    0.099    0.035    2.843    0.004    0.031
##     ssei    (.p4.)    0.152    0.038    3.966    0.000    0.077
##   math =~                                                      
##     ssar    (.p5.)    0.189    0.041    4.635    0.000    0.109
##     ssmk    (.p6.)    0.232    0.048    4.876    0.000    0.139
##     ssao    (.p7.)    0.190    0.039    4.834    0.000    0.113
##   electronic =~                                                
##     ssai    (.p8.)    0.327    0.042    7.860    0.000    0.245
##     sssi    (.p9.)    0.328    0.045    7.287    0.000    0.240
##     ssei    (.10.)    0.172    0.024    7.084    0.000    0.124
##   speed =~                                                     
##     ssno    (.11.)    0.669    0.101    6.604    0.000    0.471
##     sscs    (.12.)    0.338    0.057    5.965    0.000    0.227
##     ssmk    (.13.)    0.182    0.031    5.864    0.000    0.121
##   g =~                                                         
##     ssgs    (.14.)    0.766    0.039   19.629    0.000    0.689
##     ssar    (.15.)    0.751    0.040   18.855    0.000    0.673
##     sswk    (.16.)    0.754    0.042   17.764    0.000    0.671
##     sspc    (.17.)    0.752    0.037   20.554    0.000    0.681
##     ssno    (.18.)    0.553    0.044   12.698    0.000    0.468
##     sscs    (.19.)    0.547    0.038   14.423    0.000    0.473
##     ssai    (.20.)    0.465    0.037   12.472    0.000    0.392
##     sssi    (.21.)    0.453    0.038   11.926    0.000    0.379
##     ssmk    (.22.)    0.775    0.039   19.970    0.000    0.699
##     ssmc    (.23.)    0.715    0.038   18.812    0.000    0.641
##     ssei    (.24.)    0.681    0.040   17.125    0.000    0.603
##     ssao    (.25.)    0.621    0.036   17.132    0.000    0.550
##  ci.upper   Std.lv  Std.all
##                            
##     0.321    0.267    0.267
##     0.525    0.440    0.429
##     0.167    0.105    0.107
##     0.227    0.161    0.154
##                            
##     0.269    0.174    0.179
##     0.325    0.214    0.218
##     0.267    0.175    0.172
##                            
##     0.408    0.685    0.623
##     0.416    0.687    0.684
##     0.220    0.360    0.345
##                            
##     0.868    0.746    0.688
##     0.450    0.377    0.373
##     0.243    0.203    0.207
##                            
##     0.842    0.853    0.852
##     0.829    0.836    0.861
##     0.837    0.839    0.819
##     0.824    0.838    0.853
##     0.639    0.616    0.568
##     0.621    0.609    0.603
##     0.538    0.518    0.471
##     0.528    0.505    0.503
##     0.851    0.863    0.881
##     0.790    0.797    0.817
##     0.759    0.759    0.726
##     0.692    0.691    0.679
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.53.)    0.388    0.050    7.744    0.000    0.290
##    .sswk    (.54.)    0.378    0.053    7.197    0.000    0.275
##    .sspc             -0.122    0.068   -1.801    0.072   -0.255
##    .ssei    (.56.)    0.186    0.047    3.983    0.000    0.095
##    .ssar    (.57.)    0.391    0.049    7.946    0.000    0.294
##    .ssmk    (.58.)    0.449    0.054    8.328    0.000    0.344
##    .ssao    (.59.)    0.322    0.054    6.006    0.000    0.217
##    .ssai    (.60.)    0.059    0.041    1.431    0.152   -0.022
##    .sssi    (.61.)    0.176    0.042    4.158    0.000    0.093
##    .ssno    (.62.)    0.285    0.056    5.112    0.000    0.176
##    .sscs             -0.068    0.080   -0.841    0.400   -0.225
##    .ssmc    (.64.)    0.256    0.048    5.348    0.000    0.162
##     verbal           -0.847    0.194   -4.375    0.000   -1.227
##     math             -1.885    0.461   -4.091    0.000   -2.787
##     elctrnc           1.311    0.234    5.606    0.000    0.853
##     speed            -0.626    0.157   -3.985    0.000   -0.935
##     g                 0.463    0.101    4.587    0.000    0.265
##  ci.upper   Std.lv  Std.all
##     0.486    0.388    0.388
##     0.481    0.378    0.369
##     0.011   -0.122   -0.124
##     0.278    0.186    0.178
##     0.487    0.391    0.402
##     0.555    0.449    0.459
##     0.427    0.322    0.316
##     0.139    0.059    0.053
##     0.258    0.176    0.175
##     0.394    0.285    0.263
##     0.090   -0.068   -0.067
##     0.350    0.256    0.263
##    -0.468   -0.799   -0.799
##    -0.982   -2.041   -2.041
##     1.769    0.626    0.626
##    -0.318   -0.562   -0.562
##     0.661    0.416    0.416
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.203    0.024    8.528    0.000    0.157
##    .sswk              0.152    0.036    4.208    0.000    0.081
##    .sspc              0.251    0.027    9.437    0.000    0.199
##    .ssei              0.361    0.038    9.594    0.000    0.287
##    .ssar              0.215    0.026    8.263    0.000    0.164
##    .ssmk              0.129    0.020    6.335    0.000    0.089
##    .ssao              0.528    0.050   10.532    0.000    0.430
##    .ssai              0.473    0.068    6.932    0.000    0.339
##    .sssi              0.280    0.056    4.969    0.000    0.170
##    .ssno              0.240    0.124    1.928    0.054   -0.004
##    .sscs              0.508    0.072    7.045    0.000    0.366
##    .ssmc              0.316    0.031   10.229    0.000    0.256
##     verbal            1.125    0.345    3.259    0.001    0.449
##     math              0.852    0.476    1.791    0.073   -0.081
##     electronic        4.393    1.134    3.872    0.000    2.170
##     speed             1.243    0.334    3.717    0.000    0.588
##     g                 1.240    0.152    8.167    0.000    0.943
##  ci.upper   Std.lv  Std.all
##     0.250    0.203    0.203
##     0.223    0.152    0.145
##     0.304    0.251    0.261
##     0.434    0.361    0.330
##     0.266    0.215    0.227
##     0.168    0.129    0.134
##     0.626    0.528    0.509
##     0.607    0.473    0.391
##     0.391    0.280    0.278
##     0.483    0.240    0.204
##     0.649    0.508    0.497
##     0.377    0.316    0.333
##     1.802    1.000    1.000
##     1.785    1.000    1.000
##     6.617    1.000    1.000
##     1.899    1.000    1.000
##     1.538    1.000    1.000
lavTestScore(scalar2, release = 26:35)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test    X2 df p.value
## 1 score 9.286 10   0.505
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs    X2 df p.value
## 1  .p53. == .p122. 1.830  1   0.176
## 2  .p54. == .p123. 1.734  1   0.188
## 3  .p56. == .p125. 0.028  1   0.868
## 4  .p57. == .p126. 3.526  1   0.060
## 5  .p58. == .p127. 0.245  1   0.621
## 6  .p59. == .p128. 5.730  1   0.017
## 7  .p60. == .p129. 1.055  1   0.304
## 8  .p61. == .p130. 1.278  1   0.258
## 9  .p62. == .p131. 0.245  1   0.621
## 10 .p64. == .p133. 2.491  1   0.114
strict<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   370.328   119.000     0.000     0.958     0.079     0.057 16388.518 
##       bic 
## 16663.462
Mc(strict)
## [1] 0.8287487
summary(strict, standardized=T, ci=T) # g -.419 Std.all
## lavaan 0.6-18 ended normally after 104 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       108
##   Number of equality constraints                    47
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               370.328     329.819
##   Degrees of freedom                               119         119
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.123
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          144.819     128.977
##     0                                          225.509     200.841
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.239    0.036    6.637    0.000    0.168
##     sswk    (.p2.)    0.379    0.056    6.809    0.000    0.270
##     sspc    (.p3.)    0.090    0.033    2.769    0.006    0.026
##     ssei    (.p4.)    0.136    0.038    3.611    0.000    0.062
##   math =~                                                      
##     ssar    (.p5.)    0.191    0.038    5.012    0.000    0.117
##     ssmk    (.p6.)    0.242    0.054    4.455    0.000    0.136
##     ssao    (.p7.)    0.194    0.036    5.394    0.000    0.124
##   electronic =~                                                
##     ssai    (.p8.)    0.315    0.047    6.678    0.000    0.223
##     sssi    (.p9.)    0.277    0.043    6.430    0.000    0.193
##     ssei    (.10.)    0.157    0.026    6.122    0.000    0.107
##   speed =~                                                     
##     ssno    (.11.)    0.673    0.101    6.662    0.000    0.475
##     sscs    (.12.)    0.329    0.056    5.839    0.000    0.219
##     ssmk    (.13.)    0.176    0.028    6.300    0.000    0.121
##   g =~                                                         
##     ssgs    (.14.)    0.765    0.039   19.511    0.000    0.689
##     ssar    (.15.)    0.750    0.040   18.916    0.000    0.672
##     sswk    (.16.)    0.753    0.042   17.777    0.000    0.670
##     sspc    (.17.)    0.753    0.036   20.691    0.000    0.682
##     ssno    (.18.)    0.553    0.043   12.781    0.000    0.469
##     sscs    (.19.)    0.547    0.038   14.421    0.000    0.473
##     ssai    (.20.)    0.465    0.037   12.411    0.000    0.391
##     sssi    (.21.)    0.456    0.038   11.947    0.000    0.381
##     ssmk    (.22.)    0.778    0.038   20.242    0.000    0.702
##     ssmc    (.23.)    0.717    0.038   18.844    0.000    0.642
##     ssei    (.24.)    0.685    0.040   17.132    0.000    0.607
##     ssao    (.25.)    0.620    0.036   17.010    0.000    0.549
##  ci.upper   Std.lv  Std.all
##                            
##     0.310    0.239    0.263
##     0.489    0.379    0.412
##     0.154    0.090    0.099
##     0.210    0.136    0.150
##                            
##     0.266    0.191    0.216
##     0.349    0.242    0.264
##     0.265    0.194    0.205
##                            
##     0.408    0.315    0.390
##     0.362    0.277    0.353
##     0.207    0.157    0.172
##                            
##     0.871    0.673    0.686
##     0.439    0.329    0.344
##     0.231    0.176    0.192
##                            
##     0.842    0.765    0.842
##     0.827    0.750    0.847
##     0.836    0.753    0.818
##     0.824    0.753    0.829
##     0.638    0.553    0.564
##     0.621    0.547    0.572
##     0.538    0.465    0.576
##     0.530    0.456    0.581
##     0.853    0.778    0.847
##     0.791    0.717    0.803
##     0.764    0.685    0.752
##     0.692    0.620    0.654
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.53.)    0.392    0.050    7.779    0.000    0.293
##    .sswk    (.54.)    0.376    0.053    7.124    0.000    0.273
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei    (.56.)    0.184    0.047    3.883    0.000    0.091
##    .ssar    (.57.)    0.390    0.050    7.852    0.000    0.293
##    .ssmk    (.58.)    0.451    0.054    8.359    0.000    0.345
##    .ssao    (.59.)    0.319    0.053    5.980    0.000    0.214
##    .ssai    (.60.)    0.046    0.041    1.118    0.264   -0.035
##    .sssi    (.61.)    0.192    0.042    4.539    0.000    0.109
##    .ssno    (.62.)    0.285    0.056    5.096    0.000    0.175
##    .sscs              0.358    0.053    6.754    0.000    0.254
##    .ssmc    (.64.)    0.254    0.048    5.300    0.000    0.160
##  ci.upper   Std.lv  Std.all
##     0.490    0.392    0.430
##     0.480    0.376    0.409
##     0.545    0.445    0.490
##     0.277    0.184    0.202
##     0.487    0.390    0.440
##     0.556    0.451    0.491
##     0.424    0.319    0.337
##     0.126    0.046    0.057
##     0.275    0.192    0.245
##     0.394    0.285    0.290
##     0.462    0.358    0.375
##     0.347    0.254    0.284
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.26.)    0.184    0.018   10.270    0.000    0.149
##    .sswk    (.27.)    0.137    0.032    4.263    0.000    0.074
##    .sspc    (.28.)    0.251    0.020   12.222    0.000    0.210
##    .ssei    (.29.)    0.317    0.024   13.276    0.000    0.270
##    .ssar    (.30.)    0.186    0.016   11.335    0.000    0.153
##    .ssmk    (.31.)    0.149    0.016    9.519    0.000    0.118
##    .ssao    (.32.)    0.476    0.031   15.139    0.000    0.414
##    .ssai    (.33.)    0.336    0.040    8.403    0.000    0.258
##    .sssi    (.34.)    0.331    0.032   10.467    0.000    0.269
##    .ssno    (.35.)    0.204    0.110    1.850    0.064   -0.012
##    .sscs    (.36.)    0.506    0.049   10.291    0.000    0.410
##    .ssmc    (.37.)    0.282    0.020   14.156    0.000    0.243
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     elctrnc           1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.219    0.184    0.223
##     0.199    0.137    0.161
##     0.291    0.251    0.303
##     0.363    0.317    0.382
##     0.218    0.186    0.237
##     0.180    0.149    0.177
##     0.537    0.476    0.530
##     0.415    0.336    0.516
##     0.393    0.331    0.538
##     0.420    0.204    0.212
##     0.602    0.506    0.554
##     0.321    0.282    0.355
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.239    0.036    6.637    0.000    0.168
##     sswk    (.p2.)    0.379    0.056    6.809    0.000    0.270
##     sspc    (.p3.)    0.090    0.033    2.769    0.006    0.026
##     ssei    (.p4.)    0.136    0.038    3.611    0.000    0.062
##   math =~                                                      
##     ssar    (.p5.)    0.191    0.038    5.012    0.000    0.117
##     ssmk    (.p6.)    0.242    0.054    4.455    0.000    0.136
##     ssao    (.p7.)    0.194    0.036    5.394    0.000    0.124
##   electronic =~                                                
##     ssai    (.p8.)    0.315    0.047    6.678    0.000    0.223
##     sssi    (.p9.)    0.277    0.043    6.430    0.000    0.193
##     ssei    (.10.)    0.157    0.026    6.122    0.000    0.107
##   speed =~                                                     
##     ssno    (.11.)    0.673    0.101    6.662    0.000    0.475
##     sscs    (.12.)    0.329    0.056    5.839    0.000    0.219
##     ssmk    (.13.)    0.176    0.028    6.300    0.000    0.121
##   g =~                                                         
##     ssgs    (.14.)    0.765    0.039   19.511    0.000    0.689
##     ssar    (.15.)    0.750    0.040   18.916    0.000    0.672
##     sswk    (.16.)    0.753    0.042   17.777    0.000    0.670
##     sspc    (.17.)    0.753    0.036   20.691    0.000    0.682
##     ssno    (.18.)    0.553    0.043   12.781    0.000    0.469
##     sscs    (.19.)    0.547    0.038   14.421    0.000    0.473
##     ssai    (.20.)    0.465    0.037   12.411    0.000    0.391
##     sssi    (.21.)    0.456    0.038   11.947    0.000    0.381
##     ssmk    (.22.)    0.778    0.038   20.242    0.000    0.702
##     ssmc    (.23.)    0.717    0.038   18.844    0.000    0.642
##     ssei    (.24.)    0.685    0.040   17.132    0.000    0.607
##     ssao    (.25.)    0.620    0.036   17.010    0.000    0.549
##  ci.upper   Std.lv  Std.all
##                            
##     0.310    0.290    0.290
##     0.489    0.460    0.448
##     0.154    0.109    0.111
##     0.210    0.165    0.160
##                            
##     0.266    0.165    0.172
##     0.349    0.208    0.210
##     0.265    0.167    0.169
##                            
##     0.408    0.749    0.693
##     0.362    0.659    0.651
##     0.207    0.373    0.361
##                            
##     0.871    0.767    0.708
##     0.439    0.375    0.372
##     0.231    0.201    0.202
##                            
##     0.842    0.854    0.855
##     0.827    0.836    0.876
##     0.836    0.840    0.818
##     0.824    0.840    0.854
##     0.638    0.617    0.570
##     0.621    0.610    0.605
##     0.538    0.519    0.480
##     0.530    0.508    0.502
##     0.853    0.867    0.874
##     0.791    0.799    0.833
##     0.764    0.765    0.740
##     0.692    0.692    0.698
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.53.)    0.392    0.050    7.779    0.000    0.293
##    .sswk    (.54.)    0.376    0.053    7.124    0.000    0.273
##    .sspc             -0.126    0.069   -1.831    0.067   -0.260
##    .ssei    (.56.)    0.184    0.047    3.883    0.000    0.091
##    .ssar    (.57.)    0.390    0.050    7.852    0.000    0.293
##    .ssmk    (.58.)    0.451    0.054    8.359    0.000    0.345
##    .ssao    (.59.)    0.319    0.053    5.980    0.000    0.214
##    .ssai    (.60.)    0.046    0.041    1.118    0.264   -0.035
##    .sssi    (.61.)    0.192    0.042    4.539    0.000    0.109
##    .ssno    (.62.)    0.285    0.056    5.096    0.000    0.175
##    .sscs             -0.076    0.080   -0.951    0.342   -0.232
##    .ssmc    (.64.)    0.254    0.048    5.300    0.000    0.160
##     verbal           -0.925    0.214   -4.321    0.000   -1.345
##     math             -1.849    0.463   -3.990    0.000   -2.757
##     elctrnc           1.415    0.287    4.932    0.000    0.852
##     speed            -0.625    0.157   -3.979    0.000   -0.933
##     g                 0.467    0.102    4.592    0.000    0.268
##  ci.upper   Std.lv  Std.all
##     0.490    0.392    0.392
##     0.480    0.376    0.366
##     0.009   -0.126   -0.128
##     0.277    0.184    0.178
##     0.487    0.390    0.408
##     0.556    0.451    0.454
##     0.424    0.319    0.322
##     0.126    0.046    0.042
##     0.275    0.192    0.190
##     0.394    0.285    0.263
##     0.081   -0.076   -0.075
##     0.347    0.254    0.264
##    -0.506   -0.764   -0.764
##    -0.941   -2.149   -2.149
##     1.977    0.596    0.596
##    -0.317   -0.548   -0.548
##     0.666    0.419    0.419
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.26.)    0.184    0.018   10.270    0.000    0.149
##    .sswk    (.27.)    0.137    0.032    4.263    0.000    0.074
##    .sspc    (.28.)    0.251    0.020   12.222    0.000    0.210
##    .ssei    (.29.)    0.317    0.024   13.276    0.000    0.270
##    .ssar    (.30.)    0.186    0.016   11.335    0.000    0.153
##    .ssmk    (.31.)    0.149    0.016    9.519    0.000    0.118
##    .ssao    (.32.)    0.476    0.031   15.139    0.000    0.414
##    .ssai    (.33.)    0.336    0.040    8.403    0.000    0.258
##    .sssi    (.34.)    0.331    0.032   10.467    0.000    0.269
##    .ssno    (.35.)    0.204    0.110    1.850    0.064   -0.012
##    .sscs    (.36.)    0.506    0.049   10.291    0.000    0.410
##    .ssmc    (.37.)    0.282    0.020   14.156    0.000    0.243
##     verbal            1.469    0.400    3.668    0.000    0.684
##     math              0.740    0.398    1.857    0.063   -0.041
##     elctrnc           5.643    1.672    3.376    0.001    2.367
##     speed             1.301    0.308    4.224    0.000    0.697
##     g                 1.245    0.152    8.204    0.000    0.947
##  ci.upper   Std.lv  Std.all
##     0.219    0.184    0.185
##     0.199    0.137    0.130
##     0.291    0.251    0.259
##     0.363    0.317    0.297
##     0.218    0.186    0.203
##     0.180    0.149    0.151
##     0.537    0.476    0.484
##     0.415    0.336    0.288
##     0.393    0.331    0.324
##     0.420    0.204    0.174
##     0.602    0.506    0.496
##     0.321    0.282    0.306
##     2.253    1.000    1.000
##     1.521    1.000    1.000
##     8.920    1.000    1.000
##     1.904    1.000    1.000
##     1.542    1.000    1.000
latent<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   396.825   112.000     0.000     0.953     0.087     0.106 16429.016 
##       bic 
## 16735.510
Mc(latent)
## [1] 0.8082584
summary(latent, standardized=T, ci=T) # -.434
## lavaan 0.6-18 ended normally after 62 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       103
##   Number of equality constraints                    35
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               396.825     353.826
##   Degrees of freedom                               112         112
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.122
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          159.269     142.011
##     0                                          237.556     211.815
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.253    0.035    7.243    0.000    0.184
##     sswk    (.p2.)    0.431    0.044    9.798    0.000    0.345
##     sspc    (.p3.)    0.103    0.034    3.011    0.003    0.036
##     ssei    (.p4.)    0.150    0.039    3.843    0.000    0.074
##   math =~                                                      
##     ssar    (.p5.)    0.189    0.036    5.240    0.000    0.118
##     ssmk    (.p6.)    0.230    0.042    5.512    0.000    0.149
##     ssao    (.p7.)    0.187    0.028    6.634    0.000    0.132
##   electronic =~                                                
##     ssai    (.p8.)    0.478    0.045   10.638    0.000    0.390
##     sssi    (.p9.)    0.532    0.044   12.116    0.000    0.446
##     ssei    (.10.)    0.254    0.033    7.654    0.000    0.189
##   speed =~                                                     
##     ssno    (.11.)    0.706    0.090    7.859    0.000    0.530
##     sscs    (.12.)    0.360    0.056    6.442    0.000    0.250
##     ssmk    (.13.)    0.196    0.032    6.065    0.000    0.133
##   g =~                                                         
##     ssgs    (.14.)    0.810    0.032   24.922    0.000    0.746
##     ssar    (.15.)    0.793    0.033   24.007    0.000    0.728
##     sswk    (.16.)    0.798    0.035   22.542    0.000    0.728
##     sspc    (.17.)    0.793    0.029   27.804    0.000    0.737
##     ssno    (.18.)    0.582    0.040   14.454    0.000    0.503
##     sscs    (.19.)    0.576    0.035   16.510    0.000    0.507
##     ssai    (.20.)    0.521    0.039   13.333    0.000    0.445
##     sssi    (.21.)    0.509    0.039   13.119    0.000    0.433
##     ssmk    (.22.)    0.817    0.030   27.043    0.000    0.758
##     ssmc    (.23.)    0.759    0.034   22.371    0.000    0.693
##     ssei    (.24.)    0.738    0.037   19.916    0.000    0.665
##     ssao    (.25.)    0.655    0.031   20.925    0.000    0.593
##  ci.upper   Std.lv  Std.all
##                            
##     0.321    0.253    0.267
##     0.517    0.431    0.448
##     0.169    0.103    0.109
##     0.227    0.150    0.157
##                            
##     0.259    0.189    0.209
##     0.312    0.230    0.239
##     0.242    0.187    0.199
##                            
##     0.566    0.478    0.540
##     0.618    0.532    0.599
##     0.319    0.254    0.266
##                            
##     0.882    0.706    0.699
##     0.469    0.360    0.367
##     0.260    0.196    0.204
##                            
##     0.874    0.810    0.858
##     0.857    0.793    0.878
##     0.867    0.798    0.830
##     0.849    0.793    0.841
##     0.660    0.582    0.576
##     0.644    0.576    0.588
##     0.598    0.521    0.589
##     0.585    0.509    0.573
##     0.876    0.817    0.848
##     0.826    0.759    0.836
##     0.811    0.738    0.771
##     0.716    0.655    0.695
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.53.)    0.386    0.050    7.693    0.000    0.288
##    .sswk    (.54.)    0.379    0.052    7.224    0.000    0.276
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei    (.56.)    0.188    0.046    4.045    0.000    0.097
##    .ssar    (.57.)    0.391    0.049    7.958    0.000    0.295
##    .ssmk    (.58.)    0.450    0.054    8.333    0.000    0.344
##    .ssao    (.59.)    0.320    0.053    6.007    0.000    0.216
##    .ssai    (.60.)    0.067    0.041    1.638    0.101   -0.013
##    .sssi    (.61.)    0.165    0.042    3.908    0.000    0.082
##    .ssno    (.62.)    0.285    0.056    5.113    0.000    0.176
##    .sscs              0.358    0.053    6.754    0.000    0.254
##    .ssmc    (.64.)    0.257    0.048    5.360    0.000    0.163
##  ci.upper   Std.lv  Std.all
##     0.484    0.386    0.409
##     0.482    0.379    0.394
##     0.545    0.445    0.472
##     0.279    0.188    0.196
##     0.487    0.391    0.433
##     0.555    0.450    0.466
##     0.424    0.320    0.339
##     0.148    0.067    0.076
##     0.248    0.165    0.186
##     0.394    0.285    0.282
##     0.462    0.358    0.365
##     0.351    0.257    0.283
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.172    0.020    8.612    0.000    0.133
##    .sswk              0.103    0.033    3.154    0.002    0.039
##    .sspc              0.250    0.030    8.308    0.000    0.191
##    .ssei              0.284    0.029    9.685    0.000    0.227
##    .ssar              0.152    0.019    7.863    0.000    0.114
##    .ssmk              0.170    0.020    8.340    0.000    0.130
##    .ssao              0.424    0.037   11.516    0.000    0.352
##    .ssai              0.283    0.039    7.297    0.000    0.207
##    .sssi              0.247    0.044    5.582    0.000    0.160
##    .ssno              0.183    0.108    1.701    0.089   -0.028
##    .sscs              0.499    0.058    8.575    0.000    0.385
##    .ssmc              0.249    0.025    9.767    0.000    0.199
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.211    0.172    0.193
##     0.166    0.103    0.111
##     0.309    0.250    0.281
##     0.342    0.284    0.310
##     0.190    0.152    0.186
##     0.210    0.170    0.183
##     0.497    0.424    0.478
##     0.359    0.283    0.361
##     0.333    0.247    0.313
##     0.395    0.183    0.180
##     0.613    0.499    0.520
##     0.299    0.249    0.302
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.253    0.035    7.243    0.000    0.184
##     sswk    (.p2.)    0.431    0.044    9.798    0.000    0.345
##     sspc    (.p3.)    0.103    0.034    3.011    0.003    0.036
##     ssei    (.p4.)    0.150    0.039    3.843    0.000    0.074
##   math =~                                                      
##     ssar    (.p5.)    0.189    0.036    5.240    0.000    0.118
##     ssmk    (.p6.)    0.230    0.042    5.512    0.000    0.149
##     ssao    (.p7.)    0.187    0.028    6.634    0.000    0.132
##   electronic =~                                                
##     ssai    (.p8.)    0.478    0.045   10.638    0.000    0.390
##     sssi    (.p9.)    0.532    0.044   12.116    0.000    0.446
##     ssei    (.10.)    0.254    0.033    7.654    0.000    0.189
##   speed =~                                                     
##     ssno    (.11.)    0.706    0.090    7.859    0.000    0.530
##     sscs    (.12.)    0.360    0.056    6.442    0.000    0.250
##     ssmk    (.13.)    0.196    0.032    6.065    0.000    0.133
##   g =~                                                         
##     ssgs    (.14.)    0.810    0.032   24.922    0.000    0.746
##     ssar    (.15.)    0.793    0.033   24.007    0.000    0.728
##     sswk    (.16.)    0.798    0.035   22.542    0.000    0.728
##     sspc    (.17.)    0.793    0.029   27.804    0.000    0.737
##     ssno    (.18.)    0.582    0.040   14.454    0.000    0.503
##     sscs    (.19.)    0.576    0.035   16.510    0.000    0.507
##     ssai    (.20.)    0.521    0.039   13.333    0.000    0.445
##     sssi    (.21.)    0.509    0.039   13.119    0.000    0.433
##     ssmk    (.22.)    0.817    0.030   27.043    0.000    0.758
##     ssmc    (.23.)    0.759    0.034   22.371    0.000    0.693
##     ssei    (.24.)    0.738    0.037   19.916    0.000    0.665
##     ssao    (.25.)    0.655    0.031   20.925    0.000    0.593
##  ci.upper   Std.lv  Std.all
##                            
##     0.321    0.253    0.263
##     0.517    0.431    0.437
##     0.169    0.103    0.108
##     0.227    0.150    0.150
##                            
##     0.259    0.189    0.201
##     0.312    0.230    0.245
##     0.242    0.187    0.188
##                            
##     0.566    0.478    0.468
##     0.618    0.532    0.576
##     0.319    0.254    0.254
##                            
##     0.882    0.706    0.671
##     0.469    0.360    0.365
##     0.260    0.196    0.209
##                            
##     0.874    0.810    0.843
##     0.857    0.793    0.844
##     0.867    0.798    0.809
##     0.849    0.793    0.837
##     0.660    0.582    0.553
##     0.644    0.576    0.585
##     0.598    0.521    0.511
##     0.585    0.509    0.551
##     0.876    0.817    0.869
##     0.826    0.759    0.808
##     0.811    0.738    0.736
##     0.716    0.655    0.657
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.53.)    0.386    0.050    7.693    0.000    0.288
##    .sswk    (.54.)    0.379    0.052    7.224    0.000    0.276
##    .sspc             -0.118    0.067   -1.756    0.079   -0.250
##    .ssei    (.56.)    0.188    0.046    4.045    0.000    0.097
##    .ssar    (.57.)    0.391    0.049    7.958    0.000    0.295
##    .ssmk    (.58.)    0.450    0.054    8.333    0.000    0.344
##    .ssao    (.59.)    0.320    0.053    6.007    0.000    0.216
##    .ssai    (.60.)    0.067    0.041    1.638    0.101   -0.013
##    .sssi    (.61.)    0.165    0.042    3.908    0.000    0.082
##    .ssno    (.62.)    0.285    0.056    5.113    0.000    0.176
##    .sscs             -0.064    0.080   -0.805    0.421   -0.221
##    .ssmc    (.64.)    0.257    0.048    5.360    0.000    0.163
##     verbal           -0.813    0.173   -4.687    0.000   -1.152
##     math             -1.870    0.419   -4.458    0.000   -2.692
##     elctrnc           0.826    0.113    7.312    0.000    0.604
##     speed            -0.588    0.139   -4.229    0.000   -0.860
##     g                 0.434    0.098    4.433    0.000    0.242
##  ci.upper   Std.lv  Std.all
##     0.484    0.386    0.402
##     0.482    0.379    0.385
##     0.014   -0.118   -0.125
##     0.279    0.188    0.187
##     0.487    0.391    0.416
##     0.555    0.450    0.478
##     0.424    0.320    0.321
##     0.148    0.067    0.066
##     0.248    0.165    0.178
##     0.394    0.285    0.271
##     0.092   -0.064   -0.065
##     0.351    0.257    0.273
##    -0.473   -0.813   -0.813
##    -1.048   -1.870   -1.870
##     1.047    0.826    0.826
##    -0.315   -0.588   -0.588
##     0.626    0.434    0.434
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.203    0.023    8.692    0.000    0.157
##    .sswk              0.150    0.037    4.090    0.000    0.078
##    .sspc              0.259    0.027    9.468    0.000    0.206
##    .ssei              0.373    0.039    9.521    0.000    0.296
##    .ssar              0.218    0.026    8.420    0.000    0.167
##    .ssmk              0.126    0.019    6.747    0.000    0.089
##    .ssao              0.530    0.050   10.527    0.000    0.431
##    .ssai              0.541    0.065    8.290    0.000    0.413
##    .sssi              0.312    0.056    5.550    0.000    0.202
##    .ssno              0.270    0.117    2.318    0.020    0.042
##    .sscs              0.508    0.071    7.109    0.000    0.368
##    .ssmc              0.307    0.030   10.252    0.000    0.248
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.249    0.203    0.220
##     0.221    0.150    0.154
##     0.313    0.259    0.288
##     0.450    0.373    0.371
##     0.269    0.218    0.247
##     0.162    0.126    0.142
##     0.629    0.530    0.533
##     0.669    0.541    0.520
##     0.422    0.312    0.365
##     0.499    0.270    0.244
##     0.647    0.508    0.524
##     0.365    0.307    0.347
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
latent2<-cfa(bf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   339.294   109.000     0.000     0.962     0.079     0.054 16377.485 
##       bic 
## 16697.502
Mc(latent2)
## [1] 0.8418795
summary(latent2, standardized=T, ci=T) # -.415
## lavaan 0.6-18 ended normally after 89 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       106
##   Number of equality constraints                    35
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               339.294     304.038
##   Degrees of freedom                               109         109
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.116
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          127.051     113.849
##     0                                          212.243     190.189
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.256    0.034    7.437    0.000    0.189
##     sswk    (.p2.)    0.427    0.043    9.908    0.000    0.343
##     sspc    (.p3.)    0.101    0.034    2.928    0.003    0.033
##     ssei    (.p4.)    0.156    0.038    4.062    0.000    0.080
##   math =~                                                      
##     ssar    (.p5.)    0.184    0.036    5.034    0.000    0.112
##     ssmk    (.p6.)    0.225    0.042    5.331    0.000    0.142
##     ssao    (.p7.)    0.183    0.028    6.499    0.000    0.128
##   electronic =~                                                
##     ssai    (.p8.)    0.327    0.042    7.854    0.000    0.246
##     sssi    (.p9.)    0.328    0.045    7.302    0.000    0.240
##     ssei    (.10.)    0.172    0.024    7.076    0.000    0.124
##   speed =~                                                     
##     ssno    (.11.)    0.669    0.101    6.599    0.000    0.470
##     sscs    (.12.)    0.339    0.057    5.980    0.000    0.228
##     ssmk    (.13.)    0.182    0.031    5.879    0.000    0.121
##   g =~                                                         
##     ssgs    (.14.)    0.766    0.039   19.713    0.000    0.689
##     ssar    (.15.)    0.751    0.040   18.992    0.000    0.674
##     sswk    (.16.)    0.754    0.042   17.822    0.000    0.671
##     sspc    (.17.)    0.752    0.037   20.603    0.000    0.681
##     ssno    (.18.)    0.553    0.043   12.710    0.000    0.468
##     sscs    (.19.)    0.547    0.038   14.443    0.000    0.473
##     ssai    (.20.)    0.465    0.037   12.499    0.000    0.392
##     sssi    (.21.)    0.454    0.038   11.961    0.000    0.379
##     ssmk    (.22.)    0.774    0.039   20.063    0.000    0.699
##     ssmc    (.23.)    0.716    0.038   18.858    0.000    0.641
##     ssei    (.24.)    0.681    0.040   17.223    0.000    0.604
##     ssao    (.25.)    0.621    0.036   17.191    0.000    0.550
##  ci.upper   Std.lv  Std.all
##                            
##     0.324    0.256    0.283
##     0.512    0.427    0.462
##     0.169    0.101    0.111
##     0.231    0.156    0.174
##                            
##     0.255    0.184    0.212
##     0.308    0.225    0.244
##     0.239    0.183    0.200
##                            
##     0.409    0.327    0.418
##     0.416    0.328    0.419
##     0.220    0.172    0.193
##                            
##     0.867    0.669    0.683
##     0.450    0.339    0.355
##     0.243    0.182    0.197
##                            
##     0.842    0.766    0.844
##     0.829    0.751    0.866
##     0.837    0.754    0.814
##     0.824    0.752    0.827
##     0.638    0.553    0.564
##     0.621    0.547    0.573
##     0.538    0.465    0.594
##     0.528    0.454    0.579
##     0.850    0.774    0.838
##     0.790    0.716    0.821
##     0.759    0.681    0.762
##     0.692    0.621    0.676
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.53.)    0.387    0.050    7.743    0.000    0.289
##    .sswk    (.54.)    0.379    0.053    7.212    0.000    0.276
##    .sspc              0.445    0.051    8.700    0.000    0.345
##    .ssei    (.56.)    0.186    0.047    3.980    0.000    0.094
##    .ssar    (.57.)    0.391    0.049    7.954    0.000    0.295
##    .ssmk    (.58.)    0.449    0.054    8.329    0.000    0.344
##    .ssao    (.59.)    0.321    0.053    6.014    0.000    0.216
##    .ssai    (.60.)    0.059    0.041    1.432    0.152   -0.022
##    .sssi    (.61.)    0.176    0.042    4.158    0.000    0.093
##    .ssno    (.62.)    0.285    0.056    5.111    0.000    0.176
##    .sscs              0.358    0.053    6.754    0.000    0.254
##    .ssmc    (.64.)    0.257    0.048    5.356    0.000    0.163
##  ci.upper   Std.lv  Std.all
##     0.485    0.387    0.427
##     0.482    0.379    0.409
##     0.545    0.445    0.489
##     0.278    0.186    0.208
##     0.487    0.391    0.451
##     0.555    0.449    0.486
##     0.425    0.321    0.349
##     0.139    0.059    0.075
##     0.258    0.176    0.224
##     0.394    0.285    0.291
##     0.462    0.358    0.375
##     0.351    0.257    0.294
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.171    0.020    8.639    0.000    0.132
##    .sswk              0.106    0.031    3.356    0.001    0.044
##    .sspc              0.252    0.030    8.346    0.000    0.193
##    .ssei              0.281    0.030    9.446    0.000    0.223
##    .ssar              0.154    0.019    8.020    0.000    0.117
##    .ssmk              0.171    0.020    8.371    0.000    0.131
##    .ssao              0.424    0.037   11.562    0.000    0.352
##    .ssai              0.290    0.036    8.153    0.000    0.220
##    .sssi              0.301    0.036    8.279    0.000    0.230
##    .ssno              0.206    0.106    1.946    0.052   -0.001
##    .sscs              0.497    0.057    8.673    0.000    0.384
##    .ssmc              0.248    0.025    9.902    0.000    0.199
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.209    0.171    0.208
##     0.167    0.106    0.123
##     0.311    0.252    0.304
##     0.339    0.281    0.352
##     0.192    0.154    0.205
##     0.212    0.171    0.201
##     0.496    0.424    0.503
##     0.359    0.290    0.472
##     0.372    0.301    0.490
##     0.414    0.206    0.215
##     0.609    0.497    0.545
##     0.298    0.248    0.327
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.256    0.034    7.437    0.000    0.189
##     sswk    (.p2.)    0.427    0.043    9.908    0.000    0.343
##     sspc    (.p3.)    0.101    0.034    2.928    0.003    0.033
##     ssei    (.p4.)    0.156    0.038    4.062    0.000    0.080
##   math =~                                                      
##     ssar    (.p5.)    0.184    0.036    5.034    0.000    0.112
##     ssmk    (.p6.)    0.225    0.042    5.331    0.000    0.142
##     ssao    (.p7.)    0.183    0.028    6.499    0.000    0.128
##   electronic =~                                                
##     ssai    (.p8.)    0.327    0.042    7.854    0.000    0.246
##     sssi    (.p9.)    0.328    0.045    7.302    0.000    0.240
##     ssei    (.10.)    0.172    0.024    7.076    0.000    0.124
##   speed =~                                                     
##     ssno    (.11.)    0.669    0.101    6.599    0.000    0.470
##     sscs    (.12.)    0.339    0.057    5.980    0.000    0.228
##     ssmk    (.13.)    0.182    0.031    5.879    0.000    0.121
##   g =~                                                         
##     ssgs    (.14.)    0.766    0.039   19.713    0.000    0.689
##     ssar    (.15.)    0.751    0.040   18.992    0.000    0.674
##     sswk    (.16.)    0.754    0.042   17.822    0.000    0.671
##     sspc    (.17.)    0.752    0.037   20.603    0.000    0.681
##     ssno    (.18.)    0.553    0.043   12.710    0.000    0.468
##     sscs    (.19.)    0.547    0.038   14.443    0.000    0.473
##     ssai    (.20.)    0.465    0.037   12.499    0.000    0.392
##     sssi    (.21.)    0.454    0.038   11.961    0.000    0.379
##     ssmk    (.22.)    0.774    0.039   20.063    0.000    0.699
##     ssmc    (.23.)    0.716    0.038   18.858    0.000    0.641
##     ssei    (.24.)    0.681    0.040   17.223    0.000    0.604
##     ssao    (.25.)    0.621    0.036   17.191    0.000    0.550
##  ci.upper   Std.lv  Std.all
##                            
##     0.324    0.256    0.257
##     0.512    0.427    0.419
##     0.169    0.101    0.103
##     0.231    0.156    0.149
##                            
##     0.255    0.184    0.189
##     0.308    0.225    0.230
##     0.239    0.183    0.180
##                            
##     0.409    0.684    0.622
##     0.416    0.686    0.684
##     0.220    0.360    0.344
##                            
##     0.867    0.746    0.688
##     0.450    0.378    0.374
##     0.243    0.203    0.207
##                            
##     0.842    0.853    0.854
##     0.829    0.837    0.859
##     0.837    0.840    0.822
##     0.824    0.838    0.854
##     0.638    0.616    0.568
##     0.621    0.609    0.603
##     0.538    0.519    0.472
##     0.528    0.505    0.504
##     0.850    0.863    0.879
##     0.790    0.797    0.817
##     0.759    0.759    0.727
##     0.692    0.692    0.678
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.53.)    0.387    0.050    7.743    0.000    0.289
##    .sswk    (.54.)    0.379    0.053    7.212    0.000    0.276
##    .sspc             -0.122    0.068   -1.799    0.072   -0.255
##    .ssei    (.56.)    0.186    0.047    3.980    0.000    0.094
##    .ssar    (.57.)    0.391    0.049    7.954    0.000    0.295
##    .ssmk    (.58.)    0.449    0.054    8.329    0.000    0.344
##    .ssao    (.59.)    0.321    0.053    6.014    0.000    0.216
##    .ssai    (.60.)    0.059    0.041    1.432    0.152   -0.022
##    .sssi    (.61.)    0.176    0.042    4.158    0.000    0.093
##    .ssno    (.62.)    0.285    0.056    5.111    0.000    0.176
##    .sscs             -0.067    0.080   -0.832    0.406   -0.224
##    .ssmc    (.64.)    0.257    0.048    5.356    0.000    0.163
##     verbal           -0.821    0.175   -4.703    0.000   -1.164
##     math             -1.934    0.446   -4.339    0.000   -2.807
##     elctrnc           1.310    0.234    5.609    0.000    0.852
##     speed            -0.625    0.157   -3.974    0.000   -0.934
##     g                 0.462    0.101    4.568    0.000    0.264
##  ci.upper   Std.lv  Std.all
##     0.485    0.387    0.388
##     0.482    0.379    0.371
##     0.011   -0.122   -0.124
##     0.278    0.186    0.178
##     0.487    0.391    0.401
##     0.555    0.449    0.458
##     0.425    0.321    0.314
##     0.139    0.059    0.053
##     0.258    0.176    0.175
##     0.394    0.285    0.263
##     0.090   -0.067   -0.066
##     0.351    0.257    0.263
##    -0.479   -0.821   -0.821
##    -1.060   -1.934   -1.934
##     1.768    0.627    0.627
##    -0.317   -0.560   -0.560
##     0.660    0.415    0.415
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.203    0.023    8.739    0.000    0.158
##    .sswk              0.155    0.035    4.381    0.000    0.086
##    .sspc              0.251    0.027    9.409    0.000    0.199
##    .ssei              0.360    0.038    9.596    0.000    0.287
##    .ssar              0.215    0.026    8.319    0.000    0.164
##    .ssmk              0.126    0.019    6.798    0.000    0.090
##    .ssao              0.529    0.050   10.532    0.000    0.430
##    .ssai              0.473    0.068    6.937    0.000    0.339
##    .sssi              0.280    0.056    4.972    0.000    0.170
##    .ssno              0.241    0.124    1.944    0.052   -0.002
##    .sscs              0.507    0.072    7.034    0.000    0.366
##    .ssmc              0.316    0.031   10.264    0.000    0.256
##     electronic        4.361    1.125    3.878    0.000    2.157
##     speed             1.245    0.335    3.721    0.000    0.589
##     g                 1.241    0.151    8.191    0.000    0.944
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.249    0.203    0.204
##     0.224    0.155    0.149
##     0.304    0.251    0.261
##     0.434    0.360    0.331
##     0.265    0.215    0.226
##     0.163    0.126    0.131
##     0.627    0.529    0.508
##     0.606    0.473    0.391
##     0.391    0.280    0.279
##     0.484    0.241    0.205
##     0.649    0.507    0.497
##     0.377    0.316    0.332
##     6.566    1.000    1.000
##     1.901    1.000    1.000
##     1.538    1.000    1.000
tests<-lavTestLRT(configural, metric, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 24.781016  8.708582 45.677432
dfd=tests[2:4,"Df diff"]
dfd
## [1] 20  5  5
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-335+ 335 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.02675296 0.04712439 0.15606968
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1]         NA 0.05686364
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1]         NA 0.09799123
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.1164270 0.1988718
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.790     0.757     0.115     0.032     0.001     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.879     0.866     0.533     0.398     0.165     0.043
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.999     0.989
tests<-lavTestLRT(configural, metric, scalar2, latent2)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 24.781016  8.708582  0.199330
dfd=tests[2:4,"Df diff"]
dfd
## [1] 20  5  2
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-335+ 335 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.02675296 0.04712439        NaN
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1]         NA 0.09799123
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]         NA 0.04486097
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.879     0.866     0.533     0.398     0.165     0.043
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.095     0.092     0.043     0.030     0.012     0.004
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 24.781016  8.708582 26.187076
dfd=tests[2:4,"Df diff"]
dfd
## [1] 20  5 12
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-335+ 335 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.02675296 0.04712439 0.05949529
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1]         NA 0.05686364
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1]         NA 0.09799123
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.02782329 0.09064581
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.790     0.757     0.115     0.032     0.001     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.879     0.866     0.533     0.398     0.165     0.043
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.990     0.987     0.726     0.529     0.151     0.015
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1] 24.78102 84.60884
dfd=tests[2:3,"Df diff"]
dfd
## [1] 20  7
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-335+ 335 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.02675296 0.18219369
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1]         NA 0.05686364
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1484763 0.2177790
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.790     0.757     0.115     0.032     0.001     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
bf.age<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
verbal~~1*verbal
math~~1*math
g ~ agec
'

bf.ageq<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
verbal~~1*verbal
math~~1*math
g ~ c(a,a)*agec
'

bf.age2<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
verbal~~1*verbal
math~~1*math
g ~ agec+agec2
'

bf.age2q<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssao
electronic =~ ssai + sssi + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
verbal~~1*verbal
math~~1*math
g ~ c(a,a)*agec+c(b,b)*agec2
'

sem.age<-sem(bf.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   487.179   131.000     0.000     0.943     0.090     0.060     0.945 
##       aic       bic 
## 16244.260 16573.291
Mc(sem.age)
## [1] 0.7662836
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 86 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       108
##   Number of equality constraints                    35
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               487.179     434.280
##   Degrees of freedom                               131         131
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.122
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          198.167     176.650
##     0                                          289.012     257.630
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.250    0.034    7.249    0.000    0.182
##     sswk    (.p2.)    0.416    0.043    9.683    0.000    0.331
##     sspc    (.p3.)    0.098    0.035    2.806    0.005    0.030
##     ssei    (.p4.)    0.148    0.038    3.859    0.000    0.073
##   math =~                                                      
##     ssar    (.p5.)    0.191    0.035    5.420    0.000    0.122
##     ssmk    (.p6.)    0.235    0.039    5.990    0.000    0.158
##     ssao    (.p7.)    0.190    0.029    6.598    0.000    0.134
##   electronic =~                                                
##     ssai    (.p8.)    0.321    0.042    7.660    0.000    0.239
##     sssi    (.p9.)    0.326    0.046    7.111    0.000    0.236
##     ssei    (.10.)    0.168    0.024    6.883    0.000    0.120
##   speed =~                                                     
##     ssno    (.11.)    0.671    0.106    6.324    0.000    0.463
##     sscs    (.12.)    0.330    0.057    5.833    0.000    0.219
##     ssmk    (.13.)    0.175    0.031    5.704    0.000    0.115
##   g =~                                                         
##     ssgs    (.14.)    0.691    0.036   18.954    0.000    0.619
##     ssar    (.15.)    0.671    0.039   17.096    0.000    0.594
##     sswk    (.16.)    0.683    0.038   17.848    0.000    0.608
##     sspc    (.17.)    0.676    0.035   19.379    0.000    0.607
##     ssno    (.18.)    0.500    0.040   12.345    0.000    0.420
##     sscs    (.19.)    0.496    0.034   14.415    0.000    0.428
##     ssai    (.20.)    0.426    0.033   12.882    0.000    0.361
##     sssi    (.21.)    0.412    0.033   12.313    0.000    0.347
##     ssmk    (.22.)    0.699    0.036   19.196    0.000    0.627
##     ssmc    (.23.)    0.642    0.036   17.752    0.000    0.572
##     ssei    (.24.)    0.617    0.037   16.646    0.000    0.545
##     ssao    (.25.)    0.555    0.035   15.740    0.000    0.486
##  ci.upper   Std.lv  Std.all
##                            
##     0.317    0.250    0.276
##     0.500    0.416    0.449
##     0.167    0.098    0.108
##     0.223    0.148    0.166
##                            
##     0.261    0.191    0.221
##     0.312    0.235    0.255
##     0.247    0.190    0.207
##                            
##     0.404    0.321    0.409
##     0.415    0.326    0.415
##     0.216    0.168    0.188
##                            
##     0.879    0.671    0.686
##     0.441    0.330    0.346
##     0.235    0.175    0.189
##                            
##     0.762    0.767    0.846
##     0.748    0.746    0.859
##     0.758    0.758    0.820
##     0.744    0.750    0.825
##     0.579    0.555    0.567
##     0.563    0.550    0.577
##     0.491    0.473    0.602
##     0.478    0.458    0.583
##     0.770    0.776    0.840
##     0.713    0.713    0.817
##     0.690    0.685    0.766
##     0.624    0.616    0.672
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.318    0.044    7.316    0.000    0.233
##  ci.upper   Std.lv  Std.all
##                            
##     0.404    0.287    0.435
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.51.)    0.367    0.046    7.929    0.000    0.276
##    .sswk    (.52.)    0.358    0.047    7.575    0.000    0.266
##    .sspc              0.425    0.049    8.752    0.000    0.330
##    .ssei    (.54.)    0.167    0.043    3.864    0.000    0.082
##    .ssar    (.55.)    0.372    0.047    7.849    0.000    0.279
##    .ssmk    (.56.)    0.427    0.049    8.803    0.000    0.332
##    .ssao    (.57.)    0.305    0.052    5.914    0.000    0.204
##    .ssai    (.58.)    0.046    0.038    1.206    0.228   -0.029
##    .sssi    (.59.)    0.163    0.040    4.029    0.000    0.084
##    .ssno    (.60.)    0.270    0.053    5.095    0.000    0.166
##    .sscs              0.343    0.050    6.903    0.000    0.246
##    .ssmc    (.62.)    0.237    0.046    5.136    0.000    0.146
##  ci.upper   Std.lv  Std.all
##     0.457    0.367    0.405
##     0.451    0.358    0.387
##     0.520    0.425    0.467
##     0.252    0.167    0.187
##     0.465    0.372    0.429
##     0.522    0.427    0.462
##     0.406    0.305    0.332
##     0.122    0.046    0.059
##     0.242    0.163    0.207
##     0.375    0.270    0.276
##     0.441    0.343    0.360
##     0.327    0.237    0.271
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.171    0.019    8.764    0.000    0.133
##    .sswk              0.107    0.031    3.506    0.000    0.047
##    .sspc              0.254    0.030    8.567    0.000    0.196
##    .ssei              0.281    0.030    9.455    0.000    0.222
##    .ssar              0.160    0.020    8.118    0.000    0.122
##    .ssmk              0.166    0.020    8.262    0.000    0.127
##    .ssao              0.426    0.037   11.545    0.000    0.354
##    .ssai              0.290    0.035    8.197    0.000    0.220
##    .sssi              0.301    0.036    8.256    0.000    0.229
##    .ssno              0.199    0.112    1.779    0.075   -0.020
##    .sscs              0.497    0.057    8.693    0.000    0.385
##    .ssmc              0.253    0.026    9.910    0.000    0.203
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.209    0.171    0.208
##     0.167    0.107    0.125
##     0.312    0.254    0.307
##     0.339    0.281    0.350
##     0.199    0.160    0.213
##     0.205    0.166    0.194
##     0.499    0.426    0.506
##     0.359    0.290    0.470
##     0.372    0.301    0.488
##     0.418    0.199    0.208
##     0.609    0.497    0.547
##     0.303    0.253    0.332
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.811    0.811
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.250    0.034    7.249    0.000    0.182
##     sswk    (.p2.)    0.416    0.043    9.683    0.000    0.331
##     sspc    (.p3.)    0.098    0.035    2.806    0.005    0.030
##     ssei    (.p4.)    0.148    0.038    3.859    0.000    0.073
##   math =~                                                      
##     ssar    (.p5.)    0.191    0.035    5.420    0.000    0.122
##     ssmk    (.p6.)    0.235    0.039    5.990    0.000    0.158
##     ssao    (.p7.)    0.190    0.029    6.598    0.000    0.134
##   electronic =~                                                
##     ssai    (.p8.)    0.321    0.042    7.660    0.000    0.239
##     sssi    (.p9.)    0.326    0.046    7.111    0.000    0.236
##     ssei    (.10.)    0.168    0.024    6.883    0.000    0.120
##   speed =~                                                     
##     ssno    (.11.)    0.671    0.106    6.324    0.000    0.463
##     sscs    (.12.)    0.330    0.057    5.833    0.000    0.219
##     ssmk    (.13.)    0.175    0.031    5.704    0.000    0.115
##   g =~                                                         
##     ssgs    (.14.)    0.691    0.036   18.954    0.000    0.619
##     ssar    (.15.)    0.671    0.039   17.096    0.000    0.594
##     sswk    (.16.)    0.683    0.038   17.848    0.000    0.608
##     sspc    (.17.)    0.676    0.035   19.379    0.000    0.607
##     ssno    (.18.)    0.500    0.040   12.345    0.000    0.420
##     sscs    (.19.)    0.496    0.034   14.415    0.000    0.428
##     ssai    (.20.)    0.426    0.033   12.882    0.000    0.361
##     sssi    (.21.)    0.412    0.033   12.313    0.000    0.347
##     ssmk    (.22.)    0.699    0.036   19.196    0.000    0.627
##     ssmc    (.23.)    0.642    0.036   17.752    0.000    0.572
##     ssei    (.24.)    0.617    0.037   16.646    0.000    0.545
##     ssao    (.25.)    0.555    0.035   15.740    0.000    0.486
##  ci.upper   Std.lv  Std.all
##                            
##     0.317    0.250    0.250
##     0.500    0.416    0.407
##     0.167    0.098    0.100
##     0.223    0.148    0.142
##                            
##     0.261    0.191    0.197
##     0.312    0.235    0.240
##     0.247    0.190    0.186
##                            
##     0.404    0.671    0.612
##     0.415    0.680    0.680
##     0.216    0.351    0.336
##                            
##     0.879    0.754    0.694
##     0.441    0.371    0.367
##     0.235    0.197    0.200
##                            
##     0.762    0.855    0.856
##     0.748    0.831    0.854
##     0.758    0.846    0.827
##     0.744    0.837    0.851
##     0.579    0.619    0.570
##     0.563    0.613    0.606
##     0.491    0.527    0.481
##     0.478    0.510    0.510
##     0.770    0.865    0.881
##     0.713    0.795    0.816
##     0.690    0.764    0.732
##     0.624    0.687    0.673
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.400    0.051    7.888    0.000    0.301
##  ci.upper   Std.lv  Std.all
##                            
##     0.499    0.323    0.460
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.51.)    0.367    0.046    7.929    0.000    0.276
##    .sswk    (.52.)    0.358    0.047    7.575    0.000    0.266
##    .sspc             -0.143    0.066   -2.149    0.032   -0.273
##    .ssei    (.54.)    0.167    0.043    3.864    0.000    0.082
##    .ssar    (.55.)    0.372    0.047    7.849    0.000    0.279
##    .ssmk    (.56.)    0.427    0.049    8.803    0.000    0.332
##    .ssao    (.57.)    0.305    0.052    5.914    0.000    0.204
##    .ssai    (.58.)    0.046    0.038    1.206    0.228   -0.029
##    .sssi    (.59.)    0.163    0.040    4.029    0.000    0.084
##    .ssno    (.60.)    0.270    0.053    5.095    0.000    0.166
##    .sscs             -0.089    0.079   -1.121    0.262   -0.245
##    .ssmc    (.62.)    0.237    0.046    5.136    0.000    0.146
##     verbal           -0.856    0.182   -4.702    0.000   -1.212
##     math             -1.871    0.400   -4.676    0.000   -2.655
##     elctrnc           1.315    0.239    5.496    0.000    0.846
##     speed            -0.629    0.162   -3.888    0.000   -0.946
##    .g                 0.595    0.106    5.593    0.000    0.386
##  ci.upper   Std.lv  Std.all
##     0.457    0.367    0.367
##     0.451    0.358    0.351
##    -0.013   -0.143   -0.145
##     0.252    0.167    0.160
##     0.465    0.372    0.382
##     0.522    0.427    0.435
##     0.406    0.305    0.299
##     0.122    0.046    0.042
##     0.242    0.163    0.163
##     0.375    0.270    0.249
##     0.067   -0.089   -0.088
##     0.327    0.237    0.243
##    -0.499   -0.856   -0.856
##    -1.087   -1.871   -1.871
##     1.784    0.630    0.630
##    -0.312   -0.559   -0.559
##     0.803    0.480    0.480
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.204    0.023    8.820    0.000    0.159
##    .sswk              0.157    0.034    4.547    0.000    0.089
##    .sspc              0.256    0.027    9.455    0.000    0.203
##    .ssei              0.361    0.038    9.616    0.000    0.288
##    .ssar              0.220    0.026    8.486    0.000    0.169
##    .ssmk              0.122    0.018    6.699    0.000    0.086
##    .ssao              0.534    0.051   10.545    0.000    0.435
##    .ssai              0.475    0.068    6.987    0.000    0.342
##    .sssi              0.278    0.057    4.878    0.000    0.166
##    .ssno              0.228    0.132    1.722    0.085   -0.032
##    .sscs              0.509    0.072    7.046    0.000    0.368
##    .ssmc              0.317    0.030   10.423    0.000    0.257
##     electronic        4.356    1.151    3.783    0.000    2.099
##     speed             1.263    0.345    3.662    0.000    0.587
##    .g                 1.208    0.164    7.367    0.000    0.887
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.250    0.204    0.205
##     0.224    0.157    0.150
##     0.309    0.256    0.265
##     0.435    0.361    0.331
##     0.271    0.220    0.232
##     0.157    0.122    0.126
##     0.633    0.534    0.512
##     0.608    0.475    0.395
##     0.390    0.278    0.278
##     0.488    0.228    0.193
##     0.651    0.509    0.498
##     0.376    0.317    0.334
##     6.612    1.000    1.000
##     1.940    1.000    1.000
##     1.530    0.788    0.788
sem.ageq<-sem(bf.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   489.141   132.000     0.000     0.943     0.090     0.068     0.945 
##       aic       bic 
## 16244.221 16568.745
Mc(sem.ageq)
## [1] 0.7657332
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 92 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       108
##   Number of equality constraints                    36
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               489.141     436.046
##   Degrees of freedom                               132         132
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.122
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          198.782     177.205
##     0                                          290.359     258.841
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.249    0.034    7.234    0.000    0.182
##     sswk    (.p2.)    0.414    0.043    9.674    0.000    0.330
##     sspc    (.p3.)    0.097    0.035    2.769    0.006    0.028
##     ssei    (.p4.)    0.148    0.038    3.859    0.000    0.073
##   math =~                                                      
##     ssar    (.p5.)    0.191    0.035    5.406    0.000    0.122
##     ssmk    (.p6.)    0.235    0.039    5.981    0.000    0.158
##     ssao    (.p7.)    0.190    0.029    6.575    0.000    0.133
##   electronic =~                                                
##     ssai    (.p8.)    0.321    0.042    7.653    0.000    0.239
##     sssi    (.p9.)    0.325    0.046    7.105    0.000    0.235
##     ssei    (.10.)    0.168    0.024    6.890    0.000    0.120
##   speed =~                                                     
##     ssno    (.11.)    0.670    0.106    6.300    0.000    0.461
##     sscs    (.12.)    0.330    0.057    5.833    0.000    0.219
##     ssmk    (.13.)    0.175    0.031    5.705    0.000    0.115
##   g =~                                                         
##     ssgs    (.14.)    0.692    0.037   18.943    0.000    0.620
##     ssar    (.15.)    0.672    0.039   17.087    0.000    0.595
##     sswk    (.16.)    0.684    0.038   17.867    0.000    0.609
##     sspc    (.17.)    0.677    0.035   19.380    0.000    0.609
##     ssno    (.18.)    0.501    0.041   12.350    0.000    0.421
##     sscs    (.19.)    0.496    0.034   14.407    0.000    0.429
##     ssai    (.20.)    0.426    0.033   12.841    0.000    0.361
##     sssi    (.21.)    0.412    0.034   12.295    0.000    0.346
##     ssmk    (.22.)    0.700    0.036   19.190    0.000    0.629
##     ssmc    (.23.)    0.643    0.036   17.710    0.000    0.572
##     ssei    (.24.)    0.618    0.037   16.604    0.000    0.545
##     ssao    (.25.)    0.556    0.035   15.707    0.000    0.487
##  ci.upper   Std.lv  Std.all
##                            
##     0.317    0.249    0.271
##     0.498    0.414    0.442
##     0.165    0.097    0.105
##     0.223    0.148    0.163
##                            
##     0.261    0.191    0.217
##     0.312    0.235    0.250
##     0.247    0.190    0.205
##                            
##     0.403    0.321    0.406
##     0.415    0.325    0.411
##     0.216    0.168    0.185
##                            
##     0.878    0.670    0.680
##     0.441    0.330    0.344
##     0.235    0.175    0.186
##                            
##     0.763    0.784    0.852
##     0.749    0.762    0.864
##     0.759    0.776    0.826
##     0.746    0.767    0.831
##     0.580    0.567    0.576
##     0.564    0.562    0.586
##     0.491    0.482    0.610
##     0.478    0.467    0.591
##     0.772    0.793    0.845
##     0.714    0.729    0.822
##     0.691    0.700    0.773
##     0.625    0.630    0.680
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.352    0.035   10.032    0.000    0.283
##  ci.upper   Std.lv  Std.all
##                            
##     0.420    0.310    0.470
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.51.)    0.364    0.046    7.878    0.000    0.274
##    .sswk    (.52.)    0.356    0.047    7.560    0.000    0.264
##    .sspc              0.423    0.049    8.694    0.000    0.327
##    .ssei    (.54.)    0.165    0.043    3.821    0.000    0.081
##    .ssar    (.55.)    0.370    0.048    7.760    0.000    0.277
##    .ssmk    (.56.)    0.425    0.048    8.775    0.000    0.330
##    .ssao    (.57.)    0.303    0.052    5.862    0.000    0.202
##    .ssai    (.58.)    0.045    0.038    1.172    0.241   -0.030
##    .sssi    (.59.)    0.162    0.040    4.002    0.000    0.082
##    .ssno    (.60.)    0.269    0.053    5.074    0.000    0.165
##    .sscs              0.342    0.050    6.890    0.000    0.244
##    .ssmc    (.62.)    0.235    0.046    5.068    0.000    0.144
##  ci.upper   Std.lv  Std.all
##     0.455    0.364    0.396
##     0.448    0.356    0.379
##     0.518    0.423    0.458
##     0.250    0.165    0.183
##     0.464    0.370    0.420
##     0.520    0.425    0.453
##     0.405    0.303    0.327
##     0.120    0.045    0.057
##     0.241    0.162    0.204
##     0.373    0.269    0.273
##     0.439    0.342    0.356
##     0.326    0.235    0.265
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.171    0.019    8.777    0.000    0.133
##    .sswk              0.107    0.030    3.522    0.000    0.048
##    .sspc              0.254    0.030    8.572    0.000    0.196
##    .ssei              0.281    0.030    9.457    0.000    0.222
##    .ssar              0.161    0.020    8.132    0.000    0.122
##    .ssmk              0.166    0.020    8.269    0.000    0.126
##    .ssao              0.426    0.037   11.542    0.000    0.354
##    .ssai              0.290    0.035    8.199    0.000    0.220
##    .sssi              0.301    0.036    8.267    0.000    0.230
##    .ssno              0.200    0.112    1.789    0.074   -0.019
##    .sscs              0.497    0.057    8.696    0.000    0.385
##    .ssmc              0.254    0.026    9.919    0.000    0.204
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.209    0.171    0.202
##     0.167    0.107    0.122
##     0.312    0.254    0.298
##     0.339    0.281    0.342
##     0.200    0.161    0.207
##     0.205    0.166    0.188
##     0.499    0.426    0.496
##     0.359    0.290    0.463
##     0.373    0.301    0.482
##     0.419    0.200    0.206
##     0.609    0.497    0.539
##     0.304    0.254    0.324
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.779    0.779
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.249    0.034    7.234    0.000    0.182
##     sswk    (.p2.)    0.414    0.043    9.674    0.000    0.330
##     sspc    (.p3.)    0.097    0.035    2.769    0.006    0.028
##     ssei    (.p4.)    0.148    0.038    3.859    0.000    0.073
##   math =~                                                      
##     ssar    (.p5.)    0.191    0.035    5.406    0.000    0.122
##     ssmk    (.p6.)    0.235    0.039    5.981    0.000    0.158
##     ssao    (.p7.)    0.190    0.029    6.575    0.000    0.133
##   electronic =~                                                
##     ssai    (.p8.)    0.321    0.042    7.653    0.000    0.239
##     sssi    (.p9.)    0.325    0.046    7.105    0.000    0.235
##     ssei    (.10.)    0.168    0.024    6.890    0.000    0.120
##   speed =~                                                     
##     ssno    (.11.)    0.670    0.106    6.300    0.000    0.461
##     sscs    (.12.)    0.330    0.057    5.833    0.000    0.219
##     ssmk    (.13.)    0.175    0.031    5.705    0.000    0.115
##   g =~                                                         
##     ssgs    (.14.)    0.692    0.037   18.943    0.000    0.620
##     ssar    (.15.)    0.672    0.039   17.087    0.000    0.595
##     sswk    (.16.)    0.684    0.038   17.867    0.000    0.609
##     sspc    (.17.)    0.677    0.035   19.380    0.000    0.609
##     ssno    (.18.)    0.501    0.041   12.350    0.000    0.421
##     sscs    (.19.)    0.496    0.034   14.407    0.000    0.429
##     ssai    (.20.)    0.426    0.033   12.841    0.000    0.361
##     sssi    (.21.)    0.412    0.034   12.295    0.000    0.346
##     ssmk    (.22.)    0.700    0.036   19.190    0.000    0.629
##     ssmc    (.23.)    0.643    0.036   17.710    0.000    0.572
##     ssei    (.24.)    0.618    0.037   16.604    0.000    0.545
##     ssao    (.25.)    0.556    0.035   15.707    0.000    0.487
##  ci.upper   Std.lv  Std.all
##                            
##     0.317    0.249    0.254
##     0.498    0.414    0.412
##     0.165    0.097    0.100
##     0.223    0.148    0.143
##                            
##     0.261    0.191    0.200
##     0.312    0.235    0.244
##     0.247    0.190    0.188
##                            
##     0.403    0.672    0.616
##     0.415    0.681    0.684
##     0.216    0.352    0.341
##                            
##     0.878    0.754    0.700
##     0.441    0.372    0.370
##     0.235    0.197    0.204
##                            
##     0.763    0.836    0.851
##     0.749    0.812    0.849
##     0.759    0.827    0.822
##     0.746    0.818    0.847
##     0.580    0.605    0.561
##     0.564    0.600    0.598
##     0.491    0.514    0.471
##     0.478    0.498    0.501
##     0.772    0.846    0.876
##     0.714    0.777    0.810
##     0.691    0.746    0.724
##     0.625    0.672    0.665
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.352    0.035   10.032    0.000    0.283
##  ci.upper   Std.lv  Std.all
##                            
##     0.420    0.291    0.414
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.51.)    0.364    0.046    7.878    0.000    0.274
##    .sswk    (.52.)    0.356    0.047    7.560    0.000    0.264
##    .sspc             -0.146    0.067   -2.192    0.028   -0.276
##    .ssei    (.54.)    0.165    0.043    3.821    0.000    0.081
##    .ssar    (.55.)    0.370    0.048    7.760    0.000    0.277
##    .ssmk    (.56.)    0.425    0.048    8.775    0.000    0.330
##    .ssao    (.57.)    0.303    0.052    5.862    0.000    0.202
##    .ssai    (.58.)    0.045    0.038    1.172    0.241   -0.030
##    .sssi    (.59.)    0.162    0.040    4.002    0.000    0.082
##    .ssno    (.60.)    0.269    0.053    5.074    0.000    0.165
##    .sscs             -0.091    0.079   -1.140    0.254   -0.246
##    .ssmc    (.62.)    0.235    0.046    5.068    0.000    0.144
##     verbal           -0.859    0.183   -4.705    0.000   -1.217
##     math             -1.874    0.401   -4.668    0.000   -2.661
##     elctrnc           1.317    0.240    5.495    0.000    0.847
##     speed            -0.630    0.162   -3.882    0.000   -0.949
##    .g                 0.592    0.107    5.555    0.000    0.383
##  ci.upper   Std.lv  Std.all
##     0.455    0.364    0.371
##     0.448    0.356    0.354
##    -0.015   -0.146   -0.151
##     0.250    0.165    0.160
##     0.464    0.370    0.387
##     0.520    0.425    0.440
##     0.405    0.303    0.300
##     0.120    0.045    0.041
##     0.241    0.162    0.162
##     0.373    0.269    0.249
##     0.065   -0.091   -0.090
##     0.326    0.235    0.245
##    -0.501   -0.859   -0.859
##    -1.087   -1.874   -1.874
##     1.787    0.629    0.629
##    -0.312   -0.560   -0.560
##     0.800    0.490    0.490
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.204    0.023    8.823    0.000    0.159
##    .sswk              0.157    0.034    4.574    0.000    0.090
##    .sspc              0.255    0.027    9.432    0.000    0.202
##    .ssei              0.361    0.038    9.612    0.000    0.287
##    .ssar              0.219    0.026    8.471    0.000    0.169
##    .ssmk              0.122    0.018    6.716    0.000    0.086
##    .ssao              0.533    0.051   10.548    0.000    0.434
##    .ssai              0.474    0.068    6.977    0.000    0.341
##    .sssi              0.278    0.057    4.885    0.000    0.167
##    .ssno              0.228    0.133    1.719    0.086   -0.032
##    .sscs              0.509    0.072    7.040    0.000    0.367
##    .ssmc              0.317    0.031   10.400    0.000    0.257
##     electronic        4.384    1.160    3.781    0.000    2.111
##     speed             1.269    0.347    3.662    0.000    0.590
##    .g                 1.210    0.164    7.363    0.000    0.888
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.249    0.204    0.211
##     0.225    0.157    0.155
##     0.308    0.255    0.273
##     0.435    0.361    0.339
##     0.270    0.219    0.240
##     0.158    0.122    0.131
##     0.632    0.533    0.523
##     0.608    0.474    0.398
##     0.390    0.278    0.281
##     0.487    0.228    0.196
##     0.651    0.509    0.506
##     0.377    0.317    0.345
##     6.657    1.000    1.000
##     1.948    1.000    1.000
##     1.532    0.828    0.828
sem.age2<-sem(bf.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   525.087   153.000     0.000     0.941     0.085     0.057     1.008 
##       aic       bic 
## 16242.454 16580.500
Mc(sem.age2)
## [1] 0.7572271
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 93 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       110
##   Number of equality constraints                    35
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               525.087     471.088
##   Degrees of freedom                               153         153
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.115
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          217.378     195.023
##     0                                          307.709     276.065
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.250    0.034    7.261    0.000    0.182
##     sswk    (.p2.)    0.416    0.043    9.691    0.000    0.332
##     sspc    (.p3.)    0.098    0.035    2.805    0.005    0.030
##     ssei    (.p4.)    0.149    0.038    3.886    0.000    0.074
##   math =~                                                      
##     ssar    (.p5.)    0.190    0.036    5.343    0.000    0.120
##     ssmk    (.p6.)    0.234    0.039    5.927    0.000    0.156
##     ssao    (.p7.)    0.189    0.029    6.556    0.000    0.133
##   electronic =~                                                
##     ssai    (.p8.)    0.321    0.042    7.669    0.000    0.239
##     sssi    (.p9.)    0.325    0.046    7.117    0.000    0.236
##     ssei    (.10.)    0.168    0.024    6.894    0.000    0.120
##   speed =~                                                     
##     ssno    (.11.)    0.670    0.106    6.312    0.000    0.462
##     sscs    (.12.)    0.330    0.057    5.832    0.000    0.219
##     ssmk    (.13.)    0.174    0.031    5.706    0.000    0.114
##   g =~                                                         
##     ssgs    (.14.)    0.686    0.036   18.847    0.000    0.614
##     ssar    (.15.)    0.666    0.039   16.942    0.000    0.589
##     sswk    (.16.)    0.678    0.038   17.660    0.000    0.602
##     sspc    (.17.)    0.671    0.035   19.322    0.000    0.603
##     ssno    (.18.)    0.496    0.040   12.329    0.000    0.417
##     sscs    (.19.)    0.491    0.035   14.202    0.000    0.424
##     ssai    (.20.)    0.422    0.033   12.909    0.000    0.358
##     sssi    (.21.)    0.409    0.033   12.339    0.000    0.344
##     ssmk    (.22.)    0.694    0.037   19.009    0.000    0.623
##     ssmc    (.23.)    0.637    0.037   17.453    0.000    0.566
##     ssei    (.24.)    0.612    0.037   16.563    0.000    0.540
##     ssao    (.25.)    0.551    0.035   15.526    0.000    0.482
##  ci.upper   Std.lv  Std.all
##                            
##     0.317    0.250    0.276
##     0.500    0.416    0.449
##     0.167    0.098    0.108
##     0.224    0.149    0.166
##                            
##     0.260    0.190    0.219
##     0.311    0.234    0.253
##     0.246    0.189    0.206
##                            
##     0.404    0.321    0.409
##     0.415    0.325    0.414
##     0.216    0.168    0.188
##                            
##     0.878    0.670    0.684
##     0.441    0.330    0.347
##     0.234    0.174    0.189
##                            
##     0.757    0.767    0.846
##     0.743    0.746    0.859
##     0.753    0.758    0.820
##     0.739    0.750    0.825
##     0.575    0.555    0.568
##     0.559    0.550    0.577
##     0.487    0.473    0.602
##     0.474    0.458    0.583
##     0.766    0.777    0.841
##     0.709    0.713    0.816
##     0.685    0.685    0.766
##     0.621    0.617    0.672
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.321    0.044    7.318    0.000    0.235
##     agec2            -0.065    0.033   -1.978    0.048   -0.130
##  ci.upper   Std.lv  Std.all
##                            
##     0.407    0.287    0.435
##    -0.001   -0.058   -0.112
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.54.)    0.470    0.068    6.890    0.000    0.336
##    .sswk    (.55.)    0.460    0.068    6.722    0.000    0.326
##    .sspc              0.526    0.068    7.761    0.000    0.393
##    .ssei    (.57.)    0.260    0.063    4.152    0.000    0.137
##    .ssar    (.58.)    0.473    0.065    7.224    0.000    0.344
##    .ssmk    (.59.)    0.532    0.071    7.493    0.000    0.393
##    .ssao    (.60.)    0.388    0.066    5.882    0.000    0.259
##    .ssai    (.61.)    0.110    0.049    2.248    0.025    0.014
##    .sssi    (.62.)    0.224    0.051    4.439    0.000    0.125
##    .ssno    (.63.)    0.345    0.064    5.355    0.000    0.219
##    .sscs              0.417    0.060    6.960    0.000    0.300
##    .ssmc    (.65.)    0.333    0.065    5.152    0.000    0.206
##  ci.upper   Std.lv  Std.all
##     0.604    0.470    0.518
##     0.595    0.460    0.498
##     0.659    0.526    0.578
##     0.382    0.260    0.290
##     0.601    0.473    0.545
##     0.671    0.532    0.575
##     0.517    0.388    0.423
##     0.206    0.110    0.140
##     0.323    0.224    0.286
##     0.472    0.345    0.353
##     0.535    0.417    0.438
##     0.459    0.333    0.381
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.170    0.019    8.757    0.000    0.132
##    .sswk              0.107    0.031    3.522    0.000    0.048
##    .sspc              0.254    0.029    8.617    0.000    0.196
##    .ssei              0.281    0.030    9.461    0.000    0.223
##    .ssar              0.161    0.020    8.159    0.000    0.122
##    .ssmk              0.166    0.020    8.259    0.000    0.126
##    .ssao              0.426    0.037   11.548    0.000    0.354
##    .ssai              0.290    0.035    8.193    0.000    0.220
##    .sssi              0.301    0.036    8.260    0.000    0.230
##    .ssno              0.200    0.111    1.797    0.072   -0.018
##    .sscs              0.497    0.057    8.693    0.000    0.385
##    .ssmc              0.254    0.026    9.929    0.000    0.204
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.209    0.170    0.208
##     0.167    0.107    0.126
##     0.311    0.254    0.307
##     0.339    0.281    0.351
##     0.199    0.161    0.213
##     0.205    0.166    0.194
##     0.499    0.426    0.506
##     0.359    0.290    0.470
##     0.372    0.301    0.488
##     0.419    0.200    0.209
##     0.609    0.497    0.547
##     0.305    0.254    0.333
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.798    0.798
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.250    0.034    7.261    0.000    0.182
##     sswk    (.p2.)    0.416    0.043    9.691    0.000    0.332
##     sspc    (.p3.)    0.098    0.035    2.805    0.005    0.030
##     ssei    (.p4.)    0.149    0.038    3.886    0.000    0.074
##   math =~                                                      
##     ssar    (.p5.)    0.190    0.036    5.343    0.000    0.120
##     ssmk    (.p6.)    0.234    0.039    5.927    0.000    0.156
##     ssao    (.p7.)    0.189    0.029    6.556    0.000    0.133
##   electronic =~                                                
##     ssai    (.p8.)    0.321    0.042    7.669    0.000    0.239
##     sssi    (.p9.)    0.325    0.046    7.117    0.000    0.236
##     ssei    (.10.)    0.168    0.024    6.894    0.000    0.120
##   speed =~                                                     
##     ssno    (.11.)    0.670    0.106    6.312    0.000    0.462
##     sscs    (.12.)    0.330    0.057    5.832    0.000    0.219
##     ssmk    (.13.)    0.174    0.031    5.706    0.000    0.114
##   g =~                                                         
##     ssgs    (.14.)    0.686    0.036   18.847    0.000    0.614
##     ssar    (.15.)    0.666    0.039   16.942    0.000    0.589
##     sswk    (.16.)    0.678    0.038   17.660    0.000    0.602
##     sspc    (.17.)    0.671    0.035   19.322    0.000    0.603
##     ssno    (.18.)    0.496    0.040   12.329    0.000    0.417
##     sscs    (.19.)    0.491    0.035   14.202    0.000    0.424
##     ssai    (.20.)    0.422    0.033   12.909    0.000    0.358
##     sssi    (.21.)    0.409    0.033   12.339    0.000    0.344
##     ssmk    (.22.)    0.694    0.037   19.009    0.000    0.623
##     ssmc    (.23.)    0.637    0.037   17.453    0.000    0.566
##     ssei    (.24.)    0.612    0.037   16.563    0.000    0.540
##     ssao    (.25.)    0.551    0.035   15.526    0.000    0.482
##  ci.upper   Std.lv  Std.all
##                            
##     0.317    0.250    0.250
##     0.500    0.416    0.407
##     0.167    0.098    0.100
##     0.224    0.149    0.143
##                            
##     0.260    0.190    0.195
##     0.311    0.234    0.238
##     0.246    0.189    0.185
##                            
##     0.404    0.671    0.612
##     0.415    0.679    0.679
##     0.216    0.351    0.336
##                            
##     0.878    0.754    0.694
##     0.441    0.372    0.368
##     0.234    0.196    0.200
##                            
##     0.757    0.855    0.856
##     0.743    0.831    0.854
##     0.753    0.845    0.827
##     0.739    0.836    0.851
##     0.575    0.619    0.570
##     0.559    0.613    0.606
##     0.487    0.527    0.480
##     0.474    0.510    0.510
##     0.766    0.866    0.882
##     0.709    0.795    0.816
##     0.685    0.764    0.731
##     0.621    0.687    0.674
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.399    0.052    7.727    0.000    0.298
##     agec2            -0.034    0.035   -0.984    0.325   -0.103
##  ci.upper   Std.lv  Std.all
##                            
##     0.500    0.320    0.455
##     0.034   -0.028   -0.051
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.54.)    0.470    0.068    6.890    0.000    0.336
##    .sswk    (.55.)    0.460    0.068    6.722    0.000    0.326
##    .sspc             -0.041    0.081   -0.510    0.610   -0.200
##    .ssei    (.57.)    0.260    0.063    4.152    0.000    0.137
##    .ssar    (.58.)    0.473    0.065    7.224    0.000    0.344
##    .ssmk    (.59.)    0.532    0.071    7.493    0.000    0.393
##    .ssao    (.60.)    0.388    0.066    5.882    0.000    0.259
##    .ssai    (.61.)    0.110    0.049    2.248    0.025    0.014
##    .sssi    (.62.)    0.224    0.051    4.439    0.000    0.125
##    .ssno    (.63.)    0.345    0.064    5.355    0.000    0.219
##    .sscs             -0.014    0.088   -0.162    0.871   -0.187
##    .ssmc    (.65.)    0.333    0.065    5.152    0.000    0.206
##     verbal           -0.856    0.182   -4.704    0.000   -1.212
##     math             -1.886    0.406   -4.641    0.000   -2.683
##     elctrnc           1.315    0.239    5.501    0.000    0.846
##     speed            -0.631    0.162   -3.884    0.000   -0.949
##    .g                 0.518    0.145    3.569    0.000    0.234
##  ci.upper   Std.lv  Std.all
##     0.604    0.470    0.470
##     0.595    0.460    0.450
##     0.118   -0.041   -0.042
##     0.382    0.260    0.249
##     0.601    0.473    0.486
##     0.671    0.532    0.542
##     0.517    0.388    0.380
##     0.206    0.110    0.100
##     0.323    0.224    0.224
##     0.472    0.345    0.318
##     0.158   -0.014   -0.014
##     0.459    0.333    0.342
##    -0.499   -0.856   -0.856
##    -1.090   -1.886   -1.886
##     1.783    0.630    0.630
##    -0.312   -0.560   -0.560
##     0.803    0.416    0.416
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.204    0.023    8.827    0.000    0.159
##    .sswk              0.157    0.034    4.563    0.000    0.090
##    .sspc              0.256    0.027    9.456    0.000    0.203
##    .ssei              0.361    0.038    9.612    0.000    0.288
##    .ssar              0.220    0.026    8.501    0.000    0.170
##    .ssmk              0.122    0.018    6.715    0.000    0.086
##    .ssao              0.533    0.051   10.541    0.000    0.434
##    .ssai              0.475    0.068    6.983    0.000    0.341
##    .sssi              0.278    0.057    4.890    0.000    0.167
##    .ssno              0.228    0.132    1.726    0.084   -0.031
##    .sscs              0.509    0.072    7.042    0.000    0.368
##    .ssmc              0.317    0.030   10.404    0.000    0.257
##     electronic        4.358    1.151    3.788    0.000    2.103
##     speed             1.268    0.347    3.654    0.000    0.588
##    .g                 1.222    0.167    7.313    0.000    0.895
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.249    0.204    0.205
##     0.225    0.157    0.150
##     0.309    0.256    0.265
##     0.435    0.361    0.331
##     0.271    0.220    0.233
##     0.157    0.122    0.126
##     0.633    0.533    0.512
##     0.608    0.475    0.395
##     0.390    0.278    0.278
##     0.487    0.228    0.193
##     0.651    0.509    0.498
##     0.376    0.317    0.334
##     6.613    1.000    1.000
##     1.948    1.000    1.000
##     1.550    0.786    0.786
sem.age2q<-sem(bf.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   527.225   155.000     0.000     0.941     0.085     0.063     1.005 
##       aic       bic 
## 16240.592 16569.623
Mc(sem.age2q)
## [1] 0.7571491
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 94 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       110
##   Number of equality constraints                    37
## 
##   Number of observations per group:                   
##     1                                              335
##     0                                              335
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               527.225     473.037
##   Degrees of freedom                               155         155
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.115
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          218.072     195.659
##     0                                          309.153     277.378
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.249    0.034    7.251    0.000    0.182
##     sswk    (.p2.)    0.415    0.043    9.693    0.000    0.331
##     sspc    (.p3.)    0.098    0.035    2.777    0.005    0.029
##     ssei    (.p4.)    0.149    0.038    3.886    0.000    0.074
##   math =~                                                      
##     ssar    (.p5.)    0.190    0.036    5.336    0.000    0.120
##     ssmk    (.p6.)    0.234    0.039    5.921    0.000    0.156
##     ssao    (.p7.)    0.189    0.029    6.546    0.000    0.132
##   electronic =~                                                
##     ssai    (.p8.)    0.321    0.042    7.660    0.000    0.239
##     sssi    (.p9.)    0.325    0.046    7.109    0.000    0.235
##     ssei    (.10.)    0.168    0.024    6.901    0.000    0.120
##   speed =~                                                     
##     ssno    (.11.)    0.668    0.106    6.296    0.000    0.460
##     sscs    (.12.)    0.330    0.057    5.836    0.000    0.219
##     ssmk    (.13.)    0.174    0.031    5.712    0.000    0.114
##   g =~                                                         
##     ssgs    (.14.)    0.687    0.036   18.834    0.000    0.615
##     ssar    (.15.)    0.667    0.039   16.934    0.000    0.590
##     sswk    (.16.)    0.679    0.038   17.680    0.000    0.604
##     sspc    (.17.)    0.672    0.035   19.327    0.000    0.604
##     ssno    (.18.)    0.497    0.040   12.322    0.000    0.418
##     sscs    (.19.)    0.492    0.035   14.188    0.000    0.424
##     ssai    (.20.)    0.422    0.033   12.867    0.000    0.358
##     sssi    (.21.)    0.409    0.033   12.335    0.000    0.344
##     ssmk    (.22.)    0.695    0.037   19.005    0.000    0.624
##     ssmc    (.23.)    0.638    0.037   17.456    0.000    0.566
##     ssei    (.24.)    0.613    0.037   16.522    0.000    0.540
##     ssao    (.25.)    0.552    0.036   15.514    0.000    0.482
##  ci.upper   Std.lv  Std.all
##                            
##     0.317    0.249    0.272
##     0.499    0.415    0.443
##     0.166    0.098    0.106
##     0.224    0.149    0.165
##                            
##     0.260    0.190    0.216
##     0.311    0.234    0.250
##     0.246    0.189    0.204
##                            
##     0.404    0.321    0.407
##     0.414    0.325    0.411
##     0.216    0.168    0.186
##                            
##     0.877    0.668    0.679
##     0.441    0.330    0.344
##     0.234    0.174    0.186
##                            
##     0.758    0.781    0.851
##     0.744    0.759    0.863
##     0.754    0.772    0.825
##     0.740    0.764    0.830
##     0.576    0.566    0.575
##     0.560    0.560    0.584
##     0.487    0.480    0.608
##     0.474    0.466    0.590
##     0.767    0.791    0.845
##     0.710    0.726    0.821
##     0.685    0.697    0.771
##     0.622    0.628    0.678
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.351    0.035    9.953    0.000    0.282
##     agec2      (b)   -0.053    0.024   -2.204    0.028   -0.101
##  ci.upper   Std.lv  Std.all
##                            
##     0.421    0.309    0.468
##    -0.006   -0.047   -0.090
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.54.)    0.449    0.059    7.610    0.000    0.334
##    .sswk    (.55.)    0.440    0.060    7.384    0.000    0.323
##    .sspc              0.506    0.060    8.467    0.000    0.389
##    .ssei    (.57.)    0.241    0.055    4.396    0.000    0.134
##    .ssar    (.58.)    0.453    0.058    7.832    0.000    0.339
##    .ssmk    (.59.)    0.511    0.062    8.283    0.000    0.390
##    .ssao    (.60.)    0.371    0.060    6.214    0.000    0.254
##    .ssai    (.61.)    0.097    0.044    2.207    0.027    0.011
##    .sssi    (.62.)    0.212    0.046    4.584    0.000    0.121
##    .ssno    (.63.)    0.330    0.059    5.562    0.000    0.214
##    .sscs              0.402    0.055    7.257    0.000    0.294
##    .ssmc    (.65.)    0.314    0.057    5.511    0.000    0.202
##  ci.upper   Std.lv  Std.all
##     0.565    0.449    0.489
##     0.557    0.440    0.470
##     0.623    0.506    0.549
##     0.349    0.241    0.267
##     0.566    0.453    0.515
##     0.632    0.511    0.546
##     0.489    0.371    0.401
##     0.183    0.097    0.123
##     0.303    0.212    0.269
##     0.447    0.330    0.336
##     0.511    0.402    0.420
##     0.425    0.314    0.355
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.171    0.019    8.772    0.000    0.132
##    .sswk              0.108    0.030    3.533    0.000    0.048
##    .sspc              0.254    0.029    8.616    0.000    0.196
##    .ssei              0.281    0.030    9.461    0.000    0.222
##    .ssar              0.161    0.020    8.164    0.000    0.122
##    .ssmk              0.165    0.020    8.265    0.000    0.126
##    .ssao              0.427    0.037   11.546    0.000    0.354
##    .ssai              0.289    0.035    8.194    0.000    0.220
##    .sssi              0.301    0.036    8.271    0.000    0.230
##    .ssno              0.201    0.111    1.808    0.071   -0.017
##    .sscs              0.497    0.057    8.695    0.000    0.385
##    .ssmc              0.255    0.026    9.936    0.000    0.205
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.209    0.171    0.202
##     0.167    0.108    0.123
##     0.312    0.254    0.299
##     0.339    0.281    0.343
##     0.200    0.161    0.208
##     0.204    0.165    0.189
##     0.499    0.427    0.498
##     0.359    0.289    0.464
##     0.373    0.301    0.483
##     0.419    0.201    0.208
##     0.609    0.497    0.540
##     0.305    0.255    0.326
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.773    0.773
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.249    0.034    7.251    0.000    0.182
##     sswk    (.p2.)    0.415    0.043    9.693    0.000    0.331
##     sspc    (.p3.)    0.098    0.035    2.777    0.005    0.029
##     ssei    (.p4.)    0.149    0.038    3.886    0.000    0.074
##   math =~                                                      
##     ssar    (.p5.)    0.190    0.036    5.336    0.000    0.120
##     ssmk    (.p6.)    0.234    0.039    5.921    0.000    0.156
##     ssao    (.p7.)    0.189    0.029    6.546    0.000    0.132
##   electronic =~                                                
##     ssai    (.p8.)    0.321    0.042    7.660    0.000    0.239
##     sssi    (.p9.)    0.325    0.046    7.109    0.000    0.235
##     ssei    (.10.)    0.168    0.024    6.901    0.000    0.120
##   speed =~                                                     
##     ssno    (.11.)    0.668    0.106    6.296    0.000    0.460
##     sscs    (.12.)    0.330    0.057    5.836    0.000    0.219
##     ssmk    (.13.)    0.174    0.031    5.712    0.000    0.114
##   g =~                                                         
##     ssgs    (.14.)    0.687    0.036   18.834    0.000    0.615
##     ssar    (.15.)    0.667    0.039   16.934    0.000    0.590
##     sswk    (.16.)    0.679    0.038   17.680    0.000    0.604
##     sspc    (.17.)    0.672    0.035   19.327    0.000    0.604
##     ssno    (.18.)    0.497    0.040   12.322    0.000    0.418
##     sscs    (.19.)    0.492    0.035   14.188    0.000    0.424
##     ssai    (.20.)    0.422    0.033   12.867    0.000    0.358
##     sssi    (.21.)    0.409    0.033   12.335    0.000    0.344
##     ssmk    (.22.)    0.695    0.037   19.005    0.000    0.624
##     ssmc    (.23.)    0.638    0.037   17.456    0.000    0.566
##     ssei    (.24.)    0.613    0.037   16.522    0.000    0.540
##     ssao    (.25.)    0.552    0.036   15.514    0.000    0.482
##  ci.upper   Std.lv  Std.all
##                            
##     0.317    0.249    0.253
##     0.499    0.415    0.411
##     0.166    0.098    0.101
##     0.224    0.149    0.144
##                            
##     0.260    0.190    0.198
##     0.311    0.234    0.241
##     0.246    0.189    0.187
##                            
##     0.404    0.673    0.616
##     0.414    0.680    0.683
##     0.216    0.352    0.341
##                            
##     0.877    0.754    0.698
##     0.441    0.372    0.371
##     0.234    0.197    0.203
##                            
##     0.758    0.839    0.852
##     0.744    0.815    0.850
##     0.754    0.830    0.822
##     0.740    0.821    0.847
##     0.576    0.608    0.563
##     0.560    0.602    0.599
##     0.487    0.516    0.472
##     0.474    0.500    0.502
##     0.767    0.850    0.878
##     0.710    0.780    0.811
##     0.685    0.749    0.725
##     0.622    0.675    0.667
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.351    0.035    9.953    0.000    0.282
##     agec2      (b)   -0.053    0.024   -2.204    0.028   -0.101
##  ci.upper   Std.lv  Std.all
##                            
##     0.421    0.287    0.409
##    -0.006   -0.044   -0.081
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.54.)    0.449    0.059    7.610    0.000    0.334
##    .sswk    (.55.)    0.440    0.060    7.384    0.000    0.323
##    .sspc             -0.062    0.074   -0.842    0.400   -0.208
##    .ssei    (.57.)    0.241    0.055    4.396    0.000    0.134
##    .ssar    (.58.)    0.453    0.058    7.832    0.000    0.339
##    .ssmk    (.59.)    0.511    0.062    8.283    0.000    0.390
##    .ssao    (.60.)    0.371    0.060    6.214    0.000    0.254
##    .ssai    (.61.)    0.097    0.044    2.207    0.027    0.011
##    .sssi    (.62.)    0.212    0.046    4.584    0.000    0.121
##    .ssno    (.63.)    0.330    0.059    5.562    0.000    0.214
##    .sscs             -0.029    0.084   -0.346    0.729   -0.193
##    .ssmc    (.65.)    0.314    0.057    5.511    0.000    0.202
##     verbal           -0.858    0.182   -4.708    0.000   -1.216
##     math             -1.887    0.407   -4.635    0.000   -2.685
##     elctrnc           1.317    0.240    5.499    0.000    0.848
##     speed            -0.632    0.163   -3.879    0.000   -0.951
##    .g                 0.582    0.107    5.419    0.000    0.371
##  ci.upper   Std.lv  Std.all
##     0.565    0.449    0.456
##     0.557    0.440    0.436
##     0.083   -0.062   -0.064
##     0.349    0.241    0.233
##     0.566    0.453    0.472
##     0.632    0.511    0.528
##     0.489    0.371    0.367
##     0.183    0.097    0.089
##     0.303    0.212    0.213
##     0.447    0.330    0.306
##     0.135   -0.029   -0.029
##     0.425    0.314    0.326
##    -0.501   -0.858   -0.858
##    -1.089   -1.887   -1.887
##     1.786    0.629    0.629
##    -0.313   -0.560   -0.560
##     0.792    0.476    0.476
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.204    0.023    8.827    0.000    0.159
##    .sswk              0.158    0.034    4.586    0.000    0.090
##    .sspc              0.255    0.027    9.434    0.000    0.202
##    .ssei              0.361    0.038    9.609    0.000    0.288
##    .ssar              0.220    0.026    8.482    0.000    0.169
##    .ssmk              0.122    0.018    6.726    0.000    0.086
##    .ssao              0.533    0.051   10.535    0.000    0.434
##    .ssai              0.474    0.068    6.972    0.000    0.341
##    .sssi              0.279    0.057    4.900    0.000    0.167
##    .ssno              0.228    0.132    1.728    0.084   -0.031
##    .sscs              0.509    0.072    7.037    0.000    0.368
##    .ssmc              0.317    0.030   10.391    0.000    0.257
##     electronic        4.385    1.159    3.784    0.000    2.114
##     speed             1.273    0.348    3.656    0.000    0.590
##    .g                 1.224    0.168    7.304    0.000    0.896
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.249    0.204    0.210
##     0.225    0.158    0.155
##     0.308    0.255    0.272
##     0.435    0.361    0.338
##     0.271    0.220    0.239
##     0.158    0.122    0.130
##     0.632    0.533    0.520
##     0.608    0.474    0.397
##     0.390    0.279    0.281
##     0.487    0.228    0.196
##     0.651    0.509    0.504
##     0.377    0.317    0.343
##     6.656    1.000    1.000
##     1.955    1.000    1.000
##     1.553    0.820    0.820
# ALL RACE RESPONDENTS

dgroup<- dplyr::select(ds, id, starts_with("ss"), asvab, efa, educ2011, T6665000, agec, age, agebin, agec2, sex, sexage, bhw, sweight)
nrow(dgroup) # N=1312
## [1] 1312
fit<-lm(efa ~ sex + rcs(agec, 3) + sex*rcs(agec, 3), data=dgroup)
summary(fit)
## 
## Call:
## lm(formula = efa ~ sex + rcs(agec, 3) + sex * rcs(agec, 3), data = dgroup)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.359 -10.489   0.976  11.196  41.561 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           101.0457     1.5586  64.830  < 2e-16 ***
## sex                    -0.2699     2.2224  -0.121    0.903    
## rcs(agec, 3)agec        4.9892     1.1394   4.379 1.29e-05 ***
## rcs(agec, 3)agec'      -1.4447     1.3665  -1.057    0.291    
## sex:rcs(agec, 3)agec   -0.2351     1.5917  -0.148    0.883    
## sex:rcs(agec, 3)agec'  -0.1095     1.9188  -0.057    0.954    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.28 on 1306 degrees of freedom
## Multiple R-squared:  0.1105, Adjusted R-squared:  0.1071 
## F-statistic: 32.44 on 5 and 1306 DF,  p-value: < 2.2e-16
dgroup$pred1<-fitted(fit) 

original_age_min <- 12
original_age_max <- 17
mean_centered_min <- min(dgroup$agec)
mean_centered_max <- max(dgroup$agec)
original_age_mean <- (original_age_min + original_age_max) / 2
mean_centered_age_mean <- (mean_centered_min + mean_centered_max) / 2
age_difference <- original_age_mean - mean_centered_age_mean

xyplot(dgroup$pred1 ~ dgroup$agec, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted g", xlab="age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2))

xyplot(dgroup$pred1 ~ dgroup$agec, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted g", xlab="Age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2), scales=list(x=list(at=seq(mean_centered_min, mean_centered_max), labels=seq(original_age_min, original_age_max))))

fit<-lm(asvab ~ sex + rcs(agec, 3) + sex*rcs(agec, 3), data=dgroup)
summary(fit)
## 
## Call:
## lm(formula = asvab ~ sex + rcs(agec, 3) + sex * rcs(agec, 3), 
##     data = dgroup)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -23.025 -13.109  -1.783  12.655  30.010 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           98.59993    1.54121  63.975   <2e-16 ***
## sex                    1.39321    2.19756   0.634    0.526    
## rcs(agec, 3)agec       0.45553    1.12665   0.404    0.686    
## rcs(agec, 3)agec'     -0.02215    1.35119  -0.016    0.987    
## sex:rcs(agec, 3)agec   0.15026    1.57391   0.095    0.924    
## sex:rcs(agec, 3)agec' -0.45301    1.89731  -0.239    0.811    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.11 on 1306 degrees of freedom
## Multiple R-squared:  0.002104,   Adjusted R-squared:  -0.001716 
## F-statistic: 0.5508 on 5 and 1306 DF,  p-value: 0.7378
dgroup$pred2<-fitted(fit) 
xyplot(dgroup$pred2 ~ dgroup$agec, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted ASVAB", xlab="Age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2), scales=list(x=list(at=seq(mean_centered_min, mean_centered_max), labels=seq(original_age_min, original_age_max))))

describeBy(dgroup$pred1, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n  mean   sd median trimmed  mad   min    max range  skew
## X1    1 656 99.53 5.49 100.29   99.79 6.48 88.57 107.69 19.12 -0.33
##    kurtosis   se
## X1    -1.07 0.21
## ------------------------------------------------------ 
## group: 1
##    vars   n  mean   sd median trimmed  mad   min    max range  skew
## X1    1 656 99.17 5.25 100.11   99.48 6.21 88.89 106.44 17.55 -0.41
##    kurtosis   se
## X1     -1.1 0.21
describeBy(dgroup$efa, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n  mean    sd median trimmed   mad   min    max range  skew
## X1    1 656 99.53 16.83 100.84   99.69 17.89 63.82 139.83 76.01 -0.08
##    kurtosis   se
## X1    -0.71 0.66
## ------------------------------------------------------ 
## group: 1
##    vars   n  mean    sd median trimmed   mad   min    max range  skew
## X1    1 656 99.17 15.49  99.35   99.19 16.18 62.88 141.79 78.91 -0.01
##    kurtosis  se
## X1    -0.49 0.6
describeBy(dgroup$asvab, dgroup$sex) 
## 
##  Descriptive statistics by group 
## INDICES: 0
##    vars   n  mean    sd median trimmed   mad  min    max range skew
## V1    1 656 98.58 15.28  96.33   97.93 18.96 76.7 128.12 51.42 0.29
##    kurtosis  se
## V1    -1.19 0.6
## ------------------------------------------------------ 
## INDICES: 1
##    vars   n  mean    sd median trimmed   mad   min    max range skew
## V1    1 656 99.48 14.91  98.15   98.88 17.98 76.76 128.12 51.36 0.29
##    kurtosis   se
## V1     -1.1 0.58
describeBy(dgroup$educ2011, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 547 13.29 2.83     13   13.27 2.97   6  20    14 0.13    -0.53
##      se
## X1 0.12
## ------------------------------------------------------ 
## group: 1
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 570 14.01 2.86     14   14.02 2.97   6  20    14 0.02     -0.6
##      se
## X1 0.12
cor(dgroup$efa, dgroup$asvab, use="pairwise.complete.obs", method="pearson")
##           [,1]
## [1,] 0.9099632
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(agebin, sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 10 Ă— 5
## # Groups:   agebin [5]
##    agebin   sex  MEAN MEAN_se    SD
##     <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1     12     0  91.0  0.140  1.41 
##  2     12     1  91.1  0.139  1.40 
##  3     13     0  95.9  0.123  1.34 
##  4     13     1  95.6  0.129  1.32 
##  5     14     0 100.   0.102  1.11 
##  6     14     1  99.9  0.101  1.05 
##  7     15     0 104.   0.0916 0.931
##  8     15     1 103.   0.0702 0.733
##  9     16     0 106.   0.0788 0.764
## 10     16     1 105.   0.0642 0.689
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(agebin, sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 10 Ă— 5
## # Groups:   agebin [5]
##    agebin   sex  MEAN MEAN_se    SD
##     <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1     12     0  94.0    1.37  14.2
##  2     12     1  93.4    1.21  12.4
##  3     13     0  98.8    1.49  16.0
##  4     13     1  98.7    1.40  14.4
##  5     14     0 103.     1.37  15.7
##  6     14     1 104.     1.40  14.8
##  7     15     0 109.     1.35  14.8
##  8     15     1 108.     1.39  15.1
##  9     16     0 111.     1.59  15.9
## 10     16     1 109.     1.14  13.0
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(agebin, sex) %>% summarise(MEAN = survey_mean(asvab), SD = survey_sd(asvab))
## # A tibble: 10 Ă— 5
## # Groups:   agebin [5]
##    agebin   sex  MEAN MEAN_se    SD
##     <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1     12     0  100.    1.43  14.7
##  2     12     1  101.    1.33  13.7
##  3     13     0  101.    1.46  15.6
##  4     13     1  102.    1.55  15.5
##  5     14     0  102.    1.37  15.2
##  6     14     1  105.    1.45  15.1
##  7     15     0  102.    1.44  15.1
##  8     15     1  103.    1.43  15.1
##  9     16     0  104.    1.59  15.7
## 10     16     1  103.    1.30  14.2
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  99.4   0.247  5.57
## 2     1  99.3   0.236  5.34
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  103.   0.709  16.5
## 2     1  103.   0.640  15.1
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(asvab, na.rm = TRUE), SD = survey_sd(asvab, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  102.   0.657  15.3
## 2     1  103.   0.631  14.7
dgroup %>% as_survey_design(ids = id, weights = T6665000) %>% group_by(sex) %>% summarise(MEAN = survey_mean(educ2011, na.rm = TRUE), SD = survey_sd(educ2011, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  13.7   0.129  2.79
## 2     1  14.4   0.130  2.81
# CORRELATED FACTOR MODEL 

cf.model<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
'

cf.lv<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
verbal~~1*verbal
math~~1*math
'

cf.reduced<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
verbal~~1*verbal
math~~1*math
verbal~0*1
math~0*1
'

baseline<-cfa(cf.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   257.691    44.000     0.000     0.984     0.061     0.020 32434.588 
##       bic 
## 32672.836
Mc(baseline)
## [1] 0.9217335
configural<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   266.446    88.000     0.000     0.987     0.056     0.022 31916.836 
##       bic 
## 32393.333
Mc(configural)
## [1] 0.934207
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 52 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        92
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               266.446     206.864
##   Degrees of freedom                                88          88
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.288
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          121.005      93.946
##     0                                          145.441     112.917
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.894    0.030   29.349    0.000    0.834
##     sswk              0.913    0.033   27.793    0.000    0.848
##     sspc              0.407    0.079    5.167    0.000    0.253
##     ssei              0.586    0.074    7.917    0.000    0.441
##   math =~                                                      
##     ssar              0.856    0.031   27.409    0.000    0.795
##     sspc              0.447    0.080    5.597    0.000    0.290
##     ssmk              0.703    0.079    8.917    0.000    0.548
##     ssmc              0.485    0.064    7.585    0.000    0.360
##     ssao              0.739    0.031   24.124    0.000    0.679
##   electronic =~                                                
##     ssai              0.573    0.033   17.610    0.000    0.509
##     sssi              0.661    0.036   18.280    0.000    0.590
##     ssmc              0.344    0.066    5.242    0.000    0.215
##     ssei              0.181    0.073    2.467    0.014    0.037
##   speed =~                                                     
##     ssno              0.778    0.043   17.924    0.000    0.693
##     sscs              0.680    0.039   17.404    0.000    0.603
##     ssmk              0.279    0.080    3.470    0.001    0.121
##  ci.upper   Std.lv  Std.all
##                            
##     0.953    0.894    0.916
##     0.977    0.913    0.910
##     0.561    0.407    0.423
##     0.731    0.586    0.647
##                            
##     0.917    0.856    0.907
##     0.603    0.447    0.465
##     0.857    0.703    0.684
##     0.610    0.485    0.523
##     0.799    0.739    0.757
##                            
##     0.636    0.573    0.707
##     0.732    0.661    0.779
##     0.472    0.344    0.370
##     0.325    0.181    0.200
##                            
##     0.863    0.778    0.797
##     0.757    0.680    0.700
##     0.436    0.279    0.271
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.894    0.016   54.821    0.000    0.862
##     electronic        0.841    0.030   28.164    0.000    0.783
##     speed             0.734    0.044   16.797    0.000    0.648
##   math ~~                                                      
##     electronic        0.774    0.037   21.195    0.000    0.703
##     speed             0.796    0.044   18.092    0.000    0.709
##   electronic ~~                                                
##     speed             0.538    0.062    8.622    0.000    0.416
##  ci.upper   Std.lv  Std.all
##                            
##     0.925    0.894    0.894
##     0.900    0.841    0.841
##     0.819    0.734    0.734
##                            
##     0.846    0.774    0.774
##     0.882    0.796    0.796
##                            
##     0.660    0.538    0.538
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.139    0.042    3.332    0.001    0.057
##    .sswk              0.154    0.043    3.607    0.000    0.070
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssei              0.000    0.039    0.009    0.993   -0.077
##    .ssar              0.186    0.040    4.598    0.000    0.107
##    .ssmk              0.241    0.044    5.433    0.000    0.154
##    .ssmc              0.039    0.040    0.993    0.321   -0.038
##    .ssao              0.171    0.042    4.054    0.000    0.088
##    .ssai             -0.108    0.035   -3.113    0.002   -0.176
##    .sssi             -0.068    0.036   -1.862    0.063   -0.139
##    .ssno              0.175    0.043    4.060    0.000    0.090
##    .sscs              0.245    0.043    5.752    0.000    0.162
##  ci.upper   Std.lv  Std.all
##     0.220    0.139    0.142
##     0.238    0.154    0.154
##     0.333    0.253    0.263
##     0.077    0.000    0.000
##     0.265    0.186    0.197
##     0.327    0.241    0.234
##     0.117    0.039    0.042
##     0.253    0.171    0.175
##    -0.040   -0.108   -0.134
##     0.004   -0.068   -0.080
##     0.259    0.175    0.179
##     0.329    0.245    0.253
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.153    0.015   10.348    0.000    0.124
##    .sswk              0.173    0.016   11.087    0.000    0.142
##    .sspc              0.234    0.022   10.766    0.000    0.191
##    .ssei              0.266    0.022   12.014    0.000    0.222
##    .ssar              0.157    0.015   10.359    0.000    0.127
##    .ssmk              0.173    0.017   10.299    0.000    0.140
##    .ssmc              0.250    0.019   13.149    0.000    0.212
##    .ssao              0.408    0.028   14.568    0.000    0.353
##    .ssai              0.328    0.028   11.674    0.000    0.273
##    .sssi              0.284    0.028    9.993    0.000    0.228
##    .ssno              0.348    0.038    9.242    0.000    0.274
##    .sscs              0.480    0.054    8.835    0.000    0.374
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.182    0.153    0.161
##     0.203    0.173    0.172
##     0.276    0.234    0.253
##     0.309    0.266    0.324
##     0.187    0.157    0.177
##     0.206    0.173    0.164
##     0.287    0.250    0.290
##     0.463    0.408    0.428
##     0.383    0.328    0.500
##     0.340    0.284    0.394
##     0.421    0.348    0.365
##     0.587    0.480    0.509
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.995    0.033   30.614    0.000    0.932
##     sswk              0.970    0.032   30.009    0.000    0.907
##     sspc              0.361    0.084    4.306    0.000    0.196
##     ssei              0.597    0.065    9.145    0.000    0.469
##   math =~                                                      
##     ssar              0.947    0.033   28.371    0.000    0.881
##     sspc              0.539    0.084    6.415    0.000    0.375
##     ssmk              0.730    0.061   11.929    0.000    0.610
##     ssmc              0.567    0.040   14.200    0.000    0.488
##     ssao              0.740    0.033   22.154    0.000    0.675
##   electronic =~                                                
##     ssai              0.971    0.043   22.739    0.000    0.887
##     sssi              0.968    0.040   24.056    0.000    0.889
##     ssmc              0.474    0.042   11.208    0.000    0.391
##     ssei              0.505    0.070    7.172    0.000    0.367
##   speed =~                                                     
##     ssno              0.878    0.047   18.752    0.000    0.786
##     sscs              0.790    0.044   17.936    0.000    0.704
##     ssmk              0.248    0.063    3.958    0.000    0.125
##  ci.upper   Std.lv  Std.all
##                            
##     1.059    0.995    0.929
##     1.034    0.970    0.908
##     0.525    0.361    0.358
##     0.725    0.597    0.506
##                            
##     1.012    0.947    0.900
##     0.704    0.539    0.536
##     0.850    0.730    0.715
##     0.645    0.567    0.525
##     0.806    0.740    0.714
##                            
##     1.055    0.971    0.822
##     1.047    0.968    0.861
##     0.557    0.474    0.440
##     0.643    0.505    0.428
##                            
##     0.969    0.878    0.820
##     0.877    0.790    0.750
##     0.370    0.248    0.242
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.905    0.014   66.480    0.000    0.879
##     electronic        0.773    0.026   30.178    0.000    0.723
##     speed             0.697    0.035   19.829    0.000    0.628
##   math ~~                                                      
##     electronic        0.658    0.033   20.228    0.000    0.594
##     speed             0.806    0.029   27.408    0.000    0.749
##   electronic ~~                                                
##     speed             0.406    0.051    7.918    0.000    0.305
##  ci.upper   Std.lv  Std.all
##                            
##     0.932    0.905    0.905
##     0.823    0.773    0.773
##     0.766    0.697    0.697
##                            
##     0.722    0.658    0.658
##     0.864    0.806    0.806
##                            
##     0.506    0.406    0.406
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.285    0.046    6.206    0.000    0.195
##    .sswk              0.136    0.046    2.930    0.003    0.045
##    .sspc             -0.020    0.044   -0.450    0.652   -0.105
##    .ssei              0.317    0.051    6.192    0.000    0.217
##    .ssar              0.185    0.045    4.117    0.000    0.097
##    .ssmk              0.094    0.044    2.150    0.032    0.008
##    .ssmc              0.317    0.046    6.902    0.000    0.227
##    .ssao              0.084    0.045    1.868    0.062   -0.004
##    .ssai              0.427    0.052    8.172    0.000    0.324
##    .sssi              0.489    0.049   10.035    0.000    0.394
##    .ssno              0.022    0.047    0.466    0.641   -0.070
##    .sscs             -0.116    0.046   -2.517    0.012   -0.206
##  ci.upper   Std.lv  Std.all
##     0.375    0.285    0.266
##     0.226    0.136    0.127
##     0.066   -0.020   -0.019
##     0.417    0.317    0.268
##     0.274    0.185    0.176
##     0.180    0.094    0.092
##     0.406    0.317    0.294
##     0.173    0.084    0.081
##     0.529    0.427    0.361
##     0.585    0.489    0.435
##     0.114    0.022    0.020
##    -0.026   -0.116   -0.110
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.157    0.016    9.514    0.000    0.125
##    .sswk              0.199    0.017   11.988    0.000    0.167
##    .sspc              0.241    0.019   12.434    0.000    0.203
##    .ssei              0.317    0.025   12.863    0.000    0.268
##    .ssar              0.210    0.022    9.475    0.000    0.167
##    .ssmk              0.158    0.014   11.706    0.000    0.132
##    .ssmc              0.264    0.020   13.388    0.000    0.225
##    .ssao              0.528    0.038   14.029    0.000    0.454
##    .ssai              0.451    0.041   11.042    0.000    0.371
##    .sssi              0.328    0.036    9.202    0.000    0.258
##    .ssno              0.375    0.042    9.020    0.000    0.293
##    .sscs              0.486    0.057    8.487    0.000    0.374
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.189    0.157    0.137
##     0.232    0.199    0.175
##     0.278    0.241    0.237
##     0.365    0.317    0.227
##     0.254    0.210    0.190
##     0.185    0.158    0.152
##     0.302    0.264    0.227
##     0.601    0.528    0.490
##     0.532    0.451    0.324
##     0.398    0.328    0.259
##     0.456    0.375    0.327
##     0.598    0.486    0.438
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
modificationIndices(configural, sort=T, maximum.number=30)
##            lhs op  rhs block group level     mi    epc sepc.lv sepc.all
## 192       ssmc ~~ ssao     1     1     1 30.119  0.079   0.079    0.247
## 290       ssmc ~~ ssao     2     2     1 16.235  0.067   0.067    0.180
## 224 electronic =~ sspc     2     2     1 15.818 -0.172  -0.172   -0.171
## 266       sspc ~~ sssi     2     2     1 11.870 -0.049  -0.049   -0.175
## 124 electronic =~ ssgs     1     1     1 11.688  0.220   0.220    0.225
## 268       sspc ~~ sscs     2     2     1 11.256  0.054   0.054    0.158
## 221       math =~ sscs     2     2     1 10.746  0.422   0.422    0.400
## 220       math =~ ssno     2     2     1 10.746 -0.468  -0.468   -0.438
## 293       ssmc ~~ ssno     2     2     1 10.627 -0.054  -0.054   -0.171
## 230      speed =~ ssgs     2     2     1 10.511 -0.131  -0.131   -0.123
## 298       ssao ~~ sscs     2     2     1 10.448  0.074   0.074    0.147
## 235      speed =~ ssmc     2     2     1 10.286 -0.202  -0.202   -0.187
## 131 electronic =~ sscs     1     1     1  9.405  0.170   0.170    0.175
## 288       ssmk ~~ ssno     2     2     1  9.283  0.062   0.062    0.255
## 297       ssao ~~ ssno     2     2     1  8.950 -0.066  -0.066   -0.148
## 282       ssar ~~ ssno     2     2     1  8.923  0.050   0.050    0.179
## 157       sswk ~~ ssao     1     1     1  8.658 -0.038  -0.038   -0.141
## 139      speed =~ ssai     1     1     1  8.529  0.131   0.131    0.162
## 213     verbal =~ ssno     2     2     1  8.413 -0.216  -0.216   -0.202
## 149       ssgs ~~ sssi     1     1     1  8.207  0.034   0.034    0.162
## 123       math =~ sscs     1     1     1  7.999  0.368   0.368    0.379
## 122       math =~ ssno     1     1     1  7.999 -0.421  -0.421   -0.431
## 214     verbal =~ sscs     2     2     1  7.897  0.190   0.190    0.181
## 132      speed =~ ssgs     1     1     1  7.772 -0.116  -0.116   -0.119
## 255       sswk ~~ ssao     2     2     1  7.765 -0.042  -0.042   -0.130
## 130 electronic =~ ssno     1     1     1  7.737 -0.171  -0.171   -0.175
## 272       ssei ~~ ssao     2     2     1  7.696  0.050   0.050    0.122
## 283       ssar ~~ sscs     2     2     1  7.610 -0.047  -0.047   -0.146
## 277       ssar ~~ ssmk     2     2     1  7.447  0.038   0.038    0.206
## 200       ssao ~~ sscs     1     1     1  7.414  0.054   0.054    0.122
##     sepc.nox
## 192    0.247
## 290    0.180
## 224   -0.171
## 266   -0.175
## 124    0.225
## 268    0.158
## 221    0.400
## 220   -0.438
## 293   -0.171
## 230   -0.123
## 298    0.147
## 235   -0.187
## 131    0.175
## 288    0.255
## 297   -0.148
## 282    0.179
## 157   -0.141
## 139    0.162
## 213   -0.202
## 149    0.162
## 123    0.379
## 122   -0.431
## 214    0.181
## 132   -0.119
## 255   -0.130
## 130   -0.175
## 272    0.122
## 283   -0.146
## 277    0.206
## 200    0.122
metric<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   297.407   100.000     0.000     0.985     0.055     0.029 31923.798 
##       bic 
## 32338.142
Mc(metric)
## [1] 0.9274756
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 77 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    16
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               297.407     228.974
##   Degrees of freedom                               100         100
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.299
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          140.271     107.994
##     0                                          157.137     120.980
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.900    0.029   31.218    0.000    0.843
##     sswk    (.p2.)    0.898    0.031   29.313    0.000    0.838
##     sspc    (.p3.)    0.363    0.055    6.612    0.000    0.256
##     ssei    (.p4.)    0.505    0.046   10.929    0.000    0.415
##   math =~                                                      
##     ssar    (.p5.)    0.877    0.028   30.893    0.000    0.822
##     sspc    (.p6.)    0.484    0.058    8.398    0.000    0.371
##     ssmk    (.p7.)    0.706    0.049   14.285    0.000    0.609
##     ssmc    (.p8.)    0.518    0.031   16.599    0.000    0.457
##     ssao    (.p9.)    0.725    0.027   26.722    0.000    0.671
##   electronic =~                                                
##     ssai    (.10.)    0.588    0.028   21.294    0.000    0.534
##     sssi    (.11.)    0.613    0.030   20.194    0.000    0.553
##     ssmc    (.12.)    0.306    0.027   11.419    0.000    0.254
##     ssei    (.13.)    0.311    0.038    8.236    0.000    0.237
##   speed =~                                                     
##     ssno    (.14.)    0.787    0.037   21.355    0.000    0.714
##     sscs    (.15.)    0.699    0.033   21.018    0.000    0.634
##     ssmk    (.16.)    0.240    0.048    5.006    0.000    0.146
##  ci.upper   Std.lv  Std.all
##                            
##     0.957    0.900    0.919
##     0.958    0.898    0.907
##     0.471    0.363    0.380
##     0.596    0.505    0.539
##                            
##     0.933    0.877    0.912
##     0.597    0.484    0.506
##     0.803    0.706    0.703
##     0.579    0.518    0.557
##     0.778    0.725    0.749
##                            
##     0.642    0.588    0.717
##     0.672    0.613    0.743
##     0.359    0.306    0.329
##     0.385    0.311    0.332
##                            
##     0.859    0.787    0.802
##     0.764    0.699    0.713
##     0.334    0.240    0.239
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.895    0.016   56.339    0.000    0.864
##     electronic        0.844    0.030   28.128    0.000    0.785
##     speed             0.731    0.039   18.843    0.000    0.655
##   math ~~                                                      
##     electronic        0.786    0.033   23.544    0.000    0.721
##     speed             0.798    0.041   19.373    0.000    0.718
##   electronic ~~                                                
##     speed             0.551    0.059    9.376    0.000    0.436
##  ci.upper   Std.lv  Std.all
##                            
##     0.926    0.895    0.895
##     0.903    0.844    0.844
##     0.807    0.731    0.731
##                            
##     0.852    0.786    0.786
##     0.879    0.798    0.798
##                            
##     0.666    0.551    0.551
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.139    0.042    3.332    0.001    0.057
##    .sswk              0.154    0.043    3.607    0.000    0.070
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssei              0.000    0.039    0.009    0.993   -0.077
##    .ssar              0.186    0.040    4.598    0.000    0.107
##    .ssmk              0.241    0.044    5.433    0.000    0.154
##    .ssmc              0.039    0.040    0.993    0.321   -0.038
##    .ssao              0.171    0.042    4.054    0.000    0.088
##    .ssai             -0.108    0.035   -3.113    0.002   -0.176
##    .sssi             -0.068    0.036   -1.862    0.063   -0.139
##    .ssno              0.175    0.043    4.060    0.000    0.090
##    .sscs              0.245    0.043    5.752    0.000    0.162
##  ci.upper   Std.lv  Std.all
##     0.220    0.139    0.142
##     0.238    0.154    0.156
##     0.333    0.253    0.264
##     0.077    0.000    0.000
##     0.265    0.186    0.193
##     0.327    0.241    0.240
##     0.117    0.039    0.042
##     0.253    0.171    0.177
##    -0.040   -0.108   -0.132
##     0.004   -0.068   -0.082
##     0.259    0.175    0.178
##     0.329    0.245    0.251
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.150    0.015   10.195    0.000    0.121
##    .sswk              0.174    0.016   11.093    0.000    0.143
##    .sspc              0.234    0.021   10.931    0.000    0.192
##    .ssei              0.260    0.022   11.708    0.000    0.217
##    .ssar              0.156    0.015   10.433    0.000    0.127
##    .ssmk              0.182    0.016   11.491    0.000    0.151
##    .ssmc              0.252    0.019   13.599    0.000    0.216
##    .ssao              0.411    0.028   14.872    0.000    0.357
##    .ssai              0.326    0.027   12.242    0.000    0.274
##    .sssi              0.305    0.027   11.101    0.000    0.251
##    .ssno              0.344    0.037    9.310    0.000    0.271
##    .sscs              0.472    0.052    8.997    0.000    0.369
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.179    0.150    0.156
##     0.204    0.174    0.177
##     0.276    0.234    0.256
##     0.304    0.260    0.297
##     0.185    0.156    0.169
##     0.213    0.182    0.181
##     0.289    0.252    0.292
##     0.465    0.411    0.439
##     0.378    0.326    0.486
##     0.359    0.305    0.448
##     0.416    0.344    0.357
##     0.575    0.472    0.492
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.900    0.029   31.218    0.000    0.843
##     sswk    (.p2.)    0.898    0.031   29.313    0.000    0.838
##     sspc    (.p3.)    0.363    0.055    6.612    0.000    0.256
##     ssei    (.p4.)    0.505    0.046   10.929    0.000    0.415
##   math =~                                                      
##     ssar    (.p5.)    0.877    0.028   30.893    0.000    0.822
##     sspc    (.p6.)    0.484    0.058    8.398    0.000    0.371
##     ssmk    (.p7.)    0.706    0.049   14.285    0.000    0.609
##     ssmc    (.p8.)    0.518    0.031   16.599    0.000    0.457
##     ssao    (.p9.)    0.725    0.027   26.722    0.000    0.671
##   electronic =~                                                
##     ssai    (.10.)    0.588    0.028   21.294    0.000    0.534
##     sssi    (.11.)    0.613    0.030   20.194    0.000    0.553
##     ssmc    (.12.)    0.306    0.027   11.419    0.000    0.254
##     ssei    (.13.)    0.311    0.038    8.236    0.000    0.237
##   speed =~                                                     
##     ssno    (.14.)    0.787    0.037   21.355    0.000    0.714
##     sscs    (.15.)    0.699    0.033   21.018    0.000    0.634
##     ssmk    (.16.)    0.240    0.048    5.006    0.000    0.146
##  ci.upper   Std.lv  Std.all
##                            
##     0.957    0.990    0.928
##     0.958    0.988    0.913
##     0.471    0.400    0.395
##     0.596    0.556    0.484
##                            
##     0.933    0.917    0.892
##     0.597    0.506    0.500
##     0.803    0.739    0.709
##     0.579    0.542    0.503
##     0.778    0.758    0.723
##                            
##     0.642    0.953    0.814
##     0.672    0.993    0.868
##     0.359    0.497    0.461
##     0.385    0.504    0.438
##                            
##     0.859    0.871    0.818
##     0.764    0.774    0.741
##     0.334    0.266    0.255
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              1.040    0.083   12.527    0.000    0.877
##     electronic        1.389    0.126   11.028    0.000    1.142
##     speed             0.849    0.083   10.176    0.000    0.686
##   math ~~                                                      
##     electronic        1.127    0.109   10.355    0.000    0.913
##     speed             0.930    0.084   11.066    0.000    0.765
##   electronic ~~                                                
##     speed             0.738    0.110    6.728    0.000    0.523
##  ci.upper   Std.lv  Std.all
##                            
##     1.202    0.903    0.903
##     1.636    0.778    0.778
##     1.013    0.697    0.697
##                            
##     1.340    0.664    0.664
##     1.094    0.803    0.803
##                            
##     0.953    0.411    0.411
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.285    0.046    6.206    0.000    0.195
##    .sswk              0.136    0.046    2.930    0.003    0.045
##    .sspc             -0.020    0.044   -0.450    0.652   -0.105
##    .ssei              0.317    0.051    6.192    0.000    0.217
##    .ssar              0.185    0.045    4.117    0.000    0.097
##    .ssmk              0.094    0.044    2.150    0.032    0.008
##    .ssmc              0.317    0.046    6.902    0.000    0.227
##    .ssao              0.084    0.045    1.868    0.062   -0.004
##    .ssai              0.427    0.052    8.172    0.000    0.324
##    .sssi              0.489    0.049   10.035    0.000    0.394
##    .ssno              0.022    0.047    0.466    0.641   -0.070
##    .sscs             -0.116    0.046   -2.517    0.012   -0.206
##  ci.upper   Std.lv  Std.all
##     0.375    0.285    0.267
##     0.226    0.136    0.125
##     0.066   -0.020   -0.019
##     0.417    0.317    0.276
##     0.274    0.185    0.180
##     0.180    0.094    0.091
##     0.406    0.317    0.294
##     0.173    0.084    0.080
##     0.529    0.427    0.364
##     0.585    0.489    0.428
##     0.114    0.022    0.021
##    -0.026   -0.116   -0.111
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.158    0.016    9.870    0.000    0.127
##    .sswk              0.196    0.016   12.009    0.000    0.164
##    .sspc              0.241    0.019   12.403    0.000    0.203
##    .ssei              0.323    0.025   12.855    0.000    0.274
##    .ssar              0.215    0.022    9.722    0.000    0.172
##    .ssmk              0.153    0.013   11.699    0.000    0.127
##    .ssmc              0.262    0.020   13.399    0.000    0.224
##    .ssao              0.526    0.037   14.121    0.000    0.453
##    .ssai              0.462    0.041   11.372    0.000    0.383
##    .sssi              0.322    0.035    9.116    0.000    0.253
##    .ssno              0.376    0.040    9.284    0.000    0.296
##    .sscs              0.493    0.056    8.735    0.000    0.382
##     verbal            1.211    0.102   11.875    0.000    1.011
##     math              1.094    0.091   12.035    0.000    0.916
##     electronic        2.630    0.290    9.063    0.000    2.061
##     speed             1.226    0.152    8.091    0.000    0.929
##  ci.upper   Std.lv  Std.all
##     0.190    0.158    0.139
##     0.228    0.196    0.167
##     0.279    0.241    0.236
##     0.372    0.323    0.244
##     0.259    0.215    0.204
##     0.178    0.153    0.141
##     0.301    0.262    0.226
##     0.599    0.526    0.478
##     0.542    0.462    0.337
##     0.391    0.322    0.246
##     0.455    0.376    0.331
##     0.604    0.493    0.452
##     1.411    1.000    1.000
##     1.272    1.000    1.000
##     3.199    1.000    1.000
##     1.523    1.000    1.000
lavTestScore(metric, release = 1:16)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 31.224 16   0.013
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p55.  0.356  1   0.551
## 2   .p2. == .p56.  3.061  1   0.080
## 3   .p3. == .p57.  0.351  1   0.554
## 4   .p4. == .p58.  7.245  1   0.007
## 5   .p5. == .p59.  7.876  1   0.005
## 6   .p6. == .p60.  0.104  1   0.747
## 7   .p7. == .p61.  6.811  1   0.009
## 8   .p8. == .p62.  0.242  1   0.623
## 9   .p9. == .p63.  0.728  1   0.394
## 10 .p10. == .p64.  1.199  1   0.274
## 11 .p11. == .p65.  8.115  1   0.004
## 12 .p12. == .p66.  0.145  1   0.703
## 13 .p13. == .p67. 11.169  1   0.001
## 14 .p14. == .p68.  0.505  1   0.477
## 15 .p15. == .p69.  0.920  1   0.337
## 16 .p16. == .p70.  7.781  1   0.005
scalar<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   436.233   108.000     0.000     0.975     0.068     0.033 32046.624 
##       bic 
## 32419.534
Mc(scalar)
## [1] 0.8823342
summary(scalar, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 92 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       100
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               436.233     338.217
##   Degrees of freedom                               108         108
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.290
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          207.173     160.624
##     0                                          229.060     177.593
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.900    0.029   31.215    0.000    0.844
##     sswk    (.p2.)    0.896    0.031   28.855    0.000    0.835
##     sspc    (.p3.)    0.276    0.069    4.007    0.000    0.141
##     ssei    (.p4.)    0.504    0.041   12.166    0.000    0.423
##   math =~                                                      
##     ssar    (.p5.)    0.873    0.028   30.693    0.000    0.817
##     sspc    (.p6.)    0.573    0.071    8.053    0.000    0.434
##     ssmk    (.p7.)    0.708    0.048   14.822    0.000    0.615
##     ssmc    (.p8.)    0.502    0.028   18.220    0.000    0.448
##     ssao    (.p9.)    0.724    0.027   26.695    0.000    0.671
##   electronic =~                                                
##     ssai    (.10.)    0.586    0.027   21.458    0.000    0.533
##     sssi    (.11.)    0.611    0.029   20.721    0.000    0.553
##     ssmc    (.12.)    0.321    0.024   13.511    0.000    0.274
##     ssei    (.13.)    0.311    0.032    9.592    0.000    0.248
##   speed =~                                                     
##     ssno    (.14.)    0.774    0.036   21.203    0.000    0.702
##     sscs    (.15.)    0.710    0.034   21.004    0.000    0.644
##     ssmk    (.16.)    0.236    0.046    5.132    0.000    0.146
##  ci.upper   Std.lv  Std.all
##                            
##     0.957    0.900    0.918
##     0.957    0.896    0.906
##     0.411    0.276    0.285
##     0.585    0.504    0.539
##                            
##     0.928    0.873    0.908
##     0.713    0.573    0.592
##     0.802    0.708    0.705
##     0.556    0.502    0.541
##     0.778    0.724    0.748
##                            
##     0.640    0.586    0.715
##     0.669    0.611    0.741
##     0.367    0.321    0.345
##     0.375    0.311    0.332
##                            
##     0.845    0.774    0.792
##     0.777    0.710    0.718
##     0.326    0.236    0.235
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.899    0.017   54.264    0.000    0.866
##     electronic        0.847    0.030   28.563    0.000    0.789
##     speed             0.732    0.038   19.029    0.000    0.657
##   math ~~                                                      
##     electronic        0.793    0.032   24.390    0.000    0.729
##     speed             0.805    0.041   19.573    0.000    0.724
##   electronic ~~                                                
##     speed             0.556    0.058    9.529    0.000    0.442
##  ci.upper   Std.lv  Std.all
##                            
##     0.931    0.899    0.899
##     0.905    0.847    0.847
##     0.807    0.732    0.732
##                            
##     0.856    0.793    0.793
##     0.885    0.805    0.805
##                            
##     0.671    0.556    0.556
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.39.)    0.186    0.041    4.519    0.000    0.105
##    .sswk    (.40.)    0.123    0.042    2.931    0.003    0.041
##    .sspc    (.41.)    0.143    0.041    3.489    0.000    0.063
##    .ssei    (.42.)    0.000    0.038    0.005    0.996   -0.074
##    .ssar    (.43.)    0.226    0.040    5.699    0.000    0.148
##    .ssmk    (.44.)    0.244    0.043    5.713    0.000    0.160
##    .ssmc    (.45.)    0.056    0.038    1.477    0.140   -0.018
##    .ssao    (.46.)    0.168    0.039    4.340    0.000    0.092
##    .ssai    (.47.)   -0.113    0.033   -3.434    0.001   -0.177
##    .sssi    (.48.)   -0.074    0.034   -2.189    0.029   -0.140
##    .ssno    (.49.)    0.218    0.041    5.386    0.000    0.139
##    .sscs    (.50.)    0.179    0.042    4.283    0.000    0.097
##  ci.upper   Std.lv  Std.all
##     0.267    0.186    0.190
##     0.206    0.123    0.125
##     0.223    0.143    0.148
##     0.074    0.000    0.000
##     0.303    0.226    0.235
##     0.328    0.244    0.243
##     0.129    0.056    0.060
##     0.243    0.168    0.173
##    -0.048   -0.113   -0.138
##    -0.008   -0.074   -0.089
##     0.298    0.218    0.224
##     0.261    0.179    0.181
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.152    0.015    9.965    0.000    0.122
##    .sswk              0.176    0.016   10.755    0.000    0.144
##    .sspc              0.248    0.024   10.504    0.000    0.201
##    .ssei              0.260    0.022   11.649    0.000    0.216
##    .ssar              0.162    0.015   10.499    0.000    0.132
##    .ssmk              0.182    0.016   11.507    0.000    0.151
##    .ssmc              0.252    0.019   13.587    0.000    0.216
##    .ssao              0.412    0.028   14.886    0.000    0.358
##    .ssai              0.328    0.027   12.367    0.000    0.276
##    .sssi              0.307    0.028   11.058    0.000    0.252
##    .ssno              0.355    0.038    9.455    0.000    0.281
##    .sscs              0.474    0.053    8.906    0.000    0.370
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.182    0.152    0.158
##     0.208    0.176    0.180
##     0.294    0.248    0.264
##     0.304    0.260    0.296
##     0.192    0.162    0.175
##     0.213    0.182    0.181
##     0.288    0.252    0.292
##     0.467    0.412    0.440
##     0.380    0.328    0.488
##     0.361    0.307    0.451
##     0.429    0.355    0.372
##     0.578    0.474    0.484
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.900    0.029   31.215    0.000    0.844
##     sswk    (.p2.)    0.896    0.031   28.855    0.000    0.835
##     sspc    (.p3.)    0.276    0.069    4.007    0.000    0.141
##     ssei    (.p4.)    0.504    0.041   12.166    0.000    0.423
##   math =~                                                      
##     ssar    (.p5.)    0.873    0.028   30.693    0.000    0.817
##     sspc    (.p6.)    0.573    0.071    8.053    0.000    0.434
##     ssmk    (.p7.)    0.708    0.048   14.822    0.000    0.615
##     ssmc    (.p8.)    0.502    0.028   18.220    0.000    0.448
##     ssao    (.p9.)    0.724    0.027   26.695    0.000    0.671
##   electronic =~                                                
##     ssai    (.10.)    0.586    0.027   21.458    0.000    0.533
##     sssi    (.11.)    0.611    0.029   20.721    0.000    0.553
##     ssmc    (.12.)    0.321    0.024   13.511    0.000    0.274
##     ssei    (.13.)    0.311    0.032    9.592    0.000    0.248
##   speed =~                                                     
##     ssno    (.14.)    0.774    0.036   21.203    0.000    0.702
##     sscs    (.15.)    0.710    0.034   21.004    0.000    0.644
##     ssmk    (.16.)    0.236    0.046    5.132    0.000    0.146
##  ci.upper   Std.lv  Std.all
##                            
##     0.957    0.992    0.927
##     0.957    0.987    0.911
##     0.411    0.304    0.299
##     0.585    0.555    0.483
##                            
##     0.928    0.912    0.888
##     0.713    0.599    0.588
##     0.802    0.740    0.711
##     0.556    0.525    0.485
##     0.778    0.757    0.722
##                            
##     0.640    0.948    0.812
##     0.669    0.988    0.866
##     0.367    0.519    0.479
##     0.375    0.503    0.438
##                            
##     0.845    0.857    0.808
##     0.777    0.787    0.746
##     0.326    0.262    0.251
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              1.043    0.084   12.460    0.000    0.879
##     electronic        1.396    0.126   11.039    0.000    1.148
##     speed             0.851    0.084   10.179    0.000    0.687
##   math ~~                                                      
##     electronic        1.131    0.108   10.442    0.000    0.919
##     speed             0.936    0.084   11.098    0.000    0.771
##   electronic ~~                                                
##     speed             0.745    0.109    6.828    0.000    0.531
##  ci.upper   Std.lv  Std.all
##                            
##     1.207    0.907    0.907
##     1.644    0.784    0.784
##     1.015    0.697    0.697
##                            
##     1.343    0.669    0.669
##     1.102    0.809    0.809
##                            
##     0.959    0.416    0.416
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.39.)    0.186    0.041    4.519    0.000    0.105
##    .sswk    (.40.)    0.123    0.042    2.931    0.003    0.041
##    .sspc    (.41.)    0.143    0.041    3.489    0.000    0.063
##    .ssei    (.42.)    0.000    0.038    0.005    0.996   -0.074
##    .ssar    (.43.)    0.226    0.040    5.699    0.000    0.148
##    .ssmk    (.44.)    0.244    0.043    5.713    0.000    0.160
##    .ssmc    (.45.)    0.056    0.038    1.477    0.140   -0.018
##    .ssao    (.46.)    0.168    0.039    4.340    0.000    0.092
##    .ssai    (.47.)   -0.113    0.033   -3.434    0.001   -0.177
##    .sssi    (.48.)   -0.074    0.034   -2.189    0.029   -0.140
##    .ssno    (.49.)    0.218    0.041    5.386    0.000    0.139
##    .sscs    (.50.)    0.179    0.042    4.283    0.000    0.097
##     verbal            0.053    0.069    0.775    0.438   -0.081
##     math             -0.110    0.067   -1.629    0.103   -0.241
##     elctrnc           0.932    0.103    9.086    0.000    0.731
##     speed            -0.316    0.077   -4.122    0.000   -0.467
##  ci.upper   Std.lv  Std.all
##     0.267    0.186    0.174
##     0.206    0.123    0.114
##     0.223    0.143    0.140
##     0.074    0.000    0.000
##     0.303    0.226    0.220
##     0.328    0.244    0.234
##     0.129    0.056    0.051
##     0.243    0.168    0.160
##    -0.048   -0.113   -0.097
##    -0.008   -0.074   -0.065
##     0.298    0.218    0.206
##     0.261    0.179    0.170
##     0.188    0.048    0.048
##     0.022   -0.105   -0.105
##     1.133    0.576    0.576
##    -0.166   -0.286   -0.286
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.162    0.017    9.522    0.000    0.128
##    .sswk              0.198    0.017   11.685    0.000    0.165
##    .sspc              0.256    0.022   11.839    0.000    0.213
##    .ssei              0.323    0.025   13.010    0.000    0.274
##    .ssar              0.223    0.023    9.709    0.000    0.178
##    .ssmk              0.154    0.013   11.569    0.000    0.128
##    .ssmc              0.262    0.020   13.274    0.000    0.223
##    .ssao              0.526    0.037   14.129    0.000    0.453
##    .ssai              0.465    0.040   11.518    0.000    0.386
##    .sssi              0.326    0.034    9.509    0.000    0.258
##    .ssno              0.390    0.041    9.450    0.000    0.309
##    .sscs              0.494    0.058    8.478    0.000    0.380
##     verbal            1.213    0.103   11.795    0.000    1.012
##     math              1.091    0.090   12.076    0.000    0.914
##     electronic        2.617    0.289    9.066    0.000    2.051
##     speed             1.228    0.152    8.059    0.000    0.929
##  ci.upper   Std.lv  Std.all
##     0.195    0.162    0.141
##     0.232    0.198    0.169
##     0.298    0.256    0.247
##     0.371    0.323    0.244
##     0.269    0.223    0.212
##     0.180    0.154    0.142
##     0.301    0.262    0.224
##     0.599    0.526    0.479
##     0.544    0.465    0.341
##     0.393    0.326    0.250
##     0.470    0.390    0.346
##     0.608    0.494    0.444
##     1.415    1.000    1.000
##     1.268    1.000    1.000
##     3.182    1.000    1.000
##     1.526    1.000    1.000
lavTestScore(scalar, release = 17:28)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 136.51 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs     X2 df p.value
## 1  .p39. ==  .p93. 40.762  1   0.000
## 2  .p40. ==  .p94. 13.198  1   0.000
## 3  .p41. ==  .p95. 82.729  1   0.000
## 4  .p42. ==  .p96.  0.000  1   0.986
## 5  .p43. ==  .p97. 27.151  1   0.000
## 6  .p44. ==  .p98.  0.121  1   0.728
## 7  .p45. ==  .p99.  2.657  1   0.103
## 8  .p46. == .p100.  0.042  1   0.837
## 9  .p47. == .p101.  0.193  1   0.660
## 10 .p48. == .p102.  0.356  1   0.551
## 11 .p49. == .p103. 17.545  1   0.000
## 12 .p50. == .p104. 20.363  1   0.000
scalar2<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   351.237   107.000     0.000     0.982     0.059     0.031 31963.627 
##       bic 
## 32341.717
Mc(scalar2)
## [1] 0.9110576
summary(scalar2, standardized=T, ci=T)
## lavaan 0.6-18 ended normally after 93 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       100
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               351.237     271.359
##   Degrees of freedom                               107         107
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.294
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          165.151     127.593
##     0                                          186.086     143.766
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.901    0.029   31.348    0.000    0.844
##     sswk    (.p2.)    0.895    0.031   28.929    0.000    0.834
##     sspc    (.p3.)    0.365    0.056    6.569    0.000    0.256
##     ssei    (.p4.)    0.509    0.041   12.270    0.000    0.427
##   math =~                                                      
##     ssar    (.p5.)    0.877    0.028   30.877    0.000    0.821
##     sspc    (.p6.)    0.483    0.058    8.285    0.000    0.368
##     ssmk    (.p7.)    0.688    0.050   13.809    0.000    0.590
##     ssmc    (.p8.)    0.513    0.028   18.327    0.000    0.458
##     ssao    (.p9.)    0.726    0.027   26.723    0.000    0.672
##   electronic =~                                                
##     ssai    (.10.)    0.587    0.027   21.472    0.000    0.534
##     sssi    (.11.)    0.612    0.030   20.695    0.000    0.554
##     ssmc    (.12.)    0.311    0.024   13.043    0.000    0.265
##     ssei    (.13.)    0.308    0.032    9.500    0.000    0.244
##   speed =~                                                     
##     ssno    (.14.)    0.771    0.036   21.379    0.000    0.700
##     sscs    (.15.)    0.711    0.033   21.220    0.000    0.645
##     ssmk    (.16.)    0.261    0.048    5.402    0.000    0.166
##  ci.upper   Std.lv  Std.all
##                            
##     0.957    0.901    0.918
##     0.955    0.895    0.905
##     0.473    0.365    0.381
##     0.590    0.509    0.543
##                            
##     0.933    0.877    0.912
##     0.597    0.483    0.505
##     0.785    0.688    0.684
##     0.568    0.513    0.552
##     0.779    0.726    0.749
##                            
##     0.641    0.587    0.717
##     0.670    0.612    0.742
##     0.358    0.311    0.335
##     0.371    0.308    0.328
##                            
##     0.842    0.771    0.789
##     0.776    0.711    0.718
##     0.355    0.261    0.259
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.896    0.016   56.215    0.000    0.864
##     electronic        0.845    0.030   28.564    0.000    0.787
##     speed             0.738    0.038   19.193    0.000    0.663
##   math ~~                                                      
##     electronic        0.787    0.033   23.862    0.000    0.722
##     speed             0.803    0.041   19.634    0.000    0.723
##   electronic ~~                                                
##     speed             0.558    0.058    9.586    0.000    0.444
##  ci.upper   Std.lv  Std.all
##                            
##     0.927    0.896    0.896
##     0.903    0.845    0.845
##     0.814    0.738    0.738
##                            
##     0.851    0.787    0.787
##     0.884    0.803    0.803
##                            
##     0.672    0.558    0.558
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.39.)    0.175    0.041    4.292    0.000    0.095
##    .sswk    (.40.)    0.112    0.042    2.697    0.007    0.031
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssei    (.42.)   -0.002    0.038   -0.053    0.958   -0.076
##    .ssar    (.43.)    0.201    0.040    5.035    0.000    0.123
##    .ssmk    (.44.)    0.225    0.043    5.256    0.000    0.141
##    .ssmc    (.45.)    0.046    0.038    1.227    0.220   -0.028
##    .ssao    (.46.)    0.147    0.039    3.788    0.000    0.071
##    .ssai    (.47.)   -0.109    0.033   -3.325    0.001   -0.174
##    .sssi    (.48.)   -0.069    0.034   -2.057    0.040   -0.135
##    .ssno    (.49.)    0.226    0.041    5.575    0.000    0.147
##    .sscs    (.50.)    0.187    0.042    4.479    0.000    0.105
##  ci.upper   Std.lv  Std.all
##     0.255    0.175    0.178
##     0.194    0.112    0.114
##     0.333    0.253    0.264
##     0.072   -0.002   -0.002
##     0.280    0.201    0.209
##     0.309    0.225    0.224
##     0.120    0.046    0.050
##     0.222    0.147    0.151
##    -0.045   -0.109   -0.134
##    -0.003   -0.069   -0.084
##     0.305    0.226    0.231
##     0.269    0.187    0.189
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.152    0.015   10.189    0.000    0.123
##    .sswk              0.177    0.016   10.952    0.000    0.146
##    .sspc              0.234    0.021   10.921    0.000    0.192
##    .ssei              0.260    0.022   11.645    0.000    0.216
##    .ssar              0.156    0.015   10.335    0.000    0.126
##    .ssmk              0.182    0.016   11.278    0.000    0.150
##    .ssmc              0.252    0.019   13.602    0.000    0.215
##    .ssao              0.411    0.028   14.930    0.000    0.357
##    .ssai              0.326    0.026   12.329    0.000    0.275
##    .sssi              0.305    0.028   11.039    0.000    0.251
##    .ssno              0.360    0.038    9.480    0.000    0.285
##    .sscs              0.474    0.053    8.916    0.000    0.370
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.181    0.152    0.158
##     0.209    0.177    0.181
##     0.276    0.234    0.255
##     0.304    0.260    0.296
##     0.186    0.156    0.169
##     0.213    0.182    0.180
##     0.288    0.252    0.291
##     0.465    0.411    0.438
##     0.378    0.326    0.486
##     0.360    0.305    0.449
##     0.434    0.360    0.377
##     0.578    0.474    0.484
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.901    0.029   31.348    0.000    0.844
##     sswk    (.p2.)    0.895    0.031   28.929    0.000    0.834
##     sspc    (.p3.)    0.365    0.056    6.569    0.000    0.256
##     ssei    (.p4.)    0.509    0.041   12.270    0.000    0.427
##   math =~                                                      
##     ssar    (.p5.)    0.877    0.028   30.877    0.000    0.821
##     sspc    (.p6.)    0.483    0.058    8.285    0.000    0.368
##     ssmk    (.p7.)    0.688    0.050   13.809    0.000    0.590
##     ssmc    (.p8.)    0.513    0.028   18.327    0.000    0.458
##     ssao    (.p9.)    0.726    0.027   26.723    0.000    0.672
##   electronic =~                                                
##     ssai    (.10.)    0.587    0.027   21.472    0.000    0.534
##     sssi    (.11.)    0.612    0.030   20.695    0.000    0.554
##     ssmc    (.12.)    0.311    0.024   13.043    0.000    0.265
##     ssei    (.13.)    0.308    0.032    9.500    0.000    0.244
##   speed =~                                                     
##     ssno    (.14.)    0.771    0.036   21.379    0.000    0.700
##     sscs    (.15.)    0.711    0.033   21.220    0.000    0.645
##     ssmk    (.16.)    0.261    0.048    5.402    0.000    0.166
##  ci.upper   Std.lv  Std.all
##                            
##     0.957    0.991    0.927
##     0.955    0.985    0.910
##     0.473    0.401    0.397
##     0.590    0.560    0.487
##                            
##     0.933    0.917    0.892
##     0.597    0.505    0.499
##     0.785    0.719    0.690
##     0.568    0.537    0.498
##     0.779    0.759    0.723
##                            
##     0.641    0.952    0.813
##     0.670    0.992    0.868
##     0.358    0.505    0.468
##     0.371    0.498    0.434
##                            
##     0.842    0.851    0.804
##     0.776    0.784    0.744
##     0.355    0.288    0.276
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              1.041    0.083   12.530    0.000    0.878
##     electronic        1.390    0.126   11.040    0.000    1.144
##     speed             0.855    0.083   10.265    0.000    0.692
##   math ~~                                                      
##     electronic        1.127    0.108   10.386    0.000    0.914
##     speed             0.932    0.084   11.140    0.000    0.768
##   electronic ~~                                                
##     speed             0.747    0.109    6.853    0.000    0.534
##  ci.upper   Std.lv  Std.all
##                            
##     1.204    0.904    0.904
##     1.637    0.779    0.779
##     1.019    0.704    0.704
##                            
##     1.339    0.665    0.665
##     1.096    0.807    0.807
##                            
##     0.961    0.418    0.418
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.39.)    0.175    0.041    4.292    0.000    0.095
##    .sswk    (.40.)    0.112    0.042    2.697    0.007    0.031
##    .sspc             -0.028    0.044   -0.634    0.526   -0.113
##    .ssei    (.42.)   -0.002    0.038   -0.053    0.958   -0.076
##    .ssar    (.43.)    0.201    0.040    5.035    0.000    0.123
##    .ssmk    (.44.)    0.225    0.043    5.256    0.000    0.141
##    .ssmc    (.45.)    0.046    0.038    1.227    0.220   -0.028
##    .ssao    (.46.)    0.147    0.039    3.788    0.000    0.071
##    .ssai    (.47.)   -0.109    0.033   -3.325    0.001   -0.174
##    .sssi    (.48.)   -0.069    0.034   -2.057    0.040   -0.135
##    .ssno    (.49.)    0.226    0.041    5.575    0.000    0.147
##    .sscs    (.50.)    0.187    0.042    4.479    0.000    0.105
##     verbal            0.079    0.067    1.172    0.241   -0.053
##     math             -0.043    0.066   -0.645    0.519   -0.173
##     elctrnc           0.916    0.102    8.962    0.000    0.715
##     speed            -0.339    0.077   -4.400    0.000   -0.490
##  ci.upper   Std.lv  Std.all
##     0.255    0.175    0.164
##     0.194    0.112    0.104
##     0.058   -0.028   -0.027
##     0.072   -0.002   -0.002
##     0.280    0.201    0.196
##     0.309    0.225    0.216
##     0.120    0.046    0.043
##     0.222    0.147    0.140
##    -0.045   -0.109   -0.094
##    -0.003   -0.069   -0.061
##     0.305    0.226    0.214
##     0.269    0.187    0.177
##     0.211    0.072    0.072
##     0.087   -0.041   -0.041
##     1.116    0.565    0.565
##    -0.188   -0.307   -0.307
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.161    0.017    9.742    0.000    0.129
##    .sswk              0.200    0.017   11.997    0.000    0.167
##    .sspc              0.241    0.019   12.374    0.000    0.203
##    .ssei              0.323    0.025   12.991    0.000    0.274
##    .ssar              0.216    0.022    9.701    0.000    0.172
##    .ssmk              0.152    0.013   11.514    0.000    0.126
##    .ssmc              0.261    0.020   13.331    0.000    0.223
##    .ssao              0.526    0.038   14.009    0.000    0.453
##    .ssai              0.463    0.040   11.477    0.000    0.384
##    .sssi              0.323    0.034    9.402    0.000    0.255
##    .ssno              0.397    0.042    9.512    0.000    0.315
##    .sscs              0.495    0.058    8.541    0.000    0.381
##     verbal            1.212    0.102   11.883    0.000    1.012
##     math              1.094    0.091   12.000    0.000    0.915
##     electronic        2.626    0.290    9.051    0.000    2.057
##     speed             1.217    0.151    8.071    0.000    0.922
##  ci.upper   Std.lv  Std.all
##     0.194    0.161    0.141
##     0.233    0.200    0.171
##     0.279    0.241    0.236
##     0.372    0.323    0.245
##     0.259    0.216    0.204
##     0.178    0.152    0.140
##     0.300    0.261    0.224
##     0.600    0.526    0.478
##     0.542    0.463    0.338
##     0.390    0.323    0.247
##     0.478    0.397    0.354
##     0.609    0.495    0.446
##     1.412    1.000    1.000
##     1.272    1.000    1.000
##     3.195    1.000    1.000
##     1.513    1.000    1.000
lavTestScore(scalar2, release = 17:27, standardized=T, epc=T)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 53.244 11       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs     X2 df p.value
## 1  .p39. ==  .p93. 24.582  1   0.000
## 2  .p40. ==  .p94. 24.024  1   0.000
## 3  .p42. ==  .p96.  0.056  1   0.813
## 4  .p43. ==  .p97.  5.091  1   0.024
## 5  .p44. ==  .p98.  2.931  1   0.087
## 6  .p45. ==  .p99.  0.452  1   0.501
## 7  .p46. == .p100.  2.519  1   0.113
## 8  .p47. == .p101.  0.013  1   0.908
## 9  .p48. == .p102.  0.030  1   0.863
## 10 .p49. == .p103. 23.442  1   0.000
## 11 .p50. == .p104. 15.951  1   0.000
## 
## $epc
## 
## expected parameter changes (epc) and expected parameter values (epv):
## 
##           lhs op        rhs block group free label plabel    est    epc
## 1      verbal =~       ssgs     1     1    1  .p1.   .p1.  0.901 -0.001
## 2      verbal =~       sswk     1     1    2  .p2.   .p2.  0.895  0.002
## 3      verbal =~       sspc     1     1    3  .p3.   .p3.  0.365  0.000
## 4      verbal =~       ssei     1     1    4  .p4.   .p4.  0.509 -0.002
## 5        math =~       ssar     1     1    5  .p5.   .p5.  0.877  0.000
## 6        math =~       sspc     1     1    6  .p6.   .p6.  0.483  0.000
## 7        math =~       ssmk     1     1    7  .p7.   .p7.  0.688  0.017
## 8        math =~       ssmc     1     1    8  .p8.   .p8.  0.513  0.006
## 9        math =~       ssao     1     1    9  .p9.   .p9.  0.726 -0.001
## 10 electronic =~       ssai     1     1   10 .p10.  .p10.  0.587  0.000
## 11 electronic =~       sssi     1     1   11 .p11.  .p11.  0.612  0.000
## 12 electronic =~       ssmc     1     1   12 .p12.  .p12.  0.311 -0.006
## 13 electronic =~       ssei     1     1   13 .p13.  .p13.  0.308  0.002
## 14      speed =~       ssno     1     1   14 .p14.  .p14.  0.771  0.014
## 15      speed =~       sscs     1     1   15 .p15.  .p15.  0.711 -0.012
## 16      speed =~       ssmk     1     1   16 .p16.  .p16.  0.261 -0.019
## 17       ssgs ~~       ssgs     1     1   17        .p17.  0.152  0.000
## 18       sswk ~~       sswk     1     1   18        .p18.  0.177  0.000
## 19       sspc ~~       sspc     1     1   19        .p19.  0.234  0.000
## 20       ssei ~~       ssei     1     1   20        .p20.  0.260  0.000
## 21       ssar ~~       ssar     1     1   21        .p21.  0.156  0.001
## 22       ssmk ~~       ssmk     1     1   22        .p22.  0.182  0.001
## 23       ssmc ~~       ssmc     1     1   23        .p23.  0.252  0.000
## 24       ssao ~~       ssao     1     1   24        .p24.  0.411  0.000
## 25       ssai ~~       ssai     1     1   25        .p25.  0.326  0.000
## 26       sssi ~~       sssi     1     1   26        .p26.  0.305  0.000
## 27       ssno ~~       ssno     1     1   27        .p27.  0.360 -0.009
## 28       sscs ~~       sscs     1     1   28        .p28.  0.474  0.004
## 29     verbal ~~     verbal     1     1    0        .p29.  1.000     NA
## 30       math ~~       math     1     1    0        .p30.  1.000     NA
## 31 electronic ~~ electronic     1     1    0        .p31.  1.000     NA
## 32      speed ~~      speed     1     1    0        .p32.  1.000     NA
## 33     verbal ~~       math     1     1   29        .p33.  0.896  0.000
## 34     verbal ~~ electronic     1     1   30        .p34.  0.845 -0.001
## 35     verbal ~~      speed     1     1   31        .p35.  0.738 -0.003
## 36       math ~~ electronic     1     1   32        .p36.  0.787 -0.001
## 37       math ~~      speed     1     1   33        .p37.  0.803 -0.002
## 38 electronic ~~      speed     1     1   34        .p38.  0.558 -0.004
## 39       ssgs ~1                1     1   35 .p39.  .p39.  0.175 -0.036
## 40       sswk ~1                1     1   36 .p40.  .p40.  0.112  0.042
## 41       sspc ~1                1     1   37        .p41.  0.253  0.000
## 42       ssei ~1                1     1   38 .p42.  .p42. -0.002  0.002
## 43       ssar ~1                1     1   39 .p43.  .p43.  0.201 -0.016
## 44       ssmk ~1                1     1   40 .p44.  .p44.  0.225  0.015
## 45       ssmc ~1                1     1   41 .p45.  .p45.  0.046 -0.007
## 46       ssao ~1                1     1   42 .p46.  .p46.  0.147  0.024
## 47       ssai ~1                1     1   43 .p47.  .p47. -0.109  0.001
## 48       sssi ~1                1     1   44 .p48.  .p48. -0.069  0.002
## 49       ssno ~1                1     1   45 .p49.  .p49.  0.226 -0.051
## 50       sscs ~1                1     1   46 .p50.  .p50.  0.187  0.059
## 51     verbal ~1                1     1    0        .p51.  0.000     NA
## 52       math ~1                1     1    0        .p52.  0.000     NA
## 53 electronic ~1                1     1    0        .p53.  0.000     NA
## 54      speed ~1                1     1    0        .p54.  0.000     NA
## 55     verbal =~       ssgs     2     2   47  .p1.  .p55.  0.901 -0.001
## 56     verbal =~       sswk     2     2   48  .p2.  .p56.  0.895  0.002
## 57     verbal =~       sspc     2     2   49  .p3.  .p57.  0.365  0.000
## 58     verbal =~       ssei     2     2   50  .p4.  .p58.  0.509 -0.002
## 59       math =~       ssar     2     2   51  .p5.  .p59.  0.877  0.000
## 60       math =~       sspc     2     2   52  .p6.  .p60.  0.483  0.000
## 61       math =~       ssmk     2     2   53  .p7.  .p61.  0.688  0.017
## 62       math =~       ssmc     2     2   54  .p8.  .p62.  0.513  0.006
## 63       math =~       ssao     2     2   55  .p9.  .p63.  0.726 -0.001
## 64 electronic =~       ssai     2     2   56 .p10.  .p64.  0.587  0.000
## 65 electronic =~       sssi     2     2   57 .p11.  .p65.  0.612  0.000
## 66 electronic =~       ssmc     2     2   58 .p12.  .p66.  0.311 -0.006
## 67 electronic =~       ssei     2     2   59 .p13.  .p67.  0.308  0.002
## 68      speed =~       ssno     2     2   60 .p14.  .p68.  0.771  0.014
## 69      speed =~       sscs     2     2   61 .p15.  .p69.  0.711 -0.012
## 70      speed =~       ssmk     2     2   62 .p16.  .p70.  0.261 -0.019
## 71       ssgs ~~       ssgs     2     2   63        .p71.  0.161  0.000
##       epv sepc.lv sepc.all sepc.nox
## 1   0.899  -0.001   -0.002   -0.002
## 2   0.897   0.002    0.002    0.002
## 3   0.364   0.000    0.000    0.000
## 4   0.506  -0.002   -0.002   -0.002
## 5   0.877   0.000    0.000    0.000
## 6   0.483   0.000    0.000    0.000
## 7   0.704   0.017    0.016    0.016
## 8   0.519   0.006    0.006    0.006
## 9   0.725  -0.001   -0.001   -0.001
## 10  0.588   0.000    0.000    0.000
## 11  0.613   0.000    0.001    0.001
## 12  0.306  -0.006   -0.006   -0.006
## 13  0.310   0.002    0.002    0.002
## 14  0.785   0.014    0.014    0.014
## 15  0.699  -0.012   -0.012   -0.012
## 16  0.241  -0.019   -0.019   -0.019
## 17  0.153   0.152    0.158    0.158
## 18  0.177  -0.177   -0.181   -0.181
## 19  0.234   0.234    0.255    0.255
## 20  0.260  -0.260   -0.296   -0.296
## 21  0.157   0.156    0.169    0.169
## 22  0.183   0.182    0.180    0.180
## 23  0.252   0.252    0.291    0.291
## 24  0.411   0.411    0.438    0.438
## 25  0.326  -0.326   -0.486   -0.486
## 26  0.305  -0.305   -0.449   -0.449
## 27  0.350  -0.360   -0.377   -0.377
## 28  0.478   0.474    0.484    0.484
## 29     NA      NA       NA       NA
## 30     NA      NA       NA       NA
## 31     NA      NA       NA       NA
## 32     NA      NA       NA       NA
## 33  0.896   0.000    0.000    0.000
## 34  0.845  -0.001   -0.001   -0.001
## 35  0.735  -0.003   -0.003   -0.003
## 36  0.786  -0.001   -0.001   -0.001
## 37  0.802  -0.002   -0.002   -0.002
## 38  0.554  -0.004   -0.004   -0.004
## 39  0.139  -0.036   -0.037   -0.037
## 40  0.154   0.042    0.042    0.042
## 41  0.253   0.000    0.000    0.000
## 42  0.000   0.002    0.002    0.002
## 43  0.186  -0.016   -0.016   -0.016
## 44  0.241   0.015    0.015    0.015
## 45  0.039  -0.007   -0.007   -0.007
## 46  0.171   0.024    0.025    0.025
## 47 -0.108   0.001    0.002    0.002
## 48 -0.068   0.002    0.002    0.002
## 49  0.175  -0.051   -0.053   -0.053
## 50  0.245   0.059    0.059    0.059
## 51     NA      NA       NA       NA
## 52     NA      NA       NA       NA
## 53     NA      NA       NA       NA
## 54     NA      NA       NA       NA
## 55  0.899  -0.002   -0.002   -0.002
## 56  0.897   0.002    0.002    0.002
## 57  0.364   0.000    0.000    0.000
## 58  0.506  -0.002   -0.002   -0.002
## 59  0.877   0.000    0.000    0.000
## 60  0.483   0.000    0.000    0.000
## 61  0.704   0.017    0.017    0.017
## 62  0.519   0.006    0.005    0.005
## 63  0.725  -0.001   -0.001   -0.001
## 64  0.588   0.000    0.000    0.000
## 65  0.613   0.001    0.001    0.001
## 66  0.306  -0.009   -0.009   -0.009
## 67  0.310   0.004    0.003    0.003
## 68  0.785   0.015    0.015    0.015
## 69  0.699  -0.013   -0.013   -0.013
## 70  0.241  -0.021   -0.020   -0.020
## 71  0.162   0.161    0.141    0.141
##  [ reached 'max' / getOption("max.print") -- omitted 37 rows ]
strict<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   392.238   119.000     0.000     0.979     0.059     0.033 31980.629 
##       bic 
## 32296.566
Mc(strict) 
## [1] 0.9010362
cf.cov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1"))
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   397.168   113.000     0.000     0.979     0.062     0.083 31997.558 
##       bic 
## 32344.572
Mc(cf.cov)
## [1] 0.8972881
summary(cf.cov, standardized=T, ci=T)
## lavaan 0.6-18 ended normally after 65 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       100
##   Number of equality constraints                    33
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               397.168     306.864
##   Degrees of freedom                               113         113
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.294
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          182.950     141.353
##     0                                          214.217     165.511
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.955    0.024   40.179    0.000    0.909
##     sswk    (.p2.)    0.950    0.025   38.056    0.000    0.901
##     sspc    (.p3.)    0.396    0.058    6.842    0.000    0.283
##     ssei    (.p4.)    0.534    0.042   12.555    0.000    0.450
##   math =~                                                      
##     ssar    (.p5.)    0.899    0.024   37.782    0.000    0.853
##     sspc    (.p6.)    0.485    0.058    8.378    0.000    0.372
##     ssmk    (.p7.)    0.693    0.049   14.242    0.000    0.597
##     ssmc    (.p8.)    0.528    0.027   19.410    0.000    0.475
##     ssao    (.p9.)    0.744    0.024   31.626    0.000    0.697
##   electronic =~                                                
##     ssai    (.10.)    0.656    0.027   23.867    0.000    0.602
##     sssi    (.11.)    0.691    0.029   24.213    0.000    0.635
##     ssmc    (.12.)    0.348    0.026   13.544    0.000    0.298
##     ssei    (.13.)    0.350    0.036    9.784    0.000    0.280
##   speed =~                                                     
##     ssno    (.14.)    0.792    0.035   22.649    0.000    0.723
##     sscs    (.15.)    0.730    0.033   21.849    0.000    0.664
##     ssmk    (.16.)    0.280    0.046    6.053    0.000    0.189
##  ci.upper   Std.lv  Std.all
##                            
##     1.002    0.955    0.926
##     0.999    0.950    0.914
##     0.509    0.396    0.402
##     0.617    0.534    0.534
##                            
##     0.946    0.899    0.916
##     0.599    0.485    0.493
##     0.788    0.693    0.674
##     0.581    0.528    0.543
##     0.790    0.744    0.757
##                            
##     0.710    0.656    0.752
##     0.746    0.691    0.783
##     0.398    0.348    0.358
##     0.420    0.350    0.350
##                            
##     0.860    0.792    0.796
##     0.795    0.730    0.725
##     0.371    0.280    0.273
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.33.)    0.892    0.015   59.475    0.000    0.862
##     elctrnc (.34.)    0.883    0.022   40.310    0.000    0.840
##     speed   (.35.)    0.732    0.034   21.449    0.000    0.665
##   math ~~                                                      
##     elctrnc (.36.)    0.794    0.027   28.924    0.000    0.740
##     speed   (.37.)    0.821    0.034   24.270    0.000    0.755
##   electronic ~~                                                
##     speed   (.38.)    0.554    0.050   11.191    0.000    0.457
##  ci.upper   Std.lv  Std.all
##                            
##     0.921    0.892    0.892
##     0.926    0.883    0.883
##     0.798    0.732    0.732
##                            
##     0.848    0.794    0.794
##     0.888    0.821    0.821
##                            
##     0.651    0.554    0.554
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.39.)    0.175    0.041    4.294    0.000    0.095
##    .sswk    (.40.)    0.112    0.042    2.696    0.007    0.031
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssei    (.42.)   -0.003    0.038   -0.079    0.937   -0.077
##    .ssar    (.43.)    0.200    0.040    5.017    0.000    0.122
##    .ssmk    (.44.)    0.226    0.043    5.285    0.000    0.142
##    .ssmc    (.45.)    0.046    0.038    1.233    0.218   -0.027
##    .ssao    (.46.)    0.146    0.039    3.769    0.000    0.070
##    .ssai    (.47.)   -0.108    0.033   -3.282    0.001   -0.172
##    .sssi    (.48.)   -0.070    0.034   -2.084    0.037   -0.136
##    .ssno    (.49.)    0.226    0.040    5.586    0.000    0.147
##    .sscs    (.50.)    0.186    0.042    4.472    0.000    0.105
##  ci.upper   Std.lv  Std.all
##     0.255    0.175    0.170
##     0.194    0.112    0.108
##     0.333    0.253    0.256
##     0.071   -0.003   -0.003
##     0.279    0.200    0.204
##     0.310    0.226    0.220
##     0.120    0.046    0.048
##     0.222    0.146    0.149
##    -0.043   -0.108   -0.124
##    -0.004   -0.070   -0.080
##     0.305    0.226    0.227
##     0.268    0.186    0.185
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.151    0.015   10.249    0.000    0.122
##    .sswk              0.178    0.016   10.988    0.000    0.147
##    .sspc              0.235    0.021   10.985    0.000    0.193
##    .ssei              0.261    0.022   11.689    0.000    0.217
##    .ssar              0.155    0.015   10.356    0.000    0.126
##    .ssmk              0.180    0.016   11.091    0.000    0.148
##    .ssmc              0.252    0.018   13.666    0.000    0.216
##    .ssao              0.411    0.028   14.902    0.000    0.357
##    .ssai              0.331    0.026   12.537    0.000    0.279
##    .sssi              0.301    0.027   11.061    0.000    0.248
##    .ssno              0.362    0.038    9.447    0.000    0.287
##    .sscs              0.480    0.053    9.008    0.000    0.375
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.180    0.151    0.142
##     0.210    0.178    0.165
##     0.277    0.235    0.242
##     0.305    0.261    0.262
##     0.185    0.155    0.161
##     0.211    0.180    0.170
##     0.288    0.252    0.267
##     0.465    0.411    0.426
##     0.383    0.331    0.435
##     0.354    0.301    0.387
##     0.438    0.362    0.366
##     0.584    0.480    0.474
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.955    0.024   40.179    0.000    0.909
##     sswk    (.p2.)    0.950    0.025   38.056    0.000    0.901
##     sspc    (.p3.)    0.396    0.058    6.842    0.000    0.283
##     ssei    (.p4.)    0.534    0.042   12.555    0.000    0.450
##   math =~                                                      
##     ssar    (.p5.)    0.899    0.024   37.782    0.000    0.853
##     sspc    (.p6.)    0.485    0.058    8.378    0.000    0.372
##     ssmk    (.p7.)    0.693    0.049   14.242    0.000    0.597
##     ssmc    (.p8.)    0.528    0.027   19.410    0.000    0.475
##     ssao    (.p9.)    0.744    0.024   31.626    0.000    0.697
##   electronic =~                                                
##     ssai    (.10.)    0.656    0.027   23.867    0.000    0.602
##     sssi    (.11.)    0.691    0.029   24.213    0.000    0.635
##     ssmc    (.12.)    0.348    0.026   13.544    0.000    0.298
##     ssei    (.13.)    0.350    0.036    9.784    0.000    0.280
##   speed =~                                                     
##     ssno    (.14.)    0.792    0.035   22.649    0.000    0.723
##     sscs    (.15.)    0.730    0.033   21.849    0.000    0.664
##     ssmk    (.16.)    0.280    0.046    6.053    0.000    0.189
##  ci.upper   Std.lv  Std.all
##                            
##     1.002    0.939    0.919
##     0.999    0.933    0.903
##     0.509    0.389    0.396
##     0.617    0.524    0.492
##                            
##     0.946    0.899    0.889
##     0.599    0.485    0.493
##     0.788    0.692    0.680
##     0.581    0.528    0.519
##     0.790    0.743    0.716
##                            
##     0.710    0.852    0.780
##     0.746    0.897    0.848
##     0.398    0.452    0.444
##     0.420    0.454    0.426
##                            
##     0.860    0.827    0.795
##     0.795    0.762    0.736
##     0.371    0.293    0.287
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.33.)    0.892    0.015   59.475    0.000    0.862
##     elctrnc (.34.)    0.883    0.022   40.310    0.000    0.840
##     speed   (.35.)    0.732    0.034   21.449    0.000    0.665
##   math ~~                                                      
##     elctrnc (.36.)    0.794    0.027   28.924    0.000    0.740
##     speed   (.37.)    0.821    0.034   24.270    0.000    0.755
##   electronic ~~                                                
##     speed   (.38.)    0.554    0.050   11.191    0.000    0.457
##  ci.upper   Std.lv  Std.all
##                            
##     0.921    0.907    0.907
##     0.926    0.691    0.691
##     0.798    0.712    0.712
##                            
##     0.848    0.611    0.611
##     0.888    0.786    0.786
##                            
##     0.651    0.408    0.408
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.39.)    0.175    0.041    4.294    0.000    0.095
##    .sswk    (.40.)    0.112    0.042    2.696    0.007    0.031
##    .sspc             -0.030    0.044   -0.678    0.497   -0.115
##    .ssei    (.42.)   -0.003    0.038   -0.079    0.937   -0.077
##    .ssar    (.43.)    0.200    0.040    5.017    0.000    0.122
##    .ssmk    (.44.)    0.226    0.043    5.285    0.000    0.142
##    .ssmc    (.45.)    0.046    0.038    1.233    0.218   -0.027
##    .ssao    (.46.)    0.146    0.039    3.769    0.000    0.070
##    .ssai    (.47.)   -0.108    0.033   -3.282    0.001   -0.172
##    .sssi    (.48.)   -0.070    0.034   -2.084    0.037   -0.136
##    .ssno    (.49.)    0.226    0.040    5.586    0.000    0.147
##    .sscs    (.50.)    0.186    0.042    4.472    0.000    0.105
##     verbal            0.074    0.063    1.167    0.243   -0.050
##     math             -0.040    0.065   -0.611    0.541   -0.166
##     elctrnc           0.815    0.089    9.148    0.000    0.640
##     speed            -0.330    0.076   -4.349    0.000   -0.478
##  ci.upper   Std.lv  Std.all
##     0.255    0.175    0.171
##     0.194    0.112    0.109
##     0.056   -0.030   -0.030
##     0.071   -0.003   -0.003
##     0.279    0.200    0.198
##     0.310    0.226    0.222
##     0.120    0.046    0.046
##     0.222    0.146    0.140
##    -0.043   -0.108   -0.099
##    -0.004   -0.070   -0.066
##     0.305    0.226    0.217
##     0.268    0.186    0.180
##     0.198    0.075    0.075
##     0.087   -0.040   -0.040
##     0.989    0.627    0.627
##    -0.181   -0.316   -0.316
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.163    0.017    9.681    0.000    0.130
##    .sswk              0.198    0.017   11.888    0.000    0.166
##    .sspc              0.239    0.019   12.336    0.000    0.201
##    .ssei              0.326    0.025   12.993    0.000    0.277
##    .ssar              0.214    0.022    9.696    0.000    0.171
##    .ssmk              0.154    0.013   11.583    0.000    0.128
##    .ssmc              0.260    0.020   13.341    0.000    0.222
##    .ssao              0.525    0.038   13.945    0.000    0.451
##    .ssai              0.466    0.041   11.308    0.000    0.386
##    .sssi              0.315    0.035    9.120    0.000    0.247
##    .ssno              0.397    0.042    9.430    0.000    0.315
##    .sscs              0.492    0.058    8.545    0.000    0.380
##     verbal            0.966    0.030   32.700    0.000    0.908
##     math              1.000    0.033   30.384    0.000    0.935
##     electronic        1.688    0.133   12.662    0.000    1.427
##     speed             1.091    0.096   11.405    0.000    0.904
##  ci.upper   Std.lv  Std.all
##     0.196    0.163    0.156
##     0.231    0.198    0.185
##     0.277    0.239    0.247
##     0.376    0.326    0.287
##     0.257    0.214    0.209
##     0.180    0.154    0.148
##     0.299    0.260    0.252
##     0.599    0.525    0.487
##     0.547    0.466    0.391
##     0.383    0.315    0.281
##     0.480    0.397    0.367
##     0.605    0.492    0.459
##     1.024    1.000    1.000
##     1.064    1.000    1.000
##     1.949    1.000    1.000
##     1.279    1.000    1.000
cf.vcov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("sspc~1"))
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   486.062   117.000     0.000     0.972     0.069     0.105 32078.452 
##       bic 
## 32404.749
Mc(cf.vcov)
## [1] 0.8687013
summary(cf.vcov, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 55 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    33
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               486.062     372.838
##   Degrees of freedom                               117         117
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.304
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          241.853     185.515
##     0                                          244.209     187.323
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.947    0.022   42.310    0.000    0.903
##     sswk    (.p2.)    0.941    0.023   40.411    0.000    0.895
##     sspc    (.p3.)    0.387    0.057    6.771    0.000    0.275
##     ssei    (.p4.)    0.551    0.041   13.473    0.000    0.471
##   math =~                                                      
##     ssar    (.p5.)    0.899    0.023   39.169    0.000    0.854
##     sspc    (.p6.)    0.490    0.058    8.481    0.000    0.376
##     ssmk    (.p7.)    0.697    0.048   14.472    0.000    0.602
##     ssmc    (.p8.)    0.520    0.028   18.751    0.000    0.466
##     ssao    (.p9.)    0.742    0.022   32.988    0.000    0.698
##   electronic =~                                                
##     ssai    (.10.)    0.768    0.028   27.258    0.000    0.712
##     sssi    (.11.)    0.819    0.027   30.413    0.000    0.766
##     ssmc    (.12.)    0.422    0.028   14.918    0.000    0.366
##     ssei    (.13.)    0.388    0.041    9.358    0.000    0.306
##   speed =~                                                     
##     ssno    (.14.)    0.809    0.032   24.906    0.000    0.746
##     sscs    (.15.)    0.746    0.030   25.266    0.000    0.688
##     ssmk    (.16.)    0.282    0.048    5.879    0.000    0.188
##  ci.upper   Std.lv  Std.all
##                            
##     0.991    0.947    0.925
##     0.986    0.941    0.913
##     0.499    0.387    0.395
##     0.631    0.551    0.535
##                            
##     0.945    0.899    0.917
##     0.603    0.490    0.499
##     0.791    0.697    0.676
##     0.574    0.520    0.518
##     0.786    0.742    0.755
##                            
##     0.823    0.768    0.808
##     0.871    0.819    0.846
##     0.477    0.422    0.421
##     0.469    0.388    0.376
##                            
##     0.873    0.809    0.807
##     0.804    0.746    0.735
##     0.376    0.282    0.274
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.33.)    0.899    0.010   85.874    0.000    0.879
##     elctrnc (.34.)    0.797    0.019   41.627    0.000    0.759
##     speed   (.35.)    0.721    0.028   26.106    0.000    0.667
##   math ~~                                                      
##     elctrnc (.36.)    0.703    0.024   28.933    0.000    0.655
##     speed   (.37.)    0.806    0.026   30.989    0.000    0.755
##   electronic ~~                                                
##     speed   (.38.)    0.465    0.040   11.706    0.000    0.387
##  ci.upper   Std.lv  Std.all
##                            
##     0.920    0.899    0.899
##     0.834    0.797    0.797
##     0.775    0.721    0.721
##                            
##     0.750    0.703    0.703
##     0.857    0.806    0.806
##                            
##     0.543    0.465    0.465
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.39.)    0.174    0.041    4.263    0.000    0.094
##    .sswk    (.40.)    0.112    0.042    2.675    0.007    0.030
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssei    (.42.)    0.003    0.037    0.076    0.939   -0.071
##    .ssar    (.43.)    0.201    0.040    5.042    0.000    0.123
##    .ssmk    (.44.)    0.227    0.043    5.288    0.000    0.143
##    .ssmc    (.45.)    0.043    0.038    1.126    0.260   -0.032
##    .ssao    (.46.)    0.147    0.039    3.791    0.000    0.071
##    .ssai    (.47.)   -0.107    0.033   -3.252    0.001   -0.171
##    .sssi    (.48.)   -0.072    0.034   -2.127    0.033   -0.138
##    .ssno    (.49.)    0.224    0.041    5.534    0.000    0.145
##    .sscs    (.50.)    0.187    0.042    4.489    0.000    0.105
##  ci.upper   Std.lv  Std.all
##     0.254    0.174    0.170
##     0.193    0.112    0.108
##     0.333    0.253    0.257
##     0.076    0.003    0.003
##     0.280    0.201    0.205
##     0.311    0.227    0.220
##     0.117    0.043    0.043
##     0.222    0.147    0.149
##    -0.042   -0.107   -0.113
##    -0.006   -0.072   -0.074
##     0.304    0.224    0.224
##     0.269    0.187    0.184
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.152    0.015   10.223    0.000    0.123
##    .sswk              0.178    0.016   10.896    0.000    0.146
##    .sspc              0.233    0.021   10.962    0.000    0.191
##    .ssei              0.265    0.022   11.857    0.000    0.222
##    .ssar              0.154    0.015   10.501    0.000    0.125
##    .ssmk              0.180    0.016   11.115    0.000    0.148
##    .ssmc              0.249    0.018   13.599    0.000    0.213
##    .ssao              0.414    0.028   14.943    0.000    0.360
##    .ssai              0.313    0.027   11.766    0.000    0.261
##    .sssi              0.267    0.027    9.995    0.000    0.214
##    .ssno              0.352    0.039    9.017    0.000    0.275
##    .sscs              0.474    0.052    9.033    0.000    0.371
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.181    0.152    0.145
##     0.210    0.178    0.167
##     0.275    0.233    0.242
##     0.309    0.265    0.250
##     0.183    0.154    0.160
##     0.211    0.180    0.169
##     0.285    0.249    0.248
##     0.469    0.414    0.429
##     0.366    0.313    0.347
##     0.319    0.267    0.285
##     0.428    0.352    0.349
##     0.577    0.474    0.460
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.947    0.022   42.310    0.000    0.903
##     sswk    (.p2.)    0.941    0.023   40.411    0.000    0.895
##     sspc    (.p3.)    0.387    0.057    6.771    0.000    0.275
##     ssei    (.p4.)    0.551    0.041   13.473    0.000    0.471
##   math =~                                                      
##     ssar    (.p5.)    0.899    0.023   39.169    0.000    0.854
##     sspc    (.p6.)    0.490    0.058    8.481    0.000    0.376
##     ssmk    (.p7.)    0.697    0.048   14.472    0.000    0.602
##     ssmc    (.p8.)    0.520    0.028   18.751    0.000    0.466
##     ssao    (.p9.)    0.742    0.022   32.988    0.000    0.698
##   electronic =~                                                
##     ssai    (.10.)    0.768    0.028   27.258    0.000    0.712
##     sssi    (.11.)    0.819    0.027   30.413    0.000    0.766
##     ssmc    (.12.)    0.422    0.028   14.918    0.000    0.366
##     ssei    (.13.)    0.388    0.041    9.358    0.000    0.306
##   speed =~                                                     
##     ssno    (.14.)    0.809    0.032   24.906    0.000    0.746
##     sscs    (.15.)    0.746    0.030   25.266    0.000    0.688
##     ssmk    (.16.)    0.282    0.048    5.879    0.000    0.188
##  ci.upper   Std.lv  Std.all
##                            
##     0.991    0.947    0.921
##     0.986    0.941    0.903
##     0.499    0.387    0.392
##     0.631    0.551    0.519
##                            
##     0.945    0.899    0.889
##     0.603    0.490    0.496
##     0.791    0.697    0.685
##     0.574    0.520    0.516
##     0.786    0.742    0.716
##                            
##     0.823    0.768    0.735
##     0.871    0.819    0.808
##     0.477    0.422    0.418
##     0.469    0.388    0.365
##                            
##     0.873    0.809    0.785
##     0.804    0.746    0.726
##     0.376    0.282    0.277
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.33.)    0.899    0.010   85.874    0.000    0.879
##     elctrnc (.34.)    0.797    0.019   41.627    0.000    0.759
##     speed   (.35.)    0.721    0.028   26.106    0.000    0.667
##   math ~~                                                      
##     elctrnc (.36.)    0.703    0.024   28.933    0.000    0.655
##     speed   (.37.)    0.806    0.026   30.989    0.000    0.755
##   electronic ~~                                                
##     speed   (.38.)    0.465    0.040   11.706    0.000    0.387
##  ci.upper   Std.lv  Std.all
##                            
##     0.920    0.899    0.899
##     0.834    0.797    0.797
##     0.775    0.721    0.721
##                            
##     0.750    0.703    0.703
##     0.857    0.806    0.806
##                            
##     0.543    0.465    0.465
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.39.)    0.174    0.041    4.263    0.000    0.094
##    .sswk    (.40.)    0.112    0.042    2.675    0.007    0.030
##    .sspc             -0.029    0.044   -0.661    0.508   -0.114
##    .ssei    (.42.)    0.003    0.037    0.076    0.939   -0.071
##    .ssar    (.43.)    0.201    0.040    5.042    0.000    0.123
##    .ssmk    (.44.)    0.227    0.043    5.288    0.000    0.143
##    .ssmc    (.45.)    0.043    0.038    1.126    0.260   -0.032
##    .ssao    (.46.)    0.147    0.039    3.791    0.000    0.071
##    .ssai    (.47.)   -0.107    0.033   -3.252    0.001   -0.171
##    .sssi    (.48.)   -0.072    0.034   -2.127    0.033   -0.138
##    .ssno    (.49.)    0.224    0.041    5.534    0.000    0.145
##    .sscs    (.50.)    0.187    0.042    4.489    0.000    0.105
##     verbal            0.077    0.064    1.207    0.227   -0.048
##     math             -0.042    0.065   -0.651    0.515   -0.169
##     elctrnc           0.692    0.069    9.979    0.000    0.556
##     speed            -0.322    0.075   -4.317    0.000   -0.468
##  ci.upper   Std.lv  Std.all
##     0.254    0.174    0.169
##     0.193    0.112    0.107
##     0.057   -0.029   -0.029
##     0.076    0.003    0.003
##     0.280    0.201    0.199
##     0.311    0.227    0.223
##     0.117    0.043    0.042
##     0.222    0.147    0.141
##    -0.042   -0.107   -0.102
##    -0.006   -0.072   -0.071
##     0.304    0.224    0.218
##     0.269    0.187    0.182
##     0.202    0.077    0.077
##     0.085   -0.042   -0.042
##     0.828    0.692    0.692
##    -0.176   -0.322   -0.322
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.161    0.016   10.000    0.000    0.130
##    .sswk              0.201    0.017   12.110    0.000    0.169
##    .sspc              0.244    0.020   12.378    0.000    0.205
##    .ssei              0.333    0.026   12.789    0.000    0.282
##    .ssar              0.214    0.022    9.881    0.000    0.172
##    .ssmk              0.152    0.013   11.471    0.000    0.126
##    .ssmc              0.261    0.020   13.210    0.000    0.222
##    .ssao              0.525    0.038   13.960    0.000    0.451
##    .ssai              0.501    0.043   11.569    0.000    0.416
##    .sssi              0.357    0.037    9.752    0.000    0.285
##    .ssno              0.408    0.044    9.296    0.000    0.322
##    .sscs              0.500    0.058    8.619    0.000    0.386
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.193    0.161    0.153
##     0.234    0.201    0.185
##     0.283    0.244    0.250
##     0.384    0.333    0.295
##     0.257    0.214    0.209
##     0.178    0.152    0.147
##     0.299    0.261    0.256
##     0.598    0.525    0.488
##     0.586    0.501    0.460
##     0.429    0.357    0.348
##     0.494    0.408    0.384
##     0.614    0.500    0.473
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
cf.cov2<-cfa(cf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1"))
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   399.089   115.000     0.000     0.979     0.061     0.082 31995.480 
##       bic 
## 32332.135
Mc(cf.cov2)
## [1] 0.897315
summary(cf.cov2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 60 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    33
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               399.089     307.917
##   Degrees of freedom                               115         115
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.296
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          182.277     140.635
##     0                                          216.813     167.281
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.947    0.022   42.188    0.000    0.903
##     sswk    (.p2.)    0.941    0.023   40.486    0.000    0.895
##     sspc    (.p3.)    0.393    0.057    6.885    0.000    0.281
##     ssei    (.p4.)    0.529    0.042   12.555    0.000    0.447
##   math =~                                                      
##     ssar    (.p5.)    0.899    0.023   39.168    0.000    0.854
##     sspc    (.p6.)    0.485    0.058    8.422    0.000    0.372
##     ssmk    (.p7.)    0.693    0.048   14.584    0.000    0.600
##     ssmc    (.p8.)    0.528    0.027   19.435    0.000    0.475
##     ssao    (.p9.)    0.743    0.022   33.109    0.000    0.699
##   electronic =~                                                
##     ssai    (.10.)    0.655    0.028   23.685    0.000    0.601
##     sssi    (.11.)    0.691    0.029   23.974    0.000    0.634
##     ssmc    (.12.)    0.347    0.026   13.448    0.000    0.297
##     ssei    (.13.)    0.349    0.036    9.822    0.000    0.280
##   speed =~                                                     
##     ssno    (.14.)    0.792    0.035   22.662    0.000    0.724
##     sscs    (.15.)    0.730    0.033   21.854    0.000    0.665
##     ssmk    (.16.)    0.280    0.046    6.055    0.000    0.189
##  ci.upper   Std.lv  Std.all
##                            
##     0.991    0.947    0.924
##     0.986    0.941    0.911
##     0.504    0.393    0.399
##     0.612    0.529    0.532
##                            
##     0.944    0.899    0.916
##     0.598    0.485    0.493
##     0.786    0.693    0.674
##     0.582    0.528    0.544
##     0.787    0.743    0.757
##                            
##     0.710    0.655    0.751
##     0.747    0.691    0.783
##     0.398    0.347    0.358
##     0.419    0.349    0.351
##                            
##     0.861    0.792    0.796
##     0.796    0.730    0.726
##     0.371    0.280    0.272
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.33.)    0.900    0.010   85.865    0.000    0.879
##     elctrnc (.34.)    0.884    0.022   40.147    0.000    0.841
##     speed   (.35.)    0.738    0.034   21.988    0.000    0.672
##   math ~~                                                      
##     elctrnc (.36.)    0.794    0.027   29.691    0.000    0.742
##     speed   (.37.)    0.821    0.033   24.775    0.000    0.756
##   electronic ~~                                                
##     speed   (.38.)    0.553    0.050   11.177    0.000    0.456
##  ci.upper   Std.lv  Std.all
##                            
##     0.920    0.900    0.900
##     0.927    0.884    0.884
##     0.803    0.738    0.738
##                            
##     0.847    0.794    0.794
##     0.886    0.821    0.821
##                            
##     0.650    0.553    0.553
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.39.)    0.175    0.041    4.304    0.000    0.096
##    .sswk    (.40.)    0.112    0.042    2.682    0.007    0.030
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssei    (.42.)   -0.003    0.038   -0.081    0.936   -0.077
##    .ssar    (.43.)    0.201    0.040    5.018    0.000    0.122
##    .ssmk    (.44.)    0.226    0.043    5.282    0.000    0.142
##    .ssmc    (.45.)    0.047    0.038    1.237    0.216   -0.027
##    .ssao    (.46.)    0.146    0.039    3.768    0.000    0.070
##    .ssai    (.47.)   -0.108    0.033   -3.280    0.001   -0.172
##    .sssi    (.48.)   -0.070    0.034   -2.088    0.037   -0.136
##    .ssno    (.49.)    0.226    0.040    5.586    0.000    0.147
##    .sscs    (.50.)    0.186    0.042    4.473    0.000    0.105
##  ci.upper   Std.lv  Std.all
##     0.255    0.175    0.171
##     0.193    0.112    0.108
##     0.333    0.253    0.257
##     0.071   -0.003   -0.003
##     0.279    0.201    0.204
##     0.310    0.226    0.220
##     0.121    0.047    0.048
##     0.222    0.146    0.148
##    -0.043   -0.108   -0.124
##    -0.004   -0.070   -0.080
##     0.305    0.226    0.227
##     0.268    0.186    0.185
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.153    0.015   10.444    0.000    0.124
##    .sswk              0.181    0.016   11.125    0.000    0.149
##    .sspc              0.235    0.021   10.983    0.000    0.193
##    .ssei              0.261    0.022   11.686    0.000    0.217
##    .ssar              0.156    0.015   10.574    0.000    0.127
##    .ssmk              0.180    0.016   11.148    0.000    0.148
##    .ssmc              0.252    0.018   13.704    0.000    0.216
##    .ssao              0.412    0.028   14.956    0.000    0.358
##    .ssai              0.331    0.026   12.541    0.000    0.279
##    .sssi              0.301    0.027   11.062    0.000    0.248
##    .ssno              0.362    0.038    9.424    0.000    0.287
##    .sscs              0.480    0.053    9.016    0.000    0.375
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.182    0.153    0.146
##     0.213    0.181    0.170
##     0.276    0.235    0.243
##     0.305    0.261    0.264
##     0.185    0.156    0.162
##     0.211    0.180    0.170
##     0.288    0.252    0.267
##     0.466    0.412    0.427
##     0.383    0.331    0.435
##     0.354    0.301    0.387
##     0.437    0.362    0.366
##     0.584    0.480    0.474
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.947    0.022   42.188    0.000    0.903
##     sswk    (.p2.)    0.941    0.023   40.486    0.000    0.895
##     sspc    (.p3.)    0.393    0.057    6.885    0.000    0.281
##     ssei    (.p4.)    0.529    0.042   12.555    0.000    0.447
##   math =~                                                      
##     ssar    (.p5.)    0.899    0.023   39.168    0.000    0.854
##     sspc    (.p6.)    0.485    0.058    8.422    0.000    0.372
##     ssmk    (.p7.)    0.693    0.048   14.584    0.000    0.600
##     ssmc    (.p8.)    0.528    0.027   19.435    0.000    0.475
##     ssao    (.p9.)    0.743    0.022   33.109    0.000    0.699
##   electronic =~                                                
##     ssai    (.10.)    0.655    0.028   23.685    0.000    0.601
##     sssi    (.11.)    0.691    0.029   23.974    0.000    0.634
##     ssmc    (.12.)    0.347    0.026   13.448    0.000    0.297
##     ssei    (.13.)    0.349    0.036    9.822    0.000    0.280
##   speed =~                                                     
##     ssno    (.14.)    0.792    0.035   22.662    0.000    0.724
##     sscs    (.15.)    0.730    0.033   21.854    0.000    0.665
##     ssmk    (.16.)    0.280    0.046    6.055    0.000    0.189
##  ci.upper   Std.lv  Std.all
##                            
##     0.991    0.947    0.921
##     0.986    0.941    0.905
##     0.504    0.393    0.398
##     0.612    0.529    0.496
##                            
##     0.944    0.899    0.890
##     0.598    0.485    0.492
##     0.786    0.693    0.681
##     0.582    0.528    0.520
##     0.787    0.743    0.716
##                            
##     0.710    0.850    0.779
##     0.747    0.895    0.847
##     0.398    0.451    0.443
##     0.419    0.453    0.425
##                            
##     0.861    0.826    0.795
##     0.796    0.762    0.735
##     0.371    0.292    0.287
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.33.)    0.900    0.010   85.865    0.000    0.879
##     elctrnc (.34.)    0.884    0.022   40.147    0.000    0.841
##     speed   (.35.)    0.738    0.034   21.988    0.000    0.672
##   math ~~                                                      
##     elctrnc (.36.)    0.794    0.027   29.691    0.000    0.742
##     speed   (.37.)    0.821    0.033   24.775    0.000    0.756
##   electronic ~~                                                
##     speed   (.38.)    0.553    0.050   11.177    0.000    0.456
##  ci.upper   Std.lv  Std.all
##                            
##     0.920    0.900    0.900
##     0.927    0.682    0.682
##     0.803    0.707    0.707
##                            
##     0.847    0.613    0.613
##     0.886    0.787    0.787
##                            
##     0.650    0.409    0.409
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.39.)    0.175    0.041    4.304    0.000    0.096
##    .sswk    (.40.)    0.112    0.042    2.682    0.007    0.030
##    .sspc             -0.030    0.044   -0.681    0.496   -0.115
##    .ssei    (.42.)   -0.003    0.038   -0.081    0.936   -0.077
##    .ssar    (.43.)    0.201    0.040    5.018    0.000    0.122
##    .ssmk    (.44.)    0.226    0.043    5.282    0.000    0.142
##    .ssmc    (.45.)    0.047    0.038    1.237    0.216   -0.027
##    .ssao    (.46.)    0.146    0.039    3.768    0.000    0.070
##    .ssai    (.47.)   -0.108    0.033   -3.280    0.001   -0.172
##    .sssi    (.48.)   -0.070    0.034   -2.088    0.037   -0.136
##    .ssno    (.49.)    0.226    0.040    5.586    0.000    0.147
##    .sscs    (.50.)    0.186    0.042    4.473    0.000    0.105
##     verbal            0.075    0.064    1.169    0.242   -0.050
##     math             -0.039    0.065   -0.611    0.541   -0.166
##     elctrnc           0.815    0.089    9.124    0.000    0.640
##     speed            -0.330    0.076   -4.349    0.000   -0.478
##  ci.upper   Std.lv  Std.all
##     0.255    0.175    0.171
##     0.193    0.112    0.107
##     0.056   -0.030   -0.030
##     0.071   -0.003   -0.003
##     0.279    0.201    0.198
##     0.310    0.226    0.222
##     0.121    0.047    0.046
##     0.222    0.146    0.140
##    -0.043   -0.108   -0.099
##    -0.004   -0.070   -0.067
##     0.305    0.226    0.218
##     0.268    0.186    0.180
##     0.200    0.075    0.075
##     0.087   -0.039   -0.039
##     0.990    0.628    0.628
##    -0.181   -0.316   -0.316
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.160    0.017    9.621    0.000    0.128
##    .sswk              0.196    0.017   11.687    0.000    0.163
##    .sspc              0.239    0.019   12.345    0.000    0.201
##    .ssei              0.327    0.025   13.007    0.000    0.277
##    .ssar              0.213    0.022    9.768    0.000    0.170
##    .ssmk              0.153    0.013   11.522    0.000    0.127
##    .ssmc              0.260    0.020   13.281    0.000    0.221
##    .ssao              0.525    0.038   13.954    0.000    0.451
##    .ssai              0.467    0.041   11.276    0.000    0.386
##    .sssi              0.315    0.035    9.084    0.000    0.247
##    .ssno              0.397    0.042    9.438    0.000    0.315
##    .sscs              0.493    0.058    8.535    0.000    0.380
##     electronic        1.682    0.135   12.419    0.000    1.416
##     speed             1.088    0.095   11.418    0.000    0.901
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.193    0.160    0.152
##     0.229    0.196    0.181
##     0.277    0.239    0.246
##     0.376    0.327    0.287
##     0.256    0.213    0.209
##     0.179    0.153    0.147
##     0.298    0.260    0.251
##     0.598    0.525    0.487
##     0.548    0.467    0.393
##     0.383    0.315    0.282
##     0.480    0.397    0.368
##     0.606    0.493    0.459
##     1.947    1.000    1.000
##     1.275    1.000    1.000
reduced<-cfa(cf.reduced, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1"))
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   409.332   117.000     0.000     0.978     0.062     0.082 32001.722 
##       bic 
## 32328.019
Mc(reduced)
## [1] 0.8944986
summary(reduced, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 56 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    33
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               409.332     316.118
##   Degrees of freedom                               117         117
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.295
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          187.390     144.717
##     0                                          221.942     171.401
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.946    0.022   42.043    0.000    0.902
##     sswk    (.p2.)    0.943    0.023   40.950    0.000    0.898
##     sspc    (.p3.)    0.396    0.057    6.951    0.000    0.284
##     ssei    (.p4.)    0.523    0.042   12.560    0.000    0.442
##   math =~                                                      
##     ssar    (.p5.)    0.900    0.023   39.158    0.000    0.855
##     sspc    (.p6.)    0.483    0.057    8.399    0.000    0.370
##     ssmk    (.p7.)    0.679    0.048   14.253    0.000    0.586
##     ssmc    (.p8.)    0.534    0.027   19.495    0.000    0.480
##     ssao    (.p9.)    0.743    0.022   33.067    0.000    0.699
##   electronic =~                                                
##     ssai    (.10.)    0.655    0.028   23.686    0.000    0.601
##     sssi    (.11.)    0.690    0.029   23.972    0.000    0.634
##     ssmc    (.12.)    0.341    0.026   13.210    0.000    0.291
##     ssei    (.13.)    0.356    0.035   10.119    0.000    0.287
##   speed =~                                                     
##     ssno    (.14.)    0.789    0.035   22.675    0.000    0.721
##     sscs    (.15.)    0.729    0.033   22.002    0.000    0.664
##     ssmk    (.16.)    0.295    0.046    6.405    0.000    0.205
##  ci.upper   Std.lv  Std.all
##                            
##     0.990    0.946    0.923
##     0.988    0.943    0.913
##     0.507    0.396    0.402
##     0.605    0.523    0.526
##                            
##     0.945    0.900    0.916
##     0.595    0.483    0.491
##     0.773    0.679    0.660
##     0.588    0.534    0.550
##     0.787    0.743    0.757
##                            
##     0.709    0.655    0.751
##     0.746    0.690    0.782
##     0.392    0.341    0.351
##     0.425    0.356    0.358
##                            
##     0.857    0.789    0.794
##     0.794    0.729    0.725
##     0.385    0.295    0.287
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.35.)    0.898    0.011   84.979    0.000    0.877
##     elctrnc (.36.)    0.884    0.022   40.053    0.000    0.841
##     speed   (.37.)    0.741    0.033   22.148    0.000    0.675
##   math ~~                                                      
##     elctrnc (.38.)    0.795    0.027   29.751    0.000    0.743
##     speed   (.39.)    0.821    0.033   24.801    0.000    0.756
##   electronic ~~                                                
##     speed   (.40.)    0.557    0.049   11.261    0.000    0.460
##  ci.upper   Std.lv  Std.all
##                            
##     0.919    0.898    0.898
##     0.927    0.884    0.884
##     0.806    0.741    0.741
##                            
##     0.848    0.795    0.795
##     0.886    0.821    0.821
##                            
##     0.654    0.557    0.557
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            0.000                               0.000
##     math              0.000                               0.000
##    .ssgs    (.41.)    0.210    0.031    6.758    0.000    0.149
##    .sswk    (.42.)    0.146    0.032    4.628    0.000    0.084
##    .sspc              0.260    0.034    7.590    0.000    0.193
##    .ssei    (.44.)    0.021    0.032    0.662    0.508   -0.041
##    .ssar    (.45.)    0.185    0.030    6.146    0.000    0.126
##    .ssmk    (.46.)    0.216    0.034    6.419    0.000    0.150
##    .ssmc    (.47.)    0.046    0.031    1.500    0.134   -0.014
##    .ssao    (.48.)    0.133    0.031    4.289    0.000    0.072
##    .ssai    (.49.)   -0.094    0.031   -3.062    0.002   -0.154
##    .sssi    (.50.)   -0.055    0.031   -1.801    0.072   -0.116
##    .ssno    (.51.)    0.228    0.038    6.065    0.000    0.154
##    .sscs    (.52.)    0.189    0.039    4.834    0.000    0.112
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.271    0.210    0.205
##     0.208    0.146    0.141
##     0.327    0.260    0.265
##     0.084    0.021    0.021
##     0.244    0.185    0.188
##     0.281    0.216    0.210
##     0.106    0.046    0.047
##     0.193    0.133    0.135
##    -0.034   -0.094   -0.108
##     0.005   -0.055   -0.063
##     0.302    0.228    0.229
##     0.265    0.189    0.188
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.156    0.015   10.511    0.000    0.127
##    .sswk              0.178    0.016   11.119    0.000    0.147
##    .sspc              0.235    0.021   10.981    0.000    0.193
##    .ssei              0.261    0.022   11.679    0.000    0.217
##    .ssar              0.155    0.015   10.498    0.000    0.126
##    .ssmk              0.180    0.016   10.970    0.000    0.148
##    .ssmc              0.252    0.018   13.712    0.000    0.216
##    .ssao              0.412    0.028   14.972    0.000    0.358
##    .ssai              0.331    0.026   12.543    0.000    0.279
##    .sssi              0.301    0.027   11.073    0.000    0.248
##    .ssno              0.366    0.039    9.387    0.000    0.289
##    .sscs              0.480    0.053    9.019    0.000    0.376
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.185    0.156    0.148
##     0.210    0.178    0.167
##     0.276    0.235    0.243
##     0.304    0.261    0.263
##     0.184    0.155    0.160
##     0.212    0.180    0.170
##     0.288    0.252    0.267
##     0.466    0.412    0.427
##     0.383    0.331    0.436
##     0.355    0.301    0.388
##     0.442    0.366    0.370
##     0.585    0.480    0.475
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.946    0.022   42.043    0.000    0.902
##     sswk    (.p2.)    0.943    0.023   40.950    0.000    0.898
##     sspc    (.p3.)    0.396    0.057    6.951    0.000    0.284
##     ssei    (.p4.)    0.523    0.042   12.560    0.000    0.442
##   math =~                                                      
##     ssar    (.p5.)    0.900    0.023   39.158    0.000    0.855
##     sspc    (.p6.)    0.483    0.057    8.399    0.000    0.370
##     ssmk    (.p7.)    0.679    0.048   14.253    0.000    0.586
##     ssmc    (.p8.)    0.534    0.027   19.495    0.000    0.480
##     ssao    (.p9.)    0.743    0.022   33.067    0.000    0.699
##   electronic =~                                                
##     ssai    (.10.)    0.655    0.028   23.686    0.000    0.601
##     sssi    (.11.)    0.690    0.029   23.972    0.000    0.634
##     ssmc    (.12.)    0.341    0.026   13.210    0.000    0.291
##     ssei    (.13.)    0.356    0.035   10.119    0.000    0.287
##   speed =~                                                     
##     ssno    (.14.)    0.789    0.035   22.675    0.000    0.721
##     sscs    (.15.)    0.729    0.033   22.002    0.000    0.664
##     ssmk    (.16.)    0.295    0.046    6.405    0.000    0.205
##  ci.upper   Std.lv  Std.all
##                            
##     0.990    0.946    0.919
##     0.988    0.943    0.907
##     0.507    0.396    0.401
##     0.605    0.523    0.490
##                            
##     0.945    0.900    0.890
##     0.595    0.483    0.490
##     0.773    0.679    0.667
##     0.588    0.534    0.526
##     0.787    0.743    0.716
##                            
##     0.709    0.851    0.780
##     0.746    0.896    0.848
##     0.392    0.443    0.437
##     0.425    0.462    0.432
##                            
##     0.857    0.823    0.792
##     0.794    0.760    0.734
##     0.385    0.308    0.302
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.35.)    0.898    0.011   84.979    0.000    0.877
##     elctrnc (.36.)    0.884    0.022   40.053    0.000    0.841
##     speed   (.37.)    0.741    0.033   22.148    0.000    0.675
##   math ~~                                                      
##     elctrnc (.38.)    0.795    0.027   29.751    0.000    0.743
##     speed   (.39.)    0.821    0.033   24.801    0.000    0.756
##   electronic ~~                                                
##     speed   (.40.)    0.557    0.049   11.261    0.000    0.460
##  ci.upper   Std.lv  Std.all
##                            
##     0.919    0.898    0.898
##     0.927    0.681    0.681
##     0.806    0.711    0.711
##                            
##     0.848    0.612    0.612
##     0.886    0.788    0.788
##                            
##     0.654    0.411    0.411
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            0.000                               0.000
##     math              0.000                               0.000
##    .ssgs    (.41.)    0.210    0.031    6.758    0.000    0.149
##    .sswk    (.42.)    0.146    0.032    4.628    0.000    0.084
##    .sspc             -0.027    0.034   -0.800    0.424   -0.094
##    .ssei    (.44.)    0.021    0.032    0.662    0.508   -0.041
##    .ssar    (.45.)    0.185    0.030    6.146    0.000    0.126
##    .ssmk    (.46.)    0.216    0.034    6.419    0.000    0.150
##    .ssmc    (.47.)    0.046    0.031    1.500    0.134   -0.014
##    .ssao    (.48.)    0.133    0.031    4.289    0.000    0.072
##    .ssai    (.49.)   -0.094    0.031   -3.062    0.002   -0.154
##    .sssi    (.50.)   -0.055    0.031   -1.801    0.072   -0.116
##    .ssno    (.51.)    0.228    0.038    6.065    0.000    0.154
##    .sscs    (.52.)    0.189    0.039    4.834    0.000    0.112
##     elctrnc           0.772    0.071   10.936    0.000    0.634
##     speed            -0.337    0.061   -5.499    0.000   -0.456
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.271    0.210    0.204
##     0.208    0.146    0.141
##     0.040   -0.027   -0.028
##     0.084    0.021    0.020
##     0.244    0.185    0.183
##     0.281    0.216    0.212
##     0.106    0.046    0.045
##     0.193    0.133    0.128
##    -0.034   -0.094   -0.086
##     0.005   -0.055   -0.052
##     0.302    0.228    0.219
##     0.265    0.189    0.182
##     0.910    0.594    0.594
##    -0.217   -0.323   -0.323
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##    .ssgs              0.164    0.017    9.650    0.000    0.130
##    .sswk              0.193    0.017   11.668    0.000    0.160
##    .sspc              0.239    0.019   12.323    0.000    0.201
##    .ssei              0.325    0.025   12.957    0.000    0.276
##    .ssar              0.212    0.022    9.712    0.000    0.169
##    .ssmk              0.153    0.013   11.383    0.000    0.126
##    .ssmc              0.260    0.020   13.315    0.000    0.221
##    .ssao              0.525    0.038   13.907    0.000    0.451
##    .ssai              0.467    0.041   11.269    0.000    0.385
##    .sssi              0.315    0.035    9.082    0.000    0.247
##    .ssno              0.403    0.042    9.494    0.000    0.319
##    .sscs              0.494    0.058    8.563    0.000    0.381
##     electronic        1.687    0.136   12.432    0.000    1.421
##     speed             1.087    0.094   11.611    0.000    0.903
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.197    0.164    0.155
##     0.225    0.193    0.178
##     0.277    0.239    0.246
##     0.375    0.325    0.285
##     0.255    0.212    0.207
##     0.179    0.153    0.147
##     0.298    0.260    0.252
##     0.599    0.525    0.488
##     0.548    0.467    0.392
##     0.383    0.315    0.282
##     0.486    0.403    0.373
##     0.607    0.494    0.461
##     1.953    1.000    1.000
##     1.270    1.000    1.000
tests<-lavTestLRT(configural, metric, scalar2, cf.cov, cf.cov2, reduced)
Td=tests[2:6,"Chisq diff"]
Td
## [1] 22.461971 43.764021 35.528857  1.373784  8.364787
dfd=tests[2:6,"Df diff"]
dfd
## [1] 12  7  6  2  2
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-656+ 656 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.03648341 0.08954510 0.08668162        NaN 0.06970378
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.01029143 0.05952129
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.06521271 0.11578118
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.0604624 0.1151812
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1]         NA 0.06931366
RMSEA.CI(T=Td[5],df=dfd[5],N=N,G=2)
## [1] 0.02596873 0.12140610
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.967     0.951     0.184     0.046     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.995     0.976     0.757     0.272
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.988     0.953     0.687     0.236
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.497     0.475     0.154     0.091     0.023     0.004
round(pvals(T=Td[5],df=dfd[5],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.985     0.980     0.805     0.697     0.429     0.188
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 22.46197 43.76402 27.51293
dfd=tests[2:4,"Df diff"]
dfd
## [1] 12  7 12
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-656+ 656 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.03648341 0.08954510 0.04442583
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.01029143 0.05952129
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.06521271 0.11578118
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.02241014 0.06648774
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.967     0.951     0.184     0.046     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.995     0.976     0.757     0.272
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.993     0.989     0.371     0.131     0.003     0.000
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]  22.46197 118.00064
dfd=tests[2:3,"Df diff"]
dfd
## [1] 12  8
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-656+ 656 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.03648341 0.14488785
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.01029143 0.05952129
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1223681 0.1685197
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.967     0.951     0.184     0.046     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     1.000     0.999
# ONE FACTOR, just for checking if gap direction aligns with HOF

fmodel<-'
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao
'

configural<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1513.542   108.000     0.000     0.894     0.141     0.055 33123.933 
##       bic 
## 33496.843
Mc(configural)
## [1] 0.5850504
metric<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1592.678   119.000     0.000     0.889     0.137     0.074 33181.068 
##       bic 
## 33497.006
Mc(metric)
## [1] 0.570043
scalar<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  2288.436   130.000     0.000     0.838     0.159     0.091 33854.826 
##       bic 
## 34113.791
Mc(scalar)
## [1] 0.4390236
summary(scalar, standardized=T, ci=T) # g=-0.042
## lavaan 0.6-18 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        74
##   Number of equality constraints                    24
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2288.436    1743.936
##   Degrees of freedom                               130         130
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.312
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          843.486     642.790
##     0                                         1444.950    1101.145
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g =~                                                         
##     ssgs    (.p1.)    0.863    0.028   30.448    0.000    0.808
##     ssar    (.p2.)    0.819    0.029   28.563    0.000    0.763
##     sswk    (.p3.)    0.860    0.030   28.687    0.000    0.801
##     sspc    (.p4.)    0.799    0.027   29.662    0.000    0.746
##     ssno    (.p5.)    0.593    0.031   19.165    0.000    0.532
##     sscs    (.p6.)    0.568    0.030   18.965    0.000    0.509
##     ssai    (.p7.)    0.567    0.028   20.412    0.000    0.512
##     sssi    (.p8.)    0.600    0.029   21.032    0.000    0.544
##     ssmk    (.p9.)    0.838    0.029   28.497    0.000    0.781
##     ssmc    (.10.)    0.794    0.027   29.186    0.000    0.741
##     ssei    (.11.)    0.796    0.029   27.094    0.000    0.739
##     ssao    (.12.)    0.681    0.027   25.553    0.000    0.629
##  ci.upper   Std.lv  Std.all
##                            
##     0.919    0.863    0.884
##     0.876    0.819    0.872
##     0.919    0.860    0.871
##     0.852    0.799    0.841
##     0.654    0.593    0.609
##     0.626    0.568    0.575
##     0.621    0.567    0.652
##     0.656    0.600    0.667
##     0.896    0.838    0.850
##     0.847    0.794    0.829
##     0.854    0.796    0.825
##     0.733    0.681    0.711
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.26.)    0.189    0.040    4.673    0.000    0.110
##    .ssar    (.27.)    0.169    0.039    4.280    0.000    0.092
##    .sswk    (.28.)    0.126    0.041    3.034    0.002    0.044
##    .sspc    (.29.)    0.102    0.042    2.461    0.014    0.021
##    .ssno    (.30.)    0.093    0.038    2.462    0.014    0.019
##    .sscs    (.31.)    0.065    0.039    1.676    0.094   -0.011
##    .ssai    (.32.)    0.048    0.034    1.421    0.155   -0.018
##    .sssi    (.33.)    0.113    0.038    3.006    0.003    0.039
##    .ssmk    (.34.)    0.146    0.043    3.419    0.001    0.062
##    .ssmc    (.35.)    0.147    0.037    3.931    0.000    0.074
##    .ssei    (.36.)    0.107    0.039    2.703    0.007    0.029
##    .ssao    (.37.)    0.118    0.038    3.094    0.002    0.043
##  ci.upper   Std.lv  Std.all
##     0.268    0.189    0.194
##     0.246    0.169    0.180
##     0.207    0.126    0.127
##     0.183    0.102    0.108
##     0.168    0.093    0.096
##     0.140    0.065    0.066
##     0.115    0.048    0.056
##     0.187    0.113    0.126
##     0.230    0.146    0.148
##     0.221    0.147    0.154
##     0.184    0.107    0.110
##     0.192    0.118    0.123
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.209    0.017   12.532    0.000    0.176
##    .ssar              0.211    0.016   13.270    0.000    0.180
##    .sswk              0.236    0.019   12.486    0.000    0.199
##    .sspc              0.264    0.026   10.341    0.000    0.214
##    .ssno              0.597    0.057   10.394    0.000    0.484
##    .sscs              0.653    0.056   11.677    0.000    0.543
##    .ssai              0.434    0.033   13.223    0.000    0.370
##    .sssi              0.448    0.035   12.987    0.000    0.381
##    .ssmk              0.269    0.019   13.969    0.000    0.232
##    .ssmc              0.288    0.021   13.809    0.000    0.247
##    .ssei              0.298    0.025   11.889    0.000    0.249
##    .ssao              0.452    0.028   15.869    0.000    0.396
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.241    0.209    0.219
##     0.243    0.211    0.239
##     0.273    0.236    0.242
##     0.314    0.264    0.293
##     0.709    0.597    0.629
##     0.762    0.653    0.670
##     0.498    0.434    0.575
##     0.516    0.448    0.555
##     0.307    0.269    0.277
##     0.328    0.288    0.313
##     0.347    0.298    0.319
##     0.508    0.452    0.494
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g =~                                                         
##     ssgs    (.p1.)    0.863    0.028   30.448    0.000    0.808
##     ssar    (.p2.)    0.819    0.029   28.563    0.000    0.763
##     sswk    (.p3.)    0.860    0.030   28.687    0.000    0.801
##     sspc    (.p4.)    0.799    0.027   29.662    0.000    0.746
##     ssno    (.p5.)    0.593    0.031   19.165    0.000    0.532
##     sscs    (.p6.)    0.568    0.030   18.965    0.000    0.509
##     ssai    (.p7.)    0.567    0.028   20.412    0.000    0.512
##     sssi    (.p8.)    0.600    0.029   21.032    0.000    0.544
##     ssmk    (.p9.)    0.838    0.029   28.497    0.000    0.781
##     ssmc    (.10.)    0.794    0.027   29.186    0.000    0.741
##     ssei    (.11.)    0.796    0.029   27.094    0.000    0.739
##     ssao    (.12.)    0.681    0.027   25.553    0.000    0.629
##  ci.upper   Std.lv  Std.all
##                            
##     0.919    0.964    0.897
##     0.876    0.915    0.867
##     0.919    0.961    0.887
##     0.852    0.892    0.861
##     0.654    0.662    0.614
##     0.626    0.634    0.593
##     0.621    0.633    0.541
##     0.656    0.670    0.587
##     0.896    0.937    0.880
##     0.847    0.887    0.832
##     0.854    0.890    0.789
##     0.733    0.760    0.716
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.26.)    0.189    0.040    4.673    0.000    0.110
##    .ssar    (.27.)    0.169    0.039    4.280    0.000    0.092
##    .sswk    (.28.)    0.126    0.041    3.034    0.002    0.044
##    .sspc    (.29.)    0.102    0.042    2.461    0.014    0.021
##    .ssno    (.30.)    0.093    0.038    2.462    0.014    0.019
##    .sscs    (.31.)    0.065    0.039    1.676    0.094   -0.011
##    .ssai    (.32.)    0.048    0.034    1.421    0.155   -0.018
##    .sssi    (.33.)    0.113    0.038    3.006    0.003    0.039
##    .ssmk    (.34.)    0.146    0.043    3.419    0.001    0.062
##    .ssmc    (.35.)    0.147    0.037    3.931    0.000    0.074
##    .ssei    (.36.)    0.107    0.039    2.703    0.007    0.029
##    .ssao    (.37.)    0.118    0.038    3.094    0.002    0.043
##     g                 0.047    0.068    0.688    0.491   -0.087
##  ci.upper   Std.lv  Std.all
##     0.268    0.189    0.176
##     0.246    0.169    0.160
##     0.207    0.126    0.116
##     0.183    0.102    0.099
##     0.168    0.093    0.087
##     0.140    0.065    0.061
##     0.115    0.048    0.041
##     0.187    0.113    0.099
##     0.230    0.146    0.137
##     0.221    0.147    0.138
##     0.184    0.107    0.094
##     0.192    0.118    0.111
##     0.181    0.042    0.042
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.226    0.018   12.500    0.000    0.191
##    .ssar              0.277    0.022   12.366    0.000    0.233
##    .sswk              0.250    0.019   13.195    0.000    0.213
##    .sspc              0.277    0.025   11.219    0.000    0.229
##    .ssno              0.724    0.064   11.352    0.000    0.599
##    .sscs              0.741    0.066   11.304    0.000    0.612
##    .ssai              0.967    0.085   11.423    0.000    0.801
##    .sssi              0.854    0.076   11.247    0.000    0.705
##    .ssmk              0.256    0.020   13.077    0.000    0.218
##    .ssmc              0.349    0.025   14.188    0.000    0.300
##    .ssei              0.481    0.045   10.586    0.000    0.392
##    .ssao              0.549    0.039   14.181    0.000    0.473
##     g                 1.248    0.099   12.631    0.000    1.054
##  ci.upper   Std.lv  Std.all
##     0.262    0.226    0.196
##     0.321    0.277    0.249
##     0.287    0.250    0.213
##     0.326    0.277    0.258
##     0.849    0.724    0.623
##     0.869    0.741    0.648
##     1.133    0.967    0.707
##     1.002    0.854    0.656
##     0.295    0.256    0.226
##     0.397    0.349    0.307
##     0.570    0.481    0.378
##     0.625    0.549    0.487
##     1.441    1.000    1.000
# HIGH ORDER FACTOR

hof.model<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ verbal + math + electronic + speed 
'

hof.lv<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
'

hof.weak<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
verbal~0*1
'

baseline<-cfa(hof.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   443.805    46.000     0.000     0.970     0.081     0.038 32616.702 
##       bic 
## 32844.592
Mc(baseline)
## [1] 0.8592305
configural<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   402.032    92.000     0.000     0.977     0.072     0.032 32044.423 
##       bic 
## 32500.202
Mc(configural)
## [1] 0.8884804
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 110 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               402.032     309.815
##   Degrees of freedom                                92          92
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.298
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          162.732     125.405
##     0                                          239.300     184.410
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.247    0.049    5.052    0.000    0.151
##     sswk              0.253    0.051    4.992    0.000    0.154
##     sspc              0.119    0.029    4.143    0.000    0.063
##     ssei              0.154    0.032    4.847    0.000    0.092
##   math =~                                                      
##     ssar              0.309    0.040    7.657    0.000    0.230
##     sspc              0.153    0.032    4.734    0.000    0.090
##     ssmk              0.243    0.041    5.921    0.000    0.162
##     ssmc              0.180    0.032    5.576    0.000    0.116
##     ssao              0.267    0.037    7.258    0.000    0.195
##   electronic =~                                                
##     ssai              0.315    0.036    8.853    0.000    0.246
##     sssi              0.355    0.042    8.545    0.000    0.274
##     ssmc              0.179    0.034    5.251    0.000    0.112
##     ssei              0.118    0.035    3.417    0.001    0.051
##   speed =~                                                     
##     ssno              0.490    0.054    9.157    0.000    0.385
##     sscs              0.436    0.048    9.168    0.000    0.343
##     ssmk              0.204    0.036    5.739    0.000    0.135
##   g =~                                                         
##     verbal            3.470    0.744    4.661    0.000    2.011
##     math              2.586    0.383    6.753    0.000    1.836
##     electronic        1.549    0.206    7.529    0.000    1.146
##     speed             1.224    0.168    7.272    0.000    0.894
##  ci.upper   Std.lv  Std.all
##                            
##     0.343    0.892    0.914
##     0.353    0.915    0.912
##     0.175    0.430    0.447
##     0.216    0.556    0.614
##                            
##     0.388    0.858    0.909
##     0.216    0.425    0.442
##     0.323    0.672    0.657
##     0.243    0.498    0.536
##     0.340    0.741    0.759
##                            
##     0.385    0.582    0.718
##     0.437    0.655    0.771
##     0.245    0.329    0.355
##     0.186    0.219    0.241
##                            
##     0.595    0.775    0.794
##     0.529    0.689    0.710
##     0.274    0.323    0.316
##                            
##     4.928    0.961    0.961
##     3.337    0.933    0.933
##     1.953    0.840    0.840
##     1.554    0.774    0.774
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.139    0.042    3.332    0.001    0.057
##    .sswk              0.154    0.043    3.607    0.000    0.070
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssei              0.000    0.039    0.009    0.993   -0.077
##    .ssar              0.186    0.040    4.598    0.000    0.107
##    .ssmk              0.241    0.044    5.433    0.000    0.154
##    .ssmc              0.039    0.040    0.993    0.321   -0.038
##    .ssao              0.171    0.042    4.054    0.000    0.088
##    .ssai             -0.108    0.035   -3.113    0.002   -0.176
##    .sssi             -0.068    0.036   -1.862    0.063   -0.139
##    .ssno              0.175    0.043    4.060    0.000    0.090
##    .sscs              0.245    0.043    5.752    0.000    0.162
##  ci.upper   Std.lv  Std.all
##     0.220    0.139    0.142
##     0.238    0.154    0.154
##     0.333    0.253    0.263
##     0.077    0.000    0.000
##     0.265    0.186    0.197
##     0.327    0.241    0.235
##     0.117    0.039    0.042
##     0.253    0.171    0.175
##    -0.040   -0.108   -0.134
##     0.004   -0.068   -0.080
##     0.259    0.175    0.179
##     0.329    0.245    0.253
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.156    0.015   10.407    0.000    0.127
##    .sswk              0.169    0.015   10.947    0.000    0.139
##    .sspc              0.233    0.022   10.670    0.000    0.190
##    .ssei              0.266    0.022   11.928    0.000    0.222
##    .ssar              0.154    0.016    9.546    0.000    0.122
##    .ssmk              0.178    0.016   10.900    0.000    0.146
##    .ssmc              0.249    0.019   13.351    0.000    0.212
##    .ssao              0.405    0.028   14.414    0.000    0.350
##    .ssai              0.317    0.028   11.186    0.000    0.262
##    .sssi              0.292    0.029   10.220    0.000    0.236
##    .ssno              0.352    0.038    9.178    0.000    0.277
##    .sscs              0.468    0.053    8.755    0.000    0.363
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.186    0.156    0.164
##     0.199    0.169    0.168
##     0.275    0.233    0.251
##     0.309    0.266    0.325
##     0.185    0.154    0.173
##     0.210    0.178    0.169
##     0.285    0.249    0.289
##     0.460    0.405    0.424
##     0.373    0.317    0.484
##     0.348    0.292    0.405
##     0.427    0.352    0.369
##     0.572    0.468    0.496
##     1.000    0.077    0.077
##     1.000    0.130    0.130
##     1.000    0.294    0.294
##     1.000    0.400    0.400
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.218    0.080    2.727    0.006    0.061
##     sswk              0.214    0.078    2.736    0.006    0.061
##     sspc              0.093    0.038    2.483    0.013    0.020
##     ssei              0.124    0.048    2.589    0.010    0.030
##   math =~                                                      
##     ssar              0.349    0.046    7.646    0.000    0.260
##     sspc              0.175    0.038    4.598    0.000    0.101
##     ssmk              0.245    0.037    6.580    0.000    0.172
##     ssmc              0.216    0.031    7.057    0.000    0.156
##     ssao              0.275    0.037    7.525    0.000    0.203
##   electronic =~                                                
##     ssai              0.648    0.041   15.972    0.000    0.568
##     sssi              0.642    0.041   15.731    0.000    0.562
##     ssmc              0.301    0.031    9.654    0.000    0.240
##     ssei              0.367    0.044    8.250    0.000    0.280
##   speed =~                                                     
##     ssno              0.589    0.054   10.947    0.000    0.483
##     sscs              0.533    0.042   12.644    0.000    0.451
##     ssmk              0.230    0.031    7.345    0.000    0.169
##   g =~                                                         
##     verbal            4.446    1.713    2.595    0.009    1.088
##     math              2.520    0.392    6.433    0.000    1.752
##     electronic        1.121    0.102   11.009    0.000    0.922
##     speed             1.102    0.127    8.695    0.000    0.853
##  ci.upper   Std.lv  Std.all
##                            
##     0.374    0.992    0.926
##     0.366    0.973    0.911
##     0.167    0.426    0.423
##     0.217    0.563    0.478
##                            
##     0.439    0.947    0.900
##     0.250    0.476    0.472
##     0.317    0.663    0.654
##     0.276    0.586    0.541
##     0.347    0.746    0.719
##                            
##     0.727    0.973    0.824
##     0.722    0.965    0.858
##     0.363    0.453    0.418
##     0.454    0.551    0.468
##                            
##     0.694    0.876    0.819
##     0.616    0.793    0.753
##     0.291    0.342    0.337
##                            
##     7.804    0.976    0.976
##     3.288    0.929    0.929
##     1.321    0.746    0.746
##     1.350    0.741    0.741
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.285    0.046    6.206    0.000    0.195
##    .sswk              0.136    0.046    2.930    0.003    0.045
##    .sspc             -0.020    0.044   -0.450    0.652   -0.105
##    .ssei              0.317    0.051    6.192    0.000    0.217
##    .ssar              0.185    0.045    4.117    0.000    0.097
##    .ssmk              0.094    0.044    2.150    0.032    0.008
##    .ssmc              0.317    0.046    6.902    0.000    0.227
##    .ssao              0.084    0.045    1.868    0.062   -0.004
##    .ssai              0.427    0.052    8.172    0.000    0.324
##    .sssi              0.489    0.049   10.035    0.000    0.394
##    .ssno              0.022    0.047    0.466    0.641   -0.070
##    .sscs             -0.116    0.046   -2.517    0.012   -0.206
##  ci.upper   Std.lv  Std.all
##     0.375    0.285    0.266
##     0.226    0.136    0.127
##     0.066   -0.020   -0.019
##     0.417    0.317    0.269
##     0.274    0.185    0.176
##     0.180    0.094    0.093
##     0.406    0.317    0.292
##     0.173    0.084    0.081
##     0.529    0.427    0.361
##     0.585    0.489    0.435
##     0.114    0.022    0.020
##    -0.026   -0.116   -0.110
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.163    0.017    9.394    0.000    0.129
##    .sswk              0.195    0.016   11.822    0.000    0.162
##    .sspc              0.239    0.020   12.131    0.000    0.200
##    .ssei              0.313    0.025   12.532    0.000    0.264
##    .ssar              0.211    0.023    9.059    0.000    0.165
##    .ssmk              0.160    0.013   11.873    0.000    0.133
##    .ssmc              0.256    0.019   13.286    0.000    0.218
##    .ssao              0.520    0.038   13.759    0.000    0.446
##    .ssai              0.448    0.042   10.592    0.000    0.365
##    .sssi              0.334    0.037    9.071    0.000    0.262
##    .ssno              0.378    0.044    8.541    0.000    0.291
##    .sscs              0.481    0.057    8.477    0.000    0.370
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.198    0.163    0.142
##     0.227    0.195    0.170
##     0.278    0.239    0.236
##     0.362    0.313    0.226
##     0.256    0.211    0.190
##     0.186    0.160    0.155
##     0.293    0.256    0.218
##     0.594    0.520    0.483
##     0.531    0.448    0.321
##     0.406    0.334    0.264
##     0.465    0.378    0.330
##     0.593    0.481    0.433
##     1.000    0.048    0.048
##     1.000    0.136    0.136
##     1.000    0.443    0.443
##     1.000    0.452    0.452
##     1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   451.166   107.000     0.000     0.974     0.070     0.049 32063.556 
##       bic 
## 32441.645
Mc(metric)
## [1] 0.8769891
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 102 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        93
##   Number of equality constraints                    20
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               451.166     345.739
##   Degrees of freedom                               107         107
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.305
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          186.427     142.863
##     0                                          264.739     202.876
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.250    0.042    5.980    0.000    0.168
##     sswk    (.p2.)    0.251    0.042    5.934    0.000    0.168
##     sspc    (.p3.)    0.113    0.023    4.930    0.000    0.068
##     ssei    (.p4.)    0.136    0.025    5.337    0.000    0.086
##   math =~                                                      
##     ssar    (.p5.)    0.320    0.038    8.467    0.000    0.246
##     sspc    (.p6.)    0.162    0.026    6.127    0.000    0.110
##     ssmk    (.p7.)    0.238    0.033    7.259    0.000    0.174
##     ssmc    (.p8.)    0.196    0.024    8.071    0.000    0.148
##     ssao    (.p9.)    0.266    0.033    8.163    0.000    0.202
##   electronic =~                                                
##     ssai    (.10.)    0.306    0.035    8.760    0.000    0.238
##     sssi    (.11.)    0.319    0.037    8.548    0.000    0.246
##     ssmc    (.12.)    0.151    0.020    7.452    0.000    0.111
##     ssei    (.13.)    0.174    0.021    8.156    0.000    0.132
##   speed =~                                                     
##     ssno    (.14.)    0.496    0.045   10.989    0.000    0.408
##     sscs    (.15.)    0.446    0.040   11.184    0.000    0.368
##     ssmk    (.16.)    0.196    0.024    8.259    0.000    0.149
##   g =~                                                         
##     verbal  (.17.)    3.432    0.615    5.580    0.000    2.227
##     math    (.18.)    2.499    0.341    7.339    0.000    1.832
##     elctrnc (.19.)    1.769    0.222    7.954    0.000    1.333
##     speed   (.20.)    1.207    0.136    8.852    0.000    0.940
##  ci.upper   Std.lv  Std.all
##                            
##     0.332    0.895    0.917
##     0.334    0.897    0.908
##     0.157    0.402    0.425
##     0.186    0.485    0.510
##                            
##     0.395    0.863    0.911
##     0.213    0.435    0.459
##     0.302    0.640    0.650
##     0.244    0.528    0.561
##     0.329    0.715    0.746
##                            
##     0.375    0.623    0.741
##     0.392    0.648    0.758
##     0.191    0.307    0.326
##     0.215    0.353    0.370
##                            
##     0.585    0.778    0.796
##     0.524    0.699    0.717
##     0.242    0.307    0.311
##                            
##     4.638    0.960    0.960
##     3.166    0.928    0.928
##     2.205    0.871    0.871
##     1.474    0.770    0.770
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.139    0.042    3.332    0.001    0.057
##    .sswk              0.154    0.043    3.607    0.000    0.070
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssei              0.000    0.039    0.009    0.993   -0.077
##    .ssar              0.186    0.040    4.598    0.000    0.107
##    .ssmk              0.241    0.044    5.433    0.000    0.154
##    .ssmc              0.039    0.040    0.993    0.321   -0.038
##    .ssao              0.171    0.042    4.054    0.000    0.088
##    .ssai             -0.108    0.035   -3.113    0.002   -0.176
##    .sssi             -0.068    0.036   -1.862    0.063   -0.139
##    .ssno              0.175    0.043    4.060    0.000    0.090
##    .sscs              0.245    0.043    5.752    0.000    0.162
##  ci.upper   Std.lv  Std.all
##     0.220    0.139    0.142
##     0.238    0.154    0.156
##     0.333    0.253    0.267
##     0.077    0.000    0.000
##     0.265    0.186    0.196
##     0.327    0.241    0.244
##     0.117    0.039    0.042
##     0.253    0.171    0.178
##    -0.040   -0.108   -0.129
##     0.004   -0.068   -0.079
##     0.259    0.175    0.179
##     0.329    0.245    0.252
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.153    0.015   10.330    0.000    0.124
##    .sswk              0.171    0.016   10.968    0.000    0.140
##    .sspc              0.234    0.021   10.939    0.000    0.192
##    .ssei              0.260    0.023   11.568    0.000    0.216
##    .ssar              0.152    0.016    9.487    0.000    0.120
##    .ssmk              0.187    0.016   11.843    0.000    0.156
##    .ssmc              0.251    0.018   13.568    0.000    0.214
##    .ssao              0.406    0.028   14.717    0.000    0.352
##    .ssai              0.319    0.027   12.013    0.000    0.267
##    .sssi              0.310    0.028   11.219    0.000    0.256
##    .ssno              0.350    0.039    8.983    0.000    0.273
##    .sscs              0.462    0.051    8.968    0.000    0.361
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.181    0.153    0.160
##     0.201    0.171    0.175
##     0.276    0.234    0.261
##     0.304    0.260    0.287
##     0.183    0.152    0.169
##     0.218    0.187    0.192
##     0.287    0.251    0.283
##     0.461    0.406    0.443
##     0.371    0.319    0.452
##     0.364    0.310    0.425
##     0.426    0.350    0.366
##     0.563    0.462    0.486
##     1.000    0.078    0.078
##     1.000    0.138    0.138
##     1.000    0.242    0.242
##     1.000    0.407    0.407
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.250    0.042    5.980    0.000    0.168
##     sswk    (.p2.)    0.251    0.042    5.934    0.000    0.168
##     sspc    (.p3.)    0.113    0.023    4.930    0.000    0.068
##     ssei    (.p4.)    0.136    0.025    5.337    0.000    0.086
##   math =~                                                      
##     ssar    (.p5.)    0.320    0.038    8.467    0.000    0.246
##     sspc    (.p6.)    0.162    0.026    6.127    0.000    0.110
##     ssmk    (.p7.)    0.238    0.033    7.259    0.000    0.174
##     ssmc    (.p8.)    0.196    0.024    8.071    0.000    0.148
##     ssao    (.p9.)    0.266    0.033    8.163    0.000    0.202
##   electronic =~                                                
##     ssai    (.10.)    0.306    0.035    8.760    0.000    0.238
##     sssi    (.11.)    0.319    0.037    8.548    0.000    0.246
##     ssmc    (.12.)    0.151    0.020    7.452    0.000    0.111
##     ssei    (.13.)    0.174    0.021    8.156    0.000    0.132
##   speed =~                                                     
##     ssno    (.14.)    0.496    0.045   10.989    0.000    0.408
##     sscs    (.15.)    0.446    0.040   11.184    0.000    0.368
##     ssmk    (.16.)    0.196    0.024    8.259    0.000    0.149
##   g =~                                                         
##     verbal  (.17.)    3.432    0.615    5.580    0.000    2.227
##     math    (.18.)    2.499    0.341    7.339    0.000    1.832
##     elctrnc (.19.)    1.769    0.222    7.954    0.000    1.333
##     speed   (.20.)    1.207    0.136    8.852    0.000    0.940
##  ci.upper   Std.lv  Std.all
##                            
##     0.332    0.990    0.925
##     0.334    0.992    0.915
##     0.157    0.445    0.436
##     0.186    0.537    0.487
##                            
##     0.395    0.936    0.896
##     0.213    0.472    0.463
##     0.302    0.694    0.662
##     0.244    0.572    0.546
##     0.329    0.775    0.733
##                            
##     0.375    0.892    0.796
##     0.392    0.929    0.854
##     0.191    0.440    0.420
##     0.215    0.505    0.458
##                            
##     0.585    0.874    0.817
##     0.524    0.786    0.748
##     0.242    0.345    0.328
##                            
##     4.638    0.961    0.961
##     3.166    0.948    0.948
##     2.205    0.673    0.673
##     1.474    0.759    0.759
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.285    0.046    6.206    0.000    0.195
##    .sswk              0.136    0.046    2.930    0.003    0.045
##    .sspc             -0.020    0.044   -0.450    0.652   -0.105
##    .ssei              0.317    0.051    6.192    0.000    0.217
##    .ssar              0.185    0.045    4.117    0.000    0.097
##    .ssmk              0.094    0.044    2.150    0.032    0.008
##    .ssmc              0.317    0.046    6.902    0.000    0.227
##    .ssao              0.084    0.045    1.868    0.062   -0.004
##    .ssai              0.427    0.052    8.172    0.000    0.324
##    .sssi              0.489    0.049   10.035    0.000    0.394
##    .ssno              0.022    0.047    0.466    0.641   -0.070
##    .sscs             -0.116    0.046   -2.517    0.012   -0.206
##  ci.upper   Std.lv  Std.all
##     0.375    0.285    0.266
##     0.226    0.136    0.125
##     0.066   -0.020   -0.019
##     0.417    0.317    0.287
##     0.274    0.185    0.178
##     0.180    0.094    0.090
##     0.406    0.317    0.302
##     0.173    0.084    0.080
##     0.529    0.427    0.381
##     0.585    0.489    0.450
##     0.114    0.022    0.020
##    -0.026   -0.116   -0.110
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.166    0.017    9.782    0.000    0.133
##    .sswk              0.191    0.016   11.631    0.000    0.159
##    .sspc              0.237    0.019   12.173    0.000    0.199
##    .ssei              0.322    0.026   12.584    0.000    0.272
##    .ssar              0.215    0.023    9.517    0.000    0.170
##    .ssmk              0.156    0.013   11.836    0.000    0.130
##    .ssmc              0.256    0.019   13.304    0.000    0.218
##    .ssao              0.519    0.037   13.899    0.000    0.445
##    .ssai              0.461    0.042   10.847    0.000    0.378
##    .sssi              0.319    0.037    8.698    0.000    0.247
##    .ssno              0.380    0.042    9.014    0.000    0.298
##    .sscs              0.486    0.056    8.762    0.000    0.378
##    .verbal            1.187    0.511    2.325    0.020    0.187
##    .math              0.870    0.284    3.068    0.002    0.314
##    .electronic        4.642    1.118    4.150    0.000    2.450
##    .speed             1.316    0.280    4.702    0.000    0.768
##     g                 1.226    0.103   11.902    0.000    1.024
##  ci.upper   Std.lv  Std.all
##     0.200    0.166    0.145
##     0.223    0.191    0.162
##     0.275    0.237    0.228
##     0.372    0.322    0.265
##     0.259    0.215    0.197
##     0.182    0.156    0.142
##     0.294    0.256    0.233
##     0.592    0.519    0.463
##     0.544    0.461    0.367
##     0.390    0.319    0.270
##     0.463    0.380    0.332
##     0.595    0.486    0.441
##     2.188    0.076    0.076
##     1.425    0.102    0.102
##     6.834    0.548    0.548
##     1.865    0.424    0.424
##     1.428    1.000    1.000
lavTestScore(metric, release = 1:20)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 47.626 20       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p55.  0.063  1   0.802
## 2   .p2. == .p56.  3.089  1   0.079
## 3   .p3. == .p57.  0.927  1   0.336
## 4   .p4. == .p58. 10.663  1   0.001
## 5   .p5. == .p59.  2.364  1   0.124
## 6   .p6. == .p60.  0.693  1   0.405
## 7   .p7. == .p61. 10.629  1   0.001
## 8   .p8. == .p62.  1.327  1   0.249
## 9   .p9. == .p63.  1.512  1   0.219
## 10 .p10. == .p64.  4.408  1   0.036
## 11 .p11. == .p65.  0.552  1   0.457
## 12 .p12. == .p66.  0.108  1   0.743
## 13 .p13. == .p67. 15.273  1   0.000
## 14 .p14. == .p68.  0.417  1   0.518
## 15 .p15. == .p69.  0.572  1   0.450
## 16 .p16. == .p70.  9.221  1   0.002
## 17 .p17. == .p71.  0.165  1   0.685
## 18 .p18. == .p72.  3.896  1   0.048
## 19 .p19. == .p73. 19.380  1   0.000
## 20 .p20. == .p74.  0.536  1   0.464
scalar<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 1.250407e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   595.690   114.000     0.000     0.964     0.080     0.052 32194.080 
##       bic 
## 32535.914
Mc(scalar)
## [1] 0.8321765
summary(scalar, standardized=T, ci=T) # g -.085 Std.all
## lavaan 0.6-18 ended normally after 121 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    32
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               595.690     455.269
##   Degrees of freedom                               114         114
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.308
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          255.040     194.920
##     0                                          340.649     260.349
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.254    0.041    6.166    0.000    0.173
##     sswk    (.p2.)    0.255    0.042    6.113    0.000    0.173
##     sspc    (.p3.)    0.091    0.024    3.770    0.000    0.044
##     ssei    (.p4.)    0.139    0.025    5.534    0.000    0.089
##   math =~                                                      
##     ssar    (.p5.)    0.312    0.041    7.590    0.000    0.231
##     sspc    (.p6.)    0.187    0.028    6.610    0.000    0.132
##     ssmk    (.p7.)    0.233    0.035    6.700    0.000    0.165
##     ssmc    (.p8.)    0.184    0.025    7.336    0.000    0.135
##     ssao    (.p9.)    0.259    0.035    7.386    0.000    0.190
##   electronic =~                                                
##     ssai    (.10.)    0.304    0.034    8.858    0.000    0.237
##     sssi    (.11.)    0.316    0.036    8.703    0.000    0.245
##     ssmc    (.12.)    0.160    0.020    8.105    0.000    0.121
##     ssei    (.13.)    0.171    0.021    8.315    0.000    0.131
##   speed =~                                                     
##     ssno    (.14.)    0.486    0.044   11.018    0.000    0.400
##     sscs    (.15.)    0.452    0.041   11.076    0.000    0.372
##     ssmk    (.16.)    0.191    0.023    8.143    0.000    0.145
##   g =~                                                         
##     verbal  (.17.)    3.376    0.588    5.744    0.000    2.224
##     math    (.18.)    2.570    0.386    6.662    0.000    1.814
##     elctrnc (.19.)    1.784    0.223    8.000    0.000    1.347
##     speed   (.20.)    1.218    0.138    8.819    0.000    0.947
##  ci.upper   Std.lv  Std.all
##                            
##     0.335    0.896    0.915
##     0.336    0.897    0.908
##     0.139    0.321    0.336
##     0.188    0.488    0.513
##                            
##     0.392    0.859    0.909
##     0.243    0.517    0.540
##     0.302    0.643    0.653
##     0.233    0.507    0.540
##     0.328    0.715    0.746
##                            
##     0.371    0.621    0.739
##     0.387    0.646    0.757
##     0.199    0.327    0.348
##     0.211    0.350    0.367
##                            
##     0.573    0.767    0.788
##     0.532    0.712    0.723
##     0.237    0.301    0.306
##                            
##     4.528    0.959    0.959
##     3.326    0.932    0.932
##     2.221    0.872    0.872
##     1.489    0.773    0.773
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.190    0.041    4.627    0.000    0.110
##    .sswk    (.39.)    0.128    0.042    3.030    0.002    0.045
##    .sspc    (.40.)    0.137    0.041    3.346    0.001    0.057
##    .ssei    (.41.)   -0.005    0.038   -0.119    0.905   -0.079
##    .ssar    (.42.)    0.220    0.040    5.550    0.000    0.143
##    .ssmk    (.43.)    0.247    0.043    5.773    0.000    0.163
##    .ssmc    (.44.)    0.059    0.038    1.562    0.118   -0.015
##    .ssao    (.45.)    0.164    0.039    4.221    0.000    0.088
##    .ssai    (.46.)   -0.113    0.033   -3.420    0.001   -0.177
##    .sssi    (.47.)   -0.073    0.034   -2.170    0.030   -0.139
##    .ssno    (.48.)    0.217    0.040    5.389    0.000    0.138
##    .sscs    (.49.)    0.180    0.042    4.295    0.000    0.098
##  ci.upper   Std.lv  Std.all
##     0.271    0.190    0.195
##     0.210    0.128    0.129
##     0.217    0.137    0.143
##     0.070   -0.005   -0.005
##     0.298    0.220    0.233
##     0.331    0.247    0.251
##     0.133    0.059    0.063
##     0.240    0.164    0.171
##    -0.048   -0.113   -0.134
##    -0.007   -0.073   -0.085
##     0.296    0.217    0.223
##     0.261    0.180    0.182
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.156    0.015   10.067    0.000    0.125
##    .sswk              0.171    0.016   10.636    0.000    0.140
##    .sspc              0.250    0.024   10.504    0.000    0.203
##    .ssei              0.260    0.023   11.509    0.000    0.216
##    .ssar              0.156    0.016    9.470    0.000    0.124
##    .ssmk              0.187    0.016   11.911    0.000    0.157
##    .ssmc              0.250    0.018   13.534    0.000    0.214
##    .ssao              0.408    0.028   14.734    0.000    0.353
##    .ssai              0.321    0.026   12.156    0.000    0.269
##    .sssi              0.311    0.028   11.171    0.000    0.257
##    .ssno              0.360    0.040    9.058    0.000    0.282
##    .sscs              0.462    0.052    8.858    0.000    0.360
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.186    0.156    0.163
##     0.203    0.171    0.176
##     0.296    0.250    0.272
##     0.304    0.260    0.287
##     0.188    0.156    0.174
##     0.218    0.187    0.193
##     0.286    0.250    0.283
##     0.462    0.408    0.444
##     0.372    0.321    0.454
##     0.366    0.311    0.427
##     0.438    0.360    0.380
##     0.565    0.462    0.477
##     1.000    0.081    0.081
##     1.000    0.131    0.131
##     1.000    0.239    0.239
##     1.000    0.403    0.403
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.254    0.041    6.166    0.000    0.173
##     sswk    (.p2.)    0.255    0.042    6.113    0.000    0.173
##     sspc    (.p3.)    0.091    0.024    3.770    0.000    0.044
##     ssei    (.p4.)    0.139    0.025    5.534    0.000    0.089
##   math =~                                                      
##     ssar    (.p5.)    0.312    0.041    7.590    0.000    0.231
##     sspc    (.p6.)    0.187    0.028    6.610    0.000    0.132
##     ssmk    (.p7.)    0.233    0.035    6.700    0.000    0.165
##     ssmc    (.p8.)    0.184    0.025    7.336    0.000    0.135
##     ssao    (.p9.)    0.259    0.035    7.386    0.000    0.190
##   electronic =~                                                
##     ssai    (.10.)    0.304    0.034    8.858    0.000    0.237
##     sssi    (.11.)    0.316    0.036    8.703    0.000    0.245
##     ssmc    (.12.)    0.160    0.020    8.105    0.000    0.121
##     ssei    (.13.)    0.171    0.021    8.315    0.000    0.131
##   speed =~                                                     
##     ssno    (.14.)    0.486    0.044   11.018    0.000    0.400
##     sscs    (.15.)    0.452    0.041   11.076    0.000    0.372
##     ssmk    (.16.)    0.191    0.023    8.143    0.000    0.145
##   g =~                                                         
##     verbal  (.17.)    3.376    0.588    5.744    0.000    2.224
##     math    (.18.)    2.570    0.386    6.662    0.000    1.814
##     elctrnc (.19.)    1.784    0.223    8.000    0.000    1.347
##     speed   (.20.)    1.218    0.138    8.819    0.000    0.947
##  ci.upper   Std.lv  Std.all
##                            
##     0.335    0.991    0.923
##     0.336    0.992    0.915
##     0.139    0.356    0.346
##     0.188    0.540    0.490
##                            
##     0.392    0.931    0.893
##     0.243    0.560    0.545
##     0.302    0.697    0.665
##     0.233    0.550    0.523
##     0.328    0.775    0.732
##                            
##     0.371    0.888    0.793
##     0.387    0.924    0.852
##     0.199    0.467    0.444
##     0.211    0.500    0.454
##                            
##     0.573    0.861    0.808
##     0.532    0.799    0.754
##     0.237    0.338    0.323
##                            
##     4.528    0.959    0.959
##     3.326    0.952    0.952
##     2.221    0.675    0.675
##     1.489    0.762    0.762
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.190    0.041    4.627    0.000    0.110
##    .sswk    (.39.)    0.128    0.042    3.030    0.002    0.045
##    .sspc    (.40.)    0.137    0.041    3.346    0.001    0.057
##    .ssei    (.41.)   -0.005    0.038   -0.119    0.905   -0.079
##    .ssar    (.42.)    0.220    0.040    5.550    0.000    0.143
##    .ssmk    (.43.)    0.247    0.043    5.773    0.000    0.163
##    .ssmc    (.44.)    0.059    0.038    1.562    0.118   -0.015
##    .ssao    (.45.)    0.164    0.039    4.221    0.000    0.088
##    .ssai    (.46.)   -0.113    0.033   -3.420    0.001   -0.177
##    .sssi    (.47.)   -0.073    0.034   -2.170    0.030   -0.139
##    .ssno    (.48.)    0.217    0.040    5.389    0.000    0.138
##    .sscs    (.49.)    0.180    0.042    4.295    0.000    0.098
##    .verbal           -0.169    0.108   -1.562    0.118   -0.382
##    .math             -0.512    0.123   -4.157    0.000   -0.753
##    .elctrnc           1.628    0.203    8.017    0.000    1.230
##    .speed            -0.613    0.107   -5.734    0.000   -0.822
##     g                 0.094    0.067    1.403    0.161   -0.037
##  ci.upper   Std.lv  Std.all
##     0.271    0.190    0.177
##     0.210    0.128    0.118
##     0.217    0.137    0.133
##     0.070   -0.005   -0.004
##     0.298    0.220    0.211
##     0.331    0.247    0.236
##     0.133    0.059    0.056
##     0.240    0.164    0.155
##    -0.048   -0.113   -0.101
##    -0.007   -0.073   -0.067
##     0.296    0.217    0.204
##     0.261    0.180    0.169
##     0.043   -0.043   -0.043
##    -0.271   -0.171   -0.171
##     2.026    0.557    0.557
##    -0.403   -0.346   -0.346
##     0.225    0.085    0.085
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.170    0.018    9.286    0.000    0.134
##    .sswk              0.190    0.017   11.308    0.000    0.157
##    .sspc              0.254    0.022   11.531    0.000    0.211
##    .ssei              0.323    0.025   12.837    0.000    0.274
##    .ssar              0.221    0.023    9.531    0.000    0.175
##    .ssmk              0.157    0.013   11.754    0.000    0.131
##    .ssmc              0.255    0.019   13.167    0.000    0.217
##    .ssao              0.519    0.037   13.886    0.000    0.446
##    .ssai              0.464    0.042   11.056    0.000    0.382
##    .sssi              0.323    0.035    9.191    0.000    0.254
##    .ssno              0.393    0.043    9.191    0.000    0.309
##    .sscs              0.486    0.057    8.474    0.000    0.374
##    .verbal            1.218    0.510    2.391    0.017    0.219
##    .math              0.846    0.293    2.887    0.004    0.272
##    .electronic        4.646    1.117    4.159    0.000    2.456
##    .speed             1.313    0.283    4.634    0.000    0.758
##     g                 1.225    0.103   11.878    0.000    1.023
##  ci.upper   Std.lv  Std.all
##     0.206    0.170    0.148
##     0.223    0.190    0.162
##     0.297    0.254    0.240
##     0.372    0.323    0.266
##     0.266    0.221    0.203
##     0.184    0.157    0.143
##     0.293    0.255    0.231
##     0.592    0.519    0.464
##     0.547    0.464    0.371
##     0.392    0.323    0.275
##     0.476    0.393    0.346
##     0.598    0.486    0.432
##     2.217    0.080    0.080
##     1.420    0.095    0.095
##     6.836    0.544    0.544
##     1.869    0.420    0.420
##     1.427    1.000    1.000
lavTestScore(scalar, release = 21:32) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 142.339 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs     X2 df p.value
## 1  .p38. ==  .p92. 45.713  1   0.000
## 2  .p39. ==  .p93. 10.064  1   0.002
## 3  .p40. ==  .p94. 89.630  1   0.000
## 4  .p41. ==  .p95.  0.240  1   0.624
## 5  .p42. ==  .p96. 22.873  1   0.000
## 6  .p43. ==  .p97.  0.470  1   0.493
## 7  .p44. ==  .p98.  3.989  1   0.046
## 8  .p45. ==  .p99.  0.223  1   0.637
## 9  .p46. == .p100.  0.165  1   0.685
## 10 .p47. == .p101.  0.258  1   0.612
## 11 .p48. == .p102. 15.116  1   0.000
## 12 .p49. == .p103. 20.467  1   0.000
scalar2<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 3.008805e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   503.732   113.000     0.000     0.971     0.073     0.050 32104.122 
##       bic 
## 32451.136
Mc(scalar2)
## [1] 0.8615513
summary(scalar2, standardized=T, ci=T) # -.105
## lavaan 0.6-18 ended normally after 123 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               503.732     383.548
##   Degrees of freedom                               113         113
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.313
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          210.470     160.254
##     0                                          293.262     223.293
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.246    0.043    5.762    0.000    0.162
##     sswk    (.p2.)    0.246    0.043    5.716    0.000    0.162
##     sspc    (.p3.)    0.112    0.023    4.856    0.000    0.067
##     ssei    (.p4.)    0.136    0.026    5.265    0.000    0.085
##   math =~                                                      
##     ssar    (.p5.)    0.323    0.038    8.568    0.000    0.249
##     sspc    (.p6.)    0.161    0.026    6.089    0.000    0.109
##     ssmk    (.p7.)    0.236    0.033    7.245    0.000    0.173
##     ssmc    (.p8.)    0.194    0.024    8.231    0.000    0.148
##     ssao    (.p9.)    0.268    0.032    8.265    0.000    0.205
##   electronic =~                                                
##     ssai    (.10.)    0.307    0.034    8.989    0.000    0.240
##     sssi    (.11.)    0.320    0.036    8.820    0.000    0.249
##     ssmc    (.12.)    0.156    0.019    8.046    0.000    0.118
##     ssei    (.13.)    0.170    0.020    8.302    0.000    0.130
##   speed =~                                                     
##     ssno    (.14.)    0.482    0.044   11.066    0.000    0.396
##     sscs    (.15.)    0.450    0.041   11.082    0.000    0.370
##     ssmk    (.16.)    0.200    0.023    8.693    0.000    0.155
##   g =~                                                         
##     verbal  (.17.)    3.499    0.649    5.392    0.000    2.227
##     math    (.18.)    2.473    0.334    7.412    0.000    1.819
##     elctrnc (.19.)    1.767    0.217    8.130    0.000    1.341
##     speed   (.20.)    1.224    0.139    8.840    0.000    0.953
##  ci.upper   Std.lv  Std.all
##                            
##     0.330    0.896    0.915
##     0.330    0.895    0.906
##     0.157    0.408    0.431
##     0.186    0.493    0.518
##                            
##     0.397    0.863    0.912
##     0.213    0.430    0.454
##     0.300    0.631    0.640
##     0.241    0.518    0.551
##     0.332    0.715    0.746
##                            
##     0.374    0.623    0.741
##     0.391    0.649    0.759
##     0.194    0.317    0.337
##     0.210    0.344    0.362
##                            
##     0.567    0.761    0.783
##     0.529    0.711    0.723
##     0.246    0.317    0.322
##                            
##     4.771    0.962    0.962
##     3.127    0.927    0.927
##     2.193    0.870    0.870
##     1.496    0.775    0.775
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.177    0.041    4.339    0.000    0.097
##    .sswk    (.39.)    0.114    0.042    2.737    0.006    0.032
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssei    (.41.)   -0.007    0.038   -0.186    0.852   -0.081
##    .ssar    (.42.)    0.197    0.040    4.927    0.000    0.118
##    .ssmk    (.43.)    0.231    0.043    5.375    0.000    0.147
##    .ssmc    (.44.)    0.049    0.038    1.310    0.190   -0.024
##    .ssao    (.45.)    0.143    0.039    3.693    0.000    0.067
##    .ssai    (.46.)   -0.109    0.033   -3.306    0.001   -0.173
##    .sssi    (.47.)   -0.068    0.034   -2.033    0.042   -0.134
##    .ssno    (.48.)    0.225    0.040    5.605    0.000    0.147
##    .sscs    (.49.)    0.188    0.042    4.517    0.000    0.106
##  ci.upper   Std.lv  Std.all
##     0.256    0.177    0.181
##     0.196    0.114    0.116
##     0.333    0.253    0.267
##     0.067   -0.007   -0.007
##     0.275    0.197    0.208
##     0.315    0.231    0.234
##     0.123    0.049    0.052
##     0.219    0.143    0.149
##    -0.044   -0.109   -0.129
##    -0.002   -0.068   -0.080
##     0.304    0.225    0.232
##     0.270    0.188    0.191
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.155    0.015   10.345    0.000    0.126
##    .sswk              0.174    0.016   10.845    0.000    0.143
##    .sspc              0.234    0.021   10.924    0.000    0.192
##    .ssei              0.260    0.023   11.517    0.000    0.216
##    .ssar              0.151    0.016    9.408    0.000    0.119
##    .ssmk              0.186    0.016   11.752    0.000    0.155
##    .ssmc              0.250    0.018   13.559    0.000    0.214
##    .ssao              0.407    0.028   14.786    0.000    0.353
##    .ssai              0.319    0.026   12.106    0.000    0.267
##    .sssi              0.310    0.028   11.138    0.000    0.255
##    .ssno              0.366    0.040    9.114    0.000    0.287
##    .sscs              0.461    0.052    8.856    0.000    0.359
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.185    0.155    0.162
##     0.206    0.174    0.179
##     0.276    0.234    0.261
##     0.305    0.260    0.287
##     0.182    0.151    0.168
##     0.217    0.186    0.192
##     0.286    0.250    0.283
##     0.461    0.407    0.443
##     0.371    0.319    0.451
##     0.364    0.310    0.424
##     0.444    0.366    0.387
##     0.563    0.461    0.477
##     1.000    0.076    0.076
##     1.000    0.141    0.141
##     1.000    0.243    0.243
##     1.000    0.400    0.400
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.246    0.043    5.762    0.000    0.162
##     sswk    (.p2.)    0.246    0.043    5.716    0.000    0.162
##     sspc    (.p3.)    0.112    0.023    4.856    0.000    0.067
##     ssei    (.p4.)    0.136    0.026    5.265    0.000    0.085
##   math =~                                                      
##     ssar    (.p5.)    0.323    0.038    8.568    0.000    0.249
##     sspc    (.p6.)    0.161    0.026    6.089    0.000    0.109
##     ssmk    (.p7.)    0.236    0.033    7.245    0.000    0.173
##     ssmc    (.p8.)    0.194    0.024    8.231    0.000    0.148
##     ssao    (.p9.)    0.268    0.032    8.265    0.000    0.205
##   electronic =~                                                
##     ssai    (.10.)    0.307    0.034    8.989    0.000    0.240
##     sssi    (.11.)    0.320    0.036    8.820    0.000    0.249
##     ssmc    (.12.)    0.156    0.019    8.046    0.000    0.118
##     ssei    (.13.)    0.170    0.020    8.302    0.000    0.130
##   speed =~                                                     
##     ssno    (.14.)    0.482    0.044   11.066    0.000    0.396
##     sscs    (.15.)    0.450    0.041   11.082    0.000    0.370
##     ssmk    (.16.)    0.200    0.023    8.693    0.000    0.155
##   g =~                                                         
##     verbal  (.17.)    3.499    0.649    5.392    0.000    2.227
##     math    (.18.)    2.473    0.334    7.412    0.000    1.819
##     elctrnc (.19.)    1.767    0.217    8.130    0.000    1.341
##     speed   (.20.)    1.224    0.139    8.840    0.000    0.953
##  ci.upper   Std.lv  Std.all
##                            
##     0.330    0.990    0.923
##     0.330    0.989    0.913
##     0.157    0.451    0.442
##     0.186    0.545    0.495
##                            
##     0.397    0.936    0.897
##     0.213    0.466    0.457
##     0.300    0.685    0.652
##     0.241    0.563    0.536
##     0.332    0.776    0.733
##                            
##     0.374    0.891    0.795
##     0.391    0.928    0.854
##     0.194    0.454    0.432
##     0.210    0.493    0.447
##                            
##     0.567    0.855    0.804
##     0.529    0.799    0.753
##     0.246    0.356    0.339
##                            
##     4.771    0.963    0.963
##     3.127    0.946    0.946
##     2.193    0.674    0.674
##     1.496    0.764    0.764
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.177    0.041    4.339    0.000    0.097
##    .sswk    (.39.)    0.114    0.042    2.737    0.006    0.032
##    .sspc             -0.036    0.043   -0.841    0.401   -0.121
##    .ssei    (.41.)   -0.007    0.038   -0.186    0.852   -0.081
##    .ssar    (.42.)    0.197    0.040    4.927    0.000    0.118
##    .ssmk    (.43.)    0.231    0.043    5.375    0.000    0.147
##    .ssmc    (.44.)    0.049    0.038    1.310    0.190   -0.024
##    .ssao    (.45.)    0.143    0.039    3.693    0.000    0.067
##    .ssai    (.46.)   -0.109    0.033   -3.306    0.001   -0.173
##    .sssi    (.47.)   -0.068    0.034   -2.033    0.042   -0.134
##    .ssno    (.48.)    0.225    0.040    5.605    0.000    0.147
##    .sscs    (.49.)    0.188    0.042    4.517    0.000    0.106
##    .verbal           -0.138    0.088   -1.567    0.117   -0.310
##    .math             -0.372    0.095   -3.900    0.000   -0.558
##    .elctrnc           1.542    0.196    7.864    0.000    1.158
##    .speed            -0.682    0.111   -6.164    0.000   -0.898
##     g                 0.117    0.066    1.755    0.079   -0.014
##  ci.upper   Std.lv  Std.all
##     0.256    0.177    0.165
##     0.196    0.114    0.105
##     0.049   -0.036   -0.036
##     0.067   -0.007   -0.006
##     0.275    0.197    0.188
##     0.315    0.231    0.220
##     0.123    0.049    0.047
##     0.219    0.143    0.135
##    -0.044   -0.109   -0.097
##    -0.002   -0.068   -0.063
##     0.304    0.225    0.212
##     0.270    0.188    0.177
##     0.035   -0.034   -0.034
##    -0.185   -0.128   -0.128
##     1.927    0.531    0.531
##    -0.465   -0.384   -0.384
##     0.247    0.105    0.105
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.170    0.018    9.646    0.000    0.135
##    .sswk              0.195    0.017   11.663    0.000    0.162
##    .sspc              0.237    0.019   12.147    0.000    0.199
##    .ssei              0.324    0.025   12.830    0.000    0.274
##    .ssar              0.214    0.022    9.523    0.000    0.170
##    .ssmk              0.156    0.013   11.747    0.000    0.130
##    .ssmc              0.255    0.019   13.207    0.000    0.217
##    .ssao              0.520    0.038   13.782    0.000    0.446
##    .ssai              0.462    0.042   10.996    0.000    0.379
##    .sssi              0.319    0.035    9.035    0.000    0.250
##    .ssno              0.401    0.043    9.335    0.000    0.317
##    .sscs              0.485    0.057    8.537    0.000    0.374
##    .verbal            1.182    0.529    2.236    0.025    0.146
##    .math              0.881    0.282    3.122    0.002    0.328
##    .electronic        4.605    1.098    4.195    0.000    2.454
##    .speed             1.312    0.280    4.686    0.000    0.763
##     g                 1.226    0.103   11.904    0.000    1.024
##  ci.upper   Std.lv  Std.all
##     0.204    0.170    0.147
##     0.228    0.195    0.166
##     0.275    0.237    0.227
##     0.373    0.324    0.267
##     0.258    0.214    0.196
##     0.181    0.156    0.141
##     0.293    0.255    0.231
##     0.594    0.520    0.463
##     0.544    0.462    0.368
##     0.388    0.319    0.270
##     0.485    0.401    0.354
##     0.597    0.485    0.432
##     2.219    0.073    0.073
##     1.434    0.105    0.105
##     6.757    0.546    0.546
##     1.861    0.416    0.416
##     1.428    1.000    1.000
lavTestScore(scalar2, release = 21:31, standardized=T, epc=T) # others have low and similar chi-square, but ssno and sscs have the highest value in sepc.all 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 52.047 11       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs     X2 df p.value
## 1  .p38. ==  .p92. 25.826  1   0.000
## 2  .p39. ==  .p93. 22.929  1   0.000
## 3  .p41. ==  .p95.  0.527  1   0.468
## 4  .p42. ==  .p96.  2.767  1   0.096
## 5  .p43. ==  .p97.  1.163  1   0.281
## 6  .p44. ==  .p98.  0.982  1   0.322
## 7  .p45. ==  .p99.  3.426  1   0.064
## 8  .p46. == .p100.  0.004  1   0.949
## 9  .p47. == .p101.  0.006  1   0.940
## 10 .p48. == .p102. 20.700  1   0.000
## 11 .p49. == .p103. 15.759  1   0.000
## 
## $epc
## 
## expected parameter changes (epc) and expected parameter values (epv):
## 
##           lhs op        rhs block group free label plabel    est    epc
## 1      verbal =~       ssgs     1     1    1  .p1.   .p1.  0.246  0.001
## 2      verbal =~       sswk     1     1    2  .p2.   .p2.  0.246  0.002
## 3      verbal =~       sspc     1     1    3  .p3.   .p3.  0.112  0.000
## 4      verbal =~       ssei     1     1    4  .p4.   .p4.  0.136 -0.001
## 5        math =~       ssar     1     1    5  .p5.   .p5.  0.323 -0.003
## 6        math =~       sspc     1     1    6  .p6.   .p6.  0.161 -0.001
## 7        math =~       ssmk     1     1    7  .p7.   .p7.  0.236  0.001
## 8        math =~       ssmc     1     1    8  .p8.   .p8.  0.194  0.002
## 9        math =~       ssao     1     1    9  .p9.   .p9.  0.268 -0.003
## 10 electronic =~       ssai     1     1   10 .p10.  .p10.  0.307  0.000
## 11 electronic =~       sssi     1     1   11 .p11.  .p11.  0.320  0.001
## 12 electronic =~       ssmc     1     1   12 .p12.  .p12.  0.156 -0.005
## 13 electronic =~       ssei     1     1   13 .p13.  .p13.  0.170  0.004
## 14      speed =~       ssno     1     1   14 .p14.  .p14.  0.482  0.011
## 15      speed =~       sscs     1     1   15 .p15.  .p15.  0.450 -0.006
## 16      speed =~       ssmk     1     1   16 .p16.  .p16.  0.200 -0.006
## 17          g =~     verbal     1     1   17 .p17.  .p17.  3.499 -0.027
## 18          g =~       math     1     1   18 .p18.  .p18.  2.473  0.026
## 19          g =~ electronic     1     1   19 .p19.  .p19.  1.767 -0.003
## 20          g =~      speed     1     1   20 .p20.  .p20.  1.224 -0.009
## 21       ssgs ~~       ssgs     1     1   21        .p21.  0.155  0.000
## 22       sswk ~~       sswk     1     1   22        .p22.  0.174 -0.001
## 23       sspc ~~       sspc     1     1   23        .p23.  0.234  0.000
## 24       ssei ~~       ssei     1     1   24        .p24.  0.260 -0.001
## 25       ssar ~~       ssar     1     1   25        .p25.  0.151  0.001
## 26       ssmk ~~       ssmk     1     1   26        .p26.  0.186  0.001
## 27       ssmc ~~       ssmc     1     1   27        .p27.  0.250  0.000
## 28       ssao ~~       ssao     1     1   28        .p28.  0.407  0.000
## 29       ssai ~~       ssai     1     1   29        .p29.  0.319  0.000
## 30       sssi ~~       sssi     1     1   30        .p30.  0.310  0.000
## 31       ssno ~~       ssno     1     1   31        .p31.  0.366 -0.009
## 32       sscs ~~       sscs     1     1   32        .p32.  0.461  0.005
## 33     verbal ~~     verbal     1     1    0        .p33.  1.000     NA
## 34       math ~~       math     1     1    0        .p34.  1.000     NA
## 35 electronic ~~ electronic     1     1    0        .p35.  1.000     NA
## 36      speed ~~      speed     1     1    0        .p36.  1.000     NA
## 37          g ~~          g     1     1    0        .p37.  1.000     NA
## 38       ssgs ~1                1     1   33 .p38.  .p38.  0.177 -0.038
## 39       sswk ~1                1     1   34 .p39.  .p39.  0.114  0.040
## 40       sspc ~1                1     1   35        .p40.  0.253  0.000
## 41       ssei ~1                1     1   36 .p41.  .p41. -0.007  0.007
## 42       ssar ~1                1     1   37 .p42.  .p42.  0.197 -0.011
## 43       ssmk ~1                1     1   38 .p43.  .p43.  0.231  0.010
## 44       ssmc ~1                1     1   39 .p44.  .p44.  0.049 -0.010
## 45       ssao ~1                1     1   40 .p45.  .p45.  0.143  0.028
## 46       ssai ~1                1     1   41 .p46.  .p46. -0.109  0.001
## 47       sssi ~1                1     1   42 .p47.  .p47. -0.068  0.001
## 48       ssno ~1                1     1   43 .p48.  .p48.  0.225 -0.051
## 49       sscs ~1                1     1   44 .p49.  .p49.  0.188  0.058
## 50     verbal ~1                1     1    0        .p50.  0.000     NA
## 51       math ~1                1     1    0        .p51.  0.000     NA
## 52 electronic ~1                1     1    0        .p52.  0.000     NA
## 53      speed ~1                1     1    0        .p53.  0.000     NA
## 54          g ~1                1     1    0        .p54.  0.000     NA
## 55     verbal =~       ssgs     2     2   45  .p1.  .p55.  0.246  0.001
## 56     verbal =~       sswk     2     2   46  .p2.  .p56.  0.246  0.002
## 57     verbal =~       sspc     2     2   47  .p3.  .p57.  0.112  0.000
## 58     verbal =~       ssei     2     2   48  .p4.  .p58.  0.136 -0.001
## 59       math =~       ssar     2     2   49  .p5.  .p59.  0.323 -0.003
## 60       math =~       sspc     2     2   50  .p6.  .p60.  0.161 -0.001
## 61       math =~       ssmk     2     2   51  .p7.  .p61.  0.236  0.001
## 62       math =~       ssmc     2     2   52  .p8.  .p62.  0.194  0.002
## 63       math =~       ssao     2     2   53  .p9.  .p63.  0.268 -0.003
## 64 electronic =~       ssai     2     2   54 .p10.  .p64.  0.307  0.000
## 65 electronic =~       sssi     2     2   55 .p11.  .p65.  0.320  0.001
## 66 electronic =~       ssmc     2     2   56 .p12.  .p66.  0.156 -0.005
## 67 electronic =~       ssei     2     2   57 .p13.  .p67.  0.170  0.004
## 68      speed =~       ssno     2     2   58 .p14.  .p68.  0.482  0.011
## 69      speed =~       sscs     2     2   59 .p15.  .p69.  0.450 -0.006
## 70      speed =~       ssmk     2     2   60 .p16.  .p70.  0.200 -0.006
## 71          g =~     verbal     2     2   61 .p17.  .p71.  3.499 -0.027
##       epv sepc.lv sepc.all sepc.nox
## 1   0.247   0.005    0.005    0.005
## 2   0.248   0.008    0.008    0.008
## 3   0.112   0.000    0.000    0.000
## 4   0.135  -0.003   -0.003   -0.003
## 5   0.320  -0.008   -0.009   -0.009
## 6   0.161  -0.001   -0.002   -0.002
## 7   0.237   0.003    0.003    0.003
## 8   0.196   0.005    0.006    0.006
## 9   0.265  -0.007   -0.007   -0.007
## 10  0.307   0.001    0.001    0.001
## 11  0.320   0.001    0.001    0.001
## 12  0.151  -0.011   -0.011   -0.011
## 13  0.174   0.008    0.008    0.008
## 14  0.493   0.017    0.018    0.018
## 15  0.444  -0.010   -0.010   -0.010
## 16  0.195  -0.009   -0.009   -0.009
## 17  3.472  -0.007   -0.007   -0.007
## 18  2.499   0.010    0.010    0.010
## 19  1.764  -0.002   -0.002   -0.002
## 20  1.216  -0.005   -0.005   -0.005
## 21  0.155   0.155    0.162    0.162
## 22  0.174  -0.174   -0.179   -0.179
## 23  0.234   0.234    0.261    0.261
## 24  0.260  -0.260   -0.287   -0.287
## 25  0.152   0.151    0.168    0.168
## 26  0.187   0.186    0.192    0.192
## 27  0.251   0.250    0.283    0.283
## 28  0.408   0.407    0.443    0.443
## 29  0.319  -0.319   -0.451   -0.451
## 30  0.309  -0.310   -0.424   -0.424
## 31  0.356  -0.366   -0.387   -0.387
## 32  0.467   0.461    0.477    0.477
## 33     NA      NA       NA       NA
## 34     NA      NA       NA       NA
## 35     NA      NA       NA       NA
## 36     NA      NA       NA       NA
## 37     NA      NA       NA       NA
## 38  0.139  -0.038   -0.039   -0.039
## 39  0.154   0.040    0.040    0.040
## 40  0.253   0.000    0.000    0.000
## 41  0.000   0.007    0.008    0.008
## 42  0.186  -0.011   -0.012   -0.012
## 43  0.241   0.010    0.010    0.010
## 44  0.039  -0.010   -0.011   -0.011
## 45  0.171   0.028    0.029    0.029
## 46 -0.108   0.001    0.001    0.001
## 47 -0.068   0.001    0.001    0.001
## 48  0.175  -0.051   -0.052   -0.052
## 49  0.245   0.058    0.058    0.058
## 50     NA      NA       NA       NA
## 51     NA      NA       NA       NA
## 52     NA      NA       NA       NA
## 53     NA      NA       NA       NA
## 54     NA      NA       NA       NA
## 55  0.247   0.005    0.005    0.005
## 56  0.248   0.009    0.008    0.008
## 57  0.112   0.000    0.000    0.000
## 58  0.135  -0.003   -0.003   -0.003
## 59  0.320  -0.009   -0.008   -0.008
## 60  0.161  -0.002   -0.002   -0.002
## 61  0.237   0.003    0.003    0.003
## 62  0.196   0.006    0.005    0.005
## 63  0.265  -0.008   -0.007   -0.007
## 64  0.307   0.001    0.001    0.001
## 65  0.320   0.002    0.001    0.001
## 66  0.151  -0.015   -0.015   -0.015
## 67  0.174   0.011    0.010    0.010
## 68  0.493   0.019    0.018    0.018
## 69  0.444  -0.011   -0.010   -0.010
## 70  0.195  -0.010   -0.009   -0.009
## 71  3.472  -0.007   -0.007   -0.007
##  [ reached 'max' / getOption("max.print") -- omitted 37 rows ]
strict<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 2.212536e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   547.144   125.000     0.000     0.968     0.072     0.053 32123.535 
##       bic 
## 32408.397
Mc(strict) 
## [1] 0.8512913
summary(strict, standardized=T, ci=T) # -.109
## lavaan 0.6-18 ended normally after 119 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    43
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               547.144     410.927
##   Degrees of freedom                               125         125
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.331
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          237.448     178.332
##     0                                          309.697     232.595
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.240    0.044    5.507    0.000    0.155
##     sswk    (.p2.)    0.240    0.044    5.474    0.000    0.154
##     sspc    (.p3.)    0.108    0.023    4.686    0.000    0.063
##     ssei    (.p4.)    0.132    0.026    5.039    0.000    0.081
##   math =~                                                      
##     ssar    (.p5.)    0.310    0.040    7.836    0.000    0.232
##     sspc    (.p6.)    0.156    0.027    5.797    0.000    0.103
##     ssmk    (.p7.)    0.227    0.034    6.614    0.000    0.160
##     ssmc    (.p8.)    0.186    0.024    7.629    0.000    0.138
##     ssao    (.p9.)    0.255    0.034    7.600    0.000    0.189
##   electronic =~                                                
##     ssai    (.10.)    0.292    0.036    8.093    0.000    0.221
##     sssi    (.11.)    0.298    0.038    7.937    0.000    0.224
##     ssmc    (.12.)    0.146    0.020    7.324    0.000    0.107
##     ssei    (.13.)    0.162    0.021    7.531    0.000    0.120
##   speed =~                                                     
##     ssno    (.14.)    0.479    0.044   10.844    0.000    0.393
##     sscs    (.15.)    0.448    0.041   10.834    0.000    0.367
##     ssmk    (.16.)    0.198    0.023    8.494    0.000    0.152
##   g =~                                                         
##     verbal  (.17.)    3.584    0.691    5.188    0.000    2.230
##     math    (.18.)    2.597    0.378    6.876    0.000    1.856
##     elctrnc (.19.)    1.880    0.253    7.435    0.000    1.385
##     speed   (.20.)    1.232    0.142    8.669    0.000    0.953
##  ci.upper   Std.lv  Std.all
##                            
##     0.326    0.895    0.912
##     0.326    0.892    0.901
##     0.153    0.402    0.424
##     0.183    0.492    0.508
##                            
##     0.387    0.861    0.896
##     0.208    0.433    0.458
##     0.294    0.632    0.645
##     0.234    0.517    0.551
##     0.320    0.709    0.721
##                            
##     0.363    0.622    0.711
##     0.372    0.635    0.744
##     0.185    0.310    0.330
##     0.204    0.344    0.356
##                            
##     0.566    0.761    0.776
##     0.529    0.710    0.719
##     0.244    0.315    0.321
##                            
##     4.939    0.963    0.963
##     3.337    0.933    0.933
##     2.376    0.883    0.883
##     1.511    0.776    0.776
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.179    0.041    4.372    0.000    0.098
##    .sswk    (.39.)    0.112    0.042    2.697    0.007    0.031
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssei    (.41.)   -0.010    0.038   -0.252    0.801   -0.084
##    .ssar    (.42.)    0.199    0.040    4.947    0.000    0.120
##    .ssmk    (.43.)    0.231    0.043    5.389    0.000    0.147
##    .ssmc    (.44.)    0.051    0.038    1.346    0.178   -0.023
##    .ssao    (.45.)    0.139    0.039    3.589    0.000    0.063
##    .ssai    (.46.)   -0.112    0.033   -3.373    0.001   -0.177
##    .sssi    (.47.)   -0.066    0.034   -1.954    0.051   -0.131
##    .ssno    (.48.)    0.228    0.040    5.633    0.000    0.149
##    .sscs    (.49.)    0.187    0.041    4.523    0.000    0.106
##  ci.upper   Std.lv  Std.all
##     0.259    0.179    0.182
##     0.193    0.112    0.113
##     0.333    0.253    0.267
##     0.065   -0.010   -0.010
##     0.278    0.199    0.207
##     0.315    0.231    0.236
##     0.124    0.051    0.054
##     0.214    0.139    0.141
##    -0.047   -0.112   -0.128
##     0.000   -0.066   -0.077
##     0.307    0.228    0.233
##     0.267    0.187    0.189
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.21.)    0.162    0.012   13.728    0.000    0.139
##    .sswk    (.22.)    0.185    0.012   15.805    0.000    0.162
##    .sspc    (.23.)    0.235    0.015   16.188    0.000    0.206
##    .ssei    (.24.)    0.290    0.017   17.190    0.000    0.257
##    .ssar    (.25.)    0.182    0.014   13.142    0.000    0.155
##    .ssmk    (.26.)    0.172    0.011   16.031    0.000    0.151
##    .ssmc    (.27.)    0.254    0.013   18.906    0.000    0.228
##    .ssao    (.28.)    0.464    0.024   19.533    0.000    0.418
##    .ssai    (.29.)    0.379    0.024   15.514    0.000    0.331
##    .sssi    (.30.)    0.324    0.023   14.122    0.000    0.279
##    .ssno    (.31.)    0.382    0.030   12.739    0.000    0.323
##    .sscs    (.32.)    0.472    0.039   12.008    0.000    0.395
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .elctrnc           1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.185    0.162    0.168
##     0.208    0.185    0.189
##     0.263    0.235    0.262
##     0.323    0.290    0.309
##     0.209    0.182    0.197
##     0.193    0.172    0.180
##     0.281    0.254    0.288
##     0.511    0.464    0.480
##     0.427    0.379    0.495
##     0.369    0.324    0.446
##     0.441    0.382    0.398
##     0.549    0.472    0.483
##     1.000    0.072    0.072
##     1.000    0.129    0.129
##     1.000    0.221    0.221
##     1.000    0.397    0.397
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.240    0.044    5.507    0.000    0.155
##     sswk    (.p2.)    0.240    0.044    5.474    0.000    0.154
##     sspc    (.p3.)    0.108    0.023    4.686    0.000    0.063
##     ssei    (.p4.)    0.132    0.026    5.039    0.000    0.081
##   math =~                                                      
##     ssar    (.p5.)    0.310    0.040    7.836    0.000    0.232
##     sspc    (.p6.)    0.156    0.027    5.797    0.000    0.103
##     ssmk    (.p7.)    0.227    0.034    6.614    0.000    0.160
##     ssmc    (.p8.)    0.186    0.024    7.629    0.000    0.138
##     ssao    (.p9.)    0.255    0.034    7.600    0.000    0.189
##   electronic =~                                                
##     ssai    (.10.)    0.292    0.036    8.093    0.000    0.221
##     sssi    (.11.)    0.298    0.038    7.937    0.000    0.224
##     ssmc    (.12.)    0.146    0.020    7.324    0.000    0.107
##     ssei    (.13.)    0.162    0.021    7.531    0.000    0.120
##   speed =~                                                     
##     ssno    (.14.)    0.479    0.044   10.844    0.000    0.393
##     sscs    (.15.)    0.448    0.041   10.834    0.000    0.367
##     ssmk    (.16.)    0.198    0.023    8.494    0.000    0.152
##   g =~                                                         
##     verbal  (.17.)    3.584    0.691    5.188    0.000    2.230
##     math    (.18.)    2.597    0.378    6.876    0.000    1.856
##     elctrnc (.19.)    1.880    0.253    7.435    0.000    1.385
##     speed   (.20.)    1.232    0.142    8.669    0.000    0.953
##  ci.upper   Std.lv  Std.all
##                            
##     0.326    0.992    0.927
##     0.326    0.989    0.917
##     0.153    0.446    0.436
##     0.183    0.545    0.499
##                            
##     0.387    0.944    0.911
##     0.208    0.475    0.465
##     0.294    0.692    0.651
##     0.234    0.567    0.539
##     0.320    0.777    0.752
##                            
##     0.363    0.907    0.828
##     0.372    0.926    0.852
##     0.185    0.453    0.431
##     0.204    0.502    0.460
##                            
##     0.566    0.858    0.811
##     0.529    0.801    0.759
##     0.244    0.355    0.334
##                            
##     4.939    0.961    0.961
##     3.337    0.942    0.942
##     2.376    0.670    0.670
##     1.511    0.762    0.762
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.179    0.041    4.372    0.000    0.098
##    .sswk    (.39.)    0.112    0.042    2.697    0.007    0.031
##    .sspc             -0.036    0.043   -0.832    0.405   -0.121
##    .ssei    (.41.)   -0.010    0.038   -0.252    0.801   -0.084
##    .ssar    (.42.)    0.199    0.040    4.947    0.000    0.120
##    .ssmk    (.43.)    0.231    0.043    5.389    0.000    0.147
##    .ssmc    (.44.)    0.051    0.038    1.346    0.178   -0.023
##    .ssao    (.45.)    0.139    0.039    3.589    0.000    0.063
##    .ssai    (.46.)   -0.112    0.033   -3.373    0.001   -0.177
##    .sssi    (.47.)   -0.066    0.034   -1.954    0.051   -0.131
##    .ssno    (.48.)    0.228    0.040    5.633    0.000    0.149
##    .sscs    (.49.)    0.187    0.041    4.523    0.000    0.106
##    .verbal           -0.156    0.098   -1.591    0.112   -0.347
##    .math             -0.398    0.104   -3.816    0.000   -0.602
##    .elctrnc           1.630    0.224    7.271    0.000    1.190
##    .speed            -0.690    0.114   -6.037    0.000   -0.914
##     g                 0.120    0.067    1.793    0.073   -0.011
##  ci.upper   Std.lv  Std.all
##     0.259    0.179    0.167
##     0.193    0.112    0.104
##     0.049   -0.036   -0.035
##     0.065   -0.010   -0.009
##     0.278    0.199    0.192
##     0.315    0.231    0.217
##     0.124    0.051    0.048
##     0.214    0.139    0.134
##    -0.047   -0.112   -0.102
##     0.000   -0.066   -0.060
##     0.307    0.228    0.216
##     0.267    0.187    0.177
##     0.036   -0.038   -0.038
##    -0.194   -0.130   -0.130
##     2.069    0.525    0.525
##    -0.466   -0.386   -0.386
##     0.252    0.109    0.109
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.21.)    0.162    0.012   13.728    0.000    0.139
##    .sswk    (.22.)    0.185    0.012   15.805    0.000    0.162
##    .sspc    (.23.)    0.235    0.015   16.188    0.000    0.206
##    .ssei    (.24.)    0.290    0.017   17.190    0.000    0.257
##    .ssar    (.25.)    0.182    0.014   13.142    0.000    0.155
##    .ssmk    (.26.)    0.172    0.011   16.031    0.000    0.151
##    .ssmc    (.27.)    0.254    0.013   18.906    0.000    0.228
##    .ssao    (.28.)    0.464    0.024   19.533    0.000    0.418
##    .ssai    (.29.)    0.379    0.024   15.514    0.000    0.331
##    .sssi    (.30.)    0.324    0.023   14.122    0.000    0.279
##    .ssno    (.31.)    0.382    0.030   12.739    0.000    0.323
##    .sscs    (.32.)    0.472    0.039   12.008    0.000    0.395
##    .verbal            1.290    0.554    2.327    0.020    0.204
##    .math              1.041    0.329    3.168    0.002    0.397
##    .elctrnc           5.322    1.395    3.816    0.000    2.589
##    .speed             1.345    0.298    4.506    0.000    0.760
##     g                 1.225    0.103   11.932    0.000    1.023
##  ci.upper   Std.lv  Std.all
##     0.185    0.162    0.141
##     0.208    0.185    0.159
##     0.263    0.235    0.225
##     0.323    0.290    0.243
##     0.209    0.182    0.170
##     0.193    0.172    0.152
##     0.281    0.254    0.230
##     0.511    0.464    0.435
##     0.427    0.379    0.315
##     0.369    0.324    0.274
##     0.441    0.382    0.342
##     0.549    0.472    0.424
##     2.377    0.076    0.076
##     1.685    0.112    0.112
##     8.055    0.551    0.551
##     1.930    0.420    0.420
##     1.426    1.000    1.000
latent<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("sspc~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 1.212352e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   618.717   118.000     0.000     0.962     0.080     0.108 32209.107 
##       bic 
## 32530.224
Mc(latent)
## [1] 0.8261595
summary(latent, standardized=T, ci=T) # -.068
## lavaan 0.6-18 ended normally after 76 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        93
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               618.717     469.124
##   Degrees of freedom                               118         118
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.319
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          281.350     213.326
##     0                                          337.366     255.798
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.230    0.045    5.097    0.000    0.141
##     sswk    (.p2.)    0.229    0.045    5.085    0.000    0.141
##     sspc    (.p3.)    0.105    0.023    4.575    0.000    0.060
##     ssei    (.p4.)    0.129    0.027    4.765    0.000    0.076
##   math =~                                                      
##     ssar    (.p5.)    0.334    0.030   11.030    0.000    0.274
##     sspc    (.p6.)    0.164    0.025    6.568    0.000    0.115
##     ssmk    (.p7.)    0.243    0.028    8.596    0.000    0.188
##     ssmc    (.p8.)    0.196    0.020    9.865    0.000    0.157
##     ssao    (.p9.)    0.276    0.026   10.627    0.000    0.225
##   electronic =~                                                
##     ssai    (.10.)    0.483    0.028   17.514    0.000    0.429
##     sssi    (.11.)    0.510    0.028   18.043    0.000    0.455
##     ssmc    (.12.)    0.258    0.019   13.217    0.000    0.219
##     ssei    (.13.)    0.260    0.026   10.162    0.000    0.210
##   speed =~                                                     
##     ssno    (.14.)    0.523    0.037   14.225    0.000    0.451
##     sscs    (.15.)    0.488    0.033   14.846    0.000    0.424
##     ssmk    (.16.)    0.221    0.022   10.013    0.000    0.178
##   g =~                                                         
##     verbal  (.17.)    3.989    0.832    4.793    0.000    2.358
##     math    (.18.)    2.509    0.266    9.428    0.000    1.987
##     elctrnc (.19.)    1.246    0.088   14.162    0.000    1.073
##     speed   (.20.)    1.176    0.104   11.322    0.000    0.972
##  ci.upper   Std.lv  Std.all
##                            
##     0.318    0.944    0.922
##     0.318    0.943    0.915
##     0.151    0.434    0.441
##     0.182    0.531    0.518
##                            
##     0.393    0.901    0.920
##     0.214    0.444    0.452
##     0.299    0.657    0.641
##     0.235    0.530    0.527
##     0.327    0.746    0.759
##                            
##     0.538    0.772    0.814
##     0.566    0.815    0.841
##     0.296    0.411    0.409
##     0.310    0.415    0.405
##                            
##     0.595    0.807    0.806
##     0.553    0.754    0.743
##     0.265    0.342    0.334
##                            
##     5.620    0.970    0.970
##     3.031    0.929    0.929
##     1.418    0.780    0.780
##     1.379    0.762    0.762
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.176    0.041    4.329    0.000    0.097
##    .sswk    (.39.)    0.114    0.042    2.727    0.006    0.032
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssei    (.41.)   -0.003    0.037   -0.083    0.934   -0.076
##    .ssar    (.42.)    0.197    0.040    4.945    0.000    0.119
##    .ssmk    (.43.)    0.232    0.043    5.408    0.000    0.148
##    .ssmc    (.44.)    0.045    0.038    1.173    0.241   -0.030
##    .ssao    (.45.)    0.143    0.039    3.709    0.000    0.068
##    .ssai    (.46.)   -0.107    0.033   -3.255    0.001   -0.172
##    .sssi    (.47.)   -0.070    0.034   -2.067    0.039   -0.136
##    .ssno    (.48.)    0.223    0.040    5.533    0.000    0.144
##    .sscs    (.49.)    0.188    0.042    4.510    0.000    0.106
##  ci.upper   Std.lv  Std.all
##     0.256    0.176    0.172
##     0.196    0.114    0.110
##     0.333    0.253    0.257
##     0.070   -0.003   -0.003
##     0.275    0.197    0.201
##     0.316    0.232    0.227
##     0.119    0.045    0.044
##     0.219    0.143    0.146
##    -0.043   -0.107   -0.113
##    -0.004   -0.070   -0.072
##     0.302    0.223    0.222
##     0.269    0.188    0.185
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.157    0.015   10.308    0.000    0.127
##    .sswk              0.173    0.016   10.797    0.000    0.142
##    .sspc              0.233    0.021   10.906    0.000    0.191
##    .ssei              0.264    0.023   11.686    0.000    0.220
##    .ssar              0.148    0.016    9.392    0.000    0.117
##    .ssmk              0.183    0.016   11.430    0.000    0.151
##    .ssmc              0.247    0.018   13.448    0.000    0.211
##    .ssao              0.410    0.028   14.756    0.000    0.355
##    .ssai              0.303    0.027   11.214    0.000    0.250
##    .sssi              0.276    0.027   10.071    0.000    0.222
##    .ssno              0.350    0.040    8.685    0.000    0.271
##    .sscs              0.459    0.053    8.712    0.000    0.356
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.187    0.157    0.150
##     0.204    0.173    0.163
##     0.274    0.233    0.241
##     0.309    0.264    0.251
##     0.179    0.148    0.154
##     0.214    0.183    0.174
##     0.282    0.247    0.243
##     0.464    0.410    0.424
##     0.356    0.303    0.337
##     0.329    0.276    0.293
##     0.429    0.350    0.350
##     0.563    0.459    0.447
##     1.000    0.059    0.059
##     1.000    0.137    0.137
##     1.000    0.392    0.392
##     1.000    0.420    0.420
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.230    0.045    5.097    0.000    0.141
##     sswk    (.p2.)    0.229    0.045    5.085    0.000    0.141
##     sspc    (.p3.)    0.105    0.023    4.575    0.000    0.060
##     ssei    (.p4.)    0.129    0.027    4.765    0.000    0.076
##   math =~                                                      
##     ssar    (.p5.)    0.334    0.030   11.030    0.000    0.274
##     sspc    (.p6.)    0.164    0.025    6.568    0.000    0.115
##     ssmk    (.p7.)    0.243    0.028    8.596    0.000    0.188
##     ssmc    (.p8.)    0.196    0.020    9.865    0.000    0.157
##     ssao    (.p9.)    0.276    0.026   10.627    0.000    0.225
##   electronic =~                                                
##     ssai    (.10.)    0.483    0.028   17.514    0.000    0.429
##     sssi    (.11.)    0.510    0.028   18.043    0.000    0.455
##     ssmc    (.12.)    0.258    0.019   13.217    0.000    0.219
##     ssei    (.13.)    0.260    0.026   10.162    0.000    0.210
##   speed =~                                                     
##     ssno    (.14.)    0.523    0.037   14.225    0.000    0.451
##     sscs    (.15.)    0.488    0.033   14.846    0.000    0.424
##     ssmk    (.16.)    0.221    0.022   10.013    0.000    0.178
##   g =~                                                         
##     verbal  (.17.)    3.989    0.832    4.793    0.000    2.358
##     math    (.18.)    2.509    0.266    9.428    0.000    1.987
##     elctrnc (.19.)    1.246    0.088   14.162    0.000    1.073
##     speed   (.20.)    1.176    0.104   11.322    0.000    0.972
##  ci.upper   Std.lv  Std.all
##                            
##     0.318    0.944    0.918
##     0.318    0.943    0.905
##     0.151    0.434    0.440
##     0.182    0.531    0.502
##                            
##     0.393    0.901    0.889
##     0.214    0.444    0.450
##     0.299    0.657    0.649
##     0.235    0.530    0.524
##     0.327    0.746    0.719
##                            
##     0.538    0.772    0.739
##     0.566    0.815    0.804
##     0.296    0.411    0.407
##     0.310    0.415    0.392
##                            
##     0.595    0.807    0.781
##     0.553    0.754    0.732
##     0.265    0.342    0.338
##                            
##     5.620    0.970    0.970
##     3.031    0.929    0.929
##     1.418    0.780    0.780
##     1.379    0.762    0.762
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.176    0.041    4.329    0.000    0.097
##    .sswk    (.39.)    0.114    0.042    2.727    0.006    0.032
##    .sspc             -0.037    0.043   -0.846    0.397   -0.122
##    .ssei    (.41.)   -0.003    0.037   -0.083    0.934   -0.076
##    .ssar    (.42.)    0.197    0.040    4.945    0.000    0.119
##    .ssmk    (.43.)    0.232    0.043    5.408    0.000    0.148
##    .ssmc    (.44.)    0.045    0.038    1.173    0.241   -0.030
##    .ssao    (.45.)    0.143    0.039    3.709    0.000    0.068
##    .ssai    (.46.)   -0.107    0.033   -3.255    0.001   -0.172
##    .sssi    (.47.)   -0.070    0.034   -2.067    0.039   -0.136
##    .ssno    (.48.)    0.223    0.040    5.533    0.000    0.144
##    .sscs    (.49.)    0.188    0.042    4.510    0.000    0.106
##    .verbal            0.024    0.058    0.422    0.673   -0.089
##    .math             -0.257    0.079   -3.252    0.001   -0.412
##    .elctrnc           1.016    0.086   11.746    0.000    0.846
##    .speed            -0.574    0.092   -6.260    0.000   -0.754
##     g                 0.068    0.061    1.118    0.263   -0.051
##  ci.upper   Std.lv  Std.all
##     0.256    0.176    0.172
##     0.196    0.114    0.109
##     0.048   -0.037   -0.037
##     0.070   -0.003   -0.003
##     0.275    0.197    0.195
##     0.316    0.232    0.229
##     0.119    0.045    0.044
##     0.219    0.143    0.138
##    -0.043   -0.107   -0.103
##    -0.004   -0.070   -0.069
##     0.302    0.223    0.215
##     0.269    0.188    0.183
##     0.137    0.006    0.006
##    -0.102   -0.095   -0.095
##     1.185    0.636    0.636
##    -0.394   -0.372   -0.372
##     0.187    0.068    0.068
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.167    0.017    9.945    0.000    0.134
##    .sswk              0.196    0.016   11.915    0.000    0.164
##    .sspc              0.241    0.020   12.138    0.000    0.202
##    .ssei              0.332    0.026   12.607    0.000    0.281
##    .ssar              0.214    0.022    9.609    0.000    0.171
##    .ssmk              0.157    0.013   11.802    0.000    0.131
##    .ssmc              0.255    0.019   13.147    0.000    0.217
##    .ssao              0.519    0.038   13.755    0.000    0.445
##    .ssai              0.496    0.044   11.302    0.000    0.410
##    .sssi              0.362    0.037    9.727    0.000    0.289
##    .ssno              0.417    0.045    9.253    0.000    0.329
##    .sscs              0.491    0.057    8.638    0.000    0.380
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.200    0.167    0.158
##     0.228    0.196    0.181
##     0.280    0.241    0.248
##     0.384    0.332    0.296
##     0.258    0.214    0.209
##     0.183    0.157    0.154
##     0.293    0.255    0.250
##     0.593    0.519    0.483
##     0.582    0.496    0.454
##     0.435    0.362    0.353
##     0.506    0.417    0.390
##     0.602    0.491    0.464
##     1.000    0.059    0.059
##     1.000    0.137    0.137
##     1.000    0.392    0.392
##     1.000    0.420    0.420
##     1.000    1.000    1.000
latent2<-cfa(hof.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 4.942165e-14) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   503.989   115.000     0.000     0.971     0.072     0.050 32100.379 
##       bic 
## 32437.034
Mc(latent2)
## [1] 0.8621242
summary(latent2, standardized=T, ci=T) # g -.093 Std.all
## lavaan 0.6-18 ended normally after 103 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               503.989     383.237
##   Degrees of freedom                               115         115
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.315
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          210.821     160.310
##     0                                          293.168     222.927
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.251    0.040    6.308    0.000    0.173
##     sswk    (.p2.)    0.251    0.040    6.273    0.000    0.172
##     sspc    (.p3.)    0.115    0.021    5.395    0.000    0.073
##     ssei    (.p4.)    0.138    0.025    5.566    0.000    0.089
##   math =~                                                      
##     ssar    (.p5.)    0.319    0.031   10.218    0.000    0.258
##     sspc    (.p6.)    0.158    0.024    6.589    0.000    0.111
##     ssmk    (.p7.)    0.233    0.028    8.284    0.000    0.178
##     ssmc    (.p8.)    0.191    0.020    9.539    0.000    0.152
##     ssao    (.p9.)    0.264    0.027    9.859    0.000    0.212
##   electronic =~                                                
##     ssai    (.10.)    0.307    0.034    9.023    0.000    0.240
##     sssi    (.11.)    0.320    0.036    8.854    0.000    0.249
##     ssmc    (.12.)    0.156    0.019    8.077    0.000    0.118
##     ssei    (.13.)    0.170    0.020    8.295    0.000    0.130
##   speed =~                                                     
##     ssno    (.14.)    0.481    0.044   11.051    0.000    0.396
##     sscs    (.15.)    0.449    0.041   11.066    0.000    0.370
##     ssmk    (.16.)    0.201    0.023    8.749    0.000    0.156
##   g =~                                                         
##     verbal  (.17.)    3.435    0.587    5.855    0.000    2.285
##     math    (.18.)    2.506    0.293    8.553    0.000    1.932
##     elctrnc (.19.)    1.769    0.216    8.172    0.000    1.345
##     speed   (.20.)    1.223    0.139    8.797    0.000    0.951
##  ci.upper   Std.lv  Std.all
##                            
##     0.329    0.898    0.916
##     0.329    0.897    0.907
##     0.156    0.410    0.433
##     0.187    0.494    0.518
##                            
##     0.380    0.860    0.911
##     0.205    0.427    0.451
##     0.288    0.628    0.638
##     0.231    0.516    0.549
##     0.317    0.712    0.745
##                            
##     0.374    0.624    0.741
##     0.390    0.649    0.759
##     0.194    0.318    0.338
##     0.210    0.345    0.362
##                            
##     0.567    0.760    0.783
##     0.529    0.710    0.723
##     0.246    0.317    0.322
##                            
##     4.585    0.960    0.960
##     3.080    0.929    0.929
##     2.193    0.871    0.871
##     1.496    0.774    0.774
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.177    0.041    4.337    0.000    0.097
##    .sswk    (.39.)    0.114    0.042    2.741    0.006    0.033
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssei    (.41.)   -0.007    0.038   -0.185    0.853   -0.081
##    .ssar    (.42.)    0.197    0.040    4.928    0.000    0.118
##    .ssmk    (.43.)    0.231    0.043    5.378    0.000    0.147
##    .ssmc    (.44.)    0.049    0.038    1.305    0.192   -0.025
##    .ssao    (.45.)    0.143    0.039    3.693    0.000    0.067
##    .ssai    (.46.)   -0.109    0.033   -3.305    0.001   -0.173
##    .sssi    (.47.)   -0.068    0.034   -2.032    0.042   -0.134
##    .ssno    (.48.)    0.225    0.040    5.606    0.000    0.147
##    .sscs    (.49.)    0.188    0.042    4.515    0.000    0.106
##  ci.upper   Std.lv  Std.all
##     0.256    0.177    0.180
##     0.196    0.114    0.115
##     0.333    0.253    0.267
##     0.067   -0.007   -0.007
##     0.275    0.197    0.209
##     0.315    0.231    0.235
##     0.123    0.049    0.052
##     0.218    0.143    0.149
##    -0.044   -0.109   -0.129
##    -0.002   -0.068   -0.080
##     0.304    0.225    0.232
##     0.269    0.188    0.191
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.155    0.015   10.343    0.000    0.126
##    .sswk              0.174    0.016   10.887    0.000    0.143
##    .sspc              0.234    0.021   10.930    0.000    0.192
##    .ssei              0.261    0.023   11.526    0.000    0.216
##    .ssar              0.151    0.016    9.556    0.000    0.120
##    .ssmk              0.187    0.016   11.771    0.000    0.155
##    .ssmc              0.250    0.018   13.563    0.000    0.214
##    .ssao              0.407    0.028   14.805    0.000    0.354
##    .ssai              0.319    0.026   12.081    0.000    0.267
##    .sssi              0.310    0.028   11.136    0.000    0.255
##    .ssno              0.366    0.040    9.112    0.000    0.287
##    .sscs              0.462    0.052    8.859    0.000    0.359
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.078    0.078
##     1.000    0.137    0.137
##     0.184    0.155    0.161
##     0.205    0.174    0.178
##     0.276    0.234    0.261
##     0.305    0.261    0.287
##     0.182    0.151    0.170
##     0.218    0.187    0.193
##     0.286    0.250    0.283
##     0.461    0.407    0.445
##     0.371    0.319    0.451
##     0.364    0.310    0.423
##     0.444    0.366    0.387
##     0.564    0.462    0.478
##     1.000    0.242    0.242
##     1.000    0.401    0.401
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.251    0.040    6.308    0.000    0.173
##     sswk    (.p2.)    0.251    0.040    6.273    0.000    0.172
##     sspc    (.p3.)    0.115    0.021    5.395    0.000    0.073
##     ssei    (.p4.)    0.138    0.025    5.566    0.000    0.089
##   math =~                                                      
##     ssar    (.p5.)    0.319    0.031   10.218    0.000    0.258
##     sspc    (.p6.)    0.158    0.024    6.589    0.000    0.111
##     ssmk    (.p7.)    0.233    0.028    8.284    0.000    0.178
##     ssmc    (.p8.)    0.191    0.020    9.539    0.000    0.152
##     ssao    (.p9.)    0.264    0.027    9.859    0.000    0.212
##   electronic =~                                                
##     ssai    (.10.)    0.307    0.034    9.023    0.000    0.240
##     sssi    (.11.)    0.320    0.036    8.854    0.000    0.249
##     ssmc    (.12.)    0.156    0.019    8.077    0.000    0.118
##     ssei    (.13.)    0.170    0.020    8.295    0.000    0.130
##   speed =~                                                     
##     ssno    (.14.)    0.481    0.044   11.051    0.000    0.396
##     sscs    (.15.)    0.449    0.041   11.066    0.000    0.370
##     ssmk    (.16.)    0.201    0.023    8.749    0.000    0.156
##   g =~                                                         
##     verbal  (.17.)    3.435    0.587    5.855    0.000    2.285
##     math    (.18.)    2.506    0.293    8.553    0.000    1.932
##     elctrnc (.19.)    1.769    0.216    8.172    0.000    1.345
##     speed   (.20.)    1.223    0.139    8.797    0.000    0.951
##  ci.upper   Std.lv  Std.all
##                            
##     0.329    0.988    0.923
##     0.329    0.987    0.913
##     0.156    0.451    0.442
##     0.187    0.544    0.494
##                            
##     0.380    0.941    0.898
##     0.205    0.467    0.457
##     0.288    0.687    0.653
##     0.231    0.565    0.537
##     0.317    0.780    0.734
##                            
##     0.374    0.890    0.795
##     0.390    0.927    0.854
##     0.194    0.454    0.431
##     0.210    0.492    0.447
##                            
##     0.567    0.857    0.804
##     0.529    0.800    0.754
##     0.246    0.357    0.340
##                            
##     4.585    0.967    0.967
##     3.080    0.941    0.941
##     2.193    0.676    0.676
##     1.496    0.762    0.762
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.177    0.041    4.337    0.000    0.097
##    .sswk    (.39.)    0.114    0.042    2.741    0.006    0.033
##    .sspc             -0.037    0.043   -0.844    0.399   -0.122
##    .ssei    (.41.)   -0.007    0.038   -0.185    0.853   -0.081
##    .ssar    (.42.)    0.197    0.040    4.928    0.000    0.118
##    .ssmk    (.43.)    0.231    0.043    5.378    0.000    0.147
##    .ssmc    (.44.)    0.049    0.038    1.305    0.192   -0.025
##    .ssao    (.45.)    0.143    0.039    3.693    0.000    0.067
##    .ssai    (.46.)   -0.109    0.033   -3.305    0.001   -0.173
##    .sssi    (.47.)   -0.068    0.034   -2.032    0.042   -0.134
##    .ssno    (.48.)    0.225    0.040    5.606    0.000    0.147
##    .sscs    (.49.)    0.188    0.042    4.515    0.000    0.106
##    .verbal           -0.090    0.085   -1.052    0.293   -0.257
##    .math             -0.343    0.091   -3.772    0.000   -0.521
##    .elctrnc           1.565    0.198    7.924    0.000    1.178
##    .speed            -0.666    0.110   -6.073    0.000   -0.880
##     g                 0.103    0.066    1.559    0.119   -0.026
##  ci.upper   Std.lv  Std.all
##     0.256    0.177    0.165
##     0.196    0.114    0.106
##     0.048   -0.037   -0.036
##     0.067   -0.007   -0.006
##     0.275    0.197    0.188
##     0.315    0.231    0.219
##     0.123    0.049    0.047
##     0.218    0.143    0.134
##    -0.044   -0.109   -0.097
##    -0.002   -0.068   -0.063
##     0.304    0.225    0.212
##     0.269    0.188    0.177
##     0.077   -0.023   -0.023
##    -0.165   -0.116   -0.116
##     1.952    0.540    0.540
##    -0.451   -0.374   -0.374
##     0.233    0.093    0.093
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.170    0.017    9.872    0.000    0.136
##    .sswk              0.195    0.017   11.692    0.000    0.162
##    .sspc              0.237    0.020   12.145    0.000    0.199
##    .ssei              0.324    0.025   12.823    0.000    0.274
##    .ssar              0.213    0.022    9.534    0.000    0.169
##    .ssmk              0.156    0.013   11.758    0.000    0.130
##    .ssmc              0.255    0.019   13.208    0.000    0.217
##    .ssao              0.520    0.038   13.775    0.000    0.446
##    .ssai              0.462    0.042   11.009    0.000    0.379
##    .sssi              0.319    0.035    9.045    0.000    0.250
##    .ssno              0.401    0.043    9.314    0.000    0.316
##    .sscs              0.485    0.057    8.529    0.000    0.374
##    .electronic        4.567    1.081    4.227    0.000    2.450
##    .speed             1.331    0.275    4.846    0.000    0.793
##     g                 1.229    0.102   12.049    0.000    1.029
##  ci.upper   Std.lv  Std.all
##     1.000    0.065    0.065
##     1.000    0.115    0.115
##     0.204    0.170    0.148
##     0.228    0.195    0.167
##     0.275    0.237    0.227
##     0.373    0.324    0.267
##     0.257    0.213    0.194
##     0.181    0.156    0.140
##     0.293    0.255    0.231
##     0.594    0.520    0.461
##     0.544    0.462    0.368
##     0.388    0.319    0.271
##     0.485    0.401    0.353
##     0.597    0.485    0.431
##     6.685    0.543    0.543
##     1.870    0.420    0.420
##     1.428    1.000    1.000
weak<-cfa(hof.weak, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   503.989   116.000     0.000     0.971     0.071     0.050 32098.379 
##       bic 
## 32429.855
Mc(weak)
## [1] 0.8624531
summary(weak, standardized=T, ci=T) # g -.070 Std.all
## lavaan 0.6-18 ended normally after 106 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        95
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               503.989     386.569
##   Degrees of freedom                               116         116
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.304
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          210.821     161.704
##     0                                          293.168     224.865
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.251    0.040    6.308    0.000    0.173
##     sswk    (.p2.)    0.251    0.040    6.273    0.000    0.172
##     sspc    (.p3.)    0.115    0.021    5.395    0.000    0.073
##     ssei    (.p4.)    0.138    0.025    5.566    0.000    0.089
##   math =~                                                      
##     ssar    (.p5.)    0.319    0.031   10.218    0.000    0.258
##     sspc    (.p6.)    0.158    0.024    6.589    0.000    0.111
##     ssmk    (.p7.)    0.233    0.028    8.284    0.000    0.178
##     ssmc    (.p8.)    0.191    0.020    9.539    0.000    0.152
##     ssao    (.p9.)    0.264    0.027    9.859    0.000    0.212
##   electronic =~                                                
##     ssai    (.10.)    0.307    0.034    9.022    0.000    0.240
##     sssi    (.11.)    0.320    0.036    8.854    0.000    0.249
##     ssmc    (.12.)    0.156    0.019    8.077    0.000    0.118
##     ssei    (.13.)    0.170    0.020    8.295    0.000    0.130
##   speed =~                                                     
##     ssno    (.14.)    0.481    0.044   11.051    0.000    0.396
##     sscs    (.15.)    0.449    0.041   11.066    0.000    0.370
##     ssmk    (.16.)    0.201    0.023    8.749    0.000    0.156
##   g =~                                                         
##     verbal  (.17.)    3.435    0.587    5.855    0.000    2.285
##     math    (.18.)    2.506    0.293    8.553    0.000    1.932
##     elctrnc (.19.)    1.769    0.216    8.171    0.000    1.345
##     speed   (.20.)    1.223    0.139    8.797    0.000    0.951
##  ci.upper   Std.lv  Std.all
##                            
##     0.329    0.898    0.916
##     0.329    0.897    0.907
##     0.156    0.410    0.433
##     0.187    0.494    0.518
##                            
##     0.380    0.860    0.911
##     0.205    0.427    0.451
##     0.288    0.628    0.638
##     0.231    0.516    0.549
##     0.317    0.712    0.745
##                            
##     0.374    0.624    0.741
##     0.390    0.649    0.759
##     0.194    0.318    0.338
##     0.210    0.345    0.362
##                            
##     0.567    0.760    0.783
##     0.529    0.710    0.723
##     0.246    0.317    0.322
##                            
##     4.585    0.960    0.960
##     3.080    0.929    0.929
##     2.193    0.871    0.871
##     1.496    0.774    0.774
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.39.)    0.177    0.041    4.337    0.000    0.097
##    .sswk    (.40.)    0.114    0.042    2.741    0.006    0.033
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssei    (.42.)   -0.007    0.038   -0.185    0.853   -0.081
##    .ssar    (.43.)    0.197    0.040    4.928    0.000    0.118
##    .ssmk    (.44.)    0.231    0.043    5.378    0.000    0.147
##    .ssmc    (.45.)    0.049    0.038    1.305    0.192   -0.025
##    .ssao    (.46.)    0.143    0.039    3.693    0.000    0.067
##    .ssai    (.47.)   -0.109    0.033   -3.305    0.001   -0.173
##    .sssi    (.48.)   -0.068    0.034   -2.032    0.042   -0.134
##    .ssno    (.49.)    0.225    0.040    5.606    0.000    0.147
##    .sscs    (.50.)    0.188    0.042    4.515    0.000    0.106
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.256    0.177    0.180
##     0.196    0.114    0.115
##     0.333    0.253    0.267
##     0.067   -0.007   -0.007
##     0.275    0.197    0.209
##     0.315    0.231    0.235
##     0.123    0.049    0.052
##     0.218    0.143    0.149
##    -0.044   -0.109   -0.129
##    -0.002   -0.068   -0.080
##     0.304    0.225    0.232
##     0.269    0.188    0.191
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.155    0.015   10.343    0.000    0.126
##    .sswk              0.174    0.016   10.887    0.000    0.143
##    .sspc              0.234    0.021   10.930    0.000    0.192
##    .ssei              0.261    0.023   11.526    0.000    0.216
##    .ssar              0.151    0.016    9.556    0.000    0.120
##    .ssmk              0.187    0.016   11.771    0.000    0.155
##    .ssmc              0.250    0.018   13.563    0.000    0.214
##    .ssao              0.407    0.028   14.805    0.000    0.354
##    .ssai              0.319    0.026   12.081    0.000    0.267
##    .sssi              0.310    0.028   11.137    0.000    0.255
##    .ssno              0.366    0.040    9.112    0.000    0.287
##    .sscs              0.462    0.052    8.859    0.000    0.359
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.078    0.078
##     1.000    0.137    0.137
##     0.184    0.155    0.161
##     0.205    0.174    0.178
##     0.276    0.234    0.261
##     0.305    0.261    0.287
##     0.182    0.151    0.170
##     0.218    0.187    0.193
##     0.286    0.250    0.283
##     0.461    0.407    0.445
##     0.371    0.319    0.451
##     0.364    0.310    0.423
##     0.444    0.366    0.387
##     0.564    0.462    0.478
##     1.000    0.242    0.242
##     1.000    0.401    0.401
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.251    0.040    6.308    0.000    0.173
##     sswk    (.p2.)    0.251    0.040    6.273    0.000    0.172
##     sspc    (.p3.)    0.115    0.021    5.395    0.000    0.073
##     ssei    (.p4.)    0.138    0.025    5.566    0.000    0.089
##   math =~                                                      
##     ssar    (.p5.)    0.319    0.031   10.218    0.000    0.258
##     sspc    (.p6.)    0.158    0.024    6.589    0.000    0.111
##     ssmk    (.p7.)    0.233    0.028    8.284    0.000    0.178
##     ssmc    (.p8.)    0.191    0.020    9.539    0.000    0.152
##     ssao    (.p9.)    0.264    0.027    9.859    0.000    0.212
##   electronic =~                                                
##     ssai    (.10.)    0.307    0.034    9.022    0.000    0.240
##     sssi    (.11.)    0.320    0.036    8.854    0.000    0.249
##     ssmc    (.12.)    0.156    0.019    8.077    0.000    0.118
##     ssei    (.13.)    0.170    0.020    8.295    0.000    0.130
##   speed =~                                                     
##     ssno    (.14.)    0.481    0.044   11.051    0.000    0.396
##     sscs    (.15.)    0.449    0.041   11.066    0.000    0.370
##     ssmk    (.16.)    0.201    0.023    8.749    0.000    0.156
##   g =~                                                         
##     verbal  (.17.)    3.435    0.587    5.855    0.000    2.285
##     math    (.18.)    2.506    0.293    8.553    0.000    1.932
##     elctrnc (.19.)    1.769    0.216    8.171    0.000    1.345
##     speed   (.20.)    1.223    0.139    8.797    0.000    0.951
##  ci.upper   Std.lv  Std.all
##                            
##     0.329    0.988    0.923
##     0.329    0.987    0.913
##     0.156    0.451    0.442
##     0.187    0.544    0.494
##                            
##     0.380    0.941    0.898
##     0.205    0.467    0.457
##     0.288    0.687    0.653
##     0.231    0.565    0.537
##     0.317    0.780    0.734
##                            
##     0.374    0.890    0.795
##     0.390    0.927    0.854
##     0.194    0.454    0.431
##     0.210    0.492    0.447
##                            
##     0.567    0.857    0.804
##     0.529    0.800    0.754
##     0.246    0.357    0.340
##                            
##     4.585    0.967    0.967
##     3.080    0.941    0.941
##     2.193    0.676    0.676
##     1.496    0.762    0.762
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.39.)    0.177    0.041    4.337    0.000    0.097
##    .sswk    (.40.)    0.114    0.042    2.741    0.006    0.033
##    .sspc             -0.037    0.043   -0.844    0.399   -0.122
##    .ssei    (.42.)   -0.007    0.038   -0.185    0.853   -0.081
##    .ssar    (.43.)    0.197    0.040    4.928    0.000    0.118
##    .ssmk    (.44.)    0.231    0.043    5.378    0.000    0.147
##    .ssmc    (.45.)    0.049    0.038    1.305    0.192   -0.025
##    .ssao    (.46.)    0.143    0.039    3.693    0.000    0.067
##    .ssai    (.47.)   -0.109    0.033   -3.305    0.001   -0.173
##    .sssi    (.48.)   -0.068    0.034   -2.032    0.042   -0.134
##    .ssno    (.49.)    0.225    0.040    5.606    0.000    0.147
##    .sscs    (.50.)    0.188    0.042    4.515    0.000    0.106
##    .math             -0.278    0.117   -2.372    0.018   -0.507
##    .elctrnc           1.611    0.231    6.969    0.000    1.158
##    .speed            -0.634    0.115   -5.519    0.000   -0.859
##     g                 0.077    0.070    1.102    0.270   -0.060
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.256    0.177    0.165
##     0.196    0.114    0.106
##     0.048   -0.037   -0.036
##     0.067   -0.007   -0.006
##     0.275    0.197    0.188
##     0.315    0.231    0.219
##     0.123    0.049    0.047
##     0.218    0.143    0.134
##    -0.044   -0.109   -0.097
##    -0.002   -0.068   -0.063
##     0.304    0.225    0.212
##     0.269    0.188    0.177
##    -0.048   -0.094   -0.094
##     2.064    0.556    0.556
##    -0.409   -0.356   -0.356
##     0.214    0.070    0.070
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.170    0.017    9.872    0.000    0.136
##    .sswk              0.195    0.017   11.692    0.000    0.162
##    .sspc              0.237    0.020   12.145    0.000    0.199
##    .ssei              0.324    0.025   12.823    0.000    0.274
##    .ssar              0.213    0.022    9.534    0.000    0.169
##    .ssmk              0.156    0.013   11.758    0.000    0.130
##    .ssmc              0.255    0.019   13.208    0.000    0.217
##    .ssao              0.520    0.038   13.775    0.000    0.446
##    .ssai              0.462    0.042   11.009    0.000    0.379
##    .sssi              0.319    0.035    9.045    0.000    0.250
##    .ssno              0.401    0.043    9.314    0.000    0.316
##    .sscs              0.485    0.057    8.529    0.000    0.374
##    .electronic        4.567    1.081    4.227    0.000    2.450
##    .speed             1.331    0.275    4.846    0.000    0.793
##     g                 1.229    0.102   12.049    0.000    1.029
##  ci.upper   Std.lv  Std.all
##     1.000    0.065    0.065
##     1.000    0.115    0.115
##     0.204    0.170    0.148
##     0.228    0.195    0.167
##     0.275    0.237    0.227
##     0.373    0.324    0.267
##     0.257    0.213    0.194
##     0.181    0.156    0.140
##     0.293    0.255    0.231
##     0.594    0.520    0.461
##     0.544    0.462    0.368
##     0.388    0.319    0.271
##     0.485    0.401    0.353
##     0.597    0.485    0.431
##     6.685    0.543    0.543
##     1.870    0.420    0.420
##     1.428    1.000    1.000
tests<-lavTestLRT(configural, metric, scalar2, latent2, weak)
## Warning: lavaan->lav_test_diff_SatorraBentler2001():  
##    scaling factor is negative
Td=tests[2:5,"Chisq diff"]
Td
## [1] 36.4066524 35.9193435  0.1818753         NA
dfd=tests[2:5,"Df diff"]
dfd
## [1] 15  6  2  1
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-656+ 656 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.04667755 0.08725288        NaN         NA
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02748806 0.06618290
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.06104503 0.11573345
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]         NA 0.02971612
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1] NA NA
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.998     0.997     0.420     0.139     0.002     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.989     0.956     0.699     0.247
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.087     0.082     0.018     0.009     0.002     0.000
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##        NA        NA        NA        NA        NA        NA
tests<-lavTestLRT(configural, metric, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 36.40665 35.91934 79.63929
dfd=tests[2:4,"Df diff"]
dfd
## [1] 15  6  5
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-656+ 656 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04667755 0.08725288 0.15096564
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.06104503 0.11573345
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.1227380 0.1809753
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.989     0.956     0.699     0.247
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     1.000     0.998
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 36.40665 35.91934 28.89718
dfd=tests[2:4,"Df diff"]
dfd
## [1] 15  6 12
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-656+ 656 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04667755 0.08725288 0.04636560
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02748806 0.06618290
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.06104503 0.11573345
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.02482250 0.06823879
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.998     0.997     0.420     0.139     0.002     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.989     0.956     0.699     0.247
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.996     0.993     0.426     0.164     0.005     0.000
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]  36.40665 106.11388
dfd=tests[2:3,"Df diff"]
dfd
## [1] 15  7
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-656+ 656 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04667755 0.14702716
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02748806 0.06618290
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1230112 0.1723126
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.998     0.997     0.420     0.139     0.002     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     1.000     0.999
hof.age<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
verbal~0*1
g ~ agec
'

hof.ageq<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
verbal~0*1
g ~ c(a,a)*agec
'

hof.age2<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
verbal~0*1
g ~ agec + agec2
'

hof.age2q<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
verbal~0*1
g ~ c(a,a)*agec + c(b,b)*agec2
'

sem.age<-sem(hof.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   689.232   138.000     0.000     0.960     0.078     0.052     0.626 
##       aic       bic 
## 31891.132 32232.966
Mc(sem.age)
## [1] 0.8103951
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 108 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        97
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               689.232     530.431
##   Degrees of freedom                               138         138
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.299
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          284.327     218.817
##     0                                          404.905     311.614
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.250    0.035    7.090    0.000    0.181
##     sswk    (.p2.)    0.250    0.035    7.061    0.000    0.181
##     sspc    (.p3.)    0.114    0.020    5.606    0.000    0.074
##     ssei    (.p4.)    0.138    0.022    6.203    0.000    0.094
##   math =~                                                      
##     ssar    (.p5.)    0.328    0.027   12.310    0.000    0.276
##     sspc    (.p6.)    0.163    0.024    6.859    0.000    0.116
##     ssmk    (.p7.)    0.241    0.025    9.681    0.000    0.192
##     ssmc    (.p8.)    0.196    0.018   10.916    0.000    0.161
##     ssao    (.p9.)    0.272    0.023   11.789    0.000    0.227
##   electronic =~                                                
##     ssai    (.10.)    0.305    0.034    8.958    0.000    0.239
##     sssi    (.11.)    0.317    0.036    8.771    0.000    0.247
##     ssmc    (.12.)    0.156    0.020    7.989    0.000    0.118
##     ssei    (.13.)    0.168    0.020    8.259    0.000    0.128
##   speed =~                                                     
##     ssno    (.14.)    0.475    0.044   10.867    0.000    0.389
##     sscs    (.15.)    0.444    0.041   10.910    0.000    0.364
##     ssmk    (.16.)    0.197    0.023    8.689    0.000    0.153
##   g =~                                                         
##     verbal  (.17.)    3.147    0.480    6.561    0.000    2.207
##     math    (.18.)    2.211    0.223    9.924    0.000    1.774
##     elctrnc (.19.)    1.632    0.201    8.107    0.000    1.237
##     speed   (.20.)    1.137    0.130    8.775    0.000    0.883
##  ci.upper   Std.lv  Std.all
##                            
##     0.319    0.896    0.915
##     0.320    0.898    0.908
##     0.154    0.411    0.434
##     0.181    0.494    0.518
##                            
##     0.380    0.859    0.911
##     0.209    0.427    0.451
##     0.289    0.631    0.641
##     0.232    0.514    0.547
##     0.317    0.712    0.745
##                            
##     0.372    0.625    0.743
##     0.388    0.650    0.759
##     0.194    0.319    0.340
##     0.208    0.345    0.362
##                            
##     0.560    0.758    0.781
##     0.524    0.709    0.722
##     0.242    0.315    0.320
##                            
##     4.087    0.960    0.960
##     2.648    0.924    0.924
##     2.027    0.873    0.873
##     1.391    0.780    0.780
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.300    0.031    9.669    0.000    0.239
##  ci.upper   Std.lv  Std.all
##                            
##     0.360    0.274    0.408
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.41.)    0.162    0.038    4.313    0.000    0.088
##    .sswk    (.42.)    0.100    0.038    2.617    0.009    0.025
##    .sspc              0.239    0.039    6.117    0.000    0.162
##    .ssei    (.44.)   -0.020    0.035   -0.578    0.563   -0.088
##    .ssar    (.45.)    0.183    0.038    4.805    0.000    0.108
##    .ssmk    (.46.)    0.216    0.039    5.517    0.000    0.139
##    .ssmc    (.47.)    0.036    0.036    0.994    0.320   -0.035
##    .ssao    (.48.)    0.131    0.037    3.541    0.000    0.059
##    .ssai    (.49.)   -0.119    0.031   -3.828    0.000   -0.179
##    .sssi    (.50.)   -0.078    0.032   -2.439    0.015   -0.141
##    .ssno    (.51.)    0.215    0.038    5.733    0.000    0.142
##    .sscs    (.52.)    0.179    0.039    4.594    0.000    0.102
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.236    0.162    0.165
##     0.175    0.100    0.101
##     0.315    0.239    0.252
##     0.048   -0.020   -0.021
##     0.258    0.183    0.194
##     0.293    0.216    0.220
##     0.106    0.036    0.038
##     0.204    0.131    0.137
##    -0.058   -0.119   -0.141
##    -0.015   -0.078   -0.091
##     0.289    0.215    0.222
##     0.255    0.179    0.182
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.157    0.015   10.509    0.000    0.128
##    .sswk              0.171    0.016   10.843    0.000    0.140
##    .sspc              0.234    0.021   11.025    0.000    0.193
##    .ssei              0.259    0.023   11.512    0.000    0.215
##    .ssar              0.152    0.016    9.560    0.000    0.121
##    .ssmk              0.184    0.016   11.683    0.000    0.153
##    .ssmc              0.251    0.019   13.546    0.000    0.215
##    .ssao              0.407    0.028   14.798    0.000    0.353
##    .ssai              0.318    0.026   12.095    0.000    0.267
##    .sssi              0.311    0.028   11.175    0.000    0.256
##    .ssno              0.368    0.040    9.145    0.000    0.289
##    .sscs              0.461    0.052    8.854    0.000    0.359
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.078    0.078
##     1.000    0.146    0.146
##     0.187    0.157    0.164
##     0.202    0.171    0.175
##     0.276    0.234    0.262
##     0.304    0.259    0.286
##     0.183    0.152    0.171
##     0.215    0.184    0.190
##     0.288    0.251    0.285
##     0.461    0.407    0.445
##     0.370    0.318    0.448
##     0.365    0.311    0.424
##     0.447    0.368    0.390
##     0.563    0.461    0.478
##     1.000    0.238    0.238
##     1.000    0.392    0.392
##     1.000    0.834    0.834
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.250    0.035    7.090    0.000    0.181
##     sswk    (.p2.)    0.250    0.035    7.061    0.000    0.181
##     sspc    (.p3.)    0.114    0.020    5.606    0.000    0.074
##     ssei    (.p4.)    0.138    0.022    6.203    0.000    0.094
##   math =~                                                      
##     ssar    (.p5.)    0.328    0.027   12.310    0.000    0.276
##     sspc    (.p6.)    0.163    0.024    6.859    0.000    0.116
##     ssmk    (.p7.)    0.241    0.025    9.681    0.000    0.192
##     ssmc    (.p8.)    0.196    0.018   10.916    0.000    0.161
##     ssao    (.p9.)    0.272    0.023   11.789    0.000    0.227
##   electronic =~                                                
##     ssai    (.10.)    0.305    0.034    8.958    0.000    0.239
##     sssi    (.11.)    0.317    0.036    8.771    0.000    0.247
##     ssmc    (.12.)    0.156    0.020    7.989    0.000    0.118
##     ssei    (.13.)    0.168    0.020    8.259    0.000    0.128
##   speed =~                                                     
##     ssno    (.14.)    0.475    0.044   10.867    0.000    0.389
##     sscs    (.15.)    0.444    0.041   10.910    0.000    0.364
##     ssmk    (.16.)    0.197    0.023    8.689    0.000    0.153
##   g =~                                                         
##     verbal  (.17.)    3.147    0.480    6.561    0.000    2.207
##     math    (.18.)    2.211    0.223    9.924    0.000    1.774
##     elctrnc (.19.)    1.632    0.201    8.107    0.000    1.237
##     speed   (.20.)    1.137    0.130    8.775    0.000    0.883
##  ci.upper   Std.lv  Std.all
##                            
##     0.319    0.987    0.922
##     0.320    0.989    0.914
##     0.154    0.452    0.443
##     0.181    0.544    0.494
##                            
##     0.380    0.940    0.897
##     0.209    0.467    0.457
##     0.289    0.690    0.656
##     0.232    0.563    0.535
##     0.317    0.779    0.734
##                            
##     0.372    0.889    0.795
##     0.388    0.925    0.853
##     0.194    0.454    0.432
##     0.208    0.491    0.446
##                            
##     0.560    0.856    0.803
##     0.524    0.801    0.755
##     0.242    0.356    0.338
##                            
##     4.087    0.967    0.967
##     2.648    0.937    0.937
##     2.027    0.681    0.681
##     1.391    0.766    0.766
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.336    0.036    9.241    0.000    0.265
##  ci.upper   Std.lv  Std.all
##                            
##     0.408    0.277    0.394
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.41.)    0.162    0.038    4.313    0.000    0.088
##    .sswk    (.42.)    0.100    0.038    2.617    0.009    0.025
##    .sspc             -0.050    0.041   -1.211    0.226   -0.130
##    .ssei    (.44.)   -0.020    0.035   -0.578    0.563   -0.088
##    .ssar    (.45.)    0.183    0.038    4.805    0.000    0.108
##    .ssmk    (.46.)    0.216    0.039    5.517    0.000    0.139
##    .ssmc    (.47.)    0.036    0.036    0.994    0.320   -0.035
##    .ssao    (.48.)    0.131    0.037    3.541    0.000    0.059
##    .ssai    (.49.)   -0.119    0.031   -3.828    0.000   -0.179
##    .sssi    (.50.)   -0.078    0.032   -2.439    0.015   -0.141
##    .ssno    (.51.)    0.215    0.038    5.733    0.000    0.142
##    .sscs    (.52.)    0.179    0.039    4.594    0.000    0.102
##    .math             -0.267    0.113   -2.370    0.018   -0.488
##    .elctrnc           1.623    0.234    6.935    0.000    1.164
##    .speed            -0.642    0.117   -5.480    0.000   -0.872
##    .g                 0.110    0.071    1.548    0.122   -0.029
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.236    0.162    0.151
##     0.175    0.100    0.092
##     0.031   -0.050   -0.049
##     0.048   -0.020   -0.018
##     0.258    0.183    0.175
##     0.293    0.216    0.206
##     0.106    0.036    0.034
##     0.204    0.131    0.124
##    -0.058   -0.119   -0.106
##    -0.015   -0.078   -0.072
##     0.289    0.215    0.202
##     0.255    0.179    0.168
##    -0.046   -0.093   -0.093
##     2.082    0.557    0.557
##    -0.412   -0.356   -0.356
##     0.248    0.090    0.090
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.173    0.017    9.996    0.000    0.139
##    .sswk              0.193    0.017   11.650    0.000    0.160
##    .sspc              0.237    0.020   12.123    0.000    0.199
##    .ssei              0.324    0.025   12.794    0.000    0.274
##    .ssar              0.214    0.023    9.529    0.000    0.170
##    .ssmk              0.152    0.013   11.684    0.000    0.127
##    .ssmc              0.256    0.019   13.210    0.000    0.218
##    .ssao              0.520    0.038   13.721    0.000    0.446
##    .ssai              0.460    0.042   10.991    0.000    0.378
##    .sssi              0.320    0.035    9.081    0.000    0.251
##    .ssno              0.403    0.043    9.357    0.000    0.319
##    .sscs              0.485    0.057    8.552    0.000    0.374
##    .electronic        4.550    1.087    4.187    0.000    2.420
##    .speed             1.344    0.282    4.768    0.000    0.791
##    .g                 1.246    0.109   11.436    0.000    1.033
##  ci.upper   Std.lv  Std.all
##     1.000    0.064    0.064
##     1.000    0.122    0.122
##     0.207    0.173    0.151
##     0.225    0.193    0.165
##     0.276    0.237    0.228
##     0.373    0.324    0.267
##     0.259    0.214    0.195
##     0.178    0.152    0.138
##     0.294    0.256    0.232
##     0.595    0.520    0.461
##     0.543    0.460    0.368
##     0.389    0.320    0.272
##     0.488    0.403    0.355
##     0.596    0.485    0.431
##     6.680    0.536    0.536
##     1.896    0.413    0.413
##     1.460    0.844    0.844
sem.ageq<-sem(hof.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   689.988   139.000     0.000     0.960     0.078     0.055     0.625 
##       aic       bic 
## 31889.888 32226.543
Mc(sem.ageq)
## [1] 0.8104705
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 100 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        97
##   Number of equality constraints                    32
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               689.988     531.460
##   Degrees of freedom                               139         139
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.298
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          284.534     219.161
##     0                                          405.454     312.299
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.249    0.035    7.063    0.000    0.180
##     sswk    (.p2.)    0.250    0.035    7.032    0.000    0.180
##     sspc    (.p3.)    0.114    0.020    5.594    0.000    0.074
##     ssei    (.p4.)    0.137    0.022    6.185    0.000    0.094
##   math =~                                                      
##     ssar    (.p5.)    0.328    0.027   12.321    0.000    0.276
##     sspc    (.p6.)    0.163    0.024    6.858    0.000    0.116
##     ssmk    (.p7.)    0.241    0.025    9.683    0.000    0.192
##     ssmc    (.p8.)    0.197    0.018   10.919    0.000    0.161
##     ssao    (.p9.)    0.272    0.023   11.794    0.000    0.227
##   electronic =~                                                
##     ssai    (.10.)    0.305    0.034    8.963    0.000    0.239
##     sssi    (.11.)    0.317    0.036    8.775    0.000    0.247
##     ssmc    (.12.)    0.156    0.020    7.990    0.000    0.118
##     ssei    (.13.)    0.169    0.020    8.263    0.000    0.129
##   speed =~                                                     
##     ssno    (.14.)    0.474    0.044   10.858    0.000    0.389
##     sscs    (.15.)    0.444    0.041   10.903    0.000    0.364
##     ssmk    (.16.)    0.197    0.023    8.692    0.000    0.153
##   g =~                                                         
##     verbal  (.17.)    3.157    0.483    6.539    0.000    2.211
##     math    (.18.)    2.209    0.222    9.932    0.000    1.773
##     elctrnc (.19.)    1.631    0.201    8.111    0.000    1.237
##     speed   (.20.)    1.138    0.130    8.770    0.000    0.884
##  ci.upper   Std.lv  Std.all
##                            
##     0.318    0.904    0.916
##     0.319    0.906    0.910
##     0.154    0.414    0.435
##     0.181    0.498    0.520
##                            
##     0.380    0.866    0.912
##     0.210    0.430    0.451
##     0.290    0.635    0.642
##     0.232    0.519    0.549
##     0.317    0.718    0.747
##                            
##     0.372    0.629    0.745
##     0.388    0.654    0.761
##     0.194    0.321    0.340
##     0.208    0.347    0.362
##                            
##     0.560    0.762    0.782
##     0.524    0.713    0.724
##     0.242    0.317    0.320
##                            
##     4.103    0.961    0.961
##     2.646    0.925    0.925
##     2.025    0.874    0.874
##     1.393    0.783    0.783
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.315    0.025   12.757    0.000    0.267
##  ci.upper   Std.lv  Std.all
##                            
##     0.363    0.285    0.425
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.41.)    0.161    0.038    4.290    0.000    0.088
##    .sswk    (.42.)    0.099    0.038    2.598    0.009    0.024
##    .sspc              0.238    0.039    6.097    0.000    0.162
##    .ssei    (.44.)   -0.021    0.035   -0.599    0.549   -0.089
##    .ssar    (.45.)    0.182    0.038    4.779    0.000    0.108
##    .ssmk    (.46.)    0.216    0.039    5.500    0.000    0.139
##    .ssmc    (.47.)    0.035    0.036    0.973    0.330   -0.036
##    .ssao    (.48.)    0.131    0.037    3.520    0.000    0.058
##    .ssai    (.49.)   -0.119    0.031   -3.843    0.000   -0.180
##    .sssi    (.50.)   -0.079    0.032   -2.454    0.014   -0.141
##    .ssno    (.51.)    0.215    0.038    5.725    0.000    0.141
##    .sscs    (.52.)    0.178    0.039    4.587    0.000    0.102
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.235    0.161    0.163
##     0.174    0.099    0.099
##     0.315    0.238    0.250
##     0.047   -0.021   -0.022
##     0.257    0.182    0.192
##     0.292    0.216    0.218
##     0.106    0.035    0.037
##     0.204    0.131    0.136
##    -0.058   -0.119   -0.141
##    -0.016   -0.079   -0.091
##     0.288    0.215    0.220
##     0.254    0.178    0.181
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.157    0.015   10.523    0.000    0.128
##    .sswk              0.171    0.016   10.844    0.000    0.140
##    .sspc              0.234    0.021   11.026    0.000    0.193
##    .ssei              0.259    0.023   11.512    0.000    0.215
##    .ssar              0.152    0.016    9.560    0.000    0.121
##    .ssmk              0.184    0.016   11.688    0.000    0.153
##    .ssmc              0.251    0.019   13.545    0.000    0.215
##    .ssao              0.407    0.028   14.798    0.000    0.353
##    .ssai              0.318    0.026   12.096    0.000    0.266
##    .sssi              0.311    0.028   11.176    0.000    0.256
##    .ssno              0.368    0.040    9.147    0.000    0.289
##    .sscs              0.461    0.052    8.855    0.000    0.359
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.076    0.076
##     1.000    0.144    0.144
##     0.187    0.157    0.162
##     0.202    0.171    0.173
##     0.276    0.234    0.258
##     0.304    0.259    0.282
##     0.183    0.152    0.169
##     0.215    0.184    0.188
##     0.288    0.251    0.281
##     0.461    0.407    0.441
##     0.370    0.318    0.445
##     0.365    0.311    0.421
##     0.447    0.368    0.388
##     0.563    0.461    0.476
##     1.000    0.235    0.235
##     1.000    0.387    0.387
##     1.000    0.819    0.819
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.249    0.035    7.063    0.000    0.180
##     sswk    (.p2.)    0.250    0.035    7.032    0.000    0.180
##     sspc    (.p3.)    0.114    0.020    5.594    0.000    0.074
##     ssei    (.p4.)    0.137    0.022    6.185    0.000    0.094
##   math =~                                                      
##     ssar    (.p5.)    0.328    0.027   12.321    0.000    0.276
##     sspc    (.p6.)    0.163    0.024    6.858    0.000    0.116
##     ssmk    (.p7.)    0.241    0.025    9.683    0.000    0.192
##     ssmc    (.p8.)    0.197    0.018   10.919    0.000    0.161
##     ssao    (.p9.)    0.272    0.023   11.794    0.000    0.227
##   electronic =~                                                
##     ssai    (.10.)    0.305    0.034    8.963    0.000    0.239
##     sssi    (.11.)    0.317    0.036    8.775    0.000    0.247
##     ssmc    (.12.)    0.156    0.020    7.990    0.000    0.118
##     ssei    (.13.)    0.169    0.020    8.263    0.000    0.129
##   speed =~                                                     
##     ssno    (.14.)    0.474    0.044   10.858    0.000    0.389
##     sscs    (.15.)    0.444    0.041   10.903    0.000    0.364
##     ssmk    (.16.)    0.197    0.023    8.692    0.000    0.153
##   g =~                                                         
##     verbal  (.17.)    3.157    0.483    6.539    0.000    2.211
##     math    (.18.)    2.209    0.222    9.932    0.000    1.773
##     elctrnc (.19.)    1.631    0.201    8.111    0.000    1.237
##     speed   (.20.)    1.138    0.130    8.770    0.000    0.884
##  ci.upper   Std.lv  Std.all
##                            
##     0.318    0.979    0.920
##     0.319    0.980    0.913
##     0.154    0.449    0.442
##     0.181    0.539    0.493
##                            
##     0.380    0.932    0.896
##     0.210    0.463    0.456
##     0.290    0.684    0.655
##     0.232    0.558    0.534
##     0.317    0.773    0.731
##                            
##     0.372    0.886    0.794
##     0.388    0.921    0.852
##     0.194    0.452    0.433
##     0.208    0.489    0.446
##                            
##     0.560    0.851    0.802
##     0.524    0.797    0.753
##     0.242    0.354    0.339
##                            
##     4.103    0.967    0.967
##     2.646    0.936    0.936
##     2.025    0.677    0.677
##     1.393    0.763    0.763
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.315    0.025   12.757    0.000    0.267
##  ci.upper   Std.lv  Std.all
##                            
##     0.363    0.262    0.373
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.41.)    0.161    0.038    4.290    0.000    0.088
##    .sswk    (.42.)    0.099    0.038    2.598    0.009    0.024
##    .sspc             -0.050    0.041   -1.229    0.219   -0.131
##    .ssei    (.44.)   -0.021    0.035   -0.599    0.549   -0.089
##    .ssar    (.45.)    0.182    0.038    4.779    0.000    0.108
##    .ssmk    (.46.)    0.216    0.039    5.500    0.000    0.139
##    .ssmc    (.47.)    0.035    0.036    0.973    0.330   -0.036
##    .ssao    (.48.)    0.131    0.037    3.520    0.000    0.058
##    .ssai    (.49.)   -0.119    0.031   -3.843    0.000   -0.180
##    .sssi    (.50.)   -0.079    0.032   -2.454    0.014   -0.141
##    .ssno    (.51.)    0.215    0.038    5.725    0.000    0.141
##    .sscs    (.52.)    0.178    0.039    4.587    0.000    0.102
##    .math             -0.267    0.112   -2.370    0.018   -0.487
##    .elctrnc           1.623    0.234    6.938    0.000    1.165
##    .speed            -0.642    0.117   -5.477    0.000   -0.872
##    .g                 0.110    0.071    1.554    0.120   -0.029
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.235    0.161    0.152
##     0.174    0.099    0.092
##     0.030   -0.050   -0.050
##     0.047   -0.021   -0.019
##     0.257    0.182    0.175
##     0.292    0.216    0.206
##     0.106    0.035    0.034
##     0.204    0.131    0.124
##    -0.058   -0.119   -0.107
##    -0.016   -0.079   -0.073
##     0.288    0.215    0.202
##     0.254    0.178    0.168
##    -0.046   -0.094   -0.094
##     2.082    0.560    0.560
##    -0.412   -0.358   -0.358
##     0.249    0.091    0.091
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.173    0.017    9.992    0.000    0.139
##    .sswk              0.193    0.017   11.647    0.000    0.160
##    .sspc              0.237    0.020   12.123    0.000    0.199
##    .ssei              0.324    0.025   12.795    0.000    0.274
##    .ssar              0.214    0.023    9.526    0.000    0.170
##    .ssmk              0.153    0.013   11.692    0.000    0.127
##    .ssmc              0.256    0.019   13.213    0.000    0.218
##    .ssao              0.520    0.038   13.724    0.000    0.446
##    .ssai              0.461    0.042   10.993    0.000    0.378
##    .sssi              0.320    0.035    9.082    0.000    0.251
##    .ssno              0.403    0.043    9.354    0.000    0.319
##    .sscs              0.485    0.057    8.550    0.000    0.374
##    .electronic        4.554    1.088    4.187    0.000    2.422
##    .speed             1.347    0.282    4.772    0.000    0.794
##    .g                 1.247    0.109   11.436    0.000    1.033
##  ci.upper   Std.lv  Std.all
##     1.000    0.065    0.065
##     1.000    0.124    0.124
##     0.206    0.173    0.153
##     0.225    0.193    0.167
##     0.276    0.237    0.231
##     0.373    0.324    0.270
##     0.258    0.214    0.198
##     0.178    0.153    0.140
##     0.294    0.256    0.234
##     0.595    0.520    0.465
##     0.543    0.461    0.370
##     0.389    0.320    0.274
##     0.487    0.403    0.357
##     0.596    0.485    0.433
##     6.686    0.542    0.542
##     1.901    0.418    0.418
##     1.460    0.861    0.861
sem.age2<-sem(hof.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   728.395   160.000     0.000     0.959     0.074     0.049     0.659 
##       aic       bic 
## 31891.007 32243.200
Mc(sem.age2)
## [1] 0.8051078
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 106 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        99
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               728.395     562.674
##   Degrees of freedom                               160         160
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.295
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          298.953     230.937
##     0                                          429.442     331.737
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.251    0.035    7.157    0.000    0.182
##     sswk    (.p2.)    0.251    0.035    7.125    0.000    0.182
##     sspc    (.p3.)    0.115    0.020    5.621    0.000    0.075
##     ssei    (.p4.)    0.138    0.022    6.243    0.000    0.095
##   math =~                                                      
##     ssar    (.p5.)    0.327    0.027   12.235    0.000    0.275
##     sspc    (.p6.)    0.162    0.024    6.844    0.000    0.116
##     ssmk    (.p7.)    0.240    0.025    9.655    0.000    0.191
##     ssmc    (.p8.)    0.196    0.018   10.875    0.000    0.161
##     ssao    (.p9.)    0.271    0.023   11.737    0.000    0.226
##   electronic =~                                                
##     ssai    (.10.)    0.306    0.034    8.977    0.000    0.239
##     sssi    (.11.)    0.318    0.036    8.791    0.000    0.247
##     ssmc    (.12.)    0.156    0.020    8.001    0.000    0.118
##     ssei    (.13.)    0.169    0.020    8.270    0.000    0.129
##   speed =~                                                     
##     ssno    (.14.)    0.474    0.044   10.839    0.000    0.388
##     sscs    (.15.)    0.444    0.041   10.880    0.000    0.364
##     ssmk    (.16.)    0.197    0.023    8.687    0.000    0.153
##   g =~                                                         
##     verbal  (.17.)    3.123    0.472    6.610    0.000    2.197
##     math    (.18.)    2.212    0.224    9.895    0.000    1.774
##     elctrnc (.19.)    1.625    0.200    8.112    0.000    1.232
##     speed   (.20.)    1.136    0.130    8.752    0.000    0.881
##  ci.upper   Std.lv  Std.all
##                            
##     0.320    0.896    0.915
##     0.320    0.898    0.908
##     0.155    0.411    0.434
##     0.182    0.494    0.518
##                            
##     0.379    0.859    0.910
##     0.209    0.427    0.451
##     0.289    0.631    0.641
##     0.231    0.515    0.548
##     0.316    0.712    0.745
##                            
##     0.373    0.626    0.743
##     0.389    0.650    0.759
##     0.194    0.319    0.340
##     0.209    0.345    0.362
##                            
##     0.560    0.758    0.781
##     0.523    0.709    0.722
##     0.241    0.315    0.320
##                            
##     4.049    0.960    0.960
##     2.650    0.925    0.925
##     2.017    0.872    0.872
##     1.390    0.780    0.780
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.300    0.031    9.582    0.000    0.239
##     agec2            -0.041    0.025   -1.652    0.099   -0.089
##  ci.upper   Std.lv  Std.all
##                            
##     0.361    0.273    0.407
##     0.008   -0.037   -0.070
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.44.)    0.233    0.057    4.062    0.000    0.121
##    .sswk    (.45.)    0.171    0.058    2.958    0.003    0.058
##    .sspc              0.304    0.055    5.514    0.000    0.196
##    .ssei    (.47.)    0.044    0.053    0.839    0.401   -0.059
##    .ssar    (.48.)    0.249    0.055    4.529    0.000    0.141
##    .ssmk    (.49.)    0.285    0.058    4.900    0.000    0.171
##    .ssmc    (.50.)    0.098    0.052    1.880    0.060   -0.004
##    .ssao    (.51.)    0.186    0.051    3.678    0.000    0.087
##    .ssai    (.52.)   -0.073    0.041   -1.781    0.075   -0.154
##    .sssi    (.53.)   -0.031    0.044   -0.712    0.476   -0.116
##    .ssno    (.54.)    0.264    0.049    5.417    0.000    0.169
##    .sscs    (.55.)    0.225    0.048    4.722    0.000    0.131
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.346    0.233    0.238
##     0.285    0.171    0.173
##     0.412    0.304    0.321
##     0.147    0.044    0.046
##     0.357    0.249    0.264
##     0.399    0.285    0.290
##     0.201    0.098    0.105
##     0.285    0.186    0.195
##     0.007   -0.073   -0.087
##     0.054   -0.031   -0.036
##     0.360    0.264    0.272
##     0.318    0.225    0.229
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.157    0.015   10.493    0.000    0.128
##    .sswk              0.171    0.016   10.854    0.000    0.141
##    .sspc              0.234    0.021   11.035    0.000    0.193
##    .ssei              0.259    0.023   11.515    0.000    0.215
##    .ssar              0.152    0.016    9.583    0.000    0.121
##    .ssmk              0.184    0.016   11.671    0.000    0.153
##    .ssmc              0.251    0.019   13.549    0.000    0.215
##    .ssao              0.407    0.028   14.799    0.000    0.353
##    .ssai              0.318    0.026   12.088    0.000    0.266
##    .sssi              0.311    0.028   11.175    0.000    0.256
##    .ssno              0.368    0.040    9.145    0.000    0.289
##    .sscs              0.461    0.052    8.861    0.000    0.359
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.078    0.078
##     1.000    0.145    0.145
##     0.186    0.157    0.163
##     0.202    0.171    0.175
##     0.276    0.234    0.262
##     0.304    0.259    0.286
##     0.183    0.152    0.171
##     0.215    0.184    0.190
##     0.288    0.251    0.285
##     0.461    0.407    0.445
##     0.369    0.318    0.448
##     0.365    0.311    0.424
##     0.447    0.368    0.390
##     0.563    0.461    0.479
##     1.000    0.239    0.239
##     1.000    0.391    0.391
##     1.000    0.829    0.829
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.251    0.035    7.157    0.000    0.182
##     sswk    (.p2.)    0.251    0.035    7.125    0.000    0.182
##     sspc    (.p3.)    0.115    0.020    5.621    0.000    0.075
##     ssei    (.p4.)    0.138    0.022    6.243    0.000    0.095
##   math =~                                                      
##     ssar    (.p5.)    0.327    0.027   12.235    0.000    0.275
##     sspc    (.p6.)    0.162    0.024    6.844    0.000    0.116
##     ssmk    (.p7.)    0.240    0.025    9.655    0.000    0.191
##     ssmc    (.p8.)    0.196    0.018   10.875    0.000    0.161
##     ssao    (.p9.)    0.271    0.023   11.737    0.000    0.226
##   electronic =~                                                
##     ssai    (.10.)    0.306    0.034    8.977    0.000    0.239
##     sssi    (.11.)    0.318    0.036    8.791    0.000    0.247
##     ssmc    (.12.)    0.156    0.020    8.001    0.000    0.118
##     ssei    (.13.)    0.169    0.020    8.270    0.000    0.129
##   speed =~                                                     
##     ssno    (.14.)    0.474    0.044   10.839    0.000    0.388
##     sscs    (.15.)    0.444    0.041   10.880    0.000    0.364
##     ssmk    (.16.)    0.197    0.023    8.687    0.000    0.153
##   g =~                                                         
##     verbal  (.17.)    3.123    0.472    6.610    0.000    2.197
##     math    (.18.)    2.212    0.224    9.895    0.000    1.774
##     elctrnc (.19.)    1.625    0.200    8.112    0.000    1.232
##     speed   (.20.)    1.136    0.130    8.752    0.000    0.881
##  ci.upper   Std.lv  Std.all
##                            
##     0.320    0.987    0.922
##     0.320    0.989    0.914
##     0.155    0.452    0.443
##     0.182    0.544    0.494
##                            
##     0.379    0.940    0.897
##     0.209    0.467    0.457
##     0.289    0.690    0.656
##     0.231    0.563    0.536
##     0.316    0.779    0.734
##                            
##     0.373    0.889    0.795
##     0.389    0.924    0.853
##     0.194    0.454    0.432
##     0.209    0.491    0.446
##                            
##     0.560    0.856    0.803
##     0.523    0.801    0.754
##     0.241    0.356    0.338
##                            
##     4.049    0.967    0.967
##     2.650    0.938    0.938
##     2.017    0.681    0.681
##     1.390    0.766    0.766
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.336    0.037    9.146    0.000    0.264
##     agec2            -0.018    0.026   -0.708    0.479   -0.069
##  ci.upper   Std.lv  Std.all
##                            
##     0.408    0.276    0.393
##     0.032   -0.015   -0.028
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.44.)    0.233    0.057    4.062    0.000    0.121
##    .sswk    (.45.)    0.171    0.058    2.958    0.003    0.058
##    .sspc              0.016    0.057    0.276    0.782   -0.096
##    .ssei    (.47.)    0.044    0.053    0.839    0.401   -0.059
##    .ssar    (.48.)    0.249    0.055    4.529    0.000    0.141
##    .ssmk    (.49.)    0.285    0.058    4.900    0.000    0.171
##    .ssmc    (.50.)    0.098    0.052    1.880    0.060   -0.004
##    .ssao    (.51.)    0.186    0.051    3.678    0.000    0.087
##    .ssai    (.52.)   -0.073    0.041   -1.781    0.075   -0.154
##    .sssi    (.53.)   -0.031    0.044   -0.712    0.476   -0.116
##    .ssno    (.54.)    0.264    0.049    5.417    0.000    0.169
##    .sscs    (.55.)    0.225    0.048    4.722    0.000    0.131
##    .math             -0.268    0.113   -2.372    0.018   -0.490
##    .elctrnc           1.621    0.233    6.944    0.000    1.163
##    .speed            -0.643    0.117   -5.478    0.000   -0.873
##    .g                 0.056    0.104    0.540    0.589   -0.147
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.346    0.233    0.218
##     0.285    0.171    0.158
##     0.128    0.016    0.015
##     0.147    0.044    0.040
##     0.357    0.249    0.238
##     0.399    0.285    0.271
##     0.201    0.098    0.094
##     0.285    0.186    0.175
##     0.007   -0.073   -0.066
##     0.054   -0.031   -0.029
##     0.360    0.264    0.248
##     0.318    0.225    0.212
##    -0.047   -0.093   -0.093
##     2.078    0.557    0.557
##    -0.413   -0.356   -0.356
##     0.259    0.046    0.046
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.173    0.017    9.995    0.000    0.139
##    .sswk              0.193    0.017   11.650    0.000    0.160
##    .sspc              0.237    0.020   12.121    0.000    0.199
##    .ssei              0.324    0.025   12.795    0.000    0.274
##    .ssar              0.215    0.022    9.540    0.000    0.171
##    .ssmk              0.152    0.013   11.680    0.000    0.127
##    .ssmc              0.256    0.019   13.202    0.000    0.218
##    .ssao              0.520    0.038   13.721    0.000    0.446
##    .ssai              0.460    0.042   10.991    0.000    0.378
##    .sssi              0.320    0.035    9.080    0.000    0.251
##    .ssno              0.403    0.043    9.357    0.000    0.319
##    .sscs              0.485    0.057    8.553    0.000    0.374
##    .electronic        4.539    1.082    4.195    0.000    2.419
##    .speed             1.345    0.283    4.760    0.000    0.791
##    .g                 1.252    0.110   11.399    0.000    1.037
##  ci.upper   Std.lv  Std.all
##     1.000    0.065    0.065
##     1.000    0.121    0.121
##     0.206    0.173    0.150
##     0.225    0.193    0.165
##     0.276    0.237    0.228
##     0.373    0.324    0.267
##     0.259    0.215    0.195
##     0.178    0.152    0.138
##     0.294    0.256    0.232
##     0.595    0.520    0.461
##     0.543    0.460    0.368
##     0.389    0.320    0.272
##     0.488    0.403    0.355
##     0.597    0.485    0.431
##     6.660    0.537    0.537
##     1.899    0.413    0.413
##     1.468    0.844    0.844
sem.age2q<-sem(hof.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   729.579   162.000     0.000     0.959     0.073     0.052     0.657 
##       aic       bic 
## 31888.191 32230.026
Mc(sem.age2q)
## [1] 0.8053583
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 102 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        99
##   Number of equality constraints                    33
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               729.579     564.268
##   Degrees of freedom                               162         162
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.293
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          299.358     231.528
##     0                                          430.221     332.740
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.250    0.035    7.130    0.000    0.181
##     sswk    (.p2.)    0.251    0.035    7.098    0.000    0.181
##     sspc    (.p3.)    0.115    0.020    5.609    0.000    0.075
##     ssei    (.p4.)    0.138    0.022    6.226    0.000    0.094
##   math =~                                                      
##     ssar    (.p5.)    0.327    0.027   12.250    0.000    0.275
##     sspc    (.p6.)    0.163    0.024    6.845    0.000    0.116
##     ssmk    (.p7.)    0.240    0.025    9.660    0.000    0.192
##     ssmc    (.p8.)    0.196    0.018   10.884    0.000    0.161
##     ssao    (.p9.)    0.271    0.023   11.749    0.000    0.226
##   electronic =~                                                
##     ssai    (.10.)    0.306    0.034    8.978    0.000    0.239
##     sssi    (.11.)    0.318    0.036    8.791    0.000    0.247
##     ssmc    (.12.)    0.156    0.020    7.999    0.000    0.118
##     ssei    (.13.)    0.169    0.020    8.271    0.000    0.129
##   speed =~                                                     
##     ssno    (.14.)    0.474    0.044   10.837    0.000    0.388
##     sscs    (.15.)    0.443    0.041   10.878    0.000    0.363
##     ssmk    (.16.)    0.197    0.023    8.691    0.000    0.153
##   g =~                                                         
##     verbal  (.17.)    3.133    0.475    6.591    0.000    2.201
##     math    (.18.)    2.210    0.223    9.902    0.000    1.773
##     elctrnc (.19.)    1.625    0.200    8.114    0.000    1.232
##     speed   (.20.)    1.136    0.130    8.751    0.000    0.882
##  ci.upper   Std.lv  Std.all
##                            
##     0.319    0.903    0.916
##     0.320    0.905    0.909
##     0.155    0.414    0.434
##     0.181    0.498    0.520
##                            
##     0.380    0.865    0.911
##     0.209    0.430    0.451
##     0.289    0.635    0.642
##     0.231    0.518    0.549
##     0.317    0.717    0.747
##                            
##     0.372    0.629    0.745
##     0.389    0.654    0.761
##     0.194    0.321    0.340
##     0.209    0.347    0.362
##                            
##     0.560    0.761    0.782
##     0.523    0.712    0.724
##     0.241    0.317    0.320
##                            
##     4.065    0.961    0.961
##     2.647    0.926    0.926
##     2.017    0.874    0.874
##     1.391    0.783    0.783
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.315    0.025   12.659    0.000    0.266
##     agec2      (b)   -0.031    0.018   -1.743    0.081   -0.067
##  ci.upper   Std.lv  Std.all
##                            
##     0.364    0.285    0.424
##     0.004   -0.028   -0.054
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.44.)    0.216    0.049    4.387    0.000    0.120
##    .sswk    (.45.)    0.154    0.050    3.109    0.002    0.057
##    .sspc              0.288    0.048    5.972    0.000    0.194
##    .ssei    (.47.)    0.029    0.045    0.629    0.529   -0.060
##    .ssar    (.48.)    0.233    0.048    4.867    0.000    0.139
##    .ssmk    (.49.)    0.268    0.050    5.365    0.000    0.170
##    .ssmc    (.50.)    0.083    0.046    1.823    0.068   -0.006
##    .ssao    (.51.)    0.173    0.045    3.839    0.000    0.085
##    .ssai    (.52.)   -0.084    0.037   -2.307    0.021   -0.156
##    .sssi    (.53.)   -0.043    0.039   -1.098    0.272   -0.118
##    .ssno    (.54.)    0.252    0.044    5.728    0.000    0.166
##    .sscs    (.55.)    0.213    0.044    4.884    0.000    0.128
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.313    0.216    0.219
##     0.251    0.154    0.155
##     0.383    0.288    0.303
##     0.117    0.029    0.030
##     0.327    0.233    0.245
##     0.366    0.268    0.271
##     0.173    0.083    0.088
##     0.261    0.173    0.180
##    -0.013   -0.084   -0.100
##     0.033   -0.043   -0.049
##     0.339    0.252    0.259
##     0.299    0.213    0.217
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.157    0.015   10.510    0.000    0.128
##    .sswk              0.171    0.016   10.851    0.000    0.140
##    .sspc              0.234    0.021   11.035    0.000    0.193
##    .ssei              0.259    0.023   11.515    0.000    0.215
##    .ssar              0.152    0.016    9.578    0.000    0.121
##    .ssmk              0.184    0.016   11.678    0.000    0.153
##    .ssmc              0.251    0.019   13.546    0.000    0.215
##    .ssao              0.407    0.028   14.799    0.000    0.353
##    .ssai              0.318    0.026   12.090    0.000    0.266
##    .sssi              0.311    0.028   11.175    0.000    0.256
##    .ssno              0.368    0.040    9.147    0.000    0.289
##    .sscs              0.461    0.052    8.860    0.000    0.359
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.077    0.077
##     1.000    0.143    0.143
##     0.186    0.157    0.162
##     0.202    0.171    0.173
##     0.276    0.234    0.259
##     0.304    0.259    0.283
##     0.184    0.152    0.169
##     0.215    0.184    0.188
##     0.288    0.251    0.282
##     0.461    0.407    0.442
##     0.369    0.318    0.446
##     0.365    0.311    0.421
##     0.447    0.368    0.388
##     0.563    0.461    0.476
##     1.000    0.236    0.236
##     1.000    0.387    0.387
##     1.000    0.817    0.817
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.250    0.035    7.130    0.000    0.181
##     sswk    (.p2.)    0.251    0.035    7.098    0.000    0.181
##     sspc    (.p3.)    0.115    0.020    5.609    0.000    0.075
##     ssei    (.p4.)    0.138    0.022    6.226    0.000    0.094
##   math =~                                                      
##     ssar    (.p5.)    0.327    0.027   12.250    0.000    0.275
##     sspc    (.p6.)    0.163    0.024    6.845    0.000    0.116
##     ssmk    (.p7.)    0.240    0.025    9.660    0.000    0.192
##     ssmc    (.p8.)    0.196    0.018   10.884    0.000    0.161
##     ssao    (.p9.)    0.271    0.023   11.749    0.000    0.226
##   electronic =~                                                
##     ssai    (.10.)    0.306    0.034    8.978    0.000    0.239
##     sssi    (.11.)    0.318    0.036    8.791    0.000    0.247
##     ssmc    (.12.)    0.156    0.020    7.999    0.000    0.118
##     ssei    (.13.)    0.169    0.020    8.271    0.000    0.129
##   speed =~                                                     
##     ssno    (.14.)    0.474    0.044   10.837    0.000    0.388
##     sscs    (.15.)    0.443    0.041   10.878    0.000    0.363
##     ssmk    (.16.)    0.197    0.023    8.691    0.000    0.153
##   g =~                                                         
##     verbal  (.17.)    3.133    0.475    6.591    0.000    2.201
##     math    (.18.)    2.210    0.223    9.902    0.000    1.773
##     elctrnc (.19.)    1.625    0.200    8.114    0.000    1.232
##     speed   (.20.)    1.136    0.130    8.751    0.000    0.882
##  ci.upper   Std.lv  Std.all
##                            
##     0.319    0.980    0.921
##     0.320    0.981    0.913
##     0.155    0.449    0.442
##     0.181    0.540    0.493
##                            
##     0.380    0.933    0.896
##     0.209    0.464    0.457
##     0.289    0.685    0.655
##     0.231    0.559    0.535
##     0.317    0.774    0.732
##                            
##     0.372    0.886    0.794
##     0.389    0.921    0.852
##     0.194    0.452    0.432
##     0.209    0.489    0.446
##                            
##     0.560    0.852    0.802
##     0.523    0.797    0.753
##     0.241    0.354    0.339
##                            
##     4.065    0.967    0.967
##     2.647    0.936    0.936
##     2.017    0.677    0.677
##     1.391    0.763    0.763
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.315    0.025   12.659    0.000    0.266
##     agec2      (b)   -0.031    0.018   -1.743    0.081   -0.067
##  ci.upper   Std.lv  Std.all
##                            
##     0.364    0.261    0.371
##     0.004   -0.026   -0.048
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.44.)    0.216    0.049    4.387    0.000    0.120
##    .sswk    (.45.)    0.154    0.050    3.109    0.002    0.057
##    .sspc             -0.000    0.050   -0.003    0.998   -0.098
##    .ssei    (.47.)    0.029    0.045    0.629    0.529   -0.060
##    .ssar    (.48.)    0.233    0.048    4.867    0.000    0.139
##    .ssmk    (.49.)    0.268    0.050    5.365    0.000    0.170
##    .ssmc    (.50.)    0.083    0.046    1.823    0.068   -0.006
##    .ssao    (.51.)    0.173    0.045    3.839    0.000    0.085
##    .ssai    (.52.)   -0.084    0.037   -2.307    0.021   -0.156
##    .sssi    (.53.)   -0.043    0.039   -1.098    0.272   -0.118
##    .ssno    (.54.)    0.252    0.044    5.728    0.000    0.166
##    .sscs    (.55.)    0.213    0.044    4.884    0.000    0.128
##    .math             -0.268    0.113   -2.372    0.018   -0.489
##    .elctrnc           1.621    0.233    6.944    0.000    1.164
##    .speed            -0.643    0.117   -5.476    0.000   -0.873
##    .g                 0.104    0.071    1.467    0.142   -0.035
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.313    0.216    0.203
##     0.251    0.154    0.143
##     0.097   -0.000   -0.000
##     0.117    0.029    0.026
##     0.327    0.233    0.224
##     0.366    0.268    0.256
##     0.173    0.083    0.079
##     0.261    0.173    0.163
##    -0.013   -0.084   -0.076
##     0.033   -0.043   -0.039
##     0.339    0.252    0.237
##     0.299    0.213    0.202
##    -0.047   -0.094   -0.094
##     2.079    0.559    0.559
##    -0.413   -0.358   -0.358
##     0.244    0.086    0.086
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.172    0.017    9.992    0.000    0.139
##    .sswk              0.193    0.017   11.648    0.000    0.161
##    .sspc              0.237    0.020   12.120    0.000    0.199
##    .ssei              0.324    0.025   12.799    0.000    0.274
##    .ssar              0.215    0.023    9.537    0.000    0.171
##    .ssmk              0.152    0.013   11.688    0.000    0.127
##    .ssmc              0.256    0.019   13.211    0.000    0.218
##    .ssao              0.520    0.038   13.720    0.000    0.446
##    .ssai              0.461    0.042   10.994    0.000    0.378
##    .sssi              0.320    0.035    9.081    0.000    0.251
##    .ssno              0.403    0.043    9.352    0.000    0.318
##    .sscs              0.485    0.057    8.551    0.000    0.374
##    .electronic        4.545    1.084    4.193    0.000    2.421
##    .speed             1.349    0.283    4.766    0.000    0.794
##    .g                 1.253    0.110   11.392    0.000    1.037
##  ci.upper   Std.lv  Std.all
##     1.000    0.065    0.065
##     1.000    0.123    0.123
##     0.206    0.172    0.152
##     0.225    0.193    0.167
##     0.276    0.237    0.230
##     0.373    0.324    0.270
##     0.259    0.215    0.198
##     0.178    0.152    0.139
##     0.294    0.256    0.234
##     0.594    0.520    0.465
##     0.543    0.461    0.370
##     0.389    0.320    0.274
##     0.487    0.403    0.357
##     0.597    0.485    0.433
##     6.670    0.541    0.541
##     1.904    0.417    0.417
##     1.468    0.858    0.858
# BIFACTOR MODEL (verbal is ill defined due to wk having high loadings and negative variance, but then ei has negative variance, and finally with only gs and pc, the gs test has negative loading)

bf.notworking<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
'

baseline<-cfa(bf.notworking, data=dgroup, meanstructure=T, sampling.weights="sweight", std.lv=T, orthogonal=T)
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   408.592    38.000     0.000     0.972     0.086     0.038 32597.489 
##       bic 
## 32866.813
Mc(baseline)
## [1] 0.8681946
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 72 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        52
## 
##   Number of observations                          1312
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               408.592     350.120
##   Degrees of freedom                                38          38
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.167
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.062    0.330    0.189    0.850   -0.584
##     sswk              0.484    2.049    0.236    0.813   -3.533
##     sspc              0.086    0.457    0.188    0.851   -0.810
##     ssei              0.006    0.120    0.054    0.957   -0.228
##   math =~                                                      
##     ssar              0.316    0.050    6.356    0.000    0.219
##     sspc              0.234    0.077    3.038    0.002    0.083
##     ssmk              0.304    0.039    7.826    0.000    0.228
##     ssmc              0.238    0.041    5.749    0.000    0.157
##     ssao              0.338    0.050    6.817    0.000    0.241
##   electronic =~                                                
##     ssai              0.563    0.038   14.832    0.000    0.488
##     sssi              0.600    0.036   16.857    0.000    0.530
##     ssmc              0.301    0.027   11.288    0.000    0.249
##     ssei              0.303    0.031    9.668    0.000    0.242
##   speed =~                                                     
##     ssno              0.670    0.056   12.016    0.000    0.561
##     sscs              0.424    0.043    9.881    0.000    0.340
##     ssmk              0.232    0.029    8.117    0.000    0.176
##   g =~                                                         
##     ssgs              0.933    0.028   33.683    0.000    0.879
##     ssar              0.834    0.030   27.704    0.000    0.775
##     sswk              0.923    0.033   27.697    0.000    0.858
##     sspc              0.818    0.039   20.730    0.000    0.741
##     ssno              0.596    0.032   18.749    0.000    0.534
##     sscs              0.571    0.030   19.028    0.000    0.512
##     ssai              0.620    0.031   20.164    0.000    0.560
##     sssi              0.638    0.030   21.597    0.000    0.580
##     ssmk              0.850    0.027   31.311    0.000    0.797
##     ssmc              0.804    0.025   31.734    0.000    0.754
##     ssei              0.864    0.030   28.536    0.000    0.805
##     ssao              0.672    0.028   24.131    0.000    0.618
##  ci.upper   Std.lv  Std.all
##                            
##     0.708    0.062    0.061
##     4.500    0.484    0.467
##     0.982    0.086    0.086
##     0.241    0.006    0.006
##                            
##     0.414    0.316    0.317
##     0.385    0.234    0.235
##     0.380    0.304    0.299
##     0.319    0.238    0.233
##     0.435    0.338    0.335
##                            
##     0.637    0.563    0.538
##     0.669    0.600    0.580
##     0.353    0.301    0.295
##     0.364    0.303    0.285
##                            
##     0.780    0.670    0.653
##     0.508    0.424    0.412
##     0.289    0.232    0.228
##                            
##     0.987    0.933    0.909
##     0.893    0.834    0.835
##     0.989    0.923    0.891
##     0.896    0.818    0.823
##     0.658    0.596    0.581
##     0.630    0.571    0.555
##     0.681    0.620    0.593
##     0.696    0.638    0.617
##     0.903    0.850    0.835
##     0.853    0.804    0.788
##     0.923    0.864    0.813
##     0.727    0.672    0.667
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.211    0.031    6.806    0.000    0.151
##    .sswk              0.145    0.031    4.602    0.000    0.083
##    .sspc              0.117    0.030    3.869    0.000    0.058
##    .ssei              0.158    0.033    4.834    0.000    0.094
##    .ssar              0.186    0.030    6.138    0.000    0.126
##    .ssmk              0.168    0.031    5.367    0.000    0.107
##    .ssmc              0.177    0.031    5.791    0.000    0.117
##    .ssao              0.128    0.031    4.135    0.000    0.067
##    .ssai              0.158    0.033    4.852    0.000    0.094
##    .sssi              0.210    0.032    6.615    0.000    0.148
##    .ssno              0.099    0.032    3.093    0.002    0.036
##    .sscs              0.066    0.032    2.069    0.039    0.003
##  ci.upper   Std.lv  Std.all
##     0.272    0.211    0.206
##     0.207    0.145    0.140
##     0.176    0.117    0.118
##     0.222    0.158    0.149
##     0.245    0.186    0.186
##     0.229    0.168    0.165
##     0.237    0.177    0.174
##     0.188    0.128    0.127
##     0.222    0.158    0.151
##     0.272    0.210    0.203
##     0.161    0.099    0.096
##     0.128    0.066    0.064
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.180    0.022    8.121    0.000    0.137
##    .sswk             -0.013    2.020   -0.007    0.995   -3.972
##    .sspc              0.257    0.058    4.454    0.000    0.144
##    .ssei              0.292    0.023   12.562    0.000    0.247
##    .ssar              0.203    0.017   12.257    0.000    0.170
##    .ssmk              0.167    0.014   12.082    0.000    0.140
##    .ssmc              0.247    0.016   15.190    0.000    0.215
##    .ssao              0.450    0.027   16.786    0.000    0.398
##    .ssai              0.393    0.028   14.032    0.000    0.338
##    .sssi              0.303    0.027   11.106    0.000    0.249
##    .ssno              0.250    0.058    4.269    0.000    0.135
##    .sscs              0.552    0.043   12.821    0.000    0.468
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.223    0.180    0.171
##     3.946   -0.013   -0.012
##     0.370    0.257    0.260
##     0.338    0.292    0.259
##     0.235    0.203    0.203
##     0.194    0.167    0.161
##     0.279    0.247    0.237
##     0.503    0.450    0.443
##     0.448    0.393    0.359
##     0.356    0.303    0.283
##     0.364    0.250    0.237
##     0.637    0.552    0.522
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
bf.model<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
'

bf.lv<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
'

baseline<-cfa(bf.model, data=dgroup, meanstructure=T, sampling.weights="sweight", std.lv=T, orthogonal=T)
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   430.323    42.000     0.000     0.971     0.084     0.038 32611.220 
##       bic 
## 32859.827
Mc(baseline)
## [1] 0.8623433
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 40 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        48
## 
##   Number of observations                          1312
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               430.323     327.798
##   Degrees of freedom                                42          42
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.313
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar              0.342    0.030   11.595    0.000    0.284
##     sspc              0.214    0.029    7.393    0.000    0.158
##     ssmk              0.320    0.027   11.997    0.000    0.268
##     ssmc              0.251    0.032    7.896    0.000    0.189
##     ssao              0.358    0.038    9.409    0.000    0.283
##   electronic =~                                                
##     ssai              0.565    0.037   15.398    0.000    0.493
##     sssi              0.602    0.034   17.935    0.000    0.536
##     ssmc              0.308    0.025   12.258    0.000    0.259
##     ssei              0.312    0.030   10.292    0.000    0.253
##   speed =~                                                     
##     ssno              0.673    0.054   12.462    0.000    0.567
##     sscs              0.431    0.040   10.712    0.000    0.352
##     ssmk              0.236    0.025    9.331    0.000    0.187
##   g =~                                                         
##     ssgs              0.941    0.023   41.571    0.000    0.897
##     ssar              0.823    0.025   33.236    0.000    0.775
##     sswk              0.943    0.023   40.803    0.000    0.898
##     sspc              0.829    0.021   39.085    0.000    0.787
##     ssno              0.590    0.030   19.921    0.000    0.532
##     sscs              0.567    0.028   20.035    0.000    0.512
##     ssai              0.618    0.030   20.906    0.000    0.560
##     sssi              0.635    0.027   23.156    0.000    0.581
##     ssmk              0.842    0.024   35.675    0.000    0.795
##     ssmc              0.796    0.024   33.068    0.000    0.749
##     ssei              0.859    0.026   32.593    0.000    0.808
##     ssao              0.662    0.025   26.610    0.000    0.613
##  ci.upper   Std.lv  Std.all
##                            
##     0.400    0.342    0.343
##     0.271    0.214    0.216
##     0.373    0.320    0.315
##     0.314    0.251    0.247
##     0.432    0.358    0.355
##                            
##     0.637    0.565    0.540
##     0.667    0.602    0.582
##     0.357    0.308    0.302
##     0.372    0.312    0.294
##                            
##     0.778    0.673    0.655
##     0.510    0.431    0.419
##     0.286    0.236    0.233
##                            
##     0.986    0.941    0.917
##     0.872    0.823    0.824
##     0.989    0.943    0.910
##     0.870    0.829    0.834
##     0.648    0.590    0.575
##     0.623    0.567    0.551
##     0.676    0.618    0.591
##     0.689    0.635    0.614
##     0.888    0.842    0.828
##     0.843    0.796    0.781
##     0.911    0.859    0.808
##     0.711    0.662    0.656
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.186    0.030    6.138    0.000    0.126
##    .sspc              0.117    0.030    3.869    0.000    0.058
##    .ssmk              0.168    0.031    5.367    0.000    0.107
##    .ssmc              0.177    0.031    5.791    0.000    0.117
##    .ssao              0.128    0.031    4.135    0.000    0.067
##    .ssai              0.158    0.033    4.852    0.000    0.094
##    .sssi              0.210    0.032    6.615    0.000    0.148
##    .ssei              0.158    0.033    4.834    0.000    0.094
##    .ssno              0.099    0.032    3.093    0.002    0.036
##    .sscs              0.066    0.032    2.069    0.039    0.003
##    .ssgs              0.211    0.031    6.806    0.000    0.151
##    .sswk              0.145    0.031    4.602    0.000    0.083
##  ci.upper   Std.lv  Std.all
##     0.245    0.186    0.186
##     0.176    0.117    0.118
##     0.229    0.168    0.165
##     0.237    0.177    0.174
##     0.188    0.128    0.127
##     0.222    0.158    0.151
##     0.272    0.210    0.203
##     0.222    0.158    0.149
##     0.161    0.099    0.096
##     0.128    0.066    0.064
##     0.272    0.211    0.206
##     0.207    0.145    0.140
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.203    0.016   12.325    0.000    0.171
##    .sspc              0.254    0.016   16.111    0.000    0.223
##    .ssmk              0.165    0.013   12.452    0.000    0.139
##    .ssmc              0.246    0.016   15.484    0.000    0.215
##    .ssao              0.451    0.027   16.865    0.000    0.399
##    .ssai              0.394    0.028   14.149    0.000    0.339
##    .sssi              0.304    0.027   11.355    0.000    0.252
##    .ssei              0.295    0.017   17.294    0.000    0.261
##    .ssno              0.254    0.057    4.486    0.000    0.143
##    .sscs              0.551    0.043   12.926    0.000    0.467
##    .ssgs              0.169    0.012   14.178    0.000    0.145
##    .sswk              0.184    0.011   15.966    0.000    0.161
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.235    0.203    0.204
##     0.285    0.254    0.258
##     0.191    0.165    0.160
##     0.278    0.246    0.237
##     0.504    0.451    0.444
##     0.448    0.394    0.360
##     0.357    0.304    0.284
##     0.328    0.295    0.261
##     0.364    0.254    0.241
##     0.634    0.551    0.520
##     0.192    0.169    0.160
##     0.206    0.184    0.171
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
configural<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   387.962    84.000     0.000     0.977     0.074     0.031 32046.352 
##       bic 
## 32543.566
Mc(configural)
## [1] 0.8905398
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 48 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               387.962     302.452
##   Degrees of freedom                                84          84
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.283
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          160.132     124.837
##     0                                          227.830     177.615
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar              0.321    0.042    7.623    0.000    0.239
##     sspc              0.169    0.041    4.116    0.000    0.088
##     ssmk              0.306    0.042    7.314    0.000    0.224
##     ssmc              0.243    0.045    5.387    0.000    0.155
##     ssao              0.399    0.058    6.882    0.000    0.285
##   electronic =~                                                
##     ssai              0.301    0.053    5.645    0.000    0.196
##     sssi              0.384    0.061    6.290    0.000    0.264
##     ssmc              0.182    0.042    4.330    0.000    0.100
##     ssei              0.103    0.038    2.717    0.007    0.029
##   speed =~                                                     
##     ssno              0.628    0.087    7.197    0.000    0.457
##     sscs              0.356    0.060    5.936    0.000    0.238
##     ssmk              0.217    0.041    5.235    0.000    0.136
##   g =~                                                         
##     ssgs              0.889    0.031   29.062    0.000    0.829
##     ssar              0.782    0.033   23.497    0.000    0.717
##     sswk              0.910    0.033   27.751    0.000    0.846
##     sspc              0.815    0.030   27.087    0.000    0.756
##     ssno              0.570    0.041   13.973    0.000    0.490
##     sscs              0.539    0.036   15.045    0.000    0.469
##     ssai              0.489    0.032   15.455    0.000    0.427
##     sssi              0.547    0.034   16.107    0.000    0.480
##     ssmk              0.849    0.032   26.934    0.000    0.787
##     ssmc              0.725    0.032   22.446    0.000    0.661
##     ssei              0.737    0.033   22.136    0.000    0.672
##     ssao              0.650    0.032   20.075    0.000    0.586
##  ci.upper   Std.lv  Std.all
##                            
##     0.404    0.321    0.341
##     0.249    0.169    0.176
##     0.388    0.306    0.300
##     0.331    0.243    0.262
##     0.512    0.399    0.408
##                            
##     0.405    0.301    0.372
##     0.504    0.384    0.452
##     0.265    0.182    0.196
##     0.178    0.103    0.114
##                            
##     0.799    0.628    0.644
##     0.473    0.356    0.366
##     0.298    0.217    0.212
##                            
##     0.949    0.889    0.911
##     0.848    0.782    0.829
##     0.975    0.910    0.908
##     0.874    0.815    0.848
##     0.650    0.570    0.585
##     0.610    0.539    0.556
##     0.551    0.489    0.604
##     0.613    0.547    0.644
##     0.911    0.849    0.832
##     0.788    0.725    0.782
##     0.802    0.737    0.814
##     0.713    0.650    0.665
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.186    0.040    4.598    0.000    0.107
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssmk              0.241    0.044    5.433    0.000    0.154
##    .ssmc              0.039    0.040    0.993    0.321   -0.038
##    .ssao              0.171    0.042    4.054    0.000    0.088
##    .ssai             -0.108    0.035   -3.113    0.002   -0.176
##    .sssi             -0.068    0.036   -1.862    0.063   -0.139
##    .ssei              0.000    0.039    0.009    0.993   -0.077
##    .ssno              0.175    0.043    4.060    0.000    0.090
##    .sscs              0.245    0.043    5.752    0.000    0.162
##    .ssgs              0.139    0.042    3.332    0.001    0.057
##    .sswk              0.154    0.043    3.607    0.000    0.070
##  ci.upper   Std.lv  Std.all
##     0.265    0.186    0.197
##     0.333    0.253    0.263
##     0.327    0.241    0.236
##     0.117    0.039    0.042
##     0.253    0.171    0.175
##    -0.040   -0.108   -0.134
##     0.004   -0.068   -0.080
##     0.077    0.000    0.000
##     0.259    0.175    0.179
##     0.329    0.245    0.253
##     0.220    0.139    0.142
##     0.238    0.154    0.154
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.174    0.021    8.445    0.000    0.134
##    .sspc              0.231    0.022   10.722    0.000    0.189
##    .ssmk              0.179    0.021    8.669    0.000    0.139
##    .ssmc              0.242    0.023   10.684    0.000    0.198
##    .ssao              0.374    0.040    9.368    0.000    0.296
##    .ssai              0.326    0.031   10.581    0.000    0.266
##    .sssi              0.275    0.044    6.305    0.000    0.189
##    .ssei              0.266    0.022   11.889    0.000    0.222
##    .ssno              0.232    0.087    2.669    0.008    0.062
##    .sscs              0.525    0.058    8.974    0.000    0.410
##    .ssgs              0.162    0.015   11.111    0.000    0.134
##    .sswk              0.177    0.015   11.515    0.000    0.147
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.215    0.174    0.196
##     0.274    0.231    0.250
##     0.220    0.179    0.172
##     0.286    0.242    0.282
##     0.452    0.374    0.392
##     0.386    0.326    0.497
##     0.360    0.275    0.381
##     0.310    0.266    0.325
##     0.403    0.232    0.244
##     0.640    0.525    0.557
##     0.191    0.162    0.170
##     0.207    0.177    0.176
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar              0.362    0.046    7.856    0.000    0.272
##     sspc              0.198    0.043    4.554    0.000    0.113
##     ssmk              0.305    0.035    8.645    0.000    0.236
##     ssmc              0.273    0.053    5.139    0.000    0.169
##     ssao              0.299    0.057    5.230    0.000    0.187
##   electronic =~                                                
##     ssai              0.620    0.051   12.123    0.000    0.520
##     sssi              0.652    0.048   13.559    0.000    0.557
##     ssmc              0.314    0.036    8.631    0.000    0.242
##     ssei              0.358    0.045    7.966    0.000    0.270
##   speed =~                                                     
##     ssno              0.737    0.078    9.425    0.000    0.584
##     sscs              0.436    0.052    8.370    0.000    0.334
##     ssmk              0.237    0.032    7.362    0.000    0.174
##   g =~                                                         
##     ssgs              0.990    0.033   30.228    0.000    0.925
##     ssar              0.864    0.036   23.845    0.000    0.793
##     sswk              0.972    0.032   30.039    0.000    0.908
##     sspc              0.859    0.028   30.135    0.000    0.803
##     ssno              0.611    0.042   14.522    0.000    0.528
##     sscs              0.607    0.041   14.640    0.000    0.526
##     ssai              0.741    0.045   16.324    0.000    0.652
##     sssi              0.720    0.042   17.336    0.000    0.639
##     ssmk              0.845    0.034   24.896    0.000    0.778
##     ssmc              0.868    0.035   24.896    0.000    0.799
##     ssei              0.976    0.039   25.215    0.000    0.900
##     ssao              0.685    0.037   18.571    0.000    0.613
##  ci.upper   Std.lv  Std.all
##                            
##     0.453    0.362    0.344
##     0.283    0.198    0.197
##     0.374    0.305    0.302
##     0.377    0.273    0.252
##     0.411    0.299    0.288
##                            
##     0.720    0.620    0.525
##     0.746    0.652    0.579
##     0.385    0.314    0.290
##     0.445    0.358    0.303
##                            
##     0.890    0.737    0.689
##     0.538    0.436    0.413
##     0.299    0.237    0.234
##                            
##     1.054    0.990    0.924
##     0.935    0.864    0.821
##     1.035    0.972    0.910
##     0.914    0.859    0.853
##     0.693    0.611    0.571
##     0.688    0.607    0.576
##     0.830    0.741    0.628
##     0.802    0.720    0.640
##     0.911    0.845    0.836
##     0.936    0.868    0.802
##     1.052    0.976    0.827
##     0.757    0.685    0.660
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.185    0.045    4.117    0.000    0.097
##    .sspc             -0.020    0.044   -0.450    0.652   -0.105
##    .ssmk              0.094    0.044    2.150    0.032    0.008
##    .ssmc              0.317    0.046    6.902    0.000    0.227
##    .ssao              0.084    0.045    1.868    0.062   -0.004
##    .ssai              0.427    0.052    8.172    0.000    0.324
##    .sssi              0.489    0.049   10.035    0.000    0.394
##    .ssei              0.317    0.051    6.192    0.000    0.217
##    .ssno              0.022    0.047    0.466    0.641   -0.070
##    .sscs             -0.116    0.046   -2.517    0.012   -0.206
##    .ssgs              0.285    0.046    6.206    0.000    0.195
##    .sswk              0.136    0.046    2.930    0.003    0.045
##  ci.upper   Std.lv  Std.all
##     0.274    0.185    0.176
##     0.066   -0.020   -0.019
##     0.180    0.094    0.093
##     0.406    0.317    0.292
##     0.173    0.084    0.081
##     0.529    0.427    0.361
##     0.585    0.489    0.435
##     0.417    0.317    0.268
##     0.114    0.022    0.020
##    -0.026   -0.116   -0.110
##     0.375    0.285    0.266
##     0.226    0.136    0.127
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.229    0.030    7.679    0.000    0.170
##    .sspc              0.237    0.020   11.993    0.000    0.198
##    .ssmk              0.158    0.018    8.692    0.000    0.122
##    .ssmc              0.246    0.024   10.069    0.000    0.198
##    .ssao              0.517    0.040   13.088    0.000    0.440
##    .ssai              0.460    0.046   10.106    0.000    0.371
##    .sssi              0.322    0.041    7.896    0.000    0.242
##    .ssei              0.313    0.025   12.526    0.000    0.264
##    .ssno              0.229    0.089    2.567    0.010    0.054
##    .sscs              0.552    0.059    9.384    0.000    0.437
##    .ssgs              0.168    0.017    9.986    0.000    0.135
##    .sswk              0.197    0.017   11.911    0.000    0.165
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.287    0.229    0.207
##     0.276    0.237    0.234
##     0.193    0.158    0.155
##     0.294    0.246    0.210
##     0.595    0.517    0.481
##     0.550    0.460    0.330
##     0.402    0.322    0.255
##     0.362    0.313    0.224
##     0.404    0.229    0.200
##     0.668    0.552    0.497
##     0.201    0.168    0.147
##     0.229    0.197    0.173
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   444.634   104.000     0.000     0.974     0.071     0.050 32063.025 
##       bic 
## 32456.652
Mc(metric)
## [1] 0.878171
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 67 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       100
##   Number of equality constraints                    24
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               444.634     342.479
##   Degrees of freedom                               104         104
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.298
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          187.636     144.527
##     0                                          256.998     197.952
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.339    0.034    9.948    0.000    0.273
##     sspc    (.p2.)    0.184    0.030    6.164    0.000    0.126
##     ssmk    (.p3.)    0.311    0.033    9.426    0.000    0.246
##     ssmc    (.p4.)    0.258    0.036    7.223    0.000    0.188
##     ssao    (.p5.)    0.360    0.049    7.395    0.000    0.265
##   electronic =~                                                
##     ssai    (.p6.)    0.312    0.036    8.694    0.000    0.242
##     sssi    (.p7.)    0.327    0.039    8.387    0.000    0.251
##     ssmc    (.p8.)    0.160    0.022    7.234    0.000    0.117
##     ssei    (.p9.)    0.174    0.022    8.085    0.000    0.132
##   speed =~                                                     
##     ssno    (.10.)    0.636    0.061   10.379    0.000    0.516
##     sscs    (.11.)    0.364    0.041    8.841    0.000    0.283
##     ssmk    (.12.)    0.208    0.025    8.295    0.000    0.159
##   g =~                                                         
##     ssgs    (.13.)    0.889    0.029   31.082    0.000    0.833
##     ssar    (.14.)    0.779    0.029   26.512    0.000    0.721
##     sswk    (.15.)    0.891    0.030   29.570    0.000    0.832
##     sspc    (.16.)    0.792    0.027   29.855    0.000    0.740
##     ssno    (.17.)    0.562    0.031   18.160    0.000    0.501
##     sscs    (.18.)    0.545    0.029   18.590    0.000    0.488
##     ssai    (.19.)    0.545    0.026   20.641    0.000    0.494
##     sssi    (.20.)    0.568    0.028   20.604    0.000    0.514
##     ssmk    (.21.)    0.798    0.029   27.339    0.000    0.741
##     ssmc    (.22.)    0.739    0.028   26.505    0.000    0.684
##     ssei    (.23.)    0.789    0.029   27.250    0.000    0.733
##     ssao    (.24.)    0.631    0.028   22.707    0.000    0.577
##  ci.upper   Std.lv  Std.all
##                            
##     0.406    0.339    0.360
##     0.243    0.184    0.195
##     0.375    0.311    0.317
##     0.328    0.258    0.274
##     0.456    0.360    0.376
##                            
##     0.382    0.312    0.368
##     0.404    0.327    0.381
##     0.204    0.160    0.170
##     0.216    0.174    0.182
##                            
##     0.756    0.636    0.654
##     0.445    0.364    0.373
##     0.258    0.208    0.213
##                            
##     0.945    0.889    0.912
##     0.836    0.779    0.825
##     0.950    0.891    0.903
##     0.844    0.792    0.838
##     0.623    0.562    0.578
##     0.602    0.545    0.558
##     0.597    0.545    0.644
##     0.622    0.568    0.661
##     0.856    0.798    0.815
##     0.794    0.739    0.787
##     0.846    0.789    0.826
##     0.686    0.631    0.659
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.186    0.040    4.598    0.000    0.107
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssmk              0.241    0.044    5.433    0.000    0.154
##    .ssmc              0.039    0.040    0.993    0.321   -0.038
##    .ssao              0.171    0.042    4.054    0.000    0.088
##    .ssai             -0.108    0.035   -3.113    0.002   -0.176
##    .sssi             -0.068    0.036   -1.862    0.063   -0.139
##    .ssei              0.000    0.039    0.009    0.993   -0.077
##    .ssno              0.175    0.043    4.060    0.000    0.090
##    .sscs              0.245    0.043    5.752    0.000    0.162
##    .ssgs              0.139    0.042    3.332    0.001    0.057
##    .sswk              0.154    0.043    3.607    0.000    0.070
##  ci.upper   Std.lv  Std.all
##     0.265    0.186    0.197
##     0.333    0.253    0.267
##     0.327    0.241    0.246
##     0.117    0.039    0.042
##     0.253    0.171    0.178
##    -0.040   -0.108   -0.128
##     0.004   -0.068   -0.079
##     0.077    0.000    0.000
##     0.259    0.175    0.180
##     0.329    0.245    0.251
##     0.220    0.139    0.142
##     0.238    0.154    0.156
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.169    0.019    8.896    0.000    0.132
##    .sspc              0.233    0.021   11.040    0.000    0.191
##    .ssmk              0.183    0.018   10.408    0.000    0.149
##    .ssmc              0.244    0.020   12.038    0.000    0.205
##    .ssao              0.389    0.033   11.773    0.000    0.324
##    .ssai              0.321    0.027   12.047    0.000    0.269
##    .sssi              0.308    0.028   10.881    0.000    0.252
##    .ssei              0.260    0.023   11.470    0.000    0.215
##    .ssno              0.225    0.063    3.599    0.000    0.102
##    .sscs              0.524    0.053    9.830    0.000    0.419
##    .ssgs              0.159    0.014   11.178    0.000    0.131
##    .sswk              0.180    0.016   11.515    0.000    0.149
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.206    0.169    0.190
##     0.274    0.233    0.260
##     0.218    0.183    0.191
##     0.284    0.244    0.277
##     0.453    0.389    0.424
##     0.374    0.321    0.449
##     0.363    0.308    0.417
##     0.304    0.260    0.284
##     0.348    0.225    0.238
##     0.628    0.524    0.549
##     0.187    0.159    0.168
##     0.210    0.180    0.184
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.339    0.034    9.948    0.000    0.273
##     sspc    (.p2.)    0.184    0.030    6.164    0.000    0.126
##     ssmk    (.p3.)    0.311    0.033    9.426    0.000    0.246
##     ssmc    (.p4.)    0.258    0.036    7.223    0.000    0.188
##     ssao    (.p5.)    0.360    0.049    7.395    0.000    0.265
##   electronic =~                                                
##     ssai    (.p6.)    0.312    0.036    8.694    0.000    0.242
##     sssi    (.p7.)    0.327    0.039    8.387    0.000    0.251
##     ssmc    (.p8.)    0.160    0.022    7.234    0.000    0.117
##     ssei    (.p9.)    0.174    0.022    8.085    0.000    0.132
##   speed =~                                                     
##     ssno    (.10.)    0.636    0.061   10.379    0.000    0.516
##     sscs    (.11.)    0.364    0.041    8.841    0.000    0.283
##     ssmk    (.12.)    0.208    0.025    8.295    0.000    0.159
##   g =~                                                         
##     ssgs    (.13.)    0.889    0.029   31.082    0.000    0.833
##     ssar    (.14.)    0.779    0.029   26.512    0.000    0.721
##     sswk    (.15.)    0.891    0.030   29.570    0.000    0.832
##     sspc    (.16.)    0.792    0.027   29.855    0.000    0.740
##     ssno    (.17.)    0.562    0.031   18.160    0.000    0.501
##     sscs    (.18.)    0.545    0.029   18.590    0.000    0.488
##     ssai    (.19.)    0.545    0.026   20.641    0.000    0.494
##     sssi    (.20.)    0.568    0.028   20.604    0.000    0.514
##     ssmk    (.21.)    0.798    0.029   27.339    0.000    0.741
##     ssmc    (.22.)    0.739    0.028   26.505    0.000    0.684
##     ssei    (.23.)    0.789    0.029   27.250    0.000    0.733
##     ssao    (.24.)    0.631    0.028   22.707    0.000    0.577
##  ci.upper   Std.lv  Std.all
##                            
##     0.406    0.332    0.317
##     0.243    0.180    0.177
##     0.375    0.304    0.291
##     0.328    0.252    0.241
##     0.456    0.353    0.333
##                            
##     0.382    0.642    0.576
##     0.404    0.674    0.623
##     0.204    0.330    0.315
##     0.216    0.358    0.324
##                            
##     0.756    0.736    0.684
##     0.445    0.421    0.401
##     0.258    0.241    0.230
##                            
##     0.945    0.988    0.922
##     0.836    0.865    0.826
##     0.950    0.991    0.914
##     0.844    0.881    0.862
##     0.623    0.625    0.581
##     0.602    0.606    0.577
##     0.597    0.606    0.544
##     0.622    0.631    0.584
##     0.856    0.887    0.848
##     0.794    0.821    0.785
##     0.846    0.878    0.794
##     0.686    0.702    0.663
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.185    0.045    4.117    0.000    0.097
##    .sspc             -0.020    0.044   -0.450    0.652   -0.105
##    .ssmk              0.094    0.044    2.150    0.032    0.008
##    .ssmc              0.317    0.046    6.902    0.000    0.227
##    .ssao              0.084    0.045    1.868    0.062   -0.004
##    .ssai              0.427    0.052    8.172    0.000    0.324
##    .sssi              0.489    0.049   10.035    0.000    0.394
##    .ssei              0.317    0.051    6.192    0.000    0.217
##    .ssno              0.022    0.047    0.466    0.641   -0.070
##    .sscs             -0.116    0.046   -2.517    0.012   -0.206
##    .ssgs              0.285    0.046    6.206    0.000    0.195
##    .sswk              0.136    0.046    2.930    0.003    0.045
##  ci.upper   Std.lv  Std.all
##     0.274    0.185    0.177
##     0.066   -0.020   -0.019
##     0.180    0.094    0.090
##     0.406    0.317    0.303
##     0.173    0.084    0.080
##     0.529    0.427    0.383
##     0.585    0.489    0.453
##     0.417    0.317    0.287
##     0.114    0.022    0.020
##    -0.026   -0.116   -0.110
##     0.375    0.285    0.266
##     0.226    0.136    0.125
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.238    0.025    9.443    0.000    0.189
##    .sspc              0.236    0.020   12.064    0.000    0.197
##    .ssmk              0.156    0.016    9.839    0.000    0.125
##    .ssmc              0.248    0.021   11.619    0.000    0.206
##    .ssao              0.504    0.039   13.048    0.000    0.428
##    .ssai              0.462    0.045   10.182    0.000    0.373
##    .sssi              0.317    0.040    7.980    0.000    0.239
##    .ssei              0.323    0.026   12.566    0.000    0.273
##    .ssno              0.225    0.077    2.906    0.004    0.073
##    .sscs              0.557    0.056    9.950    0.000    0.447
##    .ssgs              0.173    0.017   10.463    0.000    0.140
##    .sswk              0.194    0.016   11.975    0.000    0.163
##     math              0.958    0.196    4.879    0.000    0.573
##     electronic        4.242    0.976    4.346    0.000    2.329
##     speed             1.338    0.241    5.561    0.000    0.866
##     g                 1.236    0.101   12.224    0.000    1.038
##  ci.upper   Std.lv  Std.all
##     0.287    0.238    0.217
##     0.274    0.236    0.226
##     0.188    0.156    0.143
##     0.289    0.248    0.226
##     0.579    0.504    0.450
##     0.551    0.462    0.372
##     0.394    0.317    0.271
##     0.373    0.323    0.264
##     0.377    0.225    0.195
##     0.666    0.557    0.506
##     0.205    0.173    0.150
##     0.226    0.194    0.165
##     1.343    1.000    1.000
##     6.155    1.000    1.000
##     1.809    1.000    1.000
##     1.434    1.000    1.000
lavTestScore(metric, release = 1:24)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 56.247 24       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p63.  0.904  1   0.342
## 2   .p2. == .p64.  0.136  1   0.713
## 3   .p3. == .p65.  0.579  1   0.447
## 4   .p4. == .p66.  2.077  1   0.149
## 5   .p5. == .p67.  3.684  1   0.055
## 6   .p6. == .p68.  0.005  1   0.943
## 7   .p7. == .p69.  2.123  1   0.145
## 8   .p8. == .p70.  2.003  1   0.157
## 9   .p9. == .p71.  7.841  1   0.005
## 10 .p10. == .p72.  0.066  1   0.797
## 11 .p11. == .p73.  0.259  1   0.610
## 12 .p12. == .p74.  0.492  1   0.483
## 13 .p13. == .p75.  0.014  1   0.905
## 14 .p14. == .p76.  1.291  1   0.256
## 15 .p15. == .p77.  3.390  1   0.066
## 16 .p16. == .p78.  1.073  1   0.300
## 17 .p17. == .p79.  0.198  1   0.657
## 18 .p18. == .p80.  0.386  1   0.535
## 19 .p19. == .p81.  7.141  1   0.008
## 20 .p20. == .p82.  0.040  1   0.842
## 21 .p21. == .p83.  8.812  1   0.003
## 22 .p22. == .p84.  1.039  1   0.308
## 23 .p23. == .p85. 10.891  1   0.001
## 24 .p24. == .p86.  0.210  1   0.647
metric2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"), group.partial=c("g=~ssei")) 
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   433.505   103.000     0.000     0.975     0.070     0.046 32053.896 
##       bic 
## 32452.702
Mc(metric2)
## [1] 0.88157
scalar<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   599.248   112.000     0.000     0.963     0.081     0.054 32201.638 
##       bic 
## 32553.831
Mc(scalar)
## [1] 0.8304143
summary(scalar, standardized=T, ci=T) # -.034
## lavaan 0.6-18 ended normally after 85 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       104
##   Number of equality constraints                    36
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               599.248     465.292
##   Degrees of freedom                               112         112
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.288
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          261.907     203.360
##     0                                          337.341     261.932
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.326    0.035    9.206    0.000    0.256
##     sspc    (.p2.)    0.223    0.032    6.949    0.000    0.160
##     ssmk    (.p3.)    0.306    0.035    8.684    0.000    0.237
##     ssmc    (.p4.)    0.261    0.034    7.656    0.000    0.194
##     ssao    (.p5.)    0.362    0.046    7.846    0.000    0.272
##   electronic =~                                                
##     ssai    (.p6.)    0.308    0.034    9.060    0.000    0.241
##     sssi    (.p7.)    0.322    0.036    8.997    0.000    0.252
##     ssmc    (.p8.)    0.174    0.022    7.828    0.000    0.130
##     ssei    (.p9.)    0.172    0.020    8.499    0.000    0.133
##   speed =~                                                     
##     ssno    (.10.)    0.569    0.057    9.909    0.000    0.456
##     sscs    (.11.)    0.418    0.047    8.947    0.000    0.327
##     ssmk    (.12.)    0.218    0.024    9.178    0.000    0.171
##   g =~                                                         
##     ssgs    (.13.)    0.889    0.029   30.997    0.000    0.833
##     ssar    (.14.)    0.779    0.029   26.449    0.000    0.721
##     sswk    (.15.)    0.891    0.030   29.331    0.000    0.831
##     sspc    (.16.)    0.784    0.027   29.092    0.000    0.732
##     ssno    (.17.)    0.563    0.031   18.131    0.000    0.502
##     sscs    (.18.)    0.540    0.030   18.284    0.000    0.482
##     ssai    (.19.)    0.546    0.026   20.682    0.000    0.495
##     sssi    (.20.)    0.569    0.028   20.628    0.000    0.515
##     ssmk    (.21.)    0.798    0.029   27.232    0.000    0.740
##     ssmc    (.22.)    0.736    0.028   26.371    0.000    0.681
##     ssei    (.23.)    0.790    0.029   27.234    0.000    0.733
##     ssao    (.24.)    0.629    0.028   22.662    0.000    0.575
##  ci.upper   Std.lv  Std.all
##                            
##     0.395    0.326    0.346
##     0.286    0.223    0.233
##     0.375    0.306    0.313
##     0.327    0.261    0.278
##     0.453    0.362    0.379
##                            
##     0.375    0.308    0.364
##     0.392    0.322    0.375
##     0.217    0.174    0.185
##     0.212    0.172    0.181
##                            
##     0.681    0.569    0.586
##     0.510    0.418    0.424
##     0.264    0.218    0.223
##                            
##     0.946    0.889    0.911
##     0.837    0.779    0.827
##     0.950    0.891    0.903
##     0.837    0.784    0.821
##     0.624    0.563    0.580
##     0.598    0.540    0.547
##     0.598    0.546    0.645
##     0.624    0.569    0.663
##     0.855    0.798    0.815
##     0.791    0.736    0.784
##     0.846    0.790    0.827
##     0.684    0.629    0.658
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.218    0.039    5.526    0.000    0.141
##    .sspc    (.48.)    0.140    0.041    3.422    0.001    0.060
##    .ssmk    (.49.)    0.251    0.043    5.775    0.000    0.166
##    .ssmc    (.50.)    0.058    0.038    1.529    0.126   -0.016
##    .ssao    (.51.)    0.175    0.040    4.384    0.000    0.097
##    .ssai    (.52.)   -0.113    0.033   -3.399    0.001   -0.178
##    .sssi    (.53.)   -0.074    0.034   -2.157    0.031   -0.142
##    .ssei    (.54.)   -0.003    0.038   -0.078    0.938   -0.077
##    .ssno    (.55.)    0.210    0.042    5.002    0.000    0.128
##    .sscs    (.56.)    0.149    0.046    3.255    0.001    0.059
##    .ssgs    (.57.)    0.193    0.041    4.691    0.000    0.112
##    .sswk    (.58.)    0.129    0.042    3.072    0.002    0.047
##  ci.upper   Std.lv  Std.all
##     0.295    0.218    0.231
##     0.220    0.140    0.146
##     0.336    0.251    0.256
##     0.133    0.058    0.062
##     0.253    0.175    0.183
##    -0.048   -0.113   -0.133
##    -0.007   -0.074   -0.087
##     0.071   -0.003   -0.003
##     0.292    0.210    0.217
##     0.239    0.149    0.151
##     0.273    0.193    0.197
##     0.212    0.129    0.131
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.174    0.018    9.444    0.000    0.138
##    .sspc              0.248    0.023   10.599    0.000    0.202
##    .ssmk              0.180    0.017   10.395    0.000    0.146
##    .ssmc              0.241    0.021   11.716    0.000    0.201
##    .ssao              0.388    0.033   11.822    0.000    0.324
##    .ssai              0.323    0.026   12.316    0.000    0.272
##    .sssi              0.310    0.028   11.071    0.000    0.255
##    .ssei              0.259    0.023   11.387    0.000    0.214
##    .ssno              0.300    0.057    5.303    0.000    0.189
##    .sscs              0.507    0.059    8.583    0.000    0.391
##    .ssgs              0.163    0.015   10.941    0.000    0.134
##    .sswk              0.180    0.016   11.283    0.000    0.149
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.210    0.174    0.196
##     0.293    0.248    0.271
##     0.214    0.180    0.188
##     0.281    0.241    0.274
##     0.453    0.388    0.424
##     0.375    0.323    0.451
##     0.365    0.310    0.420
##     0.303    0.259    0.284
##     0.411    0.300    0.319
##     0.622    0.507    0.520
##     0.192    0.163    0.171
##     0.211    0.180    0.185
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.326    0.035    9.206    0.000    0.256
##     sspc    (.p2.)    0.223    0.032    6.949    0.000    0.160
##     ssmk    (.p3.)    0.306    0.035    8.684    0.000    0.237
##     ssmc    (.p4.)    0.261    0.034    7.656    0.000    0.194
##     ssao    (.p5.)    0.362    0.046    7.846    0.000    0.272
##   electronic =~                                                
##     ssai    (.p6.)    0.308    0.034    9.060    0.000    0.241
##     sssi    (.p7.)    0.322    0.036    8.997    0.000    0.252
##     ssmc    (.p8.)    0.174    0.022    7.828    0.000    0.130
##     ssei    (.p9.)    0.172    0.020    8.499    0.000    0.133
##   speed =~                                                     
##     ssno    (.10.)    0.569    0.057    9.909    0.000    0.456
##     sscs    (.11.)    0.418    0.047    8.947    0.000    0.327
##     ssmk    (.12.)    0.218    0.024    9.178    0.000    0.171
##   g =~                                                         
##     ssgs    (.13.)    0.889    0.029   30.997    0.000    0.833
##     ssar    (.14.)    0.779    0.029   26.449    0.000    0.721
##     sswk    (.15.)    0.891    0.030   29.331    0.000    0.831
##     sspc    (.16.)    0.784    0.027   29.092    0.000    0.732
##     ssno    (.17.)    0.563    0.031   18.131    0.000    0.502
##     sscs    (.18.)    0.540    0.030   18.284    0.000    0.482
##     ssai    (.19.)    0.546    0.026   20.682    0.000    0.495
##     sssi    (.20.)    0.569    0.028   20.628    0.000    0.515
##     ssmk    (.21.)    0.798    0.029   27.232    0.000    0.740
##     ssmc    (.22.)    0.736    0.028   26.371    0.000    0.681
##     ssei    (.23.)    0.790    0.029   27.234    0.000    0.733
##     ssao    (.24.)    0.629    0.028   22.662    0.000    0.575
##  ci.upper   Std.lv  Std.all
##                            
##     0.395    0.319    0.305
##     0.286    0.218    0.212
##     0.375    0.300    0.287
##     0.327    0.256    0.243
##     0.453    0.355    0.336
##                            
##     0.375    0.631    0.568
##     0.392    0.659    0.612
##     0.217    0.356    0.339
##     0.212    0.353    0.320
##                            
##     0.681    0.660    0.616
##     0.510    0.486    0.456
##     0.264    0.253    0.242
##                            
##     0.946    0.990    0.921
##     0.837    0.867    0.828
##     0.950    0.991    0.914
##     0.837    0.873    0.847
##     0.624    0.627    0.585
##     0.598    0.601    0.565
##     0.598    0.608    0.547
##     0.624    0.634    0.588
##     0.855    0.888    0.849
##     0.791    0.819    0.779
##     0.846    0.879    0.796
##     0.684    0.700    0.662
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.218    0.039    5.526    0.000    0.141
##    .sspc    (.48.)    0.140    0.041    3.422    0.001    0.060
##    .ssmk    (.49.)    0.251    0.043    5.775    0.000    0.166
##    .ssmc    (.50.)    0.058    0.038    1.529    0.126   -0.016
##    .ssao    (.51.)    0.175    0.040    4.384    0.000    0.097
##    .ssai    (.52.)   -0.113    0.033   -3.399    0.001   -0.178
##    .sssi    (.53.)   -0.074    0.034   -2.157    0.031   -0.142
##    .ssei    (.54.)   -0.003    0.038   -0.078    0.938   -0.077
##    .ssno    (.55.)    0.210    0.042    5.002    0.000    0.128
##    .sscs    (.56.)    0.149    0.046    3.255    0.001    0.059
##    .ssgs    (.57.)    0.193    0.041    4.691    0.000    0.112
##    .sswk    (.58.)    0.129    0.042    3.072    0.002    0.047
##     math             -0.328    0.122   -2.696    0.007   -0.567
##     elctrnc           1.708    0.230    7.425    0.000    1.257
##     speed            -0.435    0.117   -3.711    0.000   -0.665
##     g                 0.037    0.069    0.541    0.589   -0.098
##  ci.upper   Std.lv  Std.all
##     0.295    0.218    0.208
##     0.220    0.140    0.136
##     0.336    0.251    0.240
##     0.133    0.058    0.056
##     0.253    0.175    0.165
##    -0.048   -0.113   -0.102
##    -0.007   -0.074   -0.069
##     0.071   -0.003   -0.003
##     0.292    0.210    0.196
##     0.239    0.149    0.140
##     0.273    0.193    0.179
##     0.212    0.129    0.119
##    -0.090   -0.335   -0.335
##     2.159    0.834    0.834
##    -0.205   -0.375   -0.375
##     0.173    0.034    0.034
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.244    0.025    9.898    0.000    0.196
##    .sspc              0.251    0.022   11.375    0.000    0.208
##    .ssmk              0.152    0.015    9.971    0.000    0.122
##    .ssmc              0.242    0.022   11.156    0.000    0.200
##    .ssao              0.503    0.038   13.246    0.000    0.429
##    .ssai              0.466    0.042   11.001    0.000    0.383
##    .sssi              0.325    0.035    9.229    0.000    0.256
##    .ssei              0.323    0.025   12.800    0.000    0.274
##    .ssno              0.319    0.066    4.855    0.000    0.190
##    .sscs              0.537    0.061    8.854    0.000    0.418
##    .ssgs              0.176    0.018   10.033    0.000    0.142
##    .sswk              0.193    0.016   11.768    0.000    0.161
##     math              0.961    0.201    4.784    0.000    0.568
##     electronic        4.198    0.963    4.362    0.000    2.312
##     speed             1.347    0.247    5.443    0.000    0.862
##     g                 1.238    0.102   12.159    0.000    1.039
##  ci.upper   Std.lv  Std.all
##     0.292    0.244    0.222
##     0.295    0.251    0.237
##     0.182    0.152    0.139
##     0.285    0.242    0.219
##     0.578    0.503    0.449
##     0.549    0.466    0.378
##     0.394    0.325    0.280
##     0.373    0.323    0.265
##     0.448    0.319    0.278
##     0.656    0.537    0.473
##     0.211    0.176    0.153
##     0.226    0.193    0.164
##     1.355    1.000    1.000
##     6.085    1.000    1.000
##     1.832    1.000    1.000
##     1.438    1.000    1.000
lavTestScore(scalar, release = 25:36) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 152.695 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs     X2 df p.value
## 1  .p47. == .p109. 14.892  1   0.000
## 2  .p48. == .p110. 86.856  1   0.000
## 3  .p49. == .p111.  1.449  1   0.229
## 4  .p50. == .p112.  4.231  1   0.040
## 5  .p51. == .p113.  0.075  1   0.784
## 6  .p52. == .p114.  0.284  1   0.594
## 7  .p53. == .p115.  0.614  1   0.433
## 8  .p54. == .p116.  0.119  1   0.730
## 9  .p55. == .p117. 21.278  1   0.000
## 10 .p56. == .p118. 37.221  1   0.000
## 11 .p57. == .p119. 46.224  1   0.000
## 12 .p58. == .p120.  8.223  1   0.004
scalar2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   478.345   110.000     0.000     0.972     0.071     0.051 32084.736 
##       bic 
## 32447.287
Mc(scalar2)
## [1] 0.8689388
summary(scalar2, standardized=T, ci=T) # g -.070 Std.all
## lavaan 0.6-18 ended normally after 84 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       104
##   Number of equality constraints                    34
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               478.345     369.471
##   Degrees of freedom                               110         110
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.295
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          202.083     156.087
##     0                                          276.263     213.384
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.331    0.033    9.974    0.000    0.266
##     sspc    (.p2.)    0.183    0.030    6.086    0.000    0.124
##     ssmk    (.p3.)    0.316    0.033    9.589    0.000    0.252
##     ssmc    (.p4.)    0.255    0.035    7.211    0.000    0.186
##     ssao    (.p5.)    0.364    0.047    7.688    0.000    0.271
##   electronic =~                                                
##     ssai    (.p6.)    0.311    0.034    9.097    0.000    0.244
##     sssi    (.p7.)    0.326    0.036    9.013    0.000    0.255
##     ssmc    (.p8.)    0.168    0.021    7.827    0.000    0.126
##     ssei    (.p9.)    0.170    0.020    8.407    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.616    0.060   10.340    0.000    0.499
##     sscs    (.11.)    0.372    0.041    9.081    0.000    0.292
##     ssmk    (.12.)    0.218    0.025    8.678    0.000    0.168
##   g =~                                                         
##     ssgs    (.13.)    0.890    0.029   31.152    0.000    0.834
##     ssar    (.14.)    0.780    0.029   26.560    0.000    0.722
##     sswk    (.15.)    0.888    0.030   29.233    0.000    0.829
##     sspc    (.16.)    0.792    0.027   29.851    0.000    0.740
##     ssno    (.17.)    0.563    0.031   18.159    0.000    0.502
##     sscs    (.18.)    0.545    0.029   18.582    0.000    0.488
##     ssai    (.19.)    0.545    0.026   20.651    0.000    0.494
##     sssi    (.20.)    0.568    0.028   20.575    0.000    0.514
##     ssmk    (.21.)    0.797    0.029   27.306    0.000    0.740
##     ssmc    (.22.)    0.739    0.028   26.510    0.000    0.684
##     ssei    (.23.)    0.790    0.029   27.258    0.000    0.733
##     ssao    (.24.)    0.631    0.028   22.744    0.000    0.576
##  ci.upper   Std.lv  Std.all
##                            
##     0.396    0.331    0.351
##     0.242    0.183    0.194
##     0.381    0.316    0.322
##     0.324    0.255    0.271
##     0.457    0.364    0.380
##                            
##     0.378    0.311    0.368
##     0.397    0.326    0.379
##     0.210    0.168    0.179
##     0.210    0.170    0.178
##                            
##     0.732    0.616    0.634
##     0.452    0.372    0.381
##     0.267    0.218    0.222
##                            
##     0.946    0.890    0.911
##     0.837    0.780    0.827
##     0.948    0.888    0.901
##     0.844    0.792    0.838
##     0.624    0.563    0.579
##     0.603    0.545    0.558
##     0.597    0.545    0.645
##     0.622    0.568    0.662
##     0.855    0.797    0.813
##     0.793    0.739    0.787
##     0.847    0.790    0.827
##     0.685    0.631    0.658
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.202    0.040    5.072    0.000    0.124
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssmk    (.49.)    0.221    0.043    5.083    0.000    0.136
##    .ssmc    (.50.)    0.053    0.038    1.407    0.159   -0.021
##    .ssao    (.51.)    0.159    0.039    4.046    0.000    0.082
##    .ssai    (.52.)   -0.110    0.033   -3.310    0.001   -0.175
##    .sssi    (.53.)   -0.071    0.034   -2.059    0.040   -0.138
##    .ssei    (.54.)   -0.007    0.038   -0.180    0.857   -0.081
##    .ssno    (.55.)    0.184    0.043    4.289    0.000    0.100
##    .sscs              0.245    0.043    5.752    0.000    0.162
##    .ssgs    (.57.)    0.175    0.041    4.312    0.000    0.096
##    .sswk    (.58.)    0.112    0.042    2.695    0.007    0.031
##  ci.upper   Std.lv  Std.all
##     0.280    0.202    0.214
##     0.333    0.253    0.267
##     0.306    0.221    0.225
##     0.128    0.053    0.057
##     0.237    0.159    0.166
##    -0.045   -0.110   -0.130
##    -0.003   -0.071   -0.083
##     0.067   -0.007   -0.007
##     0.269    0.184    0.190
##     0.329    0.245    0.251
##     0.255    0.175    0.180
##     0.194    0.112    0.114
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.171    0.018    9.331    0.000    0.135
##    .sspc              0.232    0.021   11.030    0.000    0.191
##    .ssmk              0.180    0.018   10.070    0.000    0.145
##    .ssmc              0.243    0.020   11.971    0.000    0.203
##    .ssao              0.387    0.033   11.692    0.000    0.323
##    .ssai              0.322    0.026   12.199    0.000    0.270
##    .sssi              0.308    0.028   10.968    0.000    0.253
##    .ssei              0.260    0.023   11.407    0.000    0.215
##    .ssno              0.249    0.059    4.185    0.000    0.132
##    .sscs              0.518    0.053    9.818    0.000    0.414
##    .ssgs              0.162    0.015   11.147    0.000    0.133
##    .sswk              0.183    0.016   11.366    0.000    0.152
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.207    0.171    0.193
##     0.274    0.232    0.260
##     0.214    0.180    0.186
##     0.283    0.243    0.276
##     0.452    0.387    0.422
##     0.373    0.322    0.449
##     0.363    0.308    0.418
##     0.304    0.260    0.285
##     0.365    0.249    0.263
##     0.621    0.518    0.543
##     0.190    0.162    0.170
##     0.215    0.183    0.188
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.331    0.033    9.974    0.000    0.266
##     sspc    (.p2.)    0.183    0.030    6.086    0.000    0.124
##     ssmk    (.p3.)    0.316    0.033    9.589    0.000    0.252
##     ssmc    (.p4.)    0.255    0.035    7.211    0.000    0.186
##     ssao    (.p5.)    0.364    0.047    7.688    0.000    0.271
##   electronic =~                                                
##     ssai    (.p6.)    0.311    0.034    9.097    0.000    0.244
##     sssi    (.p7.)    0.326    0.036    9.013    0.000    0.255
##     ssmc    (.p8.)    0.168    0.021    7.827    0.000    0.126
##     ssei    (.p9.)    0.170    0.020    8.407    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.616    0.060   10.340    0.000    0.499
##     sscs    (.11.)    0.372    0.041    9.081    0.000    0.292
##     ssmk    (.12.)    0.218    0.025    8.678    0.000    0.168
##   g =~                                                         
##     ssgs    (.13.)    0.890    0.029   31.152    0.000    0.834
##     ssar    (.14.)    0.780    0.029   26.560    0.000    0.722
##     sswk    (.15.)    0.888    0.030   29.233    0.000    0.829
##     sspc    (.16.)    0.792    0.027   29.851    0.000    0.740
##     ssno    (.17.)    0.563    0.031   18.159    0.000    0.502
##     sscs    (.18.)    0.545    0.029   18.582    0.000    0.488
##     ssai    (.19.)    0.545    0.026   20.651    0.000    0.494
##     sssi    (.20.)    0.568    0.028   20.575    0.000    0.514
##     ssmk    (.21.)    0.797    0.029   27.306    0.000    0.740
##     ssmc    (.22.)    0.739    0.028   26.510    0.000    0.684
##     ssei    (.23.)    0.790    0.029   27.258    0.000    0.733
##     ssao    (.24.)    0.631    0.028   22.744    0.000    0.576
##  ci.upper   Std.lv  Std.all
##                            
##     0.396    0.322    0.307
##     0.242    0.178    0.175
##     0.381    0.308    0.294
##     0.324    0.248    0.236
##     0.457    0.354    0.334
##                            
##     0.378    0.639    0.574
##     0.397    0.669    0.619
##     0.210    0.345    0.328
##     0.210    0.349    0.316
##                            
##     0.732    0.711    0.662
##     0.452    0.430    0.409
##     0.267    0.251    0.240
##                            
##     0.946    0.990    0.921
##     0.837    0.868    0.828
##     0.948    0.988    0.912
##     0.844    0.881    0.863
##     0.624    0.626    0.583
##     0.603    0.606    0.578
##     0.597    0.607    0.545
##     0.622    0.632    0.585
##     0.855    0.887    0.847
##     0.793    0.822    0.783
##     0.847    0.879    0.796
##     0.685    0.701    0.663
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.202    0.040    5.072    0.000    0.124
##    .sspc             -0.026    0.044   -0.596    0.551   -0.112
##    .ssmk    (.49.)    0.221    0.043    5.083    0.000    0.136
##    .ssmc    (.50.)    0.053    0.038    1.407    0.159   -0.021
##    .ssao    (.51.)    0.159    0.039    4.046    0.000    0.082
##    .ssai    (.52.)   -0.110    0.033   -3.310    0.001   -0.175
##    .sssi    (.53.)   -0.071    0.034   -2.059    0.040   -0.138
##    .ssei    (.54.)   -0.007    0.038   -0.180    0.857   -0.081
##    .ssno    (.55.)    0.184    0.043    4.289    0.000    0.100
##    .sscs             -0.027    0.052   -0.525    0.600   -0.129
##    .ssgs    (.57.)    0.175    0.041    4.312    0.000    0.096
##    .sswk    (.58.)    0.112    0.042    2.695    0.007    0.031
##     math             -0.300    0.096   -3.114    0.002   -0.489
##     elctrnc           1.595    0.219    7.276    0.000    1.166
##     speed            -0.351    0.099   -3.555    0.000   -0.545
##     g                 0.078    0.068    1.147    0.251   -0.055
##  ci.upper   Std.lv  Std.all
##     0.280    0.202    0.193
##     0.060   -0.026   -0.025
##     0.306    0.221    0.211
##     0.128    0.053    0.051
##     0.237    0.159    0.151
##    -0.045   -0.110   -0.099
##    -0.003   -0.071   -0.066
##     0.067   -0.007   -0.006
##     0.269    0.184    0.172
##     0.075   -0.027   -0.026
##     0.255    0.175    0.163
##     0.194    0.112    0.104
##    -0.111   -0.309   -0.309
##     2.025    0.777    0.777
##    -0.158   -0.304   -0.304
##     0.210    0.070    0.070
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.241    0.024    9.940    0.000    0.193
##    .sspc              0.236    0.020   12.035    0.000    0.197
##    .ssmk              0.152    0.016    9.593    0.000    0.121
##    .ssmc              0.246    0.021   11.456    0.000    0.204
##    .ssao              0.503    0.038   13.109    0.000    0.428
##    .ssai              0.464    0.043   10.841    0.000    0.380
##    .sssi              0.320    0.036    8.927    0.000    0.250
##    .ssei              0.324    0.025   12.825    0.000    0.275
##    .ssno              0.256    0.071    3.588    0.000    0.116
##    .sscs              0.549    0.055    9.916    0.000    0.441
##    .ssgs              0.176    0.017   10.341    0.000    0.142
##    .sswk              0.198    0.017   11.980    0.000    0.166
##     math              0.947    0.193    4.895    0.000    0.568
##     electronic        4.215    0.959    4.394    0.000    2.335
##     speed             1.335    0.241    5.539    0.000    0.863
##     g                 1.238    0.101   12.233    0.000    1.039
##  ci.upper   Std.lv  Std.all
##     0.288    0.241    0.220
##     0.274    0.236    0.226
##     0.183    0.152    0.139
##     0.288    0.246    0.223
##     0.579    0.503    0.449
##     0.547    0.464    0.374
##     0.390    0.320    0.274
##     0.374    0.324    0.266
##     0.396    0.256    0.222
##     0.658    0.549    0.499
##     0.209    0.176    0.152
##     0.231    0.198    0.169
##     1.326    1.000    1.000
##     6.095    1.000    1.000
##     1.808    1.000    1.000
##     1.436    1.000    1.000
lavTestScore(scalar2, release = 25:34) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 33.727 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs     X2 df p.value
## 1  .p47. == .p109.  4.032  1   0.045
## 2  .p49. == .p111.  5.618  1   0.018
## 3  .p50. == .p112.  2.168  1   0.141
## 4  .p51. == .p113.  0.684  1   0.408
## 5  .p52. == .p114.  0.034  1   0.853
## 6  .p53. == .p115.  0.142  1   0.707
## 7  .p54. == .p116.  0.520  1   0.471
## 8  .p55. == .p117.  5.618  1   0.018
## 9  .p57. == .p119. 22.918  1   0.000
## 10 .p58. == .p120. 23.346  1   0.000
strict<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   522.558   122.000     0.000     0.970     0.071     0.053 32104.949 
##       bic 
## 32405.348
Mc(strict)
## [1] 0.8583286
summary(strict, standardized=T, ci=T) # g -.069 Std.all
## lavaan 0.6-18 ended normally after 83 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       104
##   Number of equality constraints                    46
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               522.558     398.950
##   Degrees of freedom                               122         122
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.310
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          228.829     174.701
##     0                                          293.730     224.250
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.325    0.032   10.017    0.000    0.262
##     sspc    (.p2.)    0.181    0.030    6.070    0.000    0.123
##     ssmk    (.p3.)    0.310    0.036    8.643    0.000    0.240
##     ssmc    (.p4.)    0.245    0.035    7.046    0.000    0.177
##     ssao    (.p5.)    0.344    0.045    7.571    0.000    0.255
##   electronic =~                                                
##     ssai    (.p6.)    0.298    0.036    8.357    0.000    0.228
##     sssi    (.p7.)    0.300    0.038    7.927    0.000    0.226
##     ssmc    (.p8.)    0.155    0.022    7.074    0.000    0.112
##     ssei    (.p9.)    0.162    0.021    7.610    0.000    0.120
##   speed =~                                                     
##     ssno    (.10.)    0.618    0.059   10.420    0.000    0.502
##     sscs    (.11.)    0.372    0.042    8.946    0.000    0.290
##     ssmk    (.12.)    0.216    0.024    9.134    0.000    0.170
##   g =~                                                         
##     ssgs    (.13.)    0.889    0.029   31.050    0.000    0.833
##     ssar    (.14.)    0.782    0.029   26.775    0.000    0.724
##     sswk    (.15.)    0.887    0.030   29.115    0.000    0.827
##     sspc    (.16.)    0.792    0.026   29.884    0.000    0.740
##     ssno    (.17.)    0.562    0.031   18.152    0.000    0.502
##     sscs    (.18.)    0.545    0.029   18.530    0.000    0.487
##     ssai    (.19.)    0.549    0.027   20.466    0.000    0.496
##     sssi    (.20.)    0.567    0.028   20.571    0.000    0.513
##     ssmk    (.21.)    0.799    0.029   27.341    0.000    0.742
##     ssmc    (.22.)    0.738    0.028   26.454    0.000    0.684
##     ssei    (.23.)    0.793    0.029   27.554    0.000    0.736
##     ssao    (.24.)    0.631    0.028   22.498    0.000    0.576
##  ci.upper   Std.lv  Std.all
##                            
##     0.389    0.325    0.339
##     0.240    0.181    0.192
##     0.381    0.310    0.319
##     0.314    0.245    0.262
##     0.434    0.344    0.351
##                            
##     0.369    0.298    0.340
##     0.374    0.300    0.349
##     0.198    0.155    0.166
##     0.203    0.162    0.166
##                            
##     0.734    0.618    0.635
##     0.453    0.372    0.378
##     0.263    0.216    0.222
##                            
##     0.945    0.889    0.908
##     0.839    0.782    0.814
##     0.946    0.887    0.897
##     0.844    0.792    0.838
##     0.623    0.562    0.578
##     0.603    0.545    0.554
##     0.601    0.549    0.626
##     0.621    0.567    0.660
##     0.856    0.799    0.821
##     0.793    0.738    0.788
##     0.849    0.793    0.816
##     0.686    0.631    0.642
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.205    0.040    5.111    0.000    0.126
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssmk    (.49.)    0.222    0.043    5.126    0.000    0.137
##    .ssmc    (.50.)    0.055    0.038    1.448    0.148   -0.019
##    .ssao    (.51.)    0.156    0.039    3.964    0.000    0.079
##    .ssai    (.52.)   -0.116    0.033   -3.462    0.001   -0.181
##    .sssi    (.53.)   -0.066    0.035   -1.906    0.057   -0.134
##    .ssei    (.54.)   -0.009    0.038   -0.248    0.804   -0.084
##    .ssno    (.55.)    0.184    0.043    4.283    0.000    0.100
##    .sscs              0.245    0.043    5.752    0.000    0.162
##    .ssgs    (.57.)    0.177    0.041    4.343    0.000    0.097
##    .sswk    (.58.)    0.111    0.042    2.669    0.008    0.029
##  ci.upper   Std.lv  Std.all
##     0.284    0.205    0.214
##     0.333    0.253    0.267
##     0.307    0.222    0.228
##     0.129    0.055    0.059
##     0.233    0.156    0.159
##    -0.050   -0.116   -0.132
##     0.002   -0.066   -0.077
##     0.065   -0.009   -0.010
##     0.269    0.184    0.190
##     0.329    0.245    0.249
##     0.257    0.177    0.181
##     0.192    0.111    0.112
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.25.)    0.205    0.017   12.252    0.000    0.172
##    .sspc    (.26.)    0.233    0.014   16.242    0.000    0.205
##    .ssmk    (.27.)    0.166    0.014   12.069    0.000    0.139
##    .ssmc    (.28.)    0.248    0.016   15.258    0.000    0.216
##    .ssao    (.29.)    0.449    0.027   16.558    0.000    0.396
##    .ssai    (.30.)    0.378    0.026   14.606    0.000    0.328
##    .sssi    (.31.)    0.325    0.024   13.625    0.000    0.279
##    .ssei    (.32.)    0.289    0.017   17.133    0.000    0.256
##    .ssno    (.33.)    0.249    0.058    4.296    0.000    0.136
##    .sscs    (.34.)    0.534    0.040   13.203    0.000    0.454
##    .ssgs    (.35.)    0.168    0.011   14.752    0.000    0.146
##    .sswk    (.36.)    0.191    0.012   16.307    0.000    0.168
##     math              1.000                               1.000
##     elctrnc           1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.238    0.205    0.222
##     0.262    0.233    0.261
##     0.193    0.166    0.175
##     0.279    0.248    0.282
##     0.502    0.449    0.465
##     0.429    0.378    0.492
##     0.372    0.325    0.442
##     0.322    0.289    0.306
##     0.363    0.249    0.263
##     0.613    0.534    0.551
##     0.191    0.168    0.176
##     0.214    0.191    0.196
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.325    0.032   10.017    0.000    0.262
##     sspc    (.p2.)    0.181    0.030    6.070    0.000    0.123
##     ssmk    (.p3.)    0.310    0.036    8.643    0.000    0.240
##     ssmc    (.p4.)    0.245    0.035    7.046    0.000    0.177
##     ssao    (.p5.)    0.344    0.045    7.571    0.000    0.255
##   electronic =~                                                
##     ssai    (.p6.)    0.298    0.036    8.357    0.000    0.228
##     sssi    (.p7.)    0.300    0.038    7.927    0.000    0.226
##     ssmc    (.p8.)    0.155    0.022    7.074    0.000    0.112
##     ssei    (.p9.)    0.162    0.021    7.610    0.000    0.120
##   speed =~                                                     
##     ssno    (.10.)    0.618    0.059   10.420    0.000    0.502
##     sscs    (.11.)    0.372    0.042    8.946    0.000    0.290
##     ssmk    (.12.)    0.216    0.024    9.134    0.000    0.170
##   g =~                                                         
##     ssgs    (.13.)    0.889    0.029   31.050    0.000    0.833
##     ssar    (.14.)    0.782    0.029   26.775    0.000    0.724
##     sswk    (.15.)    0.887    0.030   29.115    0.000    0.827
##     sspc    (.16.)    0.792    0.026   29.884    0.000    0.740
##     ssno    (.17.)    0.562    0.031   18.152    0.000    0.502
##     sscs    (.18.)    0.545    0.029   18.530    0.000    0.487
##     ssai    (.19.)    0.549    0.027   20.466    0.000    0.496
##     sssi    (.20.)    0.567    0.028   20.571    0.000    0.513
##     ssmk    (.21.)    0.799    0.029   27.341    0.000    0.742
##     ssmc    (.22.)    0.738    0.028   26.454    0.000    0.684
##     ssei    (.23.)    0.793    0.029   27.554    0.000    0.736
##     ssao    (.24.)    0.631    0.028   22.498    0.000    0.576
##  ci.upper   Std.lv  Std.all
##                            
##     0.389    0.334    0.322
##     0.240    0.186    0.182
##     0.381    0.318    0.301
##     0.314    0.252    0.239
##     0.434    0.353    0.342
##                            
##     0.369    0.662    0.607
##     0.374    0.666    0.616
##     0.198    0.344    0.327
##     0.203    0.359    0.328
##                            
##     0.734    0.714    0.665
##     0.453    0.430    0.412
##     0.263    0.250    0.236
##                            
##     0.945    0.990    0.924
##     0.839    0.871    0.840
##     0.946    0.988    0.914
##     0.844    0.882    0.862
##     0.623    0.626    0.584
##     0.603    0.607    0.582
##     0.601    0.611    0.560
##     0.621    0.632    0.585
##     0.856    0.890    0.840
##     0.793    0.823    0.782
##     0.849    0.883    0.807
##     0.686    0.703    0.680
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.205    0.040    5.111    0.000    0.126
##    .sspc             -0.025    0.044   -0.581    0.561   -0.111
##    .ssmk    (.49.)    0.222    0.043    5.126    0.000    0.137
##    .ssmc    (.50.)    0.055    0.038    1.448    0.148   -0.019
##    .ssao    (.51.)    0.156    0.039    3.964    0.000    0.079
##    .ssai    (.52.)   -0.116    0.033   -3.462    0.001   -0.181
##    .sssi    (.53.)   -0.066    0.035   -1.906    0.057   -0.134
##    .ssei    (.54.)   -0.009    0.038   -0.248    0.804   -0.084
##    .ssno    (.55.)    0.184    0.043    4.283    0.000    0.100
##    .sscs             -0.028    0.052   -0.535    0.593   -0.130
##    .ssgs    (.57.)    0.177    0.041    4.343    0.000    0.097
##    .sswk    (.58.)    0.111    0.042    2.669    0.008    0.029
##     math             -0.306    0.099   -3.091    0.002   -0.501
##     elctrnc           1.700    0.255    6.659    0.000    1.200
##     speed            -0.349    0.098   -3.554    0.000   -0.542
##     g                 0.077    0.068    1.142    0.254   -0.055
##  ci.upper   Std.lv  Std.all
##     0.284    0.205    0.198
##     0.060   -0.025   -0.025
##     0.307    0.222    0.210
##     0.129    0.055    0.052
##     0.233    0.156    0.151
##    -0.050   -0.116   -0.106
##     0.002   -0.066   -0.061
##     0.065   -0.009   -0.009
##     0.269    0.184    0.172
##     0.074   -0.028   -0.027
##     0.257    0.177    0.165
##     0.192    0.111    0.103
##    -0.112   -0.299   -0.299
##     2.200    0.766    0.766
##    -0.157   -0.302   -0.302
##     0.210    0.069    0.069
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.25.)    0.205    0.017   12.252    0.000    0.172
##    .sspc    (.26.)    0.233    0.014   16.242    0.000    0.205
##    .ssmk    (.27.)    0.166    0.014   12.069    0.000    0.139
##    .ssmc    (.28.)    0.248    0.016   15.258    0.000    0.216
##    .ssao    (.29.)    0.449    0.027   16.558    0.000    0.396
##    .ssai    (.30.)    0.378    0.026   14.606    0.000    0.328
##    .sssi    (.31.)    0.325    0.024   13.625    0.000    0.279
##    .ssei    (.32.)    0.289    0.017   17.133    0.000    0.256
##    .ssno    (.33.)    0.249    0.058    4.296    0.000    0.136
##    .sscs    (.34.)    0.534    0.040   13.203    0.000    0.454
##    .ssgs    (.35.)    0.168    0.011   14.752    0.000    0.146
##    .sswk    (.36.)    0.191    0.012   16.307    0.000    0.168
##     math              1.053    0.220    4.776    0.000    0.621
##     elctrnc           4.923    1.241    3.968    0.000    2.491
##     speed             1.335    0.235    5.687    0.000    0.875
##     g                 1.241    0.102   12.226    0.000    1.042
##  ci.upper   Std.lv  Std.all
##     0.238    0.205    0.191
##     0.262    0.233    0.223
##     0.193    0.166    0.148
##     0.279    0.248    0.224
##     0.502    0.449    0.420
##     0.429    0.378    0.318
##     0.372    0.325    0.279
##     0.322    0.289    0.241
##     0.363    0.249    0.217
##     0.613    0.534    0.491
##     0.191    0.168    0.147
##     0.214    0.191    0.164
##     1.485    1.000    1.000
##     7.355    1.000    1.000
##     1.795    1.000    1.000
##     1.440    1.000    1.000
latent<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   586.893   114.000     0.000     0.964     0.080     0.108 32185.283 
##       bic 
## 32527.118
Mc(latent)
## [1] 0.8349731
summary(latent, standardized=T, ci=T) # -.075
## lavaan 0.6-18 ended normally after 52 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       100
##   Number of equality constraints                    34
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               586.893     450.032
##   Degrees of freedom                               114         114
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.304
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          269.344     206.534
##     0                                          317.549     243.498
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.330    0.029   11.221    0.000    0.273
##     sspc    (.p2.)    0.186    0.028    6.541    0.000    0.130
##     ssmk    (.p3.)    0.314    0.027   11.752    0.000    0.262
##     ssmc    (.p4.)    0.252    0.033    7.718    0.000    0.188
##     ssao    (.p5.)    0.360    0.039    9.347    0.000    0.285
##   electronic =~                                                
##     ssai    (.p6.)    0.472    0.033   14.517    0.000    0.408
##     sssi    (.p7.)    0.509    0.030   16.784    0.000    0.450
##     ssmc    (.p8.)    0.271    0.023   12.031    0.000    0.227
##     ssei    (.p9.)    0.253    0.026    9.805    0.000    0.202
##   speed =~                                                     
##     ssno    (.10.)    0.661    0.057   11.591    0.000    0.549
##     sscs    (.11.)    0.403    0.039   10.336    0.000    0.327
##     ssmk    (.12.)    0.237    0.025    9.429    0.000    0.188
##   g =~                                                         
##     ssgs    (.13.)    0.941    0.022   41.854    0.000    0.897
##     ssar    (.14.)    0.824    0.025   33.395    0.000    0.775
##     sswk    (.15.)    0.940    0.023   40.426    0.000    0.895
##     sspc    (.16.)    0.836    0.021   40.337    0.000    0.796
##     ssno    (.17.)    0.591    0.029   20.086    0.000    0.534
##     sscs    (.18.)    0.573    0.028   20.834    0.000    0.519
##     ssai    (.19.)    0.608    0.027   22.145    0.000    0.554
##     sssi    (.20.)    0.637    0.027   23.661    0.000    0.584
##     ssmk    (.21.)    0.842    0.023   35.918    0.000    0.796
##     ssmc    (.22.)    0.798    0.024   33.456    0.000    0.751
##     ssei    (.23.)    0.854    0.026   32.629    0.000    0.803
##     ssao    (.24.)    0.665    0.024   27.246    0.000    0.617
##  ci.upper   Std.lv  Std.all
##                            
##     0.388    0.330    0.337
##     0.242    0.186    0.189
##     0.367    0.314    0.308
##     0.316    0.252    0.251
##     0.436    0.360    0.367
##                            
##     0.536    0.472    0.497
##     0.569    0.509    0.526
##     0.316    0.271    0.270
##     0.303    0.253    0.246
##                            
##     0.773    0.661    0.657
##     0.479    0.403    0.401
##     0.286    0.237    0.232
##                            
##     0.985    0.941    0.920
##     0.872    0.824    0.841
##     0.986    0.940    0.912
##     0.877    0.836    0.852
##     0.649    0.591    0.587
##     0.627    0.573    0.570
##     0.662    0.608    0.641
##     0.689    0.637    0.657
##     0.888    0.842    0.824
##     0.845    0.798    0.794
##     0.906    0.854    0.831
##     0.713    0.665    0.678
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.203    0.040    5.104    0.000    0.125
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssmk    (.49.)    0.222    0.043    5.119    0.000    0.137
##    .ssmc    (.50.)    0.048    0.038    1.250    0.211   -0.027
##    .ssao    (.51.)    0.160    0.039    4.073    0.000    0.083
##    .ssai    (.52.)   -0.106    0.033   -3.193    0.001   -0.171
##    .sssi    (.53.)   -0.073    0.034   -2.133    0.033   -0.140
##    .ssei    (.54.)   -0.003    0.037   -0.073    0.942   -0.076
##    .ssno    (.55.)    0.183    0.043    4.260    0.000    0.099
##    .sscs              0.245    0.043    5.752    0.000    0.162
##    .ssgs    (.57.)    0.175    0.041    4.290    0.000    0.095
##    .sswk    (.58.)    0.112    0.042    2.689    0.007    0.030
##  ci.upper   Std.lv  Std.all
##     0.281    0.203    0.207
##     0.333    0.253    0.257
##     0.307    0.222    0.218
##     0.123    0.048    0.048
##     0.238    0.160    0.163
##    -0.041   -0.106   -0.112
##    -0.006   -0.073   -0.075
##     0.071   -0.003   -0.003
##     0.267    0.183    0.182
##     0.329    0.245    0.244
##     0.255    0.175    0.171
##     0.194    0.112    0.109
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.171    0.018    9.407    0.000    0.136
##    .sspc              0.230    0.021   10.992    0.000    0.189
##    .ssmk              0.179    0.018   10.014    0.000    0.144
##    .ssmc              0.237    0.020   11.725    0.000    0.198
##    .ssao              0.391    0.032   12.027    0.000    0.327
##    .ssai              0.307    0.027   11.195    0.000    0.254
##    .sssi              0.274    0.029    9.503    0.000    0.217
##    .ssei              0.264    0.023   11.608    0.000    0.220
##    .ssno              0.227    0.062    3.674    0.000    0.106
##    .sscs              0.519    0.054    9.635    0.000    0.413
##    .ssgs              0.161    0.015   10.779    0.000    0.132
##    .sswk              0.179    0.016   11.133    0.000    0.147
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.207    0.171    0.179
##     0.271    0.230    0.239
##     0.214    0.179    0.172
##     0.277    0.237    0.234
##     0.454    0.391    0.406
##     0.361    0.307    0.342
##     0.330    0.274    0.292
##     0.309    0.264    0.250
##     0.348    0.227    0.224
##     0.625    0.519    0.514
##     0.190    0.161    0.154
##     0.210    0.179    0.168
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.330    0.029   11.221    0.000    0.273
##     sspc    (.p2.)    0.186    0.028    6.541    0.000    0.130
##     ssmk    (.p3.)    0.314    0.027   11.752    0.000    0.262
##     ssmc    (.p4.)    0.252    0.033    7.718    0.000    0.188
##     ssao    (.p5.)    0.360    0.039    9.347    0.000    0.285
##   electronic =~                                                
##     ssai    (.p6.)    0.472    0.033   14.517    0.000    0.408
##     sssi    (.p7.)    0.509    0.030   16.784    0.000    0.450
##     ssmc    (.p8.)    0.271    0.023   12.031    0.000    0.227
##     ssei    (.p9.)    0.253    0.026    9.805    0.000    0.202
##   speed =~                                                     
##     ssno    (.10.)    0.661    0.057   11.591    0.000    0.549
##     sscs    (.11.)    0.403    0.039   10.336    0.000    0.327
##     ssmk    (.12.)    0.237    0.025    9.429    0.000    0.188
##   g =~                                                         
##     ssgs    (.13.)    0.941    0.022   41.854    0.000    0.897
##     ssar    (.14.)    0.824    0.025   33.395    0.000    0.775
##     sswk    (.15.)    0.940    0.023   40.426    0.000    0.895
##     sspc    (.16.)    0.836    0.021   40.337    0.000    0.796
##     ssno    (.17.)    0.591    0.029   20.086    0.000    0.534
##     sscs    (.18.)    0.573    0.028   20.834    0.000    0.519
##     ssai    (.19.)    0.608    0.027   22.145    0.000    0.554
##     sssi    (.20.)    0.637    0.027   23.661    0.000    0.584
##     ssmk    (.21.)    0.842    0.023   35.918    0.000    0.796
##     ssmc    (.22.)    0.798    0.024   33.456    0.000    0.751
##     ssei    (.23.)    0.854    0.026   32.629    0.000    0.803
##     ssao    (.24.)    0.665    0.024   27.246    0.000    0.617
##  ci.upper   Std.lv  Std.all
##                            
##     0.388    0.330    0.326
##     0.242    0.186    0.188
##     0.367    0.314    0.312
##     0.316    0.252    0.250
##     0.436    0.360    0.348
##                            
##     0.536    0.472    0.451
##     0.569    0.509    0.503
##     0.316    0.271    0.269
##     0.303    0.253    0.238
##                            
##     0.773    0.661    0.638
##     0.479    0.403    0.395
##     0.286    0.237    0.235
##                            
##     0.985    0.941    0.915
##     0.872    0.824    0.812
##     0.986    0.940    0.903
##     0.877    0.836    0.847
##     0.649    0.591    0.570
##     0.627    0.573    0.562
##     0.662    0.608    0.582
##     0.689    0.637    0.629
##     0.888    0.842    0.836
##     0.845    0.798    0.790
##     0.906    0.854    0.805
##     0.713    0.665    0.641
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.203    0.040    5.104    0.000    0.125
##    .sspc             -0.024    0.044   -0.560    0.575   -0.110
##    .ssmk    (.49.)    0.222    0.043    5.119    0.000    0.137
##    .ssmc    (.50.)    0.048    0.038    1.250    0.211   -0.027
##    .ssao    (.51.)    0.160    0.039    4.073    0.000    0.083
##    .ssai    (.52.)   -0.106    0.033   -3.193    0.001   -0.171
##    .sssi    (.53.)   -0.073    0.034   -2.133    0.033   -0.140
##    .ssei    (.54.)   -0.003    0.037   -0.073    0.942   -0.076
##    .ssno    (.55.)    0.183    0.043    4.260    0.000    0.099
##    .sscs             -0.027    0.052   -0.515    0.606   -0.129
##    .ssgs    (.57.)    0.175    0.041    4.290    0.000    0.095
##    .sswk    (.58.)    0.112    0.042    2.689    0.007    0.030
##     math             -0.312    0.093   -3.348    0.001   -0.495
##     elctrnc           1.025    0.092   11.144    0.000    0.845
##     speed            -0.327    0.090   -3.620    0.000   -0.504
##     g                 0.075    0.064    1.178    0.239   -0.050
##  ci.upper   Std.lv  Std.all
##     0.281    0.203    0.200
##     0.061   -0.024   -0.025
##     0.307    0.222    0.221
##     0.123    0.048    0.048
##     0.238    0.160    0.155
##    -0.041   -0.106   -0.102
##    -0.006   -0.073   -0.072
##     0.071   -0.003   -0.003
##     0.267    0.183    0.177
##     0.075   -0.027   -0.026
##     0.255    0.175    0.170
##     0.194    0.112    0.108
##    -0.129   -0.312   -0.312
##     1.205    1.025    1.025
##    -0.150   -0.327   -0.327
##     0.200    0.075    0.075
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.240    0.024    9.990    0.000    0.193
##    .sspc              0.240    0.020   12.053    0.000    0.201
##    .ssmk              0.151    0.016    9.710    0.000    0.120
##    .ssmc              0.246    0.021   11.481    0.000    0.204
##    .ssao              0.503    0.038   13.106    0.000    0.428
##    .ssai              0.501    0.044   11.354    0.000    0.414
##    .sssi              0.360    0.037    9.741    0.000    0.288
##    .ssei              0.332    0.026   12.586    0.000    0.280
##    .ssno              0.288    0.068    4.262    0.000    0.155
##    .sscs              0.550    0.055    9.948    0.000    0.442
##    .ssgs              0.173    0.016   10.544    0.000    0.141
##    .sswk              0.200    0.016   12.179    0.000    0.168
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.287    0.240    0.234
##     0.279    0.240    0.247
##     0.181    0.151    0.149
##     0.288    0.246    0.241
##     0.578    0.503    0.468
##     0.587    0.501    0.458
##     0.433    0.360    0.352
##     0.383    0.332    0.295
##     0.420    0.288    0.268
##     0.658    0.550    0.528
##     0.205    0.173    0.163
##     0.232    0.200    0.184
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
latent2<-cfa(bf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   478.459   111.000     0.000     0.972     0.071     0.051 32082.849 
##       bic 
## 32440.222
Mc(latent2)
## [1] 0.8692326
summary(latent2, standardized=T, ci=T) # -.070
## lavaan 0.6-18 ended normally after 77 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       103
##   Number of equality constraints                    34
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               478.459     368.833
##   Degrees of freedom                               111         111
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.297
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          202.257     155.915
##     0                                          276.202     212.918
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.327    0.030   11.032    0.000    0.269
##     sspc    (.p2.)    0.181    0.029    6.326    0.000    0.125
##     ssmk    (.p3.)    0.312    0.027   11.541    0.000    0.259
##     ssmc    (.p4.)    0.252    0.034    7.504    0.000    0.186
##     ssao    (.p5.)    0.359    0.040    9.043    0.000    0.281
##   electronic =~                                                
##     ssai    (.p6.)    0.311    0.034    9.093    0.000    0.244
##     sssi    (.p7.)    0.326    0.036    9.008    0.000    0.255
##     ssmc    (.p8.)    0.168    0.021    7.848    0.000    0.126
##     ssei    (.p9.)    0.170    0.020    8.408    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.616    0.060   10.340    0.000    0.499
##     sscs    (.11.)    0.372    0.041    9.078    0.000    0.292
##     ssmk    (.12.)    0.218    0.025    8.667    0.000    0.168
##   g =~                                                         
##     ssgs    (.13.)    0.890    0.029   31.202    0.000    0.834
##     ssar    (.14.)    0.780    0.029   26.679    0.000    0.723
##     sswk    (.15.)    0.888    0.030   29.260    0.000    0.829
##     sspc    (.16.)    0.792    0.026   29.908    0.000    0.740
##     ssno    (.17.)    0.563    0.031   18.151    0.000    0.502
##     sscs    (.18.)    0.545    0.029   18.579    0.000    0.488
##     ssai    (.19.)    0.546    0.026   20.694    0.000    0.494
##     sssi    (.20.)    0.568    0.028   20.616    0.000    0.514
##     ssmk    (.21.)    0.798    0.029   27.419    0.000    0.740
##     ssmc    (.22.)    0.739    0.028   26.585    0.000    0.684
##     ssei    (.23.)    0.790    0.029   27.281    0.000    0.733
##     ssao    (.24.)    0.631    0.028   22.897    0.000    0.577
##  ci.upper   Std.lv  Std.all
##                            
##     0.386    0.327    0.347
##     0.237    0.181    0.192
##     0.365    0.312    0.318
##     0.318    0.252    0.268
##     0.437    0.359    0.375
##                            
##     0.378    0.311    0.368
##     0.396    0.326    0.379
##     0.210    0.168    0.179
##     0.210    0.170    0.178
##                            
##     0.732    0.616    0.634
##     0.452    0.372    0.381
##     0.267    0.218    0.222
##                            
##     0.946    0.890    0.911
##     0.838    0.780    0.828
##     0.948    0.888    0.901
##     0.844    0.792    0.838
##     0.624    0.563    0.579
##     0.603    0.545    0.558
##     0.597    0.546    0.645
##     0.622    0.568    0.662
##     0.855    0.798    0.814
##     0.793    0.739    0.787
##     0.847    0.790    0.827
##     0.685    0.631    0.660
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.202    0.040    5.075    0.000    0.124
##    .sspc              0.253    0.041    6.138    0.000    0.172
##    .ssmk    (.49.)    0.221    0.043    5.078    0.000    0.136
##    .ssmc    (.50.)    0.053    0.038    1.404    0.160   -0.021
##    .ssao    (.51.)    0.159    0.039    4.043    0.000    0.082
##    .ssai    (.52.)   -0.110    0.033   -3.309    0.001   -0.175
##    .sssi    (.53.)   -0.071    0.034   -2.058    0.040   -0.138
##    .ssei    (.54.)   -0.007    0.038   -0.180    0.857   -0.081
##    .ssno    (.55.)    0.184    0.043    4.289    0.000    0.100
##    .sscs              0.245    0.043    5.752    0.000    0.162
##    .ssgs    (.57.)    0.176    0.041    4.313    0.000    0.096
##    .sswk    (.58.)    0.112    0.042    2.693    0.007    0.031
##  ci.upper   Std.lv  Std.all
##     0.280    0.202    0.214
##     0.333    0.253    0.267
##     0.306    0.221    0.225
##     0.128    0.053    0.057
##     0.237    0.159    0.167
##    -0.045   -0.110   -0.130
##    -0.003   -0.071   -0.083
##     0.067   -0.007   -0.007
##     0.269    0.184    0.190
##     0.329    0.245    0.252
##     0.255    0.176    0.180
##     0.194    0.112    0.114
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.172    0.018    9.346    0.000    0.136
##    .sspc              0.232    0.021   11.029    0.000    0.191
##    .ssmk              0.180    0.018   10.202    0.000    0.145
##    .ssmc              0.243    0.020   11.989    0.000    0.203
##    .ssao              0.388    0.033   11.863    0.000    0.324
##    .ssai              0.322    0.026   12.188    0.000    0.270
##    .sssi              0.308    0.028   10.963    0.000    0.253
##    .ssei              0.260    0.023   11.411    0.000    0.215
##    .ssno              0.248    0.059    4.184    0.000    0.132
##    .sscs              0.517    0.053    9.816    0.000    0.414
##    .ssgs              0.162    0.015   11.142    0.000    0.133
##    .sswk              0.184    0.016   11.384    0.000    0.152
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.208    0.172    0.193
##     0.274    0.232    0.260
##     0.215    0.180    0.187
##     0.283    0.243    0.276
##     0.452    0.388    0.424
##     0.373    0.322    0.449
##     0.363    0.308    0.418
##     0.304    0.260    0.285
##     0.365    0.248    0.263
##     0.621    0.517    0.543
##     0.190    0.162    0.170
##     0.215    0.184    0.189
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.327    0.030   11.032    0.000    0.269
##     sspc    (.p2.)    0.181    0.029    6.326    0.000    0.125
##     ssmk    (.p3.)    0.312    0.027   11.541    0.000    0.259
##     ssmc    (.p4.)    0.252    0.034    7.504    0.000    0.186
##     ssao    (.p5.)    0.359    0.040    9.043    0.000    0.281
##   electronic =~                                                
##     ssai    (.p6.)    0.311    0.034    9.093    0.000    0.244
##     sssi    (.p7.)    0.326    0.036    9.008    0.000    0.255
##     ssmc    (.p8.)    0.168    0.021    7.848    0.000    0.126
##     ssei    (.p9.)    0.170    0.020    8.408    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.616    0.060   10.340    0.000    0.499
##     sscs    (.11.)    0.372    0.041    9.078    0.000    0.292
##     ssmk    (.12.)    0.218    0.025    8.667    0.000    0.168
##   g =~                                                         
##     ssgs    (.13.)    0.890    0.029   31.202    0.000    0.834
##     ssar    (.14.)    0.780    0.029   26.679    0.000    0.723
##     sswk    (.15.)    0.888    0.030   29.260    0.000    0.829
##     sspc    (.16.)    0.792    0.026   29.908    0.000    0.740
##     ssno    (.17.)    0.563    0.031   18.151    0.000    0.502
##     sscs    (.18.)    0.545    0.029   18.579    0.000    0.488
##     ssai    (.19.)    0.546    0.026   20.694    0.000    0.494
##     sssi    (.20.)    0.568    0.028   20.616    0.000    0.514
##     ssmk    (.21.)    0.798    0.029   27.419    0.000    0.740
##     ssmc    (.22.)    0.739    0.028   26.585    0.000    0.684
##     ssei    (.23.)    0.790    0.029   27.281    0.000    0.733
##     ssao    (.24.)    0.631    0.028   22.897    0.000    0.577
##  ci.upper   Std.lv  Std.all
##                            
##     0.386    0.327    0.312
##     0.237    0.181    0.177
##     0.365    0.312    0.298
##     0.318    0.252    0.240
##     0.437    0.359    0.338
##                            
##     0.378    0.639    0.574
##     0.396    0.668    0.619
##     0.210    0.345    0.328
##     0.210    0.349    0.316
##                            
##     0.732    0.711    0.662
##     0.452    0.430    0.409
##     0.267    0.251    0.240
##                            
##     0.946    0.990    0.921
##     0.838    0.868    0.827
##     0.948    0.988    0.912
##     0.844    0.881    0.862
##     0.624    0.626    0.583
##     0.603    0.606    0.578
##     0.597    0.607    0.545
##     0.622    0.632    0.585
##     0.855    0.887    0.846
##     0.793    0.822    0.782
##     0.847    0.879    0.796
##     0.685    0.702    0.662
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.202    0.040    5.075    0.000    0.124
##    .sspc             -0.026    0.044   -0.595    0.552   -0.112
##    .ssmk    (.49.)    0.221    0.043    5.078    0.000    0.136
##    .ssmc    (.50.)    0.053    0.038    1.404    0.160   -0.021
##    .ssao    (.51.)    0.159    0.039    4.043    0.000    0.082
##    .ssai    (.52.)   -0.110    0.033   -3.309    0.001   -0.175
##    .sssi    (.53.)   -0.071    0.034   -2.058    0.040   -0.138
##    .ssei    (.54.)   -0.007    0.038   -0.180    0.857   -0.081
##    .ssno    (.55.)    0.184    0.043    4.289    0.000    0.100
##    .sscs             -0.027    0.052   -0.523    0.601   -0.129
##    .ssgs    (.57.)    0.176    0.041    4.313    0.000    0.096
##    .sswk    (.58.)    0.112    0.042    2.693    0.007    0.031
##     math             -0.304    0.094   -3.232    0.001   -0.488
##     elctrnc           1.596    0.219    7.275    0.000    1.166
##     speed            -0.351    0.099   -3.555    0.000   -0.545
##     g                 0.078    0.068    1.146    0.252   -0.055
##  ci.upper   Std.lv  Std.all
##     0.280    0.202    0.192
##     0.060   -0.026   -0.025
##     0.306    0.221    0.211
##     0.128    0.053    0.051
##     0.237    0.159    0.150
##    -0.045   -0.110   -0.099
##    -0.003   -0.071   -0.066
##     0.067   -0.007   -0.006
##     0.269    0.184    0.172
##     0.075   -0.027   -0.026
##     0.255    0.176    0.163
##     0.194    0.112    0.104
##    -0.120   -0.304   -0.304
##     2.026    0.777    0.777
##    -0.158   -0.304   -0.304
##     0.210    0.070    0.070
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.240    0.024    9.948    0.000    0.193
##    .sspc              0.236    0.020   12.041    0.000    0.197
##    .ssmk              0.152    0.016    9.564    0.000    0.121
##    .ssmc              0.245    0.021   11.437    0.000    0.203
##    .ssao              0.503    0.038   13.096    0.000    0.428
##    .ssai              0.464    0.043   10.846    0.000    0.380
##    .sssi              0.320    0.036    8.932    0.000    0.250
##    .ssei              0.324    0.025   12.823    0.000    0.275
##    .ssno              0.256    0.072    3.586    0.000    0.116
##    .sscs              0.549    0.055    9.924    0.000    0.441
##    .ssgs              0.175    0.017   10.336    0.000    0.142
##    .sswk              0.198    0.017   11.930    0.000    0.165
##     electronic        4.214    0.959    4.395    0.000    2.335
##     speed             1.335    0.241    5.536    0.000    0.863
##     g                 1.237    0.101   12.254    0.000    1.039
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.288    0.240    0.218
##     0.274    0.236    0.225
##     0.183    0.152    0.138
##     0.288    0.245    0.222
##     0.579    0.503    0.448
##     0.547    0.464    0.374
##     0.390    0.320    0.274
##     0.374    0.324    0.266
##     0.397    0.256    0.222
##     0.658    0.549    0.499
##     0.209    0.175    0.152
##     0.230    0.198    0.168
##     6.093    1.000    1.000
##     1.808    1.000    1.000
##     1.435    1.000    1.000
tests<-lavTestLRT(configural, metric2, scalar2, latent2)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 33.54426955 35.38968692  0.07199855
dfd=tests[2:4,"Df diff"]
dfd
## [1] 19  7  1
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-656+ 656 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.03418602 0.07868838        NaN
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.01326882 0.05280246
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.05410812 0.10528511
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]         NA 0.06713763
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1] NA NA
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.979     0.965     0.085     0.009     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.971     0.899     0.500     0.097
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.212     0.205     0.095     0.067     0.027     0.009
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##        NA        NA        NA        NA        NA        NA
tests<-lavTestLRT(configural, metric2, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 33.54427 35.38969 69.42108
dfd=tests[2:4,"Df diff"]
dfd
## [1] 19  7  4
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-656+ 656 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.03418602 0.07868838 0.15801859
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.05410812 0.10528511
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.1266066 0.1915948
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.971     0.899     0.500     0.097
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     1.000     0.999
tests<-lavTestLRT(configural, metric2, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 33.54427 35.38969 30.51764
dfd=tests[2:4,"Df diff"]
dfd
## [1] 19  7 12
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-656+ 656 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.03418602 0.07868838 0.04853796
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.01326882 0.05280246
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.05410812 0.10528511
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.02742186 0.07021796
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.979     0.965     0.085     0.009     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.971     0.899     0.500     0.097
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.998     0.996     0.492     0.208     0.007     0.000
tests<-lavTestLRT(configural, metric2, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]  33.54427 139.41970
dfd=tests[2:3,"Df diff"]
dfd
## [1] 19  9
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-656+ 656 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.03418602 0.14874065
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.01326882 0.05280246
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1274716 0.1709583
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.979     0.965     0.085     0.009     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
bf.age<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
g ~ agec
'

bf.ageq<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
g ~ c(a,a)*agec
'

bf.age2<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
g ~ agec+agec2
'

bf.age2q<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
g ~ c(a,a)*agec+c(b,b)*agec2
'

sem.age<-sem(bf.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   668.641   133.000     0.000     0.961     0.078     0.053     0.618 
##       aic       bic 
## 31880.541 32248.272
Mc(sem.age)
## [1] 0.8152281
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 76 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       105
##   Number of equality constraints                    34
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               668.641     517.098
##   Degrees of freedom                               133         133
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.293
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          276.039     213.476
##     0                                          392.603     303.622
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.330    0.030   11.065    0.000    0.271
##     sspc    (.p2.)    0.184    0.029    6.422    0.000    0.128
##     ssmk    (.p3.)    0.306    0.027   11.441    0.000    0.254
##     ssmc    (.p4.)    0.259    0.033    7.798    0.000    0.194
##     ssao    (.p5.)    0.363    0.039    9.238    0.000    0.286
##   electronic =~                                                
##     ssai    (.p6.)    0.309    0.034    9.085    0.000    0.242
##     sssi    (.p7.)    0.326    0.036    8.992    0.000    0.255
##     ssmc    (.p8.)    0.170    0.022    7.840    0.000    0.127
##     ssei    (.p9.)    0.169    0.020    8.390    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.614    0.060   10.162    0.000    0.495
##     sscs    (.11.)    0.368    0.041    8.973    0.000    0.287
##     ssmk    (.12.)    0.214    0.025    8.578    0.000    0.165
##   g =~                                                         
##     ssgs    (.13.)    0.812    0.027   29.577    0.000    0.759
##     ssar    (.14.)    0.713    0.028   25.173    0.000    0.657
##     sswk    (.15.)    0.814    0.028   28.689    0.000    0.758
##     sspc    (.16.)    0.724    0.025   28.767    0.000    0.675
##     ssno    (.17.)    0.517    0.029   18.001    0.000    0.461
##     sscs    (.18.)    0.501    0.027   18.728    0.000    0.449
##     ssai    (.19.)    0.502    0.024   20.786    0.000    0.455
##     sssi    (.20.)    0.520    0.025   20.602    0.000    0.471
##     ssmk    (.21.)    0.732    0.027   27.161    0.000    0.679
##     ssmc    (.22.)    0.675    0.026   25.843    0.000    0.624
##     ssei    (.23.)    0.724    0.028   26.114    0.000    0.669
##     ssao    (.24.)    0.576    0.026   22.048    0.000    0.525
##  ci.upper   Std.lv  Std.all
##                            
##     0.388    0.330    0.350
##     0.240    0.184    0.194
##     0.359    0.306    0.312
##     0.323    0.259    0.275
##     0.440    0.363    0.379
##                            
##     0.376    0.309    0.365
##     0.397    0.326    0.379
##     0.212    0.170    0.181
##     0.209    0.169    0.177
##                            
##     0.732    0.614    0.632
##     0.448    0.368    0.377
##     0.263    0.214    0.219
##                            
##     0.866    0.888    0.909
##     0.768    0.779    0.827
##     0.870    0.890    0.902
##     0.774    0.792    0.837
##     0.574    0.565    0.582
##     0.554    0.548    0.561
##     0.550    0.549    0.648
##     0.570    0.568    0.662
##     0.785    0.800    0.816
##     0.726    0.737    0.785
##     0.778    0.791    0.828
##     0.628    0.630    0.658
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.296    0.031    9.660    0.000    0.236
##  ci.upper   Std.lv  Std.all
##                            
##     0.355    0.270    0.403
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.189    0.038    4.990    0.000    0.115
##    .sspc              0.239    0.039    6.119    0.000    0.162
##    .ssmk    (.48.)    0.206    0.040    5.178    0.000    0.128
##    .ssmc    (.49.)    0.040    0.036    1.105    0.269   -0.031
##    .ssao    (.50.)    0.149    0.038    3.925    0.000    0.075
##    .ssai    (.51.)   -0.119    0.031   -3.795    0.000   -0.180
##    .sssi    (.52.)   -0.082    0.033   -2.482    0.013   -0.146
##    .ssei    (.53.)   -0.020    0.035   -0.566    0.572   -0.088
##    .ssno    (.54.)    0.175    0.041    4.298    0.000    0.095
##    .sscs              0.236    0.040    5.854    0.000    0.157
##    .ssgs    (.56.)    0.161    0.038    4.282    0.000    0.087
##    .sswk    (.57.)    0.098    0.038    2.564    0.010    0.023
##  ci.upper   Std.lv  Std.all
##     0.263    0.189    0.200
##     0.315    0.239    0.253
##     0.284    0.206    0.210
##     0.111    0.040    0.043
##     0.224    0.149    0.156
##    -0.057   -0.119   -0.140
##    -0.017   -0.082   -0.095
##     0.049   -0.020   -0.021
##     0.255    0.175    0.180
##     0.315    0.236    0.242
##     0.235    0.161    0.165
##     0.173    0.098    0.099
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.172    0.019    9.272    0.000    0.136
##    .sspc              0.233    0.021   11.122    0.000    0.192
##    .ssmk              0.181    0.017   10.369    0.000    0.147
##    .ssmc              0.242    0.020   11.851    0.000    0.202
##    .ssao              0.387    0.033   11.790    0.000    0.322
##    .ssai              0.322    0.026   12.237    0.000    0.270
##    .sssi              0.308    0.028   10.953    0.000    0.253
##    .ssei              0.258    0.023   11.407    0.000    0.214
##    .ssno              0.247    0.060    4.123    0.000    0.130
##    .sscs              0.517    0.053    9.824    0.000    0.414
##    .ssgs              0.165    0.014   11.423    0.000    0.137
##    .sswk              0.181    0.016   11.397    0.000    0.150
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.209    0.172    0.194
##     0.274    0.233    0.261
##     0.215    0.181    0.188
##     0.282    0.242    0.275
##     0.451    0.387    0.422
##     0.373    0.322    0.448
##     0.364    0.308    0.418
##     0.303    0.258    0.283
##     0.365    0.247    0.262
##     0.621    0.517    0.543
##     0.194    0.165    0.173
##     0.212    0.181    0.186
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.837    0.837
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.330    0.030   11.065    0.000    0.271
##     sspc    (.p2.)    0.184    0.029    6.422    0.000    0.128
##     ssmk    (.p3.)    0.306    0.027   11.441    0.000    0.254
##     ssmc    (.p4.)    0.259    0.033    7.798    0.000    0.194
##     ssao    (.p5.)    0.363    0.039    9.238    0.000    0.286
##   electronic =~                                                
##     ssai    (.p6.)    0.309    0.034    9.085    0.000    0.242
##     sssi    (.p7.)    0.326    0.036    8.992    0.000    0.255
##     ssmc    (.p8.)    0.170    0.022    7.840    0.000    0.127
##     ssei    (.p9.)    0.169    0.020    8.390    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.614    0.060   10.162    0.000    0.495
##     sscs    (.11.)    0.368    0.041    8.973    0.000    0.287
##     ssmk    (.12.)    0.214    0.025    8.578    0.000    0.165
##   g =~                                                         
##     ssgs    (.13.)    0.812    0.027   29.577    0.000    0.759
##     ssar    (.14.)    0.713    0.028   25.173    0.000    0.657
##     sswk    (.15.)    0.814    0.028   28.689    0.000    0.758
##     sspc    (.16.)    0.724    0.025   28.767    0.000    0.675
##     ssno    (.17.)    0.517    0.029   18.001    0.000    0.461
##     sscs    (.18.)    0.501    0.027   18.728    0.000    0.449
##     ssai    (.19.)    0.502    0.024   20.786    0.000    0.455
##     sssi    (.20.)    0.520    0.025   20.602    0.000    0.471
##     ssmk    (.21.)    0.732    0.027   27.161    0.000    0.679
##     ssmc    (.22.)    0.675    0.026   25.843    0.000    0.624
##     ssei    (.23.)    0.724    0.028   26.114    0.000    0.669
##     ssao    (.24.)    0.576    0.026   22.048    0.000    0.525
##  ci.upper   Std.lv  Std.all
##                            
##     0.388    0.330    0.314
##     0.240    0.184    0.180
##     0.359    0.306    0.292
##     0.323    0.259    0.246
##     0.440    0.363    0.342
##                            
##     0.376    0.632    0.568
##     0.397    0.666    0.618
##     0.212    0.347    0.330
##     0.209    0.346    0.313
##                            
##     0.732    0.711    0.662
##     0.448    0.426    0.406
##     0.263    0.248    0.237
##                            
##     0.866    0.987    0.919
##     0.768    0.866    0.826
##     0.870    0.989    0.913
##     0.774    0.880    0.862
##     0.574    0.629    0.585
##     0.554    0.609    0.580
##     0.550    0.610    0.549
##     0.570    0.632    0.586
##     0.785    0.890    0.848
##     0.726    0.820    0.781
##     0.778    0.880    0.797
##     0.628    0.701    0.661
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.326    0.036    9.014    0.000    0.255
##  ci.upper   Std.lv  Std.all
##                            
##     0.397    0.268    0.382
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.189    0.038    4.990    0.000    0.115
##    .sspc             -0.038    0.041   -0.919    0.358   -0.119
##    .ssmk    (.48.)    0.206    0.040    5.178    0.000    0.128
##    .ssmc    (.49.)    0.040    0.036    1.105    0.269   -0.031
##    .ssao    (.50.)    0.149    0.038    3.925    0.000    0.075
##    .ssai    (.51.)   -0.119    0.031   -3.795    0.000   -0.180
##    .sssi    (.52.)   -0.082    0.033   -2.482    0.013   -0.146
##    .ssei    (.53.)   -0.020    0.035   -0.566    0.572   -0.088
##    .ssno    (.54.)    0.175    0.041    4.298    0.000    0.095
##    .sscs             -0.037    0.050   -0.736    0.462   -0.135
##    .ssgs    (.56.)    0.161    0.038    4.282    0.000    0.087
##    .sswk    (.57.)    0.098    0.038    2.564    0.010    0.023
##     math             -0.301    0.094   -3.197    0.001   -0.485
##     elctrnc           1.603    0.220    7.280    0.000    1.172
##     speed            -0.352    0.100   -3.512    0.000   -0.549
##    .g                 0.109    0.068    1.590    0.112   -0.025
##  ci.upper   Std.lv  Std.all
##     0.263    0.189    0.180
##     0.043   -0.038   -0.037
##     0.284    0.206    0.196
##     0.111    0.040    0.038
##     0.224    0.149    0.141
##    -0.057   -0.119   -0.107
##    -0.017   -0.082   -0.076
##     0.049   -0.020   -0.018
##     0.255    0.175    0.163
##     0.061   -0.037   -0.035
##     0.235    0.161    0.150
##     0.173    0.098    0.090
##    -0.116   -0.301   -0.301
##     2.035    0.784    0.784
##    -0.156   -0.304   -0.304
##     0.243    0.090    0.090
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.241    0.024    9.915    0.000    0.193
##    .sspc              0.236    0.020   12.010    0.000    0.197
##    .ssmk              0.153    0.016    9.809    0.000    0.123
##    .ssmc              0.244    0.022   11.267    0.000    0.201
##    .ssao              0.502    0.038   13.081    0.000    0.427
##    .ssai              0.465    0.042   10.947    0.000    0.382
##    .sssi              0.319    0.036    8.913    0.000    0.249
##    .ssei              0.324    0.025   12.787    0.000    0.274
##    .ssno              0.254    0.073    3.501    0.000    0.112
##    .sscs              0.550    0.055    9.945    0.000    0.441
##    .ssgs              0.180    0.017   10.542    0.000    0.146
##    .sswk              0.197    0.016   11.935    0.000    0.164
##     electronic        4.183    0.954    4.386    0.000    2.314
##     speed             1.342    0.245    5.476    0.000    0.862
##    .g                 1.262    0.107   11.767    0.000    1.051
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.289    0.241    0.219
##     0.274    0.236    0.225
##     0.184    0.153    0.139
##     0.286    0.244    0.221
##     0.577    0.502    0.446
##     0.548    0.465    0.376
##     0.390    0.319    0.275
##     0.374    0.324    0.266
##     0.397    0.254    0.220
##     0.658    0.550    0.499
##     0.213    0.180    0.156
##     0.229    0.197    0.167
##     6.052    1.000    1.000
##     1.823    1.000    1.000
##     1.472    0.854    0.854
sem.ageq<-sem(bf.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   669.169   134.000     0.000     0.961     0.078     0.055     0.617 
##       aic       bic 
## 31879.069 32241.621
Mc(sem.ageq)
## [1] 0.815375
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 78 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       105
##   Number of equality constraints                    35
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               669.169     517.921
##   Degrees of freedom                               134         134
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.292
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          276.192     213.766
##     0                                          392.977     304.155
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.330    0.030   11.071    0.000    0.271
##     sspc    (.p2.)    0.184    0.029    6.423    0.000    0.128
##     ssmk    (.p3.)    0.306    0.027   11.444    0.000    0.254
##     ssmc    (.p4.)    0.259    0.033    7.801    0.000    0.194
##     ssao    (.p5.)    0.363    0.039    9.240    0.000    0.286
##   electronic =~                                                
##     ssai    (.p6.)    0.309    0.034    9.087    0.000    0.242
##     sssi    (.p7.)    0.326    0.036    8.991    0.000    0.255
##     ssmc    (.p8.)    0.170    0.022    7.839    0.000    0.127
##     ssei    (.p9.)    0.169    0.020    8.393    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.613    0.060   10.160    0.000    0.495
##     sscs    (.11.)    0.367    0.041    8.973    0.000    0.287
##     ssmk    (.12.)    0.214    0.025    8.580    0.000    0.165
##   g =~                                                         
##     ssgs    (.13.)    0.813    0.027   29.563    0.000    0.759
##     ssar    (.14.)    0.713    0.028   25.166    0.000    0.657
##     sswk    (.15.)    0.814    0.028   28.676    0.000    0.759
##     sspc    (.16.)    0.725    0.025   28.762    0.000    0.675
##     ssno    (.17.)    0.517    0.029   18.003    0.000    0.461
##     sscs    (.18.)    0.501    0.027   18.729    0.000    0.449
##     ssai    (.19.)    0.502    0.024   20.784    0.000    0.455
##     sssi    (.20.)    0.520    0.025   20.593    0.000    0.471
##     ssmk    (.21.)    0.732    0.027   27.153    0.000    0.680
##     ssmc    (.22.)    0.675    0.026   25.836    0.000    0.624
##     ssei    (.23.)    0.724    0.028   26.093    0.000    0.669
##     ssao    (.24.)    0.577    0.026   22.048    0.000    0.525
##  ci.upper   Std.lv  Std.all
##                            
##     0.388    0.330    0.348
##     0.240    0.184    0.193
##     0.359    0.306    0.311
##     0.324    0.259    0.274
##     0.440    0.363    0.378
##                            
##     0.376    0.309    0.364
##     0.397    0.326    0.378
##     0.212    0.170    0.180
##     0.209    0.169    0.176
##                            
##     0.732    0.613    0.630
##     0.448    0.367    0.376
##     0.263    0.214    0.218
##                            
##     0.866    0.894    0.910
##     0.768    0.785    0.828
##     0.870    0.896    0.903
##     0.774    0.797    0.839
##     0.574    0.569    0.585
##     0.554    0.552    0.564
##     0.549    0.553    0.650
##     0.570    0.572    0.664
##     0.785    0.806    0.818
##     0.726    0.743    0.788
##     0.778    0.797    0.830
##     0.628    0.634    0.661
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.308    0.024   12.646    0.000    0.260
##  ci.upper   Std.lv  Std.all
##                            
##     0.356    0.280    0.417
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.188    0.038    4.970    0.000    0.114
##    .sspc              0.238    0.039    6.103    0.000    0.162
##    .ssmk    (.48.)    0.205    0.040    5.167    0.000    0.127
##    .ssmc    (.49.)    0.040    0.036    1.089    0.276   -0.032
##    .ssao    (.50.)    0.149    0.038    3.909    0.000    0.074
##    .ssai    (.51.)   -0.119    0.031   -3.811    0.000   -0.180
##    .sssi    (.52.)   -0.082    0.033   -2.492    0.013   -0.146
##    .ssei    (.53.)   -0.020    0.035   -0.584    0.559   -0.089
##    .ssno    (.54.)    0.175    0.041    4.292    0.000    0.095
##    .sscs              0.236    0.040    5.848    0.000    0.157
##    .ssgs    (.56.)    0.160    0.038    4.263    0.000    0.087
##    .sswk    (.57.)    0.097    0.038    2.547    0.011    0.022
##  ci.upper   Std.lv  Std.all
##     0.263    0.188    0.199
##     0.315    0.238    0.251
##     0.283    0.205    0.208
##     0.111    0.040    0.042
##     0.223    0.149    0.155
##    -0.058   -0.119   -0.140
##    -0.018   -0.082   -0.095
##     0.048   -0.020   -0.021
##     0.254    0.175    0.179
##     0.315    0.236    0.241
##     0.234    0.160    0.163
##     0.172    0.097    0.098
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.173    0.019    9.270    0.000    0.136
##    .sspc              0.233    0.021   11.123    0.000    0.192
##    .ssmk              0.181    0.017   10.374    0.000    0.147
##    .ssmc              0.242    0.020   11.851    0.000    0.202
##    .ssao              0.387    0.033   11.792    0.000    0.322
##    .ssai              0.322    0.026   12.238    0.000    0.270
##    .sssi              0.309    0.028   10.955    0.000    0.253
##    .ssei              0.258    0.023   11.408    0.000    0.214
##    .ssno              0.248    0.060    4.129    0.000    0.130
##    .sscs              0.517    0.053    9.825    0.000    0.414
##    .ssgs              0.165    0.014   11.437    0.000    0.137
##    .sswk              0.181    0.016   11.394    0.000    0.150
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.209    0.173    0.192
##     0.274    0.233    0.258
##     0.215    0.181    0.187
##     0.282    0.242    0.272
##     0.451    0.387    0.420
##     0.373    0.322    0.445
##     0.364    0.309    0.416
##     0.303    0.258    0.280
##     0.365    0.248    0.261
##     0.621    0.517    0.541
##     0.194    0.165    0.171
##     0.212    0.181    0.184
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.826    0.826
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.330    0.030   11.071    0.000    0.271
##     sspc    (.p2.)    0.184    0.029    6.423    0.000    0.128
##     ssmk    (.p3.)    0.306    0.027   11.444    0.000    0.254
##     ssmc    (.p4.)    0.259    0.033    7.801    0.000    0.194
##     ssao    (.p5.)    0.363    0.039    9.240    0.000    0.286
##   electronic =~                                                
##     ssai    (.p6.)    0.309    0.034    9.087    0.000    0.242
##     sssi    (.p7.)    0.326    0.036    8.991    0.000    0.255
##     ssmc    (.p8.)    0.170    0.022    7.839    0.000    0.127
##     ssei    (.p9.)    0.169    0.020    8.393    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.613    0.060   10.160    0.000    0.495
##     sscs    (.11.)    0.367    0.041    8.973    0.000    0.287
##     ssmk    (.12.)    0.214    0.025    8.580    0.000    0.165
##   g =~                                                         
##     ssgs    (.13.)    0.813    0.027   29.563    0.000    0.759
##     ssar    (.14.)    0.713    0.028   25.166    0.000    0.657
##     sswk    (.15.)    0.814    0.028   28.676    0.000    0.759
##     sspc    (.16.)    0.725    0.025   28.762    0.000    0.675
##     ssno    (.17.)    0.517    0.029   18.003    0.000    0.461
##     sscs    (.18.)    0.501    0.027   18.729    0.000    0.449
##     ssai    (.19.)    0.502    0.024   20.784    0.000    0.455
##     sssi    (.20.)    0.520    0.025   20.593    0.000    0.471
##     ssmk    (.21.)    0.732    0.027   27.153    0.000    0.680
##     ssmc    (.22.)    0.675    0.026   25.836    0.000    0.624
##     ssei    (.23.)    0.724    0.028   26.093    0.000    0.669
##     ssao    (.24.)    0.577    0.026   22.048    0.000    0.525
##  ci.upper   Std.lv  Std.all
##                            
##     0.388    0.330    0.316
##     0.240    0.184    0.181
##     0.359    0.306    0.293
##     0.324    0.259    0.247
##     0.440    0.363    0.343
##                            
##     0.376    0.632    0.570
##     0.397    0.667    0.620
##     0.212    0.347    0.332
##     0.209    0.346    0.315
##                            
##     0.732    0.711    0.663
##     0.448    0.426    0.407
##     0.263    0.249    0.238
##                            
##     0.866    0.980    0.918
##     0.768    0.860    0.824
##     0.870    0.982    0.911
##     0.774    0.874    0.860
##     0.574    0.624    0.582
##     0.554    0.604    0.577
##     0.549    0.606    0.546
##     0.570    0.627    0.583
##     0.785    0.883    0.846
##     0.726    0.814    0.778
##     0.778    0.873    0.795
##     0.628    0.695    0.658
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.308    0.024   12.646    0.000    0.260
##  ci.upper   Std.lv  Std.all
##                            
##     0.356    0.256    0.364
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.188    0.038    4.970    0.000    0.114
##    .sspc             -0.039    0.041   -0.933    0.351   -0.119
##    .ssmk    (.48.)    0.205    0.040    5.167    0.000    0.127
##    .ssmc    (.49.)    0.040    0.036    1.089    0.276   -0.032
##    .ssao    (.50.)    0.149    0.038    3.909    0.000    0.074
##    .ssai    (.51.)   -0.119    0.031   -3.811    0.000   -0.180
##    .sssi    (.52.)   -0.082    0.033   -2.492    0.013   -0.146
##    .ssei    (.53.)   -0.020    0.035   -0.584    0.559   -0.089
##    .ssno    (.54.)    0.175    0.041    4.292    0.000    0.095
##    .sscs             -0.037    0.050   -0.744    0.457   -0.136
##    .ssgs    (.56.)    0.160    0.038    4.263    0.000    0.087
##    .sswk    (.57.)    0.097    0.038    2.547    0.011    0.022
##     math             -0.300    0.094   -3.196    0.001   -0.485
##     elctrnc           1.604    0.220    7.281    0.000    1.172
##     speed            -0.352    0.100   -3.512    0.000   -0.549
##    .g                 0.109    0.068    1.595    0.111   -0.025
##  ci.upper   Std.lv  Std.all
##     0.263    0.188    0.180
##     0.042   -0.039   -0.038
##     0.283    0.205    0.196
##     0.111    0.040    0.038
##     0.223    0.149    0.141
##    -0.058   -0.119   -0.107
##    -0.018   -0.082   -0.076
##     0.048   -0.020   -0.019
##     0.254    0.175    0.163
##     0.061   -0.037   -0.036
##     0.234    0.160    0.150
##     0.172    0.097    0.090
##    -0.116   -0.300   -0.300
##     2.035    0.784    0.784
##    -0.156   -0.304   -0.304
##     0.243    0.091    0.091
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.241    0.024    9.914    0.000    0.193
##    .sspc              0.236    0.020   12.011    0.000    0.197
##    .ssmk              0.153    0.016    9.810    0.000    0.123
##    .ssmc              0.244    0.022   11.271    0.000    0.201
##    .ssao              0.502    0.038   13.082    0.000    0.427
##    .ssai              0.465    0.042   10.943    0.000    0.382
##    .sssi              0.319    0.036    8.914    0.000    0.249
##    .ssei              0.324    0.025   12.789    0.000    0.274
##    .ssno              0.254    0.073    3.500    0.000    0.112
##    .sscs              0.550    0.055    9.944    0.000    0.441
##    .ssgs              0.179    0.017   10.540    0.000    0.146
##    .sswk              0.197    0.016   11.935    0.000    0.164
##     electronic        4.187    0.955    4.385    0.000    2.316
##     speed             1.344    0.245    5.479    0.000    0.863
##    .g                 1.262    0.107   11.767    0.000    1.052
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.289    0.241    0.221
##     0.274    0.236    0.228
##     0.184    0.153    0.141
##     0.286    0.244    0.223
##     0.577    0.502    0.449
##     0.548    0.465    0.377
##     0.390    0.319    0.276
##     0.374    0.324    0.269
##     0.396    0.254    0.221
##     0.658    0.550    0.501
##     0.213    0.179    0.157
##     0.229    0.197    0.169
##     6.058    1.000    1.000
##     1.825    1.000    1.000
##     1.472    0.867    0.867
sem.age2<-sem(bf.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   708.357   155.000     0.000     0.960     0.074     0.050     0.651 
##       aic       bic 
## 31880.969 32259.059
Mc(sem.age2)
## [1] 0.8097386
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 80 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       107
##   Number of equality constraints                    34
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               708.357     549.571
##   Degrees of freedom                               155         155
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.289
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          291.067     225.822
##     0                                          417.289     323.750
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.330    0.030   11.034    0.000    0.271
##     sspc    (.p2.)    0.184    0.029    6.407    0.000    0.127
##     ssmk    (.p3.)    0.306    0.027   11.415    0.000    0.253
##     ssmc    (.p4.)    0.259    0.033    7.789    0.000    0.193
##     ssao    (.p5.)    0.363    0.039    9.223    0.000    0.286
##   electronic =~                                                
##     ssai    (.p6.)    0.309    0.034    9.094    0.000    0.243
##     sssi    (.p7.)    0.326    0.036    8.999    0.000    0.255
##     ssmc    (.p8.)    0.170    0.022    7.840    0.000    0.127
##     ssei    (.p9.)    0.169    0.020    8.393    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.613    0.060   10.152    0.000    0.495
##     sscs    (.11.)    0.368    0.041    8.970    0.000    0.287
##     ssmk    (.12.)    0.214    0.025    8.581    0.000    0.165
##   g =~                                                         
##     ssgs    (.13.)    0.810    0.027   29.569    0.000    0.757
##     ssar    (.14.)    0.711    0.028   25.144    0.000    0.656
##     sswk    (.15.)    0.812    0.028   28.597    0.000    0.756
##     sspc    (.16.)    0.723    0.025   28.829    0.000    0.673
##     ssno    (.17.)    0.516    0.029   18.028    0.000    0.460
##     sscs    (.18.)    0.500    0.027   18.656    0.000    0.447
##     ssai    (.19.)    0.501    0.024   20.815    0.000    0.454
##     sssi    (.20.)    0.519    0.025   20.578    0.000    0.469
##     ssmk    (.21.)    0.731    0.027   27.102    0.000    0.678
##     ssmc    (.22.)    0.673    0.026   25.703    0.000    0.622
##     ssei    (.23.)    0.722    0.028   26.155    0.000    0.668
##     ssao    (.24.)    0.575    0.026   21.952    0.000    0.524
##  ci.upper   Std.lv  Std.all
##                            
##     0.388    0.330    0.350
##     0.240    0.184    0.194
##     0.358    0.306    0.312
##     0.324    0.259    0.275
##     0.440    0.363    0.379
##                            
##     0.376    0.309    0.365
##     0.397    0.326    0.380
##     0.212    0.170    0.181
##     0.209    0.169    0.177
##                            
##     0.732    0.613    0.631
##     0.448    0.368    0.377
##     0.263    0.214    0.219
##                            
##     0.864    0.888    0.909
##     0.766    0.779    0.827
##     0.867    0.889    0.902
##     0.772    0.792    0.838
##     0.572    0.565    0.582
##     0.552    0.548    0.561
##     0.548    0.549    0.647
##     0.568    0.568    0.662
##     0.783    0.800    0.816
##     0.724    0.737    0.785
##     0.776    0.791    0.828
##     0.626    0.630    0.659
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.296    0.031    9.573    0.000    0.235
##     agec2            -0.038    0.024   -1.570    0.117   -0.086
##  ci.upper   Std.lv  Std.all
##                            
##     0.356    0.270    0.402
##     0.010   -0.035   -0.066
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.49.)    0.249    0.054    4.655    0.000    0.144
##    .sspc              0.301    0.055    5.485    0.000    0.193
##    .ssmk    (.51.)    0.268    0.057    4.676    0.000    0.156
##    .ssmc    (.52.)    0.097    0.052    1.893    0.058   -0.003
##    .ssao    (.53.)    0.198    0.050    3.945    0.000    0.100
##    .ssai    (.54.)   -0.076    0.041   -1.830    0.067   -0.157
##    .sssi    (.55.)   -0.037    0.044   -0.850    0.396   -0.123
##    .ssei    (.56.)    0.042    0.053    0.793    0.428   -0.061
##    .ssno    (.57.)    0.219    0.050    4.338    0.000    0.120
##    .sscs              0.279    0.047    5.872    0.000    0.186
##    .ssgs    (.59.)    0.230    0.058    3.968    0.000    0.116
##    .sswk    (.60.)    0.167    0.058    2.860    0.004    0.053
##  ci.upper   Std.lv  Std.all
##     0.355    0.249    0.265
##     0.408    0.301    0.318
##     0.380    0.268    0.273
##     0.198    0.097    0.104
##     0.297    0.198    0.207
##     0.005   -0.076   -0.090
##     0.049   -0.037   -0.043
##     0.145    0.042    0.044
##     0.318    0.219    0.226
##     0.372    0.279    0.286
##     0.344    0.230    0.236
##     0.281    0.167    0.169
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.173    0.019    9.268    0.000    0.136
##    .sspc              0.233    0.021   11.132    0.000    0.192
##    .ssmk              0.181    0.017   10.375    0.000    0.147
##    .ssmc              0.242    0.020   11.839    0.000    0.202
##    .ssao              0.387    0.033   11.785    0.000    0.322
##    .ssai              0.322    0.026   12.235    0.000    0.270
##    .sssi              0.308    0.028   10.953    0.000    0.253
##    .ssei              0.258    0.023   11.408    0.000    0.214
##    .ssno              0.248    0.060    4.128    0.000    0.130
##    .sscs              0.517    0.053    9.826    0.000    0.414
##    .ssgs              0.165    0.014   11.409    0.000    0.137
##    .sswk              0.181    0.016   11.426    0.000    0.150
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.209    0.173    0.194
##     0.274    0.233    0.261
##     0.215    0.181    0.188
##     0.282    0.242    0.275
##     0.451    0.387    0.422
##     0.373    0.322    0.448
##     0.364    0.308    0.418
##     0.303    0.258    0.283
##     0.365    0.248    0.262
##     0.621    0.517    0.543
##     0.194    0.165    0.173
##     0.213    0.181    0.187
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.833    0.833
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.330    0.030   11.034    0.000    0.271
##     sspc    (.p2.)    0.184    0.029    6.407    0.000    0.127
##     ssmk    (.p3.)    0.306    0.027   11.415    0.000    0.253
##     ssmc    (.p4.)    0.259    0.033    7.789    0.000    0.193
##     ssao    (.p5.)    0.363    0.039    9.223    0.000    0.286
##   electronic =~                                                
##     ssai    (.p6.)    0.309    0.034    9.094    0.000    0.243
##     sssi    (.p7.)    0.326    0.036    8.999    0.000    0.255
##     ssmc    (.p8.)    0.170    0.022    7.840    0.000    0.127
##     ssei    (.p9.)    0.169    0.020    8.393    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.613    0.060   10.152    0.000    0.495
##     sscs    (.11.)    0.368    0.041    8.970    0.000    0.287
##     ssmk    (.12.)    0.214    0.025    8.581    0.000    0.165
##   g =~                                                         
##     ssgs    (.13.)    0.810    0.027   29.569    0.000    0.757
##     ssar    (.14.)    0.711    0.028   25.144    0.000    0.656
##     sswk    (.15.)    0.812    0.028   28.597    0.000    0.756
##     sspc    (.16.)    0.723    0.025   28.829    0.000    0.673
##     ssno    (.17.)    0.516    0.029   18.028    0.000    0.460
##     sscs    (.18.)    0.500    0.027   18.656    0.000    0.447
##     ssai    (.19.)    0.501    0.024   20.815    0.000    0.454
##     sssi    (.20.)    0.519    0.025   20.578    0.000    0.469
##     ssmk    (.21.)    0.731    0.027   27.102    0.000    0.678
##     ssmc    (.22.)    0.673    0.026   25.703    0.000    0.622
##     ssei    (.23.)    0.722    0.028   26.155    0.000    0.668
##     ssao    (.24.)    0.575    0.026   21.952    0.000    0.524
##  ci.upper   Std.lv  Std.all
##                            
##     0.388    0.330    0.314
##     0.240    0.184    0.180
##     0.358    0.306    0.291
##     0.324    0.259    0.246
##     0.440    0.363    0.342
##                            
##     0.376    0.632    0.568
##     0.397    0.666    0.618
##     0.212    0.347    0.330
##     0.209    0.346    0.313
##                            
##     0.732    0.711    0.662
##     0.448    0.426    0.406
##     0.263    0.248    0.237
##                            
##     0.864    0.987    0.919
##     0.766    0.866    0.826
##     0.867    0.989    0.912
##     0.772    0.881    0.862
##     0.572    0.629    0.585
##     0.552    0.609    0.580
##     0.548    0.610    0.549
##     0.568    0.632    0.586
##     0.783    0.890    0.848
##     0.724    0.820    0.781
##     0.776    0.880    0.797
##     0.626    0.701    0.661
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.326    0.037    8.925    0.000    0.254
##     agec2            -0.015    0.026   -0.575    0.565   -0.065
##  ci.upper   Std.lv  Std.all
##                            
##     0.398    0.268    0.381
##     0.036   -0.012   -0.022
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.49.)    0.249    0.054    4.655    0.000    0.144
##    .sspc              0.024    0.057    0.414    0.679   -0.088
##    .ssmk    (.51.)    0.268    0.057    4.676    0.000    0.156
##    .ssmc    (.52.)    0.097    0.052    1.893    0.058   -0.003
##    .ssao    (.53.)    0.198    0.050    3.945    0.000    0.100
##    .ssai    (.54.)   -0.076    0.041   -1.830    0.067   -0.157
##    .sssi    (.55.)   -0.037    0.044   -0.850    0.396   -0.123
##    .ssei    (.56.)    0.042    0.053    0.793    0.428   -0.061
##    .ssno    (.57.)    0.219    0.050    4.338    0.000    0.120
##    .sscs              0.006    0.058    0.098    0.922   -0.108
##    .ssgs    (.59.)    0.230    0.058    3.968    0.000    0.116
##    .sswk    (.60.)    0.167    0.058    2.860    0.004    0.053
##     math             -0.301    0.094   -3.198    0.001   -0.485
##     elctrnc           1.602    0.220    7.284    0.000    1.171
##     speed            -0.352    0.100   -3.512    0.000   -0.549
##    .g                 0.054    0.102    0.532    0.595   -0.145
##  ci.upper   Std.lv  Std.all
##     0.355    0.249    0.238
##     0.135    0.024    0.023
##     0.380    0.268    0.255
##     0.198    0.097    0.093
##     0.297    0.198    0.187
##     0.005   -0.076   -0.068
##     0.049   -0.037   -0.035
##     0.145    0.042    0.038
##     0.318    0.219    0.204
##     0.120    0.006    0.005
##     0.344    0.230    0.214
##     0.281    0.167    0.154
##    -0.116   -0.301   -0.301
##     2.034    0.784    0.784
##    -0.156   -0.304   -0.304
##     0.253    0.044    0.044
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.241    0.024    9.910    0.000    0.193
##    .sspc              0.236    0.020   12.009    0.000    0.197
##    .ssmk              0.153    0.016    9.813    0.000    0.123
##    .ssmc              0.244    0.022   11.264    0.000    0.201
##    .ssao              0.502    0.038   13.077    0.000    0.427
##    .ssai              0.465    0.042   10.946    0.000    0.382
##    .sssi              0.319    0.036    8.914    0.000    0.249
##    .ssei              0.324    0.025   12.788    0.000    0.275
##    .ssno              0.254    0.073    3.501    0.000    0.112
##    .sscs              0.550    0.055    9.944    0.000    0.441
##    .ssgs              0.180    0.017   10.544    0.000    0.146
##    .sswk              0.197    0.016   11.941    0.000    0.164
##     electronic        4.177    0.952    4.389    0.000    2.312
##     speed             1.344    0.245    5.474    0.000    0.863
##    .g                 1.267    0.108   11.747    0.000    1.056
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.289    0.241    0.219
##     0.274    0.236    0.225
##     0.184    0.153    0.139
##     0.286    0.244    0.221
##     0.577    0.502    0.446
##     0.548    0.465    0.376
##     0.390    0.319    0.275
##     0.374    0.324    0.266
##     0.396    0.254    0.220
##     0.658    0.550    0.499
##     0.213    0.180    0.156
##     0.229    0.197    0.167
##     6.042    1.000    1.000
##     1.825    1.000    1.000
##     1.479    0.854    0.854
sem.age2q<-sem(bf.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "sscs~1"))
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##   709.363   157.000     0.000     0.960     0.073     0.052     0.649 
##       aic       bic 
## 31877.975 32245.706
Mc(sem.age2q)
## [1] 0.8100456
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 80 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       107
##   Number of equality constraints                    36
## 
##   Number of observations per group:                   
##     1                                              656
##     0                                              656
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               709.363     550.968
##   Degrees of freedom                               157         157
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.287
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          291.434     226.359
##     0                                          417.929     324.609
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.330    0.030   11.053    0.000    0.271
##     sspc    (.p2.)    0.184    0.029    6.410    0.000    0.127
##     ssmk    (.p3.)    0.306    0.027   11.431    0.000    0.254
##     ssmc    (.p4.)    0.258    0.033    7.789    0.000    0.193
##     ssao    (.p5.)    0.363    0.039    9.222    0.000    0.286
##   electronic =~                                                
##     ssai    (.p6.)    0.309    0.034    9.093    0.000    0.243
##     sssi    (.p7.)    0.326    0.036    8.994    0.000    0.255
##     ssmc    (.p8.)    0.170    0.022    7.839    0.000    0.127
##     ssei    (.p9.)    0.169    0.020    8.394    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.613    0.060   10.153    0.000    0.495
##     sscs    (.11.)    0.367    0.041    8.972    0.000    0.287
##     ssmk    (.12.)    0.214    0.025    8.584    0.000    0.165
##   g =~                                                         
##     ssgs    (.13.)    0.811    0.027   29.554    0.000    0.757
##     ssar    (.14.)    0.711    0.028   25.132    0.000    0.656
##     sswk    (.15.)    0.812    0.028   28.587    0.000    0.757
##     sspc    (.16.)    0.723    0.025   28.824    0.000    0.674
##     ssno    (.17.)    0.516    0.029   18.021    0.000    0.460
##     sscs    (.18.)    0.500    0.027   18.653    0.000    0.447
##     ssai    (.19.)    0.501    0.024   20.804    0.000    0.454
##     sssi    (.20.)    0.519    0.025   20.587    0.000    0.469
##     ssmk    (.21.)    0.731    0.027   27.095    0.000    0.678
##     ssmc    (.22.)    0.673    0.026   25.737    0.000    0.622
##     ssei    (.23.)    0.722    0.028   26.131    0.000    0.668
##     ssao    (.24.)    0.575    0.026   21.968    0.000    0.524
##  ci.upper   Std.lv  Std.all
##                            
##     0.388    0.330    0.349
##     0.240    0.184    0.193
##     0.358    0.306    0.311
##     0.323    0.258    0.274
##     0.440    0.363    0.378
##                            
##     0.376    0.309    0.364
##     0.397    0.326    0.378
##     0.212    0.170    0.180
##     0.209    0.169    0.176
##                            
##     0.731    0.613    0.630
##     0.448    0.367    0.376
##     0.263    0.214    0.218
##                            
##     0.864    0.893    0.910
##     0.767    0.784    0.828
##     0.868    0.895    0.903
##     0.772    0.797    0.839
##     0.572    0.569    0.584
##     0.552    0.551    0.563
##     0.548    0.552    0.650
##     0.568    0.572    0.664
##     0.784    0.805    0.818
##     0.725    0.742    0.787
##     0.776    0.796    0.829
##     0.627    0.634    0.661
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.308    0.025   12.548    0.000    0.260
##     agec2      (b)   -0.028    0.018   -1.598    0.110   -0.063
##  ci.upper   Std.lv  Std.all
##                            
##     0.356    0.280    0.417
##     0.006   -0.026   -0.049
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.49.)    0.233    0.047    4.955    0.000    0.141
##    .sspc              0.284    0.048    5.899    0.000    0.190
##    .ssmk    (.51.)    0.251    0.050    5.050    0.000    0.154
##    .ssmc    (.52.)    0.082    0.045    1.811    0.070   -0.007
##    .ssao    (.53.)    0.185    0.045    4.102    0.000    0.097
##    .ssai    (.54.)   -0.087    0.037   -2.380    0.017   -0.159
##    .sssi    (.55.)   -0.049    0.040   -1.239    0.215   -0.127
##    .ssei    (.56.)    0.025    0.045    0.559    0.576   -0.064
##    .ssno    (.57.)    0.207    0.046    4.478    0.000    0.117
##    .sscs              0.267    0.044    6.038    0.000    0.181
##    .ssgs    (.59.)    0.212    0.050    4.261    0.000    0.114
##    .sswk    (.60.)    0.149    0.050    2.975    0.003    0.051
##  ci.upper   Std.lv  Std.all
##     0.326    0.233    0.247
##     0.378    0.284    0.299
##     0.349    0.251    0.255
##     0.171    0.082    0.087
##     0.273    0.185    0.193
##    -0.015   -0.087   -0.103
##     0.029   -0.049   -0.057
##     0.114    0.025    0.026
##     0.298    0.207    0.213
##     0.354    0.267    0.273
##     0.309    0.212    0.216
##     0.246    0.149    0.150
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.172    0.019    9.263    0.000    0.136
##    .sspc              0.233    0.021   11.132    0.000    0.192
##    .ssmk              0.181    0.017   10.379    0.000    0.147
##    .ssmc              0.242    0.020   11.849    0.000    0.202
##    .ssao              0.387    0.033   11.791    0.000    0.322
##    .ssai              0.322    0.026   12.235    0.000    0.270
##    .sssi              0.309    0.028   10.954    0.000    0.253
##    .ssei              0.258    0.023   11.408    0.000    0.214
##    .ssno              0.248    0.060    4.134    0.000    0.130
##    .sscs              0.517    0.053    9.826    0.000    0.414
##    .ssgs              0.165    0.014   11.425    0.000    0.137
##    .sswk              0.181    0.016   11.414    0.000    0.150
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.209    0.172    0.193
##     0.274    0.233    0.259
##     0.215    0.181    0.187
##     0.282    0.242    0.273
##     0.451    0.387    0.420
##     0.373    0.322    0.445
##     0.364    0.309    0.416
##     0.303    0.258    0.281
##     0.365    0.248    0.262
##     0.620    0.517    0.541
##     0.194    0.165    0.172
##     0.212    0.181    0.184
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.824    0.824
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.330    0.030   11.053    0.000    0.271
##     sspc    (.p2.)    0.184    0.029    6.410    0.000    0.127
##     ssmk    (.p3.)    0.306    0.027   11.431    0.000    0.254
##     ssmc    (.p4.)    0.258    0.033    7.789    0.000    0.193
##     ssao    (.p5.)    0.363    0.039    9.222    0.000    0.286
##   electronic =~                                                
##     ssai    (.p6.)    0.309    0.034    9.093    0.000    0.243
##     sssi    (.p7.)    0.326    0.036    8.994    0.000    0.255
##     ssmc    (.p8.)    0.170    0.022    7.839    0.000    0.127
##     ssei    (.p9.)    0.169    0.020    8.394    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.613    0.060   10.153    0.000    0.495
##     sscs    (.11.)    0.367    0.041    8.972    0.000    0.287
##     ssmk    (.12.)    0.214    0.025    8.584    0.000    0.165
##   g =~                                                         
##     ssgs    (.13.)    0.811    0.027   29.554    0.000    0.757
##     ssar    (.14.)    0.711    0.028   25.132    0.000    0.656
##     sswk    (.15.)    0.812    0.028   28.587    0.000    0.757
##     sspc    (.16.)    0.723    0.025   28.824    0.000    0.674
##     ssno    (.17.)    0.516    0.029   18.021    0.000    0.460
##     sscs    (.18.)    0.500    0.027   18.653    0.000    0.447
##     ssai    (.19.)    0.501    0.024   20.804    0.000    0.454
##     sssi    (.20.)    0.519    0.025   20.587    0.000    0.469
##     ssmk    (.21.)    0.731    0.027   27.095    0.000    0.678
##     ssmc    (.22.)    0.673    0.026   25.737    0.000    0.622
##     ssei    (.23.)    0.722    0.028   26.131    0.000    0.668
##     ssao    (.24.)    0.575    0.026   21.968    0.000    0.524
##  ci.upper   Std.lv  Std.all
##                            
##     0.388    0.330    0.316
##     0.240    0.184    0.180
##     0.358    0.306    0.293
##     0.323    0.258    0.247
##     0.440    0.363    0.343
##                            
##     0.376    0.632    0.570
##     0.397    0.667    0.619
##     0.212    0.347    0.332
##     0.209    0.346    0.315
##                            
##     0.731    0.711    0.663
##     0.448    0.426    0.407
##     0.263    0.249    0.238
##                            
##     0.864    0.981    0.918
##     0.767    0.861    0.824
##     0.868    0.983    0.911
##     0.772    0.875    0.860
##     0.572    0.625    0.583
##     0.552    0.605    0.578
##     0.548    0.606    0.546
##     0.568    0.628    0.584
##     0.784    0.885    0.847
##     0.725    0.815    0.779
##     0.776    0.874    0.795
##     0.627    0.696    0.658
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.308    0.025   12.548    0.000    0.260
##     agec2      (b)   -0.028    0.018   -1.598    0.110   -0.063
##  ci.upper   Std.lv  Std.all
##                            
##     0.356    0.255    0.363
##     0.006   -0.023   -0.043
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.49.)    0.233    0.047    4.955    0.000    0.141
##    .sspc              0.007    0.050    0.144    0.886   -0.091
##    .ssmk    (.51.)    0.251    0.050    5.050    0.000    0.154
##    .ssmc    (.52.)    0.082    0.045    1.811    0.070   -0.007
##    .ssao    (.53.)    0.185    0.045    4.102    0.000    0.097
##    .ssai    (.54.)   -0.087    0.037   -2.380    0.017   -0.159
##    .sssi    (.55.)   -0.049    0.040   -1.239    0.215   -0.127
##    .ssei    (.56.)    0.025    0.045    0.559    0.576   -0.064
##    .ssno    (.57.)    0.207    0.046    4.478    0.000    0.117
##    .sscs             -0.006    0.054   -0.103    0.918   -0.112
##    .ssgs    (.59.)    0.212    0.050    4.261    0.000    0.114
##    .sswk    (.60.)    0.149    0.050    2.975    0.003    0.051
##     math             -0.301    0.094   -3.196    0.001   -0.485
##     elctrnc           1.603    0.220    7.282    0.000    1.171
##     speed            -0.353    0.100   -3.513    0.000   -0.549
##    .g                 0.104    0.069    1.513    0.130   -0.031
##  ci.upper   Std.lv  Std.all
##     0.326    0.233    0.223
##     0.105    0.007    0.007
##     0.349    0.251    0.241
##     0.171    0.082    0.079
##     0.273    0.185    0.175
##    -0.015   -0.087   -0.079
##     0.029   -0.049   -0.046
##     0.114    0.025    0.023
##     0.298    0.207    0.193
##     0.101   -0.006   -0.005
##     0.309    0.212    0.198
##     0.246    0.149    0.138
##    -0.116   -0.301   -0.301
##     2.034    0.784    0.784
##    -0.156   -0.304   -0.304
##     0.239    0.086    0.086
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.241    0.024    9.907    0.000    0.193
##    .sspc              0.236    0.020   12.008    0.000    0.197
##    .ssmk              0.153    0.016    9.813    0.000    0.123
##    .ssmc              0.244    0.022   11.273    0.000    0.201
##    .ssao              0.502    0.038   13.082    0.000    0.427
##    .ssai              0.465    0.042   10.940    0.000    0.382
##    .sssi              0.319    0.036    8.916    0.000    0.249
##    .ssei              0.324    0.025   12.793    0.000    0.275
##    .ssno              0.254    0.073    3.503    0.000    0.112
##    .sscs              0.550    0.055    9.941    0.000    0.441
##    .ssgs              0.179    0.017   10.545    0.000    0.146
##    .sswk              0.197    0.016   11.946    0.000    0.165
##     electronic        4.182    0.953    4.387    0.000    2.313
##     speed             1.345    0.246    5.477    0.000    0.864
##    .g                 1.268    0.108   11.740    0.000    1.056
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.289    0.241    0.221
##     0.274    0.236    0.228
##     0.184    0.153    0.141
##     0.286    0.244    0.223
##     0.577    0.502    0.449
##     0.548    0.465    0.377
##     0.390    0.319    0.276
##     0.374    0.324    0.268
##     0.396    0.254    0.221
##     0.658    0.550    0.501
##     0.213    0.179    0.157
##     0.229    0.197    0.169
##     6.050    1.000    1.000
##     1.827    1.000    1.000
##     1.479    0.865    0.865
# MGCFA USING FULL DATA, NOT JUST SIBLING

# WHITE RESPONDENTS

dw<- filter(dk, bhw==3)
nrow(dw) # N=3659
## [1] 3659
dgroup<- dplyr::select(dw, id, starts_with("ss"), asvab, efa, educ2011, T6665000, agec, age, agebin, agec2, sex, sexage, bhw, sweight)

original_age_min <- 12
original_age_max <- 17
mean_centered_min <- min(dgroup$agec)
mean_centered_max <- max(dgroup$agec)
original_age_mean <- (original_age_min + original_age_max) / 2
mean_centered_age_mean <- (mean_centered_min + mean_centered_max) / 2
age_difference <- original_age_mean - mean_centered_age_mean

# Lynn's hypothesis validated

fit<-lm(efa ~ sex + rcs(agec, 3) + sex*rcs(agec, 3), data=dgroup)
summary(fit)
## 
## Call:
## lm(formula = efa ~ sex + rcs(agec, 3) + sex * rcs(agec, 3), data = dgroup)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -46.544  -7.528   1.081   8.934  42.180 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           108.9037     0.8099 134.459   <2e-16 ***
## sex                    -0.7228     1.1631  -0.621   0.5344    
## rcs(agec, 3)agec        5.1097     0.5615   9.100   <2e-16 ***
## rcs(agec, 3)agec'      -1.7739     0.6963  -2.548   0.0109 *  
## sex:rcs(agec, 3)agec   -0.1566     0.8107  -0.193   0.8468    
## sex:rcs(agec, 3)agec'  -0.3932     0.9993  -0.393   0.6940    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.9 on 3653 degrees of freedom
## Multiple R-squared:  0.1368, Adjusted R-squared:  0.1356 
## F-statistic: 115.7 on 5 and 3653 DF,  p-value: < 2.2e-16
dgroup$pred1<-fitted(fit) 
xyplot(dgroup$pred1 ~ dgroup$agec, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted g", xlab="age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2))

xyplot(dgroup$pred1 ~ dgroup$agec, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted g", xlab="Age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2), scales=list(x=list(at=seq(mean_centered_min, mean_centered_max), labels=seq(original_age_min, original_age_max))))

# Lynn's hypothesis not validated

fit<-lm(asvab ~ sex + rcs(agec, 3) + sex*rcs(agec, 3), data=dgroup)
summary(fit)
## 
## Call:
## lm(formula = asvab ~ sex + rcs(agec, 3) + sex * rcs(agec, 3), 
##     data = dgroup)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -29.628 -11.208   1.253  12.232  22.893 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           105.20064    0.89087 118.088   <2e-16 ***
## sex                     1.65608    1.27934   1.294    0.196    
## rcs(agec, 3)agec       -0.01539    0.61764  -0.025    0.980    
## rcs(agec, 3)agec'       0.09021    0.76590   0.118    0.906    
## sex:rcs(agec, 3)agec    0.27152    0.89169   0.305    0.761    
## sex:rcs(agec, 3)agec'  -0.62267    1.09913  -0.567    0.571    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.19 on 3653 degrees of freedom
## Multiple R-squared:  0.00147,    Adjusted R-squared:  0.0001034 
## F-statistic: 1.076 on 5 and 3653 DF,  p-value: 0.3717
dgroup$pred2<-fitted(fit) 
xyplot(dgroup$pred2 ~ dgroup$agec, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted ASVAB", xlab="Age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2), scales=list(x=list(at=seq(mean_centered_min, mean_centered_max), labels=seq(original_age_min, original_age_max))))

describeBy(dgroup$pred1, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n   mean   sd median trimmed  mad   min   max range  skew
## X1    1 1889 106.52 5.41 107.27  106.76 6.58 96.13 114.6 18.47 -0.32
##    kurtosis   se
## X1    -1.11 0.12
## ------------------------------------------------------ 
## group: 1
##    vars    n   mean   sd median trimmed  mad  min    max range  skew
## X1    1 1770 105.72 4.79 106.96   106.1 5.19 95.8 112.02 16.23 -0.56
##    kurtosis   se
## X1    -0.93 0.11
describeBy(dgroup$efa, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n   mean   sd median trimmed   mad   min    max range  skew
## X1    1 1889 106.52 14.7  107.7  107.09 14.58 63.82 146.25 82.43 -0.35
##    kurtosis   se
## X1    -0.14 0.34
## ------------------------------------------------------ 
## group: 1
##    vars    n   mean    sd median trimmed   mad   min    max range  skew
## X1    1 1770 105.72 12.94 107.08   106.3 12.44 65.48 141.79 76.31 -0.41
##    kurtosis   se
## X1     0.05 0.31
describeBy(dgroup$asvab, dgroup$sex) 
## 
##  Descriptive statistics by group 
## INDICES: 0
##    vars    n   mean    sd median trimmed   mad  min    max range  skew
## V1    1 1889 105.29 14.65 106.61  105.77 18.28 76.7 128.12 51.42 -0.22
##    kurtosis   se
## V1    -1.13 0.34
## ------------------------------------------------------ 
## INDICES: 1
##    vars    n   mean    sd median trimmed   mad  min    max range  skew
## V1    1 1770 106.28 13.68 107.62  106.85 16.21 76.7 128.12 51.42 -0.28
##    kurtosis   se
## V1    -0.96 0.33
describeBy(dgroup$educ2011, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 1527 13.95 2.85     14   13.95 2.97   6  20    14 0.06    -0.59
##      se
## X1 0.07
## ------------------------------------------------------ 
## group: 1
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 1439 14.64 4.17     15   14.62 2.97   6  95    89 9.85   189.68
##      se
## X1 0.11
cor(dgroup$efa, dgroup$asvab, use="pairwise.complete.obs", method="pearson")
##           [,1]
## [1,] 0.8840502
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(agebin, sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 10 Ă— 5
## # Groups:   agebin [5]
##    agebin   sex  MEAN MEAN_se    SD
##     <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1     12     0  98.5  0.0763 1.49 
##  2     12     1  98.0  0.0818 1.50 
##  3     13     0 103.   0.0696 1.35 
##  4     13     1 103.   0.0729 1.31 
##  5     14     0 108.   0.0561 1.07 
##  6     14     1 107.   0.0486 0.907
##  7     15     0 111.   0.0453 0.841
##  8     15     1 109.   0.0299 0.565
##  9     16     0 113.   0.0405 0.695
## 10     16     1 111.   0.0283 0.497
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(agebin, sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 10 Ă— 5
## # Groups:   agebin [5]
##    agebin   sex  MEAN MEAN_se    SD
##     <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1     12     0  98.7   0.680  13.3
##  2     12     1  98.1   0.649  11.8
##  3     13     0 104.    0.685  13.4
##  4     13     1 103.    0.680  12.2
##  5     14     0 106.    0.737  14.0
##  6     14     1 107.    0.629  11.7
##  7     15     0 113.    0.700  13.0
##  8     15     1 110.    0.657  12.5
##  9     16     0 113.    0.838  14.4
## 10     16     1 112.    0.670  11.8
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(agebin, sex) %>% summarise(MEAN = survey_mean(asvab), SD = survey_sd(asvab))
## # A tibble: 10 Ă— 5
## # Groups:   agebin [5]
##    agebin   sex  MEAN MEAN_se    SD
##     <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1     12     0  105.   0.744  14.5
##  2     12     1  106.   0.744  13.6
##  3     13     0  106.   0.753  14.7
##  4     13     1  107.   0.769  13.8
##  5     14     0  104.   0.766  14.6
##  6     14     1  107.   0.713  13.3
##  7     15     0  107.   0.768  14.3
##  8     15     1  106.   0.722  13.7
##  9     16     0  106.   0.857  14.7
## 10     16     1  106.   0.779  13.7
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  107.   0.133  5.48
## 2     1  106.   0.122  4.86
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  107.   0.352  14.7
## 2     1  106.   0.319  12.9
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(asvab, na.rm = TRUE), SD = survey_sd(asvab, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  106.   0.348  14.6
## 2     1  107.   0.334  13.6
dgroup %>% as_survey_design(ids = id, weights = T6665000) %>% group_by(sex) %>% summarise(MEAN = survey_mean(educ2011, na.rm = TRUE), SD = survey_sd(educ2011, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  13.9  0.0737  2.86
## 2     1  14.7  0.116   4.27
# CORRELATED FACTOR MODEL

cf.model<-' # model produces negative loadings for ssar and ssmk if they load on verbal
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
'

cf.lv<-' # model produces negative loadings for ssar and ssmk if they load on verbal
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
verbal~~1*verbal 
math~~1*math
speed~~1*speed
'

cf.reduced<-' # model produces negative loadings for ssar and ssmk if they load on verbal
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
verbal~~1*verbal 
math~~1*math
speed~~1*speed
verbal~0*1
math~0*1
'

baseline<-cfa(cf.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1095.379    45.000     0.000     0.967     0.080     0.030 88880.415 
##       bic 
## 89159.638
Mc(baseline)
## [1] 0.8662577
configural<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##   917.557    90.000     0.000     0.974     0.071     0.026 86682.687 
##       bic 
## 87241.132
Mc(configural)
## [1] 0.893047
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        90
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               917.557     809.914
##   Degrees of freedom                                90          90
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.133
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          375.668     331.597
##     0                                          541.889     478.317
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.734    0.017   43.597    0.000    0.701
##     sswk              0.778    0.018   43.663    0.000    0.744
##     sspc              0.751    0.018   42.638    0.000    0.716
##     ssei              0.365    0.041    8.906    0.000    0.284
##   math =~                                                      
##     ssar              0.747    0.018   41.341    0.000    0.712
##     ssmk              0.628    0.029   21.591    0.000    0.571
##     ssmc              0.402    0.031   13.182    0.000    0.343
##     ssao              0.640    0.018   35.022    0.000    0.605
##   electronic =~                                                
##     ssai              0.471    0.021   22.868    0.000    0.431
##     sssi              0.508    0.021   24.217    0.000    0.467
##     ssmc              0.292    0.030    9.868    0.000    0.234
##     ssei              0.244    0.043    5.703    0.000    0.160
##   speed =~                                                     
##     ssno              0.786    0.023   33.661    0.000    0.741
##     sscs              0.670    0.022   29.921    0.000    0.626
##     ssmk              0.231    0.029    7.943    0.000    0.174
##  ci.upper   Std.lv  Std.all
##                            
##     0.767    0.734    0.871
##     0.813    0.778    0.883
##     0.785    0.751    0.853
##     0.445    0.365    0.476
##                            
##     0.782    0.747    0.895
##     0.685    0.628    0.689
##     0.462    0.402    0.496
##     0.676    0.640    0.707
##                            
##     0.512    0.471    0.638
##     0.549    0.508    0.676
##     0.350    0.292    0.360
##     0.328    0.244    0.319
##                            
##     0.832    0.786    0.831
##     0.714    0.670    0.739
##     0.288    0.231    0.253
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.886    0.010   92.499    0.000    0.867
##     electronic        0.835    0.020   41.476    0.000    0.796
##     speed             0.676    0.024   27.607    0.000    0.628
##   math ~~                                                      
##     electronic        0.722    0.025   28.960    0.000    0.673
##     speed             0.717    0.025   28.371    0.000    0.667
##   electronic ~~                                                
##     speed             0.452    0.038   11.749    0.000    0.376
##  ci.upper   Std.lv  Std.all
##                            
##     0.905    0.886    0.886
##     0.874    0.835    0.835
##     0.724    0.676    0.676
##                            
##     0.770    0.722    0.722
##     0.766    0.717    0.717
##                            
##     0.527    0.452    0.452
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.331    0.021   15.977    0.000    0.291
##    .sswk              0.379    0.022   17.461    0.000    0.337
##    .sspc              0.453    0.022   20.981    0.000    0.411
##    .ssei              0.139    0.019    7.329    0.000    0.102
##    .ssar              0.327    0.021   15.677    0.000    0.286
##    .ssmk              0.382    0.022   16.962    0.000    0.337
##    .ssmc              0.235    0.020   11.729    0.000    0.196
##    .ssao              0.356    0.022   15.988    0.000    0.312
##    .ssai              0.055    0.018    3.026    0.002    0.019
##    .sssi              0.059    0.019    3.200    0.001    0.023
##    .ssno              0.244    0.023   10.435    0.000    0.198
##    .sscs              0.358    0.023   15.788    0.000    0.313
##  ci.upper   Std.lv  Std.all
##     0.372    0.331    0.393
##     0.422    0.379    0.430
##     0.495    0.453    0.515
##     0.176    0.139    0.182
##     0.368    0.327    0.392
##     0.426    0.382    0.419
##     0.274    0.235    0.289
##     0.399    0.356    0.392
##     0.091    0.055    0.075
##     0.096    0.059    0.079
##     0.290    0.244    0.258
##     0.402    0.358    0.395
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.171    0.009   19.938    0.000    0.155
##    .sswk              0.172    0.008   20.364    0.000    0.156
##    .sspc              0.211    0.012   17.352    0.000    0.187
##    .ssei              0.245    0.011   22.061    0.000    0.224
##    .ssar              0.139    0.008   16.665    0.000    0.122
##    .ssmk              0.174    0.008   20.606    0.000    0.158
##    .ssmc              0.241    0.012   19.891    0.000    0.217
##    .ssao              0.411    0.017   23.542    0.000    0.377
##    .ssai              0.323    0.016   19.851    0.000    0.291
##    .sssi              0.306    0.016   19.606    0.000    0.276
##    .ssno              0.277    0.020   14.088    0.000    0.238
##    .sscs              0.372    0.020   18.405    0.000    0.333
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.188    0.171    0.241
##     0.189    0.172    0.221
##     0.235    0.211    0.272
##     0.267    0.245    0.418
##     0.155    0.139    0.199
##     0.191    0.174    0.210
##     0.265    0.241    0.366
##     0.446    0.411    0.501
##     0.355    0.323    0.592
##     0.337    0.306    0.543
##     0.316    0.277    0.309
##     0.412    0.372    0.453
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.875    0.019   47.095    0.000    0.839
##     sswk              0.822    0.019   44.262    0.000    0.785
##     sspc              0.842    0.016   53.394    0.000    0.811
##     ssei              0.557    0.027   20.398    0.000    0.503
##   math =~                                                      
##     ssar              0.850    0.019   43.624    0.000    0.812
##     ssmk              0.668    0.030   22.206    0.000    0.609
##     ssmc              0.494    0.022   22.971    0.000    0.452
##     ssao              0.720    0.018   40.162    0.000    0.685
##   electronic =~                                                
##     ssai              0.846    0.026   32.200    0.000    0.795
##     sssi              0.822    0.022   37.196    0.000    0.778
##     ssmc              0.411    0.022   18.927    0.000    0.368
##     ssei              0.470    0.029   16.441    0.000    0.414
##   speed =~                                                     
##     ssno              0.894    0.023   38.482    0.000    0.849
##     sscs              0.771    0.022   34.864    0.000    0.727
##     ssmk              0.234    0.030    7.887    0.000    0.176
##  ci.upper   Std.lv  Std.all
##                            
##     0.912    0.875    0.899
##     0.858    0.822    0.877
##     0.873    0.842    0.856
##     0.610    0.557    0.507
##                            
##     0.889    0.850    0.893
##     0.727    0.668    0.697
##     0.536    0.494    0.518
##     0.755    0.720    0.709
##                            
##     0.898    0.846    0.768
##     0.865    0.822    0.830
##     0.453    0.411    0.431
##     0.526    0.470    0.428
##                            
##     0.940    0.894    0.840
##     0.814    0.771    0.770
##     0.293    0.234    0.244
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.910    0.008  116.104    0.000    0.894
##     electronic        0.670    0.019   36.043    0.000    0.633
##     speed             0.679    0.021   31.679    0.000    0.637
##   math ~~                                                      
##     electronic        0.562    0.023   24.919    0.000    0.518
##     speed             0.781    0.019   40.167    0.000    0.743
##   electronic ~~                                                
##     speed             0.286    0.030    9.680    0.000    0.228
##  ci.upper   Std.lv  Std.all
##                            
##     0.925    0.910    0.910
##     0.706    0.670    0.670
##     0.721    0.679    0.679
##                            
##     0.607    0.562    0.562
##     0.819    0.781    0.781
##                            
##     0.343    0.286    0.286
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.523    0.023   22.328    0.000    0.477
##    .sswk              0.392    0.022   17.468    0.000    0.348
##    .sspc              0.211    0.024    8.959    0.000    0.165
##    .ssei              0.582    0.026   22.070    0.000    0.531
##    .ssar              0.395    0.023   17.329    0.000    0.350
##    .ssmk              0.242    0.023   10.519    0.000    0.197
##    .ssmc              0.563    0.023   24.735    0.000    0.518
##    .ssao              0.214    0.024    8.814    0.000    0.166
##    .ssai              0.614    0.027   23.150    0.000    0.562
##    .sssi              0.769    0.024   32.369    0.000    0.723
##    .ssno              0.096    0.026    3.771    0.000    0.046
##    .sscs              0.007    0.024    0.306    0.759   -0.040
##  ci.upper   Std.lv  Std.all
##     0.569    0.523    0.537
##     0.436    0.392    0.419
##     0.257    0.211    0.215
##     0.634    0.582    0.531
##     0.440    0.395    0.415
##     0.287    0.242    0.252
##     0.608    0.563    0.591
##     0.262    0.214    0.210
##     0.666    0.614    0.557
##     0.816    0.769    0.777
##     0.146    0.096    0.090
##     0.054    0.007    0.007
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.182    0.009   20.793    0.000    0.165
##    .sswk              0.202    0.010   20.128    0.000    0.182
##    .sspc              0.260    0.013   20.719    0.000    0.235
##    .ssei              0.322    0.016   20.410    0.000    0.292
##    .ssar              0.184    0.010   17.592    0.000    0.164
##    .ssmk              0.173    0.009   19.961    0.000    0.156
##    .ssmc              0.267    0.013   21.107    0.000    0.242
##    .ssao              0.515    0.019   26.863    0.000    0.477
##    .ssai              0.498    0.026   19.431    0.000    0.448
##    .sssi              0.305    0.019   16.278    0.000    0.268
##    .ssno              0.335    0.023   14.796    0.000    0.290
##    .sscs              0.409    0.024   17.366    0.000    0.362
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.199    0.182    0.192
##     0.221    0.202    0.230
##     0.284    0.260    0.268
##     0.353    0.322    0.268
##     0.205    0.184    0.203
##     0.190    0.173    0.188
##     0.292    0.267    0.294
##     0.552    0.515    0.498
##     0.548    0.498    0.410
##     0.342    0.305    0.311
##     0.379    0.335    0.295
##     0.455    0.409    0.408
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
modificationIndices(configural, sort=T, maximum.number=30)
##            lhs op  rhs block group level      mi    epc sepc.lv
## 216       math =~ sspc     2     2     1 157.277  0.613   0.613
## 117       math =~ sspc     1     1     1  95.777  0.404   0.404
## 290       ssmc ~~ ssao     2     2     1  86.736  0.092   0.092
## 191       ssmc ~~ ssao     1     1     1  75.835  0.075   0.075
## 232      speed =~ sspc     2     2     1  75.715  0.199   0.199
## 224 electronic =~ sspc     2     2     1  65.207 -0.183  -0.183
## 298       ssao ~~ sscs     2     2     1  59.592  0.098   0.098
## 240       ssgs ~~ sspc     2     2     1  50.916 -0.056  -0.056
## 230      speed =~ ssgs     2     2     1  50.229 -0.152  -0.152
## 297       ssao ~~ ssno     2     2     1  49.848 -0.090  -0.090
## 141       ssgs ~~ sspc     1     1     1  48.234 -0.046  -0.046
## 215       math =~ sswk     2     2     1  46.511 -0.312  -0.312
## 282       ssar ~~ ssno     2     2     1  45.795  0.065   0.065
## 116       math =~ sswk     1     1     1  45.612 -0.276  -0.276
## 222 electronic =~ ssgs     2     2     1  43.597  0.141   0.141
## 239       ssgs ~~ sswk     2     2     1  42.181  0.048   0.048
## 140       ssgs ~~ sswk     1     1     1  35.819  0.040   0.040
## 261       sspc ~~ ssar     2     2     1  35.324  0.040   0.040
## 133      speed =~ sspc     1     1     1  32.560  0.125   0.125
## 123 electronic =~ ssgs     1     1     1  30.769  0.201   0.201
## 131      speed =~ ssgs     1     1     1  30.655 -0.113  -0.113
## 255       sswk ~~ ssao     2     2     1  29.592 -0.048  -0.048
## 293       ssmc ~~ ssno     2     2     1  26.549 -0.049  -0.049
## 135      speed =~ ssar     1     1     1  26.168  0.171   0.171
## 167       sspc ~~ sssi     1     1     1  26.163 -0.038  -0.038
## 122       math =~ sscs     1     1     1  25.588  0.313   0.313
## 121       math =~ ssno     1     1     1  25.588 -0.368  -0.368
## 214       math =~ ssgs     2     2     1  24.084 -0.232  -0.232
## 234      speed =~ ssar     2     2     1  24.004  0.198   0.198
## 212     verbal =~ ssno     2     2     1  23.677 -0.207  -0.207
##     sepc.all sepc.nox
## 216    0.623    0.623
## 117    0.459    0.459
## 290    0.248    0.248
## 191    0.237    0.237
## 232    0.203    0.203
## 224   -0.186   -0.186
## 298    0.213    0.213
## 240   -0.255   -0.255
## 230   -0.156   -0.156
## 297   -0.217   -0.217
## 141   -0.241   -0.241
## 215   -0.333   -0.333
## 282    0.262    0.262
## 116   -0.313   -0.313
## 222    0.145    0.145
## 239    0.252    0.252
## 140    0.233    0.233
## 261    0.183    0.183
## 133    0.142    0.142
## 123    0.239    0.239
## 131   -0.135   -0.135
## 255   -0.148   -0.148
## 293   -0.165   -0.165
## 135    0.205    0.205
## 167   -0.150   -0.150
## 122    0.346    0.346
## 121   -0.389   -0.389
## 214   -0.238   -0.238
## 234    0.208    0.208
## 212   -0.194   -0.194
metric<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1026.433   101.000     0.000     0.971     0.071     0.038 86769.563 
##       bic 
## 87259.754
Mc(metric)
## [1] 0.8811791
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 77 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        94
##   Number of equality constraints                    15
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1026.433     899.320
##   Degrees of freedom                               101         101
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.141
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          434.639     380.813
##     0                                          591.794     518.507
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.750    0.015   49.191    0.000    0.720
##     sswk    (.p2.)    0.744    0.016   45.379    0.000    0.711
##     sspc    (.p3.)    0.742    0.016   46.919    0.000    0.711
##     ssei    (.p4.)    0.394    0.019   20.261    0.000    0.356
##   math =~                                                      
##     ssar    (.p5.)    0.760    0.016   46.145    0.000    0.727
##     ssmk    (.p6.)    0.617    0.022   27.750    0.000    0.573
##     ssmc    (.p7.)    0.437    0.017   25.894    0.000    0.404
##     ssao    (.p8.)    0.648    0.016   41.647    0.000    0.617
##   electronic =~                                                
##     ssai    (.p9.)    0.474    0.017   28.632    0.000    0.441
##     sssi    (.10.)    0.469    0.017   27.480    0.000    0.436
##     ssmc    (.11.)    0.242    0.013   18.144    0.000    0.215
##     ssei    (.12.)    0.283    0.016   17.422    0.000    0.252
##   speed =~                                                     
##     ssno    (.13.)    0.790    0.021   38.459    0.000    0.750
##     sscs    (.14.)    0.678    0.019   36.408    0.000    0.642
##     ssmk    (.15.)    0.217    0.020   10.845    0.000    0.177
##  ci.upper   Std.lv  Std.all
##                            
##     0.780    0.750    0.876
##     0.776    0.744    0.869
##     0.773    0.742    0.850
##     0.432    0.394    0.485
##                            
##     0.792    0.760    0.899
##     0.660    0.617    0.690
##     0.470    0.437    0.544
##     0.678    0.648    0.711
##                            
##     0.506    0.474    0.643
##     0.503    0.469    0.641
##     0.268    0.242    0.301
##     0.315    0.283    0.349
##                            
##     0.831    0.790    0.832
##     0.715    0.678    0.745
##     0.256    0.217    0.242
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.890    0.009   96.263    0.000    0.872
##     electronic        0.827    0.019   42.542    0.000    0.789
##     speed             0.677    0.023   29.024    0.000    0.632
##   math ~~                                                      
##     electronic        0.711    0.024   29.523    0.000    0.664
##     speed             0.720    0.025   28.923    0.000    0.671
##   electronic ~~                                                
##     speed             0.447    0.037   12.067    0.000    0.375
##  ci.upper   Std.lv  Std.all
##                            
##     0.908    0.890    0.890
##     0.865    0.827    0.827
##     0.723    0.677    0.677
##                            
##     0.758    0.711    0.711
##     0.769    0.720    0.720
##                            
##     0.520    0.447    0.447
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.331    0.021   15.977    0.000    0.291
##    .sswk              0.379    0.022   17.461    0.000    0.337
##    .sspc              0.453    0.022   20.981    0.000    0.411
##    .ssei              0.139    0.019    7.329    0.000    0.102
##    .ssar              0.327    0.021   15.677    0.000    0.286
##    .ssmk              0.382    0.022   16.962    0.000    0.337
##    .ssmc              0.235    0.020   11.729    0.000    0.196
##    .ssao              0.356    0.022   15.988    0.000    0.312
##    .ssai              0.055    0.018    3.026    0.002    0.019
##    .sssi              0.059    0.019    3.200    0.001    0.023
##    .ssno              0.244    0.023   10.435    0.000    0.198
##    .sscs              0.358    0.023   15.788    0.000    0.313
##  ci.upper   Std.lv  Std.all
##     0.372    0.331    0.387
##     0.422    0.379    0.443
##     0.495    0.453    0.519
##     0.176    0.139    0.171
##     0.368    0.327    0.387
##     0.426    0.382    0.427
##     0.274    0.235    0.292
##     0.399    0.356    0.390
##     0.091    0.055    0.075
##     0.096    0.059    0.081
##     0.290    0.244    0.257
##     0.402    0.358    0.393
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.170    0.009   19.954    0.000    0.153
##    .sswk              0.179    0.009   20.939    0.000    0.163
##    .sspc              0.212    0.012   18.085    0.000    0.189
##    .ssei              0.240    0.011   21.954    0.000    0.218
##    .ssar              0.137    0.008   16.738    0.000    0.121
##    .ssmk              0.180    0.008   21.614    0.000    0.164
##    .ssmc              0.245    0.012   20.337    0.000    0.222
##    .ssao              0.411    0.017   23.936    0.000    0.377
##    .ssai              0.318    0.015   20.815    0.000    0.288
##    .sssi              0.317    0.015   20.917    0.000    0.287
##    .ssno              0.277    0.018   15.187    0.000    0.241
##    .sscs              0.368    0.019   19.383    0.000    0.331
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.187    0.170    0.232
##     0.196    0.179    0.245
##     0.235    0.212    0.278
##     0.261    0.240    0.363
##     0.153    0.137    0.192
##     0.196    0.180    0.225
##     0.269    0.245    0.381
##     0.445    0.411    0.495
##     0.348    0.318    0.586
##     0.346    0.317    0.590
##     0.313    0.277    0.307
##     0.406    0.368    0.445
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.750    0.015   49.191    0.000    0.720
##     sswk    (.p2.)    0.744    0.016   45.379    0.000    0.711
##     sspc    (.p3.)    0.742    0.016   46.919    0.000    0.711
##     ssei    (.p4.)    0.394    0.019   20.261    0.000    0.356
##   math =~                                                      
##     ssar    (.p5.)    0.760    0.016   46.145    0.000    0.727
##     ssmk    (.p6.)    0.617    0.022   27.750    0.000    0.573
##     ssmc    (.p7.)    0.437    0.017   25.894    0.000    0.404
##     ssao    (.p8.)    0.648    0.016   41.647    0.000    0.617
##   electronic =~                                                
##     ssai    (.p9.)    0.474    0.017   28.632    0.000    0.441
##     sssi    (.10.)    0.469    0.017   27.480    0.000    0.436
##     ssmc    (.11.)    0.242    0.013   18.144    0.000    0.215
##     ssei    (.12.)    0.283    0.016   17.422    0.000    0.252
##   speed =~                                                     
##     ssno    (.13.)    0.790    0.021   38.459    0.000    0.750
##     sscs    (.14.)    0.678    0.019   36.408    0.000    0.642
##     ssmk    (.15.)    0.217    0.020   10.845    0.000    0.177
##  ci.upper   Std.lv  Std.all
##                            
##     0.780    0.861    0.895
##     0.776    0.854    0.887
##     0.773    0.852    0.859
##     0.432    0.453    0.430
##                            
##     0.792    0.835    0.888
##     0.660    0.678    0.697
##     0.470    0.481    0.501
##     0.678    0.712    0.704
##                            
##     0.506    0.843    0.765
##     0.503    0.835    0.833
##     0.268    0.430    0.448
##     0.315    0.504    0.480
##                            
##     0.831    0.890    0.838
##     0.715    0.764    0.766
##     0.256    0.244    0.251
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              1.147    0.058   19.642    0.000    1.033
##     electronic        1.403    0.089   15.803    0.000    1.229
##     speed             0.877    0.051   17.300    0.000    0.778
##   math ~~                                                      
##     electronic        1.137    0.081   14.050    0.000    0.978
##     speed             0.964    0.052   18.453    0.000    0.862
##   electronic ~~                                                
##     speed             0.604    0.069    8.742    0.000    0.469
##  ci.upper   Std.lv  Std.all
##                            
##     1.262    0.909    0.909
##     1.577    0.687    0.687
##     0.977    0.679    0.679
##                            
##     1.295    0.581    0.581
##     1.067    0.779    0.779
##                            
##     0.740    0.301    0.301
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.523    0.023   22.328    0.000    0.477
##    .sswk              0.392    0.022   17.468    0.000    0.348
##    .sspc              0.211    0.024    8.959    0.000    0.165
##    .ssei              0.582    0.026   22.070    0.000    0.531
##    .ssar              0.395    0.023   17.329    0.000    0.350
##    .ssmk              0.242    0.023   10.519    0.000    0.197
##    .ssmc              0.563    0.023   24.735    0.000    0.518
##    .ssao              0.214    0.024    8.814    0.000    0.166
##    .ssai              0.614    0.027   23.150    0.000    0.562
##    .sssi              0.769    0.024   32.369    0.000    0.723
##    .ssno              0.096    0.026    3.771    0.000    0.046
##    .sscs              0.007    0.024    0.306    0.759   -0.040
##  ci.upper   Std.lv  Std.all
##     0.569    0.523    0.544
##     0.436    0.392    0.408
##     0.257    0.211    0.213
##     0.634    0.582    0.554
##     0.440    0.395    0.420
##     0.287    0.242    0.249
##     0.608    0.563    0.586
##     0.262    0.214    0.212
##     0.666    0.614    0.557
##     0.816    0.769    0.767
##     0.146    0.096    0.091
##     0.054    0.007    0.007
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.185    0.009   21.433    0.000    0.168
##    .sswk              0.198    0.010   19.860    0.000    0.178
##    .sspc              0.257    0.012   20.744    0.000    0.233
##    .ssei              0.333    0.017   20.025    0.000    0.300
##    .ssar              0.187    0.011   17.789    0.000    0.166
##    .ssmk              0.170    0.009   19.824    0.000    0.153
##    .ssmc              0.266    0.013   21.102    0.000    0.241
##    .ssao              0.516    0.019   27.264    0.000    0.478
##    .ssai              0.505    0.025   20.140    0.000    0.456
##    .sssi              0.308    0.019   16.598    0.000    0.271
##    .ssno              0.336    0.022   15.424    0.000    0.293
##    .sscs              0.411    0.023   17.683    0.000    0.366
##     verbal            1.318    0.068   19.266    0.000    1.184
##     math              1.209    0.065   18.539    0.000    1.081
##     electronic        3.168    0.244   12.984    0.000    2.690
##     speed             1.268    0.081   15.665    0.000    1.109
##  ci.upper   Std.lv  Std.all
##     0.202    0.185    0.200
##     0.217    0.198    0.213
##     0.282    0.257    0.262
##     0.366    0.333    0.301
##     0.208    0.187    0.211
##     0.186    0.170    0.179
##     0.290    0.266    0.288
##     0.553    0.516    0.504
##     0.555    0.505    0.415
##     0.344    0.308    0.306
##     0.378    0.336    0.298
##     0.457    0.411    0.414
##     1.452    1.000    1.000
##     1.337    1.000    1.000
##     3.647    1.000    1.000
##     1.426    1.000    1.000
lavTestScore(metric, release = 1:15)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 108.848 15       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p54.  6.939  1   0.008
## 2   .p2. == .p55. 28.977  1   0.000
## 3   .p3. == .p56.  1.539  1   0.215
## 4   .p4. == .p57. 67.273  1   0.000
## 5   .p5. == .p58.  8.535  1   0.003
## 6   .p6. == .p59. 10.160  1   0.001
## 7   .p7. == .p60.  0.837  1   0.360
## 8   .p8. == .p61.  0.507  1   0.476
## 9   .p9. == .p62.  0.084  1   0.773
## 10 .p10. == .p63. 14.689  1   0.000
## 11 .p11. == .p64.  4.139  1   0.042
## 12 .p12. == .p65. 61.275  1   0.000
## 13 .p13. == .p66.  0.753  1   0.385
## 14 .p14. == .p67.  0.660  1   0.416
## 15 .p15. == .p68.  9.943  1   0.002
scalar<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1611.265   109.000     0.000     0.953     0.087     0.044 87338.396 
##       bic 
## 87778.947
Mc(scalar)
## [1] 0.8143706
summary(scalar, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 92 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1611.265    1417.421
##   Degrees of freedom                               109         109
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.137
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          699.681     615.505
##     0                                          911.585     801.916
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.749    0.016   47.877    0.000    0.718
##     sswk    (.p2.)    0.745    0.016   45.272    0.000    0.713
##     sspc    (.p3.)    0.738    0.016   46.658    0.000    0.707
##     ssei    (.p4.)    0.380    0.017   22.704    0.000    0.347
##   math =~                                                      
##     ssar    (.p5.)    0.759    0.017   45.623    0.000    0.726
##     ssmk    (.p6.)    0.595    0.022   26.467    0.000    0.551
##     ssmc    (.p7.)    0.437    0.015   28.299    0.000    0.407
##     ssao    (.p8.)    0.649    0.015   41.954    0.000    0.618
##   electronic =~                                                
##     ssai    (.p9.)    0.456    0.016   28.801    0.000    0.425
##     sssi    (.10.)    0.479    0.017   28.925    0.000    0.447
##     ssmc    (.11.)    0.241    0.012   20.749    0.000    0.218
##     ssei    (.12.)    0.299    0.014   22.035    0.000    0.272
##   speed =~                                                     
##     ssno    (.13.)    0.771    0.021   37.551    0.000    0.731
##     sscs    (.14.)    0.690    0.019   37.024    0.000    0.654
##     ssmk    (.15.)    0.242    0.020   11.878    0.000    0.202
##  ci.upper   Std.lv  Std.all
##                            
##     0.780    0.749    0.870
##     0.777    0.745    0.870
##     0.769    0.738    0.838
##     0.412    0.380    0.467
##                            
##     0.791    0.759    0.898
##     0.640    0.595    0.665
##     0.468    0.437    0.544
##     0.679    0.649    0.710
##                            
##     0.487    0.456    0.624
##     0.512    0.479    0.650
##     0.264    0.241    0.300
##     0.325    0.299    0.368
##                            
##     0.811    0.771    0.816
##     0.727    0.690    0.751
##     0.282    0.242    0.270
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.890    0.009   94.677    0.000    0.872
##     electronic        0.832    0.019   43.145    0.000    0.794
##     speed             0.687    0.023   29.483    0.000    0.642
##   math ~~                                                      
##     electronic        0.716    0.024   30.016    0.000    0.670
##     speed             0.725    0.025   29.084    0.000    0.676
##   electronic ~~                                                
##     speed             0.456    0.037   12.363    0.000    0.384
##  ci.upper   Std.lv  Std.all
##                            
##     0.909    0.890    0.890
##     0.870    0.832    0.832
##     0.733    0.687    0.687
##                            
##     0.763    0.716    0.716
##     0.774    0.725    0.725
##                            
##     0.528    0.456    0.456
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.418    0.021   20.281    0.000    0.378
##    .sswk    (.39.)    0.379    0.021   18.120    0.000    0.338
##    .sspc    (.40.)    0.336    0.022   15.556    0.000    0.294
##    .ssei    (.41.)    0.148    0.019    7.958    0.000    0.111
##    .ssar    (.42.)    0.360    0.021   17.575    0.000    0.320
##    .ssmk    (.43.)    0.356    0.022   16.330    0.000    0.313
##    .ssmc    (.44.)    0.233    0.019   12.254    0.000    0.196
##    .ssao    (.45.)    0.295    0.021   14.391    0.000    0.255
##    .ssai    (.46.)    0.025    0.017    1.474    0.140   -0.008
##    .sssi    (.47.)    0.081    0.018    4.547    0.000    0.046
##    .ssno    (.48.)    0.298    0.023   13.153    0.000    0.253
##    .sscs    (.49.)    0.303    0.022   13.805    0.000    0.260
##  ci.upper   Std.lv  Std.all
##     0.458    0.418    0.486
##     0.420    0.379    0.443
##     0.379    0.336    0.382
##     0.184    0.148    0.182
##     0.400    0.360    0.426
##     0.398    0.356    0.397
##     0.271    0.233    0.291
##     0.335    0.295    0.323
##     0.058    0.025    0.034
##     0.116    0.081    0.110
##     0.342    0.298    0.315
##     0.346    0.303    0.330
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.180    0.009   19.359    0.000    0.162
##    .sswk              0.178    0.009   20.557    0.000    0.161
##    .sspc              0.231    0.013   17.717    0.000    0.205
##    .ssei              0.238    0.011   21.682    0.000    0.216
##    .ssar              0.139    0.008   16.475    0.000    0.122
##    .ssmk              0.181    0.008   21.319    0.000    0.164
##    .ssmc              0.245    0.012   20.376    0.000    0.221
##    .ssao              0.414    0.017   24.108    0.000    0.380
##    .ssai              0.325    0.015   21.481    0.000    0.296
##    .sssi              0.315    0.015   20.658    0.000    0.285
##    .ssno              0.298    0.018   16.230    0.000    0.262
##    .sscs              0.368    0.019   18.932    0.000    0.329
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.199    0.180    0.243
##     0.195    0.178    0.243
##     0.256    0.231    0.297
##     0.259    0.238    0.361
##     0.155    0.139    0.194
##     0.197    0.181    0.225
##     0.268    0.245    0.379
##     0.447    0.414    0.496
##     0.355    0.325    0.610
##     0.345    0.315    0.578
##     0.334    0.298    0.334
##     0.406    0.368    0.436
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.749    0.016   47.877    0.000    0.718
##     sswk    (.p2.)    0.745    0.016   45.272    0.000    0.713
##     sspc    (.p3.)    0.738    0.016   46.658    0.000    0.707
##     ssei    (.p4.)    0.380    0.017   22.704    0.000    0.347
##   math =~                                                      
##     ssar    (.p5.)    0.759    0.017   45.623    0.000    0.726
##     ssmk    (.p6.)    0.595    0.022   26.467    0.000    0.551
##     ssmc    (.p7.)    0.437    0.015   28.299    0.000    0.407
##     ssao    (.p8.)    0.649    0.015   41.954    0.000    0.618
##   electronic =~                                                
##     ssai    (.p9.)    0.456    0.016   28.801    0.000    0.425
##     sssi    (.10.)    0.479    0.017   28.925    0.000    0.447
##     ssmc    (.11.)    0.241    0.012   20.749    0.000    0.218
##     ssei    (.12.)    0.299    0.014   22.035    0.000    0.272
##   speed =~                                                     
##     ssno    (.13.)    0.771    0.021   37.551    0.000    0.731
##     sscs    (.14.)    0.690    0.019   37.024    0.000    0.654
##     ssmk    (.15.)    0.242    0.020   11.878    0.000    0.202
##  ci.upper   Std.lv  Std.all
##                            
##     0.780    0.858    0.888
##     0.777    0.854    0.888
##     0.769    0.846    0.847
##     0.412    0.435    0.412
##                            
##     0.791    0.834    0.886
##     0.640    0.655    0.671
##     0.468    0.481    0.501
##     0.679    0.713    0.703
##                            
##     0.487    0.808    0.745
##     0.512    0.849    0.838
##     0.264    0.427    0.445
##     0.325    0.529    0.500
##                            
##     0.811    0.866    0.821
##     0.727    0.775    0.770
##     0.282    0.272    0.279
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              1.146    0.059   19.543    0.000    1.031
##     electronic        1.405    0.089   15.836    0.000    1.231
##     speed             0.886    0.051   17.365    0.000    0.786
##   math ~~                                                      
##     electronic        1.145    0.081   14.155    0.000    0.986
##     speed             0.967    0.052   18.504    0.000    0.864
##   electronic ~~                                                
##     speed             0.617    0.069    8.977    0.000    0.482
##  ci.upper   Std.lv  Std.all
##                            
##     1.261    0.910    0.910
##     1.579    0.692    0.692
##     0.986    0.688    0.688
##                            
##     1.303    0.588    0.588
##     1.069    0.783    0.783
##                            
##     0.751    0.310    0.310
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.418    0.021   20.281    0.000    0.378
##    .sswk    (.39.)    0.379    0.021   18.120    0.000    0.338
##    .sspc    (.40.)    0.336    0.022   15.556    0.000    0.294
##    .ssei    (.41.)    0.148    0.019    7.958    0.000    0.111
##    .ssar    (.42.)    0.360    0.021   17.575    0.000    0.320
##    .ssmk    (.43.)    0.356    0.022   16.330    0.000    0.313
##    .ssmc    (.44.)    0.233    0.019   12.254    0.000    0.196
##    .ssao    (.45.)    0.295    0.021   14.391    0.000    0.255
##    .ssai    (.46.)    0.025    0.017    1.474    0.140   -0.008
##    .sssi    (.47.)    0.081    0.018    4.547    0.000    0.046
##    .ssno    (.48.)    0.298    0.023   13.153    0.000    0.253
##    .sscs    (.49.)    0.303    0.022   13.805    0.000    0.260
##     verbal            0.018    0.040    0.446    0.655   -0.061
##     math             -0.013    0.039   -0.322    0.747   -0.089
##     elctrnc           1.394    0.070   19.810    0.000    1.256
##     speed            -0.342    0.044   -7.737    0.000   -0.429
##  ci.upper   Std.lv  Std.all
##     0.458    0.418    0.432
##     0.420    0.379    0.394
##     0.379    0.336    0.336
##     0.184    0.148    0.140
##     0.400    0.360    0.383
##     0.398    0.356    0.365
##     0.271    0.233    0.243
##     0.335    0.295    0.291
##     0.058    0.025    0.023
##     0.116    0.081    0.080
##     0.342    0.298    0.282
##     0.346    0.303    0.301
##     0.097    0.016    0.016
##     0.064   -0.011   -0.011
##     1.532    0.787    0.787
##    -0.255   -0.304   -0.304
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.197    0.010   20.552    0.000    0.178
##    .sswk              0.196    0.010   19.507    0.000    0.176
##    .sspc              0.283    0.015   19.359    0.000    0.254
##    .ssei              0.330    0.016   20.324    0.000    0.298
##    .ssar              0.191    0.011   17.720    0.000    0.170
##    .ssmk              0.170    0.009   19.560    0.000    0.153
##    .ssmc              0.265    0.013   21.001    0.000    0.240
##    .ssao              0.520    0.019   26.838    0.000    0.482
##    .ssai              0.524    0.024   21.622    0.000    0.476
##    .sssi              0.305    0.018   16.838    0.000    0.270
##    .ssno              0.362    0.023   16.055    0.000    0.317
##    .sscs              0.412    0.024   17.151    0.000    0.365
##     verbal            1.314    0.069   19.153    0.000    1.180
##     math              1.208    0.066   18.434    0.000    1.080
##     electronic        3.137    0.241   13.009    0.000    2.664
##     speed             1.262    0.081   15.647    0.000    1.104
##  ci.upper   Std.lv  Std.all
##     0.216    0.197    0.211
##     0.215    0.196    0.212
##     0.312    0.283    0.283
##     0.362    0.330    0.295
##     0.212    0.191    0.215
##     0.187    0.170    0.179
##     0.290    0.265    0.288
##     0.558    0.520    0.506
##     0.571    0.524    0.445
##     0.341    0.305    0.298
##     0.406    0.362    0.325
##     0.459    0.412    0.406
##     1.448    1.000    1.000
##     1.337    1.000    1.000
##     3.609    1.000    1.000
##     1.420    1.000    1.000
lavTestScore(scalar, release = 16:27)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 567.473 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs      X2 df p.value
## 1  .p38. ==  .p91. 240.970  1   0.000
## 2  .p39. ==  .p92.   0.000  1   0.988
## 3  .p40. ==  .p93. 312.536  1   0.000
## 4  .p41. ==  .p94.   3.262  1   0.071
## 5  .p42. ==  .p95.  74.621  1   0.000
## 6  .p43. ==  .p96.  21.632  1   0.000
## 7  .p44. ==  .p97.   0.048  1   0.826
## 8  .p45. ==  .p98.  40.704  1   0.000
## 9  .p46. ==  .p99.  24.780  1   0.000
## 10 .p47. == .p100.  12.978  1   0.000
## 11 .p48. == .p101.  87.287  1   0.000
## 12 .p49. == .p102.  51.234  1   0.000
scalar2<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1120.390   106.000     0.000     0.968     0.072     0.040 86853.521 
##       bic 
## 87312.687
Mc(scalar2)
## [1] 0.8705295
summary(scalar2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 89 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    24
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1120.390     981.668
##   Degrees of freedom                               106         106
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.141
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          470.307     412.075
##     0                                          650.083     569.592
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.750    0.015   49.235    0.000    0.720
##     sswk    (.p2.)    0.744    0.016   45.457    0.000    0.712
##     sspc    (.p3.)    0.743    0.016   47.057    0.000    0.712
##     ssei    (.p4.)    0.380    0.017   22.430    0.000    0.347
##   math =~                                                      
##     ssar    (.p5.)    0.759    0.017   45.766    0.000    0.727
##     ssmk    (.p6.)    0.605    0.020   29.613    0.000    0.565
##     ssmc    (.p7.)    0.439    0.016   28.302    0.000    0.409
##     ssao    (.p8.)    0.647    0.015   41.944    0.000    0.617
##   electronic =~                                                
##     ssai    (.p9.)    0.457    0.016   28.835    0.000    0.426
##     sssi    (.10.)    0.480    0.017   28.933    0.000    0.448
##     ssmc    (.11.)    0.239    0.012   20.615    0.000    0.217
##     ssei    (.12.)    0.298    0.014   21.711    0.000    0.271
##   speed =~                                                     
##     ssno    (.13.)    0.790    0.020   38.555    0.000    0.750
##     sscs    (.14.)    0.675    0.018   36.553    0.000    0.639
##     ssmk    (.15.)    0.231    0.017   13.236    0.000    0.197
##  ci.upper   Std.lv  Std.all
##                            
##     0.780    0.750    0.876
##     0.776    0.744    0.869
##     0.773    0.743    0.850
##     0.413    0.380    0.468
##                            
##     0.792    0.759    0.898
##     0.645    0.605    0.676
##     0.469    0.439    0.546
##     0.677    0.647    0.709
##                            
##     0.488    0.457    0.625
##     0.513    0.480    0.650
##     0.262    0.239    0.298
##     0.325    0.298    0.367
##                            
##     0.830    0.790    0.832
##     0.712    0.675    0.743
##     0.266    0.231    0.258
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.890    0.009   96.040    0.000    0.872
##     electronic        0.829    0.019   43.086    0.000    0.791
##     speed             0.679    0.023   29.276    0.000    0.634
##   math ~~                                                      
##     electronic        0.715    0.024   29.999    0.000    0.669
##     speed             0.719    0.025   28.662    0.000    0.670
##   electronic ~~                                                
##     speed             0.449    0.037   12.178    0.000    0.377
##  ci.upper   Std.lv  Std.all
##                            
##     0.908    0.890    0.890
##     0.866    0.829    0.829
##     0.725    0.679    0.679
##                            
##     0.762    0.715    0.715
##     0.769    0.719    0.719
##                            
##     0.521    0.449    0.449
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.331    0.021   15.977    0.000    0.291
##    .sswk    (.39.)    0.376    0.022   17.425    0.000    0.334
##    .sspc              0.453    0.022   20.981    0.000    0.411
##    .ssei    (.41.)    0.147    0.019    7.922    0.000    0.111
##    .ssar    (.42.)    0.353    0.020   17.243    0.000    0.313
##    .ssmk    (.43.)    0.371    0.022   16.997    0.000    0.328
##    .ssmc    (.44.)    0.231    0.019   12.123    0.000    0.194
##    .ssao    (.45.)    0.289    0.021   14.088    0.000    0.249
##    .ssai    (.46.)    0.026    0.017    1.522    0.128   -0.007
##    .sssi    (.47.)    0.082    0.018    4.612    0.000    0.047
##    .ssno              0.244    0.023   10.434    0.000    0.198
##    .sscs    (.49.)    0.365    0.022   16.519    0.000    0.322
##  ci.upper   Std.lv  Std.all
##     0.372    0.331    0.387
##     0.418    0.376    0.439
##     0.495    0.453    0.519
##     0.184    0.147    0.181
##     0.394    0.353    0.418
##     0.414    0.371    0.415
##     0.268    0.231    0.287
##     0.329    0.289    0.316
##     0.059    0.026    0.035
##     0.117    0.082    0.111
##     0.290    0.244    0.257
##     0.408    0.365    0.401
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.170    0.009   19.935    0.000    0.153
##    .sswk              0.179    0.009   20.934    0.000    0.162
##    .sspc              0.212    0.012   18.106    0.000    0.189
##    .ssei              0.239    0.011   21.751    0.000    0.217
##    .ssar              0.138    0.008   16.615    0.000    0.122
##    .ssmk              0.180    0.008   21.496    0.000    0.163
##    .ssmc              0.245    0.012   20.412    0.000    0.222
##    .ssao              0.415    0.017   24.174    0.000    0.382
##    .ssai              0.325    0.015   21.444    0.000    0.295
##    .sssi              0.314    0.015   20.627    0.000    0.285
##    .ssno              0.278    0.018   15.212    0.000    0.242
##    .sscs              0.371    0.019   19.493    0.000    0.333
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.187    0.170    0.232
##     0.196    0.179    0.245
##     0.235    0.212    0.278
##     0.260    0.239    0.362
##     0.155    0.138    0.193
##     0.196    0.180    0.225
##     0.269    0.245    0.380
##     0.449    0.415    0.498
##     0.355    0.325    0.609
##     0.344    0.314    0.577
##     0.313    0.278    0.308
##     0.408    0.371    0.448
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.750    0.015   49.235    0.000    0.720
##     sswk    (.p2.)    0.744    0.016   45.457    0.000    0.712
##     sspc    (.p3.)    0.743    0.016   47.057    0.000    0.712
##     ssei    (.p4.)    0.380    0.017   22.430    0.000    0.347
##   math =~                                                      
##     ssar    (.p5.)    0.759    0.017   45.766    0.000    0.727
##     ssmk    (.p6.)    0.605    0.020   29.613    0.000    0.565
##     ssmc    (.p7.)    0.439    0.016   28.302    0.000    0.409
##     ssao    (.p8.)    0.647    0.015   41.944    0.000    0.617
##   electronic =~                                                
##     ssai    (.p9.)    0.457    0.016   28.835    0.000    0.426
##     sssi    (.10.)    0.480    0.017   28.933    0.000    0.448
##     ssmc    (.11.)    0.239    0.012   20.615    0.000    0.217
##     ssei    (.12.)    0.298    0.014   21.711    0.000    0.271
##   speed =~                                                     
##     ssno    (.13.)    0.790    0.020   38.555    0.000    0.750
##     sscs    (.14.)    0.675    0.018   36.553    0.000    0.639
##     ssmk    (.15.)    0.231    0.017   13.236    0.000    0.197
##  ci.upper   Std.lv  Std.all
##                            
##     0.780    0.860    0.894
##     0.776    0.853    0.887
##     0.773    0.852    0.859
##     0.413    0.436    0.412
##                            
##     0.792    0.835    0.887
##     0.645    0.665    0.683
##     0.469    0.483    0.504
##     0.677    0.712    0.702
##                            
##     0.488    0.809    0.746
##     0.513    0.850    0.839
##     0.262    0.424    0.443
##     0.325    0.528    0.500
##                            
##     0.830    0.889    0.837
##     0.712    0.760    0.763
##     0.266    0.260    0.267
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              1.147    0.058   19.642    0.000    1.032
##     electronic        1.399    0.088   15.819    0.000    1.226
##     speed             0.878    0.051   17.334    0.000    0.779
##   math ~~                                                      
##     electronic        1.142    0.081   14.139    0.000    0.983
##     speed             0.962    0.052   18.446    0.000    0.860
##   electronic ~~                                                
##     speed             0.608    0.069    8.866    0.000    0.473
##  ci.upper   Std.lv  Std.all
##                            
##     1.261    0.910    0.910
##     1.572    0.689    0.689
##     0.977    0.681    0.681
##                            
##     1.300    0.586    0.586
##     1.064    0.778    0.778
##                            
##     0.742    0.305    0.305
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.503    0.026   19.487    0.000    0.453
##    .sswk    (.39.)    0.376    0.022   17.425    0.000    0.334
##    .sspc              0.192    0.027    7.168    0.000    0.139
##    .ssei    (.41.)    0.147    0.019    7.922    0.000    0.111
##    .ssar    (.42.)    0.353    0.020   17.243    0.000    0.313
##    .ssmk    (.43.)    0.371    0.022   16.997    0.000    0.328
##    .ssmc    (.44.)    0.231    0.019   12.123    0.000    0.194
##    .ssao    (.45.)    0.289    0.021   14.088    0.000    0.249
##    .ssai    (.46.)    0.026    0.017    1.522    0.128   -0.007
##    .sssi    (.47.)    0.082    0.018    4.612    0.000    0.047
##    .ssno              0.524    0.034   15.437    0.000    0.457
##    .sscs    (.49.)    0.365    0.022   16.519    0.000    0.322
##     verbal            0.027    0.042    0.636    0.525   -0.055
##     math              0.009    0.039    0.223    0.823   -0.068
##     elctrnc           1.387    0.070   19.722    0.000    1.249
##     speed            -0.541    0.049  -11.007    0.000   -0.638
##  ci.upper   Std.lv  Std.all
##     0.554    0.503    0.523
##     0.418    0.376    0.391
##     0.244    0.192    0.193
##     0.184    0.147    0.140
##     0.394    0.353    0.375
##     0.414    0.371    0.381
##     0.268    0.231    0.241
##     0.329    0.289    0.285
##     0.059    0.026    0.024
##     0.117    0.082    0.081
##     0.591    0.524    0.494
##     0.408    0.365    0.367
##     0.108    0.023    0.023
##     0.085    0.008    0.008
##     1.525    0.783    0.783
##    -0.445   -0.481   -0.481
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.185    0.009   21.423    0.000    0.168
##    .sswk              0.197    0.010   19.825    0.000    0.178
##    .sspc              0.257    0.012   20.712    0.000    0.233
##    .ssei              0.330    0.016   20.348    0.000    0.299
##    .ssar              0.189    0.011   17.772    0.000    0.168
##    .ssmk              0.169    0.009   19.767    0.000    0.153
##    .ssmc              0.266    0.013   21.041    0.000    0.241
##    .ssao              0.522    0.019   26.799    0.000    0.484
##    .ssai              0.523    0.024   21.583    0.000    0.475
##    .sssi              0.304    0.018   16.728    0.000    0.269
##    .ssno              0.337    0.022   15.491    0.000    0.295
##    .sscs              0.414    0.023   17.906    0.000    0.368
##     verbal            1.315    0.068   19.305    0.000    1.182
##     math              1.209    0.065   18.476    0.000    1.081
##     electronic        3.137    0.241   13.021    0.000    2.665
##     speed             1.265    0.080   15.723    0.000    1.107
##  ci.upper   Std.lv  Std.all
##     0.202    0.185    0.200
##     0.217    0.197    0.213
##     0.281    0.257    0.262
##     0.362    0.330    0.296
##     0.210    0.189    0.213
##     0.186    0.169    0.179
##     0.290    0.266    0.289
##     0.561    0.522    0.508
##     0.570    0.523    0.444
##     0.340    0.304    0.296
##     0.380    0.337    0.299
##     0.459    0.414    0.418
##     1.449    1.000    1.000
##     1.337    1.000    1.000
##     3.609    1.000    1.000
##     1.423    1.000    1.000
lavTestScore(scalar2, release = 16:24, standardized=T, epc=T)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 93.675  9       0
## 
## $uni
## 
## univariate score tests:
## 
##     lhs op    rhs     X2 df p.value
## 1 .p39. ==  .p92.  3.080  1   0.079
## 2 .p41. ==  .p94.  3.080  1   0.079
## 3 .p42. ==  .p95. 51.021  1   0.000
## 4 .p43. ==  .p96.  4.350  1   0.037
## 5 .p44. ==  .p97.  0.442  1   0.506
## 6 .p45. ==  .p98. 49.754  1   0.000
## 7 .p46. ==  .p99. 23.504  1   0.000
## 8 .p47. == .p100. 14.549  1   0.000
## 9 .p49. == .p102.  4.350  1   0.037
## 
## $epc
## 
## expected parameter changes (epc) and expected parameter values (epv):
## 
##           lhs op        rhs block group free label plabel   est    epc
## 1      verbal =~       ssgs     1     1    1  .p1.   .p1. 0.750  0.000
## 2      verbal =~       sswk     1     1    2  .p2.   .p2. 0.744  0.000
## 3      verbal =~       sspc     1     1    3  .p3.   .p3. 0.743  0.000
## 4      verbal =~       ssei     1     1    4  .p4.   .p4. 0.380  0.014
## 5        math =~       ssar     1     1    5  .p5.   .p5. 0.759 -0.001
## 6        math =~       ssmk     1     1    6  .p6.   .p6. 0.605  0.013
## 7        math =~       ssmc     1     1    7  .p7.   .p7. 0.439 -0.003
## 8        math =~       ssao     1     1    8  .p8.   .p8. 0.647  0.000
## 9  electronic =~       ssai     1     1    9  .p9.   .p9. 0.457  0.016
## 10 electronic =~       sssi     1     1   10 .p10.  .p10. 0.480 -0.013
## 11 electronic =~       ssmc     1     1   11 .p11.  .p11. 0.239  0.003
## 12 electronic =~       ssei     1     1   12 .p12.  .p12. 0.298 -0.015
## 13      speed =~       ssno     1     1   13 .p13.  .p13. 0.790  0.001
## 14      speed =~       sscs     1     1   14 .p14.  .p14. 0.675  0.003
## 15      speed =~       ssmk     1     1   15 .p15.  .p15. 0.231 -0.016
## 16       ssgs ~~       ssgs     1     1   16        .p16. 0.170  0.000
## 17       sswk ~~       sswk     1     1   17        .p17. 0.179  0.000
## 18       sspc ~~       sspc     1     1   18        .p18. 0.212  0.000
## 19       ssei ~~       ssei     1     1   19        .p19. 0.239  0.001
## 20       ssar ~~       ssar     1     1   20        .p20. 0.138  0.001
## 21       ssmk ~~       ssmk     1     1   21        .p21. 0.180  0.000
## 22       ssmc ~~       ssmc     1     1   22        .p22. 0.245  0.000
## 23       ssao ~~       ssao     1     1   23        .p23. 0.415  0.000
## 24       ssai ~~       ssai     1     1   24        .p24. 0.325 -0.005
## 25       sssi ~~       sssi     1     1   25        .p25. 0.314  0.003
## 26       ssno ~~       ssno     1     1   26        .p26. 0.278 -0.002
## 27       sscs ~~       sscs     1     1   27        .p27. 0.371 -0.001
## 28     verbal ~~     verbal     1     1    0        .p28. 1.000     NA
## 29       math ~~       math     1     1    0        .p29. 1.000     NA
## 30 electronic ~~ electronic     1     1    0        .p30. 1.000     NA
## 31      speed ~~      speed     1     1    0        .p31. 1.000     NA
## 32     verbal ~~       math     1     1   28        .p32. 0.890  0.000
## 33     verbal ~~ electronic     1     1   29        .p33. 0.829 -0.002
## 34     verbal ~~      speed     1     1   30        .p34. 0.679 -0.002
## 35       math ~~ electronic     1     1   31        .p35. 0.715 -0.003
## 36       math ~~      speed     1     1   32        .p36. 0.719  0.001
## 37 electronic ~~      speed     1     1   33        .p37. 0.449 -0.005
## 38       ssgs ~1                1     1   34        .p38. 0.331  0.000
## 39       sswk ~1                1     1   35 .p39.  .p39. 0.376  0.003
## 40       sspc ~1                1     1   36        .p40. 0.453  0.000
## 41       ssei ~1                1     1   37 .p41.  .p41. 0.147 -0.008
## 42       ssar ~1                1     1   38 .p42.  .p42. 0.353 -0.026
## 43       ssmk ~1                1     1   39 .p43.  .p43. 0.371  0.010
## 44       ssmc ~1                1     1   40 .p44.  .p44. 0.231  0.004
## 45       ssao ~1                1     1   41 .p45.  .p45. 0.289  0.067
## 46       ssai ~1                1     1   42 .p46.  .p46. 0.026  0.029
## 47       sssi ~1                1     1   43 .p47.  .p47. 0.082 -0.023
## 48       ssno ~1                1     1   44        .p48. 0.244  0.000
## 49       sscs ~1                1     1   45 .p49.  .p49. 0.365 -0.007
## 50     verbal ~1                1     1    0        .p50. 0.000     NA
## 51       math ~1                1     1    0        .p51. 0.000     NA
## 52 electronic ~1                1     1    0        .p52. 0.000     NA
## 53      speed ~1                1     1    0        .p53. 0.000     NA
## 54     verbal =~       ssgs     2     2   46  .p1.  .p54. 0.750  0.000
## 55     verbal =~       sswk     2     2   47  .p2.  .p55. 0.744  0.000
## 56     verbal =~       sspc     2     2   48  .p3.  .p56. 0.743  0.000
## 57     verbal =~       ssei     2     2   49  .p4.  .p57. 0.380  0.014
## 58       math =~       ssar     2     2   50  .p5.  .p58. 0.759 -0.001
## 59       math =~       ssmk     2     2   51  .p6.  .p59. 0.605  0.013
## 60       math =~       ssmc     2     2   52  .p7.  .p60. 0.439 -0.003
## 61       math =~       ssao     2     2   53  .p8.  .p61. 0.647  0.000
## 62 electronic =~       ssai     2     2   54  .p9.  .p62. 0.457  0.016
## 63 electronic =~       sssi     2     2   55 .p10.  .p63. 0.480 -0.013
## 64 electronic =~       ssmc     2     2   56 .p11.  .p64. 0.239  0.003
## 65 electronic =~       ssei     2     2   57 .p12.  .p65. 0.298 -0.015
## 66      speed =~       ssno     2     2   58 .p13.  .p66. 0.790  0.001
## 67      speed =~       sscs     2     2   59 .p14.  .p67. 0.675  0.003
## 68      speed =~       ssmk     2     2   60 .p15.  .p68. 0.231 -0.016
## 69       ssgs ~~       ssgs     2     2   61        .p69. 0.185  0.000
## 70       sswk ~~       sswk     2     2   62        .p70. 0.197  0.000
## 71       sspc ~~       sspc     2     2   63        .p71. 0.257  0.000
##      epv sepc.lv sepc.all sepc.nox
## 1  0.750   0.000    0.000    0.000
## 2  0.744   0.000    0.000    0.000
## 3  0.742   0.000    0.000    0.000
## 4  0.394   0.014    0.018    0.018
## 5  0.759  -0.001   -0.001   -0.001
## 6  0.618   0.013    0.015    0.015
## 7  0.436  -0.003   -0.003   -0.003
## 8  0.647   0.000    0.000    0.000
## 9  0.473   0.016    0.022    0.022
## 10 0.468  -0.013   -0.017   -0.017
## 11 0.242   0.003    0.003    0.003
## 12 0.283  -0.015   -0.019   -0.019
## 13 0.791   0.001    0.001    0.001
## 14 0.678   0.003    0.003    0.003
## 15 0.216  -0.016   -0.018   -0.018
## 16 0.170   0.170    0.232    0.232
## 17 0.179   0.179    0.245    0.245
## 18 0.212   0.212    0.278    0.278
## 19 0.240   0.239    0.362    0.362
## 20 0.139   0.138    0.193    0.193
## 21 0.180  -0.180   -0.225   -0.225
## 22 0.245  -0.245   -0.380   -0.380
## 23 0.416   0.415    0.498    0.498
## 24 0.320  -0.325   -0.609   -0.609
## 25 0.317   0.314    0.577    0.577
## 26 0.276  -0.278   -0.308   -0.308
## 27 0.369  -0.371   -0.448   -0.448
## 28    NA      NA       NA       NA
## 29    NA      NA       NA       NA
## 30    NA      NA       NA       NA
## 31    NA      NA       NA       NA
## 32 0.890   0.000    0.000    0.000
## 33 0.827  -0.002   -0.002   -0.002
## 34 0.677  -0.002   -0.002   -0.002
## 35 0.713  -0.003   -0.003   -0.003
## 36 0.721   0.001    0.001    0.001
## 37 0.444  -0.005   -0.005   -0.005
## 38 0.331   0.000    0.000    0.000
## 39 0.379   0.003    0.004    0.004
## 40 0.453   0.000    0.000    0.000
## 41 0.139  -0.008   -0.010   -0.010
## 42 0.327  -0.026   -0.031   -0.031
## 43 0.382   0.010    0.012    0.012
## 44 0.235   0.004    0.005    0.005
## 45 0.356   0.067    0.073    0.073
## 46 0.055   0.029    0.040    0.040
## 47 0.059  -0.023   -0.031   -0.031
## 48 0.244   0.000    0.000    0.000
## 49 0.358  -0.007   -0.008   -0.008
## 50    NA      NA       NA       NA
## 51    NA      NA       NA       NA
## 52    NA      NA       NA       NA
## 53    NA      NA       NA       NA
## 54 0.750   0.000    0.000    0.000
## 55 0.744   0.000    0.000    0.000
## 56 0.742   0.000    0.000    0.000
## 57 0.394   0.017    0.016    0.016
## 58 0.759  -0.001   -0.001   -0.001
## 59 0.618   0.014    0.015    0.015
## 60 0.436  -0.003   -0.003   -0.003
## 61 0.647   0.000    0.000    0.000
## 62 0.473   0.029    0.027    0.027
## 63 0.468  -0.022   -0.022   -0.022
## 64 0.242   0.005    0.005    0.005
## 65 0.283  -0.027   -0.026   -0.026
## 66 0.791   0.001    0.001    0.001
## 67 0.678   0.003    0.003    0.003
## 68 0.216  -0.018   -0.018   -0.018
## 69 0.185   0.185    0.200    0.200
## 70 0.198   0.197    0.213    0.213
## 71 0.257   0.257    0.262    0.262
##  [ reached 'max' / getOption("max.print") -- omitted 35 rows ]
strict<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1293.661   118.000     0.000     0.963     0.074     0.044 87002.792 
##       bic 
## 87387.498
Mc(strict) 
## [1] 0.8515498
cf.cov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1224.419   112.000     0.000     0.965     0.074     0.095 86945.549 
##       bic 
## 87367.486
Mc(cf.cov)
## [1] 0.8589429
summary(cf.cov, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 63 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1224.419    1072.364
##   Degrees of freedom                               112         112
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.142
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          509.027     445.813
##     0                                          715.392     626.551
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.806    0.013   59.815    0.000    0.780
##     sswk    (.p2.)    0.800    0.014   58.431    0.000    0.774
##     sspc    (.p3.)    0.800    0.013   63.479    0.000    0.775
##     ssei    (.p4.)    0.410    0.018   23.269    0.000    0.376
##   math =~                                                      
##     ssar    (.p5.)    0.805    0.014   57.319    0.000    0.777
##     ssmk    (.p6.)    0.639    0.020   32.719    0.000    0.601
##     ssmc    (.p7.)    0.467    0.015   30.851    0.000    0.438
##     ssao    (.p8.)    0.686    0.014   50.220    0.000    0.659
##   electronic =~                                                
##     ssai    (.p9.)    0.509    0.016   32.662    0.000    0.479
##     sssi    (.10.)    0.541    0.016   34.650    0.000    0.511
##     ssmc    (.11.)    0.268    0.012   21.882    0.000    0.244
##     ssei    (.12.)    0.331    0.015   22.192    0.000    0.302
##   speed =~                                                     
##     ssno    (.13.)    0.829    0.020   40.536    0.000    0.789
##     sscs    (.14.)    0.709    0.019   37.803    0.000    0.673
##     ssmk    (.15.)    0.246    0.018   13.842    0.000    0.211
##  ci.upper   Std.lv  Std.all
##                            
##     0.833    0.806    0.891
##     0.827    0.800    0.884
##     0.824    0.800    0.866
##     0.445    0.410    0.473
##                            
##     0.832    0.805    0.908
##     0.677    0.639    0.679
##     0.497    0.467    0.551
##     0.713    0.686    0.729
##                            
##     0.540    0.509    0.665
##     0.572    0.541    0.696
##     0.292    0.268    0.315
##     0.361    0.331    0.382
##                            
##     0.869    0.829    0.843
##     0.746    0.709    0.758
##     0.280    0.246    0.261
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.32.)    0.896    0.008  113.833    0.000    0.881
##     elctrnc (.33.)    0.866    0.015   58.121    0.000    0.836
##     speed   (.34.)    0.691    0.019   36.395    0.000    0.654
##   math ~~                                                      
##     elctrnc (.35.)    0.742    0.019   39.758    0.000    0.705
##     speed   (.36.)    0.755    0.019   39.057    0.000    0.717
##   electronic ~~                                                
##     speed   (.37.)    0.452    0.030   15.134    0.000    0.394
##  ci.upper   Std.lv  Std.all
##                            
##     0.911    0.896    0.896
##     0.895    0.866    0.866
##     0.728    0.691    0.691
##                            
##     0.778    0.742    0.742
##     0.793    0.755    0.755
##                            
##     0.511    0.452    0.452
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.331    0.021   15.977    0.000    0.291
##    .sswk    (.39.)    0.376    0.022   17.416    0.000    0.333
##    .sspc              0.453    0.022   20.981    0.000    0.411
##    .ssei    (.41.)    0.149    0.019    7.987    0.000    0.112
##    .ssar    (.42.)    0.353    0.020   17.231    0.000    0.313
##    .ssmk    (.43.)    0.372    0.022   17.021    0.000    0.329
##    .ssmc    (.44.)    0.231    0.019   12.120    0.000    0.194
##    .ssao    (.45.)    0.289    0.021   14.074    0.000    0.248
##    .ssai    (.46.)    0.027    0.017    1.575    0.115   -0.007
##    .sssi    (.47.)    0.080    0.018    4.493    0.000    0.045
##    .ssno              0.244    0.023   10.435    0.000    0.198
##    .sscs    (.49.)    0.365    0.022   16.517    0.000    0.322
##  ci.upper   Std.lv  Std.all
##     0.372    0.331    0.366
##     0.418    0.376    0.415
##     0.495    0.453    0.491
##     0.185    0.149    0.171
##     0.393    0.353    0.398
##     0.414    0.372    0.395
##     0.268    0.231    0.272
##     0.329    0.289    0.307
##     0.060    0.027    0.035
##     0.115    0.080    0.103
##     0.290    0.244    0.249
##     0.408    0.365    0.390
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.169    0.008   19.997    0.000    0.153
##    .sswk              0.179    0.009   20.948    0.000    0.162
##    .sspc              0.214    0.012   18.163    0.000    0.191
##    .ssei              0.240    0.011   21.848    0.000    0.218
##    .ssar              0.139    0.008   16.772    0.000    0.122
##    .ssmk              0.179    0.008   21.276    0.000    0.162
##    .ssmc              0.244    0.012   20.452    0.000    0.221
##    .ssao              0.416    0.017   24.211    0.000    0.382
##    .ssai              0.327    0.015   21.593    0.000    0.297
##    .sssi              0.312    0.015   20.688    0.000    0.283
##    .ssno              0.280    0.018   15.385    0.000    0.244
##    .sscs              0.373    0.019   19.567    0.000    0.335
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.186    0.169    0.207
##     0.196    0.179    0.219
##     0.237    0.214    0.251
##     0.261    0.240    0.319
##     0.155    0.139    0.176
##     0.195    0.179    0.202
##     0.268    0.244    0.340
##     0.450    0.416    0.469
##     0.356    0.327    0.557
##     0.342    0.312    0.516
##     0.316    0.280    0.289
##     0.410    0.373    0.426
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.806    0.013   59.815    0.000    0.780
##     sswk    (.p2.)    0.800    0.014   58.431    0.000    0.774
##     sspc    (.p3.)    0.800    0.013   63.479    0.000    0.775
##     ssei    (.p4.)    0.410    0.018   23.269    0.000    0.376
##   math =~                                                      
##     ssar    (.p5.)    0.805    0.014   57.319    0.000    0.777
##     ssmk    (.p6.)    0.639    0.020   32.719    0.000    0.601
##     ssmc    (.p7.)    0.467    0.015   30.851    0.000    0.438
##     ssao    (.p8.)    0.686    0.014   50.220    0.000    0.659
##   electronic =~                                                
##     ssai    (.p9.)    0.509    0.016   32.662    0.000    0.479
##     sssi    (.10.)    0.541    0.016   34.650    0.000    0.511
##     ssmc    (.11.)    0.268    0.012   21.882    0.000    0.244
##     ssei    (.12.)    0.331    0.015   22.192    0.000    0.302
##   speed =~                                                     
##     ssno    (.13.)    0.829    0.020   40.536    0.000    0.789
##     sscs    (.14.)    0.709    0.019   37.803    0.000    0.673
##     ssmk    (.15.)    0.246    0.018   13.842    0.000    0.211
##  ci.upper   Std.lv  Std.all
##                            
##     0.833    0.808    0.881
##     0.827    0.802    0.874
##     0.824    0.801    0.847
##     0.445    0.411    0.417
##                            
##     0.832    0.793    0.877
##     0.677    0.630    0.676
##     0.497    0.461    0.510
##     0.713    0.676    0.683
##                            
##     0.540    0.741    0.716
##     0.572    0.787    0.824
##     0.292    0.389    0.431
##     0.361    0.482    0.488
##                            
##     0.869    0.851    0.827
##     0.746    0.729    0.751
##     0.280    0.252    0.271
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.32.)    0.896    0.008  113.833    0.000    0.881
##     elctrnc (.33.)    0.866    0.015   58.121    0.000    0.836
##     speed   (.34.)    0.691    0.019   36.395    0.000    0.654
##   math ~~                                                      
##     elctrnc (.35.)    0.742    0.019   39.758    0.000    0.705
##     speed   (.36.)    0.755    0.019   39.057    0.000    0.717
##   electronic ~~                                                
##     speed   (.37.)    0.452    0.030   15.134    0.000    0.394
##  ci.upper   Std.lv  Std.all
##                            
##     0.911    0.907    0.907
##     0.895    0.594    0.594
##     0.728    0.671    0.671
##                            
##     0.778    0.517    0.517
##     0.793    0.746    0.746
##                            
##     0.511    0.303    0.303
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.502    0.026   19.492    0.000    0.452
##    .sswk    (.39.)    0.376    0.022   17.416    0.000    0.333
##    .sspc              0.191    0.027    7.137    0.000    0.138
##    .ssei    (.41.)    0.149    0.019    7.987    0.000    0.112
##    .ssar    (.42.)    0.353    0.020   17.231    0.000    0.313
##    .ssmk    (.43.)    0.372    0.022   17.021    0.000    0.329
##    .ssmc    (.44.)    0.231    0.019   12.120    0.000    0.194
##    .ssao    (.45.)    0.289    0.021   14.074    0.000    0.248
##    .ssai    (.46.)    0.027    0.017    1.575    0.115   -0.007
##    .sssi    (.47.)    0.080    0.018    4.493    0.000    0.045
##    .ssno              0.523    0.034   15.439    0.000    0.456
##    .sscs    (.49.)    0.365    0.022   16.517    0.000    0.322
##     verbal            0.026    0.039    0.663    0.507   -0.050
##     math              0.009    0.037    0.242    0.808   -0.063
##     elctrnc           1.239    0.062   19.973    0.000    1.118
##     speed            -0.515    0.047  -11.003    0.000   -0.606
##  ci.upper   Std.lv  Std.all
##     0.553    0.502    0.548
##     0.418    0.376    0.410
##     0.243    0.191    0.202
##     0.185    0.149    0.151
##     0.393    0.353    0.390
##     0.414    0.372    0.399
##     0.268    0.231    0.256
##     0.329    0.289    0.292
##     0.060    0.027    0.026
##     0.115    0.080    0.084
##     0.589    0.523    0.508
##     0.408    0.365    0.376
##     0.102    0.026    0.026
##     0.081    0.009    0.009
##     1.361    0.852    0.852
##    -0.423   -0.501   -0.501
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.188    0.009   21.407    0.000    0.171
##    .sswk              0.198    0.010   19.706    0.000    0.178
##    .sspc              0.252    0.012   20.603    0.000    0.228
##    .ssei              0.337    0.016   20.533    0.000    0.305
##    .ssar              0.189    0.011   17.740    0.000    0.168
##    .ssmk              0.171    0.009   20.009    0.000    0.154
##    .ssmc              0.266    0.013   21.082    0.000    0.241
##    .ssao              0.522    0.019   26.800    0.000    0.484
##    .ssai              0.523    0.024   21.474    0.000    0.475
##    .sssi              0.293    0.018   16.359    0.000    0.258
##    .ssno              0.336    0.022   15.311    0.000    0.293
##    .sscs              0.410    0.023   17.742    0.000    0.364
##     verbal            1.004    0.018   54.429    0.000    0.968
##     math              0.972    0.020   48.566    0.000    0.933
##     electronic        2.115    0.120   17.567    0.000    1.879
##     speed             1.055    0.057   18.444    0.000    0.943
##  ci.upper   Std.lv  Std.all
##     0.205    0.188    0.224
##     0.218    0.198    0.235
##     0.276    0.252    0.282
##     0.369    0.337    0.346
##     0.210    0.189    0.231
##     0.188    0.171    0.197
##     0.291    0.266    0.327
##     0.560    0.522    0.533
##     0.571    0.523    0.488
##     0.328    0.293    0.321
##     0.379    0.336    0.317
##     0.455    0.410    0.436
##     1.040    1.000    1.000
##     1.011    1.000    1.000
##     2.351    1.000    1.000
##     1.167    1.000    1.000
cf.vcov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1539.591   116.000     0.000     0.955     0.082     0.119 87252.721 
##       bic 
## 87649.838
Mc(cf.vcov)
## [1] 0.8231754
summary(cf.vcov, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 50 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        94
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1539.591    1338.945
##   Degrees of freedom                               116         116
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.150
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          709.400     616.948
##     0                                          830.191     721.997
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.808    0.013   63.318    0.000    0.783
##     sswk    (.p2.)    0.802    0.013   61.974    0.000    0.777
##     sspc    (.p3.)    0.800    0.012   67.222    0.000    0.776
##     ssei    (.p4.)    0.413    0.018   22.929    0.000    0.378
##   math =~                                                      
##     ssar    (.p5.)    0.800    0.013   59.701    0.000    0.774
##     ssmk    (.p6.)    0.635    0.019   33.312    0.000    0.597
##     ssmc    (.p7.)    0.455    0.015   29.880    0.000    0.425
##     ssao    (.p8.)    0.681    0.013   52.730    0.000    0.656
##   electronic =~                                                
##     ssai    (.p9.)    0.631    0.017   37.092    0.000    0.598
##     sssi    (.10.)    0.685    0.015   46.182    0.000    0.656
##     ssmc    (.11.)    0.348    0.014   25.023    0.000    0.321
##     ssei    (.12.)    0.413    0.018   23.095    0.000    0.378
##   speed =~                                                     
##     ssno    (.13.)    0.840    0.017   50.726    0.000    0.807
##     sscs    (.14.)    0.719    0.016   45.915    0.000    0.689
##     ssmk    (.15.)    0.249    0.018   13.865    0.000    0.214
##  ci.upper   Std.lv  Std.all
##                            
##     0.833    0.808    0.891
##     0.827    0.802    0.886
##     0.823    0.800    0.868
##     0.448    0.413    0.452
##                            
##     0.826    0.800    0.907
##     0.672    0.635    0.676
##     0.485    0.455    0.520
##     0.706    0.681    0.725
##                            
##     0.664    0.631    0.750
##     0.715    0.685    0.792
##     0.375    0.348    0.397
##     0.448    0.413    0.452
##                            
##     0.872    0.840    0.848
##     0.750    0.719    0.763
##     0.284    0.249    0.265
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.32.)    0.900    0.006  148.699    0.000    0.888
##     elctrnc (.33.)    0.735    0.014   51.426    0.000    0.707
##     speed   (.34.)    0.681    0.016   42.336    0.000    0.649
##   math ~~                                                      
##     elctrnc (.35.)    0.629    0.017   36.691    0.000    0.595
##     speed   (.36.)    0.751    0.016   47.252    0.000    0.720
##   electronic ~~                                                
##     speed   (.37.)    0.354    0.024   15.004    0.000    0.308
##  ci.upper   Std.lv  Std.all
##                            
##     0.912    0.900    0.900
##     0.763    0.735    0.735
##     0.713    0.681    0.681
##                            
##     0.662    0.629    0.629
##     0.782    0.751    0.751
##                            
##     0.400    0.354    0.354
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.331    0.021   15.977    0.000    0.291
##    .sswk    (.39.)    0.375    0.022   17.336    0.000    0.333
##    .sspc              0.453    0.022   20.981    0.000    0.411
##    .ssei    (.41.)    0.150    0.018    8.115    0.000    0.114
##    .ssar    (.42.)    0.354    0.020   17.291    0.000    0.314
##    .ssmk    (.43.)    0.372    0.022   17.049    0.000    0.329
##    .ssmc    (.44.)    0.226    0.019   11.724    0.000    0.188
##    .ssao    (.45.)    0.289    0.020   14.104    0.000    0.249
##    .ssai    (.46.)    0.033    0.017    1.932    0.053   -0.000
##    .sssi    (.47.)    0.075    0.018    4.246    0.000    0.041
##    .ssno              0.244    0.023   10.435    0.000    0.198
##    .sscs    (.49.)    0.364    0.022   16.496    0.000    0.321
##  ci.upper   Std.lv  Std.all
##     0.372    0.331    0.365
##     0.417    0.375    0.414
##     0.495    0.453    0.492
##     0.186    0.150    0.164
##     0.394    0.354    0.401
##     0.415    0.372    0.397
##     0.264    0.226    0.258
##     0.329    0.289    0.308
##     0.066    0.033    0.039
##     0.110    0.075    0.087
##     0.290    0.244    0.247
##     0.408    0.364    0.387
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.170    0.009   19.806    0.000    0.153
##    .sswk              0.177    0.008   20.941    0.000    0.160
##    .sspc              0.209    0.012   18.001    0.000    0.186
##    .ssei              0.242    0.011   21.335    0.000    0.220
##    .ssar              0.138    0.008   17.025    0.000    0.122
##    .ssmk              0.179    0.008   21.295    0.000    0.162
##    .ssmc              0.240    0.012   20.395    0.000    0.217
##    .ssao              0.419    0.017   24.286    0.000    0.385
##    .ssai              0.309    0.016   19.774    0.000    0.278
##    .sssi              0.279    0.015   18.881    0.000    0.250
##    .ssno              0.276    0.018   14.942    0.000    0.240
##    .sscs              0.371    0.019   19.563    0.000    0.334
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.186    0.170    0.206
##     0.193    0.177    0.216
##     0.232    0.209    0.247
##     0.264    0.242    0.290
##     0.154    0.138    0.178
##     0.195    0.179    0.203
##     0.263    0.240    0.313
##     0.453    0.419    0.475
##     0.340    0.309    0.437
##     0.308    0.279    0.373
##     0.312    0.276    0.281
##     0.408    0.371    0.418
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.808    0.013   63.318    0.000    0.783
##     sswk    (.p2.)    0.802    0.013   61.974    0.000    0.777
##     sspc    (.p3.)    0.800    0.012   67.222    0.000    0.776
##     ssei    (.p4.)    0.413    0.018   22.929    0.000    0.378
##   math =~                                                      
##     ssar    (.p5.)    0.800    0.013   59.701    0.000    0.774
##     ssmk    (.p6.)    0.635    0.019   33.312    0.000    0.597
##     ssmc    (.p7.)    0.455    0.015   29.880    0.000    0.425
##     ssao    (.p8.)    0.681    0.013   52.730    0.000    0.656
##   electronic =~                                                
##     ssai    (.p9.)    0.631    0.017   37.092    0.000    0.598
##     sssi    (.10.)    0.685    0.015   46.182    0.000    0.656
##     ssmc    (.11.)    0.348    0.014   25.023    0.000    0.321
##     ssei    (.12.)    0.413    0.018   23.095    0.000    0.378
##   speed =~                                                     
##     ssno    (.13.)    0.840    0.017   50.726    0.000    0.807
##     sscs    (.14.)    0.719    0.016   45.915    0.000    0.689
##     ssmk    (.15.)    0.249    0.018   13.865    0.000    0.214
##  ci.upper   Std.lv  Std.all
##                            
##     0.833    0.808    0.882
##     0.827    0.802    0.874
##     0.823    0.800    0.842
##     0.448    0.413    0.428
##                            
##     0.826    0.800    0.880
##     0.672    0.635    0.680
##     0.485    0.455    0.511
##     0.706    0.681    0.687
##                            
##     0.664    0.631    0.641
##     0.715    0.685    0.759
##     0.375    0.348    0.391
##     0.448    0.413    0.427
##                            
##     0.872    0.840    0.821
##     0.750    0.719    0.746
##     0.284    0.249    0.267
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.32.)    0.900    0.006  148.699    0.000    0.888
##     elctrnc (.33.)    0.735    0.014   51.426    0.000    0.707
##     speed   (.34.)    0.681    0.016   42.336    0.000    0.649
##   math ~~                                                      
##     elctrnc (.35.)    0.629    0.017   36.691    0.000    0.595
##     speed   (.36.)    0.751    0.016   47.252    0.000    0.720
##   electronic ~~                                                
##     speed   (.37.)    0.354    0.024   15.004    0.000    0.308
##  ci.upper   Std.lv  Std.all
##                            
##     0.912    0.900    0.900
##     0.763    0.735    0.735
##     0.713    0.681    0.681
##                            
##     0.662    0.629    0.629
##     0.782    0.751    0.751
##                            
##     0.400    0.354    0.354
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.501    0.026   19.333    0.000    0.450
##    .sswk    (.39.)    0.375    0.022   17.336    0.000    0.333
##    .sspc              0.190    0.027    7.057    0.000    0.137
##    .ssei    (.41.)    0.150    0.018    8.115    0.000    0.114
##    .ssar    (.42.)    0.354    0.020   17.291    0.000    0.314
##    .ssmk    (.43.)    0.372    0.022   17.049    0.000    0.329
##    .ssmc    (.44.)    0.226    0.019   11.724    0.000    0.188
##    .ssao    (.45.)    0.289    0.020   14.104    0.000    0.249
##    .ssai    (.46.)    0.033    0.017    1.932    0.053   -0.000
##    .sssi    (.47.)    0.075    0.018    4.246    0.000    0.041
##    .ssno              0.522    0.034   15.417    0.000    0.455
##    .sscs    (.49.)    0.364    0.022   16.496    0.000    0.321
##     verbal            0.027    0.039    0.698    0.485   -0.049
##     math              0.007    0.037    0.180    0.857   -0.066
##     elctrnc           0.984    0.043   22.837    0.000    0.900
##     speed            -0.506    0.046  -11.119    0.000   -0.596
##  ci.upper   Std.lv  Std.all
##     0.552    0.501    0.547
##     0.417    0.375    0.409
##     0.242    0.190    0.200
##     0.186    0.150    0.155
##     0.394    0.354    0.389
##     0.415    0.372    0.399
##     0.264    0.226    0.254
##     0.329    0.289    0.291
##     0.066    0.033    0.033
##     0.110    0.075    0.083
##     0.588    0.522    0.510
##     0.408    0.364    0.378
##     0.104    0.027    0.027
##     0.079    0.007    0.007
##     1.069    0.984    0.984
##    -0.417   -0.506   -0.506
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.186    0.009   21.827    0.000    0.169
##    .sswk              0.199    0.010   20.421    0.000    0.180
##    .sspc              0.261    0.012   21.015    0.000    0.237
##    .ssei              0.341    0.016   20.695    0.000    0.309
##    .ssar              0.187    0.011   17.788    0.000    0.167
##    .ssmk              0.170    0.009   19.852    0.000    0.153
##    .ssmc              0.267    0.013   20.802    0.000    0.242
##    .ssao              0.520    0.019   26.791    0.000    0.482
##    .ssai              0.570    0.026   22.188    0.000    0.520
##    .sssi              0.346    0.019   18.366    0.000    0.309
##    .ssno              0.341    0.023   15.100    0.000    0.297
##    .sscs              0.413    0.023   17.895    0.000    0.368
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.202    0.186    0.221
##     0.219    0.199    0.237
##     0.286    0.261    0.290
##     0.374    0.341    0.366
##     0.208    0.187    0.226
##     0.187    0.170    0.195
##     0.292    0.267    0.336
##     0.558    0.520    0.528
##     0.621    0.570    0.589
##     0.383    0.346    0.424
##     0.386    0.341    0.326
##     0.458    0.413    0.444
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
cf.cov2<-cfa(cf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1228.407   115.000     0.000     0.965     0.073     0.095 86943.538 
##       bic 
## 87346.859
Mc(cf.cov2)
## [1] 0.8588268
summary(cf.cov2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 60 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        95
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1228.407    1070.080
##   Degrees of freedom                               115         115
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.148
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          512.616     446.546
##     0                                          715.791     623.534
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.807    0.013   63.107    0.000    0.782
##     sswk    (.p2.)    0.801    0.013   62.053    0.000    0.776
##     sspc    (.p3.)    0.800    0.012   67.376    0.000    0.777
##     ssei    (.p4.)    0.410    0.018   23.170    0.000    0.376
##   math =~                                                      
##     ssar    (.p5.)    0.800    0.013   59.647    0.000    0.773
##     ssmk    (.p6.)    0.635    0.019   33.343    0.000    0.597
##     ssmc    (.p7.)    0.464    0.015   31.403    0.000    0.435
##     ssao    (.p8.)    0.681    0.013   52.770    0.000    0.656
##   electronic =~                                                
##     ssai    (.p9.)    0.509    0.016   32.720    0.000    0.479
##     sssi    (.10.)    0.542    0.016   34.717    0.000    0.511
##     ssmc    (.11.)    0.268    0.012   21.953    0.000    0.244
##     ssei    (.12.)    0.331    0.015   22.258    0.000    0.302
##   speed =~                                                     
##     ssno    (.13.)    0.840    0.017   50.573    0.000    0.807
##     sscs    (.14.)    0.720    0.016   45.880    0.000    0.689
##     ssmk    (.15.)    0.249    0.018   13.869    0.000    0.213
##  ci.upper   Std.lv  Std.all
##                            
##     0.832    0.807    0.891
##     0.827    0.801    0.884
##     0.824    0.800    0.866
##     0.445    0.410    0.473
##                            
##     0.826    0.800    0.906
##     0.672    0.635    0.676
##     0.492    0.464    0.548
##     0.706    0.681    0.726
##                            
##     0.540    0.509    0.665
##     0.572    0.542    0.696
##     0.292    0.268    0.317
##     0.361    0.331    0.382
##                            
##     0.872    0.840    0.848
##     0.750    0.720    0.763
##     0.284    0.249    0.265
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.32.)    0.901    0.006  149.380    0.000    0.889
##     elctrnc (.33.)    0.866    0.015   58.164    0.000    0.837
##     speed   (.34.)    0.681    0.016   42.336    0.000    0.650
##   math ~~                                                      
##     elctrnc (.35.)    0.746    0.018   40.839    0.000    0.710
##     speed   (.36.)    0.750    0.016   47.241    0.000    0.719
##   electronic ~~                                                
##     speed   (.37.)    0.443    0.027   16.135    0.000    0.389
##  ci.upper   Std.lv  Std.all
##                            
##     0.913    0.901    0.901
##     0.895    0.866    0.866
##     0.713    0.681    0.681
##                            
##     0.782    0.746    0.746
##     0.782    0.750    0.750
##                            
##     0.497    0.443    0.443
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.331    0.021   15.977    0.000    0.291
##    .sswk    (.39.)    0.376    0.022   17.415    0.000    0.333
##    .sspc              0.453    0.022   20.981    0.000    0.411
##    .ssei    (.41.)    0.149    0.019    7.989    0.000    0.112
##    .ssar    (.42.)    0.354    0.020   17.253    0.000    0.313
##    .ssmk    (.43.)    0.372    0.022   17.017    0.000    0.329
##    .ssmc    (.44.)    0.231    0.019   12.103    0.000    0.193
##    .ssao    (.45.)    0.289    0.021   14.072    0.000    0.248
##    .ssai    (.46.)    0.027    0.017    1.578    0.114   -0.006
##    .sssi    (.47.)    0.080    0.018    4.498    0.000    0.045
##    .ssno              0.244    0.023   10.435    0.000    0.198
##    .sscs    (.49.)    0.365    0.022   16.518    0.000    0.322
##  ci.upper   Std.lv  Std.all
##     0.372    0.331    0.366
##     0.418    0.376    0.414
##     0.495    0.453    0.490
##     0.185    0.149    0.171
##     0.394    0.354    0.400
##     0.414    0.372    0.396
##     0.268    0.231    0.273
##     0.329    0.289    0.307
##     0.060    0.027    0.035
##     0.115    0.080    0.103
##     0.290    0.244    0.247
##     0.408    0.365    0.387
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.169    0.008   20.139    0.000    0.153
##    .sswk              0.180    0.008   21.206    0.000    0.163
##    .sspc              0.213    0.012   18.172    0.000    0.190
##    .ssei              0.240    0.011   21.864    0.000    0.219
##    .ssar              0.140    0.008   17.154    0.000    0.124
##    .ssmk              0.179    0.008   21.345    0.000    0.163
##    .ssmc              0.244    0.012   20.479    0.000    0.221
##    .ssao              0.417    0.017   24.308    0.000    0.383
##    .ssai              0.327    0.015   21.593    0.000    0.297
##    .sssi              0.312    0.015   20.680    0.000    0.283
##    .ssno              0.275    0.018   14.894    0.000    0.239
##    .sscs              0.372    0.019   19.507    0.000    0.335
##     electronic        1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.186    0.169    0.206
##     0.196    0.180    0.219
##     0.237    0.213    0.250
##     0.262    0.240    0.319
##     0.156    0.140    0.180
##     0.196    0.179    0.203
##     0.268    0.244    0.341
##     0.451    0.417    0.473
##     0.356    0.327    0.557
##     0.342    0.312    0.516
##     0.311    0.275    0.281
##     0.409    0.372    0.418
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.807    0.013   63.107    0.000    0.782
##     sswk    (.p2.)    0.801    0.013   62.053    0.000    0.776
##     sspc    (.p3.)    0.800    0.012   67.376    0.000    0.777
##     ssei    (.p4.)    0.410    0.018   23.170    0.000    0.376
##   math =~                                                      
##     ssar    (.p5.)    0.800    0.013   59.647    0.000    0.773
##     ssmk    (.p6.)    0.635    0.019   33.343    0.000    0.597
##     ssmc    (.p7.)    0.464    0.015   31.403    0.000    0.435
##     ssao    (.p8.)    0.681    0.013   52.770    0.000    0.656
##   electronic =~                                                
##     ssai    (.p9.)    0.509    0.016   32.720    0.000    0.479
##     sssi    (.10.)    0.542    0.016   34.717    0.000    0.511
##     ssmc    (.11.)    0.268    0.012   21.953    0.000    0.244
##     ssei    (.12.)    0.331    0.015   22.258    0.000    0.302
##   speed =~                                                     
##     ssno    (.13.)    0.840    0.017   50.573    0.000    0.807
##     sscs    (.14.)    0.720    0.016   45.880    0.000    0.689
##     ssmk    (.15.)    0.249    0.018   13.869    0.000    0.213
##  ci.upper   Std.lv  Std.all
##                            
##     0.832    0.807    0.881
##     0.827    0.801    0.875
##     0.824    0.800    0.847
##     0.445    0.410    0.416
##                            
##     0.826    0.800    0.880
##     0.672    0.635    0.680
##     0.492    0.464    0.513
##     0.706    0.681    0.686
##                            
##     0.540    0.741    0.716
##     0.572    0.787    0.824
##     0.292    0.390    0.431
##     0.361    0.482    0.489
##                            
##     0.872    0.840    0.821
##     0.750    0.720    0.747
##     0.284    0.249    0.266
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.32.)    0.901    0.006  149.380    0.000    0.889
##     elctrnc (.33.)    0.866    0.015   58.164    0.000    0.837
##     speed   (.34.)    0.681    0.016   42.336    0.000    0.650
##   math ~~                                                      
##     elctrnc (.35.)    0.746    0.018   40.839    0.000    0.710
##     speed   (.36.)    0.750    0.016   47.241    0.000    0.719
##   electronic ~~                                                
##     speed   (.37.)    0.443    0.027   16.135    0.000    0.389
##  ci.upper   Std.lv  Std.all
##                            
##     0.913    0.901    0.901
##     0.895    0.595    0.595
##     0.713    0.681    0.681
##                            
##     0.782    0.513    0.513
##     0.782    0.750    0.750
##                            
##     0.497    0.305    0.305
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.502    0.026   19.492    0.000    0.452
##    .sswk    (.39.)    0.376    0.022   17.415    0.000    0.333
##    .sspc              0.191    0.027    7.138    0.000    0.138
##    .ssei    (.41.)    0.149    0.019    7.989    0.000    0.112
##    .ssar    (.42.)    0.354    0.020   17.253    0.000    0.313
##    .ssmk    (.43.)    0.372    0.022   17.017    0.000    0.329
##    .ssmc    (.44.)    0.231    0.019   12.103    0.000    0.193
##    .ssao    (.45.)    0.289    0.021   14.072    0.000    0.248
##    .ssai    (.46.)    0.027    0.017    1.578    0.114   -0.006
##    .sssi    (.47.)    0.080    0.018    4.498    0.000    0.045
##    .ssno              0.523    0.034   15.443    0.000    0.456
##    .sscs    (.49.)    0.365    0.022   16.518    0.000    0.322
##     verbal            0.026    0.039    0.663    0.507   -0.050
##     math              0.009    0.037    0.239    0.811   -0.064
##     elctrnc           1.239    0.062   20.005    0.000    1.117
##     speed            -0.507    0.046  -11.138    0.000   -0.597
##  ci.upper   Std.lv  Std.all
##     0.553    0.502    0.548
##     0.418    0.376    0.410
##     0.243    0.191    0.202
##     0.185    0.149    0.151
##     0.394    0.354    0.389
##     0.414    0.372    0.398
##     0.268    0.231    0.255
##     0.329    0.289    0.291
##     0.060    0.027    0.026
##     0.115    0.080    0.084
##     0.589    0.523    0.511
##     0.408    0.365    0.379
##     0.102    0.026    0.026
##     0.081    0.009    0.009
##     1.360    0.852    0.852
##    -0.418   -0.507   -0.507
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.188    0.009   21.525    0.000    0.171
##    .sswk              0.197    0.010   19.935    0.000    0.177
##    .sspc              0.253    0.012   20.618    0.000    0.229
##    .ssei              0.337    0.016   20.510    0.000    0.305
##    .ssar              0.186    0.010   17.775    0.000    0.166
##    .ssmk              0.170    0.009   19.905    0.000    0.153
##    .ssmc              0.266    0.013   21.036    0.000    0.241
##    .ssao              0.521    0.019   26.810    0.000    0.483
##    .ssai              0.523    0.024   21.491    0.000    0.475
##    .sssi              0.293    0.018   16.392    0.000    0.258
##    .ssno              0.342    0.023   15.105    0.000    0.298
##    .sscs              0.411    0.023   17.846    0.000    0.366
##     electronic        2.114    0.120   17.631    0.000    1.879
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.205    0.188    0.224
##     0.216    0.197    0.235
##     0.277    0.253    0.283
##     0.369    0.337    0.346
##     0.207    0.186    0.226
##     0.187    0.170    0.195
##     0.291    0.266    0.325
##     0.559    0.521    0.529
##     0.571    0.523    0.488
##     0.328    0.293    0.321
##     0.386    0.342    0.327
##     0.456    0.411    0.442
##     2.349    1.000    1.000
reduced<-cfa(cf.reduced, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1229.035   117.000     0.000     0.965     0.072     0.095 86940.166 
##       bic 
## 87331.077
Mc(reduced)
## [1] 0.8589879
summary(reduced, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 55 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        93
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1229.035    1070.838
##   Degrees of freedom                               117         117
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.148
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          512.736     446.739
##     0                                          716.299     624.100
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.807    0.013   63.121    0.000    0.782
##     sswk    (.p2.)    0.801    0.013   62.131    0.000    0.776
##     sspc    (.p3.)    0.800    0.012   67.381    0.000    0.777
##     ssei    (.p4.)    0.409    0.018   23.337    0.000    0.375
##   math =~                                                      
##     ssar    (.p5.)    0.800    0.013   59.700    0.000    0.773
##     ssmk    (.p6.)    0.634    0.019   33.642    0.000    0.597
##     ssmc    (.p7.)    0.464    0.015   31.450    0.000    0.435
##     ssao    (.p8.)    0.681    0.013   52.856    0.000    0.656
##   electronic =~                                                
##     ssai    (.p9.)    0.509    0.016   32.713    0.000    0.479
##     sssi    (.10.)    0.541    0.016   34.705    0.000    0.511
##     ssmc    (.11.)    0.268    0.012   21.957    0.000    0.244
##     ssei    (.12.)    0.333    0.015   22.647    0.000    0.304
##   speed =~                                                     
##     ssno    (.13.)    0.840    0.017   50.567    0.000    0.807
##     sscs    (.14.)    0.719    0.016   45.883    0.000    0.689
##     ssmk    (.15.)    0.250    0.018   14.156    0.000    0.215
##  ci.upper   Std.lv  Std.all
##                            
##     0.832    0.807    0.891
##     0.827    0.801    0.884
##     0.824    0.800    0.866
##     0.443    0.409    0.471
##                            
##     0.826    0.800    0.906
##     0.671    0.634    0.675
##     0.493    0.464    0.548
##     0.706    0.681    0.726
##                            
##     0.540    0.509    0.665
##     0.572    0.541    0.696
##     0.292    0.268    0.316
##     0.362    0.333    0.383
##                            
##     0.872    0.840    0.848
##     0.750    0.719    0.763
##     0.284    0.250    0.266
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.34.)    0.901    0.006  149.278    0.000    0.889
##     elctrnc (.35.)    0.866    0.015   58.228    0.000    0.837
##     speed   (.36.)    0.682    0.016   42.412    0.000    0.650
##   math ~~                                                      
##     elctrnc (.37.)    0.746    0.018   40.932    0.000    0.710
##     speed   (.38.)    0.750    0.016   47.151    0.000    0.719
##   electronic ~~                                                
##     speed   (.39.)    0.444    0.027   16.172    0.000    0.390
##  ci.upper   Std.lv  Std.all
##                            
##     0.913    0.901    0.901
##     0.895    0.866    0.866
##     0.713    0.682    0.682
##                            
##     0.782    0.746    0.746
##     0.782    0.750    0.750
##                            
##     0.498    0.444    0.444
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            0.000                               0.000
##     math              0.000                               0.000
##    .ssgs              0.338    0.017   19.667    0.000    0.304
##    .sswk    (.41.)    0.386    0.016   24.686    0.000    0.355
##    .sspc              0.460    0.018   25.651    0.000    0.425
##    .ssei    (.43.)    0.155    0.016    9.593    0.000    0.124
##    .ssar    (.44.)    0.357    0.016   23.033    0.000    0.327
##    .ssmk    (.45.)    0.376    0.017   21.978    0.000    0.342
##    .ssmc    (.46.)    0.235    0.016   14.835    0.000    0.204
##    .ssao    (.47.)    0.292    0.017   17.442    0.000    0.259
##    .ssai    (.48.)    0.031    0.016    1.911    0.056   -0.001
##    .sssi    (.49.)    0.084    0.017    5.065    0.000    0.051
##    .ssno              0.248    0.022   11.394    0.000    0.205
##    .sscs    (.51.)    0.369    0.021   17.816    0.000    0.328
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.372    0.338    0.373
##     0.417    0.386    0.426
##     0.495    0.460    0.498
##     0.187    0.155    0.179
##     0.388    0.357    0.405
##     0.409    0.376    0.401
##     0.266    0.235    0.278
##     0.325    0.292    0.311
##     0.062    0.031    0.040
##     0.116    0.084    0.108
##     0.291    0.248    0.251
##     0.409    0.369    0.391
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.169    0.008   20.139    0.000    0.153
##    .sswk              0.180    0.008   21.198    0.000    0.163
##    .sspc              0.213    0.012   18.171    0.000    0.190
##    .ssei              0.240    0.011   21.850    0.000    0.219
##    .ssar              0.140    0.008   17.080    0.000    0.124
##    .ssmk              0.179    0.008   21.340    0.000    0.163
##    .ssmc              0.245    0.012   20.489    0.000    0.221
##    .ssao              0.417    0.017   24.336    0.000    0.383
##    .ssai              0.327    0.015   21.598    0.000    0.297
##    .sssi              0.312    0.015   20.684    0.000    0.283
##    .ssno              0.275    0.018   14.889    0.000    0.239
##    .sscs              0.372    0.019   19.517    0.000    0.335
##     electronic        1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.186    0.169    0.206
##     0.196    0.180    0.219
##     0.237    0.213    0.250
##     0.262    0.240    0.318
##     0.156    0.140    0.180
##     0.196    0.179    0.204
##     0.268    0.245    0.341
##     0.451    0.417    0.473
##     0.357    0.327    0.558
##     0.342    0.312    0.516
##     0.312    0.275    0.281
##     0.409    0.372    0.418
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.807    0.013   63.121    0.000    0.782
##     sswk    (.p2.)    0.801    0.013   62.131    0.000    0.776
##     sspc    (.p3.)    0.800    0.012   67.381    0.000    0.777
##     ssei    (.p4.)    0.409    0.018   23.337    0.000    0.375
##   math =~                                                      
##     ssar    (.p5.)    0.800    0.013   59.700    0.000    0.773
##     ssmk    (.p6.)    0.634    0.019   33.642    0.000    0.597
##     ssmc    (.p7.)    0.464    0.015   31.450    0.000    0.435
##     ssao    (.p8.)    0.681    0.013   52.856    0.000    0.656
##   electronic =~                                                
##     ssai    (.p9.)    0.509    0.016   32.713    0.000    0.479
##     sssi    (.10.)    0.541    0.016   34.705    0.000    0.511
##     ssmc    (.11.)    0.268    0.012   21.957    0.000    0.244
##     ssei    (.12.)    0.333    0.015   22.647    0.000    0.304
##   speed =~                                                     
##     ssno    (.13.)    0.840    0.017   50.567    0.000    0.807
##     sscs    (.14.)    0.719    0.016   45.883    0.000    0.689
##     ssmk    (.15.)    0.250    0.018   14.156    0.000    0.215
##  ci.upper   Std.lv  Std.all
##                            
##     0.832    0.807    0.881
##     0.827    0.801    0.875
##     0.824    0.800    0.847
##     0.443    0.409    0.414
##                            
##     0.826    0.800    0.880
##     0.671    0.634    0.679
##     0.493    0.464    0.513
##     0.706    0.681    0.686
##                            
##     0.540    0.741    0.715
##     0.572    0.787    0.824
##     0.292    0.389    0.430
##     0.362    0.484    0.490
##                            
##     0.872    0.840    0.821
##     0.750    0.719    0.747
##     0.284    0.250    0.267
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.34.)    0.901    0.006  149.278    0.000    0.889
##     elctrnc (.35.)    0.866    0.015   58.228    0.000    0.837
##     speed   (.36.)    0.682    0.016   42.412    0.000    0.650
##   math ~~                                                      
##     elctrnc (.37.)    0.746    0.018   40.932    0.000    0.710
##     speed   (.38.)    0.750    0.016   47.151    0.000    0.719
##   electronic ~~                                                
##     speed   (.39.)    0.444    0.027   16.172    0.000    0.390
##  ci.upper   Std.lv  Std.all
##                            
##     0.913    0.901    0.901
##     0.895    0.596    0.596
##     0.713    0.682    0.682
##                            
##     0.782    0.513    0.513
##     0.782    0.750    0.750
##                            
##     0.498    0.305    0.305
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            0.000                               0.000
##     math              0.000                               0.000
##    .ssgs              0.516    0.019   27.746    0.000    0.480
##    .sswk    (.41.)    0.386    0.016   24.686    0.000    0.355
##    .sspc              0.205    0.019   10.784    0.000    0.168
##    .ssei    (.43.)    0.155    0.016    9.593    0.000    0.124
##    .ssar    (.44.)    0.357    0.016   23.033    0.000    0.327
##    .ssmk    (.45.)    0.376    0.017   21.978    0.000    0.342
##    .ssmc    (.46.)    0.235    0.016   14.835    0.000    0.204
##    .ssao    (.47.)    0.292    0.017   17.442    0.000    0.259
##    .ssai    (.48.)    0.031    0.016    1.911    0.056   -0.001
##    .sssi    (.49.)    0.084    0.017    5.065    0.000    0.051
##    .ssno              0.527    0.032   16.299    0.000    0.464
##    .sscs    (.51.)    0.369    0.021   17.816    0.000    0.328
##     elctrnc           1.224    0.055   22.294    0.000    1.117
##     speed            -0.518    0.038  -13.502    0.000   -0.593
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.553    0.516    0.564
##     0.417    0.386    0.421
##     0.242    0.205    0.217
##     0.187    0.155    0.157
##     0.388    0.357    0.393
##     0.409    0.376    0.403
##     0.266    0.235    0.260
##     0.325    0.292    0.294
##     0.062    0.031    0.030
##     0.116    0.084    0.088
##     0.591    0.527    0.515
##     0.409    0.369    0.382
##     1.332    0.842    0.842
##    -0.442   -0.518   -0.518
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.188    0.009   21.525    0.000    0.171
##    .sswk              0.197    0.010   19.933    0.000    0.177
##    .sspc              0.253    0.012   20.623    0.000    0.229
##    .ssei              0.336    0.016   20.504    0.000    0.304
##    .ssar              0.186    0.010   17.927    0.000    0.166
##    .ssmk              0.170    0.009   19.892    0.000    0.153
##    .ssmc              0.266    0.013   21.022    0.000    0.241
##    .ssao              0.521    0.019   26.829    0.000    0.483
##    .ssai              0.523    0.024   21.509    0.000    0.475
##    .sssi              0.293    0.018   16.428    0.000    0.258
##    .ssno              0.342    0.023   15.115    0.000    0.298
##    .sscs              0.411    0.023   17.859    0.000    0.366
##     electronic        2.114    0.120   17.637    0.000    1.879
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.205    0.188    0.224
##     0.216    0.197    0.235
##     0.277    0.253    0.283
##     0.369    0.336    0.346
##     0.207    0.186    0.226
##     0.187    0.170    0.195
##     0.291    0.266    0.325
##     0.559    0.521    0.529
##     0.571    0.523    0.488
##     0.328    0.293    0.321
##     0.386    0.342    0.327
##     0.456    0.411    0.443
##     2.348    1.000    1.000
tests<-lavTestLRT(configural, metric, scalar2, cf.cov, cf.cov2, reduced)
Td=tests[2:6,"Chisq diff"]
Td
## [1] 89.9528865 82.3674282 90.4367701  2.8941629  0.5534058
dfd=tests[2:6,"Df diff"]
dfd
## [1] 11  5  6  3  2
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.06265276 0.09199127 0.08772890        NaN        NaN
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.05102160 0.07494727
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.07511388 0.10996169
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.07226633 0.10413636
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1]         NA 0.03889373
RMSEA.CI(T=Td[5],df=dfd[5],N=N,G=2)
## [1]         NA 0.03142063
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.963     0.662     0.010     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.999     0.882     0.242
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.998     0.802     0.112
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.592     0.512     0.008     0.001     0.000     0.000
round(pvals(T=Td[5],df=dfd[5],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.242     0.206     0.004     0.001     0.000     0.000
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1]  89.95289  82.36743 135.50078
dfd=tests[2:4,"Df diff"]
dfd
## [1] 11  5 12
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06265276 0.09199127 0.07502340
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.05102160 0.07494727
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.07511388 0.10996169
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.06393755 0.08663601
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.963     0.662     0.010     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.999     0.882     0.242
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.987     0.249     0.000
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]  89.95289 542.07374
dfd=tests[2:3,"Df diff"]
dfd
## [1] 11  8
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06265276 0.19107688
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.05102160 0.07494727
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1775845 0.2048696
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.963     0.662     0.010     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
# ONE FACTOR, just for checking if gap direction aligns with HOF

fmodel<-'
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao
'

configural<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  4430.975   108.000     0.000     0.864     0.148     0.066 90160.105 
##       bic 
## 90606.861
Mc(configural)
## [1] 0.5538324
metric<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  4602.582   119.000     0.000     0.859     0.144     0.079 90309.712 
##       bic 
## 90688.214
Mc(metric)
## [1] 0.5418067
scalar<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  7155.640   130.000     0.000     0.778     0.172     0.105 92840.771 
##       bic 
## 93151.018
Mc(scalar)
## [1] 0.3827736
summary(scalar, standardized=T, ci=T) # -0.082
## lavaan 0.6-18 ended normally after 42 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        74
##   Number of equality constraints                    24
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              7155.640    6228.649
##   Degrees of freedom                               130         130
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.149
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         2599.517    2262.758
##     0                                         4556.123    3965.892
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g =~                                                         
##     ssgs    (.p1.)    0.722    0.015   47.295    0.000    0.692
##     ssar    (.p2.)    0.702    0.016   43.412    0.000    0.670
##     sswk    (.p3.)    0.710    0.016   44.259    0.000    0.678
##     sspc    (.p4.)    0.724    0.015   46.857    0.000    0.694
##     ssno    (.p5.)    0.555    0.017   31.847    0.000    0.521
##     sscs    (.p6.)    0.511    0.016   31.658    0.000    0.479
##     ssai    (.p7.)    0.444    0.016   27.481    0.000    0.412
##     sssi    (.p8.)    0.451    0.017   27.187    0.000    0.418
##     ssmk    (.p9.)    0.722    0.016   44.694    0.000    0.690
##     ssmc    (.10.)    0.645    0.016   40.525    0.000    0.613
##     ssei    (.11.)    0.641    0.016   40.163    0.000    0.610
##     ssao    (.12.)    0.601    0.015   40.910    0.000    0.572
##  ci.upper   Std.lv  Std.all
##                            
##     0.752    0.722    0.846
##     0.734    0.702    0.844
##     0.741    0.710    0.833
##     0.754    0.724    0.827
##     0.589    0.555    0.586
##     0.543    0.511    0.554
##     0.475    0.444    0.571
##     0.483    0.451    0.559
##     0.754    0.722    0.817
##     0.676    0.645    0.774
##     0.673    0.641    0.762
##     0.630    0.601    0.663
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.26.)    0.390    0.020   19.218    0.000    0.350
##    .ssar    (.27.)    0.327    0.020   16.237    0.000    0.288
##    .sswk    (.28.)    0.353    0.021   17.048    0.000    0.312
##    .sspc    (.29.)    0.309    0.022   14.115    0.000    0.266
##    .ssno    (.30.)    0.152    0.021    7.407    0.000    0.112
##    .sscs    (.31.)    0.168    0.020    8.331    0.000    0.129
##    .ssai    (.32.)    0.206    0.018   11.573    0.000    0.171
##    .sssi    (.33.)    0.290    0.021   13.663    0.000    0.249
##    .ssmk    (.34.)    0.277    0.022   12.805    0.000    0.235
##    .ssmc    (.35.)    0.354    0.019   18.672    0.000    0.317
##    .ssei    (.36.)    0.276    0.019   14.208    0.000    0.238
##    .ssao    (.37.)    0.263    0.020   13.031    0.000    0.224
##  ci.upper   Std.lv  Std.all
##     0.429    0.390    0.457
##     0.367    0.327    0.393
##     0.393    0.353    0.414
##     0.352    0.309    0.353
##     0.192    0.152    0.161
##     0.208    0.168    0.182
##     0.241    0.206    0.265
##     0.332    0.290    0.360
##     0.319    0.277    0.313
##     0.391    0.354    0.425
##     0.315    0.276    0.328
##     0.303    0.263    0.290
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.206    0.009   21.929    0.000    0.188
##    .ssar              0.199    0.009   22.759    0.000    0.182
##    .sswk              0.222    0.010   22.889    0.000    0.203
##    .sspc              0.243    0.013   19.412    0.000    0.218
##    .ssno              0.590    0.030   19.518    0.000    0.531
##    .sscs              0.590    0.026   22.687    0.000    0.539
##    .ssai              0.407    0.017   23.388    0.000    0.373
##    .sssi              0.446    0.020   22.272    0.000    0.406
##    .ssmk              0.259    0.010   24.798    0.000    0.238
##    .ssmc              0.278    0.014   20.233    0.000    0.251
##    .ssei              0.298    0.013   22.827    0.000    0.272
##    .ssao              0.460    0.018   25.654    0.000    0.425
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.225    0.206    0.284
##     0.217    0.199    0.288
##     0.241    0.222    0.306
##     0.267    0.243    0.316
##     0.649    0.590    0.657
##     0.641    0.590    0.693
##     0.441    0.407    0.674
##     0.485    0.446    0.687
##     0.279    0.259    0.332
##     0.305    0.278    0.401
##     0.323    0.298    0.420
##     0.495    0.460    0.560
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g =~                                                         
##     ssgs    (.p1.)    0.722    0.015   47.295    0.000    0.692
##     ssar    (.p2.)    0.702    0.016   43.412    0.000    0.670
##     sswk    (.p3.)    0.710    0.016   44.259    0.000    0.678
##     sspc    (.p4.)    0.724    0.015   46.857    0.000    0.694
##     ssno    (.p5.)    0.555    0.017   31.847    0.000    0.521
##     sscs    (.p6.)    0.511    0.016   31.658    0.000    0.479
##     ssai    (.p7.)    0.444    0.016   27.481    0.000    0.412
##     sssi    (.p8.)    0.451    0.017   27.187    0.000    0.418
##     ssmk    (.p9.)    0.722    0.016   44.694    0.000    0.690
##     ssmc    (.10.)    0.645    0.016   40.525    0.000    0.613
##     ssei    (.11.)    0.641    0.016   40.163    0.000    0.610
##     ssao    (.12.)    0.601    0.015   40.910    0.000    0.572
##  ci.upper   Std.lv  Std.all
##                            
##     0.752    0.843    0.867
##     0.734    0.819    0.857
##     0.741    0.828    0.857
##     0.754    0.845    0.842
##     0.589    0.648    0.606
##     0.543    0.596    0.587
##     0.475    0.518    0.456
##     0.483    0.526    0.490
##     0.754    0.842    0.852
##     0.676    0.752    0.783
##     0.673    0.748    0.710
##     0.630    0.701    0.687
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.26.)    0.390    0.020   19.218    0.000    0.350
##    .ssar    (.27.)    0.327    0.020   16.237    0.000    0.288
##    .sswk    (.28.)    0.353    0.021   17.048    0.000    0.312
##    .sspc    (.29.)    0.309    0.022   14.115    0.000    0.266
##    .ssno    (.30.)    0.152    0.021    7.407    0.000    0.112
##    .sscs    (.31.)    0.168    0.020    8.331    0.000    0.129
##    .ssai    (.32.)    0.206    0.018   11.573    0.000    0.171
##    .sssi    (.33.)    0.290    0.021   13.663    0.000    0.249
##    .ssmk    (.34.)    0.277    0.022   12.805    0.000    0.235
##    .ssmc    (.35.)    0.354    0.019   18.672    0.000    0.317
##    .ssei    (.36.)    0.276    0.019   14.208    0.000    0.238
##    .ssao    (.37.)    0.263    0.020   13.031    0.000    0.224
##     g                 0.095    0.041    2.339    0.019    0.015
##  ci.upper   Std.lv  Std.all
##     0.429    0.390    0.401
##     0.367    0.327    0.343
##     0.393    0.353    0.366
##     0.352    0.309    0.308
##     0.192    0.152    0.142
##     0.208    0.168    0.165
##     0.241    0.206    0.181
##     0.332    0.290    0.271
##     0.319    0.277    0.280
##     0.391    0.354    0.369
##     0.315    0.276    0.262
##     0.303    0.263    0.258
##     0.176    0.082    0.082
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.235    0.010   23.093    0.000    0.215
##    .ssar              0.242    0.011   22.502    0.000    0.221
##    .sswk              0.247    0.011   23.038    0.000    0.226
##    .sspc              0.293    0.014   20.998    0.000    0.265
##    .ssno              0.722    0.035   20.796    0.000    0.654
##    .sscs              0.677    0.031   21.542    0.000    0.615
##    .ssai              1.022    0.048   21.186    0.000    0.928
##    .sssi              0.873    0.039   22.306    0.000    0.796
##    .ssmk              0.267    0.012   22.207    0.000    0.243
##    .ssmc              0.357    0.016   22.344    0.000    0.325
##    .ssei              0.550    0.026   20.741    0.000    0.498
##    .ssao              0.550    0.020   27.779    0.000    0.511
##     g                 1.361    0.070   19.579    0.000    1.225
##  ci.upper   Std.lv  Std.all
##     0.255    0.235    0.249
##     0.263    0.242    0.266
##     0.268    0.247    0.265
##     0.320    0.293    0.291
##     0.790    0.722    0.633
##     0.738    0.677    0.656
##     1.117    1.022    0.792
##     0.949    0.873    0.760
##     0.290    0.267    0.273
##     0.388    0.357    0.387
##     0.601    0.550    0.495
##     0.589    0.550    0.528
##     1.497    1.000    1.000
# HIGH ORDER FACTOR

hof.model<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
'

hof.lv<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
speed~~1*speed
math~~1*math
'

hof.weak<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
speed~~1*speed
math~~1*math
verbal~0*1
math~0*1
g~0*1
'

hof.weak2<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
speed~~1*speed
math~~1*math
verbal~0*1
math~0*1
'

baseline<-cfa(hof.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1514.370    47.000     0.000     0.954     0.092     0.044 89295.407 
##       bic 
## 89562.219
Mc(baseline)
## [1] 0.8182642
configural<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1240.765    94.000     0.000     0.964     0.082     0.036 86997.895 
##       bic 
## 87531.521
Mc(configural)
## [1] 0.8549199
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 116 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1240.765    1092.323
##   Degrees of freedom                                94          94
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.136
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          473.208     416.594
##     0                                          767.557     675.728
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.129    0.042    3.101    0.002    0.047
##     sswk              0.137    0.044    3.089    0.002    0.050
##     sspc              0.133    0.043    3.104    0.002    0.049
##     ssei              0.063    0.023    2.735    0.006    0.018
##   math =~                                                      
##     ssar              0.322    0.020   16.425    0.000    0.283
##     ssmk              0.257    0.019   13.522    0.000    0.220
##     ssmc              0.179    0.016   10.999    0.000    0.147
##     ssao              0.278    0.018   15.147    0.000    0.242
##   electronic =~                                                
##     ssai              0.275    0.020   13.644    0.000    0.235
##     sssi              0.289    0.021   13.648    0.000    0.248
##     ssmc              0.158    0.017    9.082    0.000    0.124
##     ssei              0.147    0.023    6.509    0.000    0.103
##   speed =~                                                     
##     ssno              0.565    0.029   19.366    0.000    0.508
##     sscs              0.484    0.024   20.001    0.000    0.436
##     ssmk              0.201    0.017   11.802    0.000    0.167
##   g =~                                                         
##     verbal            5.590    1.856    3.012    0.003    1.953
##     math              2.095    0.160   13.103    0.000    1.781
##     electronic        1.432    0.113   12.649    0.000    1.210
##     speed             0.966    0.070   13.714    0.000    0.828
##  ci.upper   Std.lv  Std.all
##                            
##     0.211    0.732    0.869
##     0.224    0.779    0.883
##     0.216    0.753    0.856
##     0.107    0.355    0.464
##                            
##     0.360    0.746    0.894
##     0.295    0.597    0.659
##     0.211    0.416    0.513
##     0.314    0.645    0.712
##                            
##     0.314    0.480    0.650
##     0.331    0.505    0.673
##     0.192    0.276    0.340
##     0.191    0.257    0.336
##                            
##     0.622    0.785    0.830
##     0.531    0.672    0.742
##     0.234    0.279    0.308
##                            
##     9.227    0.984    0.984
##     2.408    0.902    0.902
##     1.654    0.820    0.820
##     1.104    0.695    0.695
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.331    0.021   15.977    0.000    0.291
##    .sswk              0.379    0.022   17.461    0.000    0.337
##    .sspc              0.453    0.022   20.981    0.000    0.411
##    .ssei              0.139    0.019    7.329    0.000    0.102
##    .ssar              0.327    0.021   15.677    0.000    0.286
##    .ssmk              0.382    0.022   16.962    0.000    0.337
##    .ssmc              0.235    0.020   11.729    0.000    0.196
##    .ssao              0.356    0.022   15.988    0.000    0.312
##    .ssai              0.055    0.018    3.026    0.002    0.019
##    .sssi              0.059    0.019    3.200    0.001    0.023
##    .ssno              0.244    0.023   10.435    0.000    0.198
##    .sscs              0.358    0.023   15.788    0.000    0.313
##  ci.upper   Std.lv  Std.all
##     0.372    0.331    0.393
##     0.422    0.379    0.430
##     0.495    0.453    0.515
##     0.176    0.139    0.182
##     0.368    0.327    0.392
##     0.426    0.382    0.421
##     0.274    0.235    0.289
##     0.399    0.356    0.392
##     0.091    0.055    0.075
##     0.096    0.059    0.079
##     0.290    0.244    0.258
##     0.402    0.358    0.395
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.174    0.009   19.885    0.000    0.157
##    .sswk              0.171    0.008   20.273    0.000    0.155
##    .sspc              0.207    0.012   17.300    0.000    0.184
##    .ssei              0.247    0.011   21.644    0.000    0.224
##    .ssar              0.140    0.009   16.158    0.000    0.123
##    .ssmk              0.177    0.008   21.087    0.000    0.161
##    .ssmc              0.240    0.012   19.911    0.000    0.216
##    .ssao              0.406    0.017   23.294    0.000    0.371
##    .ssai              0.315    0.016   19.164    0.000    0.283
##    .sssi              0.309    0.016   19.620    0.000    0.278
##    .ssno              0.279    0.021   13.574    0.000    0.239
##    .sscs              0.369    0.020   18.155    0.000    0.329
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.191    0.174    0.245
##     0.188    0.171    0.220
##     0.231    0.207    0.268
##     0.269    0.247    0.421
##     0.157    0.140    0.200
##     0.194    0.177    0.216
##     0.264    0.240    0.364
##     0.440    0.406    0.494
##     0.347    0.315    0.578
##     0.340    0.309    0.548
##     0.319    0.279    0.311
##     0.409    0.369    0.449
##     1.000    0.031    0.031
##     1.000    0.186    0.186
##     1.000    0.328    0.328
##     1.000    0.517    0.517
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.263    0.033    7.930    0.000    0.198
##     sswk              0.248    0.032    7.859    0.000    0.186
##     sspc              0.256    0.033    7.874    0.000    0.192
##     ssei              0.164    0.023    7.223    0.000    0.120
##   math =~                                                      
##     ssar              0.233    0.038    6.174    0.000    0.159
##     ssmk              0.168    0.028    6.016    0.000    0.113
##     ssmc              0.143    0.023    6.158    0.000    0.098
##     ssao              0.199    0.033    6.124    0.000    0.136
##   electronic =~                                                
##     ssai              0.667    0.025   26.717    0.000    0.618
##     sssi              0.647    0.022   29.302    0.000    0.603
##     ssmc              0.296    0.018   16.651    0.000    0.261
##     ssei              0.390    0.022   17.588    0.000    0.347
##   speed =~                                                     
##     ssno              0.604    0.029   21.106    0.000    0.548
##     sscs              0.526    0.024   22.089    0.000    0.480
##     ssmk              0.210    0.018   11.889    0.000    0.175
##   g =~                                                         
##     verbal            3.161    0.444    7.116    0.000    2.291
##     math              3.498    0.614    5.700    0.000    2.295
##     electronic        0.791    0.050   15.881    0.000    0.693
##     speed             1.084    0.073   14.879    0.000    0.941
##  ci.upper   Std.lv  Std.all
##                            
##     0.328    0.871    0.895
##     0.310    0.822    0.877
##     0.320    0.850    0.863
##     0.209    0.545    0.500
##                            
##     0.307    0.848    0.890
##     0.223    0.611    0.639
##     0.189    0.520    0.545
##     0.263    0.726    0.714
##                            
##     0.716    0.851    0.772
##     0.690    0.824    0.833
##     0.331    0.378    0.395
##     0.434    0.498    0.456
##                            
##     0.660    0.891    0.837
##     0.573    0.776    0.775
##     0.244    0.309    0.323
##                            
##     4.032    0.953    0.953
##     4.701    0.961    0.961
##     0.888    0.620    0.620
##     1.227    0.735    0.735
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.523    0.023   22.328    0.000    0.477
##    .sswk              0.392    0.022   17.468    0.000    0.348
##    .sspc              0.211    0.024    8.959    0.000    0.165
##    .ssei              0.582    0.026   22.070    0.000    0.531
##    .ssar              0.395    0.023   17.329    0.000    0.350
##    .ssmk              0.242    0.023   10.519    0.000    0.197
##    .ssmc              0.563    0.023   24.735    0.000    0.518
##    .ssao              0.214    0.024    8.814    0.000    0.166
##    .ssai              0.614    0.027   23.150    0.000    0.562
##    .sssi              0.769    0.024   32.369    0.000    0.723
##    .ssno              0.096    0.026    3.771    0.000    0.046
##    .sscs              0.007    0.024    0.306    0.759   -0.040
##  ci.upper   Std.lv  Std.all
##     0.569    0.523    0.537
##     0.436    0.392    0.419
##     0.257    0.211    0.215
##     0.634    0.582    0.534
##     0.440    0.395    0.415
##     0.287    0.242    0.253
##     0.608    0.563    0.589
##     0.262    0.214    0.210
##     0.666    0.614    0.557
##     0.816    0.769    0.777
##     0.146    0.096    0.090
##     0.054    0.007    0.007
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.189    0.009   20.539    0.000    0.171
##    .sswk              0.202    0.010   19.584    0.000    0.182
##    .sspc              0.247    0.012   20.102    0.000    0.223
##    .ssei              0.324    0.016   20.498    0.000    0.293
##    .ssar              0.189    0.011   17.060    0.000    0.167
##    .ssmk              0.179    0.009   20.515    0.000    0.162
##    .ssmc              0.264    0.013   21.044    0.000    0.240
##    .ssao              0.506    0.019   26.613    0.000    0.469
##    .ssai              0.490    0.026   18.542    0.000    0.438
##    .sssi              0.300    0.019   15.640    0.000    0.263
##    .ssno              0.340    0.023   14.528    0.000    0.294
##    .sscs              0.400    0.024   16.802    0.000    0.353
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.207    0.189    0.200
##     0.222    0.202    0.230
##     0.272    0.247    0.255
##     0.355    0.324    0.272
##     0.211    0.189    0.208
##     0.196    0.179    0.196
##     0.289    0.264    0.290
##     0.544    0.506    0.490
##     0.542    0.490    0.404
##     0.338    0.300    0.307
##     0.386    0.340    0.300
##     0.447    0.400    0.399
##     1.000    0.091    0.091
##     1.000    0.076    0.076
##     1.000    0.615    0.615
##     1.000    0.460    0.460
##     1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1372.664   108.000     0.000     0.960     0.080     0.050 87101.795 
##       bic 
## 87548.551
Mc(metric)
## [1] 0.841253
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 108 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        91
##   Number of equality constraints                    19
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1372.664    1195.798
##   Degrees of freedom                               108         108
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.148
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          540.291     470.674
##     0                                          832.374     725.123
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.168    0.028    6.024    0.000    0.113
##     sswk    (.p2.)    0.167    0.028    5.989    0.000    0.113
##     sspc    (.p3.)    0.168    0.028    6.017    0.000    0.113
##     ssei    (.p4.)    0.089    0.016    5.685    0.000    0.058
##   math =~                                                      
##     ssar    (.p5.)    0.307    0.018   16.732    0.000    0.271
##     ssmk    (.p6.)    0.233    0.016   14.851    0.000    0.202
##     ssmc    (.p7.)    0.185    0.012   15.359    0.000    0.162
##     ssao    (.p8.)    0.264    0.017   15.989    0.000    0.232
##   electronic =~                                                
##     ssai    (.p9.)    0.280    0.017   16.271    0.000    0.246
##     sssi    (.10.)    0.277    0.017   16.033    0.000    0.244
##     ssmc    (.11.)    0.131    0.010   13.472    0.000    0.112
##     ssei    (.12.)    0.168    0.011   14.648    0.000    0.146
##   speed =~                                                     
##     ssno    (.13.)    0.559    0.026   21.875    0.000    0.509
##     sscs    (.14.)    0.484    0.022   22.236    0.000    0.441
##     ssmk    (.15.)    0.194    0.012   15.619    0.000    0.170
##   g =~                                                         
##     verbal  (.16.)    4.281    0.747    5.730    0.000    2.817
##     math    (.17.)    2.252    0.158   14.279    0.000    1.943
##     elctrnc (.18.)    1.469    0.100   14.660    0.000    1.273
##     speed   (.19.)    0.999    0.060   16.756    0.000    0.882
##  ci.upper   Std.lv  Std.all
##                            
##     0.223    0.739    0.872
##     0.222    0.736    0.867
##     0.223    0.739    0.851
##     0.120    0.392    0.477
##                            
##     0.343    0.756    0.897
##     0.264    0.574    0.645
##     0.209    0.457    0.560
##     0.297    0.651    0.715
##                            
##     0.314    0.498    0.666
##     0.311    0.493    0.660
##     0.150    0.233    0.286
##     0.191    0.299    0.364
##                            
##     0.609    0.790    0.830
##     0.526    0.684    0.749
##     0.218    0.274    0.308
##                            
##     5.746    0.974    0.974
##     2.561    0.914    0.914
##     1.666    0.827    0.827
##     1.116    0.707    0.707
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.331    0.021   15.977    0.000    0.291
##    .sswk              0.379    0.022   17.461    0.000    0.337
##    .sspc              0.453    0.022   20.981    0.000    0.411
##    .ssei              0.139    0.019    7.329    0.000    0.102
##    .ssar              0.327    0.021   15.677    0.000    0.286
##    .ssmk              0.382    0.022   16.962    0.000    0.337
##    .ssmc              0.235    0.020   11.729    0.000    0.196
##    .ssao              0.356    0.022   15.988    0.000    0.312
##    .ssai              0.055    0.018    3.026    0.002    0.019
##    .sssi              0.059    0.019    3.200    0.001    0.023
##    .ssno              0.244    0.023   10.435    0.000    0.198
##    .sscs              0.358    0.023   15.788    0.000    0.313
##  ci.upper   Std.lv  Std.all
##     0.372    0.331    0.391
##     0.422    0.379    0.447
##     0.495    0.453    0.522
##     0.176    0.139    0.169
##     0.368    0.327    0.388
##     0.426    0.382    0.429
##     0.274    0.235    0.287
##     0.399    0.356    0.391
##     0.091    0.055    0.074
##     0.096    0.059    0.080
##     0.290    0.244    0.257
##     0.402    0.358    0.392
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.172    0.009   19.850    0.000    0.155
##    .sswk              0.179    0.009   20.811    0.000    0.162
##    .sspc              0.209    0.012   18.035    0.000    0.186
##    .ssei              0.244    0.011   22.021    0.000    0.222
##    .ssar              0.139    0.008   16.536    0.000    0.123
##    .ssmk              0.183    0.008   22.124    0.000    0.167
##    .ssmc              0.242    0.012   20.227    0.000    0.219
##    .ssao              0.404    0.017   23.717    0.000    0.371
##    .ssai              0.311    0.015   20.409    0.000    0.281
##    .sssi              0.316    0.015   20.887    0.000    0.286
##    .ssno              0.282    0.019   14.922    0.000    0.245
##    .sscs              0.365    0.019   19.310    0.000    0.328
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.188    0.172    0.239
##     0.196    0.179    0.248
##     0.231    0.209    0.276
##     0.265    0.244    0.360
##     0.156    0.139    0.196
##     0.200    0.183    0.232
##     0.266    0.242    0.363
##     0.438    0.404    0.488
##     0.341    0.311    0.557
##     0.345    0.316    0.565
##     0.319    0.282    0.311
##     0.402    0.365    0.438
##     1.000    0.052    0.052
##     1.000    0.165    0.165
##     1.000    0.317    0.317
##     1.000    0.501    0.501
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.168    0.028    6.024    0.000    0.113
##     sswk    (.p2.)    0.167    0.028    5.989    0.000    0.113
##     sspc    (.p3.)    0.168    0.028    6.017    0.000    0.113
##     ssei    (.p4.)    0.089    0.016    5.685    0.000    0.058
##   math =~                                                      
##     ssar    (.p5.)    0.307    0.018   16.732    0.000    0.271
##     ssmk    (.p6.)    0.233    0.016   14.851    0.000    0.202
##     ssmc    (.p7.)    0.185    0.012   15.359    0.000    0.162
##     ssao    (.p8.)    0.264    0.017   15.989    0.000    0.232
##   electronic =~                                                
##     ssai    (.p9.)    0.280    0.017   16.271    0.000    0.246
##     sssi    (.10.)    0.277    0.017   16.033    0.000    0.244
##     ssmc    (.11.)    0.131    0.010   13.472    0.000    0.112
##     ssei    (.12.)    0.168    0.011   14.648    0.000    0.146
##   speed =~                                                     
##     ssno    (.13.)    0.559    0.026   21.875    0.000    0.509
##     sscs    (.14.)    0.484    0.022   22.236    0.000    0.441
##     ssmk    (.15.)    0.194    0.012   15.619    0.000    0.170
##   g =~                                                         
##     verbal  (.16.)    4.281    0.747    5.730    0.000    2.817
##     math    (.17.)    2.252    0.158   14.279    0.000    1.943
##     elctrnc (.18.)    1.469    0.100   14.660    0.000    1.273
##     speed   (.19.)    0.999    0.060   16.756    0.000    0.882
##  ci.upper   Std.lv  Std.all
##                            
##     0.223    0.866    0.892
##     0.222    0.862    0.888
##     0.223    0.866    0.868
##     0.120    0.459    0.450
##                            
##     0.343    0.835    0.886
##     0.264    0.634    0.653
##     0.209    0.505    0.538
##     0.297    0.719    0.710
##                            
##     0.314    0.815    0.757
##     0.311    0.808    0.829
##     0.150    0.382    0.408
##     0.191    0.490    0.480
##                            
##     0.609    0.886    0.836
##     0.526    0.767    0.771
##     0.218    0.308    0.317
##                            
##     5.746    0.960    0.960
##     2.561    0.956    0.956
##     1.666    0.583    0.583
##     1.116    0.728    0.728
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.523    0.023   22.328    0.000    0.477
##    .sswk              0.392    0.022   17.468    0.000    0.348
##    .sspc              0.211    0.024    8.959    0.000    0.165
##    .ssei              0.582    0.026   22.070    0.000    0.531
##    .ssar              0.395    0.023   17.329    0.000    0.350
##    .ssmk              0.242    0.023   10.519    0.000    0.197
##    .ssmc              0.563    0.023   24.735    0.000    0.518
##    .ssao              0.214    0.024    8.814    0.000    0.166
##    .ssai              0.614    0.027   23.150    0.000    0.562
##    .sssi              0.769    0.024   32.369    0.000    0.723
##    .ssno              0.096    0.026    3.771    0.000    0.046
##    .sscs              0.007    0.024    0.306    0.759   -0.040
##  ci.upper   Std.lv  Std.all
##     0.569    0.523    0.539
##     0.436    0.392    0.404
##     0.257    0.211    0.212
##     0.634    0.582    0.570
##     0.440    0.395    0.419
##     0.287    0.242    0.249
##     0.608    0.563    0.600
##     0.262    0.214    0.211
##     0.666    0.614    0.570
##     0.816    0.769    0.790
##     0.146    0.096    0.091
##     0.054    0.007    0.007
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.193    0.009   21.395    0.000    0.176
##    .sswk              0.199    0.010   19.392    0.000    0.179
##    .sspc              0.244    0.012   20.217    0.000    0.221
##    .ssei              0.338    0.017   20.349    0.000    0.306
##    .ssar              0.191    0.011   17.437    0.000    0.169
##    .ssmk              0.175    0.009   20.409    0.000    0.159
##    .ssmc              0.264    0.013   21.066    0.000    0.239
##    .ssao              0.508    0.019   27.060    0.000    0.471
##    .ssai              0.496    0.026   19.343    0.000    0.446
##    .sssi              0.296    0.019   15.947    0.000    0.260
##    .ssno              0.339    0.022   15.056    0.000    0.295
##    .sscs              0.402    0.023   17.183    0.000    0.356
##    .verbal            2.059    0.659    3.124    0.002    0.767
##    .math              0.643    0.145    4.432    0.000    0.359
##    .electronic        5.593    0.723    7.732    0.000    4.175
##    .speed             1.183    0.130    9.123    0.000    0.929
##     g                 1.334    0.071   18.673    0.000    1.194
##  ci.upper   Std.lv  Std.all
##     0.211    0.193    0.205
##     0.219    0.199    0.211
##     0.268    0.244    0.246
##     0.371    0.338    0.325
##     0.212    0.191    0.215
##     0.192    0.175    0.186
##     0.288    0.264    0.300
##     0.545    0.508    0.495
##     0.547    0.496    0.428
##     0.333    0.296    0.312
##     0.383    0.339    0.301
##     0.448    0.402    0.406
##     3.351    0.078    0.078
##     0.927    0.087    0.087
##     7.011    0.660    0.660
##     1.438    0.471    0.471
##     1.474    1.000    1.000
lavTestScore(metric, release = 1:19)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 131.374 19       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p54.  1.622  1   0.203
## 2   .p2. == .p55. 38.056  1   0.000
## 3   .p3. == .p56.  2.745  1   0.098
## 4   .p4. == .p57. 75.460  1   0.000
## 5   .p5. == .p58.  4.718  1   0.030
## 6   .p6. == .p59. 11.862  1   0.001
## 7   .p7. == .p60.  0.188  1   0.664
## 8   .p8. == .p61.  0.275  1   0.600
## 9   .p9. == .p62.  0.509  1   0.476
## 10 .p10. == .p63.  3.081  1   0.079
## 11 .p11. == .p64.  0.342  1   0.559
## 12 .p12. == .p65. 69.487  1   0.000
## 13 .p13. == .p66.  0.914  1   0.339
## 14 .p14. == .p67.  1.033  1   0.309
## 15 .p15. == .p68.  7.753  1   0.005
## 16 .p16. == .p69.  7.645  1   0.006
## 17 .p17. == .p70.  0.001  1   0.970
## 18 .p18. == .p71. 22.548  1   0.000
## 19 .p19. == .p72.  0.055  1   0.814
metric2<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"), group.partial=c("electronic=~ssei"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1304.120   107.000     0.000     0.962     0.078     0.041 87035.251 
##       bic 
## 87488.212
Mc(metric2)
## [1] 0.8490558
scalar<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 8.270929e-14) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1878.781   114.000     0.000     0.944     0.092     0.047 87595.911 
##       bic 
## 88005.437
Mc(scalar)
## [1] 0.7856671
summary(scalar, standardized=T, ci=T) # -.095
## lavaan 0.6-18 ended normally after 125 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1878.781    1628.436
##   Degrees of freedom                               114         114
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.154
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          769.326     666.815
##     0                                         1109.455     961.622
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.167    0.029    5.826    0.000    0.111
##     sswk    (.p2.)    0.167    0.029    5.794    0.000    0.111
##     sspc    (.p3.)    0.167    0.029    5.823    0.000    0.111
##     ssei    (.p4.)    0.100    0.018    5.622    0.000    0.065
##   math =~                                                      
##     ssar    (.p5.)    0.307    0.019   16.345    0.000    0.270
##     ssmk    (.p6.)    0.228    0.016   14.211    0.000    0.196
##     ssmc    (.p7.)    0.183    0.012   15.116    0.000    0.159
##     ssao    (.p8.)    0.264    0.017   15.616    0.000    0.231
##   electronic =~                                                
##     ssai    (.p9.)    0.285    0.017   16.875    0.000    0.251
##     sssi    (.10.)    0.302    0.018   16.794    0.000    0.267
##     ssmc    (.11.)    0.144    0.010   14.890    0.000    0.125
##     ssei              0.097    0.015    6.595    0.000    0.068
##   speed =~                                                     
##     ssno    (.13.)    0.539    0.025   21.623    0.000    0.490
##     sscs    (.14.)    0.488    0.022   21.720    0.000    0.444
##     ssmk    (.15.)    0.203    0.012   16.737    0.000    0.180
##   g =~                                                         
##     verbal  (.16.)    4.340    0.782    5.547    0.000    2.807
##     math    (.17.)    2.259    0.161   14.058    0.000    1.944
##     elctrnc (.18.)    1.436    0.097   14.849    0.000    1.247
##     speed   (.19.)    1.021    0.062   16.608    0.000    0.901
##  ci.upper   Std.lv  Std.all
##                            
##     0.224    0.745    0.868
##     0.224    0.745    0.871
##     0.223    0.742    0.841
##     0.134    0.443    0.574
##                            
##     0.344    0.758    0.896
##     0.259    0.562    0.630
##     0.206    0.451    0.548
##     0.298    0.653    0.715
##                            
##     0.318    0.498    0.666
##     0.338    0.529    0.694
##     0.163    0.252    0.306
##     0.125    0.169    0.219
##                            
##     0.588    0.771    0.814
##     0.532    0.698    0.757
##     0.227    0.291    0.325
##                            
##     5.873    0.974    0.974
##     2.574    0.914    0.914
##     1.626    0.821    0.821
##     1.142    0.715    0.715
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.417    0.020   20.402    0.000    0.377
##    .sswk    (.38.)    0.380    0.021   18.249    0.000    0.339
##    .sspc    (.39.)    0.335    0.022   15.573    0.000    0.293
##    .ssei    (.40.)    0.142    0.019    7.604    0.000    0.106
##    .ssar    (.41.)    0.354    0.020   17.385    0.000    0.314
##    .ssmk    (.42.)    0.359    0.022   16.517    0.000    0.316
##    .ssmc    (.43.)    0.237    0.019   12.543    0.000    0.200
##    .ssao    (.44.)    0.290    0.020   14.158    0.000    0.250
##    .ssai    (.45.)    0.025    0.017    1.506    0.132   -0.008
##    .sssi    (.46.)    0.077    0.018    4.381    0.000    0.043
##    .ssno    (.47.)    0.297    0.022   13.259    0.000    0.253
##    .sscs    (.48.)    0.302    0.022   13.849    0.000    0.260
##  ci.upper   Std.lv  Std.all
##     0.457    0.417    0.486
##     0.421    0.380    0.444
##     0.377    0.335    0.380
##     0.179    0.142    0.184
##     0.394    0.354    0.419
##     0.401    0.359    0.402
##     0.274    0.237    0.288
##     0.330    0.290    0.317
##     0.059    0.025    0.034
##     0.112    0.077    0.101
##     0.341    0.297    0.313
##     0.345    0.302    0.328
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.181    0.009   19.282    0.000    0.163
##    .sswk              0.176    0.009   20.534    0.000    0.159
##    .sspc              0.227    0.013   17.600    0.000    0.202
##    .ssei              0.252    0.011   23.085    0.000    0.230
##    .ssar              0.141    0.009   16.334    0.000    0.124
##    .ssmk              0.184    0.008   21.850    0.000    0.167
##    .ssmc              0.240    0.012   20.057    0.000    0.216
##    .ssao              0.409    0.017   23.910    0.000    0.375
##    .ssai              0.311    0.015   20.380    0.000    0.281
##    .sssi              0.301    0.015   19.817    0.000    0.271
##    .ssno              0.303    0.019   15.962    0.000    0.266
##    .sscs              0.362    0.019   18.776    0.000    0.324
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.200    0.181    0.246
##     0.193    0.176    0.241
##     0.253    0.227    0.292
##     0.273    0.252    0.422
##     0.158    0.141    0.197
##     0.200    0.184    0.230
##     0.263    0.240    0.354
##     0.442    0.409    0.489
##     0.341    0.311    0.557
##     0.330    0.301    0.518
##     0.341    0.303    0.338
##     0.400    0.362    0.427
##     1.000    0.050    0.050
##     1.000    0.164    0.164
##     1.000    0.326    0.326
##     1.000    0.489    0.489
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.167    0.029    5.826    0.000    0.111
##     sswk    (.p2.)    0.167    0.029    5.794    0.000    0.111
##     sspc    (.p3.)    0.167    0.029    5.823    0.000    0.111
##     ssei    (.p4.)    0.100    0.018    5.622    0.000    0.065
##   math =~                                                      
##     ssar    (.p5.)    0.307    0.019   16.345    0.000    0.270
##     ssmk    (.p6.)    0.228    0.016   14.211    0.000    0.196
##     ssmc    (.p7.)    0.183    0.012   15.116    0.000    0.159
##     ssao    (.p8.)    0.264    0.017   15.616    0.000    0.231
##   electronic =~                                                
##     ssai    (.p9.)    0.285    0.017   16.875    0.000    0.251
##     sssi    (.10.)    0.302    0.018   16.794    0.000    0.267
##     ssmc    (.11.)    0.144    0.010   14.890    0.000    0.125
##     ssei              0.192    0.013   14.326    0.000    0.166
##   speed =~                                                     
##     ssno    (.13.)    0.539    0.025   21.623    0.000    0.490
##     sscs    (.14.)    0.488    0.022   21.720    0.000    0.444
##     ssmk    (.15.)    0.203    0.012   16.737    0.000    0.180
##   g =~                                                         
##     verbal  (.16.)    4.340    0.782    5.547    0.000    2.807
##     math    (.17.)    2.259    0.161   14.058    0.000    1.944
##     elctrnc (.18.)    1.436    0.097   14.849    0.000    1.247
##     speed   (.19.)    1.021    0.062   16.608    0.000    0.901
##  ci.upper   Std.lv  Std.all
##                            
##     0.224    0.856    0.883
##     0.224    0.856    0.887
##     0.223    0.853    0.854
##     0.134    0.509    0.472
##                            
##     0.344    0.833    0.884
##     0.259    0.618    0.637
##     0.206    0.495    0.527
##     0.298    0.717    0.707
##                            
##     0.318    0.773    0.730
##     0.338    0.821    0.834
##     0.163    0.391    0.416
##     0.218    0.522    0.484
##                            
##     0.588    0.861    0.819
##     0.532    0.780    0.777
##     0.227    0.325    0.335
##                            
##     5.873    0.966    0.966
##     2.574    0.948    0.948
##     1.626    0.603    0.603
##     1.142    0.728    0.728
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.417    0.020   20.402    0.000    0.377
##    .sswk    (.38.)    0.380    0.021   18.249    0.000    0.339
##    .sspc    (.39.)    0.335    0.022   15.573    0.000    0.293
##    .ssei    (.40.)    0.142    0.019    7.604    0.000    0.106
##    .ssar    (.41.)    0.354    0.020   17.385    0.000    0.314
##    .ssmk    (.42.)    0.359    0.022   16.517    0.000    0.316
##    .ssmc    (.43.)    0.237    0.019   12.543    0.000    0.200
##    .ssao    (.44.)    0.290    0.020   14.158    0.000    0.250
##    .ssai    (.45.)    0.025    0.017    1.506    0.132   -0.008
##    .sssi    (.46.)    0.077    0.018    4.381    0.000    0.043
##    .ssno    (.47.)    0.297    0.022   13.259    0.000    0.253
##    .sscs    (.48.)    0.302    0.022   13.849    0.000    0.260
##    .verbal           -0.413    0.052   -7.971    0.000   -0.515
##    .math             -0.240    0.062   -3.876    0.000   -0.361
##    .elctrnc           2.073    0.135   15.356    0.000    1.808
##    .speed            -0.598    0.060  -10.056    0.000   -0.715
##     g                 0.109    0.040    2.725    0.006    0.030
##  ci.upper   Std.lv  Std.all
##     0.457    0.417    0.430
##     0.421    0.380    0.394
##     0.377    0.335    0.335
##     0.179    0.142    0.132
##     0.394    0.354    0.376
##     0.401    0.359    0.370
##     0.274    0.237    0.252
##     0.330    0.290    0.286
##     0.059    0.025    0.024
##     0.112    0.077    0.078
##     0.341    0.297    0.282
##     0.345    0.302    0.301
##    -0.312   -0.081   -0.081
##    -0.119   -0.088   -0.088
##     2.337    0.763    0.763
##    -0.482   -0.375   -0.375
##     0.187    0.095    0.095
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.207    0.010   20.663    0.000    0.187
##    .sswk              0.198    0.010   19.114    0.000    0.177
##    .sspc              0.270    0.014   19.017    0.000    0.243
##    .ssei              0.321    0.016   20.576    0.000    0.290
##    .ssar              0.193    0.011   17.361    0.000    0.171
##    .ssmk              0.175    0.009   20.176    0.000    0.158
##    .ssmc              0.263    0.013   20.872    0.000    0.238
##    .ssao              0.515    0.019   26.598    0.000    0.477
##    .ssai              0.523    0.025   21.287    0.000    0.475
##    .sssi              0.294    0.018   16.335    0.000    0.259
##    .ssno              0.365    0.023   15.832    0.000    0.320
##    .sscs              0.398    0.024   16.594    0.000    0.351
##    .verbal            1.733    0.593    2.925    0.003    0.572
##    .math              0.745    0.149    4.990    0.000    0.452
##    .electronic        4.697    0.608    7.724    0.000    3.505
##    .speed             1.199    0.132    9.101    0.000    0.941
##     g                 1.297    0.069   18.782    0.000    1.162
##  ci.upper   Std.lv  Std.all
##     0.227    0.207    0.220
##     0.218    0.198    0.212
##     0.298    0.270    0.271
##     0.351    0.321    0.276
##     0.215    0.193    0.218
##     0.192    0.175    0.186
##     0.288    0.263    0.298
##     0.553    0.515    0.500
##     0.572    0.523    0.467
##     0.329    0.294    0.304
##     0.410    0.365    0.330
##     0.445    0.398    0.396
##     2.895    0.066    0.066
##     1.038    0.101    0.101
##     5.888    0.637    0.637
##     1.458    0.470    0.470
##     1.433    1.000    1.000
lavTestScore(scalar, release = 19:30)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 556.944 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs      X2 df p.value
## 1  .p37. ==  .p90. 243.241  1   0.000
## 2  .p38. ==  .p91.   0.221  1   0.638
## 3  .p39. ==  .p92. 312.317  1   0.000
## 4  .p40. ==  .p93.   0.893  1   0.345
## 5  .p41. ==  .p94.  57.868  1   0.000
## 6  .p42. ==  .p95.  13.363  1   0.000
## 7  .p43. ==  .p96.   0.520  1   0.471
## 8  .p44. ==  .p97.  46.686  1   0.000
## 9  .p45. ==  .p98.  23.192  1   0.000
## 10 .p46. ==  .p99.  11.775  1   0.001
## 11 .p47. == .p100.  81.594  1   0.000
## 12 .p48. == .p101.  49.774  1   0.000
scalar2<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1")) # not freeing gs leads to poor fit
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 4.770394e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1390.367   111.000     0.000     0.960     0.079     0.043 87113.497 
##       bic 
## 87541.638
Mc(scalar2)
## [1] 0.8395641
summary(scalar2, standardized=T, ci=T) # -.083
## lavaan 0.6-18 ended normally after 127 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1390.367    1200.624
##   Degrees of freedom                               111         111
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.158
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          541.284     467.416
##     0                                          849.082     733.209
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.172    0.028    6.213    0.000    0.118
##     sswk    (.p2.)    0.171    0.028    6.177    0.000    0.117
##     sspc    (.p3.)    0.172    0.028    6.199    0.000    0.118
##     ssei    (.p4.)    0.102    0.017    5.978    0.000    0.069
##   math =~                                                      
##     ssar    (.p5.)    0.304    0.019   16.111    0.000    0.267
##     ssmk    (.p6.)    0.230    0.016   14.428    0.000    0.198
##     ssmc    (.p7.)    0.182    0.012   14.959    0.000    0.158
##     ssao    (.p8.)    0.261    0.017   15.403    0.000    0.228
##   electronic =~                                                
##     ssai    (.p9.)    0.286    0.017   16.993    0.000    0.253
##     sssi    (.10.)    0.304    0.018   16.904    0.000    0.269
##     ssmc    (.11.)    0.143    0.010   14.856    0.000    0.124
##     ssei              0.097    0.015    6.599    0.000    0.068
##   speed =~                                                     
##     ssno    (.13.)    0.558    0.026   21.803    0.000    0.508
##     sscs    (.14.)    0.482    0.022   22.429    0.000    0.440
##     ssmk    (.15.)    0.197    0.011   17.167    0.000    0.174
##   g =~                                                         
##     verbal  (.16.)    4.221    0.717    5.890    0.000    2.816
##     math    (.17.)    2.285    0.164   13.906    0.000    1.963
##     elctrnc (.18.)    1.427    0.096   14.921    0.000    1.239
##     speed   (.19.)    1.004    0.060   16.716    0.000    0.886
##  ci.upper   Std.lv  Std.all
##                            
##     0.226    0.746    0.875
##     0.226    0.744    0.870
##     0.226    0.746    0.853
##     0.136    0.443    0.574
##                            
##     0.341    0.759    0.896
##     0.261    0.573    0.642
##     0.206    0.454    0.551
##     0.295    0.652    0.713
##                            
##     0.319    0.498    0.666
##     0.339    0.529    0.695
##     0.162    0.249    0.302
##     0.126    0.169    0.219
##                            
##     0.608    0.791    0.830
##     0.525    0.684    0.749
##     0.219    0.279    0.313
##                            
##     5.626    0.973    0.973
##     2.607    0.916    0.916
##     1.614    0.819    0.819
##     1.122    0.709    0.709
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.330    0.021   16.008    0.000    0.289
##    .sswk    (.38.)    0.376    0.021   17.638    0.000    0.334
##    .sspc              0.452    0.022   21.000    0.000    0.409
##    .ssei    (.40.)    0.142    0.019    7.564    0.000    0.105
##    .ssar    (.41.)    0.348    0.020   17.035    0.000    0.308
##    .ssmk    (.42.)    0.376    0.022   17.316    0.000    0.334
##    .ssmc    (.43.)    0.235    0.019   12.435    0.000    0.198
##    .ssao    (.44.)    0.284    0.021   13.843    0.000    0.244
##    .ssai    (.45.)    0.027    0.017    1.570    0.117   -0.007
##    .sssi    (.46.)    0.079    0.018    4.466    0.000    0.044
##    .ssno              0.243    0.023   10.402    0.000    0.197
##    .sscs    (.48.)    0.360    0.022   16.418    0.000    0.317
##  ci.upper   Std.lv  Std.all
##     0.370    0.330    0.386
##     0.418    0.376    0.440
##     0.494    0.452    0.516
##     0.179    0.142    0.184
##     0.388    0.348    0.411
##     0.419    0.376    0.422
##     0.272    0.235    0.285
##     0.324    0.284    0.311
##     0.060    0.027    0.035
##     0.113    0.079    0.103
##     0.289    0.243    0.255
##     0.402    0.360    0.394
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.171    0.009   19.874    0.000    0.154
##    .sswk              0.177    0.008   20.919    0.000    0.161
##    .sspc              0.209    0.012   17.979    0.000    0.186
##    .ssei              0.253    0.011   23.140    0.000    0.231
##    .ssar              0.141    0.009   16.493    0.000    0.124
##    .ssmk              0.183    0.008   22.067    0.000    0.167
##    .ssmc              0.240    0.012   20.093    0.000    0.217
##    .ssao              0.410    0.017   23.981    0.000    0.377
##    .ssai              0.311    0.015   20.348    0.000    0.281
##    .sssi              0.300    0.015   19.778    0.000    0.271
##    .ssno              0.282    0.019   14.942    0.000    0.245
##    .sscs              0.366    0.019   19.335    0.000    0.329
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.188    0.171    0.235
##     0.194    0.177    0.243
##     0.231    0.209    0.273
##     0.274    0.253    0.423
##     0.157    0.141    0.196
##     0.199    0.183    0.230
##     0.264    0.240    0.355
##     0.444    0.410    0.491
##     0.341    0.311    0.556
##     0.330    0.300    0.517
##     0.319    0.282    0.311
##     0.403    0.366    0.439
##     1.000    0.053    0.053
##     1.000    0.161    0.161
##     1.000    0.329    0.329
##     1.000    0.498    0.498
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.172    0.028    6.213    0.000    0.118
##     sswk    (.p2.)    0.171    0.028    6.177    0.000    0.117
##     sspc    (.p3.)    0.172    0.028    6.199    0.000    0.118
##     ssei    (.p4.)    0.102    0.017    5.978    0.000    0.069
##   math =~                                                      
##     ssar    (.p5.)    0.304    0.019   16.111    0.000    0.267
##     ssmk    (.p6.)    0.230    0.016   14.428    0.000    0.198
##     ssmc    (.p7.)    0.182    0.012   14.959    0.000    0.158
##     ssao    (.p8.)    0.261    0.017   15.403    0.000    0.228
##   electronic =~                                                
##     ssai    (.p9.)    0.286    0.017   16.993    0.000    0.253
##     sssi    (.10.)    0.304    0.018   16.904    0.000    0.269
##     ssmc    (.11.)    0.143    0.010   14.856    0.000    0.124
##     ssei              0.192    0.013   14.313    0.000    0.166
##   speed =~                                                     
##     ssno    (.13.)    0.558    0.026   21.803    0.000    0.508
##     sscs    (.14.)    0.482    0.022   22.429    0.000    0.440
##     ssmk    (.15.)    0.197    0.011   17.167    0.000    0.174
##   g =~                                                         
##     verbal  (.16.)    4.221    0.717    5.890    0.000    2.816
##     math    (.17.)    2.285    0.164   13.906    0.000    1.963
##     elctrnc (.18.)    1.427    0.096   14.921    0.000    1.239
##     speed   (.19.)    1.004    0.060   16.716    0.000    0.886
##  ci.upper   Std.lv  Std.all
##                            
##     0.226    0.859    0.890
##     0.226    0.855    0.886
##     0.226    0.858    0.866
##     0.136    0.510    0.474
##                            
##     0.341    0.833    0.885
##     0.261    0.629    0.650
##     0.206    0.498    0.531
##     0.295    0.716    0.706
##                            
##     0.319    0.775    0.731
##     0.339    0.823    0.836
##     0.162    0.387    0.412
##     0.219    0.520    0.483
##                            
##     0.608    0.884    0.835
##     0.525    0.764    0.769
##     0.219    0.312    0.322
##                            
##     5.626    0.964    0.964
##     2.607    0.951    0.951
##     1.614    0.601    0.601
##     1.122    0.723    0.723
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.505    0.025   19.968    0.000    0.455
##    .sswk    (.38.)    0.376    0.021   17.638    0.000    0.334
##    .sspc              0.193    0.026    7.343    0.000    0.141
##    .ssei    (.40.)    0.142    0.019    7.564    0.000    0.105
##    .ssar    (.41.)    0.348    0.020   17.035    0.000    0.308
##    .ssmk    (.42.)    0.376    0.022   17.316    0.000    0.334
##    .ssmc    (.43.)    0.235    0.019   12.435    0.000    0.198
##    .ssao    (.44.)    0.284    0.021   13.843    0.000    0.244
##    .ssai    (.45.)    0.027    0.017    1.570    0.117   -0.007
##    .sssi    (.46.)    0.079    0.018    4.466    0.000    0.044
##    .ssno              0.507    0.033   15.458    0.000    0.443
##    .sscs    (.48.)    0.360    0.022   16.418    0.000    0.317
##    .verbal           -0.292    0.053   -5.508    0.000   -0.396
##    .math             -0.156    0.062   -2.512    0.012   -0.278
##    .elctrnc           2.074    0.135   15.413    0.000    1.810
##    .speed            -0.831    0.065  -12.718    0.000   -0.959
##     g                 0.094    0.039    2.427    0.015    0.018
##  ci.upper   Std.lv  Std.all
##     0.554    0.505    0.523
##     0.418    0.376    0.390
##     0.244    0.193    0.195
##     0.179    0.142    0.132
##     0.388    0.348    0.369
##     0.419    0.376    0.389
##     0.272    0.235    0.250
##     0.324    0.284    0.280
##     0.060    0.027    0.025
##     0.113    0.079    0.080
##     0.572    0.507    0.479
##     0.402    0.360    0.362
##    -0.188   -0.058   -0.058
##    -0.034   -0.057   -0.057
##     2.338    0.766    0.766
##    -0.703   -0.525   -0.525
##     0.171    0.083    0.083
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.194    0.009   21.542    0.000    0.176
##    .sswk              0.199    0.010   19.472    0.000    0.179
##    .sspc              0.246    0.012   20.321    0.000    0.222
##    .ssei              0.322    0.016   20.603    0.000    0.291
##    .ssar              0.192    0.011   17.477    0.000    0.171
##    .ssmk              0.175    0.009   20.394    0.000    0.158
##    .ssmc              0.264    0.013   20.917    0.000    0.239
##    .ssao              0.517    0.019   26.567    0.000    0.478
##    .ssai              0.522    0.025   21.238    0.000    0.474
##    .sssi              0.292    0.018   16.199    0.000    0.257
##    .ssno              0.338    0.023   15.019    0.000    0.294
##    .sscs              0.403    0.023   17.374    0.000    0.358
##    .verbal            1.749    0.558    3.132    0.002    0.654
##    .math              0.724    0.149    4.850    0.000    0.431
##    .electronic        4.690    0.604    7.770    0.000    3.507
##    .speed             1.199    0.131    9.178    0.000    0.943
##     g                 1.299    0.069   18.814    0.000    1.164
##  ci.upper   Std.lv  Std.all
##     0.212    0.194    0.208
##     0.220    0.199    0.214
##     0.269    0.246    0.250
##     0.352    0.322    0.277
##     0.214    0.192    0.217
##     0.192    0.175    0.186
##     0.288    0.264    0.299
##     0.555    0.517    0.502
##     0.570    0.522    0.465
##     0.328    0.292    0.302
##     0.382    0.338    0.302
##     0.448    0.403    0.408
##     2.843    0.070    0.070
##     1.016    0.096    0.096
##     5.873    0.639    0.639
##     1.456    0.478    0.478
##     1.435    1.000    1.000
lavTestScore(scalar2, release = 19:27, standardized=T, epc=T) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 85.672  9       0
## 
## $uni
## 
## univariate score tests:
## 
##     lhs op    rhs     X2 df p.value
## 1 .p38. ==  .p91.  0.660  1   0.417
## 2 .p40. ==  .p93.  0.660  1   0.417
## 3 .p41. ==  .p94. 35.106  1   0.000
## 4 .p42. ==  .p95.  0.483  1   0.487
## 5 .p43. ==  .p96.  0.096  1   0.757
## 6 .p44. ==  .p97. 56.852  1   0.000
## 7 .p45. ==  .p98. 21.964  1   0.000
## 8 .p46. ==  .p99. 13.436  1   0.000
## 9 .p48. == .p101.  0.483  1   0.487
## 
## $epc
## 
## expected parameter changes (epc) and expected parameter values (epv):
## 
##           lhs op        rhs block group free label plabel   est    epc
## 1      verbal =~       ssgs     1     1    1  .p1.   .p1. 0.172  0.001
## 2      verbal =~       sswk     1     1    2  .p2.   .p2. 0.171  0.001
## 3      verbal =~       sspc     1     1    3  .p3.   .p3. 0.172  0.001
## 4      verbal =~       ssei     1     1    4  .p4.   .p4. 0.102  0.001
## 5        math =~       ssar     1     1    5  .p5.   .p5. 0.304 -0.001
## 6        math =~       ssmk     1     1    6  .p6.   .p6. 0.230  0.000
## 7        math =~       ssmc     1     1    7  .p7.   .p7. 0.182  0.000
## 8        math =~       ssao     1     1    8  .p8.   .p8. 0.261  0.000
## 9  electronic =~       ssai     1     1    9  .p9.   .p9. 0.286  0.010
## 10 electronic =~       sssi     1     1   10 .p10.  .p10. 0.304 -0.008
## 11 electronic =~       ssmc     1     1   11 .p11.  .p11. 0.143 -0.002
## 12 electronic =~       ssei     1     1   12        .p12. 0.097 -0.002
## 13      speed =~       ssno     1     1   13 .p13.  .p13. 0.558  0.001
## 14      speed =~       sscs     1     1   14 .p14.  .p14. 0.482  0.001
## 15      speed =~       ssmk     1     1   15 .p15.  .p15. 0.197 -0.002
## 16          g =~     verbal     1     1   16 .p16.  .p16. 4.221 -0.015
## 17          g =~       math     1     1   17 .p17.  .p17. 2.285  0.007
## 18          g =~ electronic     1     1   18 .p18.  .p18. 1.427  0.003
## 19          g =~      speed     1     1   19 .p19.  .p19. 1.004 -0.001
## 20       ssgs ~~       ssgs     1     1   20        .p20. 0.171  0.000
## 21       sswk ~~       sswk     1     1   21        .p21. 0.177  0.000
## 22       sspc ~~       sspc     1     1   22        .p22. 0.209  0.000
## 23       ssei ~~       ssei     1     1   23        .p23. 0.253  0.000
## 24       ssar ~~       ssar     1     1   24        .p24. 0.141  0.000
## 25       ssmk ~~       ssmk     1     1   25        .p25. 0.183  0.000
## 26       ssmc ~~       ssmc     1     1   26        .p26. 0.240  0.000
## 27       ssao ~~       ssao     1     1   27        .p27. 0.410  0.000
## 28       ssai ~~       ssai     1     1   28        .p28. 0.311 -0.006
## 29       sssi ~~       sssi     1     1   29        .p29. 0.300  0.005
## 30       ssno ~~       ssno     1     1   30        .p30. 0.282  0.000
## 31       sscs ~~       sscs     1     1   31        .p31. 0.366  0.000
## 32     verbal ~~     verbal     1     1    0        .p32. 1.000     NA
## 33       math ~~       math     1     1    0        .p33. 1.000     NA
## 34 electronic ~~ electronic     1     1    0        .p34. 1.000     NA
## 35      speed ~~      speed     1     1    0        .p35. 1.000     NA
## 36          g ~~          g     1     1    0        .p36. 1.000     NA
## 37       ssgs ~1                1     1   32        .p37. 0.330  0.002
## 38       sswk ~1                1     1   33 .p38.  .p38. 0.376  0.003
## 39       sspc ~1                1     1   34        .p39. 0.452  0.002
## 40       ssei ~1                1     1   35 .p40.  .p40. 0.142 -0.003
## 41       ssar ~1                1     1   36 .p41.  .p41. 0.348 -0.021
## 42       ssmk ~1                1     1   37 .p42.  .p42. 0.376  0.005
## 43       ssmc ~1                1     1   38 .p43.  .p43. 0.235  0.000
## 44       ssao ~1                1     1   39 .p44.  .p44. 0.284  0.072
## 45       ssai ~1                1     1   40 .p45.  .p45. 0.027  0.029
## 46       sssi ~1                1     1   41 .p46.  .p46. 0.079 -0.019
## 47       ssno ~1                1     1   42        .p47. 0.243  0.001
## 48       sscs ~1                1     1   43 .p48.  .p48. 0.360 -0.002
## 49     verbal ~1                1     1    0        .p49. 0.000     NA
## 50       math ~1                1     1    0        .p50. 0.000     NA
## 51 electronic ~1                1     1    0        .p51. 0.000     NA
## 52      speed ~1                1     1    0        .p52. 0.000     NA
## 53          g ~1                1     1    0        .p53. 0.000     NA
## 54     verbal =~       ssgs     2     2   44  .p1.  .p54. 0.172  0.001
## 55     verbal =~       sswk     2     2   45  .p2.  .p55. 0.171  0.001
## 56     verbal =~       sspc     2     2   46  .p3.  .p56. 0.172  0.001
## 57     verbal =~       ssei     2     2   47  .p4.  .p57. 0.102  0.001
## 58       math =~       ssar     2     2   48  .p5.  .p58. 0.304 -0.001
## 59       math =~       ssmk     2     2   49  .p6.  .p59. 0.230  0.000
## 60       math =~       ssmc     2     2   50  .p7.  .p60. 0.182  0.000
## 61       math =~       ssao     2     2   51  .p8.  .p61. 0.261  0.000
## 62 electronic =~       ssai     2     2   52  .p9.  .p62. 0.286  0.010
## 63 electronic =~       sssi     2     2   53 .p10.  .p63. 0.304 -0.008
## 64 electronic =~       ssmc     2     2   54 .p11.  .p64. 0.143 -0.002
## 65 electronic =~       ssei     2     2   55        .p65. 0.192 -0.004
## 66      speed =~       ssno     2     2   56 .p13.  .p66. 0.558  0.001
## 67      speed =~       sscs     2     2   57 .p14.  .p67. 0.482  0.001
## 68      speed =~       ssmk     2     2   58 .p15.  .p68. 0.197 -0.002
## 69          g =~     verbal     2     2   59 .p16.  .p69. 4.221 -0.015
## 70          g =~       math     2     2   60 .p17.  .p70. 2.285  0.007
## 71          g =~ electronic     2     2   61 .p18.  .p71. 1.427  0.003
##      epv sepc.lv sepc.all sepc.nox
## 1  0.173   0.002    0.003    0.003
## 2  0.172   0.002    0.003    0.003
## 3  0.172   0.002    0.003    0.003
## 4  0.103   0.005    0.007    0.007
## 5  0.303  -0.003   -0.003   -0.003
## 6  0.230   0.001    0.001    0.001
## 7  0.182   0.001    0.001    0.001
## 8  0.261  -0.001   -0.001   -0.001
## 9  0.296   0.017    0.023    0.023
## 10 0.295  -0.015   -0.019   -0.019
## 11 0.141  -0.003   -0.004   -0.004
## 12 0.095  -0.004   -0.005   -0.005
## 13 0.559   0.001    0.001    0.001
## 14 0.483   0.001    0.002    0.002
## 15 0.194  -0.003   -0.004   -0.004
## 16 4.207  -0.003   -0.003   -0.003
## 17 2.292   0.003    0.003    0.003
## 18 1.430   0.002    0.002    0.002
## 19 1.003  -0.001   -0.001   -0.001
## 20 0.171   0.171    0.235    0.235
## 21 0.178   0.177    0.243    0.243
## 22 0.209   0.209    0.273    0.273
## 23 0.253   0.253    0.423    0.423
## 24 0.141   0.141    0.196    0.196
## 25 0.183   0.183    0.230    0.230
## 26 0.240   0.240    0.355    0.355
## 27 0.410  -0.410   -0.491   -0.491
## 28 0.305  -0.311   -0.556   -0.556
## 29 0.306   0.300    0.517    0.517
## 30 0.282  -0.282   -0.311   -0.311
## 31 0.365  -0.366   -0.439   -0.439
## 32    NA      NA       NA       NA
## 33    NA      NA       NA       NA
## 34    NA      NA       NA       NA
## 35    NA      NA       NA       NA
## 36    NA      NA       NA       NA
## 37 0.331   0.002    0.002    0.002
## 38 0.379   0.003    0.004    0.004
## 39 0.453   0.002    0.002    0.002
## 40 0.139  -0.003   -0.003   -0.003
## 41 0.327  -0.021   -0.024   -0.024
## 42 0.382   0.005    0.006    0.006
## 43 0.235   0.000    0.000    0.000
## 44 0.356   0.072    0.078    0.078
## 45 0.055   0.029    0.038    0.038
## 46 0.059  -0.019   -0.025   -0.025
## 47 0.244   0.001    0.001    0.001
## 48 0.358  -0.002   -0.002   -0.002
## 49    NA      NA       NA       NA
## 50    NA      NA       NA       NA
## 51    NA      NA       NA       NA
## 52    NA      NA       NA       NA
## 53    NA      NA       NA       NA
## 54 0.173   0.003    0.003    0.003
## 55 0.172   0.003    0.003    0.003
## 56 0.172   0.003    0.003    0.003
## 57 0.103   0.006    0.006    0.006
## 58 0.303  -0.003   -0.003   -0.003
## 59 0.230   0.001    0.001    0.001
## 60 0.182   0.001    0.001    0.001
## 61 0.261  -0.001   -0.001   -0.001
## 62 0.296   0.027    0.025    0.025
## 63 0.295  -0.023   -0.023   -0.023
## 64 0.141  -0.005   -0.006   -0.006
## 65 0.188  -0.012   -0.011   -0.011
## 66 0.559   0.001    0.001    0.001
## 67 0.483   0.002    0.002    0.002
## 68 0.194  -0.004   -0.004   -0.004
## 69 4.207  -0.003   -0.003   -0.003
## 70 2.292   0.003    0.003    0.003
## 71 1.430   0.001    0.001    0.001
##  [ reached 'max' / getOption("max.print") -- omitted 35 rows ]
strict<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 1.078965e-12) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1560.720   123.000     0.000     0.955     0.080     0.047 87259.850 
##       bic 
## 87613.532
Mc(strict) 
## [1] 0.8215872
summary(strict, standardized=T, ci=T) # -.095
## lavaan 0.6-18 ended normally after 127 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    39
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1560.720    1334.585
##   Degrees of freedom                               123         123
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.169
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          649.640     555.513
##     0                                          911.079     779.072
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.167    0.029    5.866    0.000    0.112
##     sswk    (.p2.)    0.166    0.028    5.836    0.000    0.110
##     sspc    (.p3.)    0.167    0.029    5.858    0.000    0.111
##     ssei    (.p4.)    0.100    0.018    5.674    0.000    0.066
##   math =~                                                      
##     ssar    (.p5.)    0.285    0.020   14.138    0.000    0.245
##     ssmk    (.p6.)    0.215    0.017   12.745    0.000    0.182
##     ssmc    (.p7.)    0.170    0.013   13.373    0.000    0.145
##     ssao    (.p8.)    0.244    0.018   13.616    0.000    0.209
##   electronic =~                                                
##     ssai    (.p9.)    0.265    0.019   14.079    0.000    0.228
##     sssi    (.10.)    0.272    0.020   13.478    0.000    0.232
##     ssmc    (.11.)    0.129    0.010   12.439    0.000    0.108
##     ssei              0.083    0.014    5.847    0.000    0.055
##   speed =~                                                     
##     ssno    (.13.)    0.548    0.026   21.169    0.000    0.498
##     sscs    (.14.)    0.473    0.022   21.659    0.000    0.431
##     ssmk    (.15.)    0.192    0.012   16.319    0.000    0.169
##   g =~                                                         
##     verbal  (.16.)    4.339    0.776    5.592    0.000    2.818
##     math    (.17.)    2.451    0.197   12.457    0.000    2.065
##     elctrnc (.18.)    1.576    0.126   12.524    0.000    1.330
##     speed   (.19.)    1.025    0.063   16.320    0.000    0.902
##  ci.upper   Std.lv  Std.all
##                            
##     0.223    0.746    0.868
##     0.222    0.740    0.862
##     0.223    0.744    0.842
##     0.135    0.447    0.566
##                            
##     0.324    0.754    0.879
##     0.248    0.569    0.642
##     0.195    0.451    0.546
##     0.279    0.647    0.688
##                            
##     0.302    0.494    0.614
##     0.311    0.508    0.673
##     0.149    0.240    0.290
##     0.111    0.155    0.197
##                            
##     0.599    0.785    0.816
##     0.516    0.678    0.738
##     0.215    0.275    0.310
##                            
##     5.860    0.974    0.974
##     2.836    0.926    0.926
##     1.823    0.844    0.844
##     1.148    0.716    0.716
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.329    0.021   16.003    0.000    0.289
##    .sswk    (.38.)    0.375    0.021   17.655    0.000    0.333
##    .sspc              0.451    0.021   21.009    0.000    0.409
##    .ssei    (.40.)    0.143    0.019    7.586    0.000    0.106
##    .ssar    (.41.)    0.351    0.021   17.103    0.000    0.311
##    .ssmk    (.42.)    0.376    0.022   17.306    0.000    0.333
##    .ssmc    (.43.)    0.236    0.019   12.530    0.000    0.199
##    .ssao    (.44.)    0.274    0.020   13.541    0.000    0.235
##    .ssai    (.45.)    0.011    0.017    0.673    0.501   -0.022
##    .sssi    (.46.)    0.084    0.018    4.767    0.000    0.049
##    .ssno              0.243    0.023   10.395    0.000    0.197
##    .sscs    (.48.)    0.360    0.022   16.428    0.000    0.317
##  ci.upper   Std.lv  Std.all
##     0.369    0.329    0.383
##     0.417    0.375    0.437
##     0.493    0.451    0.511
##     0.180    0.143    0.181
##     0.391    0.351    0.409
##     0.418    0.376    0.424
##     0.273    0.236    0.286
##     0.314    0.274    0.292
##     0.045    0.011    0.014
##     0.118    0.084    0.111
##     0.289    0.243    0.252
##     0.403    0.360    0.391
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.20.)    0.182    0.006   28.601    0.000    0.170
##    .sswk    (.21.)    0.189    0.007   27.852    0.000    0.176
##    .sspc    (.22.)    0.227    0.009   26.479    0.000    0.211
##    .ssei    (.23.)    0.285    0.009   30.204    0.000    0.266
##    .ssar    (.24.)    0.167    0.007   23.871    0.000    0.153
##    .ssmk    (.25.)    0.180    0.006   29.513    0.000    0.168
##    .ssmc    (.26.)    0.253    0.009   29.005    0.000    0.236
##    .ssao    (.27.)    0.465    0.013   35.640    0.000    0.439
##    .ssai    (.28.)    0.403    0.015   27.599    0.000    0.375
##    .sssi    (.29.)    0.311    0.012   25.629    0.000    0.287
##    .ssno    (.30.)    0.310    0.016   19.823    0.000    0.279
##    .sscs    (.31.)    0.385    0.015   24.847    0.000    0.354
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .elctrnc           1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.195    0.182    0.247
##     0.203    0.189    0.257
##     0.244    0.227    0.291
##     0.303    0.285    0.457
##     0.181    0.167    0.227
##     0.192    0.180    0.228
##     0.270    0.253    0.370
##     0.490    0.465    0.526
##     0.432    0.403    0.623
##     0.335    0.311    0.547
##     0.340    0.310    0.334
##     0.415    0.385    0.456
##     1.000    0.050    0.050
##     1.000    0.143    0.143
##     1.000    0.287    0.287
##     1.000    0.488    0.488
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.167    0.029    5.866    0.000    0.112
##     sswk    (.p2.)    0.166    0.028    5.836    0.000    0.110
##     sspc    (.p3.)    0.167    0.029    5.858    0.000    0.111
##     ssei    (.p4.)    0.100    0.018    5.674    0.000    0.066
##   math =~                                                      
##     ssar    (.p5.)    0.285    0.020   14.138    0.000    0.245
##     ssmk    (.p6.)    0.215    0.017   12.745    0.000    0.182
##     ssmc    (.p7.)    0.170    0.013   13.373    0.000    0.145
##     ssao    (.p8.)    0.244    0.018   13.616    0.000    0.209
##   electronic =~                                                
##     ssai    (.p9.)    0.265    0.019   14.079    0.000    0.228
##     sssi    (.10.)    0.272    0.020   13.478    0.000    0.232
##     ssmc    (.11.)    0.129    0.010   12.439    0.000    0.108
##     ssei              0.174    0.014   12.240    0.000    0.146
##   speed =~                                                     
##     ssno    (.13.)    0.548    0.026   21.169    0.000    0.498
##     sscs    (.14.)    0.473    0.022   21.659    0.000    0.431
##     ssmk    (.15.)    0.192    0.012   16.319    0.000    0.169
##   g =~                                                         
##     verbal  (.16.)    4.339    0.776    5.592    0.000    2.818
##     math    (.17.)    2.451    0.197   12.457    0.000    2.065
##     elctrnc (.18.)    1.576    0.126   12.524    0.000    1.330
##     speed   (.19.)    1.025    0.063   16.320    0.000    0.902
##  ci.upper   Std.lv  Std.all
##                            
##     0.223    0.862    0.896
##     0.222    0.855    0.891
##     0.223    0.859    0.874
##     0.135    0.516    0.484
##                            
##     0.324    0.840    0.899
##     0.248    0.634    0.651
##     0.195    0.503    0.537
##     0.279    0.721    0.726
##                            
##     0.302    0.800    0.783
##     0.311    0.822    0.827
##     0.149    0.389    0.415
##     0.201    0.525    0.493
##                            
##     0.599    0.891    0.848
##     0.516    0.770    0.779
##     0.215    0.312    0.321
##                            
##     5.860    0.961    0.961
##     2.836    0.947    0.947
##     1.823    0.594    0.594
##     1.148    0.718    0.718
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.503    0.025   19.938    0.000    0.454
##    .sswk    (.38.)    0.375    0.021   17.655    0.000    0.333
##    .sspc              0.192    0.026    7.312    0.000    0.140
##    .ssei    (.40.)    0.143    0.019    7.586    0.000    0.106
##    .ssar    (.41.)    0.351    0.021   17.103    0.000    0.311
##    .ssmk    (.42.)    0.376    0.022   17.306    0.000    0.333
##    .ssmc    (.43.)    0.236    0.019   12.530    0.000    0.199
##    .ssao    (.44.)    0.274    0.020   13.541    0.000    0.235
##    .ssai    (.45.)    0.011    0.017    0.673    0.501   -0.022
##    .sssi    (.46.)    0.084    0.018    4.767    0.000    0.049
##    .ssno              0.508    0.033   15.461    0.000    0.444
##    .sscs    (.48.)    0.360    0.022   16.428    0.000    0.317
##    .verbal           -0.351    0.065   -5.393    0.000   -0.478
##    .math             -0.198    0.070   -2.837    0.005   -0.335
##    .elctrnc           2.260    0.172   13.104    0.000    1.922
##    .speed            -0.862    0.070  -12.303    0.000   -0.999
##     g                 0.108    0.039    2.754    0.006    0.031
##  ci.upper   Std.lv  Std.all
##     0.553    0.503    0.523
##     0.417    0.375    0.391
##     0.243    0.192    0.195
##     0.180    0.143    0.134
##     0.391    0.351    0.376
##     0.418    0.376    0.386
##     0.273    0.236    0.252
##     0.314    0.274    0.277
##     0.045    0.011    0.011
##     0.118    0.084    0.084
##     0.573    0.508    0.484
##     0.403    0.360    0.364
##    -0.223   -0.068   -0.068
##    -0.061   -0.067   -0.067
##     2.598    0.748    0.748
##    -0.725   -0.530   -0.530
##     0.185    0.095    0.095
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.20.)    0.182    0.006   28.601    0.000    0.170
##    .sswk    (.21.)    0.189    0.007   27.852    0.000    0.176
##    .sspc    (.22.)    0.227    0.009   26.479    0.000    0.211
##    .ssei    (.23.)    0.285    0.009   30.204    0.000    0.266
##    .ssar    (.24.)    0.167    0.007   23.871    0.000    0.153
##    .ssmk    (.25.)    0.180    0.006   29.513    0.000    0.168
##    .ssmc    (.26.)    0.253    0.009   29.005    0.000    0.236
##    .ssao    (.27.)    0.465    0.013   35.640    0.000    0.439
##    .ssai    (.28.)    0.403    0.015   27.599    0.000    0.375
##    .sssi    (.29.)    0.311    0.012   25.629    0.000    0.287
##    .ssno    (.30.)    0.310    0.016   19.823    0.000    0.279
##    .sscs    (.31.)    0.385    0.015   24.847    0.000    0.354
##    .verbal            2.026    0.645    3.141    0.002    0.762
##    .math              0.904    0.174    5.193    0.000    0.563
##    .elctrnc           5.912    0.907    6.518    0.000    4.134
##    .speed             1.279    0.141    9.060    0.000    1.002
##     g                 1.298    0.069   18.864    0.000    1.163
##  ci.upper   Std.lv  Std.all
##     0.195    0.182    0.197
##     0.203    0.189    0.206
##     0.244    0.227    0.235
##     0.303    0.285    0.250
##     0.181    0.167    0.191
##     0.192    0.180    0.189
##     0.270    0.253    0.288
##     0.490    0.465    0.472
##     0.432    0.403    0.387
##     0.335    0.311    0.315
##     0.340    0.310    0.281
##     0.415    0.385    0.394
##     3.291    0.077    0.077
##     1.246    0.104    0.104
##     7.690    0.647    0.647
##     1.555    0.484    0.484
##     1.433    1.000    1.000
latent<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 5.834047e-14) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1706.346   116.000     0.000     0.950     0.087     0.102 87419.477 
##       bic 
## 87816.593
Mc(latent)
## [1] 0.8046248
summary(latent, standardized=T, ci=T) # -.039
## lavaan 0.6-18 ended normally after 84 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        91
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1706.346    1468.065
##   Degrees of freedom                               116         116
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.162
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          714.251     614.510
##     0                                          992.095     853.555
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.187    0.027    6.922    0.000    0.134
##     sswk    (.p2.)    0.186    0.027    6.879    0.000    0.133
##     sspc    (.p3.)    0.186    0.027    6.900    0.000    0.133
##     ssei    (.p4.)    0.107    0.016    6.532    0.000    0.075
##   math =~                                                      
##     ssar    (.p5.)    0.294    0.018   15.956    0.000    0.258
##     ssmk    (.p6.)    0.221    0.016   14.244    0.000    0.191
##     ssmc    (.p7.)    0.173    0.012   14.968    0.000    0.151
##     ssao    (.p8.)    0.252    0.016   15.344    0.000    0.220
##   electronic =~                                                
##     ssai    (.p9.)    0.451    0.015   29.151    0.000    0.421
##     sssi    (.10.)    0.492    0.015   31.948    0.000    0.462
##     ssmc    (.11.)    0.237    0.011   22.440    0.000    0.216
##     ssei              0.152    0.017    9.043    0.000    0.119
##   speed =~                                                     
##     ssno    (.13.)    0.588    0.021   28.514    0.000    0.548
##     sscs    (.14.)    0.509    0.017   30.101    0.000    0.476
##     ssmk    (.15.)    0.210    0.011   19.237    0.000    0.188
##   g =~                                                         
##     verbal  (.16.)    4.194    0.642    6.530    0.000    2.935
##     math    (.17.)    2.523    0.185   13.650    0.000    2.161
##     elctrnc (.18.)    0.985    0.044   22.315    0.000    0.898
##     speed   (.19.)    1.015    0.051   19.980    0.000    0.915
##  ci.upper   Std.lv  Std.all
##                            
##     0.239    0.804    0.889
##     0.239    0.802    0.887
##     0.239    0.803    0.871
##     0.139    0.462    0.575
##                            
##     0.330    0.798    0.906
##     0.252    0.601    0.644
##     0.196    0.470    0.535
##     0.284    0.685    0.729
##                            
##     0.481    0.633    0.757
##     0.522    0.691    0.802
##     0.257    0.332    0.378
##     0.185    0.213    0.266
##                            
##     0.629    0.838    0.849
##     0.542    0.725    0.768
##     0.231    0.299    0.321
##                            
##     5.453    0.973    0.973
##     2.885    0.930    0.930
##     1.071    0.702    0.702
##     1.114    0.712    0.712
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.336    0.021   16.350    0.000    0.296
##    .sswk    (.38.)    0.388    0.021   18.115    0.000    0.346
##    .sspc              0.458    0.022   21.268    0.000    0.416
##    .ssei    (.40.)    0.135    0.019    7.248    0.000    0.099
##    .ssar    (.41.)    0.354    0.020   17.333    0.000    0.314
##    .ssmk    (.42.)    0.384    0.022   17.620    0.000    0.341
##    .ssmc    (.43.)    0.240    0.019   12.602    0.000    0.203
##    .ssao    (.44.)    0.289    0.021   14.084    0.000    0.249
##    .ssai    (.45.)    0.044    0.017    2.576    0.010    0.010
##    .sssi    (.46.)    0.086    0.018    4.883    0.000    0.052
##    .ssno              0.248    0.023   10.592    0.000    0.202
##    .sscs    (.48.)    0.363    0.022   16.573    0.000    0.320
##  ci.upper   Std.lv  Std.all
##     0.376    0.336    0.372
##     0.430    0.388    0.429
##     0.500    0.458    0.497
##     0.172    0.135    0.168
##     0.394    0.354    0.402
##     0.426    0.384    0.411
##     0.278    0.240    0.273
##     0.329    0.289    0.308
##     0.077    0.044    0.052
##     0.121    0.086    0.100
##     0.294    0.248    0.252
##     0.406    0.363    0.385
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.172    0.009   19.769    0.000    0.155
##    .sswk              0.175    0.008   20.940    0.000    0.159
##    .sspc              0.206    0.012   17.832    0.000    0.183
##    .ssei              0.252    0.011   23.151    0.000    0.231
##    .ssar              0.139    0.008   16.558    0.000    0.122
##    .ssmk              0.181    0.008   21.830    0.000    0.165
##    .ssmc              0.238    0.012   20.018    0.000    0.214
##    .ssao              0.413    0.017   24.009    0.000    0.379
##    .ssai              0.299    0.016   18.172    0.000    0.267
##    .sssi              0.265    0.015   17.128    0.000    0.235
##    .ssno              0.271    0.019   14.230    0.000    0.234
##    .sscs              0.365    0.019   19.091    0.000    0.328
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.189    0.172    0.210
##     0.192    0.175    0.214
##     0.228    0.206    0.242
##     0.273    0.252    0.390
##     0.155    0.139    0.179
##     0.198    0.181    0.209
##     0.261    0.238    0.307
##     0.446    0.413    0.468
##     0.332    0.299    0.428
##     0.295    0.265    0.357
##     0.309    0.271    0.279
##     0.403    0.365    0.410
##     1.000    0.054    0.054
##     1.000    0.136    0.136
##     1.000    0.508    0.508
##     1.000    0.493    0.493
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.187    0.027    6.922    0.000    0.134
##     sswk    (.p2.)    0.186    0.027    6.879    0.000    0.133
##     sspc    (.p3.)    0.186    0.027    6.900    0.000    0.133
##     ssei    (.p4.)    0.107    0.016    6.532    0.000    0.075
##   math =~                                                      
##     ssar    (.p5.)    0.294    0.018   15.956    0.000    0.258
##     ssmk    (.p6.)    0.221    0.016   14.244    0.000    0.191
##     ssmc    (.p7.)    0.173    0.012   14.968    0.000    0.151
##     ssao    (.p8.)    0.252    0.016   15.344    0.000    0.220
##   electronic =~                                                
##     ssai    (.p9.)    0.451    0.015   29.151    0.000    0.421
##     sssi    (.10.)    0.492    0.015   31.948    0.000    0.462
##     ssmc    (.11.)    0.237    0.011   22.440    0.000    0.216
##     ssei              0.342    0.014   24.190    0.000    0.315
##   speed =~                                                     
##     ssno    (.13.)    0.588    0.021   28.514    0.000    0.548
##     sscs    (.14.)    0.509    0.017   30.101    0.000    0.476
##     ssmk    (.15.)    0.210    0.011   19.237    0.000    0.188
##   g =~                                                         
##     verbal  (.16.)    4.194    0.642    6.530    0.000    2.935
##     math    (.17.)    2.523    0.185   13.650    0.000    2.161
##     elctrnc (.18.)    0.985    0.044   22.315    0.000    0.898
##     speed   (.19.)    1.015    0.051   19.980    0.000    0.915
##  ci.upper   Std.lv  Std.all
##                            
##     0.239    0.804    0.878
##     0.239    0.802    0.874
##     0.239    0.803    0.848
##     0.139    0.462    0.448
##                            
##     0.330    0.798    0.876
##     0.252    0.601    0.646
##     0.196    0.470    0.526
##     0.284    0.685    0.690
##                            
##     0.481    0.633    0.643
##     0.522    0.691    0.761
##     0.257    0.332    0.371
##     0.370    0.480    0.466
##                            
##     0.629    0.838    0.817
##     0.542    0.725    0.752
##     0.231    0.299    0.321
##                            
##     5.453    0.973    0.973
##     2.885    0.930    0.930
##     1.071    0.702    0.702
##     1.114    0.712    0.712
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.522    0.025   20.538    0.000    0.472
##    .sswk    (.38.)    0.388    0.021   18.115    0.000    0.346
##    .sspc              0.210    0.026    8.027    0.000    0.159
##    .ssei    (.40.)    0.135    0.019    7.248    0.000    0.099
##    .ssar    (.41.)    0.354    0.020   17.333    0.000    0.314
##    .ssmk    (.42.)    0.384    0.022   17.620    0.000    0.341
##    .ssmc    (.43.)    0.240    0.019   12.602    0.000    0.203
##    .ssao    (.44.)    0.289    0.021   14.084    0.000    0.249
##    .ssai    (.45.)    0.044    0.017    2.576    0.010    0.010
##    .sssi    (.46.)    0.086    0.018    4.883    0.000    0.052
##    .ssno              0.511    0.033   15.595    0.000    0.447
##    .sscs    (.48.)    0.363    0.022   16.573    0.000    0.320
##    .verbal           -0.160    0.040   -3.968    0.000   -0.239
##    .math             -0.060    0.055   -1.076    0.282   -0.168
##    .elctrnc           1.297    0.053   24.525    0.000    1.193
##    .speed            -0.744    0.055  -13.647    0.000   -0.851
##     g                 0.039    0.035    1.106    0.269   -0.030
##  ci.upper   Std.lv  Std.all
##     0.572    0.522    0.570
##     0.430    0.388    0.422
##     0.262    0.210    0.222
##     0.172    0.135    0.131
##     0.394    0.354    0.388
##     0.426    0.384    0.413
##     0.278    0.240    0.269
##     0.329    0.289    0.291
##     0.077    0.044    0.044
##     0.121    0.086    0.095
##     0.575    0.511    0.498
##     0.406    0.363    0.377
##    -0.081   -0.037   -0.037
##     0.049   -0.022   -0.022
##     1.400    0.924    0.924
##    -0.637   -0.522   -0.522
##     0.109    0.039    0.039
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.192    0.009   21.848    0.000    0.175
##    .sswk              0.199    0.010   20.029    0.000    0.179
##    .sspc              0.251    0.012   20.678    0.000    0.227
##    .ssei              0.315    0.015   20.352    0.000    0.284
##    .ssar              0.193    0.011   17.664    0.000    0.171
##    .ssmk              0.176    0.009   20.421    0.000    0.160
##    .ssmc              0.266    0.013   20.761    0.000    0.241
##    .ssao              0.515    0.019   26.550    0.000    0.477
##    .ssai              0.570    0.026   22.034    0.000    0.519
##    .sssi              0.347    0.019   18.414    0.000    0.310
##    .ssno              0.351    0.023   15.191    0.000    0.306
##    .sscs              0.405    0.023   17.487    0.000    0.359
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.210    0.192    0.229
##     0.218    0.199    0.236
##     0.275    0.251    0.281
##     0.345    0.315    0.296
##     0.214    0.193    0.232
##     0.193    0.176    0.204
##     0.291    0.266    0.332
##     0.553    0.515    0.524
##     0.621    0.570    0.587
##     0.384    0.347    0.421
##     0.396    0.351    0.333
##     0.450    0.405    0.435
##     1.000    0.054    0.054
##     1.000    0.136    0.136
##     1.000    0.508    0.508
##     1.000    0.493    0.493
##     1.000    1.000    1.000
latent2<-cfa(hof.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 4.572000e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1399.587   113.000     0.000     0.959     0.079     0.043 87118.717 
##       bic 
## 87534.449
Mc(latent2)
## [1] 0.838736
summary(latent2, standardized=T, ci=T) # -.076
## lavaan 0.6-18 ended normally after 110 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        94
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1399.587    1204.307
##   Degrees of freedom                               113         113
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.162
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          545.617     469.489
##     0                                          853.970     734.818
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.177    0.027    6.519    0.000    0.123
##     sswk    (.p2.)    0.176    0.027    6.479    0.000    0.123
##     sspc    (.p3.)    0.176    0.027    6.502    0.000    0.123
##     ssei    (.p4.)    0.105    0.017    6.247    0.000    0.072
##   math =~                                                      
##     ssar    (.p5.)    0.289    0.018   16.323    0.000    0.254
##     ssmk    (.p6.)    0.218    0.015   14.545    0.000    0.188
##     ssmc    (.p7.)    0.172    0.011   15.255    0.000    0.150
##     ssao    (.p8.)    0.248    0.016   15.633    0.000    0.217
##   electronic =~                                                
##     ssai    (.p9.)    0.285    0.017   16.853    0.000    0.252
##     sssi    (.10.)    0.303    0.018   16.764    0.000    0.268
##     ssmc    (.11.)    0.143    0.010   14.811    0.000    0.124
##     ssei              0.096    0.015    6.522    0.000    0.067
##   speed =~                                                     
##     ssno    (.13.)    0.585    0.021   28.331    0.000    0.544
##     sscs    (.14.)    0.506    0.017   29.925    0.000    0.473
##     ssmk    (.15.)    0.207    0.011   19.021    0.000    0.186
##   g =~                                                         
##     verbal  (.16.)    4.118    0.667    6.175    0.000    2.811
##     math    (.17.)    2.403    0.176   13.670    0.000    2.059
##     elctrnc (.18.)    1.434    0.096   14.866    0.000    1.245
##     speed   (.19.)    0.957    0.050   19.071    0.000    0.859
##  ci.upper   Std.lv  Std.all
##                            
##     0.230    0.748    0.876
##     0.229    0.746    0.870
##     0.230    0.748    0.854
##     0.138    0.445    0.575
##                            
##     0.323    0.751    0.893
##     0.247    0.566    0.636
##     0.194    0.448    0.546
##     0.279    0.645    0.709
##                            
##     0.318    0.498    0.666
##     0.338    0.530    0.695
##     0.162    0.250    0.305
##     0.125    0.167    0.217
##                            
##     0.625    0.809    0.840
##     0.539    0.700    0.757
##     0.228    0.286    0.321
##                            
##     5.425    0.972    0.972
##     2.748    0.923    0.923
##     1.623    0.820    0.820
##     1.056    0.691    0.691
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.330    0.021   16.009    0.000    0.289
##    .sswk    (.38.)    0.376    0.021   17.639    0.000    0.334
##    .sspc              0.452    0.022   21.001    0.000    0.409
##    .ssei    (.40.)    0.142    0.019    7.562    0.000    0.105
##    .ssar    (.41.)    0.348    0.020   17.064    0.000    0.308
##    .ssmk    (.42.)    0.377    0.022   17.328    0.000    0.334
##    .ssmc    (.43.)    0.234    0.019   12.395    0.000    0.197
##    .ssao    (.44.)    0.284    0.021   13.836    0.000    0.244
##    .ssai    (.45.)    0.027    0.017    1.579    0.114   -0.006
##    .sssi    (.46.)    0.079    0.018    4.474    0.000    0.044
##    .ssno              0.243    0.023   10.402    0.000    0.197
##    .sscs    (.48.)    0.359    0.022   16.417    0.000    0.317
##  ci.upper   Std.lv  Std.all
##     0.370    0.330    0.386
##     0.418    0.376    0.439
##     0.494    0.452    0.515
##     0.179    0.142    0.183
##     0.388    0.348    0.414
##     0.419    0.377    0.423
##     0.271    0.234    0.286
##     0.324    0.284    0.312
##     0.060    0.027    0.036
##     0.113    0.079    0.103
##     0.289    0.243    0.252
##     0.402    0.359    0.389
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.171    0.009   19.846    0.000    0.154
##    .sswk              0.178    0.008   20.966    0.000    0.161
##    .sspc              0.208    0.012   17.960    0.000    0.186
##    .ssei              0.253    0.011   23.172    0.000    0.231
##    .ssar              0.143    0.009   16.836    0.000    0.127
##    .ssmk              0.184    0.008   22.054    0.000    0.167
##    .ssmc              0.240    0.012   20.098    0.000    0.216
##    .ssao              0.411    0.017   24.069    0.000    0.378
##    .ssai              0.311    0.015   20.377    0.000    0.281
##    .sssi              0.301    0.015   19.778    0.000    0.271
##    .ssno              0.273    0.019   14.295    0.000    0.236
##    .sscs              0.365    0.019   19.091    0.000    0.327
##    .verbal            1.000                               1.000
##    .electronic        1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.522    0.522
##     1.000    0.148    0.148
##     0.187    0.171    0.233
##     0.194    0.178    0.242
##     0.231    0.208    0.271
##     0.274    0.253    0.423
##     0.160    0.143    0.202
##     0.200    0.184    0.232
##     0.263    0.240    0.357
##     0.445    0.411    0.497
##     0.341    0.311    0.556
##     0.330    0.301    0.517
##     0.311    0.273    0.295
##     0.402    0.365    0.426
##     1.000    0.056    0.056
##     1.000    0.327    0.327
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.177    0.027    6.519    0.000    0.123
##     sswk    (.p2.)    0.176    0.027    6.479    0.000    0.123
##     sspc    (.p3.)    0.176    0.027    6.502    0.000    0.123
##     ssei    (.p4.)    0.105    0.017    6.247    0.000    0.072
##   math =~                                                      
##     ssar    (.p5.)    0.289    0.018   16.323    0.000    0.254
##     ssmk    (.p6.)    0.218    0.015   14.545    0.000    0.188
##     ssmc    (.p7.)    0.172    0.011   15.255    0.000    0.150
##     ssao    (.p8.)    0.248    0.016   15.633    0.000    0.217
##   electronic =~                                                
##     ssai    (.p9.)    0.285    0.017   16.853    0.000    0.252
##     sssi    (.10.)    0.303    0.018   16.764    0.000    0.268
##     ssmc    (.11.)    0.143    0.010   14.811    0.000    0.124
##     ssei              0.192    0.013   14.209    0.000    0.165
##   speed =~                                                     
##     ssno    (.13.)    0.585    0.021   28.331    0.000    0.544
##     sscs    (.14.)    0.506    0.017   29.925    0.000    0.473
##     ssmk    (.15.)    0.207    0.011   19.021    0.000    0.186
##   g =~                                                         
##     verbal  (.16.)    4.118    0.667    6.175    0.000    2.811
##     math    (.17.)    2.403    0.176   13.670    0.000    2.059
##     elctrnc (.18.)    1.434    0.096   14.866    0.000    1.245
##     speed   (.19.)    0.957    0.050   19.071    0.000    0.859
##  ci.upper   Std.lv  Std.all
##                            
##     0.230    0.856    0.889
##     0.229    0.853    0.886
##     0.230    0.855    0.865
##     0.138    0.509    0.472
##                            
##     0.323    0.841    0.889
##     0.247    0.634    0.655
##     0.194    0.502    0.533
##     0.279    0.722    0.709
##                            
##     0.318    0.774    0.731
##     0.338    0.822    0.836
##     0.162    0.388    0.412
##     0.218    0.521    0.483
##                            
##     0.625    0.865    0.826
##     0.539    0.749    0.762
##     0.228    0.306    0.316
##                            
##     5.425    0.969    0.969
##     2.748    0.939    0.939
##     1.623    0.602    0.602
##     1.056    0.737    0.737
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.505    0.025   19.973    0.000    0.455
##    .sswk    (.38.)    0.376    0.021   17.639    0.000    0.334
##    .sspc              0.193    0.026    7.345    0.000    0.141
##    .ssei    (.40.)    0.142    0.019    7.562    0.000    0.105
##    .ssar    (.41.)    0.348    0.020   17.064    0.000    0.308
##    .ssmk    (.42.)    0.377    0.022   17.328    0.000    0.334
##    .ssmc    (.43.)    0.234    0.019   12.395    0.000    0.197
##    .ssao    (.44.)    0.284    0.021   13.836    0.000    0.244
##    .ssai    (.45.)    0.027    0.017    1.579    0.114   -0.006
##    .sssi    (.46.)    0.079    0.018    4.474    0.000    0.044
##    .ssno              0.507    0.033   15.465    0.000    0.442
##    .sscs    (.48.)    0.359    0.022   16.417    0.000    0.317
##    .verbal           -0.252    0.053   -4.737    0.000   -0.356
##    .math             -0.145    0.062   -2.328    0.020   -0.267
##    .elctrnc           2.090    0.136   15.404    0.000    1.824
##    .speed            -0.785    0.057  -13.782    0.000   -0.896
##     g                 0.086    0.039    2.239    0.025    0.011
##  ci.upper   Std.lv  Std.all
##     0.554    0.505    0.524
##     0.418    0.376    0.391
##     0.244    0.193    0.195
##     0.179    0.142    0.132
##     0.388    0.348    0.368
##     0.419    0.377    0.389
##     0.271    0.234    0.249
##     0.324    0.284    0.279
##     0.060    0.027    0.025
##     0.113    0.079    0.080
##     0.571    0.507    0.483
##     0.402    0.359    0.366
##    -0.148   -0.052   -0.052
##    -0.023   -0.050   -0.050
##     2.356    0.770    0.770
##    -0.673   -0.530   -0.530
##     0.162    0.076    0.076
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.194    0.009   21.564    0.000    0.177
##    .sswk              0.199    0.010   19.439    0.000    0.179
##    .sspc              0.246    0.012   20.375    0.000    0.223
##    .ssei              0.321    0.016   20.578    0.000    0.291
##    .ssar              0.188    0.011   17.351    0.000    0.167
##    .ssmk              0.174    0.009   20.335    0.000    0.157
##    .ssmc              0.263    0.013   20.886    0.000    0.239
##    .ssao              0.516    0.019   26.544    0.000    0.477
##    .ssai              0.522    0.025   21.252    0.000    0.474
##    .sssi              0.293    0.018   16.201    0.000    0.257
##    .ssno              0.350    0.023   15.230    0.000    0.305
##    .sscs              0.404    0.023   17.516    0.000    0.359
##    .verbal            1.453    0.412    3.531    0.000    0.647
##    .electronic        4.701    0.610    7.711    0.000    3.506
##     g                 1.299    0.069   18.803    0.000    1.164
##  ci.upper   Std.lv  Std.all
##     1.000    0.457    0.457
##     1.000    0.118    0.118
##     0.212    0.194    0.210
##     0.219    0.199    0.215
##     0.270    0.246    0.252
##     0.352    0.321    0.277
##     0.210    0.188    0.210
##     0.191    0.174    0.185
##     0.288    0.263    0.297
##     0.554    0.516    0.497
##     0.571    0.522    0.466
##     0.328    0.293    0.302
##     0.395    0.350    0.318
##     0.450    0.404    0.419
##     2.260    0.062    0.062
##     5.896    0.638    0.638
##     1.435    1.000    1.000
standardizedSolution(latent2) # get the correct SEs for standardized solution
##           lhs op        rhs group label est.std    se       z pvalue
## 1      verbal =~       ssgs     1  .p1.   0.876 0.007 130.288  0.000
## 2      verbal =~       sswk     1  .p2.   0.870 0.007 123.084  0.000
## 3      verbal =~       sspc     1  .p3.   0.854 0.009  97.859  0.000
## 4      verbal =~       ssei     1  .p4.   0.575 0.023  25.444  0.000
## 5        math =~       ssar     1  .p5.   0.893 0.007 136.292  0.000
## 6        math =~       ssmk     1  .p6.   0.636 0.016  38.759  0.000
## 7        math =~       ssmc     1  .p7.   0.546 0.015  36.439  0.000
## 8        math =~       ssao     1  .p8.   0.709 0.012  60.603  0.000
## 9  electronic =~       ssai     1  .p9.   0.666 0.016  41.253  0.000
## 10 electronic =~       sssi     1 .p10.   0.695 0.015  45.001  0.000
## 11 electronic =~       ssmc     1 .p11.   0.305 0.014  21.762  0.000
## 12 electronic =~       ssei     1         0.217 0.029   7.524  0.000
## 13      speed =~       ssno     1 .p13.   0.840 0.011  75.116  0.000
## 14      speed =~       sscs     1 .p14.   0.757 0.013  60.223  0.000
## 15      speed =~       ssmk     1 .p15.   0.321 0.017  18.611  0.000
## 16          g =~     verbal     1 .p16.   0.972 0.009 110.870  0.000
## 17          g =~       math     1 .p17.   0.923 0.010  92.621  0.000
## 18          g =~ electronic     1 .p18.   0.820 0.018  45.423  0.000
## 19          g =~      speed     1 .p19.   0.691 0.019  36.545  0.000
## 20      speed ~~      speed     1         0.522 0.026  19.942  0.000
## 21       math ~~       math     1         0.148 0.018   8.018  0.000
## 22       ssgs ~~       ssgs     1         0.233 0.012  19.844  0.000
## 23       sswk ~~       sswk     1         0.242 0.012  19.676  0.000
## 24       sspc ~~       sspc     1         0.271 0.015  18.234  0.000
## 25       ssei ~~       ssei     1         0.423 0.018  24.161  0.000
## 26       ssar ~~       ssar     1         0.202 0.012  17.303  0.000
## 27       ssmk ~~       ssmk     1         0.232 0.011  20.937  0.000
## 28       ssmc ~~       ssmc     1         0.357 0.016  22.633  0.000
## 29       ssao ~~       ssao     1         0.497 0.017  29.972  0.000
## 30       ssai ~~       ssai     1         0.556 0.022  25.873  0.000
## 31       sssi ~~       sssi     1         0.517 0.021  24.118  0.000
## 32       ssno ~~       ssno     1         0.295 0.019  15.684  0.000
## 33       sscs ~~       sscs     1         0.426 0.019  22.375  0.000
## 34     verbal ~~     verbal     1         0.056 0.017   3.269  0.001
## 35 electronic ~~ electronic     1         0.327 0.030  11.050  0.000
## 36          g ~~          g     1         1.000 0.000      NA     NA
## 37       ssgs ~1                1         0.386 0.026  15.032  0.000
## 38       sswk ~1                1 .p38.   0.439 0.027  16.237  0.000
## 39       sspc ~1                1         0.515 0.028  18.459  0.000
## 40       ssei ~1                1 .p40.   0.183 0.024   7.491  0.000
## 41       ssar ~1                1 .p41.   0.414 0.027  15.164  0.000
## 42       ssmk ~1                1 .p42.   0.423 0.027  15.832  0.000
## 43       ssmc ~1                1 .p43.   0.286 0.025  11.243  0.000
## 44       ssao ~1                1 .p44.   0.312 0.024  13.046  0.000
## 45       ssai ~1                1 .p45.   0.036 0.023   1.574  0.116
## 46       sssi ~1                1 .p46.   0.103 0.023   4.471  0.000
## 47       ssno ~1                1         0.252 0.025   9.953  0.000
## 48       sscs ~1                1 .p48.   0.389 0.025  15.624  0.000
## 49     verbal ~1                1         0.000 0.000      NA     NA
## 50       math ~1                1         0.000 0.000      NA     NA
## 51 electronic ~1                1         0.000 0.000      NA     NA
## 52      speed ~1                1         0.000 0.000      NA     NA
## 53          g ~1                1         0.000 0.000      NA     NA
## 54     verbal =~       ssgs     2  .p1.   0.889 0.006 145.559  0.000
## 55     verbal =~       sswk     2  .p2.   0.886 0.006 141.062  0.000
## 56     verbal =~       sspc     2  .p3.   0.865 0.007 121.707  0.000
## 57     verbal =~       ssei     2  .p4.   0.472 0.017  28.611  0.000
## 58       math =~       ssar     2  .p5.   0.889 0.007 134.561  0.000
## 59       math =~       ssmk     2  .p6.   0.655 0.017  38.974  0.000
## 60       math =~       ssmc     2  .p7.   0.533 0.015  35.651  0.000
## 61       math =~       ssao     2  .p8.   0.709 0.011  62.229  0.000
## 62 electronic =~       ssai     2  .p9.   0.731 0.013  55.757  0.000
## 63 electronic =~       sssi     2 .p10.   0.836 0.011  78.036  0.000
## 64 electronic =~       ssmc     2 .p11.   0.412 0.016  25.662  0.000
## 65 electronic =~       ssei     2         0.483 0.017  28.936  0.000
## 66      speed =~       ssno     2 .p13.   0.826 0.012  71.610  0.000
## 67      speed =~       sscs     2 .p14.   0.762 0.013  59.671  0.000
## 68      speed =~       ssmk     2 .p15.   0.316 0.017  18.447  0.000
## 69          g =~     verbal     2 .p16.   0.969 0.009 112.910  0.000
## 70          g =~       math     2 .p17.   0.939 0.008 118.307  0.000
## 71          g =~ electronic     2 .p18.   0.602 0.019  32.399  0.000
## 72          g =~      speed     2 .p19.   0.737 0.017  42.921  0.000
## 73      speed ~~      speed     2         0.457 0.025  18.027  0.000
## 74       math ~~       math     2         0.118 0.015   7.883  0.000
## 75       ssgs ~~       ssgs     2         0.210 0.011  19.313  0.000
## 76       sswk ~~       sswk     2         0.215 0.011  19.267  0.000
## 77       sspc ~~       sspc     2         0.252 0.012  20.486  0.000
## 78       ssei ~~       ssei     2         0.277 0.014  20.445  0.000
## 79       ssar ~~       ssar     2         0.210 0.012  17.912  0.000
## 80       ssmk ~~       ssmk     2         0.185 0.009  20.148  0.000
## 81       ssmc ~~       ssmc     2         0.297 0.013  22.654  0.000
## 82       ssao ~~       ssao     2         0.497 0.016  30.740  0.000
## 83       ssai ~~       ssai     2         0.466 0.019  24.316  0.000
## 84       sssi ~~       sssi     2         0.302 0.018  16.872  0.000
## 85       ssno ~~       ssno     2         0.318 0.019  16.733  0.000
## 86       sscs ~~       sscs     2         0.419 0.019  21.521  0.000
## 87     verbal ~~     verbal     2         0.062 0.017   3.724  0.000
## 88 electronic ~~ electronic     2         0.638 0.022  28.517  0.000
## 89          g ~~          g     2         1.000 0.000      NA     NA
## 90       ssgs ~1                2         0.524 0.027  19.389  0.000
##    ci.lower ci.upper
## 1     0.862    0.889
## 2     0.857    0.884
## 3     0.836    0.871
## 4     0.531    0.620
## 5     0.880    0.906
## 6     0.604    0.668
## 7     0.517    0.576
## 8     0.686    0.732
## 9     0.634    0.698
## 10    0.664    0.725
## 11    0.277    0.332
## 12    0.160    0.273
## 13    0.818    0.862
## 14    0.733    0.782
## 15    0.288    0.355
## 16    0.955    0.989
## 17    0.904    0.943
## 18    0.785    0.856
## 19    0.654    0.729
## 20    0.471    0.573
## 21    0.112    0.184
## 22    0.210    0.257
## 23    0.218    0.266
## 24    0.242    0.301
## 25    0.389    0.458
## 26    0.180    0.225
## 27    0.210    0.253
## 28    0.326    0.388
## 29    0.465    0.530
## 30    0.514    0.599
## 31    0.475    0.559
## 32    0.258    0.331
## 33    0.389    0.464
## 34    0.022    0.089
## 35    0.269    0.385
## 36    1.000    1.000
## 37    0.335    0.436
## 38    0.386    0.492
## 39    0.461    0.570
## 40    0.135    0.231
## 41    0.360    0.467
## 42    0.370    0.475
## 43    0.236    0.336
## 44    0.265    0.359
## 45   -0.009    0.080
## 46    0.058    0.149
## 47    0.203    0.302
## 48    0.340    0.437
## 49    0.000    0.000
## 50    0.000    0.000
## 51    0.000    0.000
## 52    0.000    0.000
## 53    0.000    0.000
## 54    0.877    0.901
## 55    0.874    0.899
## 56    0.851    0.879
## 57    0.440    0.505
## 58    0.876    0.902
## 59    0.622    0.688
## 60    0.504    0.562
## 61    0.687    0.732
## 62    0.705    0.757
## 63    0.815    0.857
## 64    0.381    0.444
## 65    0.451    0.516
## 66    0.803    0.848
## 67    0.737    0.787
## 68    0.282    0.349
## 69    0.952    0.985
## 70    0.924    0.955
## 71    0.565    0.638
## 72    0.704    0.771
## 73    0.407    0.506
## 74    0.088    0.147
## 75    0.188    0.231
## 76    0.193    0.236
## 77    0.228    0.276
## 78    0.250    0.304
## 79    0.187    0.233
## 80    0.167    0.203
## 81    0.272    0.323
## 82    0.465    0.529
## 83    0.428    0.503
## 84    0.267    0.337
## 85    0.281    0.356
## 86    0.381    0.457
## 87    0.029    0.094
## 88    0.594    0.682
## 89    1.000    1.000
## 90    0.471    0.577
##  [ reached 'max' / getOption("max.print") -- omitted 16 rows ]
weak<-cfa(hof.weak, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1400.043   116.000     0.000     0.959     0.078     0.043 87113.174 
##       bic 
## 87510.290
Mc(weak)
## [1] 0.8390276
weak2<-cfa(hof.weak2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(weak2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1399.588   115.000     0.000     0.959     0.078     0.043 87114.718 
##       bic 
## 87518.039
Mc(weak2)
## [1] 0.8389652
summary(weak2, standardized=T, ci=T) # -.023
## lavaan 0.6-18 ended normally after 104 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        92
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1399.588    1214.395
##   Degrees of freedom                               115         115
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.152
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          545.625     473.428
##     0                                          853.963     740.967
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.177    0.027    6.518    0.000    0.123
##     sswk    (.p2.)    0.176    0.027    6.478    0.000    0.123
##     sspc    (.p3.)    0.176    0.027    6.502    0.000    0.123
##     ssei    (.p4.)    0.105    0.017    6.248    0.000    0.072
##   math =~                                                      
##     ssar    (.p5.)    0.288    0.018   16.317    0.000    0.254
##     ssmk    (.p6.)    0.218    0.015   14.555    0.000    0.188
##     ssmc    (.p7.)    0.172    0.011   15.249    0.000    0.150
##     ssao    (.p8.)    0.248    0.016   15.630    0.000    0.217
##   electronic =~                                                
##     ssai    (.p9.)    0.285    0.017   16.859    0.000    0.252
##     sssi    (.10.)    0.303    0.018   16.770    0.000    0.268
##     ssmc    (.11.)    0.143    0.010   14.797    0.000    0.124
##     ssei              0.096    0.015    6.551    0.000    0.067
##   speed =~                                                     
##     ssno    (.13.)    0.585    0.021   28.339    0.000    0.544
##     sscs    (.14.)    0.506    0.017   29.977    0.000    0.473
##     ssmk    (.15.)    0.207    0.011   19.083    0.000    0.186
##   g =~                                                         
##     verbal  (.16.)    4.118    0.667    6.174    0.000    2.810
##     math    (.17.)    2.403    0.176   13.665    0.000    2.059
##     elctrnc (.18.)    1.434    0.096   14.869    0.000    1.245
##     speed   (.19.)    0.957    0.050   19.077    0.000    0.859
##  ci.upper   Std.lv  Std.all
##                            
##     0.230    0.748    0.876
##     0.229    0.746    0.870
##     0.230    0.748    0.854
##     0.138    0.445    0.576
##                            
##     0.323    0.751    0.893
##     0.247    0.566    0.636
##     0.194    0.448    0.546
##     0.279    0.645    0.709
##                            
##     0.318    0.498    0.666
##     0.338    0.529    0.695
##     0.162    0.250    0.305
##     0.124    0.167    0.217
##                            
##     0.625    0.809    0.840
##     0.539    0.700    0.757
##     0.228    0.286    0.321
##                            
##     5.425    0.972    0.972
##     2.748    0.923    0.923
##     1.623    0.820    0.820
##     1.056    0.691    0.691
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .math              0.000                               0.000
##    .ssgs              0.330    0.021   16.023    0.000    0.289
##    .sswk    (.40.)    0.376    0.021   18.216    0.000    0.335
##    .sspc              0.452    0.022   20.999    0.000    0.409
##    .ssei    (.42.)    0.142    0.019    7.605    0.000    0.105
##    .ssar    (.43.)    0.348    0.020   17.660    0.000    0.310
##    .ssmk    (.44.)    0.377    0.021   17.613    0.000    0.335
##    .ssmc    (.45.)    0.234    0.019   12.531    0.000    0.198
##    .ssao    (.46.)    0.284    0.020   14.272    0.000    0.245
##    .ssai    (.47.)    0.027    0.017    1.578    0.115   -0.006
##    .sssi    (.48.)    0.079    0.018    4.471    0.000    0.044
##    .ssno              0.243    0.023   10.406    0.000    0.197
##    .sscs    (.50.)    0.359    0.022   16.409    0.000    0.316
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.370    0.330    0.386
##     0.416    0.376    0.439
##     0.494    0.452    0.515
##     0.178    0.142    0.183
##     0.387    0.348    0.414
##     0.419    0.377    0.423
##     0.271    0.234    0.286
##     0.323    0.284    0.312
##     0.060    0.027    0.036
##     0.113    0.079    0.103
##     0.289    0.243    0.252
##     0.402    0.359    0.389
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.171    0.009   19.846    0.000    0.154
##    .sswk              0.178    0.008   20.956    0.000    0.161
##    .sspc              0.208    0.012   17.960    0.000    0.186
##    .ssei              0.253    0.011   23.172    0.000    0.231
##    .ssar              0.143    0.009   16.809    0.000    0.127
##    .ssmk              0.184    0.008   22.054    0.000    0.167
##    .ssmc              0.240    0.012   20.102    0.000    0.216
##    .ssao              0.411    0.017   24.094    0.000    0.378
##    .ssai              0.311    0.015   20.377    0.000    0.281
##    .sssi              0.301    0.015   19.779    0.000    0.271
##    .ssno              0.273    0.019   14.293    0.000    0.236
##    .sscs              0.364    0.019   19.097    0.000    0.327
##    .verbal            1.000                               1.000
##    .electronic        1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.522    0.522
##     1.000    0.148    0.148
##     0.187    0.171    0.233
##     0.194    0.178    0.242
##     0.231    0.208    0.271
##     0.274    0.253    0.423
##     0.160    0.143    0.203
##     0.200    0.184    0.232
##     0.263    0.240    0.357
##     0.445    0.411    0.497
##     0.341    0.311    0.556
##     0.330    0.301    0.517
##     0.311    0.273    0.295
##     0.402    0.364    0.426
##     1.000    0.056    0.056
##     1.000    0.327    0.327
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.177    0.027    6.518    0.000    0.123
##     sswk    (.p2.)    0.176    0.027    6.478    0.000    0.123
##     sspc    (.p3.)    0.176    0.027    6.502    0.000    0.123
##     ssei    (.p4.)    0.105    0.017    6.248    0.000    0.072
##   math =~                                                      
##     ssar    (.p5.)    0.288    0.018   16.317    0.000    0.254
##     ssmk    (.p6.)    0.218    0.015   14.555    0.000    0.188
##     ssmc    (.p7.)    0.172    0.011   15.249    0.000    0.150
##     ssao    (.p8.)    0.248    0.016   15.630    0.000    0.217
##   electronic =~                                                
##     ssai    (.p9.)    0.285    0.017   16.859    0.000    0.252
##     sssi    (.10.)    0.303    0.018   16.770    0.000    0.268
##     ssmc    (.11.)    0.143    0.010   14.797    0.000    0.124
##     ssei              0.192    0.013   14.326    0.000    0.165
##   speed =~                                                     
##     ssno    (.13.)    0.585    0.021   28.339    0.000    0.544
##     sscs    (.14.)    0.506    0.017   29.977    0.000    0.473
##     ssmk    (.15.)    0.207    0.011   19.083    0.000    0.186
##   g =~                                                         
##     verbal  (.16.)    4.118    0.667    6.174    0.000    2.810
##     math    (.17.)    2.403    0.176   13.665    0.000    2.059
##     elctrnc (.18.)    1.434    0.096   14.869    0.000    1.245
##     speed   (.19.)    0.957    0.050   19.077    0.000    0.859
##  ci.upper   Std.lv  Std.all
##                            
##     0.230    0.856    0.889
##     0.229    0.853    0.886
##     0.230    0.855    0.865
##     0.138    0.509    0.472
##                            
##     0.323    0.841    0.889
##     0.247    0.634    0.655
##     0.194    0.502    0.533
##     0.279    0.722    0.709
##                            
##     0.318    0.774    0.731
##     0.338    0.822    0.836
##     0.162    0.388    0.412
##     0.218    0.521    0.483
##                            
##     0.625    0.865    0.826
##     0.539    0.749    0.762
##     0.228    0.306    0.316
##                            
##     5.425    0.969    0.969
##     2.748    0.939    0.939
##     1.623    0.602    0.602
##     1.056    0.737    0.737
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .math              0.000                               0.000
##    .ssgs              0.504    0.023   21.686    0.000    0.459
##    .sswk    (.40.)    0.376    0.021   18.216    0.000    0.335
##    .sspc              0.193    0.024    8.173    0.000    0.146
##    .ssei    (.42.)    0.142    0.019    7.605    0.000    0.105
##    .ssar    (.43.)    0.348    0.020   17.660    0.000    0.310
##    .ssmk    (.44.)    0.377    0.021   17.613    0.000    0.335
##    .ssmc    (.45.)    0.234    0.019   12.531    0.000    0.198
##    .ssao    (.46.)    0.284    0.020   14.272    0.000    0.245
##    .ssai    (.47.)    0.027    0.017    1.578    0.115   -0.006
##    .sssi    (.48.)    0.079    0.018    4.471    0.000    0.044
##    .ssno              0.507    0.033   15.518    0.000    0.443
##    .sscs    (.50.)    0.359    0.022   16.409    0.000    0.316
##    .elctrnc           2.177    0.151   14.395    0.000    1.881
##    .speed            -0.726    0.056  -12.995    0.000   -0.836
##     g                 0.026    0.039    0.658    0.510   -0.051
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.550    0.504    0.524
##     0.416    0.376    0.391
##     0.239    0.193    0.195
##     0.178    0.142    0.132
##     0.387    0.348    0.368
##     0.419    0.377    0.389
##     0.271    0.234    0.249
##     0.323    0.284    0.279
##     0.060    0.027    0.025
##     0.113    0.079    0.080
##     0.571    0.507    0.483
##     0.402    0.359    0.366
##     2.474    0.802    0.802
##    -0.617   -0.491   -0.491
##     0.102    0.023    0.023
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.194    0.009   21.564    0.000    0.177
##    .sswk              0.199    0.010   19.442    0.000    0.179
##    .sspc              0.246    0.012   20.380    0.000    0.223
##    .ssei              0.321    0.016   20.605    0.000    0.291
##    .ssar              0.188    0.011   17.411    0.000    0.167
##    .ssmk              0.174    0.009   20.335    0.000    0.157
##    .ssmc              0.263    0.013   20.875    0.000    0.239
##    .ssao              0.516    0.019   26.577    0.000    0.478
##    .ssai              0.522    0.025   21.250    0.000    0.474
##    .sssi              0.292    0.018   16.205    0.000    0.257
##    .ssno              0.350    0.023   15.232    0.000    0.305
##    .sscs              0.404    0.023   17.521    0.000    0.359
##    .verbal            1.453    0.411    3.532    0.000    0.647
##    .electronic        4.701    0.609    7.719    0.000    3.507
##     g                 1.299    0.069   18.803    0.000    1.164
##  ci.upper   Std.lv  Std.all
##     1.000    0.457    0.457
##     1.000    0.118    0.118
##     0.212    0.194    0.210
##     0.219    0.199    0.215
##     0.270    0.246    0.252
##     0.352    0.321    0.277
##     0.210    0.188    0.210
##     0.191    0.174    0.185
##     0.288    0.263    0.297
##     0.554    0.516    0.497
##     0.571    0.522    0.466
##     0.328    0.292    0.302
##     0.395    0.350    0.318
##     0.450    0.404    0.419
##     2.260    0.062    0.062
##     5.895    0.638    0.638
##     1.435    1.000    1.000
tests<-lavTestLRT(configural, metric2, scalar2, latent2, weak2)
Td=tests[2:5,"Chisq diff"]
Td
## [1] 51.437397711 59.937104017  6.630671675  0.001238102
dfd=tests[2:5,"Df diff"]
dfd
## [1] 13  4  2  2
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.04021220 0.08745256 0.03558439        NaN
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02904082 0.05203700
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.06868184 0.10766399
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.007745589 0.067192916
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1] NA NA
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.089     0.002     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.999     0.991     0.756     0.160
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.964     0.940     0.264     0.111     0.008     0.000
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.001     0.001     0.000     0.000     0.000     0.000
tests<-lavTestLRT(configural, metric2, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1]  51.4374  59.9371 251.3403
dfd=tests[2:4,"Df diff"]
dfd
## [1] 13  4  5
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04021220 0.08745256 0.16414786
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.06868184 0.10766399
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.1471822 0.1817226
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.999     0.991     0.756     0.160
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric2, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1]  51.4374  59.9371 133.6165
dfd=tests[2:4,"Df diff"]
dfd
## [1] 13  4 12
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04021220 0.08745256 0.07444889
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02904082 0.05203700
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.06868184 0.10766399
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.06336094 0.08606703
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.089     0.002     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.999     0.991     0.756     0.160
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.983     0.223     0.000
tests<-lavTestLRT(configural, metric2, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]  51.4374 460.2914
dfd=tests[2:3,"Df diff"]
dfd
## [1] 13  7
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.0402122 0.1881881
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02904082 0.05203700
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1737819 0.2029519
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.089     0.002     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric)
Td=tests[2,"Chisq diff"]
Td
## [1] 107.3616
dfd=tests[2,"Df diff"]
dfd
## [1] 14
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06039107
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.05002088 0.07129083
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.950     0.544     0.001     0.000
hof.age<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
speed~~1*speed
math~~1*math
g ~agec
'

hof.ageq<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
speed~~1*speed
math~~1*math
g ~ c(a,a)*agec
'

hof.age2<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
speed~~1*speed
math~~1*math
g ~agec + agec2
'

hof.age2q<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
speed~~1*speed
math~~1*math
g ~c(a,a)*agec + c(b,b)*agec2
'

sem.age<-sem(hof.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 9.384075e-15) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##  2104.721   135.000     0.000     0.940     0.089     0.050     0.613 
##       aic       bic 
## 86582.056 87010.197
Mc(sem.age)
## [1] 0.7639639
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 109 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2104.721    1806.761
##   Degrees of freedom                               135         135
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.165
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          832.899     714.987
##     0                                         1271.823    1091.774
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.173    0.024    7.162    0.000    0.126
##     sswk    (.p2.)    0.173    0.024    7.116    0.000    0.125
##     sspc    (.p3.)    0.172    0.024    7.136    0.000    0.125
##     ssei    (.p4.)    0.103    0.015    6.910    0.000    0.074
##   math =~                                                      
##     ssar    (.p5.)    0.297    0.015   20.258    0.000    0.269
##     ssmk    (.p6.)    0.226    0.013   17.893    0.000    0.202
##     ssmc    (.p7.)    0.177    0.010   17.976    0.000    0.158
##     ssao    (.p8.)    0.256    0.013   19.103    0.000    0.229
##   electronic =~                                                
##     ssai    (.p9.)    0.281    0.017   16.650    0.000    0.248
##     sssi    (.10.)    0.298    0.018   16.548    0.000    0.263
##     ssmc    (.11.)    0.141    0.010   14.607    0.000    0.122
##     ssei              0.094    0.014    6.497    0.000    0.065
##   speed =~                                                     
##     ssno    (.13.)    0.581    0.020   28.356    0.000    0.541
##     sscs    (.14.)    0.503    0.017   30.040    0.000    0.471
##     ssmk    (.15.)    0.204    0.011   18.910    0.000    0.183
##   g =~                                                         
##     verbal  (.16.)    3.865    0.570    6.782    0.000    2.748
##     math    (.17.)    2.129    0.130   16.336    0.000    1.873
##     elctrnc (.18.)    1.352    0.091   14.905    0.000    1.174
##     speed   (.19.)    0.889    0.046   19.259    0.000    0.799
##  ci.upper   Std.lv  Std.all
##                            
##     0.220    0.748    0.875
##     0.220    0.747    0.872
##     0.220    0.745    0.851
##     0.132    0.446    0.577
##                            
##     0.326    0.750    0.892
##     0.251    0.571    0.641
##     0.196    0.446    0.544
##     0.282    0.645    0.709
##                            
##     0.314    0.500    0.668
##     0.334    0.531    0.695
##     0.160    0.251    0.306
##     0.122    0.167    0.216
##                            
##     0.621    0.808    0.839
##     0.536    0.700    0.758
##     0.225    0.284    0.318
##                            
##     4.982    0.973    0.973
##     2.384    0.918    0.918
##     1.529    0.827    0.827
##     0.980    0.695    0.695
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.296    0.020   14.738    0.000    0.257
##  ci.upper   Std.lv  Std.all
##                            
##     0.336    0.272    0.394
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.334    0.020   17.091    0.000    0.296
##    .sswk    (.40.)    0.380    0.020   19.246    0.000    0.341
##    .sspc              0.456    0.021   22.065    0.000    0.415
##    .ssei    (.42.)    0.146    0.017    8.350    0.000    0.112
##    .ssar    (.43.)    0.353    0.020   17.903    0.000    0.314
##    .ssmk    (.44.)    0.381    0.020   18.998    0.000    0.341
##    .ssmc    (.45.)    0.238    0.018   13.047    0.000    0.202
##    .ssao    (.46.)    0.288    0.020   14.348    0.000    0.248
##    .ssai    (.47.)    0.029    0.016    1.787    0.074   -0.003
##    .sssi    (.48.)    0.081    0.017    4.796    0.000    0.048
##    .ssno              0.247    0.022   11.014    0.000    0.203
##    .sscs    (.50.)    0.363    0.021   17.508    0.000    0.322
##  ci.upper   Std.lv  Std.all
##     0.372    0.334    0.391
##     0.419    0.380    0.444
##     0.496    0.456    0.521
##     0.180    0.146    0.189
##     0.391    0.353    0.419
##     0.420    0.381    0.427
##     0.274    0.238    0.290
##     0.327    0.288    0.316
##     0.060    0.029    0.038
##     0.115    0.081    0.107
##     0.290    0.247    0.256
##     0.403    0.363    0.392
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.171    0.009   20.052    0.000    0.154
##    .sswk              0.175    0.008   20.778    0.000    0.159
##    .sspc              0.212    0.012   18.125    0.000    0.189
##    .ssei              0.251    0.011   23.173    0.000    0.230
##    .ssar              0.145    0.009   16.913    0.000    0.128
##    .ssmk              0.180    0.008   21.808    0.000    0.164
##    .ssmc              0.241    0.012   20.099    0.000    0.218
##    .ssao              0.411    0.017   24.007    0.000    0.378
##    .ssai              0.310    0.015   20.352    0.000    0.280
##    .sssi              0.302    0.015   19.855    0.000    0.272
##    .ssno              0.275    0.019   14.398    0.000    0.238
##    .sscs              0.364    0.019   19.091    0.000    0.327
##    .verbal            1.000                               1.000
##    .electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.517    0.517
##     1.000    0.157    0.157
##     0.187    0.171    0.234
##     0.192    0.175    0.239
##     0.235    0.212    0.276
##     0.273    0.251    0.421
##     0.162    0.145    0.205
##     0.196    0.180    0.227
##     0.265    0.241    0.358
##     0.445    0.411    0.497
##     0.340    0.310    0.553
##     0.332    0.302    0.517
##     0.313    0.275    0.297
##     0.401    0.364    0.426
##     1.000    0.054    0.054
##     1.000    0.316    0.316
##     1.000    0.845    0.845
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.173    0.024    7.162    0.000    0.126
##     sswk    (.p2.)    0.173    0.024    7.116    0.000    0.125
##     sspc    (.p3.)    0.172    0.024    7.136    0.000    0.125
##     ssei    (.p4.)    0.103    0.015    6.910    0.000    0.074
##   math =~                                                      
##     ssar    (.p5.)    0.297    0.015   20.258    0.000    0.269
##     ssmk    (.p6.)    0.226    0.013   17.893    0.000    0.202
##     ssmc    (.p7.)    0.177    0.010   17.976    0.000    0.158
##     ssao    (.p8.)    0.256    0.013   19.103    0.000    0.229
##   electronic =~                                                
##     ssai    (.p9.)    0.281    0.017   16.650    0.000    0.248
##     sssi    (.10.)    0.298    0.018   16.548    0.000    0.263
##     ssmc    (.11.)    0.141    0.010   14.607    0.000    0.122
##     ssei              0.188    0.013   14.069    0.000    0.162
##   speed =~                                                     
##     ssno    (.13.)    0.581    0.020   28.356    0.000    0.541
##     sscs    (.14.)    0.503    0.017   30.040    0.000    0.471
##     ssmk    (.15.)    0.204    0.011   18.910    0.000    0.183
##   g =~                                                         
##     verbal  (.16.)    3.865    0.570    6.782    0.000    2.748
##     math    (.17.)    2.129    0.130   16.336    0.000    1.873
##     elctrnc (.18.)    1.352    0.091   14.905    0.000    1.174
##     speed   (.19.)    0.889    0.046   19.259    0.000    0.799
##  ci.upper   Std.lv  Std.all
##                            
##     0.220    0.857    0.890
##     0.220    0.855    0.888
##     0.220    0.853    0.862
##     0.132    0.511    0.474
##                            
##     0.326    0.839    0.887
##     0.251    0.639    0.659
##     0.196    0.499    0.531
##     0.282    0.722    0.709
##                            
##     0.314    0.772    0.730
##     0.334    0.819    0.834
##     0.160    0.387    0.412
##     0.215    0.517    0.480
##                            
##     0.621    0.864    0.824
##     0.536    0.749    0.763
##     0.225    0.303    0.313
##                            
##     4.982    0.968    0.968
##     2.384    0.935    0.935
##     1.529    0.611    0.611
##     0.980    0.741    0.741
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.329    0.022   15.001    0.000    0.286
##  ci.upper   Std.lv  Std.all
##                            
##     0.372    0.265    0.382
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.509    0.024   21.229    0.000    0.462
##    .sswk    (.40.)    0.380    0.020   19.246    0.000    0.341
##    .sspc              0.197    0.025    7.887    0.000    0.148
##    .ssei    (.42.)    0.146    0.017    8.350    0.000    0.112
##    .ssar    (.43.)    0.353    0.020   17.903    0.000    0.314
##    .ssmk    (.44.)    0.381    0.020   18.998    0.000    0.341
##    .ssmc    (.45.)    0.238    0.018   13.047    0.000    0.202
##    .ssao    (.46.)    0.288    0.020   14.348    0.000    0.248
##    .ssai    (.47.)    0.029    0.016    1.787    0.074   -0.003
##    .sssi    (.48.)    0.081    0.017    4.796    0.000    0.048
##    .ssno              0.510    0.032   16.159    0.000    0.448
##    .sscs    (.50.)    0.363    0.021   17.508    0.000    0.322
##    .verbal           -0.248    0.052   -4.794    0.000   -0.349
##    .math             -0.140    0.061   -2.284    0.022   -0.259
##    .elctrnc           2.123    0.138   15.345    0.000    1.852
##    .speed            -0.788    0.057  -13.828    0.000   -0.900
##    .g                 0.111    0.038    2.873    0.004    0.035
##  ci.upper   Std.lv  Std.all
##     0.555    0.509    0.528
##     0.419    0.380    0.395
##     0.246    0.197    0.199
##     0.180    0.146    0.135
##     0.391    0.353    0.373
##     0.420    0.381    0.393
##     0.274    0.238    0.253
##     0.327    0.288    0.283
##     0.060    0.029    0.027
##     0.115    0.081    0.083
##     0.572    0.510    0.486
##     0.403    0.363    0.369
##    -0.147   -0.050   -0.050
##    -0.020   -0.049   -0.049
##     2.394    0.774    0.774
##    -0.677   -0.530   -0.530
##     0.186    0.089    0.089
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.194    0.009   21.632    0.000    0.176
##    .sswk              0.196    0.010   19.428    0.000    0.176
##    .sspc              0.251    0.012   20.477    0.000    0.227
##    .ssei              0.320    0.016   20.632    0.000    0.290
##    .ssar              0.191    0.011   17.508    0.000    0.170
##    .ssmk              0.170    0.009   20.034    0.000    0.154
##    .ssmc              0.265    0.013   20.920    0.000    0.240
##    .ssao              0.516    0.020   26.466    0.000    0.478
##    .ssai              0.522    0.025   21.254    0.000    0.474
##    .sssi              0.294    0.018   16.286    0.000    0.259
##    .ssno              0.352    0.023   15.312    0.000    0.307
##    .sscs              0.404    0.023   17.518    0.000    0.359
##    .verbal            1.551    0.442    3.506    0.000    0.684
##    .electronic        4.720    0.622    7.593    0.000    3.502
##    .g                 1.312    0.076   17.283    0.000    1.163
##  ci.upper   Std.lv  Std.all
##     1.000    0.452    0.452
##     1.000    0.126    0.126
##     0.211    0.194    0.209
##     0.215    0.196    0.211
##     0.275    0.251    0.256
##     0.351    0.320    0.276
##     0.212    0.191    0.213
##     0.187    0.170    0.181
##     0.290    0.265    0.299
##     0.554    0.516    0.498
##     0.571    0.522    0.467
##     0.330    0.294    0.305
##     0.397    0.352    0.321
##     0.449    0.404    0.419
##     2.418    0.063    0.063
##     5.939    0.627    0.627
##     1.461    0.854    0.854
sem.ageq<-sem(hof.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 1.677521e-14) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##  2106.273   136.000     0.000     0.940     0.089     0.052     0.613 
##       aic       bic 
## 86581.607 87003.544
Mc(sem.ageq)
## [1] 0.7639063
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 105 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2106.273    1808.572
##   Degrees of freedom                               136         136
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.165
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          833.455     715.654
##     0                                         1272.819    1092.918
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.173    0.024    7.157    0.000    0.126
##     sswk    (.p2.)    0.173    0.024    7.110    0.000    0.125
##     sspc    (.p3.)    0.172    0.024    7.130    0.000    0.125
##     ssei    (.p4.)    0.103    0.015    6.906    0.000    0.074
##   math =~                                                      
##     ssar    (.p5.)    0.298    0.015   20.240    0.000    0.269
##     ssmk    (.p6.)    0.226    0.013   17.882    0.000    0.202
##     ssmc    (.p7.)    0.177    0.010   17.959    0.000    0.158
##     ssao    (.p8.)    0.256    0.013   19.082    0.000    0.230
##   electronic =~                                                
##     ssai    (.p9.)    0.281    0.017   16.646    0.000    0.248
##     sssi    (.10.)    0.298    0.018   16.543    0.000    0.263
##     ssmc    (.11.)    0.141    0.010   14.603    0.000    0.122
##     ssei              0.093    0.014    6.483    0.000    0.065
##   speed =~                                                     
##     ssno    (.13.)    0.581    0.020   28.340    0.000    0.541
##     sscs    (.14.)    0.504    0.017   30.024    0.000    0.471
##     ssmk    (.15.)    0.204    0.011   18.906    0.000    0.183
##   g =~                                                         
##     verbal  (.16.)    3.869    0.571    6.777    0.000    2.750
##     math    (.17.)    2.128    0.130   16.316    0.000    1.873
##     elctrnc (.18.)    1.352    0.091   14.899    0.000    1.174
##     speed   (.19.)    0.889    0.046   19.238    0.000    0.799
##  ci.upper   Std.lv  Std.all
##                            
##     0.220    0.754    0.877
##     0.220    0.752    0.874
##     0.220    0.751    0.852
##     0.132    0.449    0.579
##                            
##     0.326    0.755    0.893
##     0.251    0.575    0.642
##     0.196    0.449    0.545
##     0.282    0.649    0.711
##                            
##     0.314    0.503    0.670
##     0.334    0.533    0.696
##     0.160    0.252    0.306
##     0.122    0.167    0.215
##                            
##     0.621    0.811    0.840
##     0.536    0.703    0.759
##     0.225    0.285    0.318
##                            
##     4.988    0.973    0.973
##     2.384    0.919    0.919
##     1.529    0.829    0.829
##     0.980    0.698    0.698
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.310    0.016   19.731    0.000    0.280
##  ci.upper   Std.lv  Std.all
##                            
##     0.341    0.283    0.409
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.334    0.020   17.100    0.000    0.296
##    .sswk    (.40.)    0.380    0.020   19.276    0.000    0.342
##    .sspc              0.456    0.021   22.053    0.000    0.416
##    .ssei    (.42.)    0.146    0.017    8.367    0.000    0.112
##    .ssar    (.43.)    0.353    0.020   17.898    0.000    0.314
##    .ssmk    (.44.)    0.381    0.020   19.041    0.000    0.342
##    .ssmc    (.45.)    0.238    0.018   13.048    0.000    0.202
##    .ssao    (.46.)    0.288    0.020   14.346    0.000    0.249
##    .ssai    (.47.)    0.029    0.016    1.797    0.072   -0.003
##    .sssi    (.48.)    0.082    0.017    4.806    0.000    0.048
##    .ssno              0.247    0.022   11.030    0.000    0.203
##    .sscs    (.50.)    0.363    0.021   17.545    0.000    0.322
##  ci.upper   Std.lv  Std.all
##     0.372    0.334    0.389
##     0.419    0.380    0.442
##     0.497    0.456    0.518
##     0.180    0.146    0.188
##     0.392    0.353    0.417
##     0.420    0.381    0.425
##     0.274    0.238    0.289
##     0.327    0.288    0.315
##     0.060    0.029    0.039
##     0.115    0.082    0.107
##     0.291    0.247    0.255
##     0.403    0.363    0.392
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.171    0.009   20.065    0.000    0.154
##    .sswk              0.175    0.008   20.774    0.000    0.158
##    .sspc              0.212    0.012   18.121    0.000    0.189
##    .ssei              0.251    0.011   23.177    0.000    0.230
##    .ssar              0.145    0.009   16.928    0.000    0.128
##    .ssmk              0.180    0.008   21.811    0.000    0.164
##    .ssmc              0.241    0.012   20.100    0.000    0.218
##    .ssao              0.411    0.017   24.004    0.000    0.378
##    .ssai              0.310    0.015   20.348    0.000    0.280
##    .sssi              0.302    0.015   19.857    0.000    0.272
##    .ssno              0.275    0.019   14.401    0.000    0.238
##    .sscs              0.364    0.019   19.091    0.000    0.327
##    .verbal            1.000                               1.000
##    .electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.513    0.513
##     1.000    0.155    0.155
##     0.187    0.171    0.231
##     0.191    0.175    0.236
##     0.235    0.212    0.273
##     0.272    0.251    0.417
##     0.162    0.145    0.203
##     0.196    0.180    0.225
##     0.265    0.241    0.355
##     0.445    0.411    0.494
##     0.340    0.310    0.551
##     0.332    0.302    0.515
##     0.313    0.275    0.295
##     0.401    0.364    0.424
##     1.000    0.053    0.053
##     1.000    0.313    0.313
##     1.000    0.832    0.832
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.173    0.024    7.157    0.000    0.126
##     sswk    (.p2.)    0.173    0.024    7.110    0.000    0.125
##     sspc    (.p3.)    0.172    0.024    7.130    0.000    0.125
##     ssei    (.p4.)    0.103    0.015    6.906    0.000    0.074
##   math =~                                                      
##     ssar    (.p5.)    0.298    0.015   20.240    0.000    0.269
##     ssmk    (.p6.)    0.226    0.013   17.882    0.000    0.202
##     ssmc    (.p7.)    0.177    0.010   17.959    0.000    0.158
##     ssao    (.p8.)    0.256    0.013   19.082    0.000    0.230
##   electronic =~                                                
##     ssai    (.p9.)    0.281    0.017   16.646    0.000    0.248
##     sssi    (.10.)    0.298    0.018   16.543    0.000    0.263
##     ssmc    (.11.)    0.141    0.010   14.603    0.000    0.122
##     ssei              0.188    0.013   14.068    0.000    0.162
##   speed =~                                                     
##     ssno    (.13.)    0.581    0.020   28.340    0.000    0.541
##     sscs    (.14.)    0.504    0.017   30.024    0.000    0.471
##     ssmk    (.15.)    0.204    0.011   18.906    0.000    0.183
##   g =~                                                         
##     verbal  (.16.)    3.869    0.571    6.777    0.000    2.750
##     math    (.17.)    2.128    0.130   16.316    0.000    1.873
##     elctrnc (.18.)    1.352    0.091   14.899    0.000    1.174
##     speed   (.19.)    0.889    0.046   19.238    0.000    0.799
##  ci.upper   Std.lv  Std.all
##                            
##     0.220    0.850    0.888
##     0.220    0.849    0.887
##     0.220    0.847    0.861
##     0.132    0.507    0.473
##                            
##     0.326    0.834    0.886
##     0.251    0.635    0.658
##     0.196    0.496    0.529
##     0.282    0.717    0.706
##                            
##     0.314    0.770    0.729
##     0.334    0.817    0.833
##     0.160    0.386    0.413
##     0.215    0.516    0.481
##                            
##     0.621    0.861    0.823
##     0.536    0.746    0.761
##     0.225    0.302    0.313
##                            
##     4.988    0.968    0.968
##     2.384    0.934    0.934
##     1.529    0.607    0.607
##     0.980    0.738    0.738
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.310    0.016   19.731    0.000    0.280
##  ci.upper   Std.lv  Std.all
##                            
##     0.341    0.252    0.364
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.509    0.024   21.247    0.000    0.462
##    .sswk    (.40.)    0.380    0.020   19.276    0.000    0.342
##    .sspc              0.197    0.025    7.901    0.000    0.148
##    .ssei    (.42.)    0.146    0.017    8.367    0.000    0.112
##    .ssar    (.43.)    0.353    0.020   17.898    0.000    0.314
##    .ssmk    (.44.)    0.381    0.020   19.041    0.000    0.342
##    .ssmc    (.45.)    0.238    0.018   13.048    0.000    0.202
##    .ssao    (.46.)    0.288    0.020   14.346    0.000    0.249
##    .ssai    (.47.)    0.029    0.016    1.797    0.072   -0.003
##    .sssi    (.48.)    0.082    0.017    4.806    0.000    0.048
##    .ssno              0.510    0.032   16.186    0.000    0.448
##    .sscs    (.50.)    0.363    0.021   17.545    0.000    0.322
##    .verbal           -0.213    0.051   -4.157    0.000   -0.314
##    .math             -0.120    0.061   -1.982    0.047   -0.239
##    .elctrnc           2.136    0.139   15.373    0.000    1.864
##    .speed            -0.780    0.057  -13.746    0.000   -0.892
##    .g                 0.100    0.038    2.604    0.009    0.025
##  ci.upper   Std.lv  Std.all
##     0.556    0.509    0.531
##     0.419    0.380    0.397
##     0.246    0.197    0.200
##     0.180    0.146    0.136
##     0.392    0.353    0.375
##     0.420    0.381    0.395
##     0.274    0.238    0.254
##     0.327    0.288    0.284
##     0.060    0.029    0.027
##     0.115    0.082    0.083
##     0.572    0.510    0.488
##     0.403    0.363    0.370
##    -0.113   -0.043   -0.043
##    -0.001   -0.043   -0.043
##     2.408    0.780    0.780
##    -0.669   -0.527   -0.527
##     0.175    0.081    0.081
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.194    0.009   21.634    0.000    0.176
##    .sswk              0.196    0.010   19.427    0.000    0.176
##    .sspc              0.250    0.012   20.456    0.000    0.226
##    .ssei              0.320    0.016   20.626    0.000    0.290
##    .ssar              0.191    0.011   17.496    0.000    0.169
##    .ssmk              0.170    0.008   20.059    0.000    0.154
##    .ssmc              0.265    0.013   20.922    0.000    0.240
##    .ssao              0.516    0.019   26.469    0.000    0.478
##    .ssai              0.522    0.025   21.254    0.000    0.474
##    .sssi              0.294    0.018   16.286    0.000    0.259
##    .ssno              0.352    0.023   15.310    0.000    0.307
##    .sscs              0.404    0.023   17.516    0.000    0.359
##    .verbal            1.544    0.441    3.497    0.000    0.679
##    .electronic        4.729    0.623    7.593    0.000    3.509
##    .g                 1.312    0.076   17.284    0.000    1.164
##  ci.upper   Std.lv  Std.all
##     1.000    0.455    0.455
##     1.000    0.127    0.127
##     0.211    0.194    0.211
##     0.215    0.196    0.213
##     0.274    0.250    0.259
##     0.351    0.320    0.278
##     0.212    0.191    0.215
##     0.187    0.170    0.184
##     0.290    0.265    0.302
##     0.554    0.516    0.501
##     0.570    0.522    0.469
##     0.329    0.294    0.306
##     0.397    0.352    0.322
##     0.449    0.404    0.421
##     2.409    0.064    0.064
##     5.950    0.631    0.631
##     1.461    0.868    0.868
sem.age2<-sem(hof.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 7.343210e-14) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##  2200.368   157.000     0.000     0.938     0.084     0.048     0.640 
##       aic       bic 
## 86566.867 87007.418
Mc(sem.age2)
## [1] 0.7563121
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 113 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2200.368    1899.988
##   Degrees of freedom                               157         157
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.158
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          889.284     767.885
##     0                                         1311.084    1132.104
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.176    0.024    7.466    0.000    0.130
##     sswk    (.p2.)    0.176    0.024    7.415    0.000    0.130
##     sspc    (.p3.)    0.176    0.024    7.435    0.000    0.129
##     ssei    (.p4.)    0.104    0.015    7.174    0.000    0.076
##   math =~                                                      
##     ssar    (.p5.)    0.295    0.015   20.036    0.000    0.266
##     ssmk    (.p6.)    0.225    0.013   17.785    0.000    0.200
##     ssmc    (.p7.)    0.176    0.010   17.835    0.000    0.156
##     ssao    (.p8.)    0.254    0.013   18.921    0.000    0.228
##   electronic =~                                                
##     ssai    (.p9.)    0.281    0.017   16.695    0.000    0.248
##     sssi    (.10.)    0.299    0.018   16.593    0.000    0.263
##     ssmc    (.11.)    0.141    0.010   14.647    0.000    0.122
##     ssei              0.096    0.014    6.767    0.000    0.068
##   speed =~                                                     
##     ssno    (.13.)    0.580    0.020   28.321    0.000    0.540
##     sscs    (.14.)    0.503    0.017   29.961    0.000    0.470
##     ssmk    (.15.)    0.203    0.011   18.839    0.000    0.182
##   g =~                                                         
##     verbal  (.16.)    3.773    0.535    7.054    0.000    2.725
##     math    (.17.)    2.136    0.132   16.204    0.000    1.878
##     elctrnc (.18.)    1.343    0.090   14.916    0.000    1.166
##     speed   (.19.)    0.888    0.046   19.266    0.000    0.798
##  ci.upper   Std.lv  Std.all
##                            
##     0.223    0.748    0.875
##     0.223    0.747    0.872
##     0.222    0.745    0.851
##     0.133    0.442    0.572
##                            
##     0.324    0.750    0.891
##     0.250    0.571    0.642
##     0.195    0.446    0.543
##     0.280    0.645    0.709
##                            
##     0.315    0.500    0.668
##     0.334    0.530    0.695
##     0.160    0.251    0.306
##     0.124    0.171    0.222
##                            
##     0.620    0.808    0.839
##     0.536    0.700    0.758
##     0.224    0.283    0.317
##                            
##     4.822    0.972    0.972
##     2.395    0.919    0.919
##     1.519    0.826    0.826
##     0.978    0.696    0.696
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.293    0.020   14.586    0.000    0.254
##     agec2            -0.048    0.014   -3.409    0.001   -0.075
##  ci.upper   Std.lv  Std.all
##                            
##     0.333    0.268    0.388
##    -0.020   -0.044   -0.083
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.400    0.027   14.825    0.000    0.347
##    .sswk    (.43.)    0.445    0.027   16.413    0.000    0.392
##    .sspc              0.521    0.028   18.758    0.000    0.467
##    .ssei    (.45.)    0.200    0.023    8.581    0.000    0.154
##    .ssar    (.46.)    0.415    0.026   15.922    0.000    0.364
##    .ssmk    (.47.)    0.446    0.027   16.374    0.000    0.393
##    .ssmc    (.48.)    0.293    0.024   12.381    0.000    0.247
##    .ssao    (.49.)    0.342    0.025   13.481    0.000    0.292
##    .ssai    (.50.)    0.065    0.019    3.378    0.001    0.027
##    .sssi    (.51.)    0.120    0.020    5.979    0.000    0.081
##    .ssno              0.297    0.027   11.216    0.000    0.245
##    .sscs    (.53.)    0.407    0.024   16.837    0.000    0.359
##  ci.upper   Std.lv  Std.all
##     0.453    0.400    0.468
##     0.498    0.445    0.520
##     0.576    0.521    0.596
##     0.245    0.200    0.258
##     0.466    0.415    0.494
##     0.499    0.446    0.501
##     0.340    0.293    0.358
##     0.391    0.342    0.376
##     0.103    0.065    0.087
##     0.159    0.120    0.157
##     0.349    0.297    0.309
##     0.454    0.407    0.440
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.171    0.009   20.034    0.000    0.154
##    .sswk              0.175    0.008   20.771    0.000    0.159
##    .sspc              0.212    0.012   18.172    0.000    0.189
##    .ssei              0.251    0.011   23.157    0.000    0.230
##    .ssar              0.146    0.009   16.953    0.000    0.129
##    .ssmk              0.180    0.008   21.767    0.000    0.164
##    .ssmc              0.241    0.012   20.091    0.000    0.218
##    .ssao              0.411    0.017   24.010    0.000    0.378
##    .ssai              0.310    0.015   20.346    0.000    0.281
##    .sssi              0.302    0.015   19.848    0.000    0.272
##    .ssno              0.275    0.019   14.414    0.000    0.238
##    .sscs              0.364    0.019   19.100    0.000    0.327
##    .verbal            1.000                               1.000
##    .electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.515    0.515
##     1.000    0.155    0.155
##     0.187    0.171    0.234
##     0.192    0.175    0.239
##     0.235    0.212    0.276
##     0.272    0.251    0.420
##     0.162    0.146    0.206
##     0.196    0.180    0.227
##     0.265    0.241    0.359
##     0.445    0.411    0.497
##     0.340    0.310    0.554
##     0.332    0.302    0.518
##     0.313    0.275    0.297
##     0.401    0.364    0.426
##     1.000    0.056    0.056
##     1.000    0.317    0.317
##     1.000    0.838    0.838
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.176    0.024    7.466    0.000    0.130
##     sswk    (.p2.)    0.176    0.024    7.415    0.000    0.130
##     sspc    (.p3.)    0.176    0.024    7.435    0.000    0.129
##     ssei    (.p4.)    0.104    0.015    7.174    0.000    0.076
##   math =~                                                      
##     ssar    (.p5.)    0.295    0.015   20.036    0.000    0.266
##     ssmk    (.p6.)    0.225    0.013   17.785    0.000    0.200
##     ssmc    (.p7.)    0.176    0.010   17.835    0.000    0.156
##     ssao    (.p8.)    0.254    0.013   18.921    0.000    0.228
##   electronic =~                                                
##     ssai    (.p9.)    0.281    0.017   16.695    0.000    0.248
##     sssi    (.10.)    0.299    0.018   16.593    0.000    0.263
##     ssmc    (.11.)    0.141    0.010   14.647    0.000    0.122
##     ssei              0.191    0.014   14.140    0.000    0.164
##   speed =~                                                     
##     ssno    (.13.)    0.580    0.020   28.321    0.000    0.540
##     sscs    (.14.)    0.503    0.017   29.961    0.000    0.470
##     ssmk    (.15.)    0.203    0.011   18.839    0.000    0.182
##   g =~                                                         
##     verbal  (.16.)    3.773    0.535    7.054    0.000    2.725
##     math    (.17.)    2.136    0.132   16.204    0.000    1.878
##     elctrnc (.18.)    1.343    0.090   14.916    0.000    1.166
##     speed   (.19.)    0.888    0.046   19.266    0.000    0.798
##  ci.upper   Std.lv  Std.all
##                            
##     0.223    0.857    0.890
##     0.223    0.855    0.888
##     0.222    0.853    0.862
##     0.133    0.506    0.470
##                            
##     0.324    0.839    0.887
##     0.250    0.639    0.660
##     0.195    0.499    0.530
##     0.280    0.722    0.709
##                            
##     0.315    0.770    0.729
##     0.334    0.818    0.833
##     0.160    0.387    0.411
##     0.217    0.523    0.485
##                            
##     0.620    0.864    0.824
##     0.536    0.749    0.762
##     0.224    0.303    0.312
##                            
##     4.822    0.967    0.967
##     2.395    0.936    0.936
##     1.519    0.611    0.611
##     0.978    0.742    0.742
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.325    0.022   14.621    0.000    0.282
##     agec2            -0.036    0.016   -2.285    0.022   -0.067
##  ci.upper   Std.lv  Std.all
##                            
##     0.369    0.261    0.377
##    -0.005   -0.029   -0.055
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.572    0.030   18.948    0.000    0.513
##    .sswk    (.43.)    0.445    0.027   16.413    0.000    0.392
##    .sspc              0.260    0.031    8.432    0.000    0.200
##    .ssei    (.45.)    0.200    0.023    8.581    0.000    0.154
##    .ssar    (.46.)    0.415    0.026   15.922    0.000    0.364
##    .ssmk    (.47.)    0.446    0.027   16.374    0.000    0.393
##    .ssmc    (.48.)    0.293    0.024   12.381    0.000    0.247
##    .ssao    (.49.)    0.342    0.025   13.481    0.000    0.292
##    .ssai    (.50.)    0.065    0.019    3.378    0.001    0.027
##    .sssi    (.51.)    0.120    0.020    5.979    0.000    0.081
##    .ssno              0.561    0.035   16.006    0.000    0.492
##    .sscs    (.53.)    0.407    0.024   16.837    0.000    0.359
##    .verbal           -0.203    0.052   -3.893    0.000   -0.305
##    .math             -0.125    0.061   -2.067    0.039   -0.244
##    .elctrnc           2.139    0.138   15.459    0.000    1.868
##    .speed            -0.783    0.057  -13.788    0.000   -0.894
##    .g                 0.079    0.055    1.438    0.150   -0.029
##  ci.upper   Std.lv  Std.all
##     0.632    0.572    0.594
##     0.498    0.445    0.462
##     0.321    0.260    0.263
##     0.245    0.200    0.185
##     0.466    0.415    0.439
##     0.499    0.446    0.460
##     0.340    0.293    0.312
##     0.391    0.342    0.335
##     0.103    0.065    0.062
##     0.159    0.120    0.122
##     0.630    0.561    0.535
##     0.454    0.407    0.414
##    -0.101   -0.042   -0.042
##    -0.006   -0.044   -0.044
##     2.410    0.781    0.781
##    -0.672   -0.525   -0.525
##     0.188    0.064    0.064
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.193    0.009   21.633    0.000    0.176
##    .sswk              0.195    0.010   19.418    0.000    0.176
##    .sspc              0.251    0.012   20.478    0.000    0.227
##    .ssei              0.320    0.016   20.520    0.000    0.289
##    .ssar              0.191    0.011   17.517    0.000    0.170
##    .ssmk              0.170    0.009   20.001    0.000    0.153
##    .ssmc              0.265    0.013   20.934    0.000    0.240
##    .ssao              0.516    0.020   26.466    0.000    0.478
##    .ssai              0.523    0.025   21.285    0.000    0.475
##    .sssi              0.295    0.018   16.337    0.000    0.260
##    .ssno              0.352    0.023   15.319    0.000    0.307
##    .sscs              0.404    0.023   17.531    0.000    0.359
##    .verbal            1.544    0.425    3.630    0.000    0.711
##    .electronic        4.695    0.617    7.608    0.000    3.486
##    .g                 1.319    0.077   17.221    0.000    1.169
##  ci.upper   Std.lv  Std.all
##     1.000    0.450    0.450
##     1.000    0.124    0.124
##     0.211    0.193    0.209
##     0.215    0.195    0.211
##     0.275    0.251    0.256
##     0.350    0.320    0.275
##     0.212    0.191    0.213
##     0.187    0.170    0.181
##     0.290    0.265    0.300
##     0.554    0.516    0.498
##     0.571    0.523    0.468
##     0.331    0.295    0.306
##     0.397    0.352    0.320
##     0.449    0.404    0.419
##     2.378    0.065    0.065
##     5.905    0.627    0.627
##     1.469    0.851    0.851
sem.age2q<-sem(hof.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 6.084044e-14) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##  2202.134   159.000     0.000     0.938     0.084     0.049     0.640 
##       aic       bic 
## 86564.633 86992.774
Mc(sem.age2q)
## [1] 0.7563362
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 111 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    29
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2202.134    1902.277
##   Degrees of freedom                               159         159
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.158
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          890.113     768.910
##     0                                         1312.021    1133.368
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.176    0.024    7.462    0.000    0.130
##     sswk    (.p2.)    0.176    0.024    7.411    0.000    0.129
##     sspc    (.p3.)    0.175    0.024    7.431    0.000    0.129
##     ssei    (.p4.)    0.104    0.015    7.174    0.000    0.076
##   math =~                                                      
##     ssar    (.p5.)    0.295    0.015   20.023    0.000    0.266
##     ssmk    (.p6.)    0.225    0.013   17.780    0.000    0.200
##     ssmc    (.p7.)    0.176    0.010   17.819    0.000    0.156
##     ssao    (.p8.)    0.254    0.013   18.905    0.000    0.228
##   electronic =~                                                
##     ssai    (.p9.)    0.281    0.017   16.688    0.000    0.248
##     sssi    (.10.)    0.299    0.018   16.584    0.000    0.263
##     ssmc    (.11.)    0.141    0.010   14.641    0.000    0.122
##     ssei              0.096    0.014    6.722    0.000    0.068
##   speed =~                                                     
##     ssno    (.13.)    0.580    0.020   28.309    0.000    0.540
##     sscs    (.14.)    0.503    0.017   29.948    0.000    0.470
##     ssmk    (.15.)    0.203    0.011   18.835    0.000    0.182
##   g =~                                                         
##     verbal  (.16.)    3.777    0.536    7.050    0.000    2.727
##     math    (.17.)    2.137    0.132   16.193    0.000    1.878
##     elctrnc (.18.)    1.343    0.090   14.908    0.000    1.166
##     speed   (.19.)    0.888    0.046   19.254    0.000    0.798
##  ci.upper   Std.lv  Std.all
##                            
##     0.222    0.753    0.877
##     0.222    0.751    0.874
##     0.222    0.750    0.852
##     0.133    0.445    0.574
##                            
##     0.324    0.754    0.892
##     0.250    0.575    0.642
##     0.195    0.448    0.544
##     0.280    0.649    0.711
##                            
##     0.314    0.502    0.669
##     0.334    0.533    0.696
##     0.160    0.252    0.306
##     0.124    0.171    0.221
##                            
##     0.620    0.810    0.839
##     0.536    0.703    0.759
##     0.224    0.284    0.317
##                            
##     4.826    0.972    0.972
##     2.396    0.920    0.920
##     1.520    0.828    0.828
##     0.979    0.699    0.699
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.307    0.016   19.449    0.000    0.276
##     agec2      (b)   -0.043    0.011   -4.068    0.000   -0.064
##  ci.upper   Std.lv  Std.all
##                            
##     0.338    0.279    0.404
##    -0.022   -0.039   -0.074
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.393    0.024   16.391    0.000    0.346
##    .sswk    (.43.)    0.438    0.024   18.140    0.000    0.391
##    .sspc              0.515    0.025   20.635    0.000    0.466
##    .ssei    (.45.)    0.194    0.021    9.264    0.000    0.153
##    .ssar    (.46.)    0.409    0.024   17.406    0.000    0.363
##    .ssmk    (.47.)    0.439    0.024   18.086    0.000    0.392
##    .ssmc    (.48.)    0.288    0.021   13.403    0.000    0.246
##    .ssao    (.49.)    0.336    0.023   14.472    0.000    0.291
##    .ssai    (.50.)    0.062    0.018    3.437    0.001    0.027
##    .sssi    (.51.)    0.116    0.019    6.216    0.000    0.079
##    .ssno              0.292    0.025   11.763    0.000    0.244
##    .sscs    (.53.)    0.402    0.023   17.676    0.000    0.358
##  ci.upper   Std.lv  Std.all
##     0.440    0.393    0.458
##     0.486    0.438    0.510
##     0.564    0.515    0.585
##     0.236    0.194    0.251
##     0.455    0.409    0.484
##     0.487    0.439    0.491
##     0.330    0.288    0.350
##     0.382    0.336    0.369
##     0.097    0.062    0.082
##     0.153    0.116    0.152
##     0.341    0.292    0.303
##     0.447    0.402    0.435
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.171    0.009   20.048    0.000    0.154
##    .sswk              0.175    0.008   20.768    0.000    0.158
##    .sspc              0.212    0.012   18.163    0.000    0.189
##    .ssei              0.251    0.011   23.162    0.000    0.230
##    .ssar              0.146    0.009   16.968    0.000    0.129
##    .ssmk              0.180    0.008   21.781    0.000    0.164
##    .ssmc              0.241    0.012   20.093    0.000    0.218
##    .ssao              0.411    0.017   24.006    0.000    0.378
##    .ssai              0.310    0.015   20.346    0.000    0.280
##    .sssi              0.302    0.015   19.849    0.000    0.272
##    .ssno              0.275    0.019   14.418    0.000    0.238
##    .sscs              0.364    0.019   19.100    0.000    0.327
##    .verbal            1.000                               1.000
##    .electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.512    0.512
##     1.000    0.153    0.153
##     0.187    0.171    0.231
##     0.191    0.175    0.236
##     0.235    0.212    0.274
##     0.272    0.251    0.418
##     0.163    0.146    0.204
##     0.196    0.180    0.225
##     0.265    0.241    0.356
##     0.445    0.411    0.495
##     0.340    0.310    0.552
##     0.332    0.302    0.516
##     0.313    0.275    0.296
##     0.401    0.364    0.424
##     1.000    0.055    0.055
##     1.000    0.314    0.314
##     1.000    0.827    0.827
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.176    0.024    7.462    0.000    0.130
##     sswk    (.p2.)    0.176    0.024    7.411    0.000    0.129
##     sspc    (.p3.)    0.175    0.024    7.431    0.000    0.129
##     ssei    (.p4.)    0.104    0.015    7.174    0.000    0.076
##   math =~                                                      
##     ssar    (.p5.)    0.295    0.015   20.023    0.000    0.266
##     ssmk    (.p6.)    0.225    0.013   17.780    0.000    0.200
##     ssmc    (.p7.)    0.176    0.010   17.819    0.000    0.156
##     ssao    (.p8.)    0.254    0.013   18.905    0.000    0.228
##   electronic =~                                                
##     ssai    (.p9.)    0.281    0.017   16.688    0.000    0.248
##     sssi    (.10.)    0.299    0.018   16.584    0.000    0.263
##     ssmc    (.11.)    0.141    0.010   14.641    0.000    0.122
##     ssei              0.191    0.013   14.138    0.000    0.164
##   speed =~                                                     
##     ssno    (.13.)    0.580    0.020   28.309    0.000    0.540
##     sscs    (.14.)    0.503    0.017   29.948    0.000    0.470
##     ssmk    (.15.)    0.203    0.011   18.835    0.000    0.182
##   g =~                                                         
##     verbal  (.16.)    3.777    0.536    7.050    0.000    2.727
##     math    (.17.)    2.137    0.132   16.193    0.000    1.878
##     elctrnc (.18.)    1.343    0.090   14.908    0.000    1.166
##     speed   (.19.)    0.888    0.046   19.254    0.000    0.798
##  ci.upper   Std.lv  Std.all
##                            
##     0.222    0.851    0.888
##     0.222    0.850    0.887
##     0.222    0.848    0.861
##     0.133    0.504    0.469
##                            
##     0.324    0.834    0.886
##     0.250    0.636    0.659
##     0.195    0.496    0.529
##     0.280    0.717    0.707
##                            
##     0.314    0.769    0.728
##     0.334    0.816    0.832
##     0.160    0.386    0.412
##     0.217    0.521    0.485
##                            
##     0.620    0.861    0.823
##     0.536    0.747    0.761
##     0.224    0.301    0.313
##                            
##     4.826    0.966    0.966
##     2.396    0.935    0.935
##     1.520    0.608    0.608
##     0.979    0.739    0.739
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.307    0.016   19.449    0.000    0.276
##     agec2      (b)   -0.043    0.011   -4.068    0.000   -0.064
##  ci.upper   Std.lv  Std.all
##                            
##     0.338    0.248    0.358
##    -0.022   -0.035   -0.065
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.566    0.028   20.389    0.000    0.512
##    .sswk    (.43.)    0.438    0.024   18.140    0.000    0.391
##    .sspc              0.254    0.029    8.894    0.000    0.198
##    .ssei    (.45.)    0.194    0.021    9.264    0.000    0.153
##    .ssar    (.46.)    0.409    0.024   17.406    0.000    0.363
##    .ssmk    (.47.)    0.439    0.024   18.086    0.000    0.392
##    .ssmc    (.48.)    0.288    0.021   13.403    0.000    0.246
##    .ssao    (.49.)    0.336    0.023   14.472    0.000    0.291
##    .ssai    (.50.)    0.062    0.018    3.437    0.001    0.027
##    .sssi    (.51.)    0.116    0.019    6.216    0.000    0.079
##    .ssno              0.556    0.034   16.463    0.000    0.490
##    .sscs    (.53.)    0.402    0.023   17.676    0.000    0.358
##    .verbal           -0.218    0.052   -4.212    0.000   -0.320
##    .math             -0.133    0.061   -2.197    0.028   -0.252
##    .elctrnc           2.134    0.138   15.438    0.000    1.863
##    .speed            -0.786    0.057  -13.820    0.000   -0.898
##    .g                 0.106    0.038    2.753    0.006    0.030
##  ci.upper   Std.lv  Std.all
##     0.621    0.566    0.591
##     0.486    0.438    0.458
##     0.310    0.254    0.258
##     0.236    0.194    0.181
##     0.455    0.409    0.434
##     0.487    0.439    0.456
##     0.330    0.288    0.307
##     0.382    0.336    0.331
##     0.097    0.062    0.058
##     0.153    0.116    0.118
##     0.622    0.556    0.532
##     0.447    0.402    0.410
##    -0.117   -0.045   -0.045
##    -0.014   -0.047   -0.047
##     2.404    0.781    0.781
##    -0.675   -0.529   -0.529
##     0.181    0.085    0.085
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .speed             1.000                               1.000
##    .math              1.000                               1.000
##    .ssgs              0.194    0.009   21.637    0.000    0.176
##    .sswk              0.195    0.010   19.418    0.000    0.176
##    .sspc              0.251    0.012   20.460    0.000    0.227
##    .ssei              0.320    0.016   20.523    0.000    0.289
##    .ssar              0.191    0.011   17.504    0.000    0.169
##    .ssmk              0.170    0.008   20.023    0.000    0.153
##    .ssmc              0.265    0.013   20.935    0.000    0.240
##    .ssao              0.516    0.019   26.468    0.000    0.478
##    .ssai              0.523    0.025   21.285    0.000    0.475
##    .sssi              0.295    0.018   16.339    0.000    0.260
##    .ssno              0.352    0.023   15.315    0.000    0.307
##    .sscs              0.404    0.023   17.530    0.000    0.359
##    .verbal            1.543    0.426    3.625    0.000    0.708
##    .electronic        4.707    0.619    7.607    0.000    3.494
##    .g                 1.319    0.077   17.221    0.000    1.169
##  ci.upper   Std.lv  Std.all
##     1.000    0.453    0.453
##     1.000    0.125    0.125
##     0.211    0.194    0.211
##     0.215    0.195    0.213
##     0.275    0.251    0.258
##     0.350    0.320    0.277
##     0.212    0.191    0.215
##     0.187    0.170    0.183
##     0.290    0.265    0.302
##     0.554    0.516    0.501
##     0.571    0.523    0.469
##     0.330    0.295    0.307
##     0.397    0.352    0.322
##     0.449    0.404    0.420
##     2.377    0.066    0.066
##     5.920    0.631    0.631
##     1.469    0.863    0.863
# BIFACTOR MODEL (math ill defined due to ao having negative variance, but then mc has negative loading and ar and mk very small; correlated residuals between mc and ao substantially improves fit)

bf.notworking<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
'

baseline<-cfa(bf.notworking, data=dgroup, meanstructure=T, sampling.weights="sweight", std.lv=T, orthogonal=T)
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= -1.980381e-07) is smaller than zero. This may be a symptom that 
##    the model is not identified.
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1183.982    39.000     0.000     0.964     0.090     0.044 88981.019 
##       bic 
## 89297.471
Mc(baseline)
## [1] 0.8551282
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 6958 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        51
## 
##   Number of observations                          3659
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1183.982    1014.501
##   Degrees of freedom                                39          39
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.167
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value   P(>|z|) ci.lower
##   verbal =~                                                     
##     ssgs              0.329    0.019    17.418    0.000    0.292
##     sswk              0.418    0.022    18.921    0.000    0.375
##     sspc              0.174    0.016    11.122    0.000    0.144
##     ssei              0.212    0.020    10.365    0.000    0.172
##   math =~                                                       
##     ssar              0.000    0.000     0.838    0.402   -0.000
##     ssmk              0.001    0.000     2.822    0.005    0.000
##     ssmc              0.004    0.000     9.156    0.000    0.004
##     ssao             16.470    0.002  9752.380    0.000   16.467
##   electronic =~                                                 
##     ssai              0.600    0.021    28.728    0.000    0.559
##     sssi              0.645    0.017    38.231    0.000    0.612
##     ssmc              0.309    0.013    23.894    0.000    0.283
##     ssei              0.393    0.016    24.772    0.000    0.361
##   speed =~                                                      
##     ssno              0.701    0.036    19.517    0.000    0.630
##     sscs              0.408    0.026    15.982    0.000    0.358
##     ssmk              0.176    0.013    13.786    0.000    0.151
##   g =~                                                          
##     ssgs              0.734    0.014    51.542    0.000    0.706
##     ssar              0.797    0.014    58.504    0.000    0.771
##     sswk              0.716    0.015    49.398    0.000    0.688
##     sspc              0.778    0.012    62.883    0.000    0.753
##     ssno              0.606    0.017    35.690    0.000    0.573
##     sscs              0.557    0.016    35.757    0.000    0.527
##     ssai              0.436    0.018    24.667    0.000    0.402
##     sssi              0.428    0.017    24.734    0.000    0.394
##     ssmk              0.812    0.012    65.846    0.000    0.788
##     ssmc              0.676    0.015    45.409    0.000    0.647
##     ssei              0.654    0.017    38.980    0.000    0.622
##     ssao              0.665    0.014    48.434    0.000    0.638
##  ci.upper   Std.lv  Std.all
##                            
##     0.366    0.329    0.359
##     0.461    0.418    0.459
##     0.205    0.174    0.185
##     0.252    0.212    0.221
##                            
##     0.001    0.000    0.000
##     0.002    0.001    0.001
##     0.005    0.004    0.005
##    16.474   16.470   17.036
##                            
##     0.641    0.600    0.612
##     0.678    0.645    0.679
##     0.334    0.309    0.342
##     0.424    0.393    0.409
##                            
##     0.771    0.701    0.693
##     0.459    0.408    0.420
##     0.201    0.176    0.188
##                            
##     0.762    0.734    0.801
##     0.824    0.797    0.889
##     0.745    0.716    0.787
##     0.802    0.778    0.825
##     0.639    0.606    0.599
##     0.588    0.557    0.574
##     0.471    0.436    0.445
##     0.462    0.428    0.451
##     0.836    0.812    0.865
##     0.705    0.676    0.750
##     0.687    0.654    0.682
##     0.692    0.665    0.687
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value   P(>|z|) ci.lower
##    .ssgs              0.429    0.016    27.179    0.000    0.398
##    .sswk              0.386    0.016    24.681    0.000    0.355
##    .sspc              0.330    0.016    20.454    0.000    0.298
##    .ssei              0.365    0.017    21.667    0.000    0.332
##    .ssar              0.362    0.015    23.338    0.000    0.331
##    .ssmk              0.310    0.016    19.252    0.000    0.279
##    .ssmc              0.402    0.015    25.959    0.000    0.372
##    .ssao              0.283    0.017    17.147    0.000    0.251
##    .ssai              0.340    0.017    20.076    0.000    0.307
##    .sssi              0.421    0.016    25.642    0.000    0.389
##    .ssno              0.169    0.017     9.716    0.000    0.135
##    .sscs              0.179    0.017    10.711    0.000    0.147
##  ci.upper   Std.lv  Std.all
##     0.460    0.429    0.468
##     0.417    0.386    0.424
##     0.362    0.330    0.350
##     0.398    0.365    0.380
##     0.392    0.362    0.403
##     0.342    0.310    0.331
##     0.432    0.402    0.446
##     0.316    0.283    0.293
##     0.373    0.340    0.346
##     0.453    0.421    0.443
##     0.203    0.169    0.167
##     0.212    0.179    0.185
## 
## Variances:
##                    Estimate  Std.Err  z-value   P(>|z|) ci.lower
##    .ssgs              0.193    0.010    19.885    0.000    0.174
##    .sswk              0.141    0.015     9.340    0.000    0.111
##    .sspc              0.253    0.008    30.327    0.000    0.237
##    .ssei              0.292    0.011    27.018    0.000    0.271
##    .ssar              0.169    0.007    24.267    0.000    0.156
##    .ssmk              0.190    0.007    28.713    0.000    0.177
##    .ssmc              0.260    0.009    29.098    0.000    0.243
##    .ssao           -270.776    0.057 -4792.256    0.000 -270.887
##    .ssai              0.413    0.017    24.959    0.000    0.380
##    .sssi              0.303    0.014    20.991    0.000    0.275
##    .ssno              0.165    0.043     3.815    0.000    0.080
##    .sscs              0.466    0.020    23.913    0.000    0.428
##     verbal            1.000                                1.000
##     math              1.000                                1.000
##     electronic        1.000                                1.000
##     speed             1.000                                1.000
##     g                 1.000                                1.000
##  ci.upper   Std.lv  Std.all
##     0.212    0.193    0.230
##     0.170    0.141    0.170
##     0.269    0.253    0.285
##     0.313    0.292    0.318
##     0.183    0.169    0.210
##     0.203    0.190    0.216
##     0.278    0.260    0.321
##  -270.665 -270.776 -289.708
##     0.445    0.413    0.428
##     0.331    0.303    0.336
##     0.250    0.165    0.161
##     0.505    0.466    0.494
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
bf.model<-'
verbal =~ ssgs + sswk + sspc + ssei
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
'

bf.lv<-'
verbal =~ ssgs + sswk + sspc + ssei
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
verbal~~1*verbal
speed~~1*speed
'

bf.weak<-'
verbal =~ ssgs + sswk + sspc + ssei
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
verbal~~1*verbal
speed~~1*speed
speed~0*1
'

baseline<-cfa(bf.model, data=dgroup, meanstructure=T, sampling.weights="sweight", std.lv=T, orthogonal=T)
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1301.887    43.000     0.000     0.961     0.089     0.045 89090.924 
##       bic 
## 89382.556
Mc(baseline)
## [1] 0.8419176
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        47
## 
##   Number of observations                          3659
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1301.887    1145.848
##   Degrees of freedom                                43          43
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.136
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.334    0.018   18.575    0.000    0.299
##     sswk              0.427    0.021   20.725    0.000    0.387
##     sspc              0.181    0.015   12.321    0.000    0.152
##     ssei              0.217    0.020   10.958    0.000    0.178
##   electronic =~                                                
##     ssai              0.599    0.021   28.655    0.000    0.558
##     sssi              0.648    0.017   38.182    0.000    0.615
##     ssmc              0.303    0.013   23.138    0.000    0.278
##     ssei              0.392    0.016   24.750    0.000    0.361
##   speed =~                                                     
##     ssno              0.701    0.035   19.954    0.000    0.632
##     sscs              0.412    0.025   16.411    0.000    0.362
##     ssmk              0.180    0.013   14.159    0.000    0.155
##   g =~                                                         
##     ssgs              0.732    0.014   51.782    0.000    0.704
##     ssar              0.795    0.014   58.710    0.000    0.769
##     sswk              0.712    0.014   49.675    0.000    0.684
##     sspc              0.776    0.012   63.118    0.000    0.752
##     ssno              0.601    0.017   35.430    0.000    0.568
##     sscs              0.558    0.016   35.985    0.000    0.527
##     ssai              0.433    0.018   24.662    0.000    0.399
##     sssi              0.427    0.017   24.821    0.000    0.394
##     ssmk              0.812    0.012   66.024    0.000    0.788
##     ssmc              0.684    0.015   46.265    0.000    0.655
##     ssei              0.653    0.017   39.172    0.000    0.620
##     ssao              0.685    0.013   53.992    0.000    0.660
##  ci.upper   Std.lv  Std.all
##                            
##     0.369    0.334    0.364
##     0.468    0.427    0.469
##     0.210    0.181    0.192
##     0.255    0.217    0.226
##                            
##     0.640    0.599    0.611
##     0.681    0.648    0.682
##     0.329    0.303    0.336
##     0.423    0.392    0.409
##                            
##     0.770    0.701    0.693
##     0.461    0.412    0.424
##     0.205    0.180    0.192
##                            
##     0.759    0.732    0.798
##     0.822    0.795    0.886
##     0.740    0.712    0.782
##     0.800    0.776    0.824
##     0.634    0.601    0.594
##     0.588    0.558    0.574
##     0.468    0.433    0.441
##     0.461    0.427    0.450
##     0.836    0.812    0.865
##     0.713    0.684    0.759
##     0.685    0.653    0.681
##     0.710    0.685    0.709
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.429    0.016   27.179    0.000    0.398
##    .sswk              0.386    0.016   24.681    0.000    0.355
##    .sspc              0.330    0.016   20.454    0.000    0.298
##    .ssei              0.365    0.017   21.667    0.000    0.332
##    .ssai              0.340    0.017   20.076    0.000    0.307
##    .sssi              0.421    0.016   25.642    0.000    0.389
##    .ssmc              0.402    0.015   25.959    0.000    0.372
##    .ssno              0.169    0.017    9.716    0.000    0.135
##    .sscs              0.179    0.017   10.711    0.000    0.147
##    .ssmk              0.310    0.016   19.252    0.000    0.279
##    .ssar              0.362    0.015   23.338    0.000    0.331
##    .ssao              0.283    0.017   17.147    0.000    0.251
##  ci.upper   Std.lv  Std.all
##     0.460    0.429    0.468
##     0.417    0.386    0.424
##     0.362    0.330    0.350
##     0.398    0.365    0.380
##     0.373    0.340    0.346
##     0.453    0.421    0.443
##     0.432    0.402    0.446
##     0.203    0.169    0.167
##     0.212    0.179    0.185
##     0.342    0.310    0.331
##     0.392    0.362    0.403
##     0.316    0.283    0.293
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.194    0.009   20.551    0.000    0.175
##    .sswk              0.139    0.015    9.537    0.000    0.111
##    .sspc              0.253    0.008   30.513    0.000    0.236
##    .ssei              0.292    0.011   26.909    0.000    0.271
##    .ssai              0.416    0.017   25.061    0.000    0.384
##    .sssi              0.299    0.015   20.375    0.000    0.271
##    .ssmc              0.252    0.009   29.101    0.000    0.235
##    .ssno              0.170    0.042    4.045    0.000    0.088
##    .sscs              0.463    0.019   24.046    0.000    0.426
##    .ssmk              0.189    0.006   29.522    0.000    0.176
##    .ssar              0.173    0.007   26.020    0.000    0.160
##    .ssao              0.465    0.013   36.106    0.000    0.440
##     verbal            1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.212    0.194    0.231
##     0.168    0.139    0.168
##     0.269    0.253    0.285
##     0.314    0.292    0.318
##     0.449    0.416    0.432
##     0.328    0.299    0.332
##     0.269    0.252    0.310
##     0.252    0.170    0.166
##     0.501    0.463    0.491
##     0.201    0.189    0.214
##     0.186    0.173    0.214
##     0.490    0.465    0.498
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
configural<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1072.823    86.000     0.000     0.969     0.079     0.036 86845.954 
##       bic 
## 87429.219
Mc(configural)
## [1] 0.8738158
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 48 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        94
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1072.823     947.980
##   Degrees of freedom                                86          86
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.132
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          440.970     389.655
##     0                                          631.853     558.325
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.294    0.020   14.884    0.000    0.255
##     sswk              0.419    0.024   17.612    0.000    0.372
##     sspc              0.189    0.019    9.832    0.000    0.151
##     ssei              0.202    0.022    9.338    0.000    0.160
##   electronic =~                                                
##     ssai              0.283    0.033    8.540    0.000    0.218
##     sssi              0.342    0.035    9.637    0.000    0.272
##     ssmc              0.148    0.023    6.294    0.000    0.102
##     ssei              0.174    0.025    6.939    0.000    0.125
##   speed =~                                                     
##     ssno              0.746    0.068   11.028    0.000    0.613
##     sscs              0.339    0.038    8.989    0.000    0.265
##     ssmk              0.150    0.019    7.841    0.000    0.113
##   g =~                                                         
##     ssgs              0.668    0.018   36.815    0.000    0.632
##     ssar              0.734    0.018   40.193    0.000    0.698
##     sswk              0.693    0.020   35.340    0.000    0.654
##     sspc              0.725    0.018   40.662    0.000    0.690
##     ssno              0.542    0.023   23.753    0.000    0.497
##     sscs              0.508    0.021   24.613    0.000    0.468
##     ssai              0.370    0.019   19.419    0.000    0.333
##     sssi              0.391    0.020   19.604    0.000    0.352
##     ssmk              0.785    0.018   44.509    0.000    0.750
##     ssmc              0.630    0.019   33.142    0.000    0.593
##     ssei              0.513    0.019   27.293    0.000    0.476
##     ssao              0.640    0.018   35.619    0.000    0.604
##  ci.upper   Std.lv  Std.all
##                            
##     0.333    0.294    0.349
##     0.465    0.419    0.475
##     0.227    0.189    0.215
##     0.245    0.202    0.266
##                            
##     0.347    0.283    0.383
##     0.411    0.342    0.455
##     0.194    0.148    0.182
##     0.223    0.174    0.229
##                            
##     0.878    0.746    0.788
##     0.413    0.339    0.374
##     0.188    0.150    0.165
##                            
##     0.703    0.668    0.792
##     0.770    0.734    0.880
##     0.731    0.693    0.785
##     0.760    0.725    0.824
##     0.587    0.542    0.573
##     0.549    0.508    0.561
##     0.408    0.370    0.502
##     0.430    0.391    0.520
##     0.820    0.785    0.862
##     0.668    0.630    0.777
##     0.550    0.513    0.675
##     0.675    0.640    0.706
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.331    0.021   15.977    0.000    0.291
##    .sswk              0.379    0.022   17.461    0.000    0.337
##    .sspc              0.453    0.022   20.981    0.000    0.411
##    .ssei              0.139    0.019    7.329    0.000    0.102
##    .ssai              0.055    0.018    3.026    0.002    0.019
##    .sssi              0.059    0.019    3.200    0.001    0.023
##    .ssmc              0.235    0.020   11.729    0.000    0.196
##    .ssno              0.244    0.023   10.435    0.000    0.198
##    .sscs              0.358    0.023   15.788    0.000    0.313
##    .ssmk              0.382    0.022   16.962    0.000    0.337
##    .ssar              0.327    0.021   15.677    0.000    0.286
##    .ssao              0.356    0.022   15.988    0.000    0.312
##  ci.upper   Std.lv  Std.all
##     0.372    0.331    0.393
##     0.422    0.379    0.430
##     0.495    0.453    0.515
##     0.176    0.139    0.183
##     0.091    0.055    0.075
##     0.096    0.059    0.079
##     0.274    0.235    0.289
##     0.290    0.244    0.258
##     0.402    0.358    0.395
##     0.426    0.382    0.419
##     0.368    0.327    0.392
##     0.399    0.356    0.392
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.178    0.010   18.712    0.000    0.159
##    .sswk              0.123    0.016    7.889    0.000    0.093
##    .sspc              0.213    0.011   19.456    0.000    0.192
##    .ssei              0.244    0.012   19.595    0.000    0.219
##    .ssai              0.328    0.020   16.408    0.000    0.289
##    .sssi              0.295    0.022   13.236    0.000    0.251
##    .ssmc              0.239    0.012   20.026    0.000    0.216
##    .ssno              0.046    0.091    0.502    0.616   -0.133
##    .sscs              0.448    0.025   18.041    0.000    0.399
##    .ssmk              0.191    0.009   21.741    0.000    0.174
##    .ssar              0.157    0.008   19.180    0.000    0.141
##    .ssao              0.413    0.017   24.049    0.000    0.379
##     verbal            1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.197    0.178    0.251
##     0.154    0.123    0.158
##     0.235    0.213    0.275
##     0.268    0.244    0.421
##     0.367    0.328    0.602
##     0.338    0.295    0.522
##     0.262    0.239    0.363
##     0.225    0.046    0.051
##     0.497    0.448    0.546
##     0.208    0.191    0.230
##     0.173    0.157    0.226
##     0.446    0.413    0.502
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.363    0.023   15.620    0.000    0.317
##     sswk              0.412    0.025   16.676    0.000    0.363
##     sspc              0.181    0.021    8.755    0.000    0.141
##     ssei              0.250    0.026    9.781    0.000    0.200
##   electronic =~                                                
##     ssai              0.679    0.030   23.015    0.000    0.622
##     sssi              0.670    0.023   28.842    0.000    0.624
##     ssmc              0.301    0.018   16.247    0.000    0.264
##     ssei              0.401    0.022   18.226    0.000    0.357
##   speed =~                                                     
##     ssno              0.766    0.054   14.088    0.000    0.659
##     sscs              0.389    0.034   11.345    0.000    0.322
##     ssmk              0.180    0.018   10.004    0.000    0.145
##   g =~                                                         
##     ssgs              0.797    0.020   38.883    0.000    0.757
##     ssar              0.844    0.020   42.612    0.000    0.805
##     sswk              0.737    0.021   35.860    0.000    0.696
##     sspc              0.828    0.016   50.848    0.000    0.796
##     ssno              0.647    0.025   26.202    0.000    0.599
##     sscs              0.608    0.022   27.529    0.000    0.564
##     ssai              0.507    0.027   18.965    0.000    0.455
##     sssi              0.483    0.025   19.495    0.000    0.435
##     ssmk              0.835    0.017   48.411    0.000    0.801
##     ssmc              0.744    0.021   34.965    0.000    0.703
##     ssei              0.789    0.025   31.992    0.000    0.740
##     ssao              0.730    0.018   41.217    0.000    0.695
##  ci.upper   Std.lv  Std.all
##                            
##     0.408    0.363    0.372
##     0.460    0.412    0.439
##     0.222    0.181    0.184
##     0.300    0.250    0.231
##                            
##     0.737    0.679    0.617
##     0.715    0.670    0.676
##     0.337    0.301    0.315
##     0.444    0.401    0.371
##                            
##     0.872    0.766    0.719
##     0.456    0.389    0.388
##     0.216    0.180    0.188
##                            
##     0.837    0.797    0.819
##     0.882    0.844    0.886
##     0.777    0.737    0.787
##     0.860    0.828    0.841
##     0.695    0.647    0.607
##     0.651    0.608    0.607
##     0.560    0.507    0.460
##     0.532    0.483    0.488
##     0.869    0.835    0.871
##     0.786    0.744    0.781
##     0.837    0.789    0.730
##     0.764    0.730    0.718
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.523    0.023   22.328    0.000    0.477
##    .sswk              0.392    0.022   17.468    0.000    0.348
##    .sspc              0.211    0.024    8.959    0.000    0.165
##    .ssei              0.582    0.026   22.070    0.000    0.531
##    .ssai              0.614    0.027   23.150    0.000    0.562
##    .sssi              0.769    0.024   32.369    0.000    0.723
##    .ssmc              0.563    0.023   24.735    0.000    0.518
##    .ssno              0.096    0.026    3.771    0.000    0.046
##    .sscs              0.007    0.024    0.306    0.759   -0.040
##    .ssmk              0.242    0.023   10.519    0.000    0.197
##    .ssar              0.395    0.023   17.329    0.000    0.350
##    .ssao              0.214    0.024    8.814    0.000    0.166
##  ci.upper   Std.lv  Std.all
##     0.569    0.523    0.537
##     0.436    0.392    0.419
##     0.257    0.211    0.215
##     0.634    0.582    0.539
##     0.666    0.614    0.557
##     0.816    0.769    0.777
##     0.608    0.563    0.591
##     0.146    0.096    0.090
##     0.054    0.007    0.007
##     0.287    0.242    0.252
##     0.440    0.395    0.415
##     0.262    0.214    0.210
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.181    0.012   14.524    0.000    0.157
##    .sswk              0.165    0.016   10.019    0.000    0.133
##    .sspc              0.250    0.011   22.604    0.000    0.228
##    .ssei              0.322    0.016   19.641    0.000    0.290
##    .ssai              0.495    0.028   17.649    0.000    0.440
##    .sssi              0.299    0.021   14.127    0.000    0.257
##    .ssmc              0.263    0.012   21.381    0.000    0.239
##    .ssno              0.130    0.074    1.761    0.078   -0.015
##    .sscs              0.482    0.027   17.721    0.000    0.429
##    .ssmk              0.190    0.009   20.767    0.000    0.172
##    .ssar              0.196    0.011   18.555    0.000    0.175
##    .ssao              0.501    0.019   26.672    0.000    0.464
##     verbal            1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.206    0.181    0.191
##     0.197    0.165    0.188
##     0.272    0.250    0.258
##     0.354    0.322    0.276
##     0.550    0.495    0.408
##     0.340    0.299    0.305
##     0.288    0.263    0.290
##     0.274    0.130    0.114
##     0.535    0.482    0.481
##     0.208    0.190    0.206
##     0.217    0.196    0.216
##     0.538    0.501    0.485
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1206.610   105.000     0.000     0.965     0.076     0.051 86941.740 
##       bic 
## 87407.111
Mc(metric)
## [1] 0.8602129
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 69 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    23
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1206.610    1052.744
##   Degrees of freedom                               105         105
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.146
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          507.690     442.949
##     0                                          698.920     609.794
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.312    0.015   20.283    0.000    0.282
##     sswk    (.p2.)    0.388    0.022   17.827    0.000    0.346
##     sspc    (.p3.)    0.177    0.014   12.181    0.000    0.148
##     ssei    (.p4.)    0.211    0.016   13.254    0.000    0.180
##   electronic =~                                                
##     ssai    (.p5.)    0.303    0.018   17.025    0.000    0.268
##     sssi    (.p6.)    0.300    0.018   16.455    0.000    0.264
##     ssmc    (.p7.)    0.137    0.010   14.003    0.000    0.118
##     ssei    (.p8.)    0.185    0.012   15.775    0.000    0.162
##   speed =~                                                     
##     ssno    (.p9.)    0.726    0.047   15.347    0.000    0.634
##     sscs    (.10.)    0.349    0.027   13.127    0.000    0.297
##     ssmk    (.11.)    0.158    0.013   12.196    0.000    0.132
##   g =~                                                         
##     ssgs    (.12.)    0.684    0.015   44.336    0.000    0.654
##     ssar    (.13.)    0.738    0.016   45.213    0.000    0.706
##     sswk    (.14.)    0.667    0.016   40.602    0.000    0.634
##     sspc    (.15.)    0.726    0.016   46.718    0.000    0.695
##     ssno    (.16.)    0.557    0.017   31.947    0.000    0.522
##     sscs    (.17.)    0.523    0.016   32.618    0.000    0.491
##     ssai    (.18.)    0.390    0.015   25.337    0.000    0.359
##     sssi    (.19.)    0.388    0.015   25.552    0.000    0.358
##     ssmk    (.20.)    0.755    0.016   46.131    0.000    0.723
##     ssmc    (.21.)    0.634    0.016   40.164    0.000    0.603
##     ssei    (.22.)    0.591    0.015   38.482    0.000    0.560
##     ssao    (.23.)    0.640    0.015   42.438    0.000    0.610
##  ci.upper   Std.lv  Std.all
##                            
##     0.343    0.312    0.365
##     0.431    0.388    0.452
##     0.205    0.177    0.201
##     0.242    0.211    0.258
##                            
##     0.338    0.303    0.405
##     0.336    0.300    0.402
##     0.156    0.137    0.169
##     0.207    0.185    0.226
##                            
##     0.819    0.726    0.761
##     0.401    0.349    0.381
##     0.183    0.158    0.177
##                            
##     0.714    0.684    0.799
##     0.770    0.738    0.880
##     0.699    0.667    0.776
##     0.756    0.726    0.826
##     0.591    0.557    0.583
##     0.554    0.523    0.571
##     0.420    0.390    0.521
##     0.418    0.388    0.520
##     0.787    0.755    0.849
##     0.665    0.634    0.780
##     0.621    0.591    0.722
##     0.669    0.640    0.706
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.331    0.021   15.977    0.000    0.291
##    .sswk              0.379    0.022   17.461    0.000    0.337
##    .sspc              0.453    0.022   20.981    0.000    0.411
##    .ssei              0.139    0.019    7.329    0.000    0.102
##    .ssai              0.055    0.018    3.026    0.002    0.019
##    .sssi              0.059    0.019    3.200    0.001    0.023
##    .ssmc              0.235    0.020   11.729    0.000    0.196
##    .ssno              0.244    0.023   10.435    0.000    0.198
##    .sscs              0.358    0.023   15.788    0.000    0.313
##    .ssmk              0.382    0.022   16.962    0.000    0.337
##    .ssar              0.327    0.021   15.677    0.000    0.286
##    .ssao              0.356    0.022   15.988    0.000    0.312
##  ci.upper   Std.lv  Std.all
##     0.372    0.331    0.386
##     0.422    0.379    0.441
##     0.495    0.453    0.516
##     0.176    0.139    0.170
##     0.091    0.055    0.074
##     0.096    0.059    0.080
##     0.274    0.235    0.289
##     0.290    0.244    0.256
##     0.402    0.358    0.391
##     0.426    0.382    0.429
##     0.368    0.327    0.390
##     0.399    0.356    0.392
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.168    0.009   18.417    0.000    0.150
##    .sswk              0.143    0.013   11.368    0.000    0.119
##    .sspc              0.213    0.011   19.809    0.000    0.192
##    .ssei              0.241    0.011   21.478    0.000    0.219
##    .ssai              0.316    0.016   20.053    0.000    0.285
##    .sssi              0.316    0.016   20.372    0.000    0.286
##    .ssmc              0.240    0.012   20.194    0.000    0.217
##    .ssno              0.074    0.057    1.306    0.191   -0.037
##    .sscs              0.442    0.021   20.846    0.000    0.400
##    .ssmk              0.197    0.009   22.946    0.000    0.180
##    .ssar              0.158    0.008   19.429    0.000    0.142
##    .ssao              0.413    0.017   24.383    0.000    0.379
##     verbal            1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.186    0.168    0.229
##     0.168    0.143    0.194
##     0.234    0.213    0.277
##     0.263    0.241    0.361
##     0.347    0.316    0.565
##     0.347    0.316    0.568
##     0.263    0.240    0.363
##     0.185    0.074    0.081
##     0.483    0.442    0.528
##     0.213    0.197    0.249
##     0.174    0.158    0.225
##     0.446    0.413    0.502
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.312    0.015   20.283    0.000    0.282
##     sswk    (.p2.)    0.388    0.022   17.827    0.000    0.346
##     sspc    (.p3.)    0.177    0.014   12.181    0.000    0.148
##     ssei    (.p4.)    0.211    0.016   13.254    0.000    0.180
##   electronic =~                                                
##     ssai    (.p5.)    0.303    0.018   17.025    0.000    0.268
##     sssi    (.p6.)    0.300    0.018   16.455    0.000    0.264
##     ssmc    (.p7.)    0.137    0.010   14.003    0.000    0.118
##     ssei    (.p8.)    0.185    0.012   15.775    0.000    0.162
##   speed =~                                                     
##     ssno    (.p9.)    0.726    0.047   15.347    0.000    0.634
##     sscs    (.10.)    0.349    0.027   13.127    0.000    0.297
##     ssmk    (.11.)    0.158    0.013   12.196    0.000    0.132
##   g =~                                                         
##     ssgs    (.12.)    0.684    0.015   44.336    0.000    0.654
##     ssar    (.13.)    0.738    0.016   45.213    0.000    0.706
##     sswk    (.14.)    0.667    0.016   40.602    0.000    0.634
##     sspc    (.15.)    0.726    0.016   46.718    0.000    0.695
##     ssno    (.16.)    0.557    0.017   31.947    0.000    0.522
##     sscs    (.17.)    0.523    0.016   32.618    0.000    0.491
##     ssai    (.18.)    0.390    0.015   25.337    0.000    0.359
##     sssi    (.19.)    0.388    0.015   25.552    0.000    0.358
##     ssmk    (.20.)    0.755    0.016   46.131    0.000    0.723
##     ssmc    (.21.)    0.634    0.016   40.164    0.000    0.603
##     ssei    (.22.)    0.591    0.015   38.482    0.000    0.560
##     ssao    (.23.)    0.640    0.015   42.438    0.000    0.610
##  ci.upper   Std.lv  Std.all
##                            
##     0.343    0.349    0.364
##     0.431    0.435    0.454
##     0.205    0.197    0.200
##     0.242    0.236    0.234
##                            
##     0.338    0.684    0.635
##     0.336    0.677    0.694
##     0.156    0.309    0.330
##     0.207    0.417    0.413
##                            
##     0.819    0.784    0.742
##     0.401    0.376    0.379
##     0.183    0.170    0.174
##                            
##     0.714    0.779    0.812
##     0.770    0.840    0.885
##     0.699    0.759    0.793
##     0.756    0.827    0.839
##     0.591    0.634    0.600
##     0.554    0.595    0.600
##     0.420    0.444    0.412
##     0.418    0.442    0.453
##     0.787    0.860    0.880
##     0.665    0.722    0.770
##     0.621    0.673    0.668
##     0.669    0.729    0.717
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.523    0.023   22.328    0.000    0.477
##    .sswk              0.392    0.022   17.468    0.000    0.348
##    .sspc              0.211    0.024    8.959    0.000    0.165
##    .ssei              0.582    0.026   22.070    0.000    0.531
##    .ssai              0.614    0.027   23.150    0.000    0.562
##    .sssi              0.769    0.024   32.369    0.000    0.723
##    .ssmc              0.563    0.023   24.735    0.000    0.518
##    .ssno              0.096    0.026    3.771    0.000    0.046
##    .sscs              0.007    0.024    0.306    0.759   -0.040
##    .ssmk              0.242    0.023   10.519    0.000    0.197
##    .ssar              0.395    0.023   17.329    0.000    0.350
##    .ssao              0.214    0.024    8.814    0.000    0.166
##  ci.upper   Std.lv  Std.all
##     0.569    0.523    0.545
##     0.436    0.392    0.410
##     0.257    0.211    0.214
##     0.634    0.582    0.578
##     0.666    0.614    0.570
##     0.816    0.769    0.788
##     0.608    0.563    0.600
##     0.146    0.096    0.091
##     0.054    0.007    0.007
##     0.287    0.242    0.248
##     0.440    0.395    0.416
##     0.262    0.214    0.211
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.192    0.011   17.989    0.000    0.171
##    .sswk              0.152    0.014   10.633    0.000    0.124
##    .sspc              0.250    0.011   22.590    0.000    0.228
##    .ssei              0.334    0.017   19.583    0.000    0.300
##    .ssai              0.496    0.028   17.910    0.000    0.442
##    .sssi              0.298    0.021   14.436    0.000    0.258
##    .ssmc              0.263    0.012   21.366    0.000    0.239
##    .ssno              0.099    0.065    1.524    0.127   -0.028
##    .sscs              0.489    0.025   19.228    0.000    0.439
##    .ssmk              0.187    0.009   20.963    0.000    0.169
##    .ssar              0.195    0.010   19.133    0.000    0.175
##    .ssao              0.502    0.019   27.089    0.000    0.465
##     verbal            1.251    0.127    9.853    0.000    1.002
##     electronic        5.095    0.602    8.467    0.000    3.916
##     speed             1.165    0.127    9.170    0.000    0.916
##     g                 1.298    0.067   19.333    0.000    1.166
##  ci.upper   Std.lv  Std.all
##     0.213    0.192    0.208
##     0.180    0.152    0.166
##     0.271    0.250    0.257
##     0.367    0.334    0.329
##     0.550    0.496    0.427
##     0.339    0.298    0.313
##     0.288    0.263    0.299
##     0.227    0.099    0.089
##     0.539    0.489    0.496
##     0.204    0.187    0.196
##     0.215    0.195    0.216
##     0.538    0.502    0.486
##     1.500    1.000    1.000
##     6.275    1.000    1.000
##     1.414    1.000    1.000
##     1.429    1.000    1.000
lavTestScore(metric, release = 1:23)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 130.089 23       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p62.  2.623  1   0.105
## 2   .p2. == .p63.  6.099  1   0.014
## 3   .p3. == .p64.  0.770  1   0.380
## 4   .p4. == .p65.  2.758  1   0.097
## 5   .p5. == .p66.  0.358  1   0.549
## 6   .p6. == .p67.  2.111  1   0.146
## 7   .p7. == .p68.  0.000  1   0.999
## 8   .p8. == .p69.  0.780  1   0.377
## 9   .p9. == .p70.  0.165  1   0.685
## 10 .p10. == .p71.  0.020  1   0.889
## 11 .p11. == .p72.  0.010  1   0.921
## 12 .p12. == .p73.  5.460  1   0.019
## 13 .p13. == .p74.  0.545  1   0.460
## 14 .p14. == .p75. 32.159  1   0.000
## 15 .p15. == .p76.  0.051  1   0.821
## 16 .p16. == .p77.  3.062  1   0.080
## 17 .p17. == .p78.  0.688  1   0.407
## 18 .p18. == .p79.  0.537  1   0.464
## 19 .p19. == .p80.  3.686  1   0.055
## 20 .p20. == .p81. 17.679  1   0.000
## 21 .p21. == .p82.  0.189  1   0.664
## 22 .p22. == .p83. 80.671  1   0.000
## 23 .p23. == .p84.  0.001  1   0.977
metric2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"), group.partial=c("g=~ssei"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1124.635   104.000     0.000     0.968     0.073     0.041 86861.765 
##       bic 
## 87333.341
Mc(metric2)
## [1] 0.8697867
scalar<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1678.713   112.000     0.000     0.951     0.087     0.046 87399.843 
##       bic 
## 87821.779
Mc(scalar)
## [1] 0.8072283
summary(scalar, standardized=T, ci=T) # +.119
## lavaan 0.6-18 ended normally after 91 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       102
##   Number of equality constraints                    34
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1678.713    1545.603
##   Degrees of freedom                               112         112
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.086
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          740.277     681.579
##     0                                          938.435     864.024
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.362    0.023   15.578    0.000    0.316
##     sswk    (.p2.)    0.280    0.059    4.740    0.000    0.164
##     sspc    (.p3.)    0.074    0.049    1.502    0.133   -0.023
##     ssei    (.p4.)    0.198    0.034    5.839    0.000    0.131
##   electronic =~                                                
##     ssai    (.p5.)    0.275    0.017   16.633    0.000    0.243
##     sssi    (.p6.)    0.311    0.018   17.048    0.000    0.276
##     ssmc    (.p7.)    0.150    0.009   15.915    0.000    0.132
##     ssei    (.p8.)    0.173    0.011   15.288    0.000    0.151
##   speed =~                                                     
##     ssno    (.p9.)    0.639    0.056   11.388    0.000    0.529
##     sscs    (.10.)    0.401    0.035   11.514    0.000    0.333
##     ssmk    (.11.)    0.179    0.012   14.547    0.000    0.155
##   g =~                                                         
##     ssgs    (.12.)    0.693    0.017   39.780    0.000    0.659
##     ssar    (.13.)    0.728    0.018   40.667    0.000    0.693
##     sswk    (.14.)    0.688    0.019   36.972    0.000    0.651
##     sspc    (.15.)    0.747    0.017   44.392    0.000    0.714
##     ssno    (.16.)    0.555    0.018   31.028    0.000    0.520
##     sscs    (.17.)    0.526    0.016   32.994    0.000    0.495
##     ssai    (.18.)    0.405    0.016   25.928    0.000    0.375
##     sssi    (.19.)    0.402    0.015   26.094    0.000    0.372
##     ssmk    (.20.)    0.753    0.017   44.670    0.000    0.720
##     ssmc    (.21.)    0.639    0.016   40.566    0.000    0.608
##     ssei              0.526    0.020   26.333    0.000    0.487
##     ssao    (.23.)    0.639    0.015   41.532    0.000    0.609
##  ci.upper   Std.lv  Std.all
##                            
##     0.407    0.362    0.420
##     0.396    0.280    0.326
##     0.171    0.074    0.084
##     0.264    0.198    0.258
##                            
##     0.308    0.275    0.366
##     0.347    0.311    0.414
##     0.169    0.150    0.184
##     0.195    0.173    0.226
##                            
##     0.748    0.639    0.671
##     0.470    0.401    0.433
##     0.203    0.179    0.200
##                            
##     0.727    0.693    0.805
##     0.763    0.728    0.867
##     0.724    0.688    0.801
##     0.780    0.747    0.841
##     0.590    0.555    0.583
##     0.557    0.526    0.567
##     0.436    0.405    0.538
##     0.432    0.402    0.534
##     0.786    0.753    0.844
##     0.669    0.639    0.781
##     0.565    0.526    0.687
##     0.669    0.639    0.702
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.46.)    0.362    0.033   11.065    0.000    0.298
##    .sswk    (.47.)    0.347    0.021   16.753    0.000    0.306
##    .sspc    (.48.)    0.366    0.028   13.218    0.000    0.311
##    .ssei    (.49.)    0.137    0.019    7.365    0.000    0.101
##    .ssai    (.50.)    0.035    0.017    2.033    0.042    0.001
##    .sssi    (.51.)    0.065    0.018    3.602    0.000    0.030
##    .ssmc    (.52.)    0.260    0.019   13.393    0.000    0.222
##    .ssno    (.53.)    0.273    0.027   10.122    0.000    0.220
##    .sscs    (.54.)    0.263    0.025   10.545    0.000    0.214
##    .ssmk    (.55.)    0.382    0.022   17.103    0.000    0.338
##    .ssar    (.56.)    0.403    0.022   18.503    0.000    0.361
##    .ssao    (.57.)    0.330    0.022   15.191    0.000    0.288
##  ci.upper   Std.lv  Std.all
##     0.426    0.362    0.421
##     0.388    0.347    0.404
##     0.420    0.366    0.412
##     0.174    0.137    0.179
##     0.068    0.035    0.046
##     0.100    0.065    0.086
##     0.298    0.260    0.317
##     0.326    0.273    0.287
##     0.312    0.263    0.284
##     0.425    0.382    0.428
##     0.446    0.403    0.480
##     0.373    0.330    0.363
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.130    0.029    4.422    0.000    0.072
##    .sswk              0.187    0.020    9.266    0.000    0.147
##    .sspc              0.225    0.013   17.878    0.000    0.200
##    .ssei              0.240    0.013   18.779    0.000    0.215
##    .ssai              0.327    0.015   21.224    0.000    0.297
##    .sssi              0.308    0.016   19.788    0.000    0.277
##    .ssmc              0.239    0.012   19.879    0.000    0.215
##    .ssno              0.191    0.058    3.291    0.001    0.077
##    .sscs              0.422    0.028   15.105    0.000    0.367
##    .ssmk              0.197    0.010   19.929    0.000    0.177
##    .ssar              0.176    0.012   14.665    0.000    0.152
##    .ssao              0.421    0.018   23.742    0.000    0.386
##     verbal            1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.187    0.130    0.175
##     0.226    0.187    0.253
##     0.250    0.225    0.285
##     0.265    0.240    0.410
##     0.357    0.327    0.576
##     0.338    0.308    0.543
##     0.262    0.239    0.357
##     0.304    0.191    0.210
##     0.477    0.422    0.491
##     0.216    0.197    0.247
##     0.199    0.176    0.249
##     0.455    0.421    0.507
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.362    0.023   15.578    0.000    0.316
##     sswk    (.p2.)    0.280    0.059    4.740    0.000    0.164
##     sspc    (.p3.)    0.074    0.049    1.502    0.133   -0.023
##     ssei    (.p4.)    0.198    0.034    5.839    0.000    0.131
##   electronic =~                                                
##     ssai    (.p5.)    0.275    0.017   16.633    0.000    0.243
##     sssi    (.p6.)    0.311    0.018   17.048    0.000    0.276
##     ssmc    (.p7.)    0.150    0.009   15.915    0.000    0.132
##     ssei    (.p8.)    0.173    0.011   15.288    0.000    0.151
##   speed =~                                                     
##     ssno    (.p9.)    0.639    0.056   11.388    0.000    0.529
##     sscs    (.10.)    0.401    0.035   11.514    0.000    0.333
##     ssmk    (.11.)    0.179    0.012   14.547    0.000    0.155
##   g =~                                                         
##     ssgs    (.12.)    0.693    0.017   39.780    0.000    0.659
##     ssar    (.13.)    0.728    0.018   40.667    0.000    0.693
##     sswk    (.14.)    0.688    0.019   36.972    0.000    0.651
##     sspc    (.15.)    0.747    0.017   44.392    0.000    0.714
##     ssno    (.16.)    0.555    0.018   31.028    0.000    0.520
##     sscs    (.17.)    0.526    0.016   32.994    0.000    0.495
##     ssai    (.18.)    0.405    0.016   25.928    0.000    0.375
##     sssi    (.19.)    0.402    0.015   26.094    0.000    0.372
##     ssmk    (.20.)    0.753    0.017   44.670    0.000    0.720
##     ssmc    (.21.)    0.639    0.016   40.566    0.000    0.608
##     ssei              0.690    0.021   32.573    0.000    0.649
##     ssao    (.23.)    0.639    0.015   41.532    0.000    0.609
##  ci.upper   Std.lv  Std.all
##                            
##     0.407    0.417    0.433
##     0.396    0.323    0.338
##     0.171    0.086    0.086
##     0.264    0.228    0.214
##                            
##     0.308    0.615    0.580
##     0.347    0.696    0.708
##     0.169    0.336    0.355
##     0.195    0.386    0.362
##                            
##     0.748    0.697    0.661
##     0.470    0.438    0.435
##     0.203    0.195    0.200
##                            
##     0.727    0.783    0.814
##     0.763    0.823    0.870
##     0.724    0.778    0.813
##     0.780    0.845    0.852
##     0.590    0.628    0.596
##     0.557    0.595    0.591
##     0.436    0.459    0.432
##     0.432    0.455    0.463
##     0.786    0.852    0.874
##     0.669    0.722    0.763
##     0.732    0.781    0.732
##     0.669    0.723    0.712
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.46.)    0.362    0.033   11.065    0.000    0.298
##    .sswk    (.47.)    0.347    0.021   16.753    0.000    0.306
##    .sspc    (.48.)    0.366    0.028   13.218    0.000    0.311
##    .ssei    (.49.)    0.137    0.019    7.365    0.000    0.101
##    .ssai    (.50.)    0.035    0.017    2.033    0.042    0.001
##    .sssi    (.51.)    0.065    0.018    3.602    0.000    0.030
##    .ssmc    (.52.)    0.260    0.019   13.393    0.000    0.222
##    .ssno    (.53.)    0.273    0.027   10.122    0.000    0.220
##    .sscs    (.54.)    0.263    0.025   10.545    0.000    0.214
##    .ssmk    (.55.)    0.382    0.022   17.103    0.000    0.338
##    .ssar    (.56.)    0.403    0.022   18.503    0.000    0.361
##    .ssao    (.57.)    0.330    0.022   15.191    0.000    0.288
##     verbal            0.619    0.185    3.340    0.001    0.256
##     elctrnc           2.422    0.178   13.573    0.000    2.072
##     speed            -0.210    0.094   -2.225    0.026   -0.394
##     g                -0.134    0.048   -2.770    0.006   -0.229
##  ci.upper   Std.lv  Std.all
##     0.426    0.362    0.376
##     0.388    0.347    0.363
##     0.420    0.366    0.369
##     0.174    0.137    0.129
##     0.068    0.035    0.033
##     0.100    0.065    0.066
##     0.298    0.260    0.274
##     0.326    0.273    0.259
##     0.312    0.263    0.262
##     0.425    0.382    0.391
##     0.446    0.403    0.426
##     0.373    0.330    0.325
##     0.982    0.537    0.537
##     2.771    1.084    1.084
##    -0.025   -0.192   -0.192
##    -0.039   -0.119   -0.119
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.139    0.041    3.365    0.001    0.058
##    .sswk              0.206    0.025    8.169    0.000    0.157
##    .sspc              0.262    0.014   19.302    0.000    0.236
##    .ssei              0.328    0.017   19.166    0.000    0.294
##    .ssai              0.536    0.025   21.644    0.000    0.488
##    .sssi              0.274    0.018   15.067    0.000    0.239
##    .ssmc              0.263    0.013   21.001    0.000    0.238
##    .ssno              0.230    0.071    3.251    0.001    0.091
##    .sscs              0.466    0.033   14.292    0.000    0.402
##    .ssmk              0.187    0.010   18.039    0.000    0.167
##    .ssar              0.217    0.016   13.952    0.000    0.186
##    .ssao              0.509    0.019   26.741    0.000    0.471
##     verbal            1.329    0.154    8.637    0.000    1.028
##     electronic        4.991    0.609    8.200    0.000    3.798
##     speed             1.191    0.134    8.895    0.000    0.928
##     g                 1.279    0.065   19.651    0.000    1.152
##  ci.upper   Std.lv  Std.all
##     0.219    0.139    0.150
##     0.256    0.206    0.225
##     0.289    0.262    0.267
##     0.361    0.328    0.288
##     0.585    0.536    0.477
##     0.310    0.274    0.284
##     0.287    0.263    0.293
##     0.369    0.230    0.207
##     0.530    0.466    0.461
##     0.207    0.187    0.197
##     0.247    0.217    0.242
##     0.546    0.509    0.493
##     1.631    1.000    1.000
##     6.184    1.000    1.000
##     1.453    1.000    1.000
##     1.407    1.000    1.000
lavTestScore(scalar, release = 23:34) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 524.159 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs      X2 df p.value
## 1  .p46. == .p107. 129.051  1   0.000
## 2  .p47. == .p108.  49.011  1   0.000
## 3  .p48. == .p109. 202.291  1   0.000
## 4  .p49. == .p110.   0.381  1   0.537
## 5  .p50. == .p111.  18.846  1   0.000
## 6  .p51. == .p112.   1.255  1   0.263
## 7  .p52. == .p113.  19.844  1   0.000
## 8  .p53. == .p114.  87.563  1   0.000
## 9  .p54. == .p115. 100.288  1   0.000
## 10 .p55. == .p116.   0.046  1   0.830
## 11 .p56. == .p117. 211.140  1   0.000
## 12 .p57. == .p118.   7.413  1   0.006
scalar2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1162.513   108.000     0.000     0.967     0.073     0.042 86891.644 
##       bic 
## 87338.400
Mc(scalar2)
## [1] 0.8657683
summary(scalar2, standardized=T, ci=T) # +.137
## lavaan 0.6-18 ended normally after 88 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       102
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1162.513    1015.719
##   Degrees of freedom                               108         108
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.145
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          477.458     417.168
##     0                                          685.055     598.551
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.313    0.015   20.612    0.000    0.283
##     sswk    (.p2.)    0.394    0.021   18.709    0.000    0.353
##     sspc    (.p3.)    0.179    0.014   12.407    0.000    0.150
##     ssei    (.p4.)    0.217    0.016   13.728    0.000    0.186
##   electronic =~                                                
##     ssai    (.p5.)    0.278    0.015   18.044    0.000    0.248
##     sssi    (.p6.)    0.313    0.017   18.379    0.000    0.279
##     ssmc    (.p7.)    0.157    0.009   16.658    0.000    0.138
##     ssei    (.p8.)    0.190    0.011   17.235    0.000    0.169
##   speed =~                                                     
##     ssno    (.p9.)    0.724    0.048   15.236    0.000    0.631
##     sscs    (.10.)    0.349    0.027   13.079    0.000    0.297
##     ssmk    (.11.)    0.157    0.013   12.140    0.000    0.131
##   g =~                                                         
##     ssgs    (.12.)    0.686    0.015   44.398    0.000    0.656
##     ssar    (.13.)    0.740    0.016   45.619    0.000    0.708
##     sswk    (.14.)    0.669    0.016   40.853    0.000    0.637
##     sspc    (.15.)    0.728    0.015   47.011    0.000    0.697
##     ssno    (.16.)    0.559    0.017   32.175    0.000    0.525
##     sscs    (.17.)    0.524    0.016   32.817    0.000    0.493
##     ssai    (.18.)    0.401    0.015   26.099    0.000    0.371
##     sssi    (.19.)    0.397    0.015   25.986    0.000    0.367
##     ssmk    (.20.)    0.758    0.016   46.617    0.000    0.726
##     ssmc    (.21.)    0.636    0.016   40.197    0.000    0.605
##     ssei              0.512    0.018   28.350    0.000    0.477
##     ssao    (.23.)    0.643    0.015   42.926    0.000    0.613
##  ci.upper   Std.lv  Std.all
##                            
##     0.342    0.313    0.364
##     0.435    0.394    0.457
##     0.207    0.179    0.203
##     0.248    0.217    0.284
##                            
##     0.309    0.278    0.370
##     0.346    0.313    0.416
##     0.175    0.157    0.192
##     0.212    0.190    0.249
##                            
##     0.818    0.724    0.758
##     0.401    0.349    0.381
##     0.182    0.157    0.176
##                            
##     0.716    0.686    0.799
##     0.772    0.740    0.882
##     0.701    0.669    0.776
##     0.758    0.728    0.827
##     0.593    0.559    0.585
##     0.556    0.524    0.573
##     0.431    0.401    0.532
##     0.427    0.397    0.529
##     0.790    0.758    0.850
##     0.667    0.636    0.779
##     0.548    0.512    0.672
##     0.672    0.643    0.707
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.328    0.021   15.918    0.000    0.288
##    .sswk    (.47.)    0.374    0.021   17.515    0.000    0.332
##    .sspc              0.450    0.022   20.911    0.000    0.408
##    .ssei    (.49.)    0.143    0.019    7.608    0.000    0.106
##    .ssai    (.50.)    0.029    0.017    1.690    0.091   -0.005
##    .sssi    (.51.)    0.059    0.018    3.321    0.001    0.024
##    .ssmc    (.52.)    0.253    0.019   13.340    0.000    0.216
##    .ssno    (.53.)    0.242    0.023   10.348    0.000    0.196
##    .sscs              0.355    0.023   15.705    0.000    0.311
##    .ssmk    (.55.)    0.375    0.022   17.058    0.000    0.332
##    .ssar              0.324    0.021   15.550    0.000    0.283
##    .ssao    (.57.)    0.335    0.021   16.140    0.000    0.294
##  ci.upper   Std.lv  Std.all
##     0.369    0.328    0.382
##     0.416    0.374    0.434
##     0.492    0.450    0.511
##     0.180    0.143    0.188
##     0.063    0.029    0.038
##     0.094    0.059    0.079
##     0.291    0.253    0.310
##     0.288    0.242    0.253
##     0.400    0.355    0.388
##     0.418    0.375    0.421
##     0.364    0.324    0.386
##     0.376    0.335    0.369
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.170    0.009   18.647    0.000    0.152
##    .sswk              0.140    0.012   11.379    0.000    0.116
##    .sspc              0.213    0.011   19.736    0.000    0.192
##    .ssei              0.236    0.011   21.156    0.000    0.214
##    .ssai              0.329    0.015   21.324    0.000    0.299
##    .sssi              0.310    0.015   20.033    0.000    0.279
##    .ssmc              0.237    0.012   19.981    0.000    0.214
##    .ssno              0.076    0.057    1.334    0.182   -0.036
##    .sscs              0.442    0.021   20.816    0.000    0.400
##    .ssmk              0.196    0.009   22.912    0.000    0.179
##    .ssar              0.157    0.008   19.306    0.000    0.141
##    .ssao              0.413    0.017   24.395    0.000    0.380
##     verbal            1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.187    0.170    0.230
##     0.164    0.140    0.189
##     0.234    0.213    0.275
##     0.258    0.236    0.406
##     0.359    0.329    0.580
##     0.340    0.310    0.548
##     0.261    0.237    0.356
##     0.187    0.076    0.083
##     0.483    0.442    0.527
##     0.213    0.196    0.247
##     0.173    0.157    0.223
##     0.446    0.413    0.500
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.313    0.015   20.612    0.000    0.283
##     sswk    (.p2.)    0.394    0.021   18.709    0.000    0.353
##     sspc    (.p3.)    0.179    0.014   12.407    0.000    0.150
##     ssei    (.p4.)    0.217    0.016   13.728    0.000    0.186
##   electronic =~                                                
##     ssai    (.p5.)    0.278    0.015   18.044    0.000    0.248
##     sssi    (.p6.)    0.313    0.017   18.379    0.000    0.279
##     ssmc    (.p7.)    0.157    0.009   16.658    0.000    0.138
##     ssei    (.p8.)    0.190    0.011   17.235    0.000    0.169
##   speed =~                                                     
##     ssno    (.p9.)    0.724    0.048   15.236    0.000    0.631
##     sscs    (.10.)    0.349    0.027   13.079    0.000    0.297
##     ssmk    (.11.)    0.157    0.013   12.140    0.000    0.131
##   g =~                                                         
##     ssgs    (.12.)    0.686    0.015   44.398    0.000    0.656
##     ssar    (.13.)    0.740    0.016   45.619    0.000    0.708
##     sswk    (.14.)    0.669    0.016   40.853    0.000    0.637
##     sspc    (.15.)    0.728    0.015   47.011    0.000    0.697
##     ssno    (.16.)    0.559    0.017   32.175    0.000    0.525
##     sscs    (.17.)    0.524    0.016   32.817    0.000    0.493
##     ssai    (.18.)    0.401    0.015   26.099    0.000    0.371
##     sssi    (.19.)    0.397    0.015   25.986    0.000    0.367
##     ssmk    (.20.)    0.758    0.016   46.617    0.000    0.726
##     ssmc    (.21.)    0.636    0.016   40.197    0.000    0.605
##     ssei              0.680    0.020   33.252    0.000    0.639
##     ssao    (.23.)    0.643    0.015   42.926    0.000    0.613
##  ci.upper   Std.lv  Std.all
##                            
##     0.342    0.345    0.360
##     0.435    0.434    0.454
##     0.207    0.197    0.200
##     0.248    0.239    0.223
##                            
##     0.309    0.613    0.579
##     0.346    0.689    0.702
##     0.175    0.345    0.364
##     0.212    0.419    0.391
##                            
##     0.818    0.782    0.741
##     0.401    0.376    0.380
##     0.182    0.169    0.173
##                            
##     0.716    0.778    0.812
##     0.772    0.839    0.885
##     0.701    0.758    0.793
##     0.758    0.825    0.838
##     0.593    0.634    0.600
##     0.556    0.594    0.599
##     0.431    0.454    0.429
##     0.427    0.451    0.459
##     0.790    0.859    0.880
##     0.667    0.721    0.760
##     0.720    0.770    0.718
##     0.672    0.728    0.716
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.531    0.025   21.479    0.000    0.483
##    .sswk    (.47.)    0.374    0.021   17.515    0.000    0.332
##    .sspc              0.268    0.024   11.001    0.000    0.220
##    .ssei    (.49.)    0.143    0.019    7.608    0.000    0.106
##    .ssai    (.50.)    0.029    0.017    1.690    0.091   -0.005
##    .sssi    (.51.)    0.059    0.018    3.321    0.001    0.024
##    .ssmc    (.52.)    0.253    0.019   13.340    0.000    0.216
##    .ssno    (.53.)    0.242    0.023   10.348    0.000    0.196
##    .sscs              0.117    0.024    4.900    0.000    0.070
##    .ssmk    (.55.)    0.375    0.022   17.058    0.000    0.332
##    .ssar              0.510    0.026   19.572    0.000    0.459
##    .ssao    (.57.)    0.335    0.021   16.140    0.000    0.294
##     verbal            0.315    0.063    4.972    0.000    0.191
##     elctrnc           2.463    0.155   15.907    0.000    2.160
##     speed            -0.082    0.044   -1.848    0.065   -0.169
##     g                -0.155    0.042   -3.670    0.000   -0.238
##  ci.upper   Std.lv  Std.all
##     0.580    0.531    0.554
##     0.416    0.374    0.391
##     0.316    0.268    0.272
##     0.180    0.143    0.133
##     0.063    0.029    0.027
##     0.094    0.059    0.060
##     0.291    0.253    0.267
##     0.288    0.242    0.229
##     0.164    0.117    0.118
##     0.418    0.375    0.385
##     0.561    0.510    0.538
##     0.376    0.335    0.329
##     0.439    0.286    0.286
##     2.767    1.119    1.119
##     0.005   -0.076   -0.076
##    -0.072   -0.137   -0.137
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.194    0.010   18.709    0.000    0.174
##    .sswk              0.151    0.014   10.775    0.000    0.124
##    .sspc              0.250    0.011   22.608    0.000    0.228
##    .ssei              0.323    0.016   20.533    0.000    0.293
##    .ssai              0.537    0.025   21.808    0.000    0.489
##    .sssi              0.286    0.018   15.871    0.000    0.251
##    .ssmc              0.261    0.012   20.975    0.000    0.237
##    .ssno              0.101    0.065    1.554    0.120   -0.027
##    .sscs              0.489    0.025   19.176    0.000    0.439
##    .ssmk              0.186    0.009   21.035    0.000    0.168
##    .ssar              0.194    0.010   19.064    0.000    0.174
##    .ssao              0.503    0.019   27.052    0.000    0.467
##     verbal            1.217    0.121   10.043    0.000    0.979
##     electronic        4.849    0.561    8.650    0.000    3.751
##     speed             1.165    0.128    9.114    0.000    0.914
##     g                 1.285    0.066   19.508    0.000    1.156
##  ci.upper   Std.lv  Std.all
##     0.214    0.194    0.211
##     0.179    0.151    0.165
##     0.272    0.250    0.258
##     0.354    0.323    0.281
##     0.586    0.537    0.480
##     0.321    0.286    0.297
##     0.285    0.261    0.290
##     0.229    0.101    0.091
##     0.539    0.489    0.497
##     0.203    0.186    0.195
##     0.214    0.194    0.216
##     0.540    0.503    0.487
##     1.454    1.000    1.000
##     5.948    1.000    1.000
##     1.415    1.000    1.000
##     1.414    1.000    1.000
lavTestScore(scalar2, release = 23:30) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 36.366  8       0
## 
## $uni
## 
## univariate score tests:
## 
##     lhs op    rhs     X2 df p.value
## 1 .p47. == .p108.  1.946  1   0.163
## 2 .p49. == .p110.  1.946  1   0.163
## 3 .p50. == .p111. 24.995  1   0.000
## 4 .p51. == .p112.  0.128  1   0.720
## 5 .p52. == .p113. 17.811  1   0.000
## 6 .p53. == .p114.  0.453  1   0.501
## 7 .p55. == .p116.  0.453  1   0.501
## 8 .p57. == .p118.  4.215  1   0.040
strict<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1322.067   120.000     0.000     0.962     0.074     0.046 87027.197 
##       bic 
## 87399.494
Mc(strict)
## [1] 0.8484819
summary(strict, standardized=T, ci=T) # +.137
## lavaan 0.6-18 ended normally after 87 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       102
##   Number of equality constraints                    42
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1322.067    1145.128
##   Degrees of freedom                               120         120
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.155
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          571.521     495.032
##     0                                          750.546     650.097
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.307    0.015   20.702    0.000    0.278
##     sswk    (.p2.)    0.376    0.022   16.990    0.000    0.332
##     sspc    (.p3.)    0.171    0.014   11.762    0.000    0.142
##     ssei    (.p4.)    0.213    0.015   13.853    0.000    0.183
##   electronic =~                                                
##     ssai    (.p5.)    0.264    0.017   15.821    0.000    0.231
##     sssi    (.p6.)    0.280    0.019   15.086    0.000    0.244
##     ssmc    (.p7.)    0.143    0.010   14.278    0.000    0.123
##     ssei    (.p8.)    0.176    0.012   15.071    0.000    0.153
##   speed =~                                                     
##     ssno    (.p9.)    0.719    0.048   14.999    0.000    0.625
##     sscs    (.10.)    0.343    0.025   13.778    0.000    0.295
##     ssmk    (.11.)    0.155    0.012   12.541    0.000    0.130
##   g =~                                                         
##     ssgs    (.12.)    0.687    0.015   44.328    0.000    0.657
##     ssar    (.13.)    0.740    0.016   45.757    0.000    0.708
##     sswk    (.14.)    0.668    0.016   40.723    0.000    0.636
##     sspc    (.15.)    0.728    0.016   46.880    0.000    0.697
##     ssno    (.16.)    0.559    0.017   32.195    0.000    0.525
##     sscs    (.17.)    0.524    0.016   32.570    0.000    0.493
##     ssai    (.18.)    0.405    0.016   26.117    0.000    0.375
##     sssi    (.19.)    0.398    0.015   25.974    0.000    0.368
##     ssmk    (.20.)    0.757    0.016   46.399    0.000    0.725
##     ssmc    (.21.)    0.635    0.016   40.116    0.000    0.604
##     ssei              0.513    0.018   28.627    0.000    0.478
##     ssao    (.23.)    0.642    0.015   42.494    0.000    0.612
##  ci.upper   Std.lv  Std.all
##                            
##     0.336    0.307    0.355
##     0.419    0.376    0.438
##     0.199    0.171    0.192
##     0.243    0.213    0.272
##                            
##     0.297    0.264    0.327
##     0.317    0.280    0.377
##     0.162    0.143    0.174
##     0.198    0.176    0.224
##                            
##     0.813    0.719    0.752
##     0.392    0.343    0.370
##     0.179    0.155    0.174
##                            
##     0.717    0.687    0.796
##     0.771    0.740    0.870
##     0.700    0.668    0.778
##     0.758    0.728    0.819
##     0.593    0.559    0.585
##     0.556    0.524    0.565
##     0.435    0.405    0.502
##     0.428    0.398    0.535
##     0.788    0.757    0.852
##     0.666    0.635    0.774
##     0.548    0.513    0.654
##     0.671    0.642    0.688
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.329    0.021   15.973    0.000    0.289
##    .sswk    (.47.)    0.375    0.021   17.615    0.000    0.334
##    .sspc              0.451    0.021   20.974    0.000    0.409
##    .ssei    (.49.)    0.143    0.019    7.576    0.000    0.106
##    .ssai    (.50.)    0.011    0.017    0.647    0.518   -0.023
##    .sssi    (.51.)    0.069    0.018    3.872    0.000    0.034
##    .ssmc    (.52.)    0.257    0.019   13.470    0.000    0.219
##    .ssno    (.53.)    0.243    0.023   10.379    0.000    0.197
##    .sscs              0.356    0.023   15.732    0.000    0.312
##    .ssmk    (.55.)    0.376    0.022   17.103    0.000    0.333
##    .ssar              0.325    0.021   15.617    0.000    0.284
##    .ssao    (.57.)    0.333    0.021   16.088    0.000    0.293
##  ci.upper   Std.lv  Std.all
##     0.369    0.329    0.381
##     0.417    0.375    0.437
##     0.493    0.451    0.507
##     0.180    0.143    0.182
##     0.045    0.011    0.014
##     0.104    0.069    0.093
##     0.294    0.257    0.313
##     0.289    0.243    0.254
##     0.400    0.356    0.384
##     0.419    0.376    0.423
##     0.365    0.325    0.382
##     0.374    0.333    0.357
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.24.)    0.179    0.008   22.648    0.000    0.164
##    .sswk    (.25.)    0.150    0.011   13.111    0.000    0.128
##    .sspc    (.26.)    0.231    0.008   29.702    0.000    0.216
##    .ssei    (.27.)    0.276    0.010   28.150    0.000    0.257
##    .ssai    (.28.)    0.418    0.015   28.194    0.000    0.389
##    .sssi    (.29.)    0.316    0.012   25.580    0.000    0.292
##    .ssmc    (.30.)    0.250    0.009   28.957    0.000    0.233
##    .ssno    (.31.)    0.084    0.059    1.421    0.155   -0.032
##    .sscs    (.32.)    0.467    0.019   25.109    0.000    0.430
##    .ssmk    (.33.)    0.192    0.006   30.104    0.000    0.180
##    .ssar    (.34.)    0.176    0.007   26.519    0.000    0.163
##    .ssao    (.35.)    0.459    0.013   35.958    0.000    0.434
##     verbal            1.000                               1.000
##     elctrnc           1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.195    0.179    0.241
##     0.173    0.150    0.204
##     0.247    0.231    0.293
##     0.295    0.276    0.448
##     0.447    0.418    0.641
##     0.340    0.316    0.571
##     0.267    0.250    0.371
##     0.200    0.084    0.092
##     0.503    0.467    0.543
##     0.205    0.192    0.244
##     0.189    0.176    0.243
##     0.484    0.459    0.527
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.307    0.015   20.702    0.000    0.278
##     sswk    (.p2.)    0.376    0.022   16.990    0.000    0.332
##     sspc    (.p3.)    0.171    0.014   11.762    0.000    0.142
##     ssei    (.p4.)    0.213    0.015   13.853    0.000    0.183
##   electronic =~                                                
##     ssai    (.p5.)    0.264    0.017   15.821    0.000    0.231
##     sssi    (.p6.)    0.280    0.019   15.086    0.000    0.244
##     ssmc    (.p7.)    0.143    0.010   14.278    0.000    0.123
##     ssei    (.p8.)    0.176    0.012   15.071    0.000    0.153
##   speed =~                                                     
##     ssno    (.p9.)    0.719    0.048   14.999    0.000    0.625
##     sscs    (.10.)    0.343    0.025   13.778    0.000    0.295
##     ssmk    (.11.)    0.155    0.012   12.541    0.000    0.130
##   g =~                                                         
##     ssgs    (.12.)    0.687    0.015   44.328    0.000    0.657
##     ssar    (.13.)    0.740    0.016   45.757    0.000    0.708
##     sswk    (.14.)    0.668    0.016   40.723    0.000    0.636
##     sspc    (.15.)    0.728    0.016   46.880    0.000    0.697
##     ssno    (.16.)    0.559    0.017   32.195    0.000    0.525
##     sscs    (.17.)    0.524    0.016   32.570    0.000    0.493
##     ssai    (.18.)    0.405    0.016   26.117    0.000    0.375
##     sssi    (.19.)    0.398    0.015   25.974    0.000    0.368
##     ssmk    (.20.)    0.757    0.016   46.399    0.000    0.725
##     ssmc    (.21.)    0.635    0.016   40.116    0.000    0.604
##     ssei              0.678    0.020   33.124    0.000    0.638
##     ssao    (.23.)    0.642    0.015   42.494    0.000    0.612
##  ci.upper   Std.lv  Std.all
##                            
##     0.336    0.358    0.374
##     0.419    0.439    0.458
##     0.199    0.199    0.204
##     0.243    0.249    0.236
##                            
##     0.297    0.645    0.631
##     0.317    0.685    0.688
##     0.162    0.348    0.369
##     0.198    0.429    0.406
##                            
##     0.813    0.792    0.750
##     0.392    0.378    0.385
##     0.179    0.170    0.174
##                            
##     0.717    0.781    0.815
##     0.771    0.841    0.895
##     0.700    0.759    0.792
##     0.758    0.827    0.846
##     0.593    0.635    0.601
##     0.556    0.596    0.606
##     0.435    0.460    0.450
##     0.428    0.452    0.455
##     0.788    0.860    0.877
##     0.666    0.722    0.764
##     0.718    0.770    0.730
##     0.671    0.729    0.733
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.530    0.025   21.277    0.000    0.481
##    .sswk    (.47.)    0.375    0.021   17.615    0.000    0.334
##    .sspc              0.269    0.024   11.069    0.000    0.221
##    .ssei    (.49.)    0.143    0.019    7.576    0.000    0.106
##    .ssai    (.50.)    0.011    0.017    0.647    0.518   -0.023
##    .sssi    (.51.)    0.069    0.018    3.872    0.000    0.034
##    .ssmc    (.52.)    0.257    0.019   13.470    0.000    0.219
##    .ssno    (.53.)    0.243    0.023   10.379    0.000    0.197
##    .sscs              0.117    0.024    4.903    0.000    0.071
##    .ssmk    (.55.)    0.376    0.022   17.103    0.000    0.333
##    .ssar              0.510    0.026   19.605    0.000    0.459
##    .ssao    (.57.)    0.333    0.021   16.088    0.000    0.293
##     verbal            0.326    0.067    4.894    0.000    0.196
##     elctrnc           2.678    0.194   13.785    0.000    2.297
##     speed            -0.083    0.045   -1.867    0.062   -0.171
##     g                -0.156    0.042   -3.672    0.000   -0.239
##  ci.upper   Std.lv  Std.all
##     0.579    0.530    0.553
##     0.417    0.375    0.391
##     0.316    0.269    0.275
##     0.180    0.143    0.135
##     0.045    0.011    0.011
##     0.104    0.069    0.070
##     0.294    0.257    0.272
##     0.289    0.243    0.230
##     0.164    0.117    0.120
##     0.419    0.376    0.383
##     0.561    0.510    0.543
##     0.374    0.333    0.335
##     0.457    0.279    0.279
##     3.059    1.097    1.097
##     0.004   -0.076   -0.076
##    -0.073   -0.137   -0.137
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.24.)    0.179    0.008   22.648    0.000    0.164
##    .sswk    (.25.)    0.150    0.011   13.111    0.000    0.128
##    .sspc    (.26.)    0.231    0.008   29.702    0.000    0.216
##    .ssei    (.27.)    0.276    0.010   28.150    0.000    0.257
##    .ssai    (.28.)    0.418    0.015   28.194    0.000    0.389
##    .sssi    (.29.)    0.316    0.012   25.580    0.000    0.292
##    .ssmc    (.30.)    0.250    0.009   28.957    0.000    0.233
##    .ssno    (.31.)    0.084    0.059    1.421    0.155   -0.032
##    .sscs    (.32.)    0.467    0.019   25.109    0.000    0.430
##    .ssmk    (.33.)    0.192    0.006   30.104    0.000    0.180
##    .ssar    (.34.)    0.176    0.007   26.519    0.000    0.163
##    .ssao    (.35.)    0.459    0.013   35.958    0.000    0.434
##     verbal            1.366    0.136   10.009    0.000    1.098
##     elctrnc           5.962    0.804    7.419    0.000    4.387
##     speed             1.213    0.102   11.841    0.000    1.012
##     g                 1.291    0.066   19.474    0.000    1.161
##  ci.upper   Std.lv  Std.all
##     0.195    0.179    0.196
##     0.173    0.150    0.163
##     0.247    0.231    0.242
##     0.295    0.276    0.247
##     0.447    0.418    0.400
##     0.340    0.316    0.319
##     0.267    0.250    0.280
##     0.200    0.084    0.076
##     0.503    0.467    0.484
##     0.205    0.192    0.200
##     0.189    0.176    0.199
##     0.484    0.459    0.463
##     1.633    1.000    1.000
##     7.536    1.000    1.000
##     1.414    1.000    1.000
##     1.421    1.000    1.000
latent<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1536.901   112.000     0.000     0.955     0.083     0.104 87258.031 
##       bic 
## 87679.968
Mc(latent)
## [1] 0.823028
summary(latent, standardized=T, ci=T) # +.148
## lavaan 0.6-18 ended normally after 59 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1536.901    1335.948
##   Degrees of freedom                               112         112
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.150
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          685.947     596.258
##     0                                          850.954     739.690
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.325    0.015   21.589    0.000    0.296
##     sswk    (.p2.)    0.417    0.017   24.384    0.000    0.384
##     sspc    (.p3.)    0.190    0.014   13.614    0.000    0.162
##     ssei    (.p4.)    0.222    0.017   13.249    0.000    0.189
##   electronic =~                                                
##     ssai    (.p5.)    0.441    0.018   24.797    0.000    0.406
##     sssi    (.p6.)    0.516    0.016   32.350    0.000    0.484
##     ssmc    (.p7.)    0.263    0.011   24.859    0.000    0.242
##     ssei    (.p8.)    0.311    0.013   24.529    0.000    0.286
##   speed =~                                                     
##     ssno    (.p9.)    0.750    0.042   17.835    0.000    0.668
##     sscs    (.10.)    0.366    0.025   14.453    0.000    0.317
##     ssmk    (.11.)    0.166    0.013   12.681    0.000    0.140
##   g =~                                                         
##     ssgs    (.12.)    0.735    0.014   52.874    0.000    0.707
##     ssar    (.13.)    0.792    0.013   58.788    0.000    0.765
##     sswk    (.14.)    0.716    0.014   50.157    0.000    0.688
##     sspc    (.15.)    0.777    0.012   64.139    0.000    0.753
##     ssno    (.16.)    0.596    0.017   35.389    0.000    0.563
##     sscs    (.17.)    0.560    0.015   36.982    0.000    0.530
##     ssai    (.18.)    0.438    0.016   26.815    0.000    0.406
##     sssi    (.19.)    0.440    0.016   27.459    0.000    0.409
##     ssmk    (.20.)    0.810    0.012   66.001    0.000    0.786
##     ssmc    (.21.)    0.688    0.014   47.877    0.000    0.659
##     ssei              0.551    0.018   30.404    0.000    0.516
##     ssao    (.23.)    0.687    0.013   54.483    0.000    0.662
##  ci.upper   Std.lv  Std.all
##                            
##     0.355    0.325    0.360
##     0.451    0.417    0.460
##     0.217    0.190    0.205
##     0.255    0.222    0.269
##                            
##     0.476    0.441    0.526
##     0.547    0.516    0.601
##     0.284    0.263    0.298
##     0.336    0.311    0.376
##                            
##     0.833    0.750    0.758
##     0.416    0.366    0.388
##     0.192    0.166    0.177
##                            
##     0.762    0.735    0.812
##     0.818    0.792    0.899
##     0.744    0.716    0.790
##     0.801    0.777    0.842
##     0.629    0.596    0.602
##     0.589    0.560    0.593
##     0.470    0.438    0.522
##     0.472    0.440    0.513
##     0.835    0.810    0.865
##     0.716    0.688    0.780
##     0.587    0.551    0.668
##     0.712    0.687    0.731
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.327    0.021   15.829    0.000    0.286
##    .sswk    (.47.)    0.373    0.022   17.340    0.000    0.331
##    .sspc              0.449    0.022   20.797    0.000    0.406
##    .ssei    (.49.)    0.143    0.019    7.610    0.000    0.106
##    .ssai    (.50.)    0.037    0.017    2.141    0.032    0.003
##    .sssi    (.51.)    0.054    0.018    3.040    0.002    0.019
##    .ssmc    (.52.)    0.247    0.019   12.827    0.000    0.210
##    .ssno    (.53.)    0.241    0.023   10.297    0.000    0.195
##    .sscs              0.355    0.023   15.654    0.000    0.310
##    .ssmk    (.55.)    0.376    0.022   17.024    0.000    0.332
##    .ssar              0.322    0.021   15.419    0.000    0.281
##    .ssao    (.57.)    0.335    0.021   16.112    0.000    0.294
##  ci.upper   Std.lv  Std.all
##     0.367    0.327    0.361
##     0.415    0.373    0.412
##     0.491    0.449    0.486
##     0.180    0.143    0.173
##     0.070    0.037    0.044
##     0.089    0.054    0.063
##     0.285    0.247    0.280
##     0.287    0.241    0.244
##     0.399    0.355    0.376
##     0.419    0.376    0.401
##     0.363    0.322    0.366
##     0.376    0.335    0.357
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.174    0.009   18.676    0.000    0.155
##    .sswk              0.135    0.012   10.937    0.000    0.110
##    .sspc              0.212    0.011   19.770    0.000    0.191
##    .ssei              0.232    0.011   20.232    0.000    0.210
##    .ssai              0.318    0.016   19.918    0.000    0.286
##    .sssi              0.276    0.015   17.902    0.000    0.246
##    .ssmc              0.235    0.012   20.022    0.000    0.212
##    .ssno              0.062    0.056    1.092    0.275   -0.049
##    .sscs              0.444    0.021   20.793    0.000    0.402
##    .ssmk              0.193    0.008   22.675    0.000    0.176
##    .ssar              0.149    0.008   18.657    0.000    0.133
##    .ssao              0.412    0.017   24.188    0.000    0.378
##     verbal            1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.192    0.174    0.212
##     0.159    0.135    0.164
##     0.233    0.212    0.249
##     0.255    0.232    0.341
##     0.349    0.318    0.451
##     0.306    0.276    0.375
##     0.259    0.235    0.303
##     0.172    0.062    0.063
##     0.486    0.444    0.498
##     0.209    0.193    0.220
##     0.165    0.149    0.192
##     0.445    0.412    0.466
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.325    0.015   21.589    0.000    0.296
##     sswk    (.p2.)    0.417    0.017   24.384    0.000    0.384
##     sspc    (.p3.)    0.190    0.014   13.614    0.000    0.162
##     ssei    (.p4.)    0.222    0.017   13.249    0.000    0.189
##   electronic =~                                                
##     ssai    (.p5.)    0.441    0.018   24.797    0.000    0.406
##     sssi    (.p6.)    0.516    0.016   32.350    0.000    0.484
##     ssmc    (.p7.)    0.263    0.011   24.859    0.000    0.242
##     ssei    (.p8.)    0.311    0.013   24.529    0.000    0.286
##   speed =~                                                     
##     ssno    (.p9.)    0.750    0.042   17.835    0.000    0.668
##     sscs    (.10.)    0.366    0.025   14.453    0.000    0.317
##     ssmk    (.11.)    0.166    0.013   12.681    0.000    0.140
##   g =~                                                         
##     ssgs    (.12.)    0.735    0.014   52.874    0.000    0.707
##     ssar    (.13.)    0.792    0.013   58.788    0.000    0.765
##     sswk    (.14.)    0.716    0.014   50.157    0.000    0.688
##     sspc    (.15.)    0.777    0.012   64.139    0.000    0.753
##     ssno    (.16.)    0.596    0.017   35.389    0.000    0.563
##     sscs    (.17.)    0.560    0.015   36.982    0.000    0.530
##     ssai    (.18.)    0.438    0.016   26.815    0.000    0.406
##     sssi    (.19.)    0.440    0.016   27.459    0.000    0.409
##     ssmk    (.20.)    0.810    0.012   66.001    0.000    0.786
##     ssmc    (.21.)    0.688    0.014   47.877    0.000    0.659
##     ssei              0.743    0.020   37.451    0.000    0.704
##     ssao    (.23.)    0.687    0.013   54.483    0.000    0.662
##  ci.upper   Std.lv  Std.all
##                            
##     0.355    0.325    0.355
##     0.451    0.417    0.456
##     0.217    0.190    0.201
##     0.255    0.222    0.218
##                            
##     0.476    0.441    0.447
##     0.547    0.516    0.577
##     0.284    0.263    0.294
##     0.336    0.311    0.306
##                            
##     0.833    0.750    0.733
##     0.416    0.366    0.379
##     0.192    0.166    0.178
##                            
##     0.762    0.735    0.802
##     0.818    0.792    0.870
##     0.744    0.716    0.782
##     0.801    0.777    0.822
##     0.629    0.596    0.582
##     0.589    0.560    0.580
##     0.470    0.438    0.445
##     0.472    0.440    0.493
##     0.835    0.810    0.867
##     0.716    0.688    0.768
##     0.782    0.743    0.732
##     0.712    0.687    0.695
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.532    0.025   21.458    0.000    0.484
##    .sswk    (.47.)    0.373    0.022   17.340    0.000    0.331
##    .sspc              0.268    0.025   10.929    0.000    0.220
##    .ssei    (.49.)    0.143    0.019    7.610    0.000    0.106
##    .ssai    (.50.)    0.037    0.017    2.141    0.032    0.003
##    .sssi    (.51.)    0.054    0.018    3.040    0.002    0.019
##    .ssmc    (.52.)    0.247    0.019   12.827    0.000    0.210
##    .ssno    (.53.)    0.241    0.023   10.297    0.000    0.195
##    .sscs              0.118    0.024    4.917    0.000    0.071
##    .ssmk    (.55.)    0.376    0.022   17.024    0.000    0.332
##    .ssar              0.512    0.026   19.534    0.000    0.461
##    .ssao    (.57.)    0.335    0.021   16.112    0.000    0.294
##     verbal            0.306    0.059    5.169    0.000    0.190
##     elctrnc           1.520    0.063   24.178    0.000    1.397
##     speed            -0.076    0.042   -1.784    0.074   -0.158
##     g                -0.148    0.039   -3.761    0.000   -0.225
##  ci.upper   Std.lv  Std.all
##     0.581    0.532    0.581
##     0.415    0.373    0.407
##     0.316    0.268    0.284
##     0.180    0.143    0.141
##     0.070    0.037    0.037
##     0.089    0.054    0.060
##     0.285    0.247    0.276
##     0.287    0.241    0.236
##     0.165    0.118    0.122
##     0.419    0.376    0.402
##     0.563    0.512    0.563
##     0.376    0.335    0.339
##     0.422    0.306    0.306
##     1.643    1.520    1.520
##     0.007   -0.076   -0.076
##    -0.071   -0.148   -0.148
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.193    0.010   19.343    0.000    0.174
##    .sswk              0.151    0.014   11.011    0.000    0.124
##    .sspc              0.253    0.011   22.674    0.000    0.231
##    .ssei              0.332    0.016   21.088    0.000    0.301
##    .ssai              0.586    0.026   22.286    0.000    0.534
##    .sssi              0.338    0.019   17.573    0.000    0.300
##    .ssmc              0.259    0.013   20.602    0.000    0.234
##    .ssno              0.130    0.060    2.169    0.030    0.012
##    .sscs              0.485    0.025   19.378    0.000    0.436
##    .ssmk              0.190    0.009   21.468    0.000    0.172
##    .ssar              0.201    0.010   19.508    0.000    0.181
##    .ssao              0.504    0.019   27.187    0.000    0.468
##     verbal            1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.213    0.193    0.230
##     0.178    0.151    0.181
##     0.275    0.253    0.283
##     0.363    0.332    0.322
##     0.637    0.586    0.602
##     0.376    0.338    0.424
##     0.284    0.259    0.323
##     0.247    0.130    0.124
##     0.534    0.485    0.520
##     0.207    0.190    0.217
##     0.221    0.201    0.243
##     0.541    0.504    0.517
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
latent2<-cfa(bf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1170.838   110.000     0.000     0.967     0.073     0.042 86895.969 
##       bic 
## 87330.315
Mc(latent2)
## [1] 0.8650201
summary(latent2, standardized=T, ci=T) # +.137
## lavaan 0.6-18 ended normally after 79 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       100
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1170.838    1017.580
##   Degrees of freedom                               110         110
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.151
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          480.865     417.922
##     0                                          689.973     599.658
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.326    0.015   21.735    0.000    0.297
##     sswk    (.p2.)    0.416    0.017   24.550    0.000    0.383
##     sspc    (.p3.)    0.188    0.014   13.522    0.000    0.161
##     ssei    (.p4.)    0.225    0.017   13.629    0.000    0.193
##   electronic =~                                                
##     ssai    (.p5.)    0.279    0.015   18.037    0.000    0.248
##     sssi    (.p6.)    0.313    0.017   18.388    0.000    0.279
##     ssmc    (.p7.)    0.156    0.009   16.644    0.000    0.138
##     ssei    (.p8.)    0.191    0.011   17.359    0.000    0.169
##   speed =~                                                     
##     ssno    (.p9.)    0.753    0.043   17.419    0.000    0.668
##     sscs    (.10.)    0.362    0.026   14.112    0.000    0.312
##     ssmk    (.11.)    0.163    0.013   12.416    0.000    0.137
##   g =~                                                         
##     ssgs    (.12.)    0.685    0.015   44.385    0.000    0.655
##     ssar    (.13.)    0.740    0.016   45.582    0.000    0.708
##     sswk    (.14.)    0.668    0.016   40.863    0.000    0.636
##     sspc    (.15.)    0.727    0.015   47.021    0.000    0.697
##     ssno    (.16.)    0.558    0.017   32.137    0.000    0.524
##     sscs    (.17.)    0.524    0.016   32.789    0.000    0.493
##     ssai    (.18.)    0.400    0.015   26.074    0.000    0.370
##     sssi    (.19.)    0.397    0.015   25.991    0.000    0.367
##     ssmk    (.20.)    0.757    0.016   46.567    0.000    0.725
##     ssmc    (.21.)    0.636    0.016   40.178    0.000    0.605
##     ssei              0.511    0.018   28.304    0.000    0.476
##     ssao    (.23.)    0.642    0.015   42.897    0.000    0.613
##  ci.upper   Std.lv  Std.all
##                            
##     0.356    0.326    0.378
##     0.450    0.416    0.479
##     0.216    0.188    0.214
##     0.258    0.225    0.295
##                            
##     0.309    0.279    0.370
##     0.346    0.313    0.416
##     0.175    0.156    0.192
##     0.212    0.191    0.250
##                            
##     0.838    0.753    0.779
##     0.412    0.362    0.392
##     0.189    0.163    0.183
##                            
##     0.716    0.685    0.793
##     0.771    0.740    0.882
##     0.701    0.668    0.769
##     0.757    0.727    0.825
##     0.592    0.558    0.578
##     0.556    0.524    0.568
##     0.431    0.400    0.532
##     0.427    0.397    0.529
##     0.789    0.757    0.848
##     0.667    0.636    0.779
##     0.546    0.511    0.669
##     0.672    0.642    0.708
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.328    0.021   15.918    0.000    0.288
##    .sswk    (.47.)    0.374    0.021   17.517    0.000    0.333
##    .sspc              0.450    0.022   20.912    0.000    0.408
##    .ssei    (.49.)    0.143    0.019    7.606    0.000    0.106
##    .ssai    (.50.)    0.029    0.017    1.688    0.091   -0.005
##    .sssi    (.51.)    0.059    0.018    3.322    0.001    0.024
##    .ssmc    (.52.)    0.253    0.019   13.339    0.000    0.216
##    .ssno    (.53.)    0.242    0.023   10.350    0.000    0.196
##    .sscs              0.355    0.023   15.705    0.000    0.311
##    .ssmk    (.55.)    0.375    0.022   17.058    0.000    0.332
##    .ssar              0.324    0.021   15.551    0.000    0.283
##    .ssao    (.57.)    0.335    0.021   16.144    0.000    0.294
##  ci.upper   Std.lv  Std.all
##     0.369    0.328    0.380
##     0.416    0.374    0.431
##     0.492    0.450    0.511
##     0.180    0.143    0.187
##     0.062    0.029    0.038
##     0.094    0.059    0.079
##     0.291    0.253    0.311
##     0.288    0.242    0.251
##     0.400    0.355    0.385
##     0.418    0.375    0.420
##     0.365    0.324    0.386
##     0.376    0.335    0.369
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.170    0.009   18.631    0.000    0.152
##    .sswk              0.135    0.012   11.131    0.000    0.111
##    .sspc              0.213    0.011   19.730    0.000    0.192
##    .ssei              0.236    0.011   21.155    0.000    0.214
##    .ssai              0.330    0.015   21.340    0.000    0.299
##    .sssi              0.310    0.015   20.033    0.000    0.279
##    .ssmc              0.237    0.012   19.964    0.000    0.214
##    .ssno              0.054    0.059    0.929    0.353   -0.060
##    .sscs              0.446    0.022   20.689    0.000    0.403
##    .ssmk              0.197    0.009   23.043    0.000    0.180
##    .ssar              0.156    0.008   19.192    0.000    0.140
##    .ssao              0.411    0.017   24.337    0.000    0.378
##     electronic        1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.188    0.170    0.228
##     0.159    0.135    0.179
##     0.234    0.213    0.274
##     0.258    0.236    0.404
##     0.360    0.330    0.581
##     0.340    0.310    0.548
##     0.260    0.237    0.356
##     0.169    0.054    0.058
##     0.488    0.446    0.523
##     0.213    0.197    0.247
##     0.172    0.156    0.221
##     0.444    0.411    0.499
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.326    0.015   21.735    0.000    0.297
##     sswk    (.p2.)    0.416    0.017   24.550    0.000    0.383
##     sspc    (.p3.)    0.188    0.014   13.522    0.000    0.161
##     ssei    (.p4.)    0.225    0.017   13.629    0.000    0.193
##   electronic =~                                                
##     ssai    (.p5.)    0.279    0.015   18.037    0.000    0.248
##     sssi    (.p6.)    0.313    0.017   18.388    0.000    0.279
##     ssmc    (.p7.)    0.156    0.009   16.644    0.000    0.138
##     ssei    (.p8.)    0.191    0.011   17.359    0.000    0.169
##   speed =~                                                     
##     ssno    (.p9.)    0.753    0.043   17.419    0.000    0.668
##     sscs    (.10.)    0.362    0.026   14.112    0.000    0.312
##     ssmk    (.11.)    0.163    0.013   12.416    0.000    0.137
##   g =~                                                         
##     ssgs    (.12.)    0.685    0.015   44.385    0.000    0.655
##     ssar    (.13.)    0.740    0.016   45.582    0.000    0.708
##     sswk    (.14.)    0.668    0.016   40.863    0.000    0.636
##     sspc    (.15.)    0.727    0.015   47.021    0.000    0.697
##     ssno    (.16.)    0.558    0.017   32.137    0.000    0.524
##     sscs    (.17.)    0.524    0.016   32.789    0.000    0.493
##     ssai    (.18.)    0.400    0.015   26.074    0.000    0.370
##     sssi    (.19.)    0.397    0.015   25.991    0.000    0.367
##     ssmk    (.20.)    0.757    0.016   46.567    0.000    0.725
##     ssmc    (.21.)    0.636    0.016   40.178    0.000    0.605
##     ssei              0.680    0.020   33.268    0.000    0.640
##     ssao    (.23.)    0.642    0.015   42.897    0.000    0.613
##  ci.upper   Std.lv  Std.all
##                            
##     0.356    0.326    0.343
##     0.450    0.416    0.438
##     0.216    0.188    0.192
##     0.258    0.225    0.210
##                            
##     0.309    0.613    0.579
##     0.346    0.688    0.701
##     0.175    0.344    0.363
##     0.212    0.420    0.392
##                            
##     0.838    0.753    0.720
##     0.412    0.362    0.367
##     0.189    0.163    0.167
##                            
##     0.716    0.778    0.817
##     0.771    0.840    0.885
##     0.701    0.759    0.799
##     0.757    0.825    0.839
##     0.592    0.634    0.606
##     0.556    0.595    0.604
##     0.431    0.455    0.430
##     0.427    0.451    0.460
##     0.789    0.859    0.881
##     0.667    0.721    0.760
##     0.720    0.772    0.721
##     0.672    0.729    0.716
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.532    0.025   21.681    0.000    0.484
##    .sswk    (.47.)    0.374    0.021   17.517    0.000    0.333
##    .sspc              0.268    0.024   11.004    0.000    0.220
##    .ssei    (.49.)    0.143    0.019    7.606    0.000    0.106
##    .ssai    (.50.)    0.029    0.017    1.688    0.091   -0.005
##    .sssi    (.51.)    0.059    0.018    3.322    0.001    0.024
##    .ssmc    (.52.)    0.253    0.019   13.339    0.000    0.216
##    .ssno    (.53.)    0.242    0.023   10.350    0.000    0.196
##    .sscs              0.117    0.024    4.899    0.000    0.070
##    .ssmk    (.55.)    0.375    0.022   17.058    0.000    0.332
##    .ssar              0.510    0.026   19.567    0.000    0.459
##    .ssao    (.57.)    0.335    0.021   16.144    0.000    0.294
##     verbal            0.297    0.058    5.084    0.000    0.183
##     elctrnc           2.462    0.155   15.920    0.000    2.159
##     speed            -0.079    0.042   -1.871    0.061   -0.162
##     g                -0.155    0.042   -3.667    0.000   -0.238
##  ci.upper   Std.lv  Std.all
##     0.581    0.532    0.559
##     0.416    0.374    0.394
##     0.316    0.268    0.273
##     0.180    0.143    0.134
##     0.062    0.029    0.027
##     0.094    0.059    0.060
##     0.291    0.253    0.267
##     0.288    0.242    0.232
##     0.164    0.117    0.119
##     0.418    0.375    0.385
##     0.561    0.510    0.537
##     0.376    0.335    0.329
##     0.412    0.297    0.297
##     2.766    1.119    1.119
##     0.004   -0.079   -0.079
##    -0.072   -0.137   -0.137
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.196    0.010   19.525    0.000    0.176
##    .sswk              0.153    0.014   11.190    0.000    0.127
##    .sspc              0.250    0.011   22.583    0.000    0.228
##    .ssei              0.324    0.016   20.589    0.000    0.293
##    .ssai              0.537    0.025   21.812    0.000    0.489
##    .sssi              0.286    0.018   15.872    0.000    0.250
##    .ssmc              0.262    0.012   21.016    0.000    0.237
##    .ssno              0.124    0.062    2.023    0.043    0.004
##    .sscs              0.486    0.025   19.462    0.000    0.437
##    .ssmk              0.186    0.009   21.234    0.000    0.168
##    .ssar              0.195    0.010   19.344    0.000    0.176
##    .ssao              0.505    0.019   27.108    0.000    0.468
##     electronic        4.842    0.559    8.667    0.000    3.747
##     g                 1.288    0.066   19.519    0.000    1.159
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.216    0.196    0.216
##     0.180    0.153    0.170
##     0.272    0.250    0.259
##     0.355    0.324    0.283
##     0.586    0.537    0.480
##     0.321    0.286    0.297
##     0.286    0.262    0.291
##     0.245    0.124    0.114
##     0.534    0.486    0.500
##     0.203    0.186    0.195
##     0.215    0.195    0.217
##     0.541    0.505    0.487
##     5.937    1.000    1.000
##     1.418    1.000    1.000
weak<-cfa(bf.weak, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1174.987   111.000     0.000     0.966     0.072     0.043 86898.117 
##       bic 
## 87326.258
Mc(weak)
## [1] 0.864648
summary(weak, standardized=T, ci=T) # +.150
## lavaan 0.6-18 ended normally after 78 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        99
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1174.987    1021.114
##   Degrees of freedom                               111         111
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.151
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          482.796     419.570
##     0                                          692.191     601.544
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.327    0.015   21.777    0.000    0.297
##     sswk    (.p2.)    0.416    0.017   24.591    0.000    0.383
##     sspc    (.p3.)    0.188    0.014   13.527    0.000    0.161
##     ssei    (.p4.)    0.226    0.016   13.680    0.000    0.193
##   electronic =~                                                
##     ssai    (.p5.)    0.278    0.015   18.036    0.000    0.248
##     sssi    (.p6.)    0.312    0.017   18.395    0.000    0.279
##     ssmc    (.p7.)    0.158    0.009   16.769    0.000    0.139
##     ssei    (.p8.)    0.191    0.011   17.351    0.000    0.169
##   speed =~                                                     
##     ssno    (.p9.)    0.754    0.043   17.359    0.000    0.669
##     sscs    (.10.)    0.361    0.026   14.028    0.000    0.311
##     ssmk    (.11.)    0.162    0.013   12.357    0.000    0.137
##   g =~                                                         
##     ssgs    (.12.)    0.685    0.015   44.376    0.000    0.655
##     ssar    (.13.)    0.740    0.016   45.599    0.000    0.708
##     sswk    (.14.)    0.668    0.016   40.863    0.000    0.636
##     sspc    (.15.)    0.727    0.015   47.021    0.000    0.697
##     ssno    (.16.)    0.561    0.017   32.597    0.000    0.527
##     sscs    (.17.)    0.525    0.016   33.023    0.000    0.494
##     ssai    (.18.)    0.401    0.015   26.087    0.000    0.370
##     sssi    (.19.)    0.397    0.015   25.984    0.000    0.367
##     ssmk    (.20.)    0.757    0.016   46.612    0.000    0.725
##     ssmc    (.21.)    0.635    0.016   40.139    0.000    0.604
##     ssei              0.511    0.018   28.292    0.000    0.476
##     ssao    (.23.)    0.642    0.015   42.828    0.000    0.613
##  ci.upper   Std.lv  Std.all
##                            
##     0.356    0.327    0.378
##     0.449    0.416    0.479
##     0.216    0.188    0.214
##     0.258    0.226    0.295
##                            
##     0.308    0.278    0.369
##     0.346    0.312    0.415
##     0.176    0.158    0.193
##     0.212    0.191    0.250
##                            
##     0.839    0.754    0.780
##     0.412    0.361    0.391
##     0.188    0.162    0.182
##                            
##     0.716    0.685    0.793
##     0.772    0.740    0.882
##     0.700    0.668    0.769
##     0.757    0.727    0.825
##     0.594    0.561    0.580
##     0.557    0.525    0.569
##     0.431    0.401    0.532
##     0.427    0.397    0.528
##     0.789    0.757    0.849
##     0.666    0.635    0.779
##     0.546    0.511    0.668
##     0.671    0.642    0.708
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     speed             0.000                               0.000
##    .ssgs              0.328    0.021   15.923    0.000    0.288
##    .sswk    (.48.)    0.375    0.021   17.520    0.000    0.333
##    .sspc              0.450    0.022   20.915    0.000    0.408
##    .ssei    (.50.)    0.143    0.019    7.598    0.000    0.106
##    .ssai    (.51.)    0.029    0.017    1.681    0.093   -0.005
##    .sssi    (.52.)    0.059    0.018    3.289    0.001    0.024
##    .ssmc    (.53.)    0.255    0.019   13.438    0.000    0.218
##    .ssno    (.54.)    0.218    0.020   10.734    0.000    0.178
##    .sscs              0.345    0.022   15.554    0.000    0.301
##    .ssmk    (.56.)    0.375    0.022   17.026    0.000    0.331
##    .ssar              0.324    0.021   15.555    0.000    0.283
##    .ssao    (.58.)    0.339    0.020   16.570    0.000    0.299
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.369    0.328    0.380
##     0.416    0.375    0.431
##     0.492    0.450    0.511
##     0.180    0.143    0.187
##     0.062    0.029    0.038
##     0.094    0.059    0.078
##     0.292    0.255    0.312
##     0.258    0.218    0.225
##     0.388    0.345    0.374
##     0.418    0.375    0.420
##     0.365    0.324    0.386
##     0.379    0.339    0.374
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.170    0.009   18.632    0.000    0.152
##    .sswk              0.135    0.012   11.165    0.000    0.111
##    .sspc              0.213    0.011   19.731    0.000    0.192
##    .ssei              0.236    0.011   21.151    0.000    0.214
##    .ssai              0.330    0.015   21.366    0.000    0.300
##    .sssi              0.310    0.015   20.061    0.000    0.280
##    .ssmc              0.237    0.012   19.952    0.000    0.214
##    .ssno              0.053    0.059    0.890    0.374   -0.063
##    .sscs              0.446    0.022   20.667    0.000    0.404
##    .ssmk              0.197    0.009   23.062    0.000    0.180
##    .ssar              0.156    0.008   19.185    0.000    0.140
##    .ssao              0.411    0.017   24.325    0.000    0.378
##     electronic        1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.188    0.170    0.228
##     0.159    0.135    0.179
##     0.234    0.213    0.274
##     0.258    0.236    0.404
##     0.360    0.330    0.581
##     0.340    0.310    0.548
##     0.260    0.237    0.356
##     0.169    0.053    0.056
##     0.488    0.446    0.523
##     0.213    0.197    0.247
##     0.171    0.156    0.221
##     0.444    0.411    0.499
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.327    0.015   21.777    0.000    0.297
##     sswk    (.p2.)    0.416    0.017   24.591    0.000    0.383
##     sspc    (.p3.)    0.188    0.014   13.527    0.000    0.161
##     ssei    (.p4.)    0.226    0.016   13.680    0.000    0.193
##   electronic =~                                                
##     ssai    (.p5.)    0.278    0.015   18.036    0.000    0.248
##     sssi    (.p6.)    0.312    0.017   18.395    0.000    0.279
##     ssmc    (.p7.)    0.158    0.009   16.769    0.000    0.139
##     ssei    (.p8.)    0.191    0.011   17.351    0.000    0.169
##   speed =~                                                     
##     ssno    (.p9.)    0.754    0.043   17.359    0.000    0.669
##     sscs    (.10.)    0.361    0.026   14.028    0.000    0.311
##     ssmk    (.11.)    0.162    0.013   12.357    0.000    0.137
##   g =~                                                         
##     ssgs    (.12.)    0.685    0.015   44.376    0.000    0.655
##     ssar    (.13.)    0.740    0.016   45.599    0.000    0.708
##     sswk    (.14.)    0.668    0.016   40.863    0.000    0.636
##     sspc    (.15.)    0.727    0.015   47.021    0.000    0.697
##     ssno    (.16.)    0.561    0.017   32.597    0.000    0.527
##     sscs    (.17.)    0.525    0.016   33.023    0.000    0.494
##     ssai    (.18.)    0.401    0.015   26.087    0.000    0.370
##     sssi    (.19.)    0.397    0.015   25.984    0.000    0.367
##     ssmk    (.20.)    0.757    0.016   46.612    0.000    0.725
##     ssmc    (.21.)    0.635    0.016   40.139    0.000    0.604
##     ssei              0.680    0.020   33.279    0.000    0.640
##     ssao    (.23.)    0.642    0.015   42.828    0.000    0.613
##  ci.upper   Std.lv  Std.all
##                            
##     0.356    0.327    0.343
##     0.449    0.416    0.438
##     0.216    0.188    0.192
##     0.258    0.226    0.211
##                            
##     0.308    0.612    0.579
##     0.346    0.687    0.700
##     0.176    0.347    0.365
##     0.212    0.420    0.392
##                            
##     0.839    0.754    0.720
##     0.412    0.361    0.367
##     0.188    0.162    0.167
##                            
##     0.716    0.778    0.816
##     0.772    0.840    0.885
##     0.700    0.759    0.799
##     0.757    0.825    0.839
##     0.594    0.636    0.608
##     0.557    0.596    0.605
##     0.431    0.455    0.430
##     0.427    0.451    0.460
##     0.789    0.860    0.882
##     0.666    0.721    0.759
##     0.720    0.771    0.721
##     0.671    0.729    0.716
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     speed             0.000                               0.000
##    .ssgs              0.535    0.025   21.635    0.000    0.486
##    .sswk    (.48.)    0.375    0.021   17.520    0.000    0.333
##    .sspc              0.275    0.024   11.401    0.000    0.227
##    .ssei    (.50.)    0.143    0.019    7.598    0.000    0.106
##    .ssai    (.51.)    0.029    0.017    1.681    0.093   -0.005
##    .sssi    (.52.)    0.059    0.018    3.289    0.001    0.024
##    .ssmc    (.53.)    0.255    0.019   13.438    0.000    0.218
##    .ssno    (.54.)    0.218    0.020   10.734    0.000    0.178
##    .sscs              0.107    0.023    4.595    0.000    0.061
##    .ssmk    (.56.)    0.375    0.022   17.026    0.000    0.331
##    .ssar              0.521    0.025   21.054    0.000    0.472
##    .ssao    (.58.)    0.339    0.020   16.570    0.000    0.299
##     verbal            0.321    0.056    5.699    0.000    0.211
##     elctrnc           2.489    0.156   15.921    0.000    2.182
##     g                -0.170    0.042   -4.100    0.000   -0.252
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.583    0.535    0.561
##     0.416    0.375    0.394
##     0.322    0.275    0.279
##     0.180    0.143    0.133
##     0.062    0.029    0.027
##     0.094    0.059    0.060
##     0.292    0.255    0.268
##     0.258    0.218    0.208
##     0.153    0.107    0.109
##     0.418    0.375    0.384
##     0.569    0.521    0.549
##     0.379    0.339    0.333
##     0.431    0.321    0.321
##     2.795    1.131    1.131
##    -0.089   -0.150   -0.150
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.196    0.010   19.523    0.000    0.176
##    .sswk              0.154    0.014   11.220    0.000    0.127
##    .sspc              0.250    0.011   22.583    0.000    0.228
##    .ssei              0.324    0.016   20.604    0.000    0.293
##    .ssai              0.538    0.025   21.827    0.000    0.489
##    .sssi              0.287    0.018   15.961    0.000    0.252
##    .ssmc              0.261    0.012   20.986    0.000    0.237
##    .ssno              0.122    0.062    1.972    0.049    0.001
##    .sscs              0.486    0.025   19.474    0.000    0.437
##    .ssmk              0.186    0.009   21.233    0.000    0.168
##    .ssar              0.195    0.010   19.346    0.000    0.175
##    .ssao              0.505    0.019   27.128    0.000    0.468
##     electronic        4.841    0.559    8.667    0.000    3.747
##     g                 1.288    0.066   19.520    0.000    1.159
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.216    0.196    0.216
##     0.180    0.154    0.170
##     0.272    0.250    0.259
##     0.355    0.324    0.283
##     0.586    0.538    0.481
##     0.322    0.287    0.298
##     0.286    0.261    0.290
##     0.244    0.122    0.112
##     0.535    0.486    0.500
##     0.203    0.186    0.195
##     0.215    0.195    0.217
##     0.541    0.505    0.487
##     5.936    1.000    1.000
##     1.417    1.000    1.000
standardizedSolution(weak) # get the correct SEs for standardized solution
##           lhs op        rhs group label est.std    se       z pvalue
## 1      verbal =~       ssgs     1  .p1.   0.378 0.017  21.831  0.000
## 2      verbal =~       sswk     1  .p2.   0.479 0.020  24.284  0.000
## 3      verbal =~       sspc     1  .p3.   0.214 0.016  13.366  0.000
## 4      verbal =~       ssei     1  .p4.   0.295 0.022  13.638  0.000
## 5  electronic =~       ssai     1  .p5.   0.369 0.020  18.835  0.000
## 6  electronic =~       sssi     1  .p6.   0.415 0.022  19.308  0.000
## 7  electronic =~       ssmc     1  .p7.   0.193 0.012  16.774  0.000
## 8  electronic =~       ssei     1  .p8.   0.250 0.015  16.738  0.000
## 9       speed =~       ssno     1  .p9.   0.780 0.043  18.156  0.000
## 10      speed =~       sscs     1 .p10.   0.391 0.027  14.611  0.000
## 11      speed =~       ssmk     1 .p11.   0.182 0.015  12.167  0.000
## 12          g =~       ssgs     1 .p12.   0.793 0.009  86.221  0.000
## 13          g =~       ssar     1 .p13.   0.882 0.007 132.627  0.000
## 14          g =~       sswk     1 .p14.   0.769 0.010  76.315  0.000
## 15          g =~       sspc     1 .p15.   0.825 0.009  92.681  0.000
## 16          g =~       ssno     1 .p16.   0.580 0.016  36.780  0.000
## 17          g =~       sscs     1 .p17.   0.569 0.015  38.521  0.000
## 18          g =~       ssai     1 .p18.   0.532 0.017  31.600  0.000
## 19          g =~       sssi     1 .p19.   0.528 0.017  31.931  0.000
## 20          g =~       ssmk     1 .p20.   0.849 0.007 113.887  0.000
## 21          g =~       ssmc     1 .p21.   0.779 0.011  73.454  0.000
## 22          g =~       ssei     1         0.668 0.015  45.471  0.000
## 23          g =~       ssao     1 .p23.   0.708 0.012  59.053  0.000
## 24     verbal ~~     verbal     1         1.000 0.000      NA     NA
## 25      speed ~~      speed     1         1.000 0.000      NA     NA
## 26      speed ~1                1         0.000 0.000      NA     NA
## 27       ssgs ~~       ssgs     1         0.228 0.012  18.729  0.000
## 28       sswk ~~       sswk     1         0.179 0.016  11.117  0.000
## 29       sspc ~~       sspc     1         0.274 0.014  20.124  0.000
## 30       ssei ~~       ssei     1         0.404 0.017  23.681  0.000
## 31       ssai ~~       ssai     1         0.581 0.020  28.901  0.000
## 32       sssi ~~       sssi     1         0.548 0.022  25.446  0.000
## 33       ssmc ~~       ssmc     1         0.356 0.016  22.168  0.000
## 34       ssno ~~       ssno     1         0.056 0.063   0.890  0.374
## 35       sscs ~~       sscs     1         0.523 0.021  24.402  0.000
## 36       ssmk ~~       ssmk     1         0.247 0.012  21.131  0.000
## 37       ssar ~~       ssar     1         0.221 0.012  18.850  0.000
## 38       ssao ~~       ssao     1         0.499 0.017  29.434  0.000
## 39 electronic ~~ electronic     1         1.000 0.000      NA     NA
## 40          g ~~          g     1         1.000 0.000      NA     NA
## 41     verbal ~~ electronic     1         0.000 0.000      NA     NA
## 42     verbal ~~      speed     1         0.000 0.000      NA     NA
## 43     verbal ~~          g     1         0.000 0.000      NA     NA
## 44 electronic ~~      speed     1         0.000 0.000      NA     NA
## 45 electronic ~~          g     1         0.000 0.000      NA     NA
## 46      speed ~~          g     1         0.000 0.000      NA     NA
## 47       ssgs ~1                1         0.380 0.025  15.042  0.000
## 48       sswk ~1                1 .p48.   0.431 0.026  16.307  0.000
## 49       sspc ~1                1         0.511 0.028  18.453  0.000
## 50       ssei ~1                1 .p50.   0.187 0.025   7.497  0.000
## 51       ssai ~1                1 .p51.   0.038 0.023   1.676  0.094
## 52       sssi ~1                1 .p52.   0.078 0.024   3.291  0.001
## 53       ssmc ~1                1 .p53.   0.312 0.026  12.059  0.000
## 54       ssno ~1                1 .p54.   0.225 0.022  10.387  0.000
## 55       sscs ~1                1         0.374 0.025  14.726  0.000
## 56       ssmk ~1                1 .p56.   0.420 0.027  15.601  0.000
## 57       ssar ~1                1         0.386 0.028  13.933  0.000
## 58       ssao ~1                1 .p58.   0.374 0.024  15.403  0.000
## 59     verbal ~1                1         0.000 0.000      NA     NA
## 60 electronic ~1                1         0.000 0.000      NA     NA
## 61          g ~1                1         0.000 0.000      NA     NA
## 62     verbal =~       ssgs     2  .p1.   0.343 0.016  20.945  0.000
## 63     verbal =~       sswk     2  .p2.   0.438 0.019  23.386  0.000
## 64     verbal =~       sspc     2  .p3.   0.192 0.014  13.301  0.000
## 65     verbal =~       ssei     2  .p4.   0.211 0.016  13.237  0.000
## 66 electronic =~       ssai     2  .p5.   0.579 0.018  32.230  0.000
## 67 electronic =~       sssi     2  .p6.   0.700 0.015  46.132  0.000
## 68 electronic =~       ssmc     2  .p7.   0.365 0.014  26.020  0.000
## 69 electronic =~       ssei     2  .p8.   0.392 0.016  25.036  0.000
## 70      speed =~       ssno     2  .p9.   0.720 0.041  17.448  0.000
## 71      speed =~       sscs     2 .p10.   0.367 0.026  14.346  0.000
## 72      speed =~       ssmk     2 .p11.   0.167 0.014  12.254  0.000
## 73          g =~       ssgs     2 .p12.   0.816 0.008  96.213  0.000
## 74          g =~       ssar     2 .p13.   0.885 0.006 141.196  0.000
## 75          g =~       sswk     2 .p14.   0.799 0.009  90.760  0.000
## 76          g =~       sspc     2 .p15.   0.839 0.008 109.099  0.000
## 77          g =~       ssno     2 .p16.   0.608 0.015  39.698  0.000
## 78          g =~       sscs     2 .p17.   0.605 0.014  42.736  0.000
## 79          g =~       ssai     2 .p18.   0.430 0.016  26.959  0.000
## 80          g =~       sssi     2 .p19.   0.460 0.016  28.878  0.000
## 81          g =~       ssmk     2 .p20.   0.882 0.006 150.819  0.000
## 82          g =~       ssmc     2 .p21.   0.759 0.010  77.455  0.000
## 83          g =~       ssei     2         0.721 0.012  60.852  0.000
## 84          g =~       ssao     2 .p23.   0.716 0.011  65.057  0.000
## 85     verbal ~~     verbal     2         1.000 0.000      NA     NA
## 86      speed ~~      speed     2         1.000 0.000      NA     NA
## 87      speed ~1                2         0.000 0.000      NA     NA
## 88       ssgs ~~       ssgs     2         0.216 0.012  18.256  0.000
## 89       sswk ~~       sswk     2         0.170 0.015  11.469  0.000
## 90       sspc ~~       sspc     2         0.259 0.012  22.279  0.000
##    ci.lower ci.upper
## 1     0.344    0.412
## 2     0.440    0.518
## 3     0.182    0.245
## 4     0.253    0.338
## 5     0.331    0.408
## 6     0.373    0.457
## 7     0.171    0.216
## 8     0.220    0.279
## 9     0.696    0.864
## 10    0.339    0.444
## 11    0.153    0.211
## 12    0.775    0.811
## 13    0.869    0.895
## 14    0.749    0.789
## 15    0.807    0.842
## 16    0.549    0.610
## 17    0.540    0.598
## 18    0.499    0.565
## 19    0.496    0.561
## 20    0.834    0.863
## 21    0.758    0.800
## 22    0.640    0.697
## 23    0.684    0.731
## 24    1.000    1.000
## 25    1.000    1.000
## 26    0.000    0.000
## 27    0.204    0.252
## 28    0.147    0.210
## 29    0.247    0.301
## 30    0.370    0.437
## 31    0.542    0.620
## 32    0.506    0.590
## 33    0.325    0.388
## 34   -0.068    0.180
## 35    0.481    0.565
## 36    0.224    0.270
## 37    0.198    0.244
## 38    0.466    0.532
## 39    1.000    1.000
## 40    1.000    1.000
## 41    0.000    0.000
## 42    0.000    0.000
## 43    0.000    0.000
## 44    0.000    0.000
## 45    0.000    0.000
## 46    0.000    0.000
## 47    0.330    0.429
## 48    0.379    0.483
## 49    0.456    0.565
## 50    0.138    0.236
## 51   -0.006    0.083
## 52    0.032    0.125
## 53    0.262    0.363
## 54    0.183    0.268
## 55    0.324    0.423
## 56    0.367    0.472
## 57    0.332    0.441
## 58    0.326    0.422
## 59    0.000    0.000
## 60    0.000    0.000
## 61    0.000    0.000
## 62    0.311    0.375
## 63    0.402    0.475
## 64    0.163    0.220
## 65    0.180    0.242
## 66    0.543    0.614
## 67    0.671    0.730
## 68    0.338    0.393
## 69    0.362    0.423
## 70    0.639    0.801
## 71    0.316    0.417
## 72    0.140    0.193
## 73    0.800    0.833
## 74    0.873    0.897
## 75    0.781    0.816
## 76    0.824    0.854
## 77    0.578    0.638
## 78    0.577    0.633
## 79    0.399    0.461
## 80    0.429    0.491
## 81    0.870    0.893
## 82    0.740    0.778
## 83    0.697    0.744
## 84    0.694    0.738
## 85    1.000    1.000
## 86    1.000    1.000
## 87    0.000    0.000
## 88    0.193    0.239
## 89    0.141    0.199
## 90    0.236    0.281
##  [ reached 'max' / getOption("max.print") -- omitted 32 rows ]
tests<-lavTestLRT(configural, metric2, scalar2, latent2, weak)
Td=tests[2:5,"Chisq diff"]
Td
## [1] 42.642165 34.339526  5.627269  3.577741
dfd=tests[2:5,"Df diff"]
dfd
## [1] 18  4  2  1
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.02736250 0.06440609 0.03149397 0.03754673
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.01679632 0.03806134
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.04561580 0.08504943
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]        NA 0.0636532
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1]         NA 0.08268906
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.999     0.994     0.000     0.000     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.900     0.675     0.111     0.002
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.940     0.908     0.200     0.076     0.004     0.000
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.941     0.918     0.403     0.250     0.063     0.009
tests<-lavTestLRT(configural, metric2, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1]  42.64217  34.33953 285.86824
dfd=tests[2:4,"Df diff"]
dfd
## [1] 18  4  4
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.02736250 0.06440609 0.19631143
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.04561580 0.08504943
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.1773467 0.2159103
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.900     0.675     0.111     0.002
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric2, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1]  42.64217  34.33953 128.21316
dfd=tests[2:4,"Df diff"]
dfd
## [1] 18  4 12
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.02736250 0.06440609 0.07277623
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.01679632 0.03806134
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.04561580 0.08504943
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.06168172 0.08441105
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.999     0.994     0.000     0.000     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.900     0.675     0.111     0.002
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.970     0.158     0.000
tests<-lavTestLRT(configural, metric2, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]   42.64217 1809.64665
dfd=tests[2:3,"Df diff"]
dfd
## [1] 18  8
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.0273625 0.3509476
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.01679632 0.03806134
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.3373854 0.3646079
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.999     0.994     0.000     0.000     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric)
Td=tests[2,"Chisq diff"]
Td
## [1] 110.4191
dfd=tests[2,"Df diff"]
dfd
## [1] 19
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05129725
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04225580 0.06076186
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.610     0.066     0.000     0.000
bf.age<-'
verbal =~ ssgs + sswk + sspc + ssei
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
verbal~~1*verbal
speed~~1*speed
speed~0*1
g ~ agec
'

bf.ageq<-'
verbal =~ ssgs + sswk + sspc + ssei
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
verbal~~1*verbal
speed~~1*speed
speed~0*1
g ~ c(a,a)*agec
'

bf.age2<-'
verbal =~ ssgs + sswk + sspc + ssei
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
verbal~~1*verbal
speed~~1*speed
speed~0*1
g ~ agec+agec2
'

bf.age2q<-'
verbal =~ ssgs + sswk + sspc + ssei
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
verbal~~1*verbal
speed~~1*speed
speed~0*1
g ~ c(a,a)*agec+c(b,b)*agec2
'

sem.age<-sem(bf.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##  1944.887   133.000     0.000     0.945     0.086     0.051     0.570 
##       aic       bic 
## 86426.222 86866.773
Mc(sem.age)
## [1] 0.7806246
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 76 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       101
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1944.887    1683.942
##   Degrees of freedom                               133         133
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.155
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          808.432     699.965
##     0                                         1136.455     983.977
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.323    0.015   21.339    0.000    0.293
##     sswk    (.p2.)    0.409    0.017   23.887    0.000    0.375
##     sspc    (.p3.)    0.187    0.014   13.235    0.000    0.159
##     ssei    (.p4.)    0.220    0.017   13.316    0.000    0.188
##   electronic =~                                                
##     ssai    (.p5.)    0.273    0.015   17.782    0.000    0.243
##     sssi    (.p6.)    0.308    0.017   18.091    0.000    0.275
##     ssmc    (.p7.)    0.155    0.009   16.522    0.000    0.136
##     ssei    (.p8.)    0.188    0.011   17.172    0.000    0.167
##   speed =~                                                     
##     ssno    (.p9.)    0.771    0.047   16.243    0.000    0.678
##     sscs    (.10.)    0.349    0.027   13.116    0.000    0.297
##     ssmk    (.11.)    0.153    0.013   11.517    0.000    0.127
##   g =~                                                         
##     ssgs    (.12.)    0.640    0.015   42.757    0.000    0.610
##     ssar    (.13.)    0.685    0.016   42.441    0.000    0.653
##     sswk    (.14.)    0.626    0.016   40.305    0.000    0.595
##     sspc    (.15.)    0.676    0.015   44.143    0.000    0.646
##     ssno    (.16.)    0.524    0.016   32.034    0.000    0.492
##     sscs    (.17.)    0.492    0.015   32.646    0.000    0.463
##     ssai    (.18.)    0.378    0.014   26.573    0.000    0.350
##     sssi    (.19.)    0.373    0.014   26.027    0.000    0.345
##     ssmk    (.20.)    0.709    0.016   45.400    0.000    0.678
##     ssmc    (.21.)    0.590    0.016   38.030    0.000    0.560
##     ssei              0.480    0.017   28.379    0.000    0.447
##     ssao    (.23.)    0.596    0.015   39.696    0.000    0.566
##  ci.upper   Std.lv  Std.all
##                            
##     0.353    0.323    0.374
##     0.442    0.409    0.471
##     0.214    0.187    0.212
##     0.253    0.220    0.288
##                            
##     0.304    0.273    0.363
##     0.342    0.308    0.410
##     0.173    0.155    0.190
##     0.210    0.188    0.246
##                            
##     0.864    0.771    0.797
##     0.401    0.349    0.378
##     0.179    0.153    0.172
##                            
##     0.669    0.687    0.795
##     0.716    0.736    0.877
##     0.656    0.672    0.774
##     0.706    0.726    0.824
##     0.556    0.563    0.582
##     0.522    0.529    0.573
##     0.406    0.406    0.539
##     0.401    0.401    0.532
##     0.739    0.761    0.853
##     0.621    0.634    0.777
##     0.513    0.515    0.673
##     0.625    0.640    0.705
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.272    0.020   13.694    0.000    0.233
##  ci.upper   Std.lv  Std.all
##                            
##     0.311    0.253    0.366
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     speed             0.000                               0.000
##    .ssgs              0.332    0.020   16.995    0.000    0.294
##    .sswk    (.47.)    0.379    0.020   19.029    0.000    0.340
##    .sspc              0.454    0.021   22.003    0.000    0.414
##    .ssei    (.49.)    0.146    0.018    8.305    0.000    0.112
##    .ssai    (.50.)    0.032    0.016    1.957    0.050   -0.000
##    .sssi    (.51.)    0.060    0.017    3.472    0.001    0.026
##    .ssmc    (.52.)    0.259    0.018   14.223    0.000    0.223
##    .ssno    (.53.)    0.221    0.019   11.436    0.000    0.183
##    .sscs              0.348    0.021   16.436    0.000    0.307
##    .ssmk    (.55.)    0.379    0.020   18.622    0.000    0.339
##    .ssar              0.328    0.020   16.284    0.000    0.289
##    .ssao    (.57.)    0.343    0.020   17.374    0.000    0.304
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.371    0.332    0.385
##     0.418    0.379    0.436
##     0.495    0.454    0.516
##     0.181    0.146    0.191
##     0.064    0.032    0.043
##     0.094    0.060    0.080
##     0.295    0.259    0.317
##     0.259    0.221    0.229
##     0.390    0.348    0.377
##     0.419    0.379    0.425
##     0.368    0.328    0.391
##     0.382    0.343    0.378
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.170    0.009   18.557    0.000    0.152
##    .sswk              0.136    0.012   11.287    0.000    0.112
##    .sspc              0.215    0.011   19.811    0.000    0.193
##    .ssei              0.236    0.011   21.234    0.000    0.214
##    .ssai              0.329    0.015   21.370    0.000    0.299
##    .sssi              0.311    0.015   20.063    0.000    0.280
##    .ssmc              0.240    0.012   20.026    0.000    0.216
##    .ssno              0.024    0.067    0.356    0.722   -0.108
##    .sscs              0.451    0.022   20.754    0.000    0.408
##    .ssmk              0.193    0.008   22.765    0.000    0.176
##    .ssar              0.163    0.008   19.621    0.000    0.146
##    .ssao              0.415    0.017   24.315    0.000    0.381
##     electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.188    0.170    0.228
##     0.159    0.136    0.180
##     0.236    0.215    0.276
##     0.258    0.236    0.403
##     0.359    0.329    0.578
##     0.341    0.311    0.548
##     0.263    0.240    0.360
##     0.156    0.024    0.026
##     0.493    0.451    0.529
##     0.209    0.193    0.242
##     0.179    0.163    0.231
##     0.448    0.415    0.503
##     1.000    1.000    1.000
##     1.000    0.866    0.866
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.323    0.015   21.339    0.000    0.293
##     sswk    (.p2.)    0.409    0.017   23.887    0.000    0.375
##     sspc    (.p3.)    0.187    0.014   13.235    0.000    0.159
##     ssei    (.p4.)    0.220    0.017   13.316    0.000    0.188
##   electronic =~                                                
##     ssai    (.p5.)    0.273    0.015   17.782    0.000    0.243
##     sssi    (.p6.)    0.308    0.017   18.091    0.000    0.275
##     ssmc    (.p7.)    0.155    0.009   16.522    0.000    0.136
##     ssei    (.p8.)    0.188    0.011   17.172    0.000    0.167
##   speed =~                                                     
##     ssno    (.p9.)    0.771    0.047   16.243    0.000    0.678
##     sscs    (.10.)    0.349    0.027   13.116    0.000    0.297
##     ssmk    (.11.)    0.153    0.013   11.517    0.000    0.127
##   g =~                                                         
##     ssgs    (.12.)    0.640    0.015   42.757    0.000    0.610
##     ssar    (.13.)    0.685    0.016   42.441    0.000    0.653
##     sswk    (.14.)    0.626    0.016   40.305    0.000    0.595
##     sspc    (.15.)    0.676    0.015   44.143    0.000    0.646
##     ssno    (.16.)    0.524    0.016   32.034    0.000    0.492
##     sscs    (.17.)    0.492    0.015   32.646    0.000    0.463
##     ssai    (.18.)    0.378    0.014   26.573    0.000    0.350
##     sssi    (.19.)    0.373    0.014   26.027    0.000    0.345
##     ssmk    (.20.)    0.709    0.016   45.400    0.000    0.678
##     ssmc    (.21.)    0.590    0.016   38.030    0.000    0.560
##     ssei              0.636    0.019   32.748    0.000    0.598
##     ssao    (.23.)    0.596    0.015   39.696    0.000    0.566
##  ci.upper   Std.lv  Std.all
##                            
##     0.353    0.323    0.339
##     0.442    0.409    0.430
##     0.214    0.187    0.190
##     0.253    0.220    0.206
##                            
##     0.304    0.605    0.572
##     0.342    0.682    0.697
##     0.173    0.343    0.361
##     0.210    0.417    0.389
##                            
##     0.864    0.771    0.737
##     0.401    0.349    0.354
##     0.179    0.153    0.157
##                            
##     0.669    0.780    0.818
##     0.716    0.835    0.880
##     0.656    0.762    0.802
##     0.706    0.824    0.838
##     0.556    0.639    0.610
##     0.522    0.600    0.609
##     0.406    0.461    0.436
##     0.401    0.455    0.464
##     0.739    0.864    0.885
##     0.621    0.719    0.759
##     0.674    0.776    0.724
##     0.625    0.726    0.714
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.306    0.021   14.363    0.000    0.264
##  ci.upper   Std.lv  Std.all
##                            
##     0.348    0.251    0.362
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     speed             0.000                               0.000
##    .ssgs              0.538    0.024   22.739    0.000    0.492
##    .sswk    (.47.)    0.379    0.020   19.029    0.000    0.340
##    .sspc              0.278    0.023   12.208    0.000    0.233
##    .ssei    (.49.)    0.146    0.018    8.305    0.000    0.112
##    .ssai    (.50.)    0.032    0.016    1.957    0.050   -0.000
##    .sssi    (.51.)    0.060    0.017    3.472    0.001    0.026
##    .ssmc    (.52.)    0.259    0.018   14.223    0.000    0.223
##    .ssno    (.53.)    0.221    0.019   11.436    0.000    0.183
##    .sscs              0.111    0.023    4.877    0.000    0.066
##    .ssmk    (.55.)    0.379    0.020   18.622    0.000    0.339
##    .ssar              0.524    0.023   22.443    0.000    0.479
##    .ssao    (.57.)    0.343    0.020   17.374    0.000    0.304
##     verbal            0.328    0.058    5.698    0.000    0.215
##     elctrnc           2.527    0.161   15.734    0.000    2.212
##    .g                -0.166    0.042   -3.958    0.000   -0.248
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.584    0.538    0.565
##     0.418    0.379    0.398
##     0.322    0.278    0.283
##     0.181    0.146    0.136
##     0.064    0.032    0.030
##     0.094    0.060    0.061
##     0.295    0.259    0.273
##     0.259    0.221    0.211
##     0.155    0.111    0.112
##     0.419    0.379    0.389
##     0.570    0.524    0.553
##     0.382    0.343    0.337
##     0.441    0.328    0.328
##     2.841    1.142    1.142
##    -0.084   -0.136   -0.136
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.196    0.010   19.416    0.000    0.176
##    .sswk              0.155    0.014   11.325    0.000    0.128
##    .sspc              0.253    0.011   22.614    0.000    0.231
##    .ssei              0.324    0.016   20.643    0.000    0.293
##    .ssai              0.538    0.025   21.875    0.000    0.490
##    .sssi              0.286    0.018   15.911    0.000    0.251
##    .ssmc              0.265    0.013   21.136    0.000    0.240
##    .ssno              0.094    0.070    1.334    0.182   -0.044
##    .sscs              0.491    0.025   19.557    0.000    0.442
##    .ssmk              0.182    0.009   21.001    0.000    0.165
##    .ssar              0.202    0.010   19.783    0.000    0.182
##    .ssao              0.508    0.019   27.099    0.000    0.471
##     electronic        4.892    0.573    8.537    0.000    3.769
##    .g                 1.291    0.070   18.405    0.000    1.153
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.215    0.196    0.216
##     0.182    0.155    0.171
##     0.274    0.253    0.261
##     0.354    0.324    0.282
##     0.587    0.538    0.482
##     0.322    0.286    0.299
##     0.289    0.265    0.294
##     0.231    0.094    0.085
##     0.540    0.491    0.505
##     0.199    0.182    0.192
##     0.222    0.202    0.225
##     0.545    0.508    0.491
##     6.015    1.000    1.000
##     1.428    0.869    0.869
sem.ageq<-sem(bf.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##  1946.709   134.000     0.000     0.945     0.086     0.053     0.570 
##       aic       bic 
## 86426.044 86860.390
Mc(sem.ageq)
## [1] 0.7805369
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 75 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       101
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1946.709    1685.771
##   Degrees of freedom                               134         134
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.155
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          809.092     700.641
##     0                                         1137.617     985.130
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.323    0.015   21.339    0.000    0.293
##     sswk    (.p2.)    0.409    0.017   23.878    0.000    0.375
##     sspc    (.p3.)    0.187    0.014   13.222    0.000    0.159
##     ssei    (.p4.)    0.220    0.017   13.306    0.000    0.188
##   electronic =~                                                
##     ssai    (.p5.)    0.273    0.015   17.778    0.000    0.243
##     sssi    (.p6.)    0.308    0.017   18.082    0.000    0.275
##     ssmc    (.p7.)    0.155    0.009   16.517    0.000    0.136
##     ssei    (.p8.)    0.188    0.011   17.172    0.000    0.167
##   speed =~                                                     
##     ssno    (.p9.)    0.771    0.048   16.231    0.000    0.678
##     sscs    (.10.)    0.349    0.027   13.106    0.000    0.297
##     ssmk    (.11.)    0.153    0.013   11.508    0.000    0.127
##   g =~                                                         
##     ssgs    (.12.)    0.640    0.015   42.691    0.000    0.610
##     ssar    (.13.)    0.685    0.016   42.409    0.000    0.653
##     sswk    (.14.)    0.626    0.016   40.267    0.000    0.595
##     sspc    (.15.)    0.676    0.015   44.102    0.000    0.646
##     ssno    (.16.)    0.524    0.016   32.020    0.000    0.492
##     sscs    (.17.)    0.493    0.015   32.627    0.000    0.463
##     ssai    (.18.)    0.378    0.014   26.564    0.000    0.350
##     sssi    (.19.)    0.373    0.014   26.011    0.000    0.345
##     ssmk    (.20.)    0.709    0.016   45.351    0.000    0.678
##     ssmc    (.21.)    0.590    0.016   37.990    0.000    0.560
##     ssei              0.480    0.017   28.383    0.000    0.447
##     ssao    (.23.)    0.596    0.015   39.650    0.000    0.566
##  ci.upper   Std.lv  Std.all
##                            
##     0.353    0.323    0.372
##     0.442    0.409    0.468
##     0.214    0.187    0.211
##     0.253    0.220    0.287
##                            
##     0.303    0.273    0.362
##     0.342    0.308    0.409
##     0.173    0.155    0.189
##     0.210    0.188    0.245
##                            
##     0.865    0.771    0.795
##     0.401    0.349    0.377
##     0.179    0.153    0.171
##                            
##     0.669    0.693    0.798
##     0.717    0.742    0.878
##     0.656    0.677    0.776
##     0.706    0.732    0.826
##     0.556    0.568    0.585
##     0.522    0.533    0.576
##     0.406    0.409    0.542
##     0.401    0.404    0.535
##     0.739    0.767    0.856
##     0.621    0.639    0.780
##     0.513    0.520    0.676
##     0.625    0.645    0.708
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.287    0.015   18.758    0.000    0.257
##  ci.upper   Std.lv  Std.all
##                            
##     0.317    0.265    0.383
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     speed             0.000                               0.000
##    .ssgs              0.333    0.020   17.017    0.000    0.294
##    .sswk    (.47.)    0.379    0.020   19.073    0.000    0.340
##    .sspc              0.455    0.021   21.998    0.000    0.414
##    .ssei    (.49.)    0.146    0.018    8.329    0.000    0.112
##    .ssai    (.50.)    0.032    0.016    1.966    0.049    0.000
##    .sssi    (.51.)    0.060    0.017    3.484    0.000    0.026
##    .ssmc    (.52.)    0.259    0.018   14.229    0.000    0.223
##    .ssno    (.53.)    0.222    0.019   11.458    0.000    0.184
##    .sscs              0.348    0.021   16.467    0.000    0.307
##    .ssmk    (.55.)    0.380    0.020   18.672    0.000    0.340
##    .ssar              0.328    0.020   16.275    0.000    0.289
##    .ssao    (.57.)    0.343    0.020   17.383    0.000    0.304
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.371    0.333    0.383
##     0.418    0.379    0.434
##     0.495    0.455    0.513
##     0.181    0.146    0.191
##     0.064    0.032    0.043
##     0.094    0.060    0.080
##     0.295    0.259    0.316
##     0.259    0.222    0.228
##     0.390    0.348    0.376
##     0.419    0.380    0.423
##     0.368    0.328    0.389
##     0.382    0.343    0.376
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.170    0.009   18.553    0.000    0.152
##    .sswk              0.136    0.012   11.288    0.000    0.112
##    .sspc              0.215    0.011   19.807    0.000    0.194
##    .ssei              0.236    0.011   21.237    0.000    0.214
##    .ssai              0.329    0.015   21.369    0.000    0.299
##    .sssi              0.311    0.015   20.067    0.000    0.280
##    .ssmc              0.240    0.012   20.034    0.000    0.216
##    .ssno              0.024    0.067    0.354    0.723   -0.108
##    .sscs              0.451    0.022   20.757    0.000    0.408
##    .ssmk              0.192    0.008   22.776    0.000    0.176
##    .ssar              0.163    0.008   19.672    0.000    0.147
##    .ssao              0.415    0.017   24.305    0.000    0.381
##     electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.188    0.170    0.225
##     0.159    0.136    0.178
##     0.236    0.215    0.273
##     0.258    0.236    0.400
##     0.359    0.329    0.576
##     0.341    0.311    0.546
##     0.263    0.240    0.357
##     0.156    0.024    0.025
##     0.493    0.451    0.526
##     0.209    0.192    0.239
##     0.179    0.163    0.228
##     0.448    0.415    0.499
##     1.000    1.000    1.000
##     1.000    0.853    0.853
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.323    0.015   21.339    0.000    0.293
##     sswk    (.p2.)    0.409    0.017   23.878    0.000    0.375
##     sspc    (.p3.)    0.187    0.014   13.222    0.000    0.159
##     ssei    (.p4.)    0.220    0.017   13.306    0.000    0.188
##   electronic =~                                                
##     ssai    (.p5.)    0.273    0.015   17.778    0.000    0.243
##     sssi    (.p6.)    0.308    0.017   18.082    0.000    0.275
##     ssmc    (.p7.)    0.155    0.009   16.517    0.000    0.136
##     ssei    (.p8.)    0.188    0.011   17.172    0.000    0.167
##   speed =~                                                     
##     ssno    (.p9.)    0.771    0.048   16.231    0.000    0.678
##     sscs    (.10.)    0.349    0.027   13.106    0.000    0.297
##     ssmk    (.11.)    0.153    0.013   11.508    0.000    0.127
##   g =~                                                         
##     ssgs    (.12.)    0.640    0.015   42.691    0.000    0.610
##     ssar    (.13.)    0.685    0.016   42.409    0.000    0.653
##     sswk    (.14.)    0.626    0.016   40.267    0.000    0.595
##     sspc    (.15.)    0.676    0.015   44.102    0.000    0.646
##     ssno    (.16.)    0.524    0.016   32.020    0.000    0.492
##     sscs    (.17.)    0.493    0.015   32.627    0.000    0.463
##     ssai    (.18.)    0.378    0.014   26.564    0.000    0.350
##     sssi    (.19.)    0.373    0.014   26.011    0.000    0.345
##     ssmk    (.20.)    0.709    0.016   45.351    0.000    0.678
##     ssmc    (.21.)    0.590    0.016   37.990    0.000    0.560
##     ssei              0.636    0.019   32.709    0.000    0.598
##     ssao    (.23.)    0.596    0.015   39.650    0.000    0.566
##  ci.upper   Std.lv  Std.all
##                            
##     0.353    0.323    0.341
##     0.442    0.409    0.432
##     0.214    0.187    0.191
##     0.253    0.220    0.206
##                            
##     0.303    0.605    0.574
##     0.342    0.683    0.698
##     0.173    0.343    0.363
##     0.210    0.417    0.391
##                            
##     0.865    0.771    0.739
##     0.401    0.349    0.355
##     0.179    0.153    0.158
##                            
##     0.669    0.774    0.816
##     0.717    0.828    0.879
##     0.656    0.757    0.800
##     0.706    0.817    0.836
##     0.556    0.634    0.607
##     0.522    0.596    0.606
##     0.406    0.457    0.433
##     0.401    0.451    0.461
##     0.739    0.857    0.884
##     0.621    0.714    0.756
##     0.675    0.769    0.721
##     0.625    0.720    0.711
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.287    0.015   18.758    0.000    0.257
##  ci.upper   Std.lv  Std.all
##                            
##     0.317    0.237    0.342
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     speed             0.000                               0.000
##    .ssgs              0.538    0.024   22.763    0.000    0.492
##    .sswk    (.47.)    0.379    0.020   19.073    0.000    0.340
##    .sspc              0.278    0.023   12.236    0.000    0.233
##    .ssei    (.49.)    0.146    0.018    8.329    0.000    0.112
##    .ssai    (.50.)    0.032    0.016    1.966    0.049    0.000
##    .sssi    (.51.)    0.060    0.017    3.484    0.000    0.026
##    .ssmc    (.52.)    0.259    0.018   14.229    0.000    0.223
##    .ssno    (.53.)    0.222    0.019   11.458    0.000    0.184
##    .sscs              0.111    0.023    4.888    0.000    0.066
##    .ssmk    (.55.)    0.380    0.020   18.672    0.000    0.340
##    .ssar              0.525    0.023   22.482    0.000    0.479
##    .ssao    (.57.)    0.343    0.020   17.383    0.000    0.304
##     verbal            0.329    0.058    5.700    0.000    0.216
##     elctrnc           2.528    0.161   15.735    0.000    2.213
##    .g                -0.168    0.042   -4.017    0.000   -0.250
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.584    0.538    0.568
##     0.418    0.379    0.400
##     0.322    0.278    0.284
##     0.181    0.146    0.137
##     0.064    0.032    0.031
##     0.094    0.060    0.062
##     0.295    0.259    0.274
##     0.259    0.222    0.212
##     0.155    0.111    0.113
##     0.419    0.380    0.391
##     0.570    0.525    0.557
##     0.382    0.343    0.339
##     0.441    0.329    0.329
##     2.843    1.142    1.142
##    -0.086   -0.139   -0.139
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.196    0.010   19.409    0.000    0.176
##    .sswk              0.155    0.014   11.330    0.000    0.128
##    .sspc              0.252    0.011   22.593    0.000    0.231
##    .ssei              0.324    0.016   20.641    0.000    0.293
##    .ssai              0.538    0.025   21.872    0.000    0.490
##    .sssi              0.286    0.018   15.913    0.000    0.251
##    .ssmc              0.264    0.013   21.139    0.000    0.240
##    .ssno              0.093    0.070    1.329    0.184   -0.044
##    .sscs              0.491    0.025   19.551    0.000    0.442
##    .ssmk              0.183    0.009   21.033    0.000    0.166
##    .ssar              0.202    0.010   19.775    0.000    0.182
##    .ssao              0.508    0.019   27.101    0.000    0.471
##     electronic        4.904    0.574    8.538    0.000    3.778
##    .g                 1.291    0.070   18.405    0.000    1.154
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.215    0.196    0.218
##     0.182    0.155    0.173
##     0.274    0.252    0.264
##     0.354    0.324    0.284
##     0.587    0.538    0.483
##     0.322    0.286    0.300
##     0.289    0.264    0.297
##     0.231    0.093    0.086
##     0.540    0.491    0.507
##     0.200    0.183    0.194
##     0.222    0.202    0.227
##     0.544    0.508    0.495
##     6.030    1.000    1.000
##     1.428    0.883    0.883
sem.age2<-sem(bf.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##  2038.654   155.000     0.000     0.943     0.082     0.049     0.597 
##       aic       bic 
## 86409.153 86862.114
Mc(sem.age2)
## [1] 0.7730044
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 73 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       103
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2038.654    1773.559
##   Degrees of freedom                               155         155
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.149
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          864.052     751.695
##     0                                         1174.602    1021.864
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.323    0.015   21.461    0.000    0.294
##     sswk    (.p2.)    0.408    0.017   23.812    0.000    0.375
##     sspc    (.p3.)    0.188    0.014   13.270    0.000    0.160
##     ssei    (.p4.)    0.221    0.017   13.379    0.000    0.189
##   electronic =~                                                
##     ssai    (.p5.)    0.273    0.015   17.736    0.000    0.242
##     sssi    (.p6.)    0.307    0.017   18.071    0.000    0.274
##     ssmc    (.p7.)    0.155    0.009   16.521    0.000    0.136
##     ssei    (.p8.)    0.191    0.011   17.185    0.000    0.169
##   speed =~                                                     
##     ssno    (.p9.)    0.772    0.048   16.151    0.000    0.678
##     sscs    (.10.)    0.348    0.027   13.052    0.000    0.296
##     ssmk    (.11.)    0.152    0.013   11.445    0.000    0.126
##   g =~                                                         
##     ssgs    (.12.)    0.636    0.015   42.535    0.000    0.607
##     ssar    (.13.)    0.681    0.016   42.237    0.000    0.650
##     sswk    (.14.)    0.623    0.016   40.102    0.000    0.592
##     sspc    (.15.)    0.672    0.015   43.983    0.000    0.642
##     ssno    (.16.)    0.522    0.016   32.090    0.000    0.490
##     sscs    (.17.)    0.490    0.015   32.576    0.000    0.461
##     ssai    (.18.)    0.376    0.014   26.434    0.000    0.348
##     sssi    (.19.)    0.371    0.014   26.034    0.000    0.343
##     ssmk    (.20.)    0.706    0.016   45.340    0.000    0.675
##     ssmc    (.21.)    0.587    0.015   37.962    0.000    0.557
##     ssei              0.478    0.017   28.423    0.000    0.445
##     ssao    (.23.)    0.593    0.015   39.516    0.000    0.563
##  ci.upper   Std.lv  Std.all
##                            
##     0.353    0.323    0.374
##     0.442    0.408    0.470
##     0.215    0.188    0.213
##     0.254    0.221    0.289
##                            
##     0.303    0.273    0.361
##     0.340    0.307    0.408
##     0.173    0.155    0.190
##     0.212    0.191    0.249
##                            
##     0.865    0.772    0.798
##     0.401    0.348    0.377
##     0.178    0.152    0.171
##                            
##     0.666    0.687    0.795
##     0.713    0.735    0.877
##     0.653    0.672    0.774
##     0.702    0.726    0.823
##     0.554    0.563    0.582
##     0.520    0.529    0.573
##     0.404    0.406    0.538
##     0.399    0.401    0.532
##     0.736    0.761    0.854
##     0.618    0.634    0.777
##     0.511    0.516    0.674
##     0.622    0.640    0.705
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.269    0.020   13.563    0.000    0.230
##     agec2            -0.048    0.014   -3.470    0.001   -0.076
##  ci.upper   Std.lv  Std.all
##                            
##     0.307    0.249    0.360
##    -0.021   -0.045   -0.085
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     speed             0.000                               0.000
##    .ssgs              0.396    0.026   15.044    0.000    0.344
##    .sswk    (.50.)    0.440    0.026   16.717    0.000    0.388
##    .sspc              0.522    0.028   18.681    0.000    0.467
##    .ssei    (.52.)    0.196    0.022    8.738    0.000    0.152
##    .ssai    (.53.)    0.069    0.020    3.522    0.000    0.031
##    .sssi    (.54.)    0.097    0.020    4.812    0.000    0.057
##    .ssmc    (.55.)    0.317    0.024   13.208    0.000    0.270
##    .ssno    (.56.)    0.274    0.024   11.204    0.000    0.226
##    .sscs              0.397    0.025   15.751    0.000    0.348
##    .ssmk    (.58.)    0.450    0.029   15.761    0.000    0.394
##    .ssar              0.396    0.027   14.641    0.000    0.343
##    .ssao    (.60.)    0.402    0.026   15.402    0.000    0.351
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.448    0.396    0.458
##     0.492    0.440    0.507
##     0.576    0.522    0.592
##     0.240    0.196    0.256
##     0.107    0.069    0.091
##     0.136    0.097    0.128
##     0.364    0.317    0.388
##     0.322    0.274    0.283
##     0.447    0.397    0.430
##     0.506    0.450    0.505
##     0.449    0.396    0.472
##     0.453    0.402    0.443
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.170    0.009   18.551    0.000    0.152
##    .sswk              0.136    0.012   11.375    0.000    0.113
##    .sspc              0.215    0.011   19.852    0.000    0.194
##    .ssei              0.235    0.011   21.142    0.000    0.214
##    .ssai              0.330    0.015   21.370    0.000    0.299
##    .sssi              0.311    0.015   20.113    0.000    0.281
##    .ssmc              0.240    0.012   20.013    0.000    0.216
##    .ssno              0.023    0.068    0.340    0.734   -0.110
##    .sscs              0.451    0.022   20.738    0.000    0.408
##    .ssmk              0.192    0.008   22.706    0.000    0.175
##    .ssar              0.163    0.008   19.651    0.000    0.147
##    .ssao              0.414    0.017   24.312    0.000    0.381
##     electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.188    0.170    0.228
##     0.160    0.136    0.181
##     0.236    0.215    0.277
##     0.257    0.235    0.401
##     0.360    0.330    0.580
##     0.342    0.311    0.550
##     0.263    0.240    0.360
##     0.156    0.023    0.025
##     0.493    0.451    0.529
##     0.208    0.192    0.241
##     0.179    0.163    0.232
##     0.448    0.414    0.503
##     1.000    1.000    1.000
##     1.000    0.859    0.859
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.323    0.015   21.461    0.000    0.294
##     sswk    (.p2.)    0.408    0.017   23.812    0.000    0.375
##     sspc    (.p3.)    0.188    0.014   13.270    0.000    0.160
##     ssei    (.p4.)    0.221    0.017   13.379    0.000    0.189
##   electronic =~                                                
##     ssai    (.p5.)    0.273    0.015   17.736    0.000    0.242
##     sssi    (.p6.)    0.307    0.017   18.071    0.000    0.274
##     ssmc    (.p7.)    0.155    0.009   16.521    0.000    0.136
##     ssei    (.p8.)    0.191    0.011   17.185    0.000    0.169
##   speed =~                                                     
##     ssno    (.p9.)    0.772    0.048   16.151    0.000    0.678
##     sscs    (.10.)    0.348    0.027   13.052    0.000    0.296
##     ssmk    (.11.)    0.152    0.013   11.445    0.000    0.126
##   g =~                                                         
##     ssgs    (.12.)    0.636    0.015   42.535    0.000    0.607
##     ssar    (.13.)    0.681    0.016   42.237    0.000    0.650
##     sswk    (.14.)    0.623    0.016   40.102    0.000    0.592
##     sspc    (.15.)    0.672    0.015   43.983    0.000    0.642
##     ssno    (.16.)    0.522    0.016   32.090    0.000    0.490
##     sscs    (.17.)    0.490    0.015   32.576    0.000    0.461
##     ssai    (.18.)    0.376    0.014   26.434    0.000    0.348
##     sssi    (.19.)    0.371    0.014   26.034    0.000    0.343
##     ssmk    (.20.)    0.706    0.016   45.340    0.000    0.675
##     ssmc    (.21.)    0.587    0.015   37.962    0.000    0.557
##     ssei              0.631    0.019   32.632    0.000    0.593
##     ssao    (.23.)    0.593    0.015   39.516    0.000    0.563
##  ci.upper   Std.lv  Std.all
##                            
##     0.353    0.323    0.339
##     0.442    0.408    0.429
##     0.215    0.188    0.191
##     0.254    0.221    0.207
##                            
##     0.303    0.603    0.571
##     0.340    0.680    0.695
##     0.173    0.342    0.361
##     0.212    0.422    0.394
##                            
##     0.865    0.772    0.737
##     0.401    0.348    0.353
##     0.178    0.152    0.156
##                            
##     0.666    0.779    0.818
##     0.713    0.835    0.880
##     0.653    0.762    0.802
##     0.702    0.824    0.838
##     0.554    0.639    0.610
##     0.520    0.600    0.609
##     0.404    0.461    0.436
##     0.399    0.455    0.465
##     0.736    0.864    0.886
##     0.618    0.719    0.759
##     0.669    0.773    0.722
##     0.622    0.726    0.714
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.303    0.022   13.987    0.000    0.260
##     agec2            -0.040    0.015   -2.564    0.010   -0.070
##  ci.upper   Std.lv  Std.all
##                            
##     0.345    0.247    0.356
##    -0.009   -0.032   -0.061
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     speed             0.000                               0.000
##    .ssgs              0.600    0.030   20.209    0.000    0.542
##    .sswk    (.50.)    0.440    0.026   16.717    0.000    0.388
##    .sspc              0.344    0.030   11.603    0.000    0.286
##    .ssei    (.52.)    0.196    0.022    8.738    0.000    0.152
##    .ssai    (.53.)    0.069    0.020    3.522    0.000    0.031
##    .sssi    (.54.)    0.097    0.020    4.812    0.000    0.057
##    .ssmc    (.55.)    0.317    0.024   13.208    0.000    0.270
##    .ssno    (.56.)    0.274    0.024   11.204    0.000    0.226
##    .sscs              0.160    0.027    5.978    0.000    0.107
##    .ssmk    (.58.)    0.450    0.029   15.761    0.000    0.394
##    .ssar              0.593    0.030   19.521    0.000    0.533
##    .ssao    (.60.)    0.402    0.026   15.402    0.000    0.351
##     verbal            0.333    0.058    5.744    0.000    0.220
##     elctrnc           2.543    0.162   15.731    0.000    2.226
##    .g                -0.185    0.059   -3.126    0.002   -0.302
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.658    0.600    0.630
##     0.492    0.440    0.463
##     0.402    0.344    0.350
##     0.240    0.196    0.183
##     0.107    0.069    0.065
##     0.136    0.097    0.099
##     0.364    0.317    0.334
##     0.322    0.274    0.261
##     0.212    0.160    0.162
##     0.506    0.450    0.461
##     0.652    0.593    0.625
##     0.453    0.402    0.395
##     0.447    0.333    0.333
##     2.860    1.149    1.149
##    -0.069   -0.151   -0.151
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.196    0.010   19.418    0.000    0.176
##    .sswk              0.155    0.014   11.384    0.000    0.129
##    .sspc              0.253    0.011   22.611    0.000    0.231
##    .ssei              0.322    0.016   20.483    0.000    0.291
##    .ssai              0.539    0.025   21.894    0.000    0.491
##    .sssi              0.289    0.018   16.022    0.000    0.253
##    .ssmc              0.264    0.013   21.140    0.000    0.240
##    .ssno              0.093    0.071    1.311    0.190   -0.046
##    .sscs              0.491    0.025   19.541    0.000    0.442
##    .ssmk              0.182    0.009   20.946    0.000    0.165
##    .ssar              0.202    0.010   19.776    0.000    0.182
##    .ssao              0.508    0.019   27.093    0.000    0.471
##     electronic        4.900    0.574    8.533    0.000    3.775
##    .g                 1.298    0.071   18.344    0.000    1.159
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.215    0.196    0.215
##     0.182    0.155    0.172
##     0.275    0.253    0.262
##     0.353    0.322    0.281
##     0.587    0.539    0.483
##     0.324    0.289    0.302
##     0.289    0.264    0.294
##     0.231    0.093    0.084
##     0.540    0.491    0.505
##     0.199    0.182    0.191
##     0.222    0.202    0.225
##     0.545    0.508    0.491
##     6.026    1.000    1.000
##     1.436    0.865    0.865
sem.age2q<-sem(bf.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##  2040.520   157.000     0.000     0.943     0.081     0.050     0.596 
##       aic       bic 
## 86407.019 86847.570
Mc(sem.age2q)
## [1] 0.7730186
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 79 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       103
##   Number of equality constraints                    32
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2040.520    1775.825
##   Degrees of freedom                               157         157
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.149
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          864.842     752.655
##     0                                         1175.678    1023.170
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.323    0.015   21.459    0.000    0.294
##     sswk    (.p2.)    0.408    0.017   23.817    0.000    0.374
##     sspc    (.p3.)    0.187    0.014   13.264    0.000    0.160
##     ssei    (.p4.)    0.221    0.017   13.369    0.000    0.189
##   electronic =~                                                
##     ssai    (.p5.)    0.273    0.015   17.740    0.000    0.242
##     sssi    (.p6.)    0.307    0.017   18.068    0.000    0.274
##     ssmc    (.p7.)    0.155    0.009   16.516    0.000    0.136
##     ssei    (.p8.)    0.190    0.011   17.194    0.000    0.169
##   speed =~                                                     
##     ssno    (.p9.)    0.772    0.048   16.142    0.000    0.678
##     sscs    (.10.)    0.348    0.027   13.045    0.000    0.296
##     ssmk    (.11.)    0.152    0.013   11.438    0.000    0.126
##   g =~                                                         
##     ssgs    (.12.)    0.637    0.015   42.479    0.000    0.607
##     ssar    (.13.)    0.682    0.016   42.223    0.000    0.650
##     sswk    (.14.)    0.623    0.016   40.079    0.000    0.592
##     sspc    (.15.)    0.673    0.015   43.957    0.000    0.643
##     ssno    (.16.)    0.522    0.016   32.084    0.000    0.490
##     sscs    (.17.)    0.490    0.015   32.557    0.000    0.461
##     ssai    (.18.)    0.376    0.014   26.434    0.000    0.348
##     sssi    (.19.)    0.371    0.014   26.022    0.000    0.343
##     ssmk    (.20.)    0.706    0.016   45.304    0.000    0.675
##     ssmc    (.21.)    0.587    0.015   37.924    0.000    0.557
##     ssei              0.478    0.017   28.422    0.000    0.445
##     ssao    (.23.)    0.593    0.015   39.489    0.000    0.563
##  ci.upper   Std.lv  Std.all
##                            
##     0.353    0.323    0.373
##     0.442    0.408    0.468
##     0.215    0.187    0.212
##     0.254    0.221    0.288
##                            
##     0.303    0.273    0.361
##     0.340    0.307    0.407
##     0.173    0.155    0.189
##     0.212    0.190    0.248
##                            
##     0.865    0.772    0.796
##     0.401    0.348    0.377
##     0.178    0.152    0.170
##                            
##     0.666    0.692    0.797
##     0.713    0.740    0.878
##     0.653    0.677    0.776
##     0.703    0.731    0.825
##     0.554    0.567    0.585
##     0.520    0.533    0.576
##     0.404    0.409    0.541
##     0.399    0.403    0.535
##     0.736    0.767    0.856
##     0.618    0.638    0.779
##     0.511    0.520    0.676
##     0.622    0.644    0.707
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.284    0.015   18.493    0.000    0.254
##     agec2      (b)   -0.045    0.010   -4.291    0.000   -0.065
##  ci.upper   Std.lv  Std.all
##                            
##     0.314    0.261    0.377
##    -0.024   -0.041   -0.078
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     speed             0.000                               0.000
##    .ssgs              0.391    0.024   16.601    0.000    0.345
##    .sswk    (.50.)    0.436    0.024   18.362    0.000    0.389
##    .sspc              0.517    0.025   20.668    0.000    0.468
##    .ssei    (.52.)    0.192    0.020    9.417    0.000    0.152
##    .ssai    (.53.)    0.066    0.018    3.630    0.000    0.030
##    .sssi    (.54.)    0.094    0.019    4.963    0.000    0.057
##    .ssmc    (.55.)    0.312    0.022   14.458    0.000    0.270
##    .ssno    (.56.)    0.270    0.023   11.980    0.000    0.226
##    .sscs              0.394    0.024   16.684    0.000    0.347
##    .ssmk    (.58.)    0.445    0.025   17.634    0.000    0.395
##    .ssar              0.391    0.024   16.118    0.000    0.344
##    .ssao    (.60.)    0.398    0.024   16.877    0.000    0.352
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.437    0.391    0.451
##     0.482    0.436    0.499
##     0.566    0.517    0.584
##     0.232    0.192    0.250
##     0.102    0.066    0.088
##     0.131    0.094    0.125
##     0.355    0.312    0.381
##     0.314    0.270    0.278
##     0.440    0.394    0.426
##     0.494    0.445    0.497
##     0.439    0.391    0.464
##     0.444    0.398    0.437
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.170    0.009   18.550    0.000    0.152
##    .sswk              0.136    0.012   11.371    0.000    0.113
##    .sspc              0.215    0.011   19.845    0.000    0.194
##    .ssei              0.235    0.011   21.152    0.000    0.214
##    .ssai              0.329    0.015   21.376    0.000    0.299
##    .sssi              0.311    0.015   20.116    0.000    0.281
##    .ssmc              0.240    0.012   20.021    0.000    0.216
##    .ssno              0.023    0.068    0.340    0.734   -0.110
##    .sscs              0.451    0.022   20.740    0.000    0.408
##    .ssmk              0.192    0.008   22.728    0.000    0.175
##    .ssar              0.163    0.008   19.704    0.000    0.147
##    .ssao              0.415    0.017   24.303    0.000    0.381
##     electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.188    0.170    0.226
##     0.160    0.136    0.179
##     0.236    0.215    0.274
##     0.257    0.235    0.399
##     0.360    0.329    0.577
##     0.342    0.311    0.548
##     0.263    0.240    0.357
##     0.156    0.023    0.025
##     0.493    0.451    0.527
##     0.208    0.192    0.239
##     0.180    0.163    0.229
##     0.448    0.415    0.500
##     1.000    1.000    1.000
##     1.000    0.847    0.847
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.323    0.015   21.459    0.000    0.294
##     sswk    (.p2.)    0.408    0.017   23.817    0.000    0.374
##     sspc    (.p3.)    0.187    0.014   13.264    0.000    0.160
##     ssei    (.p4.)    0.221    0.017   13.369    0.000    0.189
##   electronic =~                                                
##     ssai    (.p5.)    0.273    0.015   17.740    0.000    0.242
##     sssi    (.p6.)    0.307    0.017   18.068    0.000    0.274
##     ssmc    (.p7.)    0.155    0.009   16.516    0.000    0.136
##     ssei    (.p8.)    0.190    0.011   17.194    0.000    0.169
##   speed =~                                                     
##     ssno    (.p9.)    0.772    0.048   16.142    0.000    0.678
##     sscs    (.10.)    0.348    0.027   13.045    0.000    0.296
##     ssmk    (.11.)    0.152    0.013   11.438    0.000    0.126
##   g =~                                                         
##     ssgs    (.12.)    0.637    0.015   42.479    0.000    0.607
##     ssar    (.13.)    0.682    0.016   42.223    0.000    0.650
##     sswk    (.14.)    0.623    0.016   40.079    0.000    0.592
##     sspc    (.15.)    0.673    0.015   43.957    0.000    0.643
##     ssno    (.16.)    0.522    0.016   32.084    0.000    0.490
##     sscs    (.17.)    0.490    0.015   32.557    0.000    0.461
##     ssai    (.18.)    0.376    0.014   26.434    0.000    0.348
##     sssi    (.19.)    0.371    0.014   26.022    0.000    0.343
##     ssmk    (.20.)    0.706    0.016   45.304    0.000    0.675
##     ssmc    (.21.)    0.587    0.015   37.924    0.000    0.557
##     ssei              0.631    0.019   32.557    0.000    0.593
##     ssao    (.23.)    0.593    0.015   39.489    0.000    0.563
##  ci.upper   Std.lv  Std.all
##                            
##     0.353    0.323    0.341
##     0.442    0.408    0.431
##     0.215    0.187    0.192
##     0.254    0.221    0.207
##                            
##     0.303    0.604    0.573
##     0.340    0.680    0.696
##     0.173    0.343    0.363
##     0.212    0.422    0.395
##                            
##     0.865    0.772    0.739
##     0.401    0.348    0.354
##     0.178    0.152    0.157
##                            
##     0.666    0.774    0.816
##     0.713    0.829    0.879
##     0.653    0.757    0.800
##     0.703    0.818    0.836
##     0.554    0.635    0.608
##     0.520    0.596    0.606
##     0.404    0.457    0.434
##     0.399    0.451    0.462
##     0.736    0.858    0.884
##     0.618    0.714    0.756
##     0.669    0.768    0.719
##     0.622    0.721    0.711
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.284    0.015   18.493    0.000    0.254
##     agec2      (b)   -0.045    0.010   -4.291    0.000   -0.065
##  ci.upper   Std.lv  Std.all
##                            
##     0.314    0.233    0.336
##    -0.024   -0.037   -0.069
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     speed             0.000                               0.000
##    .ssgs              0.595    0.027   21.860    0.000    0.542
##    .sswk    (.50.)    0.436    0.024   18.362    0.000    0.389
##    .sspc              0.339    0.027   12.632    0.000    0.287
##    .ssei    (.52.)    0.192    0.020    9.417    0.000    0.152
##    .ssai    (.53.)    0.066    0.018    3.630    0.000    0.030
##    .sssi    (.54.)    0.094    0.019    4.963    0.000    0.057
##    .ssmc    (.55.)    0.312    0.022   14.458    0.000    0.270
##    .ssno    (.56.)    0.270    0.023   11.980    0.000    0.226
##    .sscs              0.156    0.025    6.203    0.000    0.107
##    .ssmk    (.58.)    0.445    0.025   17.634    0.000    0.395
##    .ssar              0.588    0.028   21.374    0.000    0.534
##    .ssao    (.60.)    0.398    0.024   16.877    0.000    0.352
##     verbal            0.333    0.058    5.746    0.000    0.219
##     elctrnc           2.543    0.162   15.740    0.000    2.226
##    .g                -0.169    0.042   -4.032    0.000   -0.251
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.649    0.595    0.628
##     0.482    0.436    0.460
##     0.392    0.339    0.347
##     0.232    0.192    0.180
##     0.102    0.066    0.063
##     0.131    0.094    0.096
##     0.355    0.312    0.331
##     0.314    0.270    0.258
##     0.205    0.156    0.159
##     0.494    0.445    0.458
##     0.642    0.588    0.624
##     0.444    0.398    0.393
##     0.447    0.333    0.333
##     2.860    1.148    1.148
##    -0.087   -0.139   -0.139
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.196    0.010   19.413    0.000    0.176
##    .sswk              0.155    0.014   11.386    0.000    0.129
##    .sspc              0.253    0.011   22.592    0.000    0.231
##    .ssei              0.322    0.016   20.487    0.000    0.292
##    .ssai              0.539    0.025   21.893    0.000    0.491
##    .sssi              0.289    0.018   16.026    0.000    0.253
##    .ssmc              0.264    0.013   21.139    0.000    0.240
##    .ssno              0.093    0.071    1.309    0.191   -0.046
##    .sscs              0.491    0.025   19.535    0.000    0.442
##    .ssmk              0.182    0.009   20.979    0.000    0.165
##    .ssar              0.202    0.010   19.766    0.000    0.182
##    .ssao              0.508    0.019   27.095    0.000    0.471
##     electronic        4.911    0.576    8.534    0.000    3.783
##    .g                 1.298    0.071   18.345    0.000    1.159
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.215    0.196    0.217
##     0.182    0.155    0.173
##     0.275    0.253    0.264
##     0.353    0.322    0.283
##     0.587    0.539    0.484
##     0.324    0.289    0.302
##     0.289    0.264    0.296
##     0.231    0.093    0.085
##     0.540    0.491    0.507
##     0.199    0.182    0.193
##     0.222    0.202    0.227
##     0.544    0.508    0.494
##     6.039    1.000    1.000
##     1.437    0.878    0.878
# BIFACTOR WITH VERBAL REMOVED, WORSE FIT BUT KEEP THE NATURE OF G

bf.model<-'
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
'

bf.lv<-'
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
'

baseline<-cfa(bf.model, data=dgroup, meanstructure=T, sampling.weights="sweight", std.lv=T, orthogonal=T)
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1480.110    43.000     0.000     0.955     0.096     0.044 89269.147 
##       bic 
## 89560.779
Mc(baseline)
## [1] 0.8216557
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 38 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        47
## 
##   Number of observations                          3659
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1480.110    1313.795
##   Degrees of freedom                                43          43
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.127
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar              0.284    0.020   14.095    0.000    0.245
##     ssmk              0.260    0.019   13.663    0.000    0.223
##     ssmc              0.214    0.021    9.971    0.000    0.172
##     ssao              0.369    0.030   12.420    0.000    0.311
##   electronic =~                                                
##     ssai              0.567    0.021   26.730    0.000    0.525
##     sssi              0.620    0.017   36.569    0.000    0.587
##     ssmc              0.294    0.013   22.533    0.000    0.269
##     ssei              0.371    0.016   23.793    0.000    0.341
##   speed =~                                                     
##     ssno              0.712    0.028   25.788    0.000    0.658
##     sscs              0.458    0.022   20.960    0.000    0.415
##     ssmk              0.230    0.013   18.301    0.000    0.205
##   g =~                                                         
##     ssgs              0.805    0.013   61.740    0.000    0.779
##     ssar              0.731    0.015   50.383    0.000    0.703
##     sswk              0.799    0.013   61.520    0.000    0.773
##     sspc              0.797    0.012   66.103    0.000    0.773
##     ssno              0.566    0.017   32.782    0.000    0.532
##     sscs              0.526    0.016   33.646    0.000    0.495
##     ssai              0.477    0.017   28.059    0.000    0.443
##     sssi              0.468    0.016   28.413    0.000    0.436
##     ssmk              0.752    0.013   56.963    0.000    0.726
##     ssmc              0.663    0.015   45.363    0.000    0.635
##     ssei              0.720    0.016   45.655    0.000    0.689
##     ssao              0.607    0.014   43.834    0.000    0.580
##  ci.upper   Std.lv  Std.all
##                            
##     0.324    0.284    0.317
##     0.297    0.260    0.279
##     0.255    0.214    0.236
##     0.427    0.369    0.382
##                            
##     0.608    0.567    0.577
##     0.653    0.620    0.653
##     0.320    0.294    0.326
##     0.402    0.371    0.381
##                            
##     0.766    0.712    0.704
##     0.501    0.458    0.471
##     0.254    0.230    0.247
##                            
##     0.830    0.805    0.878
##     0.759    0.731    0.815
##     0.824    0.799    0.878
##     0.820    0.797    0.845
##     0.600    0.566    0.560
##     0.557    0.526    0.541
##     0.510    0.477    0.486
##     0.500    0.468    0.493
##     0.777    0.752    0.807
##     0.692    0.663    0.734
##     0.751    0.720    0.739
##     0.634    0.607    0.628
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.362    0.015   23.338    0.000    0.331
##    .ssmk              0.310    0.016   19.252    0.000    0.279
##    .ssmc              0.402    0.015   25.959    0.000    0.372
##    .ssao              0.283    0.017   17.147    0.000    0.251
##    .ssai              0.340    0.017   20.076    0.000    0.307
##    .sssi              0.421    0.016   25.642    0.000    0.389
##    .ssei              0.365    0.017   21.667    0.000    0.332
##    .ssno              0.169    0.017    9.716    0.000    0.135
##    .sscs              0.179    0.017   10.711    0.000    0.147
##    .ssgs              0.429    0.016   27.179    0.000    0.398
##    .sswk              0.386    0.016   24.681    0.000    0.355
##    .sspc              0.330    0.016   20.454    0.000    0.298
##  ci.upper   Std.lv  Std.all
##     0.392    0.362    0.403
##     0.342    0.310    0.333
##     0.432    0.402    0.445
##     0.316    0.283    0.293
##     0.373    0.340    0.346
##     0.453    0.421    0.443
##     0.398    0.365    0.374
##     0.203    0.169    0.167
##     0.212    0.179    0.185
##     0.460    0.429    0.468
##     0.417    0.386    0.424
##     0.362    0.330    0.350
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.190    0.010   19.212    0.000    0.171
##    .ssmk              0.182    0.008   21.862    0.000    0.166
##    .ssmc              0.244    0.010   24.173    0.000    0.224
##    .ssao              0.429    0.020   21.851    0.000    0.391
##    .ssai              0.415    0.016   25.237    0.000    0.383
##    .sssi              0.298    0.015   20.245    0.000    0.270
##    .ssei              0.294    0.010   28.295    0.000    0.274
##    .ssno              0.195    0.031    6.260    0.000    0.134
##    .sscs              0.458    0.018   24.878    0.000    0.422
##    .ssgs              0.193    0.007   28.157    0.000    0.180
##    .sswk              0.190    0.007   27.683    0.000    0.177
##    .sspc              0.253    0.009   27.444    0.000    0.235
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.209    0.190    0.236
##     0.198    0.182    0.210
##     0.264    0.244    0.299
##     0.468    0.429    0.460
##     0.447    0.415    0.431
##     0.327    0.298    0.331
##     0.314    0.294    0.309
##     0.256    0.195    0.191
##     0.494    0.458    0.485
##     0.206    0.193    0.230
##     0.204    0.190    0.230
##     0.272    0.253    0.285
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
configural<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1192.621    86.000     0.000     0.965     0.084     0.034 86965.752 
##       bic 
## 87549.017
Mc(configural)
## [1] 0.8596238
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 45 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        94
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1192.621    1075.657
##   Degrees of freedom                                86          86
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.109
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          437.374     394.479
##     0                                          755.247     681.178
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar              0.297    0.024   12.225    0.000    0.249
##     ssmk              0.265    0.022   11.831    0.000    0.221
##     ssmc              0.214    0.025    8.519    0.000    0.165
##     ssao              0.383    0.035   10.828    0.000    0.314
##   electronic =~                                                
##     ssai              0.243    0.034    7.173    0.000    0.177
##     sssi              0.328    0.037    8.752    0.000    0.255
##     ssmc              0.161    0.024    6.598    0.000    0.113
##     ssei              0.145    0.026    5.592    0.000    0.094
##   speed =~                                                     
##     ssno              0.707    0.047   14.983    0.000    0.615
##     sscs              0.388    0.032   12.039    0.000    0.325
##     ssmk              0.195    0.019   10.393    0.000    0.159
##   g =~                                                         
##     ssgs              0.731    0.017   43.384    0.000    0.698
##     ssar              0.670    0.019   34.381    0.000    0.631
##     sswk              0.777    0.018   43.592    0.000    0.742
##     sspc              0.753    0.017   43.166    0.000    0.719
##     ssno              0.524    0.023   23.097    0.000    0.479
##     sscs              0.485    0.021   23.182    0.000    0.444
##     ssai              0.398    0.018   21.691    0.000    0.362
##     sssi              0.407    0.019   21.052    0.000    0.369
##     ssmk              0.726    0.019   38.586    0.000    0.689
##     ssmc              0.596    0.019   31.289    0.000    0.559
##     ssei              0.564    0.017   32.502    0.000    0.530
##     ssao              0.555    0.019   28.532    0.000    0.517
##  ci.upper   Std.lv  Std.all
##                            
##     0.344    0.297    0.355
##     0.308    0.265    0.292
##     0.263    0.214    0.264
##     0.453    0.383    0.423
##                            
##     0.310    0.243    0.330
##     0.402    0.328    0.437
##     0.208    0.161    0.198
##     0.195    0.145    0.189
##                            
##     0.799    0.707    0.747
##     0.451    0.388    0.428
##     0.232    0.195    0.216
##                            
##     0.764    0.731    0.868
##     0.708    0.670    0.802
##     0.812    0.777    0.881
##     0.787    0.753    0.856
##     0.568    0.524    0.553
##     0.526    0.485    0.535
##     0.434    0.398    0.539
##     0.445    0.407    0.542
##     0.763    0.726    0.801
##     0.633    0.596    0.735
##     0.598    0.564    0.736
##     0.593    0.555    0.612
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.327    0.021   15.677    0.000    0.286
##    .ssmk              0.382    0.022   16.962    0.000    0.337
##    .ssmc              0.235    0.020   11.729    0.000    0.196
##    .ssao              0.356    0.022   15.988    0.000    0.312
##    .ssai              0.055    0.018    3.026    0.002    0.019
##    .sssi              0.059    0.019    3.200    0.001    0.023
##    .ssei              0.139    0.019    7.329    0.000    0.102
##    .ssno              0.244    0.023   10.435    0.000    0.198
##    .sscs              0.358    0.023   15.788    0.000    0.313
##    .ssgs              0.331    0.021   15.977    0.000    0.291
##    .sswk              0.379    0.022   17.461    0.000    0.337
##    .sspc              0.453    0.022   20.981    0.000    0.411
##  ci.upper   Std.lv  Std.all
##     0.368    0.327    0.392
##     0.426    0.382    0.421
##     0.274    0.235    0.289
##     0.399    0.356    0.392
##     0.091    0.055    0.075
##     0.096    0.059    0.079
##     0.176    0.139    0.182
##     0.290    0.244    0.258
##     0.402    0.358    0.395
##     0.372    0.331    0.393
##     0.422    0.379    0.430
##     0.495    0.453    0.515
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.160    0.012   13.202    0.000    0.136
##    .ssmk              0.186    0.010   17.848    0.000    0.165
##    .ssmc              0.231    0.013   17.860    0.000    0.206
##    .ssao              0.367    0.025   14.894    0.000    0.319
##    .ssai              0.327    0.019   17.688    0.000    0.291
##    .sssi              0.291    0.023   12.524    0.000    0.245
##    .ssei              0.247    0.012   21.172    0.000    0.225
##    .ssno              0.121    0.055    2.197    0.028    0.013
##    .sscs              0.435    0.023   18.661    0.000    0.390
##    .ssgs              0.175    0.009   20.210    0.000    0.158
##    .sswk              0.174    0.008   20.631    0.000    0.157
##    .sspc              0.207    0.012   17.485    0.000    0.184
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.184    0.160    0.230
##     0.206    0.186    0.226
##     0.257    0.231    0.352
##     0.415    0.367    0.447
##     0.364    0.327    0.601
##     0.336    0.291    0.515
##     0.270    0.247    0.422
##     0.230    0.121    0.136
##     0.481    0.435    0.530
##     0.192    0.175    0.247
##     0.190    0.174    0.223
##     0.230    0.207    0.267
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar              0.296    0.034    8.787    0.000    0.230
##     ssmk              0.268    0.032    8.365    0.000    0.205
##     ssmc              0.197    0.042    4.699    0.000    0.115
##     ssao              0.325    0.056    5.831    0.000    0.216
##   electronic =~                                                
##     ssai              0.646    0.030   21.464    0.000    0.587
##     sssi              0.640    0.023   27.471    0.000    0.594
##     ssmc              0.289    0.018   15.735    0.000    0.253
##     ssei              0.377    0.022   17.169    0.000    0.334
##   speed =~                                                     
##     ssno              0.769    0.041   18.581    0.000    0.688
##     sscs              0.449    0.030   15.056    0.000    0.391
##     ssmk              0.229    0.018   12.879    0.000    0.194
##   g =~                                                         
##     ssgs              0.869    0.019   46.111    0.000    0.832
##     ssar              0.780    0.021   37.091    0.000    0.739
##     sswk              0.819    0.019   43.795    0.000    0.782
##     sspc              0.849    0.016   54.333    0.000    0.819
##     ssno              0.603    0.025   24.063    0.000    0.554
##     sscs              0.573    0.022   26.095    0.000    0.530
##     ssai              0.549    0.026   21.311    0.000    0.498
##     sssi              0.524    0.023   22.368    0.000    0.478
##     ssmk              0.777    0.018   42.949    0.000    0.741
##     ssmc              0.727    0.021   34.673    0.000    0.686
##     ssei              0.858    0.023   36.842    0.000    0.813
##     ssao              0.663    0.019   34.092    0.000    0.625
##  ci.upper   Std.lv  Std.all
##                            
##     0.362    0.296    0.310
##     0.330    0.268    0.282
##     0.279    0.197    0.206
##     0.435    0.325    0.320
##                            
##     0.705    0.646    0.586
##     0.685    0.640    0.646
##     0.325    0.289    0.303
##     0.421    0.377    0.344
##                            
##     0.850    0.769    0.722
##     0.508    0.449    0.449
##     0.264    0.229    0.241
##                            
##     0.906    0.869    0.892
##     0.822    0.780    0.819
##     0.856    0.819    0.874
##     0.880    0.849    0.863
##     0.652    0.603    0.566
##     0.616    0.573    0.572
##     0.599    0.549    0.498
##     0.570    0.524    0.530
##     0.812    0.777    0.818
##     0.768    0.727    0.761
##     0.904    0.858    0.782
##     0.701    0.663    0.652
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.395    0.023   17.329    0.000    0.350
##    .ssmk              0.242    0.023   10.519    0.000    0.197
##    .ssmc              0.563    0.023   24.735    0.000    0.518
##    .ssao              0.214    0.024    8.814    0.000    0.166
##    .ssai              0.614    0.027   23.150    0.000    0.562
##    .sssi              0.769    0.024   32.369    0.000    0.723
##    .ssei              0.582    0.026   22.070    0.000    0.531
##    .ssno              0.096    0.026    3.771    0.000    0.046
##    .sscs              0.007    0.024    0.306    0.759   -0.040
##    .ssgs              0.523    0.023   22.328    0.000    0.477
##    .sswk              0.392    0.022   17.468    0.000    0.348
##    .sspc              0.211    0.024    8.959    0.000    0.165
##  ci.upper   Std.lv  Std.all
##     0.440    0.395    0.415
##     0.287    0.242    0.255
##     0.608    0.563    0.590
##     0.262    0.214    0.210
##     0.666    0.614    0.557
##     0.816    0.769    0.777
##     0.634    0.582    0.531
##     0.146    0.096    0.090
##     0.054    0.007    0.007
##     0.569    0.523    0.537
##     0.436    0.392    0.419
##     0.257    0.211    0.215
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.211    0.018   11.774    0.000    0.176
##    .ssmk              0.175    0.015   12.069    0.000    0.147
##    .ssmc              0.261    0.016   15.896    0.000    0.229
##    .ssao              0.488    0.031   15.629    0.000    0.426
##    .ssai              0.495    0.028   17.644    0.000    0.440
##    .sssi              0.296    0.021   13.919    0.000    0.254
##    .ssei              0.325    0.016   20.409    0.000    0.294
##    .ssno              0.180    0.053    3.409    0.001    0.076
##    .sscs              0.472    0.027   17.444    0.000    0.419
##    .ssgs              0.193    0.009   20.969    0.000    0.175
##    .sswk              0.206    0.010   20.118    0.000    0.186
##    .sspc              0.247    0.012   20.495    0.000    0.224
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.246    0.211    0.233
##     0.203    0.175    0.194
##     0.293    0.261    0.286
##     0.549    0.488    0.472
##     0.550    0.495    0.408
##     0.338    0.296    0.302
##     0.357    0.325    0.270
##     0.283    0.180    0.158
##     0.525    0.472    0.471
##     0.211    0.193    0.204
##     0.227    0.206    0.235
##     0.271    0.247    0.255
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1327.495   105.000     0.000     0.961     0.080     0.049 87062.626 
##       bic 
## 87527.996
Mc(metric)
## [1] 0.846116
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 68 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    23
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1327.495    1164.419
##   Degrees of freedom                               105         105
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.140
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          504.345     442.388
##     0                                          823.151     722.031
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.299    0.022   13.691    0.000    0.256
##     ssmk    (.p2.)    0.269    0.020   13.211    0.000    0.229
##     ssmc    (.p3.)    0.213    0.023    9.084    0.000    0.167
##     ssao    (.p4.)    0.370    0.034   10.995    0.000    0.304
##   electronic =~                                                
##     ssai    (.p5.)    0.278    0.018   15.535    0.000    0.243
##     sssi    (.p6.)    0.278    0.019   14.863    0.000    0.241
##     ssmc    (.p7.)    0.129    0.010   12.698    0.000    0.109
##     ssei    (.p8.)    0.168    0.012   14.556    0.000    0.145
##   speed =~                                                     
##     ssno    (.p9.)    0.699    0.035   20.178    0.000    0.631
##     sscs    (.10.)    0.393    0.023   16.998    0.000    0.348
##     ssmk    (.11.)    0.201    0.013   15.960    0.000    0.176
##   g =~                                                         
##     ssgs    (.12.)    0.741    0.015   48.920    0.000    0.712
##     ssar    (.13.)    0.672    0.016   40.977    0.000    0.640
##     sswk    (.14.)    0.738    0.016   45.349    0.000    0.706
##     sspc    (.15.)    0.743    0.016   47.131    0.000    0.712
##     ssno    (.16.)    0.523    0.017   30.140    0.000    0.489
##     sscs    (.17.)    0.491    0.016   30.857    0.000    0.460
##     ssai    (.18.)    0.416    0.015   27.999    0.000    0.387
##     sssi    (.19.)    0.410    0.015   28.066    0.000    0.381
##     ssmk    (.20.)    0.694    0.016   42.878    0.000    0.662
##     ssmc    (.21.)    0.604    0.015   39.711    0.000    0.574
##     ssei    (.22.)    0.640    0.015   43.299    0.000    0.611
##     ssao    (.23.)    0.564    0.015   37.307    0.000    0.534
##  ci.upper   Std.lv  Std.all
##                            
##     0.341    0.299    0.357
##     0.309    0.269    0.305
##     0.259    0.213    0.261
##     0.435    0.370    0.407
##                            
##     0.314    0.278    0.372
##     0.314    0.278    0.370
##     0.149    0.129    0.159
##     0.191    0.168    0.204
##                            
##     0.767    0.699    0.738
##     0.439    0.393    0.432
##     0.226    0.201    0.228
##                            
##     0.771    0.741    0.872
##     0.704    0.672    0.803
##     0.770    0.738    0.866
##     0.774    0.743    0.852
##     0.557    0.523    0.552
##     0.523    0.491    0.540
##     0.445    0.416    0.555
##     0.439    0.410    0.547
##     0.726    0.694    0.786
##     0.634    0.604    0.741
##     0.669    0.640    0.776
##     0.593    0.564    0.620
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.327    0.021   15.677    0.000    0.286
##    .ssmk              0.382    0.022   16.962    0.000    0.337
##    .ssmc              0.235    0.020   11.729    0.000    0.196
##    .ssao              0.356    0.022   15.988    0.000    0.312
##    .ssai              0.055    0.018    3.026    0.002    0.019
##    .sssi              0.059    0.019    3.200    0.001    0.023
##    .ssei              0.139    0.019    7.329    0.000    0.102
##    .ssno              0.244    0.023   10.435    0.000    0.198
##    .sscs              0.358    0.023   15.788    0.000    0.313
##    .ssgs              0.331    0.021   15.977    0.000    0.291
##    .sswk              0.379    0.022   17.461    0.000    0.337
##    .sspc              0.453    0.022   20.981    0.000    0.411
##  ci.upper   Std.lv  Std.all
##     0.368    0.327    0.391
##     0.426    0.382    0.432
##     0.274    0.235    0.288
##     0.399    0.356    0.391
##     0.091    0.055    0.074
##     0.096    0.059    0.079
##     0.176    0.139    0.169
##     0.290    0.244    0.258
##     0.402    0.358    0.393
##     0.372    0.331    0.389
##     0.422    0.379    0.445
##     0.495    0.453    0.520
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.159    0.012   13.724    0.000    0.136
##    .ssmk              0.185    0.010   18.692    0.000    0.166
##    .ssmc              0.237    0.013   18.965    0.000    0.213
##    .ssao              0.372    0.023   15.959    0.000    0.326
##    .ssai              0.311    0.015   20.333    0.000    0.281
##    .sssi              0.317    0.015   20.680    0.000    0.287
##    .ssei              0.243    0.011   21.912    0.000    0.221
##    .ssno              0.134    0.036    3.692    0.000    0.063
##    .sscs              0.431    0.020   21.417    0.000    0.392
##    .ssgs              0.174    0.008   20.421    0.000    0.157
##    .sswk              0.182    0.009   21.359    0.000    0.165
##    .sspc              0.209    0.011   18.238    0.000    0.186
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.182    0.159    0.227
##     0.205    0.185    0.238
##     0.262    0.237    0.357
##     0.418    0.372    0.450
##     0.341    0.311    0.554
##     0.347    0.317    0.564
##     0.264    0.243    0.357
##     0.205    0.134    0.150
##     0.471    0.431    0.521
##     0.190    0.174    0.240
##     0.199    0.182    0.250
##     0.231    0.209    0.274
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.299    0.022   13.691    0.000    0.256
##     ssmk    (.p2.)    0.269    0.020   13.211    0.000    0.229
##     ssmc    (.p3.)    0.213    0.023    9.084    0.000    0.167
##     ssao    (.p4.)    0.370    0.034   10.995    0.000    0.304
##   electronic =~                                                
##     ssai    (.p5.)    0.278    0.018   15.535    0.000    0.243
##     sssi    (.p6.)    0.278    0.019   14.863    0.000    0.241
##     ssmc    (.p7.)    0.129    0.010   12.698    0.000    0.109
##     ssei    (.p8.)    0.168    0.012   14.556    0.000    0.145
##   speed =~                                                     
##     ssno    (.p9.)    0.699    0.035   20.178    0.000    0.631
##     sscs    (.10.)    0.393    0.023   16.998    0.000    0.348
##     ssmk    (.11.)    0.201    0.013   15.960    0.000    0.176
##   g =~                                                         
##     ssgs    (.12.)    0.741    0.015   48.920    0.000    0.712
##     ssar    (.13.)    0.672    0.016   40.977    0.000    0.640
##     sswk    (.14.)    0.738    0.016   45.349    0.000    0.706
##     sspc    (.15.)    0.743    0.016   47.131    0.000    0.712
##     ssno    (.16.)    0.523    0.017   30.140    0.000    0.489
##     sscs    (.17.)    0.491    0.016   30.857    0.000    0.460
##     ssai    (.18.)    0.416    0.015   27.999    0.000    0.387
##     sssi    (.19.)    0.410    0.015   28.066    0.000    0.381
##     ssmk    (.20.)    0.694    0.016   42.878    0.000    0.662
##     ssmc    (.21.)    0.604    0.015   39.711    0.000    0.574
##     ssei    (.22.)    0.640    0.015   43.299    0.000    0.611
##     ssao    (.23.)    0.564    0.015   37.307    0.000    0.534
##  ci.upper   Std.lv  Std.all
##                            
##     0.341    0.284    0.299
##     0.309    0.256    0.264
##     0.259    0.202    0.216
##     0.435    0.351    0.347
##                            
##     0.314    0.650    0.606
##     0.314    0.648    0.668
##     0.149    0.302    0.322
##     0.191    0.392    0.384
##                            
##     0.767    0.780    0.732
##     0.439    0.439    0.440
##     0.226    0.225    0.231
##                            
##     0.771    0.858    0.888
##     0.704    0.778    0.820
##     0.770    0.854    0.884
##     0.774    0.860    0.867
##     0.557    0.605    0.568
##     0.523    0.569    0.570
##     0.445    0.482    0.449
##     0.439    0.475    0.490
##     0.726    0.804    0.828
##     0.634    0.699    0.746
##     0.669    0.741    0.726
##     0.593    0.653    0.644
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.395    0.023   17.329    0.000    0.350
##    .ssmk              0.242    0.023   10.519    0.000    0.197
##    .ssmc              0.563    0.023   24.735    0.000    0.518
##    .ssao              0.214    0.024    8.814    0.000    0.166
##    .ssai              0.614    0.027   23.150    0.000    0.562
##    .sssi              0.769    0.024   32.369    0.000    0.723
##    .ssei              0.582    0.026   22.070    0.000    0.531
##    .ssno              0.096    0.026    3.771    0.000    0.046
##    .sscs              0.007    0.024    0.306    0.759   -0.040
##    .ssgs              0.523    0.023   22.328    0.000    0.477
##    .sswk              0.392    0.022   17.468    0.000    0.348
##    .sspc              0.211    0.024    8.959    0.000    0.165
##  ci.upper   Std.lv  Std.all
##     0.440    0.395    0.416
##     0.287    0.242    0.249
##     0.608    0.563    0.601
##     0.262    0.214    0.211
##     0.666    0.614    0.572
##     0.816    0.769    0.793
##     0.634    0.582    0.570
##     0.146    0.096    0.090
##     0.054    0.007    0.007
##     0.569    0.523    0.541
##     0.436    0.392    0.406
##     0.257    0.211    0.213
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.215    0.013   16.163    0.000    0.189
##    .ssmk              0.179    0.011   16.789    0.000    0.159
##    .ssmc              0.258    0.014   18.916    0.000    0.231
##    .ssao              0.477    0.024   20.275    0.000    0.430
##    .ssai              0.497    0.028   17.934    0.000    0.443
##    .sssi              0.295    0.021   14.204    0.000    0.254
##    .ssei              0.339    0.017   20.249    0.000    0.306
##    .ssno              0.160    0.045    3.580    0.000    0.072
##    .sscs              0.479    0.025   19.078    0.000    0.429
##    .ssgs              0.197    0.009   21.866    0.000    0.179
##    .sswk              0.204    0.010   19.962    0.000    0.184
##    .sspc              0.244    0.012   20.590    0.000    0.221
##     math              0.902    0.102    8.827    0.000    0.702
##     electronic        5.453    0.709    7.686    0.000    4.062
##     speed             1.246    0.117   10.669    0.000    1.017
##     g                 1.341    0.069   19.320    0.000    1.205
##  ci.upper   Std.lv  Std.all
##     0.241    0.215    0.239
##     0.200    0.179    0.191
##     0.284    0.258    0.293
##     0.523    0.477    0.465
##     0.551    0.497    0.431
##     0.336    0.295    0.314
##     0.372    0.339    0.325
##     0.248    0.160    0.141
##     0.528    0.479    0.481
##     0.215    0.197    0.211
##     0.224    0.204    0.218
##     0.267    0.244    0.248
##     1.103    1.000    1.000
##     6.843    1.000    1.000
##     1.475    1.000    1.000
##     1.477    1.000    1.000
lavTestScore(metric, release = 1:23)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 131.561 23       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p62.  0.015  1   0.902
## 2   .p2. == .p63.  0.005  1   0.946
## 3   .p3. == .p64.  0.271  1   0.603
## 4   .p4. == .p65.  0.433  1   0.511
## 5   .p5. == .p66.  0.810  1   0.368
## 6   .p6. == .p67.  1.664  1   0.197
## 7   .p7. == .p68.  1.589  1   0.207
## 8   .p8. == .p69.  2.102  1   0.147
## 9   .p9. == .p70.  0.115  1   0.734
## 10 .p10. == .p71.  0.009  1   0.926
## 11 .p11. == .p72.  0.024  1   0.878
## 12 .p12. == .p73.  2.096  1   0.148
## 13 .p13. == .p74.  1.160  1   0.281
## 14 .p14. == .p75. 32.105  1   0.000
## 15 .p15. == .p76.  1.848  1   0.174
## 16 .p16. == .p77.  0.830  1   0.362
## 17 .p17. == .p78.  0.546  1   0.460
## 18 .p18. == .p79.  0.641  1   0.424
## 19 .p19. == .p80.  1.617  1   0.204
## 20 .p20. == .p81. 13.978  1   0.000
## 21 .p21. == .p82.  0.062  1   0.803
## 22 .p22. == .p83. 78.693  1   0.000
## 23 .p23. == .p84.  1.315  1   0.252
metric2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"), group.partial=c("g=~ssei"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1247.730   104.000     0.000     0.964     0.078     0.040 86984.861 
##       bic 
## 87456.436
Mc(metric2)
## [1] 0.8552746
scalar<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1855.499   112.000     0.000     0.945     0.092     0.046 87576.629 
##       bic 
## 87998.565
Mc(scalar)
## [1] 0.7879559
summary(scalar, standardized=T, ci=T) # -.023
## lavaan 0.6-18 ended normally after 86 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       102
##   Number of equality constraints                    34
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1855.499    1647.212
##   Degrees of freedom                               112         112
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.126
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          743.109     659.693
##     0                                         1112.390     987.520
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.288    0.026   10.992    0.000    0.236
##     ssmk    (.p2.)    0.263    0.023   11.267    0.000    0.217
##     ssmc    (.p3.)    0.217    0.025    8.574    0.000    0.167
##     ssao    (.p4.)    0.376    0.040    9.496    0.000    0.298
##   electronic =~                                                
##     ssai    (.p5.)    0.257    0.016   16.300    0.000    0.226
##     sssi    (.p6.)    0.293    0.018   16.507    0.000    0.258
##     ssmc    (.p7.)    0.138    0.010   14.056    0.000    0.118
##     ssei    (.p8.)    0.172    0.011   15.882    0.000    0.151
##   speed =~                                                     
##     ssno    (.p9.)    0.595    0.032   18.587    0.000    0.532
##     sscs    (.10.)    0.460    0.025   18.361    0.000    0.411
##     ssmk    (.11.)    0.222    0.012   18.088    0.000    0.198
##   g =~                                                         
##     ssgs    (.12.)    0.749    0.016   47.942    0.000    0.719
##     ssar    (.13.)    0.681    0.017   41.022    0.000    0.648
##     sswk    (.14.)    0.748    0.016   45.909    0.000    0.716
##     sspc    (.15.)    0.746    0.016   47.800    0.000    0.715
##     ssno    (.16.)    0.531    0.018   30.241    0.000    0.496
##     sscs    (.17.)    0.493    0.016   31.167    0.000    0.462
##     ssai    (.18.)    0.428    0.015   28.670    0.000    0.399
##     sssi    (.19.)    0.423    0.015   28.473    0.000    0.394
##     ssmk    (.20.)    0.703    0.016   43.342    0.000    0.671
##     ssmc    (.21.)    0.613    0.015   39.840    0.000    0.583
##     ssei              0.569    0.017   33.028    0.000    0.535
##     ssao    (.23.)    0.568    0.015   37.619    0.000    0.539
##  ci.upper   Std.lv  Std.all
##                            
##     0.339    0.288    0.341
##     0.309    0.263    0.296
##     0.266    0.217    0.264
##     0.453    0.376    0.411
##                            
##     0.288    0.257    0.341
##     0.328    0.293    0.387
##     0.157    0.138    0.167
##     0.194    0.172    0.223
##                            
##     0.658    0.595    0.630
##     0.509    0.460    0.499
##     0.246    0.222    0.249
##                            
##     0.780    0.749    0.869
##     0.713    0.681    0.808
##     0.779    0.748    0.870
##     0.777    0.746    0.843
##     0.565    0.531    0.562
##     0.524    0.493    0.535
##     0.457    0.428    0.567
##     0.452    0.423    0.559
##     0.735    0.703    0.790
##     0.643    0.613    0.746
##     0.602    0.569    0.737
##     0.598    0.568    0.622
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.360    0.020   17.856    0.000    0.320
##    .ssmk    (.47.)    0.362    0.022   16.414    0.000    0.319
##    .ssmc    (.48.)    0.238    0.019   12.478    0.000    0.201
##    .ssao    (.49.)    0.302    0.022   13.438    0.000    0.258
##    .ssai    (.50.)    0.031    0.017    1.820    0.069   -0.002
##    .sssi    (.51.)    0.063    0.018    3.511    0.000    0.028
##    .ssei    (.52.)    0.145    0.019    7.678    0.000    0.108
##    .ssno    (.53.)    0.288    0.023   12.291    0.000    0.242
##    .sscs    (.54.)    0.277    0.025   11.275    0.000    0.229
##    .ssgs    (.55.)    0.410    0.021   19.928    0.000    0.370
##    .sswk    (.56.)    0.373    0.021   17.811    0.000    0.332
##    .sspc    (.57.)    0.329    0.022   15.195    0.000    0.287
##  ci.upper   Std.lv  Std.all
##     0.399    0.360    0.427
##     0.405    0.362    0.407
##     0.276    0.238    0.290
##     0.346    0.302    0.330
##     0.065    0.031    0.041
##     0.098    0.063    0.083
##     0.182    0.145    0.188
##     0.334    0.288    0.305
##     0.325    0.277    0.301
##     0.451    0.410    0.476
##     0.415    0.373    0.435
##     0.372    0.329    0.372
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.164    0.013   12.641    0.000    0.138
##    .ssmk              0.180    0.010   17.237    0.000    0.159
##    .ssmc              0.234    0.013   17.995    0.000    0.208
##    .ssao              0.372    0.027   13.615    0.000    0.318
##    .ssai              0.321    0.015   21.399    0.000    0.291
##    .sssi              0.309    0.015   20.105    0.000    0.279
##    .ssei              0.242    0.011   22.045    0.000    0.220
##    .ssno              0.257    0.028    9.194    0.000    0.202
##    .sscs              0.395    0.023   17.098    0.000    0.350
##    .ssgs              0.182    0.009   19.666    0.000    0.164
##    .sswk              0.179    0.009   21.044    0.000    0.162
##    .sspc              0.227    0.013   17.629    0.000    0.202
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.189    0.164    0.231
##     0.200    0.180    0.227
##     0.259    0.234    0.346
##     0.425    0.372    0.445
##     0.350    0.321    0.563
##     0.339    0.309    0.538
##     0.263    0.242    0.407
##     0.312    0.257    0.288
##     0.441    0.395    0.465
##     0.200    0.182    0.245
##     0.196    0.179    0.243
##     0.252    0.227    0.290
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.288    0.026   10.992    0.000    0.236
##     ssmk    (.p2.)    0.263    0.023   11.267    0.000    0.217
##     ssmc    (.p3.)    0.217    0.025    8.574    0.000    0.167
##     ssao    (.p4.)    0.376    0.040    9.496    0.000    0.298
##   electronic =~                                                
##     ssai    (.p5.)    0.257    0.016   16.300    0.000    0.226
##     sssi    (.p6.)    0.293    0.018   16.507    0.000    0.258
##     ssmc    (.p7.)    0.138    0.010   14.056    0.000    0.118
##     ssei    (.p8.)    0.172    0.011   15.882    0.000    0.151
##   speed =~                                                     
##     ssno    (.p9.)    0.595    0.032   18.587    0.000    0.532
##     sscs    (.10.)    0.460    0.025   18.361    0.000    0.411
##     ssmk    (.11.)    0.222    0.012   18.088    0.000    0.198
##   g =~                                                         
##     ssgs    (.12.)    0.749    0.016   47.942    0.000    0.719
##     ssar    (.13.)    0.681    0.017   41.022    0.000    0.648
##     sswk    (.14.)    0.748    0.016   45.909    0.000    0.716
##     sspc    (.15.)    0.746    0.016   47.800    0.000    0.715
##     ssno    (.16.)    0.531    0.018   30.241    0.000    0.496
##     sscs    (.17.)    0.493    0.016   31.167    0.000    0.462
##     ssai    (.18.)    0.428    0.015   28.670    0.000    0.399
##     sssi    (.19.)    0.423    0.015   28.473    0.000    0.394
##     ssmk    (.20.)    0.703    0.016   43.342    0.000    0.671
##     ssmc    (.21.)    0.613    0.015   39.840    0.000    0.583
##     ssei              0.736    0.021   35.528    0.000    0.695
##     ssao    (.23.)    0.568    0.015   37.619    0.000    0.539
##  ci.upper   Std.lv  Std.all
##                            
##     0.339    0.277    0.293
##     0.309    0.253    0.262
##     0.266    0.209    0.222
##     0.453    0.362    0.357
##                            
##     0.288    0.586    0.555
##     0.328    0.667    0.684
##     0.157    0.313    0.334
##     0.194    0.393    0.362
##                            
##     0.658    0.668    0.632
##     0.509    0.517    0.512
##     0.246    0.249    0.257
##                            
##     0.780    0.850    0.881
##     0.713    0.772    0.817
##     0.779    0.848    0.884
##     0.777    0.846    0.851
##     0.565    0.602    0.570
##     0.524    0.559    0.555
##     0.457    0.485    0.460
##     0.452    0.480    0.492
##     0.735    0.797    0.825
##     0.643    0.696    0.741
##     0.777    0.835    0.770
##     0.598    0.645    0.636
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.360    0.020   17.856    0.000    0.320
##    .ssmk    (.47.)    0.362    0.022   16.414    0.000    0.319
##    .ssmc    (.48.)    0.238    0.019   12.478    0.000    0.201
##    .ssao    (.49.)    0.302    0.022   13.438    0.000    0.258
##    .ssai    (.50.)    0.031    0.017    1.820    0.069   -0.002
##    .sssi    (.51.)    0.063    0.018    3.511    0.000    0.028
##    .ssei    (.52.)    0.145    0.019    7.678    0.000    0.108
##    .ssno    (.53.)    0.288    0.023   12.291    0.000    0.242
##    .sscs    (.54.)    0.277    0.025   11.275    0.000    0.229
##    .ssgs    (.55.)    0.410    0.021   19.928    0.000    0.370
##    .sswk    (.56.)    0.373    0.021   17.811    0.000    0.332
##    .sspc    (.57.)    0.329    0.022   15.195    0.000    0.287
##     math             -0.109    0.068   -1.590    0.112   -0.242
##     elctrnc           2.355    0.159   14.823    0.000    2.044
##     speed            -0.436    0.065   -6.717    0.000   -0.563
##     g                 0.027    0.040    0.667    0.505   -0.052
##  ci.upper   Std.lv  Std.all
##     0.399    0.360    0.381
##     0.405    0.362    0.375
##     0.276    0.238    0.254
##     0.346    0.302    0.298
##     0.065    0.031    0.030
##     0.098    0.063    0.064
##     0.182    0.145    0.133
##     0.334    0.288    0.272
##     0.325    0.277    0.275
##     0.451    0.410    0.425
##     0.415    0.373    0.389
##     0.372    0.329    0.331
##     0.025   -0.113   -0.113
##     2.667    1.033    1.033
##    -0.309   -0.388   -0.388
##     0.105    0.023    0.023
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.220    0.015   14.963    0.000    0.191
##    .ssmk              0.172    0.011   15.456    0.000    0.150
##    .ssmc              0.255    0.014   17.652    0.000    0.227
##    .ssao              0.480    0.028   17.326    0.000    0.426
##    .ssai              0.534    0.024   21.865    0.000    0.486
##    .sssi              0.276    0.018   15.122    0.000    0.241
##    .ssei              0.325    0.016   20.781    0.000    0.294
##    .ssno              0.308    0.036    8.548    0.000    0.237
##    .sscs              0.436    0.027   15.939    0.000    0.383
##    .ssgs              0.208    0.010   21.179    0.000    0.189
##    .sswk              0.202    0.010   19.838    0.000    0.182
##    .sspc              0.273    0.014   19.194    0.000    0.245
##     math              0.927    0.107    8.692    0.000    0.718
##     electronic        5.195    0.664    7.819    0.000    3.893
##     speed             1.261    0.124   10.198    0.000    1.018
##     g                 1.287    0.067   19.298    0.000    1.156
##  ci.upper   Std.lv  Std.all
##     0.249    0.220    0.246
##     0.194    0.172    0.184
##     0.283    0.255    0.290
##     0.534    0.480    0.468
##     0.582    0.534    0.480
##     0.312    0.276    0.290
##     0.355    0.325    0.276
##     0.378    0.308    0.276
##     0.490    0.436    0.429
##     0.227    0.208    0.224
##     0.222    0.202    0.219
##     0.301    0.273    0.276
##     1.136    1.000    1.000
##     6.497    1.000    1.000
##     1.503    1.000    1.000
##     1.418    1.000    1.000
lavTestScore(scalar, release = 23:34) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 585.564 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs      X2 df p.value
## 1  .p46. == .p107.  57.072  1   0.000
## 2  .p47. == .p108.   7.509  1   0.006
## 3  .p48. == .p109.   2.047  1   0.153
## 4  .p49. == .p110.  38.739  1   0.000
## 5  .p50. == .p111.  18.497  1   0.000
## 6  .p51. == .p112.   1.922  1   0.166
## 7  .p52. == .p113.   3.639  1   0.056
## 8  .p53. == .p114. 113.514  1   0.000
## 9  .p54. == .p115.  90.197  1   0.000
## 10 .p55. == .p116. 221.371  1   0.000
## 11 .p56. == .p117.   0.026  1   0.872
## 12 .p57. == .p118. 327.223  1   0.000
scalar2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "sspc~1", "ssno~1", "sswk~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1302.004   109.000     0.000     0.962     0.077     0.041 87029.135 
##       bic 
## 87469.686
Mc(scalar2)
## [1] 0.8495336
summary(scalar2, standardized=T, ci=T) # -.217
## lavaan 0.6-18 ended normally after 91 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       102
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1302.004    1142.761
##   Degrees of freedom                               109         109
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.139
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          481.379     422.503
##     0                                          820.626     720.258
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.273    0.023   11.721    0.000    0.227
##     ssmk    (.p2.)    0.246    0.024   10.371    0.000    0.200
##     ssmc    (.p3.)    0.218    0.019   11.301    0.000    0.181
##     ssao    (.p4.)    0.415    0.031   13.498    0.000    0.355
##   electronic =~                                                
##     ssai    (.p5.)    0.265    0.016   16.501    0.000    0.234
##     sssi    (.p6.)    0.305    0.018   16.494    0.000    0.269
##     ssmc    (.p7.)    0.137    0.010   13.817    0.000    0.118
##     ssei    (.p8.)    0.156    0.010   14.882    0.000    0.135
##   speed =~                                                     
##     ssno    (.p9.)    0.698    0.035   19.868    0.000    0.629
##     sscs    (.10.)    0.399    0.022   18.036    0.000    0.356
##     ssmk    (.11.)    0.195    0.012   16.292    0.000    0.172
##   g =~                                                         
##     ssgs    (.12.)    0.749    0.015   49.419    0.000    0.720
##     ssar    (.13.)    0.683    0.016   41.617    0.000    0.651
##     sswk    (.14.)    0.746    0.016   46.017    0.000    0.714
##     sspc    (.15.)    0.751    0.016   48.003    0.000    0.720
##     ssno    (.16.)    0.529    0.017   30.371    0.000    0.495
##     sscs    (.17.)    0.494    0.016   31.159    0.000    0.463
##     ssai    (.18.)    0.425    0.015   28.518    0.000    0.396
##     sssi    (.19.)    0.424    0.015   28.606    0.000    0.395
##     ssmk    (.20.)    0.706    0.016   43.385    0.000    0.674
##     ssmc    (.21.)    0.615    0.015   40.066    0.000    0.585
##     ssei              0.568    0.017   32.993    0.000    0.534
##     ssao    (.23.)    0.563    0.015   37.841    0.000    0.534
##  ci.upper   Std.lv  Std.all
##                            
##     0.318    0.273    0.324
##     0.293    0.246    0.277
##     0.256    0.218    0.266
##     0.475    0.415    0.454
##                            
##     0.297    0.265    0.351
##     0.341    0.305    0.402
##     0.157    0.137    0.167
##     0.176    0.156    0.202
##                            
##     0.767    0.698    0.736
##     0.443    0.399    0.437
##     0.219    0.195    0.220
##                            
##     0.779    0.749    0.874
##     0.715    0.683    0.811
##     0.778    0.746    0.869
##     0.781    0.751    0.855
##     0.563    0.529    0.557
##     0.525    0.494    0.541
##     0.454    0.425    0.564
##     0.453    0.424    0.558
##     0.738    0.706    0.795
##     0.645    0.615    0.748
##     0.602    0.568    0.738
##     0.592    0.563    0.615
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.346    0.020   17.073    0.000    0.306
##    .ssmk    (.47.)    0.400    0.022   18.421    0.000    0.357
##    .ssmc    (.48.)    0.251    0.019   13.312    0.000    0.214
##    .ssao    (.49.)    0.325    0.024   13.794    0.000    0.279
##    .ssai    (.50.)    0.042    0.017    2.477    0.013    0.009
##    .sssi    (.51.)    0.081    0.018    4.471    0.000    0.046
##    .ssei    (.52.)    0.130    0.019    7.010    0.000    0.094
##    .ssno              0.250    0.023   10.679    0.000    0.204
##    .sscs    (.54.)    0.351    0.022   15.917    0.000    0.307
##    .ssgs    (.55.)    0.338    0.020   16.903    0.000    0.299
##    .sswk              0.387    0.022   17.942    0.000    0.344
##    .sspc              0.461    0.021   21.459    0.000    0.419
##  ci.upper   Std.lv  Std.all
##     0.385    0.346    0.410
##     0.442    0.400    0.450
##     0.288    0.251    0.305
##     0.371    0.325    0.355
##     0.075    0.042    0.056
##     0.117    0.081    0.107
##     0.166    0.130    0.169
##     0.295    0.250    0.263
##     0.394    0.351    0.384
##     0.378    0.338    0.395
##     0.429    0.387    0.450
##     0.503    0.461    0.525
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.168    0.011   14.805    0.000    0.146
##    .ssmk              0.192    0.010   18.998    0.000    0.172
##    .ssmc              0.232    0.012   18.865    0.000    0.208
##    .ssao              0.348    0.027   13.127    0.000    0.296
##    .ssai              0.318    0.015   21.130    0.000    0.289
##    .sssi              0.303    0.016   19.411    0.000    0.273
##    .ssei              0.246    0.011   22.441    0.000    0.224
##    .ssno              0.133    0.037    3.635    0.000    0.061
##    .sscs              0.431    0.020   21.086    0.000    0.391
##    .ssgs              0.174    0.009   20.279    0.000    0.157
##    .sswk              0.181    0.008   21.334    0.000    0.164
##    .sspc              0.207    0.011   18.164    0.000    0.185
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.190    0.168    0.237
##     0.212    0.192    0.243
##     0.256    0.232    0.343
##     0.400    0.348    0.416
##     0.348    0.318    0.559
##     0.334    0.303    0.527
##     0.267    0.246    0.415
##     0.205    0.133    0.148
##     0.471    0.431    0.516
##     0.190    0.174    0.236
##     0.198    0.181    0.245
##     0.230    0.207    0.269
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.273    0.023   11.721    0.000    0.227
##     ssmk    (.p2.)    0.246    0.024   10.371    0.000    0.200
##     ssmc    (.p3.)    0.218    0.019   11.301    0.000    0.181
##     ssao    (.p4.)    0.415    0.031   13.498    0.000    0.355
##   electronic =~                                                
##     ssai    (.p5.)    0.265    0.016   16.501    0.000    0.234
##     sssi    (.p6.)    0.305    0.018   16.494    0.000    0.269
##     ssmc    (.p7.)    0.137    0.010   13.817    0.000    0.118
##     ssei    (.p8.)    0.156    0.010   14.882    0.000    0.135
##   speed =~                                                     
##     ssno    (.p9.)    0.698    0.035   19.868    0.000    0.629
##     sscs    (.10.)    0.399    0.022   18.036    0.000    0.356
##     ssmk    (.11.)    0.195    0.012   16.292    0.000    0.172
##   g =~                                                         
##     ssgs    (.12.)    0.749    0.015   49.419    0.000    0.720
##     ssar    (.13.)    0.683    0.016   41.617    0.000    0.651
##     sswk    (.14.)    0.746    0.016   46.017    0.000    0.714
##     sspc    (.15.)    0.751    0.016   48.003    0.000    0.720
##     ssno    (.16.)    0.529    0.017   30.371    0.000    0.495
##     sscs    (.17.)    0.494    0.016   31.159    0.000    0.463
##     ssai    (.18.)    0.425    0.015   28.518    0.000    0.396
##     sssi    (.19.)    0.424    0.015   28.606    0.000    0.395
##     ssmk    (.20.)    0.706    0.016   43.385    0.000    0.674
##     ssmc    (.21.)    0.615    0.015   40.066    0.000    0.585
##     ssei              0.734    0.021   35.724    0.000    0.694
##     ssao    (.23.)    0.563    0.015   37.841    0.000    0.534
##  ci.upper   Std.lv  Std.all
##                            
##     0.318    0.263    0.278
##     0.293    0.238    0.246
##     0.256    0.211    0.225
##     0.475    0.401    0.396
##                            
##     0.297    0.597    0.563
##     0.341    0.686    0.700
##     0.157    0.309    0.329
##     0.176    0.350    0.326
##                            
##     0.767    0.784    0.738
##     0.443    0.449    0.450
##     0.219    0.219    0.227
##                            
##     0.779    0.851    0.886
##     0.715    0.775    0.820
##     0.778    0.847    0.882
##     0.781    0.852    0.864
##     0.563    0.600    0.565
##     0.525    0.561    0.562
##     0.454    0.483    0.456
##     0.453    0.481    0.491
##     0.738    0.801    0.829
##     0.645    0.698    0.744
##     0.775    0.833    0.776
##     0.592    0.639    0.632
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.346    0.020   17.073    0.000    0.306
##    .ssmk    (.47.)    0.400    0.022   18.421    0.000    0.357
##    .ssmc    (.48.)    0.251    0.019   13.312    0.000    0.214
##    .ssao    (.49.)    0.325    0.024   13.794    0.000    0.279
##    .ssai    (.50.)    0.042    0.017    2.477    0.013    0.009
##    .sssi    (.51.)    0.081    0.018    4.471    0.000    0.046
##    .ssei    (.52.)    0.130    0.019    7.010    0.000    0.094
##    .ssno              0.756    0.069   10.922    0.000    0.620
##    .sscs    (.54.)    0.351    0.022   15.917    0.000    0.307
##    .ssgs    (.55.)    0.338    0.020   16.903    0.000    0.299
##    .sswk              0.208    0.024    8.699    0.000    0.161
##    .sspc              0.026    0.025    1.031    0.303   -0.024
##     math             -0.492    0.067   -7.377    0.000   -0.623
##     elctrnc           1.866    0.132   14.110    0.000    1.607
##     speed            -1.132    0.089  -12.708    0.000   -1.306
##     g                 0.247    0.039    6.251    0.000    0.169
##  ci.upper   Std.lv  Std.all
##     0.385    0.346    0.365
##     0.442    0.400    0.414
##     0.288    0.251    0.268
##     0.371    0.325    0.321
##     0.075    0.042    0.040
##     0.117    0.081    0.083
##     0.166    0.130    0.121
##     0.892    0.756    0.712
##     0.394    0.351    0.351
##     0.378    0.338    0.353
##     0.255    0.208    0.217
##     0.076    0.026    0.026
##    -0.362   -0.510   -0.510
##     2.125    0.829    0.829
##    -0.957   -1.007   -1.007
##     0.324    0.217    0.217
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.224    0.013   17.383    0.000    0.199
##    .ssmk              0.187    0.011   17.322    0.000    0.166
##    .ssmc              0.254    0.013   18.829    0.000    0.227
##    .ssao              0.454    0.027   17.135    0.000    0.402
##    .ssai              0.532    0.025   21.183    0.000    0.483
##    .sssi              0.259    0.020   13.153    0.000    0.220
##    .ssei              0.336    0.016   21.492    0.000    0.305
##    .ssno              0.154    0.045    3.386    0.001    0.065
##    .sscs              0.480    0.025   18.917    0.000    0.430
##    .ssgs              0.197    0.009   22.011    0.000    0.180
##    .sswk              0.204    0.010   20.111    0.000    0.184
##    .sspc              0.247    0.012   20.798    0.000    0.224
##     math              0.932    0.105    8.831    0.000    0.725
##     electronic        5.062    0.639    7.927    0.000    3.810
##     speed             1.262    0.119   10.612    0.000    1.029
##     g                 1.289    0.066   19.451    0.000    1.159
##  ci.upper   Std.lv  Std.all
##     0.249    0.224    0.250
##     0.208    0.187    0.200
##     0.280    0.254    0.288
##     0.506    0.454    0.444
##     0.582    0.532    0.475
##     0.297    0.259    0.269
##     0.367    0.336    0.291
##     0.243    0.154    0.136
##     0.530    0.480    0.482
##     0.215    0.197    0.214
##     0.224    0.204    0.222
##     0.271    0.247    0.254
##     1.138    1.000    1.000
##     6.313    1.000    1.000
##     1.495    1.000    1.000
##     1.418    1.000    1.000
lavTestScore(scalar2, release = 23:31)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 53.544  9       0
## 
## $uni
## 
## univariate score tests:
## 
##     lhs op    rhs     X2 df p.value
## 1 .p46. == .p107.  6.786  1   0.009
## 2 .p47. == .p108.  6.490  1   0.011
## 3 .p48. == .p109.  3.688  1   0.055
## 4 .p49. == .p110. 33.090  1   0.000
## 5 .p50. == .p111. 10.581  1   0.001
## 6 .p51. == .p112. 13.753  1   0.000
## 7 .p52. == .p113.  7.976  1   0.005
## 8 .p54. == .p115.  6.490  1   0.011
## 9 .p55. == .p116.  0.006  1   0.937
strict<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("g=~ssei", "sspc~1", "ssno~1", "sswk~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1487.113   121.000     0.000     0.957     0.079     0.045 87190.244 
##       bic 
## 87556.336
Mc(strict)
## [1] 0.8296681
summary(strict, standardized=T, ci=T) # -.214
## lavaan 0.6-18 ended normally after 92 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       102
##   Number of equality constraints                    43
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1487.113    1298.248
##   Degrees of freedom                               121         121
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.145
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          590.902     515.857
##     0                                          896.212     782.392
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.256    0.026    9.999    0.000    0.206
##     ssmk    (.p2.)    0.231    0.026    8.799    0.000    0.180
##     ssmc    (.p3.)    0.209    0.019   10.883    0.000    0.171
##     ssao    (.p4.)    0.395    0.031   12.816    0.000    0.335
##   electronic =~                                                
##     ssai    (.p5.)    0.255    0.018   14.537    0.000    0.221
##     sssi    (.p6.)    0.265    0.020   12.997    0.000    0.225
##     ssmc    (.p7.)    0.125    0.011   11.764    0.000    0.104
##     ssei    (.p8.)    0.146    0.011   12.976    0.000    0.124
##   speed =~                                                     
##     ssno    (.p9.)    0.696    0.035   19.644    0.000    0.627
##     sscs    (.10.)    0.394    0.021   18.994    0.000    0.354
##     ssmk    (.11.)    0.193    0.012   16.409    0.000    0.170
##   g =~                                                         
##     ssgs    (.12.)    0.749    0.015   49.329    0.000    0.720
##     ssar    (.13.)    0.683    0.016   41.782    0.000    0.651
##     sswk    (.14.)    0.743    0.016   45.815    0.000    0.711
##     sspc    (.15.)    0.749    0.016   47.868    0.000    0.718
##     ssno    (.16.)    0.528    0.017   30.335    0.000    0.494
##     sscs    (.17.)    0.494    0.016   31.064    0.000    0.463
##     ssai    (.18.)    0.426    0.015   28.218    0.000    0.396
##     sssi    (.19.)    0.426    0.015   28.682    0.000    0.397
##     ssmk    (.20.)    0.705    0.016   43.159    0.000    0.673
##     ssmc    (.21.)    0.615    0.015   39.917    0.000    0.585
##     ssei              0.564    0.017   32.782    0.000    0.531
##     ssao    (.23.)    0.564    0.015   37.662    0.000    0.535
##  ci.upper   Std.lv  Std.all
##                            
##     0.306    0.256    0.300
##     0.283    0.231    0.262
##     0.246    0.209    0.253
##     0.455    0.395    0.422
##                            
##     0.290    0.255    0.318
##     0.305    0.265    0.353
##     0.146    0.125    0.152
##     0.168    0.146    0.184
##                            
##     0.765    0.696    0.733
##     0.435    0.394    0.426
##     0.216    0.193    0.219
##                            
##     0.779    0.749    0.867
##     0.715    0.683    0.800
##     0.775    0.743    0.860
##     0.780    0.749    0.843
##     0.562    0.528    0.556
##     0.525    0.494    0.533
##     0.455    0.426    0.530
##     0.456    0.426    0.568
##     0.737    0.705    0.799
##     0.645    0.615    0.746
##     0.598    0.564    0.713
##     0.593    0.564    0.603
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.348    0.020   17.086    0.000    0.308
##    .ssmk    (.47.)    0.401    0.022   18.461    0.000    0.358
##    .ssmc    (.48.)    0.255    0.019   13.414    0.000    0.217
##    .ssao    (.49.)    0.321    0.024   13.157    0.000    0.273
##    .ssai    (.50.)    0.025    0.017    1.447    0.148   -0.009
##    .sssi    (.51.)    0.096    0.018    5.277    0.000    0.060
##    .ssei    (.52.)    0.126    0.019    6.757    0.000    0.089
##    .ssno              0.251    0.023   10.721    0.000    0.205
##    .sscs    (.54.)    0.351    0.022   15.944    0.000    0.308
##    .ssgs    (.55.)    0.340    0.020   17.014    0.000    0.301
##    .sswk              0.388    0.022   18.023    0.000    0.346
##    .sspc              0.462    0.021   21.539    0.000    0.420
##  ci.upper   Std.lv  Std.all
##     0.388    0.348    0.408
##     0.443    0.401    0.454
##     0.292    0.255    0.309
##     0.369    0.321    0.343
##     0.058    0.025    0.031
##     0.131    0.096    0.127
##     0.162    0.126    0.159
##     0.296    0.251    0.264
##     0.394    0.351    0.379
##     0.380    0.340    0.394
##     0.430    0.388    0.449
##     0.504    0.462    0.520
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.24.)    0.198    0.011   18.287    0.000    0.176
##    .ssmk    (.25.)    0.191    0.009   20.874    0.000    0.173
##    .ssmc    (.26.)    0.242    0.010   23.869    0.000    0.222
##    .ssao    (.27.)    0.400    0.026   15.485    0.000    0.350
##    .ssai    (.28.)    0.400    0.015   26.195    0.000    0.370
##    .sssi    (.29.)    0.312    0.013   24.022    0.000    0.286
##    .ssei    (.30.)    0.286    0.010   30.002    0.000    0.268
##    .ssno    (.31.)    0.138    0.038    3.622    0.000    0.063
##    .sscs    (.32.)    0.458    0.018   25.662    0.000    0.423
##    .ssgs    (.33.)    0.185    0.006   29.013    0.000    0.173
##    .sswk    (.34.)    0.194    0.007   28.313    0.000    0.180
##    .sspc    (.35.)    0.228    0.008   27.062    0.000    0.211
##     math              1.000                               1.000
##     elctrnc           1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.219    0.198    0.271
##     0.209    0.191    0.245
##     0.262    0.242    0.357
##     0.451    0.400    0.458
##     0.430    0.400    0.619
##     0.337    0.312    0.553
##     0.305    0.286    0.457
##     0.213    0.138    0.153
##     0.493    0.458    0.534
##     0.198    0.185    0.248
##     0.207    0.194    0.260
##     0.244    0.228    0.289
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.256    0.026    9.999    0.000    0.206
##     ssmk    (.p2.)    0.231    0.026    8.799    0.000    0.180
##     ssmc    (.p3.)    0.209    0.019   10.883    0.000    0.171
##     ssao    (.p4.)    0.395    0.031   12.816    0.000    0.335
##   electronic =~                                                
##     ssai    (.p5.)    0.255    0.018   14.537    0.000    0.221
##     sssi    (.p6.)    0.265    0.020   12.997    0.000    0.225
##     ssmc    (.p7.)    0.125    0.011   11.764    0.000    0.104
##     ssei    (.p8.)    0.146    0.011   12.976    0.000    0.124
##   speed =~                                                     
##     ssno    (.p9.)    0.696    0.035   19.644    0.000    0.627
##     sscs    (.10.)    0.394    0.021   18.994    0.000    0.354
##     ssmk    (.11.)    0.193    0.012   16.409    0.000    0.170
##   g =~                                                         
##     ssgs    (.12.)    0.749    0.015   49.329    0.000    0.720
##     ssar    (.13.)    0.683    0.016   41.782    0.000    0.651
##     sswk    (.14.)    0.743    0.016   45.815    0.000    0.711
##     sspc    (.15.)    0.749    0.016   47.868    0.000    0.718
##     ssno    (.16.)    0.528    0.017   30.335    0.000    0.494
##     sscs    (.17.)    0.494    0.016   31.064    0.000    0.463
##     ssai    (.18.)    0.426    0.015   28.218    0.000    0.396
##     sssi    (.19.)    0.426    0.015   28.682    0.000    0.397
##     ssmk    (.20.)    0.705    0.016   43.159    0.000    0.673
##     ssmc    (.21.)    0.615    0.015   39.917    0.000    0.585
##     ssei              0.735    0.021   35.557    0.000    0.694
##     ssao    (.23.)    0.564    0.015   37.662    0.000    0.535
##  ci.upper   Std.lv  Std.all
##                            
##     0.306    0.274    0.293
##     0.283    0.247    0.255
##     0.246    0.223    0.238
##     0.455    0.422    0.424
##                            
##     0.290    0.643    0.628
##     0.305    0.667    0.670
##     0.146    0.315    0.335
##     0.168    0.367    0.347
##                            
##     0.765    0.794    0.747
##     0.435    0.450    0.455
##     0.216    0.220    0.226
##                            
##     0.779    0.853    0.893
##     0.715    0.778    0.830
##     0.775    0.846    0.887
##     0.780    0.853    0.873
##     0.562    0.601    0.565
##     0.525    0.562    0.569
##     0.455    0.485    0.473
##     0.456    0.485    0.487
##     0.737    0.803    0.826
##     0.645    0.700    0.746
##     0.775    0.836    0.790
##     0.593    0.642    0.645
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.348    0.020   17.086    0.000    0.308
##    .ssmk    (.47.)    0.401    0.022   18.461    0.000    0.358
##    .ssmc    (.48.)    0.255    0.019   13.414    0.000    0.217
##    .ssao    (.49.)    0.321    0.024   13.157    0.000    0.273
##    .ssai    (.50.)    0.025    0.017    1.447    0.148   -0.009
##    .sssi    (.51.)    0.096    0.018    5.277    0.000    0.060
##    .ssei    (.52.)    0.126    0.019    6.757    0.000    0.089
##    .ssno              0.766    0.070   10.901    0.000    0.628
##    .sscs    (.54.)    0.351    0.022   15.944    0.000    0.308
##    .ssgs    (.55.)    0.340    0.020   17.014    0.000    0.301
##    .sswk              0.212    0.024    8.873    0.000    0.165
##    .sspc              0.029    0.025    1.157    0.247   -0.020
##     math             -0.516    0.073   -7.072    0.000   -0.660
##     elctrnc           2.037    0.167   12.174    0.000    1.709
##     speed            -1.146    0.089  -12.814    0.000   -1.321
##     g                 0.243    0.039    6.173    0.000    0.166
##  ci.upper   Std.lv  Std.all
##     0.388    0.348    0.372
##     0.443    0.401    0.412
##     0.292    0.255    0.271
##     0.369    0.321    0.322
##     0.058    0.025    0.024
##     0.131    0.096    0.096
##     0.162    0.126    0.119
##     0.903    0.766    0.720
##     0.394    0.351    0.355
##     0.380    0.340    0.356
##     0.258    0.212    0.222
##     0.078    0.029    0.030
##    -0.373   -0.483   -0.483
##     2.366    0.809    0.809
##    -0.971   -1.005   -1.005
##     0.320    0.214    0.214
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.24.)    0.198    0.011   18.287    0.000    0.176
##    .ssmk    (.25.)    0.191    0.009   20.874    0.000    0.173
##    .ssmc    (.26.)    0.242    0.010   23.869    0.000    0.222
##    .ssao    (.27.)    0.400    0.026   15.485    0.000    0.350
##    .ssai    (.28.)    0.400    0.015   26.195    0.000    0.370
##    .sssi    (.29.)    0.312    0.013   24.022    0.000    0.286
##    .ssei    (.30.)    0.286    0.010   30.002    0.000    0.268
##    .ssno    (.31.)    0.138    0.038    3.622    0.000    0.063
##    .sscs    (.32.)    0.458    0.018   25.662    0.000    0.423
##    .ssgs    (.33.)    0.185    0.006   29.013    0.000    0.173
##    .sswk    (.34.)    0.194    0.007   28.313    0.000    0.180
##    .sspc    (.35.)    0.228    0.008   27.062    0.000    0.211
##     math              1.144    0.130    8.820    0.000    0.890
##     elctrnc           6.342    0.971    6.529    0.000    4.438
##     speed             1.300    0.110   11.864    0.000    1.085
##     g                 1.296    0.067   19.441    0.000    1.165
##  ci.upper   Std.lv  Std.all
##     0.219    0.198    0.225
##     0.209    0.191    0.202
##     0.262    0.242    0.275
##     0.451    0.400    0.404
##     0.430    0.400    0.381
##     0.337    0.312    0.314
##     0.305    0.286    0.255
##     0.213    0.138    0.122
##     0.493    0.458    0.469
##     0.198    0.185    0.203
##     0.207    0.194    0.213
##     0.244    0.228    0.239
##     1.398    1.000    1.000
##     8.246    1.000    1.000
##     1.515    1.000    1.000
##     1.426    1.000    1.000
latent<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("g=~ssei", "sspc~1", "ssno~1", "sswk~1"))
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1668.171   113.000     0.000     0.951     0.087     0.105 87387.301 
##       bic 
## 87803.033
Mc(latent)
## [1] 0.8085027
summary(latent, standardized=T, ci=T) # -.233
## lavaan 0.6-18 ended normally after 54 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1668.171    1457.052
##   Degrees of freedom                               113         113
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.145
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          686.393     599.525
##     0                                          981.778     857.527
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.270    0.021   12.590    0.000    0.228
##     ssmk    (.p2.)    0.243    0.022   11.087    0.000    0.200
##     ssmc    (.p3.)    0.217    0.019   11.684    0.000    0.181
##     ssao    (.p4.)    0.408    0.027   15.033    0.000    0.355
##   electronic =~                                                
##     ssai    (.p5.)    0.421    0.019   22.348    0.000    0.384
##     sssi    (.p6.)    0.521    0.016   32.295    0.000    0.489
##     ssmc    (.p7.)    0.239    0.013   19.026    0.000    0.215
##     ssei    (.p8.)    0.251    0.014   18.246    0.000    0.224
##   speed =~                                                     
##     ssno    (.p9.)    0.739    0.031   23.535    0.000    0.677
##     sscs    (.10.)    0.427    0.021   20.679    0.000    0.387
##     ssmk    (.11.)    0.208    0.012   17.288    0.000    0.185
##   g =~                                                         
##     ssgs    (.12.)    0.802    0.013   62.403    0.000    0.777
##     ssar    (.13.)    0.731    0.014   51.065    0.000    0.703
##     sswk    (.14.)    0.799    0.013   61.596    0.000    0.774
##     sspc    (.15.)    0.802    0.012   68.170    0.000    0.779
##     ssno    (.16.)    0.565    0.017   33.261    0.000    0.531
##     sscs    (.17.)    0.528    0.015   34.936    0.000    0.498
##     ssai    (.18.)    0.472    0.016   30.045    0.000    0.441
##     sssi    (.19.)    0.471    0.015   30.658    0.000    0.441
##     ssmk    (.20.)    0.755    0.013   57.547    0.000    0.730
##     ssmc    (.21.)    0.666    0.014   46.802    0.000    0.638
##     ssei              0.610    0.017   35.637    0.000    0.577
##     ssao    (.23.)    0.602    0.014   44.110    0.000    0.575
##  ci.upper   Std.lv  Std.all
##                            
##     0.312    0.270    0.307
##     0.286    0.243    0.262
##     0.254    0.217    0.247
##     0.462    0.408    0.435
##                            
##     0.458    0.421    0.500
##     0.553    0.521    0.601
##     0.264    0.239    0.272
##     0.278    0.251    0.304
##                            
##     0.800    0.739    0.747
##     0.467    0.427    0.451
##     0.232    0.208    0.224
##                            
##     0.828    0.802    0.886
##     0.759    0.731    0.831
##     0.825    0.799    0.884
##     0.826    0.802    0.872
##     0.598    0.565    0.571
##     0.557    0.528    0.558
##     0.502    0.472    0.559
##     0.502    0.471    0.544
##     0.781    0.755    0.812
##     0.693    0.666    0.756
##     0.644    0.610    0.739
##     0.628    0.602    0.641
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.347    0.020   17.073    0.000    0.307
##    .ssmk    (.47.)    0.400    0.022   18.403    0.000    0.358
##    .ssmc    (.48.)    0.247    0.019   12.907    0.000    0.210
##    .ssao    (.49.)    0.326    0.024   13.805    0.000    0.280
##    .ssai    (.50.)    0.052    0.017    3.028    0.002    0.018
##    .sssi    (.51.)    0.072    0.018    4.006    0.000    0.037
##    .ssei    (.52.)    0.133    0.019    7.154    0.000    0.096
##    .ssno              0.250    0.023   10.670    0.000    0.204
##    .sscs    (.54.)    0.350    0.022   15.867    0.000    0.307
##    .ssgs    (.55.)    0.338    0.020   16.774    0.000    0.298
##    .sswk              0.387    0.022   17.874    0.000    0.345
##    .sspc              0.461    0.022   21.372    0.000    0.419
##  ci.upper   Std.lv  Std.all
##     0.386    0.347    0.394
##     0.443    0.400    0.430
##     0.285    0.247    0.281
##     0.373    0.326    0.348
##     0.085    0.052    0.061
##     0.108    0.072    0.083
##     0.169    0.133    0.161
##     0.296    0.250    0.253
##     0.393    0.350    0.370
##     0.377    0.338    0.373
##     0.429    0.387    0.428
##     0.503    0.461    0.501
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.166    0.011   15.214    0.000    0.145
##    .ssmk              0.192    0.010   19.324    0.000    0.172
##    .ssmc              0.227    0.012   18.590    0.000    0.203
##    .ssao              0.352    0.025   13.866    0.000    0.302
##    .ssai              0.312    0.016   19.515    0.000    0.280
##    .sssi              0.259    0.016   15.771    0.000    0.226
##    .ssei              0.246    0.011   22.122    0.000    0.224
##    .ssno              0.113    0.038    2.941    0.003    0.038
##    .sscs              0.435    0.021   20.624    0.000    0.394
##    .ssgs              0.176    0.009   19.919    0.000    0.158
##    .sswk              0.179    0.009   21.086    0.000    0.163
##    .sspc              0.204    0.011   17.978    0.000    0.181
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.187    0.166    0.215
##     0.211    0.192    0.221
##     0.251    0.227    0.294
##     0.402    0.352    0.400
##     0.343    0.312    0.438
##     0.291    0.259    0.344
##     0.268    0.246    0.361
##     0.188    0.113    0.115
##     0.476    0.435    0.486
##     0.193    0.176    0.214
##     0.196    0.179    0.219
##     0.226    0.204    0.240
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.270    0.021   12.590    0.000    0.228
##     ssmk    (.p2.)    0.243    0.022   11.087    0.000    0.200
##     ssmc    (.p3.)    0.217    0.019   11.684    0.000    0.181
##     ssao    (.p4.)    0.408    0.027   15.033    0.000    0.355
##   electronic =~                                                
##     ssai    (.p5.)    0.421    0.019   22.348    0.000    0.384
##     sssi    (.p6.)    0.521    0.016   32.295    0.000    0.489
##     ssmc    (.p7.)    0.239    0.013   19.026    0.000    0.215
##     ssei    (.p8.)    0.251    0.014   18.246    0.000    0.224
##   speed =~                                                     
##     ssno    (.p9.)    0.739    0.031   23.535    0.000    0.677
##     sscs    (.10.)    0.427    0.021   20.679    0.000    0.387
##     ssmk    (.11.)    0.208    0.012   17.288    0.000    0.185
##   g =~                                                         
##     ssgs    (.12.)    0.802    0.013   62.403    0.000    0.777
##     ssar    (.13.)    0.731    0.014   51.065    0.000    0.703
##     sswk    (.14.)    0.799    0.013   61.596    0.000    0.774
##     sspc    (.15.)    0.802    0.012   68.170    0.000    0.779
##     ssno    (.16.)    0.565    0.017   33.261    0.000    0.531
##     sscs    (.17.)    0.528    0.015   34.936    0.000    0.498
##     ssai    (.18.)    0.472    0.016   30.045    0.000    0.441
##     sssi    (.19.)    0.471    0.015   30.658    0.000    0.441
##     ssmk    (.20.)    0.755    0.013   57.547    0.000    0.730
##     ssmc    (.21.)    0.666    0.014   46.802    0.000    0.638
##     ssei              0.806    0.019   41.462    0.000    0.768
##     ssao    (.23.)    0.602    0.014   44.110    0.000    0.575
##  ci.upper   Std.lv  Std.all
##                            
##     0.312    0.270    0.296
##     0.286    0.243    0.262
##     0.254    0.217    0.243
##     0.462    0.408    0.412
##                            
##     0.458    0.421    0.426
##     0.553    0.521    0.582
##     0.264    0.239    0.268
##     0.278    0.251    0.244
##                            
##     0.800    0.739    0.721
##     0.467    0.427    0.441
##     0.232    0.208    0.225
##                            
##     0.828    0.802    0.876
##     0.759    0.731    0.801
##     0.825    0.799    0.871
##     0.826    0.802    0.847
##     0.598    0.565    0.551
##     0.557    0.528    0.545
##     0.502    0.472    0.477
##     0.502    0.471    0.527
##     0.781    0.755    0.814
##     0.693    0.666    0.744
##     0.844    0.806    0.785
##     0.628    0.602    0.607
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.347    0.020   17.073    0.000    0.307
##    .ssmk    (.47.)    0.400    0.022   18.403    0.000    0.358
##    .ssmc    (.48.)    0.247    0.019   12.907    0.000    0.210
##    .ssao    (.49.)    0.326    0.024   13.805    0.000    0.280
##    .ssai    (.50.)    0.052    0.017    3.028    0.002    0.018
##    .sssi    (.51.)    0.072    0.018    4.006    0.000    0.037
##    .ssei    (.52.)    0.133    0.019    7.154    0.000    0.096
##    .ssno              0.747    0.068   10.948    0.000    0.614
##    .sscs    (.54.)    0.350    0.022   15.867    0.000    0.307
##    .ssgs    (.55.)    0.338    0.020   16.774    0.000    0.298
##    .sswk              0.206    0.024    8.560    0.000    0.159
##    .sspc              0.024    0.025    0.962    0.336   -0.025
##     math             -0.511    0.066   -7.776    0.000   -0.640
##     elctrnc           1.108    0.052   21.445    0.000    1.007
##     speed            -1.059    0.077  -13.787    0.000   -1.210
##     g                 0.233    0.037    6.209    0.000    0.159
##  ci.upper   Std.lv  Std.all
##     0.386    0.347    0.380
##     0.443    0.400    0.432
##     0.285    0.247    0.276
##     0.373    0.326    0.329
##     0.085    0.052    0.052
##     0.108    0.072    0.081
##     0.169    0.133    0.129
##     0.881    0.747    0.730
##     0.393    0.350    0.362
##     0.377    0.338    0.369
##     0.253    0.206    0.225
##     0.074    0.024    0.026
##    -0.382   -0.511   -0.511
##     1.210    1.108    1.108
##    -0.909   -1.059   -1.059
##     0.306    0.233    0.233
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.225    0.013   17.183    0.000    0.199
##    .ssmk              0.187    0.011   17.338    0.000    0.166
##    .ssmc              0.253    0.014   18.185    0.000    0.226
##    .ssao              0.452    0.026   17.240    0.000    0.401
##    .ssai              0.578    0.026   22.206    0.000    0.527
##    .sssi              0.307    0.020   15.513    0.000    0.268
##    .ssei              0.342    0.016   21.659    0.000    0.311
##    .ssno              0.185    0.043    4.351    0.000    0.102
##    .sscs              0.476    0.025   19.165    0.000    0.427
##    .ssgs              0.195    0.009   22.247    0.000    0.177
##    .sswk              0.204    0.010   20.629    0.000    0.184
##    .sspc              0.255    0.012   21.124    0.000    0.231
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.250    0.225    0.270
##     0.208    0.187    0.218
##     0.280    0.253    0.316
##     0.504    0.452    0.461
##     0.629    0.578    0.591
##     0.346    0.307    0.384
##     0.373    0.342    0.325
##     0.268    0.185    0.176
##     0.524    0.476    0.508
##     0.212    0.195    0.232
##     0.223    0.204    0.242
##     0.278    0.255    0.283
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
latent2<-cfa(bf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "sspc~1", "ssno~1", "sswk~1"))
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic 
##  1302.451   110.000     0.000     0.962     0.077     0.041 87027.581 
##       bic 
## 87461.927
Mc(latent2)
## [1] 0.8495978
summary(latent2, standardized=T, ci=T) # -.217
## lavaan 0.6-18 ended normally after 87 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       101
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1302.451    1143.488
##   Degrees of freedom                               110         110
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.139
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          481.662     422.876
##     0                                          820.788     720.612
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.269    0.022   12.304    0.000    0.226
##     ssmk    (.p2.)    0.242    0.022   10.835    0.000    0.198
##     ssmc    (.p3.)    0.215    0.019   11.577    0.000    0.179
##     ssao    (.p4.)    0.409    0.028   14.340    0.000    0.353
##   electronic =~                                                
##     ssai    (.p5.)    0.265    0.016   16.500    0.000    0.234
##     sssi    (.p6.)    0.305    0.018   16.492    0.000    0.269
##     ssmc    (.p7.)    0.138    0.010   13.827    0.000    0.118
##     ssei    (.p8.)    0.156    0.010   14.879    0.000    0.135
##   speed =~                                                     
##     ssno    (.p9.)    0.698    0.035   19.868    0.000    0.629
##     sscs    (.10.)    0.399    0.022   18.026    0.000    0.356
##     ssmk    (.11.)    0.195    0.012   16.262    0.000    0.172
##   g =~                                                         
##     ssgs    (.12.)    0.750    0.015   49.464    0.000    0.720
##     ssar    (.13.)    0.683    0.016   41.616    0.000    0.651
##     sswk    (.14.)    0.746    0.016   46.059    0.000    0.714
##     sspc    (.15.)    0.751    0.016   48.016    0.000    0.720
##     ssno    (.16.)    0.529    0.017   30.360    0.000    0.495
##     sscs    (.17.)    0.494    0.016   31.157    0.000    0.463
##     ssai    (.18.)    0.425    0.015   28.522    0.000    0.396
##     sssi    (.19.)    0.424    0.015   28.622    0.000    0.395
##     ssmk    (.20.)    0.706    0.016   43.360    0.000    0.674
##     ssmc    (.21.)    0.615    0.015   40.048    0.000    0.585
##     ssei              0.568    0.017   32.971    0.000    0.534
##     ssao    (.23.)    0.563    0.015   37.814    0.000    0.534
##  ci.upper   Std.lv  Std.all
##                            
##     0.311    0.269    0.319
##     0.286    0.242    0.273
##     0.252    0.215    0.262
##     0.464    0.409    0.448
##                            
##     0.297    0.265    0.351
##     0.341    0.305    0.402
##     0.157    0.138    0.167
##     0.176    0.156    0.202
##                            
##     0.767    0.698    0.736
##     0.443    0.399    0.437
##     0.219    0.195    0.220
##                            
##     0.779    0.750    0.874
##     0.715    0.683    0.812
##     0.778    0.746    0.868
##     0.781    0.751    0.855
##     0.563    0.529    0.557
##     0.525    0.494    0.541
##     0.455    0.425    0.564
##     0.453    0.424    0.559
##     0.738    0.706    0.795
##     0.645    0.615    0.748
##     0.602    0.568    0.738
##     0.592    0.563    0.617
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.346    0.020   17.077    0.000    0.306
##    .ssmk    (.47.)    0.400    0.022   18.421    0.000    0.357
##    .ssmc    (.48.)    0.251    0.019   13.302    0.000    0.214
##    .ssao    (.49.)    0.325    0.024   13.771    0.000    0.279
##    .ssai    (.50.)    0.042    0.017    2.477    0.013    0.009
##    .sssi    (.51.)    0.081    0.018    4.473    0.000    0.046
##    .ssei    (.52.)    0.130    0.019    7.010    0.000    0.094
##    .ssno              0.250    0.023   10.680    0.000    0.204
##    .sscs    (.54.)    0.351    0.022   15.919    0.000    0.307
##    .ssgs    (.55.)    0.338    0.020   16.904    0.000    0.299
##    .sswk              0.387    0.022   17.943    0.000    0.344
##    .sspc              0.461    0.021   21.460    0.000    0.419
##  ci.upper   Std.lv  Std.all
##     0.385    0.346    0.411
##     0.442    0.400    0.450
##     0.288    0.251    0.306
##     0.371    0.325    0.356
##     0.075    0.042    0.056
##     0.117    0.081    0.107
##     0.166    0.130    0.169
##     0.295    0.250    0.263
##     0.394    0.351    0.384
##     0.378    0.338    0.395
##     0.429    0.387    0.450
##     0.503    0.461    0.525
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.168    0.011   14.900    0.000    0.146
##    .ssmk              0.192    0.010   19.098    0.000    0.173
##    .ssmc              0.232    0.012   18.853    0.000    0.208
##    .ssao              0.350    0.026   13.287    0.000    0.298
##    .ssai              0.318    0.015   21.132    0.000    0.289
##    .sssi              0.303    0.016   19.410    0.000    0.273
##    .ssei              0.246    0.011   22.443    0.000    0.225
##    .ssno              0.133    0.037    3.629    0.000    0.061
##    .sscs              0.431    0.020   21.084    0.000    0.391
##    .ssgs              0.174    0.009   20.311    0.000    0.157
##    .sswk              0.181    0.008   21.415    0.000    0.165
##    .sspc              0.207    0.011   18.193    0.000    0.185
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.190    0.168    0.238
##     0.212    0.192    0.244
##     0.256    0.232    0.343
##     0.401    0.350    0.419
##     0.348    0.318    0.559
##     0.334    0.303    0.527
##     0.267    0.246    0.415
##     0.205    0.133    0.148
##     0.471    0.431    0.516
##     0.191    0.174    0.236
##     0.198    0.181    0.246
##     0.230    0.207    0.269
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.269    0.022   12.304    0.000    0.226
##     ssmk    (.p2.)    0.242    0.022   10.835    0.000    0.198
##     ssmc    (.p3.)    0.215    0.019   11.577    0.000    0.179
##     ssao    (.p4.)    0.409    0.028   14.340    0.000    0.353
##   electronic =~                                                
##     ssai    (.p5.)    0.265    0.016   16.500    0.000    0.234
##     sssi    (.p6.)    0.305    0.018   16.492    0.000    0.269
##     ssmc    (.p7.)    0.138    0.010   13.827    0.000    0.118
##     ssei    (.p8.)    0.156    0.010   14.879    0.000    0.135
##   speed =~                                                     
##     ssno    (.p9.)    0.698    0.035   19.868    0.000    0.629
##     sscs    (.10.)    0.399    0.022   18.026    0.000    0.356
##     ssmk    (.11.)    0.195    0.012   16.262    0.000    0.172
##   g =~                                                         
##     ssgs    (.12.)    0.750    0.015   49.464    0.000    0.720
##     ssar    (.13.)    0.683    0.016   41.616    0.000    0.651
##     sswk    (.14.)    0.746    0.016   46.059    0.000    0.714
##     sspc    (.15.)    0.751    0.016   48.016    0.000    0.720
##     ssno    (.16.)    0.529    0.017   30.360    0.000    0.495
##     sscs    (.17.)    0.494    0.016   31.157    0.000    0.463
##     ssai    (.18.)    0.425    0.015   28.522    0.000    0.396
##     sssi    (.19.)    0.424    0.015   28.622    0.000    0.395
##     ssmk    (.20.)    0.706    0.016   43.360    0.000    0.674
##     ssmc    (.21.)    0.615    0.015   40.048    0.000    0.585
##     ssei              0.735    0.021   35.765    0.000    0.694
##     ssao    (.23.)    0.563    0.015   37.814    0.000    0.534
##  ci.upper   Std.lv  Std.all
##                            
##     0.311    0.269    0.284
##     0.286    0.242    0.250
##     0.252    0.215    0.229
##     0.464    0.409    0.403
##                            
##     0.297    0.596    0.563
##     0.341    0.686    0.700
##     0.157    0.309    0.329
##     0.176    0.350    0.326
##                            
##     0.767    0.785    0.738
##     0.443    0.449    0.450
##     0.219    0.219    0.227
##                            
##     0.779    0.851    0.887
##     0.715    0.775    0.819
##     0.778    0.847    0.882
##     0.781    0.852    0.864
##     0.563    0.600    0.565
##     0.525    0.561    0.562
##     0.455    0.483    0.456
##     0.453    0.481    0.491
##     0.738    0.801    0.829
##     0.645    0.698    0.743
##     0.775    0.834    0.776
##     0.592    0.639    0.630
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.346    0.020   17.077    0.000    0.306
##    .ssmk    (.47.)    0.400    0.022   18.421    0.000    0.357
##    .ssmc    (.48.)    0.251    0.019   13.302    0.000    0.214
##    .ssao    (.49.)    0.325    0.024   13.771    0.000    0.279
##    .ssai    (.50.)    0.042    0.017    2.477    0.013    0.009
##    .sssi    (.51.)    0.081    0.018    4.473    0.000    0.046
##    .ssei    (.52.)    0.130    0.019    7.010    0.000    0.094
##    .ssno              0.757    0.069   10.919    0.000    0.621
##    .sscs    (.54.)    0.351    0.022   15.919    0.000    0.307
##    .ssgs    (.55.)    0.338    0.020   16.904    0.000    0.299
##    .sswk              0.208    0.024    8.701    0.000    0.161
##    .sspc              0.026    0.025    1.032    0.302   -0.023
##     math             -0.500    0.065   -7.640    0.000   -0.629
##     elctrnc           1.866    0.132   14.109    0.000    1.607
##     speed            -1.132    0.089  -12.707    0.000   -1.307
##     g                 0.247    0.039    6.251    0.000    0.169
##  ci.upper   Std.lv  Std.all
##     0.385    0.346    0.365
##     0.442    0.400    0.413
##     0.288    0.251    0.267
##     0.371    0.325    0.320
##     0.075    0.042    0.040
##     0.117    0.081    0.083
##     0.166    0.130    0.121
##     0.893    0.757    0.712
##     0.394    0.351    0.351
##     0.378    0.338    0.353
##     0.255    0.208    0.217
##     0.076    0.026    0.026
##    -0.372   -0.500   -0.500
##     2.125    0.830    0.830
##    -0.958   -1.008   -1.008
##     0.324    0.217    0.217
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.224    0.013   17.204    0.000    0.198
##    .ssmk              0.186    0.011   17.127    0.000    0.165
##    .ssmc              0.253    0.014   18.738    0.000    0.227
##    .ssao              0.453    0.027   16.903    0.000    0.400
##    .ssai              0.532    0.025   21.187    0.000    0.483
##    .sssi              0.259    0.020   13.164    0.000    0.220
##    .ssei              0.336    0.016   21.483    0.000    0.305
##    .ssno              0.154    0.046    3.373    0.001    0.064
##    .sscs              0.480    0.025   18.927    0.000    0.431
##    .ssgs              0.197    0.009   21.993    0.000    0.179
##    .sswk              0.204    0.010   20.220    0.000    0.184
##    .sspc              0.248    0.012   20.820    0.000    0.224
##     electronic        5.060    0.638    7.926    0.000    3.808
##     speed             1.263    0.119   10.624    0.000    1.030
##     g                 1.288    0.066   19.473    0.000    1.158
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.249    0.224    0.249
##     0.208    0.186    0.199
##     0.280    0.253    0.287
##     0.505    0.453    0.441
##     0.581    0.532    0.475
##     0.298    0.259    0.270
##     0.366    0.336    0.291
##     0.243    0.154    0.136
##     0.530    0.480    0.482
##     0.214    0.197    0.214
##     0.223    0.204    0.221
##     0.271    0.248    0.254
##     6.311    1.000    1.000
##     1.496    1.000    1.000
##     1.418    1.000    1.000
standardizedSolution(latent2) # get the correct SEs for standardized solution
##           lhs op        rhs group label est.std    se       z pvalue
## 1        math =~       ssar     1  .p1.   0.319 0.026  12.062  0.000
## 2        math =~       ssmk     1  .p2.   0.273 0.026  10.699  0.000
## 3        math =~       ssmc     1  .p3.   0.262 0.022  11.781  0.000
## 4        math =~       ssao     1  .p4.   0.448 0.031  14.419  0.000
## 5  electronic =~       ssai     1  .p5.   0.351 0.020  17.196  0.000
## 6  electronic =~       sssi     1  .p6.   0.402 0.023  17.205  0.000
## 7  electronic =~       ssmc     1  .p7.   0.167 0.012  13.914  0.000
## 8  electronic =~       ssei     1  .p8.   0.202 0.014  14.727  0.000
## 9       speed =~       ssno     1  .p9.   0.736 0.032  22.967  0.000
## 10      speed =~       sscs     1 .p10.   0.437 0.022  19.531  0.000
## 11      speed =~       ssmk     1 .p11.   0.220 0.014  15.994  0.000
## 12          g =~       ssgs     1 .p12.   0.874 0.007 131.126  0.000
## 13          g =~       ssar     1 .p13.   0.812 0.009  92.705  0.000
## 14          g =~       sswk     1 .p14.   0.868 0.007 123.029  0.000
## 15          g =~       sspc     1 .p15.   0.855 0.009  99.321  0.000
## 16          g =~       ssno     1 .p16.   0.557 0.017  32.350  0.000
## 17          g =~       sscs     1 .p17.   0.541 0.015  35.573  0.000
## 18          g =~       ssai     1 .p18.   0.564 0.016  35.718  0.000
## 19          g =~       sssi     1 .p19.   0.559 0.015  36.412  0.000
## 20          g =~       ssmk     1 .p20.   0.795 0.009  87.481  0.000
## 21          g =~       ssmc     1 .p21.   0.748 0.011  69.847  0.000
## 22          g =~       ssei     1         0.738 0.012  61.035  0.000
## 23          g =~       ssao     1 .p23.   0.617 0.013  47.196  0.000
## 24       math ~~       math     1         1.000 0.000      NA     NA
## 25       ssar ~~       ssar     1         0.238 0.015  15.392  0.000
## 26       ssmk ~~       ssmk     1         0.244 0.013  18.905  0.000
## 27       ssmc ~~       ssmc     1         0.343 0.017  20.286  0.000
## 28       ssao ~~       ssao     1         0.419 0.030  14.170  0.000
## 29       ssai ~~       ssai     1         0.559 0.020  27.795  0.000
## 30       sssi ~~       sssi     1         0.527 0.022  23.895  0.000
## 31       ssei ~~       ssei     1         0.415 0.017  23.890  0.000
## 32       ssno ~~       ssno     1         0.148 0.041   3.594  0.000
## 33       sscs ~~       sscs     1         0.516 0.020  25.309  0.000
## 34       ssgs ~~       ssgs     1         0.236 0.012  20.283  0.000
## 35       sswk ~~       sswk     1         0.246 0.012  20.053  0.000
## 36       sspc ~~       sspc     1         0.269 0.015  18.269  0.000
## 37 electronic ~~ electronic     1         1.000 0.000      NA     NA
## 38      speed ~~      speed     1         1.000 0.000      NA     NA
## 39          g ~~          g     1         1.000 0.000      NA     NA
## 40       math ~~ electronic     1         0.000 0.000      NA     NA
## 41       math ~~      speed     1         0.000 0.000      NA     NA
## 42       math ~~          g     1         0.000 0.000      NA     NA
## 43 electronic ~~      speed     1         0.000 0.000      NA     NA
## 44 electronic ~~          g     1         0.000 0.000      NA     NA
## 45      speed ~~          g     1         0.000 0.000      NA     NA
## 46       ssar ~1                1 .p46.   0.411 0.027  15.267  0.000
## 47       ssmk ~1                1 .p47.   0.450 0.027  16.827  0.000
## 48       ssmc ~1                1 .p48.   0.306 0.025  12.061  0.000
## 49       ssao ~1                1 .p49.   0.356 0.027  13.112  0.000
## 50       ssai ~1                1 .p50.   0.056 0.023   2.465  0.014
## 51       sssi ~1                1 .p51.   0.107 0.024   4.479  0.000
## 52       ssei ~1                1 .p52.   0.169 0.024   6.906  0.000
## 53       ssno ~1                1         0.263 0.026  10.100  0.000
## 54       sscs ~1                1 .p54.   0.384 0.025  15.112  0.000
## 55       ssgs ~1                1 .p55.   0.395 0.025  15.808  0.000
## 56       sswk ~1                1         0.450 0.027  16.547  0.000
## 57       sspc ~1                1         0.525 0.028  18.859  0.000
## 58       math ~1                1         0.000 0.000      NA     NA
## 59 electronic ~1                1         0.000 0.000      NA     NA
## 60      speed ~1                1         0.000 0.000      NA     NA
## 61          g ~1                1         0.000 0.000      NA     NA
## 62       math =~       ssar     2  .p1.   0.284 0.023  12.131  0.000
## 63       math =~       ssmk     2  .p2.   0.250 0.024  10.643  0.000
## 64       math =~       ssmc     2  .p3.   0.229 0.020  11.718  0.000
## 65       math =~       ssao     2  .p4.   0.403 0.028  14.386  0.000
## 66 electronic =~       ssai     2  .p5.   0.563 0.020  27.909  0.000
## 67 electronic =~       sssi     2  .p6.   0.700 0.016  43.178  0.000
## 68 electronic =~       ssmc     2  .p7.   0.329 0.016  20.215  0.000
## 69 electronic =~       ssei     2  .p8.   0.326 0.018  18.454  0.000
## 70      speed =~       ssno     2  .p9.   0.738 0.031  23.999  0.000
## 71      speed =~       sscs     2 .p10.   0.450 0.022  20.554  0.000
## 72      speed =~       ssmk     2 .p11.   0.227 0.014  15.796  0.000
## 73          g =~       ssgs     2 .p12.   0.887 0.006 142.492  0.000
## 74          g =~       ssar     2 .p13.   0.819 0.008  98.232  0.000
## 75          g =~       sswk     2 .p14.   0.882 0.006 139.487  0.000
## 76          g =~       sspc     2 .p15.   0.864 0.007 121.671  0.000
## 77          g =~       ssno     2 .p16.   0.565 0.017  34.129  0.000
## 78          g =~       sscs     2 .p17.   0.562 0.015  38.389  0.000
## 79          g =~       ssai     2 .p18.   0.456 0.016  28.766  0.000
## 80          g =~       sssi     2 .p19.   0.491 0.016  31.656  0.000
## 81          g =~       ssmk     2 .p20.   0.829 0.007 111.841  0.000
## 82          g =~       ssmc     2 .p21.   0.743 0.011  70.515  0.000
## 83          g =~       ssei     2         0.776 0.011  70.665  0.000
## 84          g =~       ssao     2 .p23.   0.630 0.013  48.902  0.000
## 85       math ~~       math     2         1.000 0.000      NA     NA
## 86       ssar ~~       ssar     2         0.249 0.014  17.743  0.000
## 87       ssmk ~~       ssmk     2         0.199 0.011  17.391  0.000
## 88       ssmc ~~       ssmc     2         0.287 0.015  19.605  0.000
## 89       ssao ~~       ssao     2         0.441 0.025  17.963  0.000
## 90       ssai ~~       ssai     2         0.475 0.020  23.396  0.000
##    ci.lower ci.upper
## 1     0.268    0.371
## 2     0.223    0.323
## 3     0.218    0.305
## 4     0.387    0.508
## 5     0.311    0.391
## 6     0.356    0.447
## 7     0.144    0.191
## 8     0.175    0.229
## 9     0.673    0.799
## 10    0.393    0.481
## 11    0.193    0.247
## 12    0.861    0.887
## 13    0.795    0.830
## 14    0.855    0.882
## 15    0.838    0.872
## 16    0.524    0.591
## 17    0.511    0.571
## 18    0.533    0.595
## 19    0.529    0.589
## 20    0.778    0.813
## 21    0.727    0.769
## 22    0.714    0.761
## 23    0.591    0.642
## 24    1.000    1.000
## 25    0.208    0.268
## 26    0.219    0.270
## 27    0.310    0.377
## 28    0.361    0.478
## 29    0.519    0.598
## 30    0.483    0.570
## 31    0.381    0.449
## 32    0.067    0.228
## 33    0.476    0.556
## 34    0.213    0.259
## 35    0.222    0.270
## 36    0.240    0.298
## 37    1.000    1.000
## 38    1.000    1.000
## 39    1.000    1.000
## 40    0.000    0.000
## 41    0.000    0.000
## 42    0.000    0.000
## 43    0.000    0.000
## 44    0.000    0.000
## 45    0.000    0.000
## 46    0.358    0.464
## 47    0.398    0.503
## 48    0.256    0.355
## 49    0.303    0.409
## 50    0.011    0.100
## 51    0.060    0.154
## 52    0.121    0.217
## 53    0.212    0.314
## 54    0.334    0.434
## 55    0.346    0.443
## 56    0.397    0.503
## 57    0.470    0.579
## 58    0.000    0.000
## 59    0.000    0.000
## 60    0.000    0.000
## 61    0.000    0.000
## 62    0.238    0.329
## 63    0.204    0.297
## 64    0.191    0.267
## 65    0.348    0.458
## 66    0.524    0.603
## 67    0.668    0.731
## 68    0.297    0.361
## 69    0.291    0.361
## 70    0.678    0.799
## 71    0.407    0.493
## 72    0.199    0.255
## 73    0.874    0.899
## 74    0.802    0.835
## 75    0.870    0.895
## 76    0.850    0.877
## 77    0.532    0.597
## 78    0.533    0.591
## 79    0.425    0.487
## 80    0.461    0.521
## 81    0.814    0.843
## 82    0.722    0.764
## 83    0.755    0.798
## 84    0.605    0.655
## 85    1.000    1.000
## 86    0.222    0.277
## 87    0.177    0.222
## 88    0.258    0.316
## 89    0.393    0.489
## 90    0.435    0.515
##  [ reached 'max' / getOption("max.print") -- omitted 32 rows ]
tests<-lavTestLRT(configural, metric2, scalar2, latent2)
Td=tests[2:5,"Chisq diff"]
Td
## [1] 42.8916991 47.5201179  0.4049352         NA
dfd=tests[2:5,"Df diff"]
dfd
## [1] 18  5  1 NA
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.02750069 0.06819692        NaN         NA
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.01695667 0.03818834
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.05129138 0.08651128
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]         NA 0.05292329
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.999     0.994     0.000     0.000     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.961     0.799     0.151     0.002
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.475     0.439     0.064     0.026     0.003     0.000
tests<-lavTestLRT(configural, metric2, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1]  42.89170  47.52012 282.53642
dfd=tests[2:4,"Df diff"]
dfd
## [1] 18  5  4
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.02750069 0.06819692 0.19514773
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.05129138 0.08651128
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.1761846 0.2147493
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.961     0.799     0.151     0.002
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric2, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1]  42.89170  47.52012 154.11205
dfd=tests[2:4,"Df diff"]
dfd
## [1] 18  5 12
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.02750069 0.06819692 0.08047803
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.01695667 0.03818834
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.05129138 0.08651128
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.06940886 0.09204285
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.999     0.994     0.000     0.000     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.961     0.799     0.151     0.002
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.999     0.544     0.003
tests<-lavTestLRT(configural, metric2, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]  42.8917 632.7873
dfd=tests[2:3,"Df diff"]
dfd
## [1] 18  8
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.02750069 0.20666818
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.01695667 0.03818834
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1931671 0.2204393
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.999     0.994     0.000     0.000     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric)
Td=tests[2,"Chisq diff"]
Td
## [1] 105.224
dfd=tests[2,"Df diff"]
dfd
## [1] 19
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1770+ 1889 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04981841
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04075397 0.05931140
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.507     0.039     0.000     0.000
bf.age<-'
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
g ~ agec
'

bf.ageq<-'
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
g ~ c(a,a)*agec
'

bf.age2<-'
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
g ~ agec+agec2
'

bf.age2q<-'
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
g ~ c(a,a)*agec+c(b,b)*agec2
'

sem.age<-sem(bf.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "sspc~1", "ssno~1", "sswk~1"))
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##  2011.670   132.000     0.000     0.943     0.088     0.049     0.589 
##       aic       bic 
## 86495.004 86941.760
Mc(sem.age)
## [1] 0.7734255
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 85 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       103
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2011.670    1755.899
##   Degrees of freedom                               132         132
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.146
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          769.735     671.868
##     0                                         1241.935    1084.031
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.272    0.021   12.794    0.000    0.230
##     ssmk    (.p2.)    0.239    0.021   11.195    0.000    0.197
##     ssmc    (.p3.)    0.221    0.018   12.220    0.000    0.186
##     ssao    (.p4.)    0.414    0.027   15.124    0.000    0.360
##   electronic =~                                                
##     ssai    (.p5.)    0.261    0.016   16.362    0.000    0.230
##     sssi    (.p6.)    0.303    0.019   16.316    0.000    0.267
##     ssmc    (.p7.)    0.138    0.010   13.695    0.000    0.118
##     ssei    (.p8.)    0.153    0.010   14.725    0.000    0.132
##   speed =~                                                     
##     ssno    (.p9.)    0.700    0.036   19.521    0.000    0.630
##     sscs    (.10.)    0.394    0.022   17.742    0.000    0.350
##     ssmk    (.11.)    0.192    0.012   16.112    0.000    0.169
##   g =~                                                         
##     ssgs    (.12.)    0.690    0.015   45.749    0.000    0.660
##     ssar    (.13.)    0.627    0.016   38.783    0.000    0.595
##     sswk    (.14.)    0.688    0.016   43.467    0.000    0.657
##     sspc    (.15.)    0.689    0.016   43.741    0.000    0.658
##     ssno    (.16.)    0.488    0.016   29.630    0.000    0.456
##     sscs    (.17.)    0.457    0.015   30.574    0.000    0.428
##     ssai    (.18.)    0.396    0.014   28.765    0.000    0.369
##     sssi    (.19.)    0.392    0.014   28.248    0.000    0.365
##     ssmk    (.20.)    0.652    0.016   41.727    0.000    0.622
##     ssmc    (.21.)    0.565    0.015   37.432    0.000    0.536
##     ssei              0.525    0.016   32.344    0.000    0.493
##     ssao    (.23.)    0.517    0.015   35.420    0.000    0.488
##  ci.upper   Std.lv  Std.all
##                            
##     0.314    0.272    0.323
##     0.281    0.239    0.269
##     0.257    0.221    0.269
##     0.468    0.414    0.453
##                            
##     0.293    0.261    0.346
##     0.340    0.303    0.399
##     0.157    0.138    0.167
##     0.173    0.153    0.198
##                            
##     0.770    0.700    0.738
##     0.437    0.394    0.431
##     0.215    0.192    0.216
##                            
##     0.719    0.749    0.873
##     0.659    0.681    0.809
##     0.719    0.747    0.870
##     0.720    0.748    0.852
##     0.521    0.530    0.559
##     0.486    0.496    0.544
##     0.423    0.430    0.569
##     0.420    0.426    0.561
##     0.683    0.708    0.798
##     0.595    0.614    0.746
##     0.557    0.570    0.740
##     0.545    0.561    0.614
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.293    0.020   14.818    0.000    0.254
##  ci.upper   Std.lv  Std.all
##                            
##     0.332    0.270    0.390
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.45.)    0.349    0.019   17.935    0.000    0.311
##    .ssmk    (.46.)    0.401    0.020   20.164    0.000    0.362
##    .ssmc    (.47.)    0.254    0.018   13.930    0.000    0.218
##    .ssao    (.48.)    0.328    0.023   14.212    0.000    0.283
##    .ssai    (.49.)    0.044    0.016    2.740    0.006    0.013
##    .sssi    (.50.)    0.082    0.018    4.653    0.000    0.047
##    .ssei    (.51.)    0.133    0.017    7.719    0.000    0.099
##    .ssno              0.252    0.022   11.243    0.000    0.208
##    .sscs    (.53.)    0.354    0.021   16.984    0.000    0.313
##    .ssgs    (.54.)    0.341    0.019   18.043    0.000    0.304
##    .sswk              0.390    0.020   19.540    0.000    0.351
##    .sspc              0.464    0.021   22.495    0.000    0.423
##  ci.upper   Std.lv  Std.all
##     0.387    0.349    0.415
##     0.440    0.401    0.452
##     0.290    0.254    0.309
##     0.373    0.328    0.359
##     0.076    0.044    0.059
##     0.116    0.082    0.107
##     0.167    0.133    0.173
##     0.296    0.252    0.266
##     0.395    0.354    0.388
##     0.378    0.341    0.398
##     0.429    0.390    0.454
##     0.504    0.464    0.528
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.170    0.011   15.109    0.000    0.148
##    .ssmk              0.192    0.010   19.586    0.000    0.173
##    .ssmc              0.232    0.012   18.893    0.000    0.208
##    .ssao              0.347    0.026   13.532    0.000    0.297
##    .ssai              0.318    0.015   21.162    0.000    0.288
##    .sssi              0.304    0.016   19.397    0.000    0.273
##    .ssei              0.245    0.011   22.467    0.000    0.223
##    .ssno              0.128    0.038    3.406    0.001    0.054
##    .sscs              0.432    0.020   21.171    0.000    0.392
##    .ssgs              0.174    0.008   20.660    0.000    0.158
##    .sswk              0.179    0.008   21.301    0.000    0.163
##    .sspc              0.211    0.011   18.405    0.000    0.189
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.192    0.170    0.240
##     0.211    0.192    0.243
##     0.256    0.232    0.343
##     0.398    0.347    0.417
##     0.347    0.318    0.556
##     0.334    0.304    0.526
##     0.266    0.245    0.413
##     0.202    0.128    0.142
##     0.472    0.432    0.518
##     0.191    0.174    0.237
##     0.196    0.179    0.243
##     0.234    0.211    0.274
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.848    0.848
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.272    0.021   12.794    0.000    0.230
##     ssmk    (.p2.)    0.239    0.021   11.195    0.000    0.197
##     ssmc    (.p3.)    0.221    0.018   12.220    0.000    0.186
##     ssao    (.p4.)    0.414    0.027   15.124    0.000    0.360
##   electronic =~                                                
##     ssai    (.p5.)    0.261    0.016   16.362    0.000    0.230
##     sssi    (.p6.)    0.303    0.019   16.316    0.000    0.267
##     ssmc    (.p7.)    0.138    0.010   13.695    0.000    0.118
##     ssei    (.p8.)    0.153    0.010   14.725    0.000    0.132
##   speed =~                                                     
##     ssno    (.p9.)    0.700    0.036   19.521    0.000    0.630
##     sscs    (.10.)    0.394    0.022   17.742    0.000    0.350
##     ssmk    (.11.)    0.192    0.012   16.112    0.000    0.169
##   g =~                                                         
##     ssgs    (.12.)    0.690    0.015   45.749    0.000    0.660
##     ssar    (.13.)    0.627    0.016   38.783    0.000    0.595
##     sswk    (.14.)    0.688    0.016   43.467    0.000    0.657
##     sspc    (.15.)    0.689    0.016   43.741    0.000    0.658
##     ssno    (.16.)    0.488    0.016   29.630    0.000    0.456
##     sscs    (.17.)    0.457    0.015   30.574    0.000    0.428
##     ssai    (.18.)    0.396    0.014   28.765    0.000    0.369
##     sssi    (.19.)    0.392    0.014   28.248    0.000    0.365
##     ssmk    (.20.)    0.652    0.016   41.727    0.000    0.622
##     ssmc    (.21.)    0.565    0.015   37.432    0.000    0.536
##     ssei              0.679    0.020   34.545    0.000    0.641
##     ssao    (.23.)    0.517    0.015   35.420    0.000    0.488
##  ci.upper   Std.lv  Std.all
##                            
##     0.314    0.272    0.287
##     0.281    0.239    0.247
##     0.257    0.221    0.236
##     0.468    0.414    0.408
##                            
##     0.293    0.588    0.556
##     0.340    0.682    0.697
##     0.157    0.309    0.329
##     0.173    0.343    0.320
##                            
##     0.770    0.789    0.742
##     0.437    0.444    0.445
##     0.215    0.216    0.223
##                            
##     0.719    0.850    0.886
##     0.659    0.772    0.816
##     0.719    0.848    0.884
##     0.720    0.849    0.861
##     0.521    0.602    0.566
##     0.486    0.563    0.564
##     0.423    0.488    0.462
##     0.420    0.484    0.494
##     0.683    0.804    0.831
##     0.595    0.696    0.741
##     0.718    0.837    0.779
##     0.545    0.637    0.628
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.320    0.021   14.936    0.000    0.278
##  ci.upper   Std.lv  Std.all
##                            
##     0.362    0.260    0.375
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.45.)    0.349    0.019   17.935    0.000    0.311
##    .ssmk    (.46.)    0.401    0.020   20.164    0.000    0.362
##    .ssmc    (.47.)    0.254    0.018   13.930    0.000    0.218
##    .ssao    (.48.)    0.328    0.023   14.212    0.000    0.283
##    .ssai    (.49.)    0.044    0.016    2.740    0.006    0.013
##    .sssi    (.50.)    0.082    0.018    4.653    0.000    0.047
##    .ssei    (.51.)    0.133    0.017    7.719    0.000    0.099
##    .ssno              0.777    0.071   10.898    0.000    0.638
##    .sscs    (.53.)    0.354    0.021   16.984    0.000    0.313
##    .ssgs    (.54.)    0.341    0.019   18.043    0.000    0.304
##    .sswk              0.210    0.023    9.133    0.000    0.165
##    .sspc              0.029    0.024    1.185    0.236   -0.019
##     math             -0.499    0.064   -7.799    0.000   -0.625
##     elctrnc           1.881    0.134   14.010    0.000    1.618
##     speed            -1.158    0.092  -12.620    0.000   -1.337
##    .g                 0.289    0.041    7.120    0.000    0.209
##  ci.upper   Std.lv  Std.all
##     0.387    0.349    0.369
##     0.440    0.401    0.415
##     0.290    0.254    0.270
##     0.373    0.328    0.324
##     0.076    0.044    0.042
##     0.116    0.082    0.083
##     0.167    0.133    0.124
##     0.917    0.777    0.731
##     0.395    0.354    0.354
##     0.378    0.341    0.355
##     0.255    0.210    0.219
##     0.076    0.029    0.029
##    -0.374   -0.499   -0.499
##     2.145    0.837    0.837
##    -0.978   -1.027   -1.027
##     0.368    0.234    0.234
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.225    0.013   17.395    0.000    0.200
##    .ssmk              0.186    0.011   17.646    0.000    0.166
##    .ssmc              0.253    0.013   18.709    0.000    0.226
##    .ssao              0.451    0.026   17.223    0.000    0.400
##    .ssai              0.534    0.025   21.338    0.000    0.485
##    .sssi              0.258    0.020   13.127    0.000    0.220
##    .ssei              0.335    0.016   21.584    0.000    0.305
##    .ssno              0.146    0.047    3.113    0.002    0.054
##    .sscs              0.482    0.025   18.994    0.000    0.432
##    .ssgs              0.198    0.009   22.188    0.000    0.180
##    .sswk              0.202    0.010   20.329    0.000    0.183
##    .sspc              0.253    0.012   20.959    0.000    0.229
##     electronic        5.055    0.644    7.845    0.000    3.792
##     speed             1.270    0.121   10.538    0.000    1.034
##    .g                 1.305    0.073   17.945    0.000    1.163
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.251    0.225    0.251
##     0.207    0.186    0.199
##     0.279    0.253    0.286
##     0.502    0.451    0.439
##     0.583    0.534    0.478
##     0.297    0.258    0.270
##     0.365    0.335    0.291
##     0.238    0.146    0.129
##     0.532    0.482    0.484
##     0.215    0.198    0.215
##     0.221    0.202    0.219
##     0.276    0.253    0.260
##     6.318    1.000    1.000
##     1.507    1.000    1.000
##     1.448    0.860    0.860
sem.ageq<-sem(bf.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "sspc~1", "ssno~1", "sswk~1"))
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##  2012.824   133.000     0.000     0.943     0.088     0.050     0.589 
##       aic       bic 
## 86494.159 86934.710
Mc(sem.ageq)
## [1] 0.7734092
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 85 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       103
##   Number of equality constraints                    32
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2012.824    1757.114
##   Degrees of freedom                               133         133
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.146
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          770.167     672.324
##     0                                         1242.657    1084.789
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.272    0.021   12.796    0.000    0.230
##     ssmk    (.p2.)    0.239    0.021   11.196    0.000    0.197
##     ssmc    (.p3.)    0.221    0.018   12.228    0.000    0.186
##     ssao    (.p4.)    0.414    0.027   15.130    0.000    0.360
##   electronic =~                                                
##     ssai    (.p5.)    0.261    0.016   16.361    0.000    0.230
##     sssi    (.p6.)    0.303    0.019   16.310    0.000    0.267
##     ssmc    (.p7.)    0.137    0.010   13.695    0.000    0.118
##     ssei    (.p8.)    0.153    0.010   14.729    0.000    0.132
##   speed =~                                                     
##     ssno    (.p9.)    0.700    0.036   19.509    0.000    0.630
##     sscs    (.10.)    0.394    0.022   17.743    0.000    0.350
##     ssmk    (.11.)    0.192    0.012   16.114    0.000    0.168
##   g =~                                                         
##     ssgs    (.12.)    0.690    0.015   45.687    0.000    0.660
##     ssar    (.13.)    0.627    0.016   38.751    0.000    0.595
##     sswk    (.14.)    0.688    0.016   43.428    0.000    0.657
##     sspc    (.15.)    0.689    0.016   43.712    0.000    0.658
##     ssno    (.16.)    0.488    0.016   29.616    0.000    0.456
##     sscs    (.17.)    0.457    0.015   30.555    0.000    0.428
##     ssai    (.18.)    0.396    0.014   28.762    0.000    0.369
##     sssi    (.19.)    0.392    0.014   28.237    0.000    0.365
##     ssmk    (.20.)    0.652    0.016   41.680    0.000    0.622
##     ssmc    (.21.)    0.565    0.015   37.397    0.000    0.536
##     ssei              0.525    0.016   32.341    0.000    0.493
##     ssao    (.23.)    0.517    0.015   35.383    0.000    0.488
##  ci.upper   Std.lv  Std.all
##                            
##     0.314    0.272    0.322
##     0.281    0.239    0.268
##     0.257    0.221    0.268
##     0.468    0.414    0.452
##                            
##     0.293    0.261    0.345
##     0.339    0.303    0.398
##     0.157    0.137    0.167
##     0.173    0.153    0.198
##                            
##     0.770    0.700    0.737
##     0.437    0.394    0.430
##     0.215    0.192    0.215
##                            
##     0.720    0.754    0.875
##     0.659    0.685    0.811
##     0.720    0.752    0.872
##     0.720    0.753    0.853
##     0.521    0.534    0.562
##     0.487    0.500    0.546
##     0.423    0.433    0.571
##     0.420    0.429    0.563
##     0.683    0.713    0.800
##     0.595    0.618    0.748
##     0.557    0.574    0.742
##     0.545    0.565    0.617
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.305    0.015   19.811    0.000    0.275
##  ci.upper   Std.lv  Std.all
##                            
##     0.335    0.279    0.403
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.45.)    0.349    0.019   17.937    0.000    0.311
##    .ssmk    (.46.)    0.402    0.020   20.209    0.000    0.363
##    .ssmc    (.47.)    0.254    0.018   13.932    0.000    0.218
##    .ssao    (.48.)    0.328    0.023   14.212    0.000    0.283
##    .ssai    (.49.)    0.044    0.016    2.749    0.006    0.013
##    .sssi    (.50.)    0.082    0.018    4.664    0.000    0.047
##    .ssei    (.51.)    0.133    0.017    7.733    0.000    0.100
##    .ssno              0.252    0.022   11.259    0.000    0.208
##    .sscs    (.53.)    0.354    0.021   17.017    0.000    0.313
##    .ssgs    (.54.)    0.341    0.019   18.057    0.000    0.304
##    .sswk              0.390    0.020   19.563    0.000    0.351
##    .sspc              0.464    0.021   22.482    0.000    0.423
##  ci.upper   Std.lv  Std.all
##     0.387    0.349    0.413
##     0.440    0.402    0.451
##     0.290    0.254    0.308
##     0.373    0.328    0.359
##     0.076    0.044    0.059
##     0.116    0.082    0.107
##     0.167    0.133    0.173
##     0.296    0.252    0.265
##     0.395    0.354    0.387
##     0.378    0.341    0.396
##     0.429    0.390    0.452
##     0.504    0.464    0.526
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.170    0.011   15.117    0.000    0.148
##    .ssmk              0.192    0.010   19.593    0.000    0.172
##    .ssmc              0.232    0.012   18.895    0.000    0.208
##    .ssao              0.347    0.026   13.532    0.000    0.297
##    .ssai              0.318    0.015   21.161    0.000    0.288
##    .sssi              0.304    0.016   19.404    0.000    0.273
##    .ssei              0.245    0.011   22.468    0.000    0.223
##    .ssno              0.128    0.038    3.411    0.001    0.055
##    .sscs              0.432    0.020   21.173    0.000    0.392
##    .ssgs              0.175    0.008   20.677    0.000    0.158
##    .sswk              0.179    0.008   21.301    0.000    0.162
##    .sspc              0.211    0.011   18.402    0.000    0.189
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.192    0.170    0.238
##     0.211    0.192    0.241
##     0.256    0.232    0.340
##     0.398    0.347    0.415
##     0.347    0.318    0.554
##     0.334    0.304    0.524
##     0.266    0.245    0.410
##     0.202    0.128    0.142
##     0.472    0.432    0.516
##     0.191    0.175    0.235
##     0.195    0.179    0.240
##     0.234    0.211    0.272
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.837    0.837
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.272    0.021   12.796    0.000    0.230
##     ssmk    (.p2.)    0.239    0.021   11.196    0.000    0.197
##     ssmc    (.p3.)    0.221    0.018   12.228    0.000    0.186
##     ssao    (.p4.)    0.414    0.027   15.130    0.000    0.360
##   electronic =~                                                
##     ssai    (.p5.)    0.261    0.016   16.361    0.000    0.230
##     sssi    (.p6.)    0.303    0.019   16.310    0.000    0.267
##     ssmc    (.p7.)    0.137    0.010   13.695    0.000    0.118
##     ssei    (.p8.)    0.153    0.010   14.729    0.000    0.132
##   speed =~                                                     
##     ssno    (.p9.)    0.700    0.036   19.509    0.000    0.630
##     sscs    (.10.)    0.394    0.022   17.743    0.000    0.350
##     ssmk    (.11.)    0.192    0.012   16.114    0.000    0.168
##   g =~                                                         
##     ssgs    (.12.)    0.690    0.015   45.687    0.000    0.660
##     ssar    (.13.)    0.627    0.016   38.751    0.000    0.595
##     sswk    (.14.)    0.688    0.016   43.428    0.000    0.657
##     sspc    (.15.)    0.689    0.016   43.712    0.000    0.658
##     ssno    (.16.)    0.488    0.016   29.616    0.000    0.456
##     sscs    (.17.)    0.457    0.015   30.555    0.000    0.428
##     ssai    (.18.)    0.396    0.014   28.762    0.000    0.369
##     sssi    (.19.)    0.392    0.014   28.237    0.000    0.365
##     ssmk    (.20.)    0.652    0.016   41.680    0.000    0.622
##     ssmc    (.21.)    0.565    0.015   37.397    0.000    0.536
##     ssei              0.679    0.020   34.491    0.000    0.641
##     ssao    (.23.)    0.517    0.015   35.383    0.000    0.488
##  ci.upper   Std.lv  Std.all
##                            
##     0.314    0.272    0.289
##     0.281    0.239    0.248
##     0.257    0.221    0.237
##     0.468    0.414    0.410
##                            
##     0.293    0.588    0.557
##     0.339    0.682    0.698
##     0.157    0.309    0.331
##     0.173    0.344    0.321
##                            
##     0.770    0.789    0.744
##     0.437    0.444    0.446
##     0.215    0.216    0.224
##                            
##     0.720    0.845    0.885
##     0.659    0.767    0.814
##     0.720    0.843    0.882
##     0.720    0.843    0.859
##     0.521    0.598    0.563
##     0.487    0.560    0.562
##     0.423    0.485    0.459
##     0.420    0.480    0.492
##     0.683    0.799    0.829
##     0.595    0.692    0.739
##     0.718    0.832    0.777
##     0.545    0.632    0.626
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.305    0.015   19.811    0.000    0.275
##  ci.upper   Std.lv  Std.all
##                            
##     0.335    0.249    0.359
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.45.)    0.349    0.019   17.937    0.000    0.311
##    .ssmk    (.46.)    0.402    0.020   20.209    0.000    0.363
##    .ssmc    (.47.)    0.254    0.018   13.932    0.000    0.218
##    .ssao    (.48.)    0.328    0.023   14.212    0.000    0.283
##    .ssai    (.49.)    0.044    0.016    2.749    0.006    0.013
##    .sssi    (.50.)    0.082    0.018    4.664    0.000    0.047
##    .ssei    (.51.)    0.133    0.017    7.733    0.000    0.100
##    .ssno              0.778    0.071   10.903    0.000    0.638
##    .sscs    (.53.)    0.354    0.021   17.017    0.000    0.313
##    .ssgs    (.54.)    0.341    0.019   18.057    0.000    0.304
##    .sswk              0.210    0.023    9.149    0.000    0.165
##    .sspc              0.029    0.024    1.196    0.232   -0.019
##     math             -0.499    0.064   -7.799    0.000   -0.624
##     elctrnc           1.882    0.134   14.012    0.000    1.619
##     speed            -1.158    0.092  -12.619    0.000   -1.338
##    .g                 0.287    0.040    7.113    0.000    0.208
##  ci.upper   Std.lv  Std.all
##     0.387    0.349    0.370
##     0.440    0.402    0.417
##     0.290    0.254    0.272
##     0.373    0.328    0.325
##     0.076    0.044    0.042
##     0.116    0.082    0.084
##     0.167    0.133    0.125
##     0.917    0.778    0.733
##     0.395    0.354    0.355
##     0.378    0.341    0.358
##     0.255    0.210    0.220
##     0.077    0.029    0.030
##    -0.374   -0.499   -0.499
##     2.146    0.837    0.837
##    -0.978   -1.027   -1.027
##     0.367    0.235    0.235
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.225    0.013   17.392    0.000    0.200
##    .ssmk              0.186    0.011   17.659    0.000    0.166
##    .ssmc              0.253    0.013   18.715    0.000    0.226
##    .ssao              0.451    0.026   17.223    0.000    0.399
##    .ssai              0.534    0.025   21.332    0.000    0.485
##    .sssi              0.258    0.020   13.129    0.000    0.220
##    .ssei              0.335    0.016   21.578    0.000    0.305
##    .ssno              0.146    0.047    3.111    0.002    0.054
##    .sscs              0.482    0.025   18.991    0.000    0.433
##    .ssgs              0.198    0.009   22.180    0.000    0.180
##    .sswk              0.202    0.010   20.322    0.000    0.183
##    .sspc              0.252    0.012   20.933    0.000    0.229
##     electronic        5.063    0.645    7.844    0.000    3.798
##     speed             1.271    0.121   10.538    0.000    1.035
##    .g                 1.305    0.073   17.940    0.000    1.162
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.251    0.225    0.254
##     0.207    0.186    0.201
##     0.279    0.253    0.288
##     0.502    0.451    0.441
##     0.583    0.534    0.479
##     0.297    0.258    0.271
##     0.365    0.335    0.293
##     0.238    0.146    0.130
##     0.532    0.482    0.486
##     0.215    0.198    0.217
##     0.221    0.202    0.221
##     0.276    0.252    0.262
##     6.328    1.000    1.000
##     1.508    1.000    1.000
##     1.448    0.871    0.871
sem.age2<-sem(bf.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "sspc~1", "ssno~1", "sswk~1"))
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##  2106.007   154.000     0.000     0.941     0.083     0.046     0.616 
##       aic       bic 
## 86478.506 86937.672
Mc(sem.age2)
## [1] 0.7658159
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 90 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       105
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2106.007    1844.847
##   Degrees of freedom                               154         154
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.142
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          826.516     724.022
##     0                                         1279.491    1120.825
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.271    0.021   12.815    0.000    0.230
##     ssmk    (.p2.)    0.238    0.021   11.175    0.000    0.196
##     ssmc    (.p3.)    0.222    0.018   12.328    0.000    0.187
##     ssao    (.p4.)    0.415    0.027   15.301    0.000    0.361
##   electronic =~                                                
##     ssai    (.p5.)    0.261    0.016   16.340    0.000    0.230
##     sssi    (.p6.)    0.302    0.019   16.323    0.000    0.266
##     ssmc    (.p7.)    0.138    0.010   13.701    0.000    0.118
##     ssei    (.p8.)    0.155    0.010   14.839    0.000    0.135
##   speed =~                                                     
##     ssno    (.p9.)    0.700    0.036   19.484    0.000    0.629
##     sscs    (.10.)    0.393    0.022   17.718    0.000    0.350
##     ssmk    (.11.)    0.192    0.012   16.099    0.000    0.168
##   g =~                                                         
##     ssgs    (.12.)    0.687    0.015   45.417    0.000    0.657
##     ssar    (.13.)    0.625    0.016   38.645    0.000    0.593
##     sswk    (.14.)    0.686    0.016   43.190    0.000    0.655
##     sspc    (.15.)    0.686    0.016   43.555    0.000    0.655
##     ssno    (.16.)    0.487    0.016   29.687    0.000    0.455
##     sscs    (.17.)    0.456    0.015   30.514    0.000    0.426
##     ssai    (.18.)    0.394    0.014   28.630    0.000    0.367
##     sssi    (.19.)    0.391    0.014   28.247    0.000    0.364
##     ssmk    (.20.)    0.650    0.016   41.708    0.000    0.620
##     ssmc    (.21.)    0.563    0.015   37.330    0.000    0.533
##     ssei              0.522    0.016   32.173    0.000    0.490
##     ssao    (.23.)    0.515    0.015   35.286    0.000    0.486
##  ci.upper   Std.lv  Std.all
##                            
##     0.313    0.271    0.322
##     0.279    0.238    0.268
##     0.257    0.222    0.270
##     0.468    0.415    0.454
##                            
##     0.292    0.261    0.345
##     0.338    0.302    0.397
##     0.157    0.138    0.167
##     0.176    0.155    0.202
##                            
##     0.770    0.700    0.738
##     0.437    0.393    0.431
##     0.215    0.192    0.216
##                            
##     0.717    0.750    0.873
##     0.656    0.681    0.810
##     0.717    0.748    0.870
##     0.717    0.749    0.852
##     0.519    0.531    0.560
##     0.485    0.497    0.544
##     0.421    0.430    0.569
##     0.418    0.427    0.561
##     0.681    0.710    0.799
##     0.592    0.614    0.746
##     0.553    0.569    0.740
##     0.543    0.562    0.615
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.289    0.020   14.650    0.000    0.251
##     agec2            -0.052    0.014   -3.743    0.000   -0.079
##  ci.upper   Std.lv  Std.all
##                            
##     0.328    0.265    0.383
##    -0.025   -0.048   -0.090
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.48.)    0.415    0.025   16.354    0.000    0.365
##    .ssmk    (.49.)    0.470    0.027   17.704    0.000    0.418
##    .ssmc    (.50.)    0.313    0.023   13.340    0.000    0.267
##    .ssao    (.51.)    0.384    0.027   14.002    0.000    0.330
##    .ssai    (.52.)    0.085    0.020    4.370    0.000    0.047
##    .sssi    (.53.)    0.122    0.020    5.992    0.000    0.082
##    .ssei    (.54.)    0.192    0.023    8.384    0.000    0.147
##    .ssno              0.304    0.026   11.690    0.000    0.253
##    .sscs    (.56.)    0.402    0.024   16.590    0.000    0.355
##    .ssgs    (.57.)    0.413    0.026   15.675    0.000    0.361
##    .sswk              0.463    0.028   16.811    0.000    0.409
##    .sspc              0.537    0.028   19.200    0.000    0.482
##  ci.upper   Std.lv  Std.all
##     0.465    0.415    0.493
##     0.522    0.470    0.530
##     0.359    0.313    0.381
##     0.438    0.384    0.420
##     0.124    0.085    0.113
##     0.162    0.122    0.161
##     0.237    0.192    0.249
##     0.354    0.304    0.320
##     0.450    0.402    0.441
##     0.464    0.413    0.481
##     0.517    0.463    0.538
##     0.591    0.537    0.611
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.170    0.011   15.199    0.000    0.148
##    .ssmk              0.192    0.010   19.678    0.000    0.173
##    .ssmc              0.232    0.012   18.901    0.000    0.208
##    .ssao              0.347    0.026   13.566    0.000    0.297
##    .ssai              0.318    0.015   21.165    0.000    0.289
##    .sssi              0.304    0.016   19.467    0.000    0.273
##    .ssei              0.244    0.011   22.434    0.000    0.223
##    .ssno              0.128    0.038    3.399    0.001    0.054
##    .sscs              0.432    0.020   21.172    0.000    0.392
##    .ssgs              0.175    0.008   20.667    0.000    0.158
##    .sswk              0.179    0.008   21.321    0.000    0.163
##    .sspc              0.211    0.011   18.482    0.000    0.189
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.192    0.170    0.241
##     0.211    0.192    0.243
##     0.256    0.232    0.342
##     0.397    0.347    0.416
##     0.348    0.318    0.557
##     0.335    0.304    0.527
##     0.266    0.244    0.412
##     0.202    0.128    0.142
##     0.472    0.432    0.518
##     0.191    0.175    0.237
##     0.196    0.179    0.243
##     0.234    0.211    0.274
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.840    0.840
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.271    0.021   12.815    0.000    0.230
##     ssmk    (.p2.)    0.238    0.021   11.175    0.000    0.196
##     ssmc    (.p3.)    0.222    0.018   12.328    0.000    0.187
##     ssao    (.p4.)    0.415    0.027   15.301    0.000    0.361
##   electronic =~                                                
##     ssai    (.p5.)    0.261    0.016   16.340    0.000    0.230
##     sssi    (.p6.)    0.302    0.019   16.323    0.000    0.266
##     ssmc    (.p7.)    0.138    0.010   13.701    0.000    0.118
##     ssei    (.p8.)    0.155    0.010   14.839    0.000    0.135
##   speed =~                                                     
##     ssno    (.p9.)    0.700    0.036   19.484    0.000    0.629
##     sscs    (.10.)    0.393    0.022   17.718    0.000    0.350
##     ssmk    (.11.)    0.192    0.012   16.099    0.000    0.168
##   g =~                                                         
##     ssgs    (.12.)    0.687    0.015   45.417    0.000    0.657
##     ssar    (.13.)    0.625    0.016   38.645    0.000    0.593
##     sswk    (.14.)    0.686    0.016   43.190    0.000    0.655
##     sspc    (.15.)    0.686    0.016   43.555    0.000    0.655
##     ssno    (.16.)    0.487    0.016   29.687    0.000    0.455
##     sscs    (.17.)    0.456    0.015   30.514    0.000    0.426
##     ssai    (.18.)    0.394    0.014   28.630    0.000    0.367
##     sssi    (.19.)    0.391    0.014   28.247    0.000    0.364
##     ssmk    (.20.)    0.650    0.016   41.708    0.000    0.620
##     ssmc    (.21.)    0.563    0.015   37.330    0.000    0.533
##     ssei              0.678    0.020   34.493    0.000    0.639
##     ssao    (.23.)    0.515    0.015   35.286    0.000    0.486
##  ci.upper   Std.lv  Std.all
##                            
##     0.313    0.271    0.286
##     0.279    0.238    0.246
##     0.257    0.222    0.236
##     0.468    0.415    0.409
##                            
##     0.292    0.588    0.556
##     0.338    0.680    0.695
##     0.157    0.310    0.330
##     0.176    0.349    0.324
##                            
##     0.770    0.789    0.742
##     0.437    0.444    0.444
##     0.215    0.216    0.223
##                            
##     0.717    0.850    0.886
##     0.656    0.772    0.816
##     0.717    0.848    0.883
##     0.717    0.849    0.860
##     0.519    0.602    0.566
##     0.485    0.563    0.564
##     0.421    0.487    0.461
##     0.418    0.483    0.494
##     0.681    0.804    0.831
##     0.592    0.696    0.741
##     0.716    0.838    0.779
##     0.543    0.637    0.628
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.318    0.022   14.564    0.000    0.275
##     agec2            -0.031    0.016   -1.954    0.051   -0.061
##  ci.upper   Std.lv  Std.all
##                            
##     0.360    0.257    0.370
##     0.000   -0.025   -0.046
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.48.)    0.415    0.025   16.354    0.000    0.365
##    .ssmk    (.49.)    0.470    0.027   17.704    0.000    0.418
##    .ssmc    (.50.)    0.313    0.023   13.340    0.000    0.267
##    .ssao    (.51.)    0.384    0.027   14.002    0.000    0.330
##    .ssai    (.52.)    0.085    0.020    4.370    0.000    0.047
##    .sssi    (.53.)    0.122    0.020    5.992    0.000    0.082
##    .ssei    (.54.)    0.192    0.023    8.384    0.000    0.147
##    .ssno              0.832    0.073   11.342    0.000    0.688
##    .sscs    (.56.)    0.402    0.024   16.590    0.000    0.355
##    .ssgs    (.57.)    0.413    0.026   15.675    0.000    0.361
##    .sswk              0.280    0.029    9.648    0.000    0.223
##    .sspc              0.099    0.030    3.297    0.001    0.040
##     math             -0.510    0.064   -7.972    0.000   -0.635
##     elctrnc           1.887    0.135   14.000    0.000    1.623
##     speed            -1.165    0.092  -12.623    0.000   -1.346
##    .g                 0.252    0.057    4.416    0.000    0.140
##  ci.upper   Std.lv  Std.all
##     0.465    0.415    0.439
##     0.522    0.470    0.486
##     0.359    0.313    0.334
##     0.438    0.384    0.379
##     0.124    0.085    0.081
##     0.162    0.122    0.125
##     0.237    0.192    0.178
##     0.976    0.832    0.783
##     0.450    0.402    0.403
##     0.464    0.413    0.430
##     0.337    0.280    0.292
##     0.157    0.099    0.100
##    -0.384   -0.510   -0.510
##     2.151    0.839    0.839
##    -0.984   -1.034   -1.034
##     0.363    0.203    0.203
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.225    0.013   17.464    0.000    0.200
##    .ssmk              0.186    0.011   17.749    0.000    0.166
##    .ssmc              0.252    0.013   18.704    0.000    0.226
##    .ssao              0.450    0.026   17.277    0.000    0.399
##    .ssai              0.534    0.025   21.387    0.000    0.485
##    .sssi              0.261    0.020   13.309    0.000    0.222
##    .ssei              0.334    0.016   21.461    0.000    0.303
##    .ssno              0.146    0.047    3.100    0.002    0.054
##    .sscs              0.482    0.025   18.998    0.000    0.433
##    .ssgs              0.198    0.009   22.213    0.000    0.180
##    .sswk              0.202    0.010   20.337    0.000    0.183
##    .sspc              0.253    0.012   20.979    0.000    0.229
##     electronic        5.062    0.645    7.848    0.000    3.798
##     speed             1.271    0.121   10.528    0.000    1.034
##    .g                 1.311    0.073   17.884    0.000    1.168
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.251    0.225    0.252
##     0.207    0.186    0.199
##     0.279    0.252    0.286
##     0.501    0.450    0.438
##     0.583    0.534    0.478
##     0.299    0.261    0.273
##     0.364    0.334    0.288
##     0.238    0.146    0.129
##     0.532    0.482    0.484
##     0.215    0.198    0.215
##     0.222    0.202    0.219
##     0.276    0.253    0.260
##     6.327    1.000    1.000
##     1.507    1.000    1.000
##     1.455    0.858    0.858
sem.age2q<-sem(bf.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "sspc~1", "ssno~1", "sswk~1"))
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi 
##  2108.224   156.000     0.000     0.941     0.083     0.048     0.616 
##       aic       bic 
## 86476.723 86923.479
Mc(sem.age2q)
## [1] 0.7657932
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 88 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       105
##   Number of equality constraints                    33
## 
##   Number of observations per group:                   
##     1                                             1770
##     0                                             1889
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2108.224    1847.113
##   Degrees of freedom                               156         156
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.141
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          827.097     724.658
##     0                                         1281.127    1122.455
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.271    0.021   12.803    0.000    0.230
##     ssmk    (.p2.)    0.238    0.021   11.169    0.000    0.196
##     ssmc    (.p3.)    0.222    0.018   12.320    0.000    0.187
##     ssao    (.p4.)    0.415    0.027   15.276    0.000    0.361
##   electronic =~                                                
##     ssai    (.p5.)    0.261    0.016   16.343    0.000    0.230
##     sssi    (.p6.)    0.302    0.019   16.315    0.000    0.266
##     ssmc    (.p7.)    0.138    0.010   13.700    0.000    0.118
##     ssei    (.p8.)    0.155    0.010   14.822    0.000    0.134
##   speed =~                                                     
##     ssno    (.p9.)    0.700    0.036   19.476    0.000    0.629
##     sscs    (.10.)    0.393    0.022   17.721    0.000    0.350
##     ssmk    (.11.)    0.192    0.012   16.101    0.000    0.168
##   g =~                                                         
##     ssgs    (.12.)    0.687    0.015   45.373    0.000    0.657
##     ssar    (.13.)    0.625    0.016   38.629    0.000    0.593
##     sswk    (.14.)    0.686    0.016   43.168    0.000    0.655
##     sspc    (.15.)    0.686    0.016   43.542    0.000    0.655
##     ssno    (.16.)    0.487    0.016   29.677    0.000    0.455
##     sscs    (.17.)    0.456    0.015   30.500    0.000    0.426
##     ssai    (.18.)    0.394    0.014   28.637    0.000    0.367
##     sssi    (.19.)    0.391    0.014   28.244    0.000    0.364
##     ssmk    (.20.)    0.650    0.016   41.673    0.000    0.620
##     ssmc    (.21.)    0.563    0.015   37.310    0.000    0.533
##     ssei              0.522    0.016   32.182    0.000    0.490
##     ssao    (.23.)    0.515    0.015   35.260    0.000    0.486
##  ci.upper   Std.lv  Std.all
##                            
##     0.313    0.271    0.321
##     0.280    0.238    0.267
##     0.257    0.222    0.269
##     0.468    0.415    0.453
##                            
##     0.292    0.261    0.345
##     0.338    0.302    0.397
##     0.157    0.138    0.167
##     0.175    0.155    0.201
##                            
##     0.770    0.700    0.737
##     0.437    0.393    0.430
##     0.215    0.192    0.215
##                            
##     0.717    0.753    0.874
##     0.656    0.685    0.811
##     0.717    0.752    0.871
##     0.717    0.752    0.853
##     0.519    0.534    0.562
##     0.485    0.499    0.546
##     0.421    0.432    0.571
##     0.418    0.429    0.563
##     0.681    0.713    0.801
##     0.593    0.617    0.748
##     0.554    0.572    0.741
##     0.544    0.564    0.617
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.302    0.015   19.509    0.000    0.271
##     agec2      (b)   -0.043    0.010   -4.112    0.000   -0.063
##  ci.upper   Std.lv  Std.all
##                            
##     0.332    0.275    0.398
##    -0.022   -0.039   -0.074
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.48.)    0.404    0.023   17.638    0.000    0.359
##    .ssmk    (.49.)    0.458    0.024   19.285    0.000    0.412
##    .ssmc    (.50.)    0.303    0.021   14.186    0.000    0.261
##    .ssao    (.51.)    0.374    0.026   14.545    0.000    0.324
##    .ssai    (.52.)    0.078    0.018    4.322    0.000    0.043
##    .sssi    (.53.)    0.115    0.019    6.010    0.000    0.078
##    .ssei    (.54.)    0.182    0.021    8.816    0.000    0.141
##    .ssno              0.295    0.024   12.034    0.000    0.247
##    .sscs    (.56.)    0.394    0.023   17.268    0.000    0.349
##    .ssgs    (.57.)    0.400    0.023   17.160    0.000    0.355
##    .sswk              0.450    0.024   18.376    0.000    0.402
##    .sspc              0.524    0.025   20.951    0.000    0.475
##  ci.upper   Std.lv  Std.all
##     0.448    0.404    0.478
##     0.505    0.458    0.515
##     0.345    0.303    0.367
##     0.425    0.374    0.409
##     0.114    0.078    0.103
##     0.153    0.115    0.152
##     0.222    0.182    0.236
##     0.343    0.295    0.310
##     0.439    0.394    0.431
##     0.446    0.400    0.465
##     0.498    0.450    0.522
##     0.573    0.524    0.594
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.170    0.011   15.193    0.000    0.148
##    .ssmk              0.192    0.010   19.675    0.000    0.173
##    .ssmc              0.232    0.012   18.900    0.000    0.208
##    .ssao              0.347    0.026   13.554    0.000    0.297
##    .ssai              0.318    0.015   21.166    0.000    0.289
##    .sssi              0.304    0.016   19.464    0.000    0.273
##    .ssei              0.244    0.011   22.440    0.000    0.223
##    .ssno              0.128    0.038    3.404    0.001    0.054
##    .sscs              0.432    0.020   21.172    0.000    0.392
##    .ssgs              0.175    0.008   20.683    0.000    0.158
##    .sswk              0.179    0.008   21.318    0.000    0.163
##    .sspc              0.212    0.011   18.467    0.000    0.189
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.192    0.170    0.239
##     0.211    0.192    0.242
##     0.256    0.232    0.340
##     0.397    0.347    0.414
##     0.348    0.318    0.555
##     0.335    0.304    0.525
##     0.266    0.244    0.410
##     0.202    0.128    0.142
##     0.472    0.432    0.517
##     0.191    0.175    0.235
##     0.196    0.179    0.241
##     0.234    0.212    0.272
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.832    0.832
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.271    0.021   12.803    0.000    0.230
##     ssmk    (.p2.)    0.238    0.021   11.169    0.000    0.196
##     ssmc    (.p3.)    0.222    0.018   12.320    0.000    0.187
##     ssao    (.p4.)    0.415    0.027   15.276    0.000    0.361
##   electronic =~                                                
##     ssai    (.p5.)    0.261    0.016   16.343    0.000    0.230
##     sssi    (.p6.)    0.302    0.019   16.315    0.000    0.266
##     ssmc    (.p7.)    0.138    0.010   13.700    0.000    0.118
##     ssei    (.p8.)    0.155    0.010   14.822    0.000    0.134
##   speed =~                                                     
##     ssno    (.p9.)    0.700    0.036   19.476    0.000    0.629
##     sscs    (.10.)    0.393    0.022   17.721    0.000    0.350
##     ssmk    (.11.)    0.192    0.012   16.101    0.000    0.168
##   g =~                                                         
##     ssgs    (.12.)    0.687    0.015   45.373    0.000    0.657
##     ssar    (.13.)    0.625    0.016   38.629    0.000    0.593
##     sswk    (.14.)    0.686    0.016   43.168    0.000    0.655
##     sspc    (.15.)    0.686    0.016   43.542    0.000    0.655
##     ssno    (.16.)    0.487    0.016   29.677    0.000    0.455
##     sscs    (.17.)    0.456    0.015   30.500    0.000    0.426
##     ssai    (.18.)    0.394    0.014   28.637    0.000    0.367
##     sssi    (.19.)    0.391    0.014   28.244    0.000    0.364
##     ssmk    (.20.)    0.650    0.016   41.673    0.000    0.620
##     ssmc    (.21.)    0.563    0.015   37.310    0.000    0.533
##     ssei              0.678    0.020   34.478    0.000    0.639
##     ssao    (.23.)    0.515    0.015   35.260    0.000    0.486
##  ci.upper   Std.lv  Std.all
##                            
##     0.313    0.271    0.287
##     0.280    0.238    0.247
##     0.257    0.222    0.237
##     0.468    0.415    0.410
##                            
##     0.292    0.588    0.557
##     0.338    0.680    0.696
##     0.157    0.310    0.331
##     0.175    0.348    0.325
##                            
##     0.770    0.789    0.743
##     0.437    0.444    0.445
##     0.215    0.216    0.224
##                            
##     0.717    0.845    0.885
##     0.656    0.769    0.815
##     0.717    0.844    0.883
##     0.717    0.845    0.859
##     0.519    0.599    0.564
##     0.485    0.561    0.562
##     0.421    0.485    0.459
##     0.418    0.481    0.492
##     0.681    0.800    0.830
##     0.593    0.693    0.740
##     0.716    0.834    0.777
##     0.544    0.634    0.626
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.302    0.015   19.509    0.000    0.271
##     agec2      (b)   -0.043    0.010   -4.112    0.000   -0.063
##  ci.upper   Std.lv  Std.all
##                            
##     0.332    0.245    0.353
##    -0.022   -0.035   -0.065
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.48.)    0.404    0.023   17.638    0.000    0.359
##    .ssmk    (.49.)    0.458    0.024   19.285    0.000    0.412
##    .ssmc    (.50.)    0.303    0.021   14.186    0.000    0.261
##    .ssao    (.51.)    0.374    0.026   14.545    0.000    0.324
##    .ssai    (.52.)    0.078    0.018    4.322    0.000    0.043
##    .sssi    (.53.)    0.115    0.019    6.010    0.000    0.078
##    .ssei    (.54.)    0.182    0.021    8.816    0.000    0.141
##    .ssno              0.823    0.072   11.351    0.000    0.681
##    .sscs    (.56.)    0.394    0.023   17.268    0.000    0.349
##    .ssgs    (.57.)    0.400    0.023   17.160    0.000    0.355
##    .sswk              0.268    0.026   10.167    0.000    0.216
##    .sspc              0.087    0.028    3.148    0.002    0.033
##     math             -0.508    0.064   -7.947    0.000   -0.633
##     elctrnc           1.887    0.135   14.004    0.000    1.623
##     speed            -1.164    0.092  -12.625    0.000   -1.345
##    .g                 0.293    0.041    7.239    0.000    0.214
##  ci.upper   Std.lv  Std.all
##     0.448    0.404    0.428
##     0.505    0.458    0.475
##     0.345    0.303    0.324
##     0.425    0.374    0.370
##     0.114    0.078    0.074
##     0.153    0.115    0.118
##     0.222    0.182    0.169
##     0.965    0.823    0.775
##     0.439    0.394    0.395
##     0.446    0.400    0.419
##     0.319    0.268    0.280
##     0.141    0.087    0.088
##    -0.383   -0.508   -0.508
##     2.151    0.838    0.838
##    -0.984   -1.033   -1.033
##     0.373    0.238    0.238
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.225    0.013   17.453    0.000    0.200
##    .ssmk              0.186    0.011   17.752    0.000    0.166
##    .ssmc              0.252    0.013   18.705    0.000    0.226
##    .ssao              0.450    0.026   17.262    0.000    0.399
##    .ssai              0.534    0.025   21.370    0.000    0.485
##    .sssi              0.260    0.020   13.288    0.000    0.222
##    .ssei              0.334    0.016   21.471    0.000    0.303
##    .ssno              0.146    0.047    3.103    0.002    0.054
##    .sscs              0.482    0.025   18.996    0.000    0.433
##    .ssgs              0.198    0.009   22.213    0.000    0.180
##    .sswk              0.202    0.010   20.336    0.000    0.183
##    .sspc              0.252    0.012   20.960    0.000    0.229
##     electronic        5.069    0.646    7.845    0.000    3.803
##     speed             1.271    0.121   10.529    0.000    1.035
##    .g                 1.312    0.073   17.884    0.000    1.168
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.251    0.225    0.253
##     0.207    0.186    0.200
##     0.279    0.252    0.288
##     0.501    0.450    0.440
##     0.583    0.534    0.479
##     0.299    0.260    0.273
##     0.364    0.334    0.290
##     0.238    0.146    0.129
##     0.532    0.482    0.486
##     0.215    0.198    0.217
##     0.222    0.202    0.221
##     0.276    0.252    0.261
##     6.336    1.000    1.000
##     1.508    1.000    1.000
##     1.456    0.866    0.866
# CROSS VALIDATION

set.seed(123) # For reproducibility, set seed if needed
split_indices <- sample(1:nrow(dgroup), size = nrow(dgroup) / 2)
dhalf1 <- dgroup[split_indices, ]
dhalf2 <- dgroup[-split_indices, ]

# WHITE GROUP

# CORRELATED FACTOR MODEL

cf.model<-' # model produces negative loadings for ssar and ssmk if they load on verbal
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
'

cf.lv<-' # model produces negative loadings for ssar and ssmk if they load on verbal
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
verbal~~1*verbal
math~~1*math
speed~~1*speed
'

cf.reduced<-' # model produces negative loadings for ssar and ssmk if they load on verbal
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
verbal~~1*verbal
math~~1*math
speed~~1*speed
verbal~0*1
math~0*1
'

baseline<-cfa(cf.model, data=dhalf1, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   511.208    45.000     0.000     0.970     0.880     0.075     0.028 
##       aic       bic 
## 44152.998 44401.016
configural<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   468.833    90.000     0.000     0.976     0.902     0.068     0.026 
##       aic       bic 
## 43126.404 43622.441
metric<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   522.504   101.000     0.000     0.973     0.891     0.068     0.037 
##       aic       bic 
## 43158.075 43593.485
scalar<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   851.631   109.000     0.000     0.953     0.816     0.086     0.043 
##       aic       bic 
## 43471.202 43862.520
scalar2<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   582.135   106.000     0.000     0.970     0.878     0.070     0.039 
##       aic       bic 
## 43207.706 43615.559
strict<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   663.993   118.000     0.000     0.965     0.861     0.071     0.044 
##       aic       bic 
## 43265.564 43607.278
cf.cov<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   631.248   112.000     0.000     0.967     0.868     0.071     0.096 
##       aic       bic 
## 43244.819 43619.603
cf.vcov<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   748.427   116.000     0.000     0.960     0.841     0.077     0.117 
##       aic       bic 
## 43353.998 43706.736
cf.cov2<-cfa(cf.lv, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   636.153   115.000     0.000     0.967     0.867     0.070     0.096 
##       aic       bic 
## 43243.724 43601.973
reduced<-cfa(cf.reduced, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   639.232   117.000     0.000     0.967     0.867     0.070     0.097 
##       aic       bic 
## 43242.803 43590.030
baseline<-cfa(cf.model, data=dhalf2, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   651.576    45.000     0.000     0.963     0.847     0.086     0.033 
##       aic       bic 
## 44752.807 45000.850
configural<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   577.863    90.000     0.000     0.969     0.875     0.077     0.029 
##       aic       bic 
## 43621.439 44117.526
metric<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   640.528   101.000     0.000     0.966     0.863     0.076     0.042 
##       aic       bic 
## 43662.104 44097.557
scalar<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   906.271   109.000     0.000     0.950     0.804     0.089     0.047 
##       aic       bic 
## 43911.847 44303.204
scalar2<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   682.445   106.000     0.000     0.964     0.854     0.077     0.043 
##       aic       bic 
## 43694.021 44101.914
strict<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   778.667   118.000     0.000     0.959     0.835     0.078     0.048 
##       aic       bic 
## 43766.243 44107.991
cf.cov<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   738.379   112.000     0.000     0.961     0.843     0.078     0.093 
##       aic       bic 
## 43737.955 44112.776
cf.vcov<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   940.375   116.000     0.000     0.948     0.798     0.088     0.120 
##       aic       bic 
## 43931.951 44284.724
cf.cov2<-cfa(cf.lv, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   738.958   115.000     0.000     0.961     0.843     0.077     0.093 
##       aic       bic 
## 43732.534 44090.819
reduced<-cfa(cf.reduced, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   746.594   117.000     0.000     0.961     0.842     0.077     0.094 
##       aic       bic 
## 43736.170 44083.431
# HIGH ORDER FACTOR

hof.model<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed
'

hof.lv<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed
speed~~1*speed
math~~1*math
'

hof.weak<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed
speed~~1*speed
math~~1*math
verbal~0*1
math~0*1
g~0*1
'

hof.weak2<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed
speed~~1*speed
math~~1*math
math~0*1
'

baseline<-cfa(hof.model, data=dhalf1, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   684.808    47.000     0.000     0.960     0.840     0.086     0.041 
##       aic       bic 
## 44322.598 44559.594
configural<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   599.417    94.000     0.000     0.968     0.871     0.077     0.034 
##       aic       bic 
## 43248.988 43722.979
metric<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   670.368   108.000     0.000     0.964     0.857     0.075     0.050 
##       aic       bic 
## 43291.939 43688.769
metric2<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"), group.partial=c("electronic=~ssei"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   647.218   107.000     0.000     0.966     0.863     0.074     0.043 
##       aic       bic 
## 43270.789 43673.130
scalar<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 4.775225e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   970.292   114.000     0.000     0.945     0.791     0.091     0.049 
##       aic       bic 
## 43579.863 43943.623
scalar2<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1")) # not freeing gs leads to poor fit
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 6.247374e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   704.133   111.000     0.000     0.962     0.850     0.076     0.045 
##       aic       bic 
## 43319.704 43699.999
strict<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   785.167   123.000     0.000     0.958     0.834     0.077     0.049 
##       aic       bic 
## 43376.738 43690.895
latent<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 1.507965e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   826.693   116.000     0.000     0.955     0.823     0.082     0.102 
##       aic       bic 
## 43432.264 43785.002
latent2<-cfa(hof.lv, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 2.944642e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   711.503   113.000     0.000     0.962     0.849     0.076     0.046 
##       aic       bic 
## 43323.074 43692.346
weak<-cfa(hof.weak, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   714.945   116.000     0.000     0.962     0.849     0.075     0.047 
##       aic       bic 
## 43320.516 43673.254
weak2<-cfa(hof.weak2, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(weak2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   711.503   114.000     0.000     0.962     0.849     0.076     0.046 
##       aic       bic 
## 43321.074 43684.835
baseline<-cfa(hof.model, data=dhalf2, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   896.658    47.000     0.000     0.948     0.793     0.099     0.048 
##       aic       bic 
## 44993.889 45230.908
configural<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   768.588    94.000     0.000     0.958     0.832     0.089     0.039 
##       aic       bic 
## 43804.164 44278.202
metric<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   842.410   108.000     0.000     0.954     0.818     0.086     0.052 
##       aic       bic 
## 43849.986 44246.855
metric2<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"), group.partial=c("electronic=~ssei"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   797.832   107.000     0.000     0.957     0.828     0.084     0.043 
##       aic       bic 
## 43807.408 44209.789
scalar<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 2.740575e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1058.965   114.000     0.000     0.941     0.772     0.095     0.048 
##       aic       bic 
## 44054.541 44418.338
scalar2<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1")) # not freeing gs leads to poor fit
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 5.500076e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   833.556   111.000     0.000     0.955     0.821     0.084     0.044 
##       aic       bic 
## 43835.132 44215.465
strict<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 1.880095e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   928.841   123.000     0.000     0.950     0.802     0.085     0.048 
##       aic       bic 
## 43906.417 44220.605
latent<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 7.341806e-14) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1028.122   116.000     0.000     0.943     0.779     0.093     0.101 
##       aic       bic 
## 44019.698 44372.471
latent2<-cfa(hof.lv, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 1.708777e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   836.420   113.000     0.000     0.955     0.821     0.084     0.045 
##       aic       bic 
## 43833.996 44203.305
weak<-cfa(hof.weak, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   843.394   116.000     0.000     0.955     0.820     0.083     0.047 
##       aic       bic 
## 43834.970 44187.743
weak2<-cfa(hof.weak2, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1", "ssgs~1"))
fitMeasures(weak2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   836.420   114.000     0.000     0.955     0.821     0.083     0.045 
##       aic       bic 
## 43831.996 44195.793
# BIFACTOR MODEL

bf.model<-'
verbal =~ ssgs + sswk + sspc + ssei
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao
'

bf.lv<-'
verbal =~ ssgs + sswk + sspc + ssei
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao
verbal~~1*verbal
speed~~1*speed
'

bf.weak<-'
verbal =~ ssgs + sswk + sspc + ssei
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao
verbal~~1*verbal
speed~~1*speed
speed~0*1
'

baseline<-cfa(bf.model, data=dhalf1, meanstructure=T, sampling.weights="sweight", std.lv=T, orthogonal=T)
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   592.574    43.000     0.000     0.965     0.861     0.084     0.041 
##       aic       bic 
## 44238.364 44497.406
configural<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   528.801    86.000     0.000     0.972     0.886     0.075     0.034 
##       aic       bic 
## 43194.372 43712.456
metric<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   608.016   105.000     0.000     0.968     0.872     0.072     0.053 
##       aic       bic 
## 43235.587 43648.951
metric2<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"), group.partial=c("g=~ssei"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   574.906   104.000     0.000     0.970     0.879     0.070     0.043 
##       aic       bic 
## 43204.477 43623.353
scalar<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   913.644   112.000     0.000     0.949     0.803     0.088     0.050 
##       aic       bic 
## 43527.215 43901.999
scalar2<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   608.038   108.000     0.000     0.968     0.872     0.071     0.045 
##       aic       bic 
## 43229.609 43626.439
strict<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   679.836   120.000     0.000     0.964     0.858     0.071     0.050 
##       aic       bic 
## 43277.407 43608.098
latent<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   747.295   112.000     0.000     0.960     0.841     0.079     0.103 
##       aic       bic 
## 43360.866 43735.649
latent2<-cfa(bf.lv, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   614.093   110.000     0.000     0.968     0.871     0.071     0.046 
##       aic       bic 
## 43231.664 43617.471
weak<-cfa(bf.weak, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   621.359   111.000     0.000     0.967     0.870     0.071     0.046 
##       aic       bic 
## 43236.930 43617.225
baseline<-cfa(bf.model, data=dhalf2, meanstructure=T, sampling.weights="sweight", std.lv=T, orthogonal=T)
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   766.212    43.000     0.000     0.955     0.821     0.096     0.049 
##       aic       bic 
## 44871.442 45130.510
configural<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   652.273    86.000     0.000     0.965     0.857     0.085     0.039 
##       aic       bic 
## 43703.849 44221.984
metric<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   731.611   105.000     0.000     0.961     0.843     0.081     0.053 
##       aic       bic 
## 43745.187 44158.592
metric2<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"), group.partial=c("g=~ssei"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   684.385   104.000     0.000     0.964     0.853     0.078     0.043 
##       aic       bic 
## 43699.961 44118.878
scalar<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   909.010   112.000     0.000     0.950     0.804     0.088     0.047 
##       aic       bic 
## 43908.586 44283.407
scalar2<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   693.054   108.000     0.000     0.963     0.852     0.077     0.043 
##       aic       bic 
## 43700.630 44097.499
strict<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   785.946   120.000     0.000     0.958     0.834     0.078     0.047 
##       aic       bic 
## 43769.522 44100.246
latent<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   931.586   112.000     0.000     0.949     0.799     0.089     0.104 
##       aic       bic 
## 43931.162 44305.983
latent2<-cfa(bf.lv, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   695.692   110.000     0.000     0.963     0.852     0.076     0.044 
##       aic       bic 
## 43699.268 44085.113
weak<-cfa(bf.weak, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "ssar~1", "ssgs~1", "sscs~1", "sspc~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   695.744   111.000     0.000     0.963     0.852     0.076     0.044 
##       aic       bic 
## 43697.320 44077.653
# ALL RACE RESPONDENTS

nrow(dk) # N=7093
## [1] 7093
dgroup<- dplyr::select(dk, id, starts_with("ss"), asvab, efa, educ2011, T6665000, agec, age, agebin, agec2, sex, sexage, bhw, sweight)

original_age_min <- 12
original_age_max <- 17
mean_centered_min <- min(dgroup$agec)
mean_centered_max <- max(dgroup$agec)
original_age_mean <- (original_age_min + original_age_max) / 2
mean_centered_age_mean <- (mean_centered_min + mean_centered_max) / 2
age_difference <- original_age_mean - mean_centered_age_mean

fit<-lm(efa ~ sex + rcs(agec, 3) + sex*rcs(agec, 3), data=dgroup)
summary(fit)
## 
## Call:
## lm(formula = efa ~ sex + rcs(agec, 3) + sex * rcs(agec, 3), data = dgroup)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -41.83 -10.08   0.90  10.82  47.86 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           101.4169     0.6657 152.339   <2e-16 ***
## sex                     1.5202     0.9479   1.604   0.1088    
## rcs(agec, 3)agec        4.2752     0.4658   9.179   <2e-16 ***
## rcs(agec, 3)agec'      -0.8342     0.5752  -1.450   0.1470    
## sex:rcs(agec, 3)agec    0.8792     0.6635   1.325   0.1852    
## sex:rcs(agec, 3)agec'  -1.8867     0.8142  -2.317   0.0205 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.61 on 7087 degrees of freedom
## Multiple R-squared:  0.09974,    Adjusted R-squared:  0.0991 
## F-statistic:   157 on 5 and 7087 DF,  p-value: < 2.2e-16
dgroup$pred1<-fitted(fit) 
xyplot(dgroup$pred1 ~ dgroup$agec, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted g", xlab="age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2))

xyplot(dgroup$pred1 ~ dgroup$agec, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted g", xlab="Age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2), scales=list(x=list(at=seq(mean_centered_min, mean_centered_max), labels=seq(original_age_min, original_age_max))))

fit<-lm(asvab ~ sex + rcs(agec, 3) + sex*rcs(agec, 3), data=dgroup)
summary(fit)
## 
## Call:
## lm(formula = asvab ~ sex + rcs(agec, 3) + sex * rcs(agec, 3), 
##     data = dgroup)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.447 -13.284  -1.264  12.622  29.012 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            98.6849     0.6830 144.490  < 2e-16 ***
## sex                     3.1734     0.9725   3.263  0.00111 ** 
## rcs(agec, 3)agec       -0.4421     0.4778  -0.925  0.35486    
## rcs(agec, 3)agec'       0.7646     0.5901   1.296  0.19517    
## sex:rcs(agec, 3)agec    1.1153     0.6807   1.639  0.10136    
## sex:rcs(agec, 3)agec'  -2.0014     0.8353  -2.396  0.01660 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.99 on 7087 degrees of freedom
## Multiple R-squared:  0.002427,   Adjusted R-squared:  0.001723 
## F-statistic: 3.448 on 5 and 7087 DF,  p-value: 0.004096
dgroup$pred2<-fitted(fit) 
xyplot(dgroup$pred2 ~ dgroup$agec, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted ASVAB", xlab="Age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2), scales=list(x=list(at=seq(mean_centered_min, mean_centered_max), labels=seq(original_age_min, original_age_max))))

describeBy(dgroup$pred1, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n   mean   sd median trimmed  mad   min    max range  skew
## X1    1 3590 100.12 5.15 100.34  100.22 6.37 90.73 108.62 17.89 -0.14
##    kurtosis   se
## X1    -1.14 0.09
## ------------------------------------------------------ 
## group: 1
##    vars    n  mean   sd median trimmed  mad   min    max range  skew
## X1    1 3503 99.87 4.55  101.4  100.33 4.28 90.05 105.19 15.14 -0.68
##    kurtosis   se
## X1    -0.83 0.08
describeBy(dgroup$efa, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n   mean   sd median trimmed   mad  min    max range  skew
## X1    1 3590 100.12 16.2 100.81  100.33 17.63 61.4 146.25 84.85 -0.08
##    kurtosis   se
## X1    -0.62 0.27
## ------------------------------------------------------ 
## group: 1
##    vars    n  mean    sd median trimmed   mad   min    max range  skew
## X1    1 3503 99.87 14.52 100.59   100.2 15.45 58.73 142.07 83.34 -0.17
##    kurtosis   se
## X1    -0.49 0.25
describeBy(dgroup$asvab, dgroup$sex) 
## 
##  Descriptive statistics by group 
## INDICES: 0
##    vars    n  mean    sd median trimmed  mad  min    max range skew
## V1    1 3590 99.49 15.29  97.82   98.93 19.4 76.7 128.12 51.42 0.25
##    kurtosis   se
## V1     -1.2 0.26
## ------------------------------------------------------ 
## INDICES: 1
##    vars    n   mean    sd median trimmed   mad  min    max range skew
## V1    1 3503 100.52 14.68  99.72  100.19 18.61 76.7 128.12 51.42 0.15
##    kurtosis   se
## V1    -1.17 0.25
describeBy(dgroup$educ2011, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 2960 13.42 3.54     13   13.32 2.97   6  95    89 8.36   189.11
##      se
## X1 0.07
## ------------------------------------------------------ 
## group: 1
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis
## X1    1 2950 14.13 3.89     14   14.08 2.97   6  95    89 9.07    187.2
##      se
## X1 0.07
cor(dgroup$efa, dgroup$asvab, use="pairwise.complete.obs", method="pearson")
##          [,1]
## [1,] 0.904695
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(agebin, sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 10 Ă— 5
## # Groups:   agebin [5]
##    agebin   sex  MEAN MEAN_se    SD
##     <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1     12     0  92.7  0.0500 1.23 
##  2     12     1  92.4  0.0652 1.54 
##  3     13     0  96.9  0.0463 1.17 
##  4     13     1  97.3  0.0567 1.35 
##  5     14     0 101.   0.0426 1.04 
##  6     14     1 101.   0.0361 0.866
##  7     15     0 104.   0.0398 0.957
##  8     15     1 103.   0.0175 0.433
##  9     16     0 107.   0.0393 0.872
## 10     16     1 105.   0.0139 0.314
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(agebin, sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 10 Ă— 5
## # Groups:   agebin [5]
##    agebin   sex  MEAN MEAN_se    SD
##     <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1     12     0  95.3   0.567  14.3
##  2     12     1  95.2   0.519  12.7
##  3     13     0 100.    0.569  14.8
##  4     13     1  99.7   0.538  13.1
##  5     14     0 103.    0.597  15.0
##  6     14     1 104.    0.542  13.4
##  7     15     0 108.    0.595  15.1
##  8     15     1 107.    0.541  13.7
##  9     16     0 110.    0.681  15.5
## 10     16     1 108.    0.568  13.5
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(agebin, sex) %>% summarise(MEAN = survey_mean(asvab), SD = survey_sd(asvab))
## # A tibble: 10 Ă— 5
## # Groups:   agebin [5]
##    agebin   sex  MEAN MEAN_se    SD
##     <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1     12     0  102.   0.611  15.3
##  2     12     1  103.   0.591  14.3
##  3     13     0  102.   0.600  15.3
##  4     13     1  103.   0.599  14.4
##  5     14     0  102.   0.611  15.1
##  6     14     1  104.   0.596  14.5
##  7     15     0  103.   0.620  15.2
##  8     15     1  103.   0.578  14.4
##  9     16     0  103.   0.682  15.3
## 10     16     1  103.   0.635  14.6
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0 100.   0.0991  5.25
## 2     1  99.8  0.0884  4.58
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  103.   0.289  15.9
## 2     1  103.   0.260  14.1
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(asvab, na.rm = TRUE), SD = survey_sd(asvab, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  102.   0.280  15.2
## 2     1  103.   0.269  14.4
dgroup %>% as_survey_design(ids = id, weights = T6665000) %>% group_by(sex) %>% summarise(MEAN = survey_mean(educ2011, na.rm = TRUE), SD = survey_sd(educ2011, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  13.7  0.0594  3.18
## 2     1  14.4  0.0862  4.08
# CORRELATED FACTOR MODEL

cf.model<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
'

cf.lv<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
verbal~~1*verbal
math~~1*math
speed~~1*speed
'

cf.reduced<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
'

baseline<-cfa(cf.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2017.025     45.000      0.000      0.971      0.079      0.027 
##        aic        bic 
## 174173.099 174482.108
Mc(baseline)
## [1] 0.8702005
configural<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   1738.406     90.000      0.000      0.976      0.072      0.025 
##        aic        bic 
## 170596.159 171214.177
Mc(configural)
## [1] 0.890283
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 53 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        90
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1738.406    1335.833
##   Degrees of freedom                                90          90
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.301
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          697.088     535.659
##     0                                         1041.319     800.174
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.811    0.013   64.756    0.000    0.786
##     sswk              0.846    0.013   63.955    0.000    0.820
##     sspc              0.807    0.012   64.690    0.000    0.783
##     ssei              0.448    0.035   12.958    0.000    0.380
##   math =~                                                      
##     ssar              0.822    0.013   61.236    0.000    0.796
##     ssmk              0.666    0.023   28.961    0.000    0.621
##     ssmc              0.416    0.026   15.693    0.000    0.364
##     ssao              0.706    0.013   52.306    0.000    0.680
##   electronic =~                                                
##     ssai              0.526    0.015   35.224    0.000    0.496
##     sssi              0.586    0.015   39.006    0.000    0.556
##     ssmc              0.342    0.026   13.011    0.000    0.291
##     ssei              0.217    0.036    6.010    0.000    0.146
##   speed =~                                                     
##     ssno              0.787    0.017   45.112    0.000    0.753
##     sscs              0.692    0.017   40.259    0.000    0.659
##     ssmk              0.253    0.023   10.846    0.000    0.207
##  ci.upper   Std.lv  Std.all
##                            
##     0.835    0.811    0.888
##     0.872    0.846    0.897
##     0.831    0.807    0.869
##     0.516    0.448    0.551
##                            
##     0.848    0.822    0.902
##     0.711    0.666    0.691
##     0.468    0.416    0.474
##     0.733    0.706    0.740
##                            
##     0.555    0.526    0.667
##     0.615    0.586    0.728
##     0.394    0.342    0.390
##     0.288    0.217    0.267
##                            
##     0.821    0.787    0.832
##     0.726    0.692    0.743
##     0.298    0.253    0.262
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.902    0.006  141.766    0.000    0.890
##     electronic        0.869    0.012   72.888    0.000    0.846
##     speed             0.692    0.018   38.613    0.000    0.657
##   math ~~                                                      
##     electronic        0.770    0.016   49.234    0.000    0.740
##     speed             0.736    0.018   41.238    0.000    0.701
##   electronic ~~                                                
##     speed             0.505    0.027   18.895    0.000    0.453
##  ci.upper   Std.lv  Std.all
##                            
##     0.915    0.902    0.902
##     0.893    0.869    0.869
##     0.727    0.692    0.692
##                            
##     0.801    0.770    0.770
##     0.771    0.736    0.736
##                            
##     0.557    0.505    0.505
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.120    0.017    7.097    0.000    0.087
##    .sswk              0.181    0.017   10.369    0.000    0.147
##    .sspc              0.284    0.017   16.543    0.000    0.251
##    .ssei             -0.010    0.015   -0.667    0.505   -0.040
##    .ssar              0.148    0.017    8.728    0.000    0.115
##    .ssmk              0.224    0.018   12.435    0.000    0.189
##    .ssmc              0.039    0.016    2.369    0.018    0.007
##    .ssao              0.198    0.018   11.088    0.000    0.163
##    .ssai             -0.097    0.015   -6.622    0.000   -0.126
##    .sssi             -0.131    0.015   -8.757    0.000   -0.160
##    .ssno              0.173    0.018    9.602    0.000    0.138
##    .sscs              0.271    0.018   15.206    0.000    0.236
##  ci.upper   Std.lv  Std.all
##     0.153    0.120    0.131
##     0.216    0.181    0.192
##     0.318    0.284    0.306
##     0.020   -0.010   -0.013
##     0.181    0.148    0.162
##     0.260    0.224    0.233
##     0.070    0.039    0.044
##     0.232    0.198    0.207
##    -0.069   -0.097   -0.124
##    -0.102   -0.131   -0.163
##     0.209    0.173    0.183
##     0.306    0.271    0.291
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.176    0.007   27.031    0.000    0.163
##    .sswk              0.174    0.007   26.100    0.000    0.161
##    .sspc              0.211    0.009   23.690    0.000    0.193
##    .ssei              0.243    0.008   29.205    0.000    0.227
##    .ssar              0.155    0.007   22.647    0.000    0.141
##    .ssmk              0.174    0.007   26.349    0.000    0.161
##    .ssmc              0.262    0.009   27.674    0.000    0.243
##    .ssao              0.413    0.013   30.748    0.000    0.386
##    .ssai              0.345    0.012   27.688    0.000    0.321
##    .sssi              0.304    0.012   25.371    0.000    0.281
##    .ssno              0.276    0.015   18.687    0.000    0.247
##    .sscs              0.389    0.017   23.121    0.000    0.356
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.189    0.176    0.211
##     0.187    0.174    0.195
##     0.228    0.211    0.244
##     0.259    0.243    0.368
##     0.168    0.155    0.186
##     0.187    0.174    0.187
##     0.280    0.262    0.339
##     0.439    0.413    0.453
##     0.370    0.345    0.556
##     0.328    0.304    0.470
##     0.305    0.276    0.308
##     0.422    0.389    0.448
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.940    0.014   68.260    0.000    0.913
##     sswk              0.902    0.014   66.100    0.000    0.875
##     sspc              0.884    0.012   76.053    0.000    0.861
##     ssei              0.578    0.025   23.283    0.000    0.530
##   math =~                                                      
##     ssar              0.926    0.014   64.705    0.000    0.898
##     ssmk              0.697    0.025   28.312    0.000    0.649
##     ssmc              0.512    0.019   27.065    0.000    0.475
##     ssao              0.740    0.014   53.116    0.000    0.713
##   electronic =~                                                
##     ssai              0.873    0.020   44.004    0.000    0.834
##     sssi              0.898    0.017   52.887    0.000    0.865
##     ssmc              0.462    0.019   23.889    0.000    0.424
##     ssei              0.468    0.026   17.720    0.000    0.417
##   speed =~                                                     
##     ssno              0.884    0.018   48.274    0.000    0.848
##     sscs              0.765    0.017   44.247    0.000    0.731
##     ssmk              0.256    0.024   10.473    0.000    0.208
##  ci.upper   Std.lv  Std.all
##                            
##     0.967    0.940    0.908
##     0.928    0.902    0.894
##     0.907    0.884    0.867
##     0.627    0.578    0.511
##                            
##     0.954    0.926    0.904
##     0.745    0.697    0.693
##     0.549    0.512    0.492
##     0.768    0.740    0.718
##                            
##     0.912    0.873    0.776
##     0.931    0.898    0.842
##     0.500    0.462    0.445
##     0.520    0.468    0.414
##                            
##     0.920    0.884    0.835
##     0.799    0.765    0.751
##     0.304    0.256    0.255
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.918    0.006  164.431    0.000    0.907
##     electronic        0.756    0.012   62.775    0.000    0.732
##     speed             0.701    0.016   43.593    0.000    0.670
##   math ~~                                                      
##     electronic        0.659    0.015   43.953    0.000    0.630
##     speed             0.797    0.015   53.894    0.000    0.768
##   electronic ~~                                                
##     speed             0.371    0.022   17.001    0.000    0.329
##  ci.upper   Std.lv  Std.all
##                            
##     0.929    0.918    0.918
##     0.780    0.756    0.756
##     0.733    0.701    0.701
##                            
##     0.689    0.659    0.659
##     0.826    0.797    0.797
##                            
##     0.414    0.371    0.371
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.276    0.019   14.542    0.000    0.239
##    .sswk              0.179    0.018    9.735    0.000    0.143
##    .sspc              0.041    0.019    2.207    0.027    0.005
##    .ssei              0.339    0.021   16.134    0.000    0.298
##    .ssar              0.194    0.019   10.391    0.000    0.157
##    .ssmk              0.087    0.019    4.675    0.000    0.050
##    .ssmc              0.322    0.019   17.179    0.000    0.286
##    .ssao              0.081    0.019    4.256    0.000    0.044
##    .ssai              0.382    0.021   18.202    0.000    0.341
##    .sssi              0.482    0.020   24.659    0.000    0.443
##    .ssno             -0.002    0.020   -0.083    0.934   -0.040
##    .sscs             -0.080    0.019   -4.255    0.000   -0.117
##  ci.upper   Std.lv  Std.all
##     0.313    0.276    0.267
##     0.215    0.179    0.178
##     0.078    0.041    0.041
##     0.380    0.339    0.299
##     0.230    0.194    0.189
##     0.123    0.087    0.086
##     0.359    0.322    0.310
##     0.119    0.081    0.079
##     0.423    0.382    0.340
##     0.520    0.482    0.452
##     0.037   -0.002   -0.002
##    -0.043   -0.080   -0.079
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.188    0.007   27.287    0.000    0.175
##    .sswk              0.205    0.008   26.082    0.000    0.189
##    .sspc              0.258    0.010   26.522    0.000    0.239
##    .ssei              0.317    0.012   26.918    0.000    0.294
##    .ssar              0.193    0.008   23.203    0.000    0.176
##    .ssmk              0.176    0.007   25.284    0.000    0.163
##    .ssmc              0.293    0.011   27.752    0.000    0.272
##    .ssao              0.516    0.015   34.945    0.000    0.487
##    .ssai              0.503    0.019   26.251    0.000    0.465
##    .sssi              0.331    0.016   21.016    0.000    0.300
##    .ssno              0.340    0.019   18.238    0.000    0.304
##    .sscs              0.452    0.019   23.583    0.000    0.414
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.202    0.188    0.176
##     0.220    0.205    0.201
##     0.277    0.258    0.248
##     0.341    0.317    0.248
##     0.209    0.193    0.183
##     0.190    0.176    0.174
##     0.314    0.293    0.271
##     0.545    0.516    0.485
##     0.541    0.503    0.398
##     0.362    0.331    0.291
##     0.377    0.340    0.303
##     0.489    0.452    0.436
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
modificationIndices(configural, sort=T, maximum.number=30)
##            lhs op  rhs block group level      mi    epc sepc.lv
## 216       math =~ sspc     2     2     1 299.856  0.628   0.628
## 290       ssmc ~~ ssao     2     2     1 185.967  0.101   0.101
## 232      speed =~ sspc     2     2     1 185.864  0.231   0.231
## 117       math =~ sspc     1     1     1 179.167  0.423   0.423
## 191       ssmc ~~ ssao     1     1     1 173.781  0.085   0.085
## 224 electronic =~ sspc     2     2     1 130.599 -0.216  -0.216
## 230      speed =~ ssgs     2     2     1 126.137 -0.181  -0.181
## 298       ssao ~~ sscs     2     2     1 109.091  0.098   0.098
## 222 electronic =~ ssgs     2     2     1 101.842  0.184   0.184
## 297       ssao ~~ ssno     2     2     1  94.332 -0.089  -0.089
## 240       ssgs ~~ sspc     2     2     1  94.083 -0.054  -0.054
## 239       ssgs ~~ sswk     2     2     1  93.655  0.053   0.053
## 255       sswk ~~ ssao     2     2     1  84.813 -0.059  -0.059
## 141       ssgs ~~ sspc     1     1     1  81.030 -0.043  -0.043
## 116       math =~ sswk     1     1     1  81.009 -0.284  -0.284
## 215       math =~ sswk     2     2     1  75.968 -0.305  -0.305
## 282       ssar ~~ ssno     2     2     1  73.566  0.062   0.062
## 133      speed =~ sspc     1     1     1  68.588  0.132   0.132
## 123 electronic =~ ssgs     1     1     1  62.669  0.237   0.237
## 140       ssgs ~~ sswk     1     1     1  58.318  0.037   0.037
## 214       math =~ ssgs     2     2     1  58.275 -0.272  -0.272
## 167       sspc ~~ sssi     1     1     1  56.719 -0.041  -0.041
## 130 electronic =~ sscs     1     1     1  54.834  0.163   0.163
## 135      speed =~ ssar     1     1     1  51.303  0.185   0.185
## 122       math =~ sscs     1     1     1  49.793  0.323   0.323
## 121       math =~ ssno     1     1     1  49.792 -0.368  -0.368
## 113     verbal =~ ssno     1     1     1  48.652 -0.229  -0.229
## 293       ssmc ~~ ssno     2     2     1  47.858 -0.050  -0.050
## 131      speed =~ ssgs     1     1     1  47.851 -0.105  -0.105
## 129 electronic =~ ssno     1     1     1  47.282 -0.169  -0.169
##     sepc.all sepc.nox
## 216    0.616    0.616
## 290    0.259    0.259
## 232    0.226    0.226
## 117    0.456    0.456
## 191    0.258    0.258
## 224   -0.212   -0.212
## 230   -0.175   -0.175
## 298    0.203    0.203
## 222    0.177    0.177
## 297   -0.212   -0.212
## 240   -0.243   -0.243
## 239    0.270    0.270
## 255   -0.180   -0.180
## 141   -0.222   -0.222
## 116   -0.301   -0.301
## 215   -0.302   -0.302
## 282    0.242    0.242
## 133    0.142    0.142
## 123    0.260    0.260
## 140    0.211    0.211
## 214   -0.263   -0.263
## 167   -0.161   -0.161
## 130    0.175    0.175
## 135    0.203    0.203
## 122    0.347    0.347
## 121   -0.389   -0.389
## 113   -0.242   -0.242
## 293   -0.158   -0.158
## 131   -0.115   -0.115
## 129   -0.178   -0.178
metric<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   1914.821    101.000      0.000      0.973      0.071      0.034 
##        aic        bic 
## 170750.574 171293.056
Mc(metric)
## [1] 0.8799608
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 79 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        94
##   Number of equality constraints                    15
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1914.821    1470.052
##   Degrees of freedom                               101         101
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.303
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          793.001     608.805
##     0                                         1121.820     861.247
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.823    0.011   72.139    0.000    0.801
##     sswk    (.p2.)    0.822    0.012   67.947    0.000    0.798
##     sspc    (.p3.)    0.796    0.011   69.890    0.000    0.773
##     ssei    (.p4.)    0.424    0.018   23.542    0.000    0.389
##   math =~                                                      
##     ssar    (.p5.)    0.839    0.012   68.414    0.000    0.815
##     ssmk    (.p6.)    0.655    0.018   37.148    0.000    0.621
##     ssmc    (.p7.)    0.454    0.014   31.681    0.000    0.426
##     ssao    (.p8.)    0.696    0.012   59.580    0.000    0.673
##   electronic =~                                                
##     ssai    (.p9.)    0.523    0.012   43.773    0.000    0.500
##     sssi    (.10.)    0.548    0.013   43.044    0.000    0.523
##     ssmc    (.11.)    0.292    0.012   24.058    0.000    0.269
##     ssei    (.12.)    0.305    0.015   20.101    0.000    0.275
##   speed =~                                                     
##     ssno    (.13.)    0.796    0.015   51.622    0.000    0.766
##     sscs    (.14.)    0.695    0.015   47.893    0.000    0.666
##     ssmk    (.15.)    0.241    0.017   14.511    0.000    0.208
##  ci.upper   Std.lv  Std.all
##                            
##     0.846    0.823    0.892
##     0.845    0.822    0.889
##     0.818    0.796    0.866
##     0.459    0.424    0.495
##                            
##     0.863    0.839    0.907
##     0.690    0.655    0.691
##     0.482    0.454    0.520
##     0.719    0.696    0.734
##                            
##     0.547    0.523    0.666
##     0.573    0.548    0.698
##     0.316    0.292    0.335
##     0.334    0.305    0.356
##                            
##     0.826    0.796    0.837
##     0.723    0.695    0.745
##     0.273    0.241    0.254
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.905    0.006  145.765    0.000    0.893
##     electronic        0.869    0.012   72.428    0.000    0.846
##     speed             0.693    0.017   40.579    0.000    0.660
##   math ~~                                                      
##     electronic        0.769    0.015   50.955    0.000    0.740
##     speed             0.738    0.018   41.967    0.000    0.704
##   electronic ~~                                                
##     speed             0.508    0.026   19.675    0.000    0.458
##  ci.upper   Std.lv  Std.all
##                            
##     0.917    0.905    0.905
##     0.893    0.869    0.869
##     0.727    0.693    0.693
##                            
##     0.799    0.769    0.769
##     0.773    0.738    0.738
##                            
##     0.559    0.508    0.508
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.120    0.017    7.097    0.000    0.087
##    .sswk              0.181    0.017   10.369    0.000    0.147
##    .sspc              0.284    0.017   16.543    0.000    0.251
##    .ssei             -0.010    0.015   -0.667    0.505   -0.040
##    .ssar              0.148    0.017    8.728    0.000    0.115
##    .ssmk              0.224    0.018   12.435    0.000    0.189
##    .ssmc              0.039    0.016    2.369    0.018    0.007
##    .ssao              0.198    0.018   11.088    0.000    0.163
##    .ssai             -0.097    0.015   -6.622    0.000   -0.126
##    .sssi             -0.131    0.015   -8.757    0.000   -0.160
##    .ssno              0.173    0.018    9.602    0.000    0.138
##    .sscs              0.271    0.018   15.206    0.000    0.236
##  ci.upper   Std.lv  Std.all
##     0.153    0.120    0.130
##     0.216    0.181    0.196
##     0.318    0.284    0.309
##     0.020   -0.010   -0.012
##     0.181    0.148    0.160
##     0.260    0.224    0.237
##     0.070    0.039    0.044
##     0.232    0.198    0.208
##    -0.069   -0.097   -0.124
##    -0.102   -0.131   -0.167
##     0.209    0.173    0.182
##     0.306    0.271    0.290
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.175    0.006   27.074    0.000    0.162
##    .sswk              0.178    0.007   26.530    0.000    0.165
##    .sspc              0.212    0.009   24.515    0.000    0.195
##    .ssei              0.236    0.008   28.346    0.000    0.220
##    .ssar              0.152    0.007   22.587    0.000    0.139
##    .ssmk              0.179    0.006   27.655    0.000    0.166
##    .ssmc              0.267    0.010   28.015    0.000    0.248
##    .ssao              0.414    0.013   31.516    0.000    0.389
##    .ssai              0.344    0.012   28.804    0.000    0.321
##    .sssi              0.316    0.012   26.897    0.000    0.293
##    .ssno              0.272    0.014   19.518    0.000    0.244
##    .sscs              0.388    0.016   24.247    0.000    0.357
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.187    0.175    0.205
##     0.191    0.178    0.209
##     0.229    0.212    0.251
##     0.253    0.236    0.322
##     0.165    0.152    0.178
##     0.192    0.179    0.199
##     0.285    0.267    0.350
##     0.440    0.414    0.461
##     0.368    0.344    0.557
##     0.340    0.316    0.513
##     0.299    0.272    0.300
##     0.419    0.388    0.446
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.823    0.011   72.139    0.000    0.801
##     sswk    (.p2.)    0.822    0.012   67.947    0.000    0.798
##     sspc    (.p3.)    0.796    0.011   69.890    0.000    0.773
##     ssei    (.p4.)    0.424    0.018   23.542    0.000    0.389
##   math =~                                                      
##     ssar    (.p5.)    0.839    0.012   68.414    0.000    0.815
##     ssmk    (.p6.)    0.655    0.018   37.148    0.000    0.621
##     ssmc    (.p7.)    0.454    0.014   31.681    0.000    0.426
##     ssao    (.p8.)    0.696    0.012   59.580    0.000    0.673
##   electronic =~                                                
##     ssai    (.p9.)    0.523    0.012   43.773    0.000    0.500
##     sssi    (.10.)    0.548    0.013   43.044    0.000    0.523
##     ssmc    (.11.)    0.292    0.012   24.058    0.000    0.269
##     ssei    (.12.)    0.305    0.015   20.101    0.000    0.275
##   speed =~                                                     
##     ssno    (.13.)    0.796    0.015   51.622    0.000    0.766
##     sscs    (.14.)    0.695    0.015   47.893    0.000    0.666
##     ssmk    (.15.)    0.241    0.017   14.511    0.000    0.208
##  ci.upper   Std.lv  Std.all
##                            
##     0.846    0.928    0.905
##     0.845    0.926    0.900
##     0.818    0.896    0.871
##     0.459    0.478    0.439
##                            
##     0.863    0.906    0.898
##     0.690    0.708    0.694
##     0.482    0.490    0.469
##     0.719    0.752    0.723
##                            
##     0.547    0.871    0.773
##     0.573    0.913    0.844
##     0.316    0.487    0.466
##     0.334    0.507    0.466
##                            
##     0.826    0.875    0.830
##     0.723    0.763    0.750
##     0.273    0.264    0.259
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              1.116    0.039   28.793    0.000    1.040
##     electronic        1.443    0.058   24.839    0.000    1.329
##     speed             0.868    0.036   23.916    0.000    0.797
##   math ~~                                                      
##     electronic        1.213    0.053   22.808    0.000    1.109
##     speed             0.945    0.037   25.243    0.000    0.871
##   electronic ~~                                                
##     speed             0.705    0.048   14.607    0.000    0.611
##  ci.upper   Std.lv  Std.all
##                            
##     1.192    0.917    0.917
##     1.557    0.769    0.769
##     0.939    0.701    0.701
##                            
##     1.317    0.674    0.674
##     1.018    0.796    0.796
##                            
##     0.800    0.386    0.386
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.276    0.019   14.542    0.000    0.239
##    .sswk              0.179    0.018    9.735    0.000    0.143
##    .sspc              0.041    0.019    2.207    0.027    0.005
##    .ssei              0.339    0.021   16.134    0.000    0.298
##    .ssar              0.194    0.019   10.391    0.000    0.157
##    .ssmk              0.087    0.019    4.675    0.000    0.050
##    .ssmc              0.322    0.019   17.179    0.000    0.286
##    .ssao              0.081    0.019    4.256    0.000    0.044
##    .ssai              0.382    0.021   18.202    0.000    0.341
##    .sssi              0.482    0.020   24.659    0.000    0.443
##    .ssno             -0.002    0.020   -0.083    0.934   -0.040
##    .sscs             -0.080    0.019   -4.255    0.000   -0.117
##  ci.upper   Std.lv  Std.all
##     0.313    0.276    0.269
##     0.215    0.179    0.174
##     0.078    0.041    0.040
##     0.380    0.339    0.311
##     0.230    0.194    0.192
##     0.123    0.087    0.085
##     0.359    0.322    0.309
##     0.119    0.081    0.078
##     0.423    0.382    0.339
##     0.520    0.482    0.446
##     0.037   -0.002   -0.002
##    -0.043   -0.080   -0.079
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.190    0.007   27.905    0.000    0.177
##    .sswk              0.201    0.008   25.914    0.000    0.186
##    .sspc              0.256    0.010   26.583    0.000    0.237
##    .ssei              0.326    0.012   26.362    0.000    0.301
##    .ssar              0.197    0.008   23.735    0.000    0.180
##    .ssmk              0.173    0.007   25.163    0.000    0.159
##    .ssmc              0.291    0.010   27.824    0.000    0.271
##    .ssao              0.514    0.015   35.261    0.000    0.486
##    .ssai              0.510    0.019   26.932    0.000    0.473
##    .sssi              0.335    0.016   21.529    0.000    0.305
##    .ssno              0.345    0.018   19.189    0.000    0.310
##    .sscs              0.452    0.019   23.742    0.000    0.415
##     verbal            1.269    0.045   28.261    0.000    1.181
##     math              1.167    0.044   26.808    0.000    1.082
##     electronic        2.772    0.144   19.238    0.000    2.489
##     speed             1.207    0.059   20.466    0.000    1.091
##  ci.upper   Std.lv  Std.all
##     0.204    0.190    0.181
##     0.217    0.201    0.190
##     0.275    0.256    0.242
##     0.350    0.326    0.275
##     0.213    0.197    0.193
##     0.186    0.173    0.166
##     0.312    0.291    0.267
##     0.543    0.514    0.477
##     0.547    0.510    0.402
##     0.366    0.335    0.287
##     0.380    0.345    0.311
##     0.489    0.452    0.437
##     1.357    1.000    1.000
##     1.253    1.000    1.000
##     3.054    1.000    1.000
##     1.322    1.000    1.000
lavTestScore(metric, release = 1:15)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test    X2 df p.value
## 1 score 177.5 15       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs      X2 df p.value
## 1   .p1. == .p54.   8.649  1   0.003
## 2   .p2. == .p55.  31.188  1   0.000
## 3   .p3. == .p56.   5.380  1   0.020
## 4   .p4. == .p57. 106.431  1   0.000
## 5   .p5. == .p58.  25.697  1   0.000
## 6   .p6. == .p59.  18.386  1   0.000
## 7   .p7. == .p60.   0.217  1   0.641
## 8   .p8. == .p61.   1.899  1   0.168
## 9   .p9. == .p62.   0.316  1   0.574
## 10 .p10. == .p63.  26.769  1   0.000
## 11 .p11. == .p64.   3.950  1   0.047
## 12 .p12. == .p65. 111.522  1   0.000
## 13 .p13. == .p66.   4.075  1   0.044
## 14 .p14. == .p67.   0.126  1   0.722
## 15 .p15. == .p68.  17.578  1   0.000
scalar<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2799.154    109.000      0.000      0.960      0.083      0.039 
##        aic        bic 
## 171618.906 172106.454
Mc(scalar)
## [1] 0.8272394
summary(scalar, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 88 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2799.154    2158.109
##   Degrees of freedom                               109         109
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.297
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1197.880     923.549
##     0                                         1601.274    1234.560
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.822    0.012   71.254    0.000    0.799
##     sswk    (.p2.)    0.823    0.012   67.888    0.000    0.799
##     sspc    (.p3.)    0.794    0.012   68.848    0.000    0.771
##     ssei    (.p4.)    0.409    0.015   27.249    0.000    0.379
##   math =~                                                      
##     ssar    (.p5.)    0.838    0.012   68.108    0.000    0.814
##     ssmk    (.p6.)    0.636    0.018   36.337    0.000    0.602
##     ssmc    (.p7.)    0.458    0.013   35.565    0.000    0.432
##     ssao    (.p8.)    0.697    0.012   59.628    0.000    0.674
##   electronic =~                                                
##     ssai    (.p9.)    0.513    0.012   43.773    0.000    0.490
##     sssi    (.10.)    0.554    0.012   44.576    0.000    0.529
##     ssmc    (.11.)    0.288    0.011   27.158    0.000    0.267
##     ssei    (.12.)    0.319    0.012   26.191    0.000    0.295
##   speed =~                                                     
##     ssno    (.13.)    0.781    0.015   50.978    0.000    0.751
##     sscs    (.14.)    0.706    0.015   48.464    0.000    0.677
##     ssmk    (.15.)    0.262    0.016   15.975    0.000    0.230
##  ci.upper   Std.lv  Std.all
##                            
##     0.844    0.822    0.887
##     0.846    0.823    0.890
##     0.817    0.794    0.857
##     0.438    0.409    0.478
##                            
##     0.862    0.838    0.906
##     0.671    0.636    0.671
##     0.483    0.458    0.524
##     0.719    0.697    0.734
##                            
##     0.536    0.513    0.656
##     0.578    0.554    0.702
##     0.309    0.288    0.330
##     0.343    0.319    0.373
##                            
##     0.811    0.781    0.824
##     0.734    0.706    0.750
##     0.294    0.262    0.276
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.905    0.006  143.911    0.000    0.893
##     electronic        0.873    0.012   73.400    0.000    0.850
##     speed             0.701    0.017   41.247    0.000    0.668
##   math ~~                                                      
##     electronic        0.773    0.015   51.716    0.000    0.743
##     speed             0.742    0.018   42.188    0.000    0.708
##   electronic ~~                                                
##     speed             0.517    0.026   20.204    0.000    0.467
##  ci.upper   Std.lv  Std.all
##                            
##     0.917    0.905    0.905
##     0.896    0.873    0.873
##     0.735    0.701    0.701
##                            
##     0.802    0.773    0.773
##     0.777    0.742    0.742
##                            
##     0.567    0.517    0.517
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.199    0.017   12.027    0.000    0.167
##    .sswk    (.39.)    0.183    0.017   10.856    0.000    0.150
##    .sspc    (.40.)    0.175    0.017   10.214    0.000    0.142
##    .ssei    (.41.)   -0.002    0.015   -0.156    0.876   -0.032
##    .ssar    (.42.)    0.175    0.017   10.514    0.000    0.143
##    .ssmk    (.43.)    0.206    0.017   11.804    0.000    0.172
##    .ssmc    (.44.)    0.034    0.015    2.211    0.027    0.004
##    .ssao    (.45.)    0.151    0.016    9.217    0.000    0.119
##    .ssai    (.46.)   -0.121    0.014   -8.911    0.000   -0.148
##    .sssi    (.47.)   -0.115    0.014   -8.104    0.000   -0.142
##    .ssno    (.48.)    0.217    0.017   12.474    0.000    0.183
##    .sscs    (.49.)    0.221    0.017   12.851    0.000    0.187
##  ci.upper   Std.lv  Std.all
##     0.232    0.199    0.215
##     0.217    0.183    0.199
##     0.209    0.175    0.189
##     0.027   -0.002   -0.003
##     0.208    0.175    0.189
##     0.241    0.206    0.217
##     0.065    0.034    0.039
##     0.183    0.151    0.159
##    -0.094   -0.121   -0.155
##    -0.087   -0.115   -0.145
##     0.251    0.217    0.229
##     0.255    0.221    0.235
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.184    0.007   26.562    0.000    0.170
##    .sswk              0.177    0.007   26.158    0.000    0.164
##    .sspc              0.228    0.009   24.067    0.000    0.209
##    .ssei              0.235    0.008   28.100    0.000    0.218
##    .ssar              0.153    0.007   22.397    0.000    0.140
##    .ssmk              0.179    0.007   27.291    0.000    0.166
##    .ssmc              0.267    0.009   28.075    0.000    0.248
##    .ssao              0.416    0.013   31.691    0.000    0.390
##    .ssai              0.348    0.012   29.209    0.000    0.325
##    .sssi              0.316    0.012   26.664    0.000    0.293
##    .ssno              0.288    0.014   20.555    0.000    0.261
##    .sscs              0.387    0.016   23.775    0.000    0.355
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.197    0.184    0.214
##     0.191    0.177    0.208
##     0.246    0.228    0.265
##     0.251    0.235    0.321
##     0.167    0.153    0.179
##     0.192    0.179    0.199
##     0.285    0.267    0.350
##     0.441    0.416    0.461
##     0.372    0.348    0.570
##     0.339    0.316    0.508
##     0.316    0.288    0.321
##     0.419    0.387    0.437
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.822    0.012   71.254    0.000    0.799
##     sswk    (.p2.)    0.823    0.012   67.888    0.000    0.799
##     sspc    (.p3.)    0.794    0.012   68.848    0.000    0.771
##     ssei    (.p4.)    0.409    0.015   27.249    0.000    0.379
##   math =~                                                      
##     ssar    (.p5.)    0.838    0.012   68.108    0.000    0.814
##     ssmk    (.p6.)    0.636    0.018   36.337    0.000    0.602
##     ssmc    (.p7.)    0.458    0.013   35.565    0.000    0.432
##     ssao    (.p8.)    0.697    0.012   59.628    0.000    0.674
##   electronic =~                                                
##     ssai    (.p9.)    0.513    0.012   43.773    0.000    0.490
##     sssi    (.10.)    0.554    0.012   44.576    0.000    0.529
##     ssmc    (.11.)    0.288    0.011   27.158    0.000    0.267
##     ssei    (.12.)    0.319    0.012   26.191    0.000    0.295
##   speed =~                                                     
##     ssno    (.13.)    0.781    0.015   50.978    0.000    0.751
##     sscs    (.14.)    0.706    0.015   48.464    0.000    0.677
##     ssmk    (.15.)    0.262    0.016   15.975    0.000    0.230
##  ci.upper   Std.lv  Std.all
##                            
##     0.844    0.925    0.900
##     0.846    0.926    0.900
##     0.817    0.894    0.861
##     0.438    0.460    0.421
##                            
##     0.862    0.906    0.897
##     0.671    0.688    0.673
##     0.483    0.494    0.474
##     0.719    0.753    0.723
##                            
##     0.536    0.853    0.764
##     0.578    0.921    0.847
##     0.309    0.479    0.459
##     0.343    0.531    0.486
##                            
##     0.811    0.855    0.817
##     0.734    0.773    0.754
##     0.294    0.287    0.281
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              1.116    0.039   28.731    0.000    1.040
##     electronic        1.446    0.058   24.861    0.000    1.332
##     speed             0.874    0.036   23.993    0.000    0.802
##   math ~~                                                      
##     electronic        1.221    0.053   22.953    0.000    1.117
##     speed             0.947    0.037   25.311    0.000    0.873
##   electronic ~~                                                
##     speed             0.715    0.048   14.898    0.000    0.621
##  ci.upper   Std.lv  Std.all
##                            
##     1.192    0.918    0.918
##     1.560    0.772    0.772
##     0.945    0.708    0.708
##                            
##     1.326    0.680    0.680
##     1.020    0.800    0.800
##                            
##     0.809    0.392    0.392
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.199    0.017   12.027    0.000    0.167
##    .sswk    (.39.)    0.183    0.017   10.856    0.000    0.150
##    .sspc    (.40.)    0.175    0.017   10.214    0.000    0.142
##    .ssei    (.41.)   -0.002    0.015   -0.156    0.876   -0.032
##    .ssar    (.42.)    0.175    0.017   10.514    0.000    0.143
##    .ssmk    (.43.)    0.206    0.017   11.804    0.000    0.172
##    .ssmc    (.44.)    0.034    0.015    2.211    0.027    0.004
##    .ssao    (.45.)    0.151    0.016    9.217    0.000    0.119
##    .ssai    (.46.)   -0.121    0.014   -8.911    0.000   -0.148
##    .sssi    (.47.)   -0.115    0.014   -8.104    0.000   -0.142
##    .ssno    (.48.)    0.217    0.017   12.474    0.000    0.183
##    .sscs    (.49.)    0.221    0.017   12.851    0.000    0.187
##     verbal           -0.008    0.030   -0.277    0.782   -0.066
##     math             -0.019    0.029   -0.643    0.521   -0.076
##     elctrnc           1.047    0.047   22.488    0.000    0.956
##     speed            -0.347    0.033  -10.570    0.000   -0.412
##  ci.upper   Std.lv  Std.all
##     0.232    0.199    0.194
##     0.217    0.183    0.178
##     0.209    0.175    0.169
##     0.027   -0.002   -0.002
##     0.208    0.175    0.174
##     0.241    0.206    0.202
##     0.065    0.034    0.033
##     0.183    0.151    0.145
##    -0.094   -0.121   -0.108
##    -0.087   -0.115   -0.105
##     0.251    0.217    0.207
##     0.255    0.221    0.215
##     0.050   -0.007   -0.007
##     0.038   -0.017   -0.017
##     1.138    0.629    0.629
##    -0.283   -0.317   -0.317
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.201    0.007   26.899    0.000    0.186
##    .sswk              0.200    0.008   25.525    0.000    0.185
##    .sspc              0.278    0.011   24.982    0.000    0.256
##    .ssei              0.323    0.012   26.693    0.000    0.299
##    .ssar              0.199    0.008   23.676    0.000    0.183
##    .ssmk              0.172    0.007   24.886    0.000    0.159
##    .ssmc              0.292    0.010   27.909    0.000    0.271
##    .ssao              0.517    0.015   34.895    0.000    0.488
##    .ssai              0.519    0.019   27.927    0.000    0.482
##    .sssi              0.335    0.015   22.136    0.000    0.305
##    .ssno              0.365    0.018   19.980    0.000    0.329
##    .sscs              0.454    0.020   23.166    0.000    0.415
##     verbal            1.267    0.045   28.175    0.000    1.179
##     math              1.167    0.044   26.698    0.000    1.081
##     electronic        2.766    0.143   19.310    0.000    2.485
##     speed             1.200    0.059   20.436    0.000    1.085
##  ci.upper   Std.lv  Std.all
##     0.215    0.201    0.190
##     0.215    0.200    0.189
##     0.299    0.278    0.258
##     0.347    0.323    0.270
##     0.215    0.199    0.195
##     0.186    0.172    0.165
##     0.312    0.292    0.268
##     0.546    0.517    0.477
##     0.555    0.519    0.416
##     0.364    0.335    0.283
##     0.401    0.365    0.333
##     0.492    0.454    0.431
##     1.355    1.000    1.000
##     1.253    1.000    1.000
##     3.047    1.000    1.000
##     1.315    1.000    1.000
lavTestScore(scalar, release = 16:27)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 861.007 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs      X2 df p.value
## 1  .p38. ==  .p91. 380.487  1   0.000
## 2  .p39. ==  .p92.   0.302  1   0.583
## 3  .p40. ==  .p93. 525.281  1   0.000
## 4  .p41. ==  .p94.   4.845  1   0.028
## 5  .p42. ==  .p95.  86.592  1   0.000
## 6  .p43. ==  .p96.  21.035  1   0.000
## 7  .p44. ==  .p97.   0.937  1   0.333
## 8  .p45. ==  .p98.  47.331  1   0.000
## 9  .p46. ==  .p99.  23.463  1   0.000
## 10 .p47. == .p100.  13.978  1   0.000
## 11 .p48. == .p101. 120.317  1   0.000
## 12 .p49. == .p102.  76.967  1   0.000
scalar2<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1")) 
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2131.637    107.000      0.000      0.970      0.073      0.036 
##        aic        bic 
## 170955.389 171456.670
Mc(scalar2)
## [1] 0.8669787
summary(scalar2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 96 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    25
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2131.637    1639.773
##   Degrees of freedom                               107         107
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.300
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          894.030     687.737
##     0                                         1237.607     952.036
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.824    0.011   72.172    0.000    0.802
##     sswk    (.p2.)    0.819    0.012   67.432    0.000    0.795
##     sspc    (.p3.)    0.796    0.011   69.954    0.000    0.773
##     ssei    (.p4.)    0.428    0.015   27.759    0.000    0.398
##   math =~                                                      
##     ssar    (.p5.)    0.838    0.012   68.205    0.000    0.814
##     ssmk    (.p6.)    0.649    0.016   40.572    0.000    0.617
##     ssmc    (.p7.)    0.460    0.013   35.630    0.000    0.435
##     ssao    (.p8.)    0.696    0.012   59.632    0.000    0.673
##   electronic =~                                                
##     ssai    (.p9.)    0.515    0.012   43.828    0.000    0.492
##     sssi    (.10.)    0.556    0.013   44.502    0.000    0.532
##     ssmc    (.11.)    0.287    0.011   26.959    0.000    0.266
##     ssei    (.12.)    0.302    0.012   24.146    0.000    0.277
##   speed =~                                                     
##     ssno    (.13.)    0.796    0.015   51.706    0.000    0.766
##     sscs    (.14.)    0.693    0.014   48.178    0.000    0.665
##     ssmk    (.15.)    0.248    0.014   17.245    0.000    0.220
##  ci.upper   Std.lv  Std.all
##                            
##     0.846    0.824    0.891
##     0.842    0.819    0.887
##     0.818    0.796    0.866
##     0.458    0.428    0.499
##                            
##     0.863    0.838    0.906
##     0.680    0.649    0.684
##     0.485    0.460    0.527
##     0.718    0.696    0.733
##                            
##     0.538    0.515    0.658
##     0.581    0.556    0.705
##     0.308    0.287    0.328
##     0.326    0.302    0.352
##                            
##     0.826    0.796    0.836
##     0.722    0.693    0.743
##     0.276    0.248    0.262
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.906    0.006  146.578    0.000    0.894
##     electronic        0.868    0.012   72.529    0.000    0.845
##     speed             0.695    0.017   40.992    0.000    0.662
##   math ~~                                                      
##     electronic        0.769    0.015   50.990    0.000    0.739
##     speed             0.738    0.018   41.740    0.000    0.704
##   electronic ~~                                                
##     speed             0.507    0.026   19.695    0.000    0.457
##  ci.upper   Std.lv  Std.all
##                            
##     0.918    0.906    0.906
##     0.892    0.868    0.868
##     0.728    0.695    0.695
##                            
##     0.798    0.769    0.769
##     0.773    0.738    0.738
##                            
##     0.557    0.507    0.507
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.157    0.017    9.513    0.000    0.125
##    .sswk    (.39.)    0.143    0.017    8.448    0.000    0.110
##    .sspc              0.284    0.017   16.543    0.000    0.251
##    .ssei    (.41.)   -0.011    0.015   -0.733    0.464   -0.040
##    .ssar    (.42.)    0.169    0.017   10.108    0.000    0.136
##    .ssmk    (.43.)    0.220    0.018   12.541    0.000    0.185
##    .ssmc    (.44.)    0.034    0.015    2.170    0.030    0.003
##    .ssao    (.45.)    0.145    0.016    8.863    0.000    0.113
##    .ssai    (.46.)   -0.118    0.014   -8.671    0.000   -0.144
##    .sssi    (.47.)   -0.110    0.014   -7.789    0.000   -0.138
##    .ssno              0.173    0.018    9.602    0.000    0.138
##    .sscs    (.49.)    0.274    0.017   15.774    0.000    0.240
##  ci.upper   Std.lv  Std.all
##     0.190    0.157    0.170
##     0.176    0.143    0.155
##     0.318    0.284    0.309
##     0.018   -0.011   -0.013
##     0.201    0.169    0.182
##     0.254    0.220    0.232
##     0.064    0.034    0.038
##     0.177    0.145    0.153
##    -0.091   -0.118   -0.151
##    -0.083   -0.110   -0.140
##     0.209    0.173    0.182
##     0.308    0.274    0.294
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.177    0.007   26.959    0.000    0.164
##    .sswk              0.181    0.007   26.306    0.000    0.168
##    .sspc              0.211    0.009   24.516    0.000    0.194
##    .ssei              0.236    0.008   28.303    0.000    0.220
##    .ssar              0.153    0.007   22.607    0.000    0.140
##    .ssmk              0.179    0.006   27.581    0.000    0.166
##    .ssmc              0.266    0.009   28.088    0.000    0.248
##    .ssao              0.417    0.013   31.774    0.000    0.391
##    .ssai              0.346    0.012   29.050    0.000    0.323
##    .sssi              0.314    0.012   26.479    0.000    0.291
##    .ssno              0.272    0.014   19.509    0.000    0.245
##    .sscs              0.389    0.016   24.296    0.000    0.358
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.190    0.177    0.207
##     0.195    0.181    0.213
##     0.228    0.211    0.250
##     0.253    0.236    0.322
##     0.166    0.153    0.179
##     0.192    0.179    0.199
##     0.285    0.266    0.349
##     0.443    0.417    0.463
##     0.370    0.346    0.566
##     0.337    0.314    0.504
##     0.300    0.272    0.301
##     0.420    0.389    0.447
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.824    0.011   72.172    0.000    0.802
##     sswk    (.p2.)    0.819    0.012   67.432    0.000    0.795
##     sspc    (.p3.)    0.796    0.011   69.954    0.000    0.773
##     ssei    (.p4.)    0.428    0.015   27.759    0.000    0.398
##   math =~                                                      
##     ssar    (.p5.)    0.838    0.012   68.205    0.000    0.814
##     ssmk    (.p6.)    0.649    0.016   40.572    0.000    0.617
##     ssmc    (.p7.)    0.460    0.013   35.630    0.000    0.435
##     ssao    (.p8.)    0.696    0.012   59.632    0.000    0.673
##   electronic =~                                                
##     ssai    (.p9.)    0.515    0.012   43.828    0.000    0.492
##     sssi    (.10.)    0.556    0.013   44.502    0.000    0.532
##     ssmc    (.11.)    0.287    0.011   26.959    0.000    0.266
##     ssei    (.12.)    0.302    0.012   24.146    0.000    0.277
##   speed =~                                                     
##     ssno    (.13.)    0.796    0.015   51.706    0.000    0.766
##     sscs    (.14.)    0.693    0.014   48.178    0.000    0.665
##     ssmk    (.15.)    0.248    0.014   17.245    0.000    0.220
##  ci.upper   Std.lv  Std.all
##                            
##     0.846    0.929    0.904
##     0.842    0.923    0.898
##     0.818    0.897    0.871
##     0.458    0.482    0.444
##                            
##     0.863    0.906    0.898
##     0.680    0.701    0.687
##     0.485    0.497    0.477
##     0.718    0.752    0.722
##                            
##     0.538    0.857    0.766
##     0.581    0.925    0.850
##     0.308    0.477    0.458
##     0.326    0.502    0.461
##                            
##     0.826    0.874    0.829
##     0.722    0.761    0.749
##     0.276    0.272    0.267
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              1.119    0.039   28.803    0.000    1.043
##     electronic        1.439    0.058   24.813    0.000    1.325
##     speed             0.870    0.036   23.942    0.000    0.799
##   math ~~                                                      
##     electronic        1.211    0.053   22.862    0.000    1.107
##     speed             0.944    0.037   25.247    0.000    0.871
##   electronic ~~                                                
##     speed             0.701    0.048   14.670    0.000    0.607
##  ci.upper   Std.lv  Std.all
##                            
##     1.195    0.918    0.918
##     1.553    0.768    0.768
##     0.941    0.703    0.703
##                            
##     1.315    0.674    0.674
##     1.017    0.796    0.796
##                            
##     0.795    0.384    0.384
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.157    0.017    9.513    0.000    0.125
##    .sswk    (.39.)    0.143    0.017    8.448    0.000    0.110
##    .sspc             -0.035    0.020   -1.777    0.076   -0.073
##    .ssei    (.41.)   -0.011    0.015   -0.733    0.464   -0.040
##    .ssar    (.42.)    0.169    0.017   10.108    0.000    0.136
##    .ssmk    (.43.)    0.220    0.018   12.541    0.000    0.185
##    .ssmc    (.44.)    0.034    0.015    2.170    0.030    0.003
##    .ssao    (.45.)    0.145    0.016    8.863    0.000    0.113
##    .ssai    (.46.)   -0.118    0.014   -8.671    0.000   -0.144
##    .sssi    (.47.)   -0.110    0.014   -7.789    0.000   -0.138
##    .ssno              0.410    0.026   15.655    0.000    0.359
##    .sscs    (.49.)    0.274    0.017   15.774    0.000    0.240
##     verbal            0.096    0.030    3.236    0.001    0.038
##     math             -0.000    0.029   -0.015    0.988   -0.057
##     elctrnc           1.027    0.046   22.224    0.000    0.936
##     speed            -0.517    0.037  -14.116    0.000   -0.589
##  ci.upper   Std.lv  Std.all
##     0.190    0.157    0.153
##     0.176    0.143    0.139
##     0.004   -0.035   -0.034
##     0.018   -0.011   -0.010
##     0.201    0.169    0.167
##     0.254    0.220    0.215
##     0.064    0.034    0.032
##     0.177    0.145    0.139
##    -0.091   -0.118   -0.105
##    -0.083   -0.110   -0.101
##     0.462    0.410    0.389
##     0.308    0.274    0.270
##     0.154    0.085    0.085
##     0.056   -0.000   -0.000
##     1.117    0.617    0.617
##    -0.446   -0.471   -0.471
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.193    0.007   27.688    0.000    0.179
##    .sswk              0.205    0.008   26.010    0.000    0.189
##    .sspc              0.256    0.010   26.528    0.000    0.237
##    .ssei              0.327    0.012   27.077    0.000    0.303
##    .ssar              0.198    0.008   23.766    0.000    0.182
##    .ssmk              0.173    0.007   25.182    0.000    0.159
##    .ssmc              0.292    0.010   27.920    0.000    0.271
##    .ssao              0.518    0.015   34.861    0.000    0.489
##    .ssai              0.516    0.019   27.749    0.000    0.479
##    .sssi              0.329    0.015   21.706    0.000    0.300
##    .ssno              0.346    0.018   19.263    0.000    0.311
##    .sscs              0.453    0.019   23.974    0.000    0.416
##     verbal            1.271    0.045   28.290    0.000    1.183
##     math              1.168    0.044   26.771    0.000    1.083
##     electronic        2.766    0.144   19.209    0.000    2.484
##     speed             1.205    0.059   20.504    0.000    1.090
##  ci.upper   Std.lv  Std.all
##     0.207    0.193    0.183
##     0.220    0.205    0.194
##     0.274    0.256    0.241
##     0.350    0.327    0.276
##     0.214    0.198    0.194
##     0.186    0.173    0.166
##     0.312    0.292    0.269
##     0.548    0.518    0.479
##     0.552    0.516    0.413
##     0.359    0.329    0.278
##     0.381    0.346    0.312
##     0.490    0.453    0.439
##     1.359    1.000    1.000
##     1.254    1.000    1.000
##     3.048    1.000    1.000
##     1.321    1.000    1.000
lavTestScore(scalar2, release = 16:25, standardized=T, epc=T)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 215.798 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs      X2 df p.value
## 1  .p38. ==  .p91. 112.596  1   0.000
## 2  .p39. ==  .p92. 111.585  1   0.000
## 3  .p41. ==  .p94.   0.031  1   0.860
## 4  .p42. ==  .p95.  53.032  1   0.000
## 5  .p43. ==  .p96.   1.756  1   0.185
## 6  .p44. ==  .p97.   1.226  1   0.268
## 7  .p45. ==  .p98.  59.985  1   0.000
## 8  .p46. ==  .p99.  17.426  1   0.000
## 9  .p47. == .p100.  22.013  1   0.000
## 10 .p49. == .p102.   1.756  1   0.185
## 
## $epc
## 
## expected parameter changes (epc) and expected parameter values (epv):
## 
##           lhs op        rhs block group free label plabel    est    epc
## 1      verbal =~       ssgs     1     1    1  .p1.   .p1.  0.824 -0.002
## 2      verbal =~       sswk     1     1    2  .p2.   .p2.  0.819  0.002
## 3      verbal =~       sspc     1     1    3  .p3.   .p3.  0.796  0.000
## 4      verbal =~       ssei     1     1    4  .p4.   .p4.  0.428 -0.003
## 5        math =~       ssar     1     1    5  .p5.   .p5.  0.838  0.000
## 6        math =~       ssmk     1     1    6  .p6.   .p6.  0.649  0.007
## 7        math =~       ssmc     1     1    7  .p7.   .p7.  0.460 -0.007
## 8        math =~       ssao     1     1    8  .p8.   .p8.  0.696  0.000
## 9  electronic =~       ssai     1     1    9  .p9.   .p9.  0.515  0.009
## 10 electronic =~       sssi     1     1   10 .p10.  .p10.  0.556 -0.008
## 11 electronic =~       ssmc     1     1   11 .p11.  .p11.  0.287  0.006
## 12 electronic =~       ssei     1     1   12 .p12.  .p12.  0.302  0.003
## 13      speed =~       ssno     1     1   13 .p13.  .p13.  0.796  0.001
## 14      speed =~       sscs     1     1   14 .p14.  .p14.  0.693  0.001
## 15      speed =~       ssmk     1     1   15 .p15.  .p15.  0.248 -0.008
## 16       ssgs ~~       ssgs     1     1   16        .p16.  0.177  0.000
## 17       sswk ~~       sswk     1     1   17        .p17.  0.181  0.000
## 18       sspc ~~       sspc     1     1   18        .p18.  0.211  0.000
## 19       ssei ~~       ssei     1     1   19        .p19.  0.236  0.000
## 20       ssar ~~       ssar     1     1   20        .p20.  0.153  0.000
## 21       ssmk ~~       ssmk     1     1   21        .p21.  0.179  0.000
## 22       ssmc ~~       ssmc     1     1   22        .p22.  0.266  0.000
## 23       ssao ~~       ssao     1     1   23        .p23.  0.417  0.000
## 24       ssai ~~       ssai     1     1   24        .p24.  0.346 -0.002
## 25       sssi ~~       sssi     1     1   25        .p25.  0.314  0.003
## 26       ssno ~~       ssno     1     1   26        .p26.  0.272 -0.001
## 27       sscs ~~       sscs     1     1   27        .p27.  0.389 -0.001
## 28     verbal ~~     verbal     1     1    0        .p28.  1.000     NA
## 29       math ~~       math     1     1    0        .p29.  1.000     NA
## 30 electronic ~~ electronic     1     1    0        .p30.  1.000     NA
## 31      speed ~~      speed     1     1    0        .p31.  1.000     NA
## 32     verbal ~~       math     1     1   28        .p32.  0.906  0.000
## 33     verbal ~~ electronic     1     1   29        .p33.  0.868  0.001
## 34     verbal ~~      speed     1     1   30        .p34.  0.695 -0.001
## 35       math ~~ electronic     1     1   31        .p35.  0.769  0.001
## 36       math ~~      speed     1     1   32        .p36.  0.738  0.000
## 37 electronic ~~      speed     1     1   33        .p37.  0.507  0.000
## 38       ssgs ~1                1     1   34 .p38.  .p38.  0.157 -0.038
## 39       sswk ~1                1     1   35 .p39.  .p39.  0.143  0.039
## 40       sspc ~1                1     1   36        .p40.  0.284  0.000
## 41       ssei ~1                1     1   37 .p41.  .p41. -0.011  0.001
## 42       ssar ~1                1     1   38 .p42.  .p42.  0.169 -0.021
## 43       ssmk ~1                1     1   39 .p43.  .p43.  0.220  0.005
## 44       ssmc ~1                1     1   40 .p44.  .p44.  0.034  0.005
## 45       ssao ~1                1     1   41 .p45.  .p45.  0.145  0.053
## 46       ssai ~1                1     1   42 .p46.  .p46. -0.118  0.020
## 47       sssi ~1                1     1   43 .p47.  .p47. -0.110 -0.021
## 48       ssno ~1                1     1   44        .p48.  0.173  0.000
## 49       sscs ~1                1     1   45 .p49.  .p49.  0.274 -0.004
## 50     verbal ~1                1     1    0        .p50.  0.000     NA
## 51       math ~1                1     1    0        .p51.  0.000     NA
## 52 electronic ~1                1     1    0        .p52.  0.000     NA
## 53      speed ~1                1     1    0        .p53.  0.000     NA
## 54     verbal =~       ssgs     2     2   46  .p1.  .p54.  0.824 -0.002
## 55     verbal =~       sswk     2     2   47  .p2.  .p55.  0.819  0.002
## 56     verbal =~       sspc     2     2   48  .p3.  .p56.  0.796  0.000
## 57     verbal =~       ssei     2     2   49  .p4.  .p57.  0.428 -0.003
## 58       math =~       ssar     2     2   50  .p5.  .p58.  0.838  0.000
## 59       math =~       ssmk     2     2   51  .p6.  .p59.  0.649  0.007
## 60       math =~       ssmc     2     2   52  .p7.  .p60.  0.460 -0.007
## 61       math =~       ssao     2     2   53  .p8.  .p61.  0.696  0.000
## 62 electronic =~       ssai     2     2   54  .p9.  .p62.  0.515  0.009
## 63 electronic =~       sssi     2     2   55 .p10.  .p63.  0.556 -0.008
## 64 electronic =~       ssmc     2     2   56 .p11.  .p64.  0.287  0.006
## 65 electronic =~       ssei     2     2   57 .p12.  .p65.  0.302  0.003
## 66      speed =~       ssno     2     2   58 .p13.  .p66.  0.796  0.001
## 67      speed =~       sscs     2     2   59 .p14.  .p67.  0.693  0.001
## 68      speed =~       ssmk     2     2   60 .p15.  .p68.  0.248 -0.008
## 69       ssgs ~~       ssgs     2     2   61        .p69.  0.193  0.000
## 70       sswk ~~       sswk     2     2   62        .p70.  0.205  0.000
## 71       sspc ~~       sspc     2     2   63        .p71.  0.256  0.000
##       epv sepc.lv sepc.all sepc.nox
## 1   0.822  -0.002   -0.002   -0.002
## 2   0.821   0.002    0.002    0.002
## 3   0.796   0.000    0.000    0.000
## 4   0.425  -0.003   -0.004   -0.004
## 5   0.838   0.000    0.000    0.000
## 6   0.655   0.007    0.007    0.007
## 7   0.454  -0.007   -0.007   -0.007
## 8   0.696   0.000    0.000    0.000
## 9   0.524   0.009    0.011    0.011
## 10  0.548  -0.008   -0.011   -0.011
## 11  0.293   0.006    0.007    0.007
## 12  0.304   0.003    0.003    0.003
## 13  0.796   0.001    0.001    0.001
## 14  0.695   0.001    0.001    0.001
## 15  0.240  -0.008   -0.008   -0.008
## 16  0.177   0.177    0.207    0.207
## 17  0.181  -0.181   -0.213   -0.213
## 18  0.211  -0.211   -0.250   -0.250
## 19  0.236  -0.236   -0.322   -0.322
## 20  0.153   0.153    0.179    0.179
## 21  0.179   0.179    0.199    0.199
## 22  0.266  -0.266   -0.349   -0.349
## 23  0.417   0.417    0.463    0.463
## 24  0.345  -0.346   -0.566   -0.566
## 25  0.317   0.314    0.504    0.504
## 26  0.271  -0.272   -0.301   -0.301
## 27  0.388  -0.389   -0.447   -0.447
## 28     NA      NA       NA       NA
## 29     NA      NA       NA       NA
## 30     NA      NA       NA       NA
## 31     NA      NA       NA       NA
## 32  0.906   0.000    0.000    0.000
## 33  0.870   0.001    0.001    0.001
## 34  0.694  -0.001   -0.001   -0.001
## 35  0.770   0.001    0.001    0.001
## 36  0.739   0.000    0.000    0.000
## 37  0.507   0.000    0.000    0.000
## 38  0.120  -0.038   -0.041   -0.041
## 39  0.181   0.039    0.042    0.042
## 40  0.284   0.000    0.000    0.000
## 41 -0.010   0.001    0.001    0.001
## 42  0.148  -0.021   -0.022   -0.022
## 43  0.224   0.005    0.005    0.005
## 44  0.039   0.005    0.006    0.006
## 45  0.198   0.053    0.056    0.056
## 46 -0.097   0.020    0.026    0.026
## 47 -0.131  -0.021   -0.026   -0.026
## 48  0.173   0.000    0.000    0.000
## 49  0.271  -0.004   -0.004   -0.004
## 50     NA      NA       NA       NA
## 51     NA      NA       NA       NA
## 52     NA      NA       NA       NA
## 53     NA      NA       NA       NA
## 54  0.822  -0.002   -0.002   -0.002
## 55  0.821   0.002    0.002    0.002
## 56  0.796   0.000    0.000    0.000
## 57  0.425  -0.004   -0.003   -0.003
## 58  0.838   0.000    0.000    0.000
## 59  0.655   0.007    0.007    0.007
## 60  0.454  -0.007   -0.007   -0.007
## 61  0.696   0.000    0.000    0.000
## 62  0.524   0.015    0.013    0.013
## 63  0.548  -0.014   -0.013   -0.013
## 64  0.293   0.010    0.010    0.010
## 65  0.304   0.004    0.004    0.004
## 66  0.796   0.001    0.001    0.001
## 67  0.695   0.001    0.001    0.001
## 68  0.240  -0.009   -0.009   -0.009
## 69  0.193   0.193    0.183    0.183
## 70  0.204  -0.205   -0.194   -0.194
## 71  0.255  -0.256   -0.241   -0.241
##  [ reached 'max' / getOption("max.print") -- omitted 35 rows ]
strict<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1", "ssno~1")) 
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2432.221    119.000      0.000      0.966      0.074      0.039 
##        aic        bic 
## 171231.974 171650.853
Mc(strict) 
## [1] 0.8495176
cf.cov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1")) 
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2366.862    113.000      0.000      0.967      0.075      0.094 
##        aic        bic 
## 171178.615 171638.695
Mc(cf.cov)
## [1] 0.8530802
summary(cf.cov, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 65 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        98
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2366.862    1821.326
##   Degrees of freedom                               113         113
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.300
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          982.231     755.837
##     0                                         1384.632    1065.489
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.880    0.010   88.892    0.000    0.861
##     sswk    (.p2.)    0.875    0.010   87.006    0.000    0.855
##     sspc    (.p3.)    0.851    0.009   94.357    0.000    0.833
##     ssei    (.p4.)    0.461    0.016   28.861    0.000    0.430
##   math =~                                                      
##     ssar    (.p5.)    0.878    0.010   84.774    0.000    0.858
##     ssmk    (.p6.)    0.677    0.015   44.066    0.000    0.647
##     ssmc    (.p7.)    0.484    0.013   37.599    0.000    0.459
##     ssao    (.p8.)    0.728    0.010   71.529    0.000    0.708
##   electronic =~                                                
##     ssai    (.p9.)    0.582    0.012   49.298    0.000    0.559
##     sssi    (.10.)    0.636    0.012   53.464    0.000    0.612
##     ssmc    (.11.)    0.325    0.012   28.051    0.000    0.302
##     ssei    (.12.)    0.337    0.014   24.341    0.000    0.310
##   speed =~                                                     
##     ssno    (.13.)    0.832    0.015   53.960    0.000    0.801
##     sscs    (.14.)    0.725    0.014   50.390    0.000    0.697
##     ssmk    (.15.)    0.262    0.014   18.051    0.000    0.233
##  ci.upper   Std.lv  Std.all
##                            
##     0.900    0.880    0.903
##     0.894    0.875    0.899
##     0.869    0.851    0.879
##     0.492    0.461    0.502
##                            
##     0.899    0.878    0.913
##     0.708    0.677    0.685
##     0.509    0.484    0.524
##     0.748    0.728    0.748
##                            
##     0.605    0.582    0.702
##     0.659    0.636    0.752
##     0.347    0.325    0.351
##     0.364    0.337    0.367
##                            
##     0.862    0.832    0.846
##     0.753    0.725    0.757
##     0.290    0.262    0.265
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.32.)    0.907    0.006  164.362    0.000    0.896
##     elctrnc (.33.)    0.898    0.009   98.442    0.000    0.880
##     speed   (.34.)    0.702    0.014   50.236    0.000    0.674
##   math ~~                                                      
##     elctrnc (.35.)    0.790    0.012   67.084    0.000    0.767
##     speed   (.36.)    0.768    0.014   55.265    0.000    0.741
##   electronic ~~                                                
##     speed   (.37.)    0.504    0.021   24.313    0.000    0.463
##  ci.upper   Std.lv  Std.all
##                            
##     0.918    0.907    0.907
##     0.916    0.898    0.898
##     0.729    0.702    0.702
##                            
##     0.813    0.790    0.790
##     0.796    0.768    0.768
##                            
##     0.545    0.504    0.504
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.157    0.017    9.480    0.000    0.124
##    .sswk    (.39.)    0.143    0.017    8.438    0.000    0.109
##    .sspc              0.284    0.017   16.543    0.000    0.251
##    .ssei    (.41.)   -0.009    0.015   -0.629    0.529   -0.038
##    .ssar    (.42.)    0.168    0.017   10.099    0.000    0.136
##    .ssmk    (.43.)    0.220    0.018   12.562    0.000    0.186
##    .ssmc    (.44.)    0.034    0.015    2.171    0.030    0.003
##    .ssao    (.45.)    0.145    0.016    8.851    0.000    0.113
##    .ssai    (.46.)   -0.117    0.014   -8.642    0.000   -0.144
##    .sssi    (.47.)   -0.112    0.014   -7.934    0.000   -0.140
##    .ssno              0.173    0.018    9.602    0.000    0.138
##    .sscs    (.49.)    0.274    0.017   15.761    0.000    0.240
##  ci.upper   Std.lv  Std.all
##     0.189    0.157    0.161
##     0.176    0.143    0.147
##     0.318    0.284    0.293
##     0.020   -0.009   -0.010
##     0.201    0.168    0.175
##     0.254    0.220    0.223
##     0.064    0.034    0.036
##     0.177    0.145    0.148
##    -0.091   -0.117   -0.141
##    -0.085   -0.112   -0.133
##     0.209    0.173    0.176
##     0.308    0.274    0.286
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.176    0.007   26.989    0.000    0.163
##    .sswk              0.181    0.007   26.314    0.000    0.168
##    .sspc              0.214    0.009   24.647    0.000    0.197
##    .ssei              0.238    0.008   28.417    0.000    0.222
##    .ssar              0.154    0.007   22.803    0.000    0.140
##    .ssmk              0.178    0.007   27.265    0.000    0.165
##    .ssmc              0.265    0.009   28.180    0.000    0.247
##    .ssao              0.418    0.013   31.858    0.000    0.392
##    .ssai              0.348    0.012   29.205    0.000    0.325
##    .sssi              0.311    0.012   26.524    0.000    0.288
##    .ssno              0.274    0.014   19.687    0.000    0.247
##    .sscs              0.392    0.016   24.455    0.000    0.361
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.189    0.176    0.185
##     0.195    0.181    0.191
##     0.231    0.214    0.228
##     0.254    0.238    0.282
##     0.167    0.154    0.166
##     0.190    0.178    0.182
##     0.284    0.265    0.311
##     0.444    0.418    0.441
##     0.372    0.348    0.507
##     0.334    0.311    0.435
##     0.302    0.274    0.284
##     0.424    0.392    0.427
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.880    0.010   88.892    0.000    0.861
##     sswk    (.p2.)    0.875    0.010   87.006    0.000    0.855
##     sspc    (.p3.)    0.851    0.009   94.357    0.000    0.833
##     ssei    (.p4.)    0.461    0.016   28.861    0.000    0.430
##   math =~                                                      
##     ssar    (.p5.)    0.878    0.010   84.774    0.000    0.858
##     ssmk    (.p6.)    0.677    0.015   44.066    0.000    0.647
##     ssmc    (.p7.)    0.484    0.013   37.599    0.000    0.459
##     ssao    (.p8.)    0.728    0.010   71.529    0.000    0.708
##   electronic =~                                                
##     ssai    (.p9.)    0.582    0.012   49.298    0.000    0.559
##     sssi    (.10.)    0.636    0.012   53.464    0.000    0.612
##     ssmc    (.11.)    0.325    0.012   28.051    0.000    0.302
##     ssei    (.12.)    0.337    0.014   24.341    0.000    0.310
##   speed =~                                                     
##     ssno    (.13.)    0.832    0.015   53.960    0.000    0.801
##     sscs    (.14.)    0.725    0.014   50.390    0.000    0.697
##     ssmk    (.15.)    0.262    0.014   18.051    0.000    0.233
##  ci.upper   Std.lv  Std.all
##                            
##     0.900    0.877    0.893
##     0.894    0.872    0.887
##     0.869    0.848    0.861
##     0.492    0.459    0.455
##                            
##     0.899    0.871    0.891
##     0.708    0.671    0.683
##     0.509    0.480    0.491
##     0.748    0.722    0.708
##                            
##     0.605    0.769    0.731
##     0.659    0.840    0.831
##     0.347    0.429    0.439
##     0.364    0.446    0.441
##                            
##     0.862    0.840    0.820
##     0.753    0.732    0.738
##     0.290    0.264    0.269
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.32.)    0.907    0.006  164.362    0.000    0.896
##     elctrnc (.33.)    0.898    0.009   98.442    0.000    0.880
##     speed   (.34.)    0.702    0.014   50.236    0.000    0.674
##   math ~~                                                      
##     elctrnc (.35.)    0.790    0.012   67.084    0.000    0.767
##     speed   (.36.)    0.768    0.014   55.265    0.000    0.741
##   electronic ~~                                                
##     speed   (.37.)    0.504    0.021   24.313    0.000    0.463
##  ci.upper   Std.lv  Std.all
##                            
##     0.918    0.918    0.918
##     0.916    0.682    0.682
##     0.729    0.697    0.697
##                            
##     0.813    0.603    0.603
##     0.796    0.768    0.768
##                            
##     0.545    0.378    0.378
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.157    0.017    9.480    0.000    0.124
##    .sswk    (.39.)    0.143    0.017    8.438    0.000    0.109
##    .sspc             -0.035    0.020   -1.807    0.071   -0.073
##    .ssei    (.41.)   -0.009    0.015   -0.629    0.529   -0.038
##    .ssar    (.42.)    0.168    0.017   10.099    0.000    0.136
##    .ssmk    (.43.)    0.220    0.018   12.562    0.000    0.186
##    .ssmc    (.44.)    0.034    0.015    2.171    0.030    0.003
##    .ssao    (.45.)    0.145    0.016    8.851    0.000    0.113
##    .ssai    (.46.)   -0.117    0.014   -8.642    0.000   -0.144
##    .sssi    (.47.)   -0.112    0.014   -7.934    0.000   -0.140
##    .ssno              0.409    0.026   15.630    0.000    0.358
##    .sscs    (.49.)    0.274    0.017   15.761    0.000    0.240
##     verbal            0.090    0.028    3.262    0.001    0.036
##     math              0.000    0.028    0.005    0.996   -0.054
##     elctrnc           0.906    0.040   22.908    0.000    0.829
##     speed            -0.494    0.035  -13.938    0.000   -0.564
##  ci.upper   Std.lv  Std.all
##     0.189    0.157    0.160
##     0.176    0.143    0.145
##     0.003   -0.035   -0.036
##     0.020   -0.009   -0.009
##     0.201    0.168    0.172
##     0.254    0.220    0.224
##     0.064    0.034    0.034
##     0.177    0.145    0.142
##    -0.091   -0.117   -0.111
##    -0.085   -0.112   -0.111
##     0.461    0.409    0.400
##     0.308    0.274    0.276
##     0.144    0.090    0.090
##     0.054    0.000    0.000
##     0.984    0.685    0.685
##    -0.425   -0.490   -0.490
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.196    0.007   27.733    0.000    0.182
##    .sswk              0.206    0.008   25.841    0.000    0.190
##    .sspc              0.250    0.009   26.519    0.000    0.232
##    .ssei              0.333    0.012   27.174    0.000    0.309
##    .ssar              0.197    0.008   23.645    0.000    0.180
##    .ssmk              0.175    0.007   25.515    0.000    0.161
##    .ssmc              0.293    0.010   28.065    0.000    0.273
##    .ssao              0.518    0.015   34.840    0.000    0.489
##    .ssai              0.515    0.019   27.450    0.000    0.478
##    .sssi              0.317    0.015   21.083    0.000    0.288
##    .ssno              0.344    0.018   19.085    0.000    0.308
##    .sscs              0.448    0.019   23.715    0.000    0.411
##     verbal            0.993    0.012   80.822    0.000    0.969
##     math              0.982    0.014   70.286    0.000    0.955
##     electronic        1.747    0.066   26.589    0.000    1.618
##     speed             1.019    0.041   24.995    0.000    0.939
##  ci.upper   Std.lv  Std.all
##     0.209    0.196    0.203
##     0.221    0.206    0.213
##     0.269    0.250    0.258
##     0.357    0.333    0.326
##     0.213    0.197    0.206
##     0.188    0.175    0.180
##     0.314    0.293    0.307
##     0.548    0.518    0.499
##     0.551    0.515    0.465
##     0.347    0.317    0.310
##     0.379    0.344    0.328
##     0.486    0.448    0.456
##     1.018    1.000    1.000
##     1.010    1.000    1.000
##     1.876    1.000    1.000
##     1.099    1.000    1.000
cf.vcov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("sspc~1", "ssno~1")) 
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2834.448    117.000      0.000      0.960      0.081      0.114 
##        aic        bic 
## 171638.200 172070.813
Mc(cf.vcov)
## [1] 0.8256491
cf.cov2<-cfa(cf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1")) 
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2371.017    116.000      0.000      0.967      0.074      0.094 
##        aic        bic 
## 171176.770 171616.249
Mc(cf.cov2)
## [1] 0.8530107
summary(cf.cov2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 60 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        95
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2371.017    1814.487
##   Degrees of freedom                               116         116
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.307
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          984.551     753.455
##     0                                         1386.466    1061.032
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.879    0.009   92.854    0.000    0.860
##     sswk    (.p2.)    0.873    0.010   91.146    0.000    0.854
##     sspc    (.p3.)    0.849    0.009   99.150    0.000    0.833
##     ssei    (.p4.)    0.461    0.016   28.827    0.000    0.429
##   math =~                                                      
##     ssar    (.p5.)    0.875    0.010   88.324    0.000    0.855
##     ssmk    (.p6.)    0.675    0.015   44.656    0.000    0.645
##     ssmc    (.p7.)    0.482    0.013   38.043    0.000    0.457
##     ssao    (.p8.)    0.725    0.010   74.517    0.000    0.706
##   electronic =~                                                
##     ssai    (.p9.)    0.582    0.012   49.241    0.000    0.559
##     sssi    (.10.)    0.636    0.012   53.391    0.000    0.612
##     ssmc    (.11.)    0.325    0.012   28.077    0.000    0.302
##     ssei    (.12.)    0.337    0.014   24.401    0.000    0.310
##   speed =~                                                     
##     ssno    (.13.)    0.835    0.013   65.533    0.000    0.810
##     sscs    (.14.)    0.729    0.012   60.232    0.000    0.705
##     ssmk    (.15.)    0.262    0.015   18.042    0.000    0.234
##  ci.upper   Std.lv  Std.all
##                            
##     0.897    0.879    0.902
##     0.892    0.873    0.898
##     0.866    0.849    0.879
##     0.492    0.461    0.502
##                            
##     0.894    0.875    0.912
##     0.705    0.675    0.684
##     0.507    0.482    0.522
##     0.744    0.725    0.746
##                            
##     0.605    0.582    0.702
##     0.659    0.636    0.752
##     0.347    0.325    0.352
##     0.364    0.337    0.367
##                            
##     0.860    0.835    0.848
##     0.752    0.729    0.759
##     0.291    0.262    0.266
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.32.)    0.913    0.004  219.913    0.000    0.905
##     elctrnc (.33.)    0.898    0.009   98.442    0.000    0.880
##     speed   (.34.)    0.700    0.012   58.813    0.000    0.676
##   math ~~                                                      
##     elctrnc (.35.)    0.793    0.012   68.790    0.000    0.770
##     speed   (.36.)    0.768    0.012   66.274    0.000    0.745
##   electronic ~~                                                
##     speed   (.37.)    0.500    0.019   26.310    0.000    0.463
##  ci.upper   Std.lv  Std.all
##                            
##     0.921    0.913    0.913
##     0.916    0.898    0.898
##     0.723    0.700    0.700
##                            
##     0.816    0.793    0.793
##     0.790    0.768    0.768
##                            
##     0.538    0.500    0.500
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.157    0.017    9.486    0.000    0.125
##    .sswk    (.39.)    0.142    0.017    8.425    0.000    0.109
##    .sspc              0.284    0.017   16.543    0.000    0.251
##    .ssei    (.41.)   -0.009    0.015   -0.625    0.532   -0.038
##    .ssar    (.42.)    0.169    0.017   10.115    0.000    0.136
##    .ssmk    (.43.)    0.220    0.018   12.557    0.000    0.186
##    .ssmc    (.44.)    0.034    0.015    2.170    0.030    0.003
##    .ssao    (.45.)    0.144    0.016    8.848    0.000    0.112
##    .ssai    (.46.)   -0.117    0.014   -8.643    0.000   -0.144
##    .sssi    (.47.)   -0.112    0.014   -7.938    0.000   -0.140
##    .ssno              0.173    0.018    9.602    0.000    0.138
##    .sscs    (.49.)    0.274    0.017   15.764    0.000    0.240
##  ci.upper   Std.lv  Std.all
##     0.189    0.157    0.161
##     0.175    0.142    0.146
##     0.318    0.284    0.294
##     0.020   -0.009   -0.010
##     0.201    0.169    0.176
##     0.254    0.220    0.223
##     0.064    0.034    0.036
##     0.176    0.144    0.149
##    -0.091   -0.117   -0.141
##    -0.085   -0.112   -0.133
##     0.209    0.173    0.176
##     0.308    0.274    0.285
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.177    0.006   27.214    0.000    0.164
##    .sswk              0.182    0.007   26.580    0.000    0.169
##    .sspc              0.213    0.009   24.727    0.000    0.196
##    .ssei              0.238    0.008   28.434    0.000    0.222
##    .ssar              0.155    0.007   23.406    0.000    0.142
##    .ssmk              0.178    0.007   27.362    0.000    0.165
##    .ssmc              0.266    0.009   28.228    0.000    0.247
##    .ssao              0.419    0.013   31.974    0.000    0.393
##    .ssai              0.348    0.012   29.202    0.000    0.325
##    .sssi              0.311    0.012   26.522    0.000    0.288
##    .ssno              0.273    0.014   19.222    0.000    0.245
##    .sscs              0.392    0.016   24.532    0.000    0.361
##     electronic        1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.189    0.177    0.186
##     0.196    0.182    0.193
##     0.230    0.213    0.228
##     0.255    0.238    0.283
##     0.168    0.155    0.169
##     0.191    0.178    0.183
##     0.284    0.266    0.312
##     0.444    0.419    0.443
##     0.372    0.348    0.507
##     0.334    0.311    0.435
##     0.301    0.273    0.281
##     0.423    0.392    0.425
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.879    0.009   92.854    0.000    0.860
##     sswk    (.p2.)    0.873    0.010   91.146    0.000    0.854
##     sspc    (.p3.)    0.849    0.009   99.150    0.000    0.833
##     ssei    (.p4.)    0.461    0.016   28.827    0.000    0.429
##   math =~                                                      
##     ssar    (.p5.)    0.875    0.010   88.324    0.000    0.855
##     ssmk    (.p6.)    0.675    0.015   44.656    0.000    0.645
##     ssmc    (.p7.)    0.482    0.013   38.043    0.000    0.457
##     ssao    (.p8.)    0.725    0.010   74.517    0.000    0.706
##   electronic =~                                                
##     ssai    (.p9.)    0.582    0.012   49.241    0.000    0.559
##     sssi    (.10.)    0.636    0.012   53.391    0.000    0.612
##     ssmc    (.11.)    0.325    0.012   28.077    0.000    0.302
##     ssei    (.12.)    0.337    0.014   24.401    0.000    0.310
##   speed =~                                                     
##     ssno    (.13.)    0.835    0.013   65.533    0.000    0.810
##     sscs    (.14.)    0.729    0.012   60.232    0.000    0.705
##     ssmk    (.15.)    0.262    0.015   18.042    0.000    0.234
##  ci.upper   Std.lv  Std.all
##                            
##     0.897    0.879    0.894
##     0.892    0.873    0.888
##     0.866    0.849    0.861
##     0.492    0.461    0.456
##                            
##     0.894    0.875    0.893
##     0.705    0.675    0.685
##     0.507    0.482    0.493
##     0.744    0.725    0.710
##                            
##     0.605    0.769    0.731
##     0.659    0.840    0.830
##     0.347    0.429    0.438
##     0.364    0.445    0.440
##                            
##     0.860    0.835    0.818
##     0.752    0.729    0.736
##     0.291    0.262    0.266
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.32.)    0.913    0.004  219.913    0.000    0.905
##     elctrnc (.33.)    0.898    0.009   98.442    0.000    0.880
##     speed   (.34.)    0.700    0.012   58.813    0.000    0.676
##   math ~~                                                      
##     elctrnc (.35.)    0.793    0.012   68.790    0.000    0.770
##     speed   (.36.)    0.768    0.012   66.274    0.000    0.745
##   electronic ~~                                                
##     speed   (.37.)    0.500    0.019   26.310    0.000    0.463
##  ci.upper   Std.lv  Std.all
##                            
##     0.921    0.913    0.913
##     0.916    0.680    0.680
##     0.723    0.700    0.700
##                            
##     0.816    0.600    0.600
##     0.790    0.768    0.768
##                            
##     0.538    0.379    0.379
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.38.)    0.157    0.017    9.486    0.000    0.125
##    .sswk    (.39.)    0.142    0.017    8.425    0.000    0.109
##    .sspc             -0.035    0.020   -1.808    0.071   -0.074
##    .ssei    (.41.)   -0.009    0.015   -0.625    0.532   -0.038
##    .ssar    (.42.)    0.169    0.017   10.115    0.000    0.136
##    .ssmk    (.43.)    0.220    0.018   12.557    0.000    0.186
##    .ssmc    (.44.)    0.034    0.015    2.170    0.030    0.003
##    .ssao    (.45.)    0.144    0.016    8.848    0.000    0.112
##    .ssai    (.46.)   -0.117    0.014   -8.643    0.000   -0.144
##    .sssi    (.47.)   -0.112    0.014   -7.938    0.000   -0.140
##    .ssno              0.409    0.026   15.630    0.000    0.358
##    .sscs    (.49.)    0.274    0.017   15.764    0.000    0.240
##     verbal            0.090    0.028    3.263    0.001    0.036
##     math              0.000    0.028    0.004    0.997   -0.054
##     elctrnc           0.906    0.040   22.909    0.000    0.829
##     speed            -0.492    0.035  -14.027    0.000   -0.561
##  ci.upper   Std.lv  Std.all
##     0.189    0.157    0.160
##     0.175    0.142    0.145
##     0.003   -0.035   -0.036
##     0.020   -0.009   -0.009
##     0.201    0.169    0.172
##     0.254    0.220    0.223
##     0.064    0.034    0.034
##     0.176    0.144    0.141
##    -0.091   -0.117   -0.112
##    -0.085   -0.112   -0.111
##     0.461    0.409    0.401
##     0.308    0.274    0.277
##     0.145    0.090    0.090
##     0.054    0.000    0.000
##     0.984    0.686    0.686
##    -0.423   -0.492   -0.492
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.195    0.007   27.815    0.000    0.181
##    .sswk              0.204    0.008   26.082    0.000    0.189
##    .sspc              0.251    0.009   26.482    0.000    0.232
##    .ssei              0.333    0.012   27.168    0.000    0.309
##    .ssar              0.195    0.008   23.749    0.000    0.178
##    .ssmk              0.174    0.007   25.416    0.000    0.160
##    .ssmc              0.293    0.010   28.019    0.000    0.272
##    .ssao              0.518    0.015   34.843    0.000    0.488
##    .ssai              0.515    0.019   27.451    0.000    0.478
##    .sssi              0.317    0.015   21.080    0.000    0.288
##    .ssno              0.345    0.018   18.909    0.000    0.310
##    .sscs              0.449    0.019   23.824    0.000    0.412
##     electronic        1.744    0.066   26.555    0.000    1.616
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.208    0.195    0.201
##     0.219    0.204    0.211
##     0.269    0.251    0.258
##     0.356    0.333    0.326
##     0.211    0.195    0.203
##     0.187    0.174    0.179
##     0.313    0.293    0.306
##     0.547    0.518    0.496
##     0.551    0.515    0.466
##     0.347    0.317    0.310
##     0.381    0.345    0.331
##     0.486    0.449    0.458
##     1.873    1.000    1.000
reduced<-cfa(cf.reduced, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1")) 
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2371.017    117.000      0.000      0.967      0.074      0.094 
##        aic        bic 
## 171174.770 171607.383
Mc(reduced)
## [1] 0.8530708
summary(reduced, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 58 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        94
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2371.017    1815.809
##   Degrees of freedom                               117         117
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.306
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          984.550     754.003
##     0                                         1386.467    1061.805
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.879    0.009   92.853    0.000    0.860
##     sswk    (.p2.)    0.873    0.010   91.146    0.000    0.854
##     sspc    (.p3.)    0.849    0.009   99.151    0.000    0.833
##     ssei    (.p4.)    0.461    0.016   28.826    0.000    0.429
##   math =~                                                      
##     ssar    (.p5.)    0.875    0.010   88.369    0.000    0.855
##     ssmk    (.p6.)    0.675    0.015   44.743    0.000    0.645
##     ssmc    (.p7.)    0.482    0.013   38.089    0.000    0.457
##     ssao    (.p8.)    0.725    0.010   74.552    0.000    0.706
##   electronic =~                                                
##     ssai    (.p9.)    0.582    0.012   49.241    0.000    0.559
##     sssi    (.10.)    0.636    0.012   53.389    0.000    0.612
##     ssmc    (.11.)    0.325    0.012   28.114    0.000    0.302
##     ssei    (.12.)    0.337    0.014   24.401    0.000    0.310
##   speed =~                                                     
##     ssno    (.13.)    0.835    0.013   65.533    0.000    0.810
##     sscs    (.14.)    0.729    0.012   60.181    0.000    0.705
##     ssmk    (.15.)    0.262    0.014   18.120    0.000    0.234
##  ci.upper   Std.lv  Std.all
##                            
##     0.897    0.879    0.902
##     0.892    0.873    0.898
##     0.866    0.849    0.879
##     0.492    0.461    0.502
##                            
##     0.894    0.875    0.912
##     0.704    0.675    0.684
##     0.507    0.482    0.522
##     0.744    0.725    0.746
##                            
##     0.605    0.582    0.702
##     0.659    0.636    0.752
##     0.347    0.325    0.352
##     0.364    0.337    0.367
##                            
##     0.860    0.835    0.848
##     0.752    0.729    0.759
##     0.291    0.262    0.266
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.33.)    0.913    0.004  219.913    0.000    0.905
##     elctrnc (.34.)    0.898    0.009   98.439    0.000    0.880
##     speed   (.35.)    0.700    0.012   58.852    0.000    0.676
##   math ~~                                                      
##     elctrnc (.36.)    0.793    0.012   68.793    0.000    0.770
##     speed   (.37.)    0.768    0.012   66.246    0.000    0.745
##   electronic ~~                                                
##     speed   (.38.)    0.500    0.019   26.314    0.000    0.463
##  ci.upper   Std.lv  Std.all
##                            
##     0.921    0.913    0.913
##     0.916    0.898    0.898
##     0.723    0.700    0.700
##                            
##     0.816    0.793    0.793
##     0.790    0.768    0.768
##                            
##     0.538    0.500    0.500
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              0.000                               0.000
##    .ssgs    (.39.)    0.157    0.014   10.927    0.000    0.129
##    .sswk    (.40.)    0.142    0.014    9.890    0.000    0.114
##    .sspc              0.284    0.015   19.375    0.000    0.255
##    .ssei    (.42.)   -0.009    0.013   -0.689    0.491   -0.035
##    .ssar    (.43.)    0.169    0.013   13.350    0.000    0.144
##    .ssmk    (.44.)    0.220    0.014   16.052    0.000    0.193
##    .ssmc    (.45.)    0.034    0.013    2.603    0.009    0.008
##    .ssao    (.46.)    0.144    0.013   10.944    0.000    0.119
##    .ssai    (.47.)   -0.117    0.013   -9.110    0.000   -0.142
##    .sssi    (.48.)   -0.112    0.013   -8.480    0.000   -0.138
##    .ssno              0.173    0.017   10.295    0.000    0.140
##    .sscs    (.50.)    0.274    0.016   16.711    0.000    0.242
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.185    0.157    0.161
##     0.170    0.142    0.146
##     0.313    0.284    0.294
##     0.017   -0.009   -0.010
##     0.193    0.169    0.176
##     0.247    0.220    0.223
##     0.059    0.034    0.036
##     0.170    0.144    0.149
##    -0.092   -0.117   -0.141
##    -0.086   -0.112   -0.133
##     0.206    0.173    0.176
##     0.306    0.274    0.286
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.177    0.006   27.214    0.000    0.164
##    .sswk              0.182    0.007   26.579    0.000    0.169
##    .sspc              0.213    0.009   24.727    0.000    0.196
##    .ssei              0.238    0.008   28.434    0.000    0.222
##    .ssar              0.155    0.007   23.342    0.000    0.142
##    .ssmk              0.178    0.007   27.364    0.000    0.165
##    .ssmc              0.266    0.009   28.235    0.000    0.247
##    .ssao              0.419    0.013   31.985    0.000    0.393
##    .ssai              0.348    0.012   29.198    0.000    0.325
##    .sssi              0.311    0.012   26.521    0.000    0.288
##    .ssno              0.273    0.014   19.215    0.000    0.245
##    .sscs              0.392    0.016   24.526    0.000    0.361
##     electronic        1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.189    0.177    0.186
##     0.196    0.182    0.193
##     0.230    0.213    0.228
##     0.255    0.238    0.283
##     0.168    0.155    0.169
##     0.191    0.178    0.183
##     0.284    0.266    0.312
##     0.444    0.419    0.443
##     0.372    0.348    0.507
##     0.334    0.311    0.435
##     0.301    0.273    0.281
##     0.423    0.392    0.425
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.879    0.009   92.853    0.000    0.860
##     sswk    (.p2.)    0.873    0.010   91.146    0.000    0.854
##     sspc    (.p3.)    0.849    0.009   99.151    0.000    0.833
##     ssei    (.p4.)    0.461    0.016   28.826    0.000    0.429
##   math =~                                                      
##     ssar    (.p5.)    0.875    0.010   88.369    0.000    0.855
##     ssmk    (.p6.)    0.675    0.015   44.743    0.000    0.645
##     ssmc    (.p7.)    0.482    0.013   38.089    0.000    0.457
##     ssao    (.p8.)    0.725    0.010   74.552    0.000    0.706
##   electronic =~                                                
##     ssai    (.p9.)    0.582    0.012   49.241    0.000    0.559
##     sssi    (.10.)    0.636    0.012   53.389    0.000    0.612
##     ssmc    (.11.)    0.325    0.012   28.114    0.000    0.302
##     ssei    (.12.)    0.337    0.014   24.401    0.000    0.310
##   speed =~                                                     
##     ssno    (.13.)    0.835    0.013   65.533    0.000    0.810
##     sscs    (.14.)    0.729    0.012   60.181    0.000    0.705
##     ssmk    (.15.)    0.262    0.014   18.120    0.000    0.234
##  ci.upper   Std.lv  Std.all
##                            
##     0.897    0.879    0.894
##     0.892    0.873    0.888
##     0.866    0.849    0.861
##     0.492    0.461    0.456
##                            
##     0.894    0.875    0.893
##     0.704    0.675    0.685
##     0.507    0.482    0.493
##     0.744    0.725    0.710
##                            
##     0.605    0.769    0.731
##     0.659    0.840    0.830
##     0.347    0.429    0.438
##     0.364    0.445    0.440
##                            
##     0.860    0.835    0.818
##     0.752    0.729    0.736
##     0.291    0.262    0.266
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math    (.33.)    0.913    0.004  219.913    0.000    0.905
##     elctrnc (.34.)    0.898    0.009   98.439    0.000    0.880
##     speed   (.35.)    0.700    0.012   58.852    0.000    0.676
##   math ~~                                                      
##     elctrnc (.36.)    0.793    0.012   68.793    0.000    0.770
##     speed   (.37.)    0.768    0.012   66.246    0.000    0.745
##   electronic ~~                                                
##     speed   (.38.)    0.500    0.019   26.314    0.000    0.463
##  ci.upper   Std.lv  Std.all
##                            
##     0.921    0.913    0.913
##     0.916    0.680    0.680
##     0.723    0.700    0.700
##                            
##     0.816    0.600    0.600
##     0.790    0.768    0.768
##                            
##     0.538    0.379    0.379
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              0.000                               0.000
##    .ssgs    (.39.)    0.157    0.014   10.927    0.000    0.129
##    .sswk    (.40.)    0.142    0.014    9.890    0.000    0.114
##    .sspc             -0.035    0.018   -1.941    0.052   -0.071
##    .ssei    (.42.)   -0.009    0.013   -0.689    0.491   -0.035
##    .ssar    (.43.)    0.169    0.013   13.350    0.000    0.144
##    .ssmk    (.44.)    0.220    0.014   16.052    0.000    0.193
##    .ssmc    (.45.)    0.034    0.013    2.603    0.009    0.008
##    .ssao    (.46.)    0.144    0.013   10.944    0.000    0.119
##    .ssai    (.47.)   -0.117    0.013   -9.110    0.000   -0.142
##    .sssi    (.48.)   -0.112    0.013   -8.480    0.000   -0.138
##    .ssno              0.409    0.025   16.120    0.000    0.360
##    .sscs    (.50.)    0.274    0.016   16.711    0.000    0.242
##     verbal            0.090    0.017    5.164    0.000    0.056
##     elctrnc           0.906    0.035   26.242    0.000    0.838
##     speed            -0.492    0.030  -16.465    0.000   -0.551
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.185    0.157    0.160
##     0.170    0.142    0.145
##     0.000   -0.035   -0.036
##     0.017   -0.009   -0.009
##     0.193    0.169    0.172
##     0.247    0.220    0.223
##     0.059    0.034    0.034
##     0.170    0.144    0.141
##    -0.092   -0.117   -0.112
##    -0.086   -0.112   -0.111
##     0.459    0.409    0.401
##     0.306    0.274    0.277
##     0.125    0.090    0.090
##     0.974    0.686    0.686
##    -0.433   -0.492   -0.492
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     speed             1.000                               1.000
##    .ssgs              0.195    0.007   27.815    0.000    0.181
##    .sswk              0.204    0.008   26.081    0.000    0.189
##    .sspc              0.251    0.009   26.483    0.000    0.232
##    .ssei              0.333    0.012   27.168    0.000    0.309
##    .ssar              0.195    0.008   23.864    0.000    0.179
##    .ssmk              0.174    0.007   25.416    0.000    0.160
##    .ssmc              0.293    0.010   28.000    0.000    0.272
##    .ssao              0.518    0.015   34.849    0.000    0.488
##    .ssai              0.515    0.019   27.458    0.000    0.478
##    .sssi              0.317    0.015   21.087    0.000    0.288
##    .ssno              0.345    0.018   18.916    0.000    0.310
##    .sscs              0.449    0.019   23.821    0.000    0.412
##     electronic        1.744    0.066   26.559    0.000    1.616
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     0.208    0.195    0.201
##     0.219    0.204    0.211
##     0.269    0.251    0.258
##     0.356    0.333    0.326
##     0.211    0.195    0.203
##     0.187    0.174    0.179
##     0.313    0.293    0.306
##     0.547    0.518    0.496
##     0.551    0.515    0.466
##     0.347    0.317    0.310
##     0.381    0.345    0.331
##     0.486    0.449    0.458
##     1.873    1.000    1.000
tests<-lavTestLRT(configural, metric, scalar2, cf.cov, cf.cov2, reduced)
Td=tests[2:6,"Chisq diff"]
Td
## [1] 1.344341e+02 1.725852e+02 1.820876e+02 2.634084e+00 1.234371e-05
dfd=tests[2:6,"Df diff"]
dfd
## [1] 11  6  6  3  1
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3503+ 3590 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.05625777 0.08849196 0.09098085        NaN        NaN
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04796441 0.06495788
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.07738085 0.10010378
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.0798676 0.1025814
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1]         NA 0.02696979
RMSEA.CI(T=Td[5],df=dfd[5],N=N,G=2)
## [1] NA NA
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.895     0.248     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.897     0.052
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.948     0.102
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.548     0.406     0.000     0.000     0.000     0.000
round(pvals(T=Td[5],df=dfd[5],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.003     0.002     0.000     0.000     0.000     0.000
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 134.4341 172.5852 206.8025
dfd=tests[2:4,"Df diff"]
dfd
## [1] 11  6 12
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3503+ 3590 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05625777 0.08849196 0.06766559
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04796441 0.06495788
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.07738085 0.10010378
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.05973751 0.07590982
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.895     0.248     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.897     0.052
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.944     0.007     0.000
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1] 134.4341 720.4718
dfd=tests[2:3,"Df diff"]
dfd
## [1] 11  8
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3503+ 3590 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05625777 0.15848936
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04796441 0.06495788
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1487983 0.1683781
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.895     0.248     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
# ONE FACTOR, just for checking if gap direction aligns with HOF

fmodel<-'
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao
'

configural<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   8038.541    108.000      0.000      0.883      0.144      0.059 
##        aic        bic 
## 176860.294 177354.708
Mc(configural)
## [1] 0.5717126
metric<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   8423.576    119.000      0.000      0.877      0.140      0.075 
##        aic        bic 
## 177223.329 177642.207
Mc(metric)
## [1] 0.5568335
scalar<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##  12334.367    130.000      0.000      0.819      0.163      0.094 
##        aic        bic 
## 181112.120 181455.463
Mc(scalar)
## [1] 0.4229793
summary(scalar, standardized=T, ci=T) # 0.056
## lavaan 0.6-18 ended normally after 41 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        74
##   Number of equality constraints                    24
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                                Standard      Scaled
##   Test Statistic                              12334.367    9391.033
##   Degrees of freedom                                130         130
##   P-value (Chi-square)                            0.000       0.000
##   Scaling correction factor                                   1.313
##     Yuan-Bentler correction (Mplus variant)                        
##   Test statistic for each group:
##     1                                         4666.956    3553.286
##     0                                         7667.412    5837.747
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g =~                                                         
##     ssgs    (.p1.)    0.795    0.011   70.741    0.000    0.773
##     ssar    (.p2.)    0.776    0.012   65.097    0.000    0.753
##     sswk    (.p3.)    0.787    0.012   66.391    0.000    0.764
##     sspc    (.p4.)    0.779    0.011   68.833    0.000    0.756
##     ssno    (.p5.)    0.566    0.013   43.269    0.000    0.540
##     sscs    (.p6.)    0.531    0.012   42.996    0.000    0.507
##     ssai    (.p7.)    0.516    0.012   44.119    0.000    0.493
##     sssi    (.p8.)    0.546    0.012   46.026    0.000    0.523
##     ssmk    (.p9.)    0.777    0.012   64.492    0.000    0.753
##     ssmc    (.10.)    0.723    0.011   65.536    0.000    0.701
##     ssei    (.11.)    0.710    0.011   61.942    0.000    0.687
##     ssao    (.12.)    0.648    0.011   58.082    0.000    0.626
##  ci.upper   Std.lv  Std.all
##                            
##     0.817    0.795    0.867
##     0.800    0.776    0.855
##     0.811    0.787    0.859
##     0.801    0.779    0.847
##     0.591    0.566    0.596
##     0.555    0.531    0.563
##     0.539    0.516    0.620
##     0.569    0.546    0.636
##     0.800    0.777    0.833
##     0.744    0.723    0.798
##     0.732    0.710    0.802
##     0.670    0.648    0.691
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.26.)    0.170    0.016   10.412    0.000    0.138
##    .ssar    (.27.)    0.146    0.016    8.939    0.000    0.114
##    .sswk    (.28.)    0.156    0.017    9.338    0.000    0.123
##    .sspc    (.29.)    0.147    0.017    8.485    0.000    0.113
##    .ssno    (.30.)    0.076    0.016    4.800    0.000    0.045
##    .sscs    (.31.)    0.089    0.016    5.622    0.000    0.058
##    .ssai    (.32.)    0.048    0.014    3.466    0.001    0.021
##    .sssi    (.33.)    0.075    0.016    4.819    0.000    0.045
##    .ssmk    (.34.)    0.131    0.017    7.598    0.000    0.097
##    .ssmc    (.35.)    0.146    0.015    9.610    0.000    0.116
##    .ssei    (.36.)    0.104    0.015    6.869    0.000    0.074
##    .ssao    (.37.)    0.124    0.016    7.735    0.000    0.092
##  ci.upper   Std.lv  Std.all
##     0.202    0.170    0.185
##     0.178    0.146    0.161
##     0.189    0.156    0.170
##     0.181    0.147    0.160
##     0.107    0.076    0.080
##     0.120    0.089    0.094
##     0.075    0.048    0.058
##     0.106    0.075    0.088
##     0.165    0.131    0.140
##     0.176    0.146    0.161
##     0.134    0.104    0.117
##     0.155    0.124    0.132
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.209    0.007   29.493    0.000    0.195
##    .ssar              0.221    0.007   30.793    0.000    0.207
##    .sswk              0.220    0.008   28.839    0.000    0.205
##    .sspc              0.240    0.009   26.066    0.000    0.222
##    .ssno              0.581    0.023   25.518    0.000    0.537
##    .sscs              0.607    0.020   29.897    0.000    0.567
##    .ssai              0.427    0.014   31.558    0.000    0.400
##    .sssi              0.439    0.015   29.990    0.000    0.410
##    .ssmk              0.267    0.008   31.509    0.000    0.250
##    .ssmc              0.297    0.011   28.229    0.000    0.277
##    .ssei              0.280    0.010   29.436    0.000    0.262
##    .ssao              0.460    0.014   33.755    0.000    0.433
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.223    0.209    0.249
##     0.235    0.221    0.268
##     0.235    0.220    0.262
##     0.258    0.240    0.283
##     0.626    0.581    0.645
##     0.646    0.607    0.683
##     0.453    0.427    0.616
##     0.468    0.439    0.595
##     0.284    0.267    0.307
##     0.318    0.297    0.363
##     0.299    0.280    0.357
##     0.487    0.460    0.523
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g =~                                                         
##     ssgs    (.p1.)    0.795    0.011   70.741    0.000    0.773
##     ssar    (.p2.)    0.776    0.012   65.097    0.000    0.753
##     sswk    (.p3.)    0.787    0.012   66.391    0.000    0.764
##     sspc    (.p4.)    0.779    0.011   68.833    0.000    0.756
##     ssno    (.p5.)    0.566    0.013   43.269    0.000    0.540
##     sscs    (.p6.)    0.531    0.012   42.996    0.000    0.507
##     ssai    (.p7.)    0.516    0.012   44.119    0.000    0.493
##     sssi    (.p8.)    0.546    0.012   46.026    0.000    0.523
##     ssmk    (.p9.)    0.777    0.012   64.492    0.000    0.753
##     ssmc    (.10.)    0.723    0.011   65.536    0.000    0.701
##     ssei    (.11.)    0.710    0.011   61.942    0.000    0.687
##     ssao    (.12.)    0.648    0.011   58.082    0.000    0.626
##  ci.upper   Std.lv  Std.all
##                            
##     0.817    0.915    0.883
##     0.800    0.894    0.870
##     0.811    0.906    0.876
##     0.801    0.896    0.859
##     0.591    0.651    0.613
##     0.555    0.611    0.589
##     0.539    0.594    0.527
##     0.569    0.629    0.570
##     0.800    0.894    0.860
##     0.744    0.832    0.806
##     0.732    0.817    0.762
##     0.670    0.746    0.710
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.26.)    0.170    0.016   10.412    0.000    0.138
##    .ssar    (.27.)    0.146    0.016    8.939    0.000    0.114
##    .sswk    (.28.)    0.156    0.017    9.338    0.000    0.123
##    .sspc    (.29.)    0.147    0.017    8.485    0.000    0.113
##    .ssno    (.30.)    0.076    0.016    4.800    0.000    0.045
##    .sscs    (.31.)    0.089    0.016    5.622    0.000    0.058
##    .ssai    (.32.)    0.048    0.014    3.466    0.001    0.021
##    .sssi    (.33.)    0.075    0.016    4.819    0.000    0.045
##    .ssmk    (.34.)    0.131    0.017    7.598    0.000    0.097
##    .ssmc    (.35.)    0.146    0.015    9.610    0.000    0.116
##    .ssei    (.36.)    0.104    0.015    6.869    0.000    0.074
##    .ssao    (.37.)    0.124    0.016    7.735    0.000    0.092
##     g                 0.065    0.030    2.155    0.031    0.006
##  ci.upper   Std.lv  Std.all
##     0.202    0.170    0.164
##     0.178    0.146    0.142
##     0.189    0.156    0.151
##     0.181    0.147    0.141
##     0.107    0.076    0.071
##     0.120    0.089    0.085
##     0.075    0.048    0.043
##     0.106    0.075    0.068
##     0.165    0.131    0.126
##     0.176    0.146    0.141
##     0.134    0.104    0.097
##     0.155    0.124    0.118
##     0.124    0.056    0.056
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.238    0.008   29.927    0.000    0.222
##    .ssar              0.258    0.009   30.189    0.000    0.241
##    .sswk              0.250    0.008   29.518    0.000    0.233
##    .sspc              0.285    0.011   26.907    0.000    0.264
##    .ssno              0.706    0.026   27.310    0.000    0.656
##    .sscs              0.705    0.025   28.223    0.000    0.656
##    .ssai              0.918    0.035   26.113    0.000    0.850
##    .sssi              0.821    0.029   28.405    0.000    0.764
##    .ssmk              0.281    0.010   29.043    0.000    0.262
##    .ssmc              0.373    0.012   30.072    0.000    0.349
##    .ssei              0.483    0.018   26.448    0.000    0.447
##    .ssao              0.549    0.015   36.039    0.000    0.519
##     g                 1.326    0.046   29.079    0.000    1.236
##  ci.upper   Std.lv  Std.all
##     0.253    0.238    0.221
##     0.275    0.258    0.244
##     0.267    0.250    0.233
##     0.305    0.285    0.262
##     0.757    0.706    0.625
##     0.754    0.705    0.654
##     0.987    0.918    0.722
##     0.877    0.821    0.675
##     0.300    0.281    0.260
##     0.397    0.373    0.350
##     0.519    0.483    0.420
##     0.579    0.549    0.496
##     1.415    1.000    1.000
# HIGH ORDER FACTOR, FREEING GS INSTEAD OF NO IS ALMOST SIMILAR BUT NO HAS POOR G-LOADING

hof.model<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
'

hof.lv<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
math~~1*math
speed~~1*speed
'

hof.weak<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
math~~1*math
speed~~1*speed
verbal~0*1
'

hof.weak2<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
math~~1*math
speed~~1*speed
verbal~0*1
math~0*1
g~0*1
'

baseline<-cfa(hof.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2852.943     47.000      0.000      0.959      0.092      0.040 
##        aic        bic 
## 175005.017 175300.293
Mc(baseline)
## [1] 0.8205138
configural<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2415.150     94.000      0.000      0.966      0.083      0.033 
##        aic        bic 
## 171264.902 171855.453
Mc(configural)
## [1] 0.8490428
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 122 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2415.150    1844.965
##   Degrees of freedom                                94          94
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.309
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          891.801     681.259
##     0                                         1523.349    1163.706
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.125    0.032    3.921    0.000    0.062
##     sswk              0.131    0.033    3.906    0.000    0.065
##     sspc              0.125    0.032    3.918    0.000    0.062
##     ssei              0.065    0.018    3.627    0.000    0.030
##   math =~                                                      
##     ssar              0.333    0.015   22.422    0.000    0.304
##     ssmk              0.256    0.014   18.379    0.000    0.229
##     ssmc              0.171    0.013   13.103    0.000    0.145
##     ssao              0.288    0.014   21.304    0.000    0.261
##   electronic =~                                                
##     ssai              0.269    0.014   18.648    0.000    0.241
##     sssi              0.295    0.016   18.603    0.000    0.264
##     ssmc              0.170    0.014   12.081    0.000    0.142
##     ssei              0.127    0.017    7.355    0.000    0.093
##   speed =~                                                     
##     ssno              0.554    0.021   26.396    0.000    0.513
##     sscs              0.492    0.018   27.013    0.000    0.457
##     ssmk              0.214    0.013   16.014    0.000    0.188
##   g =~                                                         
##     verbal            6.409    1.674    3.830    0.000    3.129
##     math              2.258    0.121   18.727    0.000    2.022
##     electronic        1.696    0.097   17.575    0.000    1.507
##     speed             1.004    0.052   19.121    0.000    0.901
##  ci.upper   Std.lv  Std.all
##                            
##     0.187    0.809    0.887
##     0.196    0.847    0.897
##     0.187    0.809    0.872
##     0.099    0.419    0.516
##                            
##     0.362    0.822    0.902
##     0.284    0.633    0.660
##     0.197    0.422    0.480
##     0.314    0.711    0.745
##                            
##     0.298    0.530    0.673
##     0.327    0.582    0.723
##     0.197    0.334    0.380
##     0.161    0.251    0.309
##                            
##     0.595    0.785    0.829
##     0.528    0.697    0.749
##     0.241    0.304    0.317
##                            
##     9.689    0.988    0.988
##     2.494    0.914    0.914
##     1.885    0.861    0.861
##     1.106    0.708    0.708
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.120    0.017    7.097    0.000    0.087
##    .sswk              0.181    0.017   10.369    0.000    0.147
##    .sspc              0.284    0.017   16.543    0.000    0.251
##    .ssei             -0.010    0.015   -0.667    0.505   -0.040
##    .ssar              0.148    0.017    8.728    0.000    0.115
##    .ssmk              0.224    0.018   12.435    0.000    0.189
##    .ssmc              0.039    0.016    2.369    0.018    0.007
##    .ssao              0.198    0.018   11.088    0.000    0.163
##    .ssai             -0.097    0.015   -6.622    0.000   -0.126
##    .sssi             -0.131    0.015   -8.757    0.000   -0.160
##    .ssno              0.173    0.018    9.602    0.000    0.138
##    .sscs              0.271    0.018   15.206    0.000    0.236
##  ci.upper   Std.lv  Std.all
##     0.153    0.120    0.131
##     0.216    0.181    0.192
##     0.318    0.284    0.306
##     0.020   -0.010   -0.013
##     0.181    0.148    0.162
##     0.260    0.224    0.234
##     0.070    0.039    0.044
##     0.232    0.198    0.207
##    -0.069   -0.097   -0.124
##    -0.102   -0.131   -0.163
##     0.209    0.173    0.183
##     0.306    0.271    0.291
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.178    0.007   26.981    0.000    0.165
##    .sswk              0.173    0.007   25.937    0.000    0.160
##    .sspc              0.207    0.009   23.554    0.000    0.189
##    .ssei              0.243    0.008   28.691    0.000    0.226
##    .ssar              0.155    0.007   21.577    0.000    0.141
##    .ssmk              0.177    0.007   27.022    0.000    0.164
##    .ssmc              0.260    0.009   27.620    0.000    0.241
##    .ssao              0.406    0.013   30.402    0.000    0.380
##    .ssai              0.340    0.013   27.008    0.000    0.316
##    .sssi              0.309    0.012   25.431    0.000    0.285
##    .ssno              0.280    0.015   18.301    0.000    0.250
##    .sscs              0.382    0.017   22.590    0.000    0.349
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.191    0.178    0.214
##     0.186    0.173    0.195
##     0.224    0.207    0.240
##     0.259    0.243    0.368
##     0.169    0.155    0.187
##     0.190    0.177    0.193
##     0.278    0.260    0.337
##     0.432    0.406    0.445
##     0.365    0.340    0.548
##     0.333    0.309    0.478
##     0.310    0.280    0.312
##     0.415    0.382    0.440
##     1.000    0.024    0.024
##     1.000    0.164    0.164
##     1.000    0.258    0.258
##     1.000    0.498    0.498
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.213    0.031    6.918    0.000    0.153
##     sswk              0.205    0.030    6.876    0.000    0.147
##     sspc              0.203    0.029    6.882    0.000    0.145
##     ssei              0.127    0.019    6.501    0.000    0.089
##   math =~                                                      
##     ssar              0.293    0.025   11.904    0.000    0.245
##     ssmk              0.202    0.019   10.814    0.000    0.166
##     ssmc              0.171    0.014   12.003    0.000    0.143
##     ssao              0.237    0.020   11.748    0.000    0.197
##   electronic =~                                                
##     ssai              0.604    0.019   31.507    0.000    0.567
##     sssi              0.617    0.018   34.067    0.000    0.582
##     ssmc              0.296    0.014   20.882    0.000    0.268
##     ssei              0.346    0.018   19.428    0.000    0.311
##   speed =~                                                     
##     ssno              0.599    0.022   27.230    0.000    0.556
##     sscs              0.522    0.018   28.548    0.000    0.487
##     ssmk              0.229    0.014   16.578    0.000    0.202
##   g =~                                                         
##     verbal            4.277    0.654    6.536    0.000    2.994
##     math              2.987    0.280   10.663    0.000    2.438
##     electronic        1.055    0.044   23.736    0.000    0.968
##     speed             1.086    0.056   19.290    0.000    0.975
##  ci.upper   Std.lv  Std.all
##                            
##     0.273    0.936    0.904
##     0.264    0.901    0.894
##     0.260    0.890    0.873
##     0.165    0.557    0.493
##                            
##     0.342    0.924    0.902
##     0.239    0.637    0.636
##     0.199    0.540    0.518
##     0.276    0.745    0.723
##                            
##     0.642    0.878    0.781
##     0.653    0.897    0.842
##     0.324    0.430    0.413
##     0.380    0.502    0.445
##                            
##     0.642    0.884    0.835
##     0.558    0.771    0.757
##     0.256    0.338    0.338
##                            
##     5.560    0.974    0.974
##     3.536    0.948    0.948
##     1.142    0.726    0.726
##     1.196    0.736    0.736
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.276    0.019   14.542    0.000    0.239
##    .sswk              0.179    0.018    9.735    0.000    0.143
##    .sspc              0.041    0.019    2.207    0.027    0.005
##    .ssei              0.339    0.021   16.134    0.000    0.298
##    .ssar              0.194    0.019   10.391    0.000    0.157
##    .ssmk              0.087    0.019    4.675    0.000    0.050
##    .ssmc              0.322    0.019   17.179    0.000    0.286
##    .ssao              0.081    0.019    4.256    0.000    0.044
##    .ssai              0.382    0.021   18.202    0.000    0.341
##    .sssi              0.482    0.020   24.659    0.000    0.443
##    .ssno             -0.002    0.020   -0.083    0.934   -0.040
##    .sscs             -0.080    0.019   -4.255    0.000   -0.117
##  ci.upper   Std.lv  Std.all
##     0.313    0.276    0.267
##     0.215    0.179    0.178
##     0.078    0.041    0.041
##     0.380    0.339    0.300
##     0.230    0.194    0.189
##     0.123    0.087    0.087
##     0.359    0.322    0.309
##     0.119    0.081    0.079
##     0.423    0.382    0.340
##     0.520    0.482    0.452
##     0.037   -0.002   -0.002
##    -0.043   -0.080   -0.079
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.195    0.007   27.088    0.000    0.181
##    .sswk              0.205    0.008   25.411    0.000    0.189
##    .sspc              0.247    0.009   26.004    0.000    0.228
##    .ssei              0.317    0.012   26.821    0.000    0.294
##    .ssar              0.196    0.009   21.975    0.000    0.179
##    .ssmk              0.182    0.007   25.943    0.000    0.168
##    .ssmc              0.290    0.010   27.650    0.000    0.270
##    .ssao              0.508    0.015   34.488    0.000    0.479
##    .ssai              0.493    0.019   25.313    0.000    0.455
##    .sssi              0.332    0.016   20.431    0.000    0.300
##    .ssno              0.340    0.019   17.586    0.000    0.302
##    .sscs              0.443    0.020   22.592    0.000    0.404
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.209    0.195    0.182
##     0.221    0.205    0.201
##     0.266    0.247    0.238
##     0.340    0.317    0.249
##     0.214    0.196    0.187
##     0.196    0.182    0.182
##     0.311    0.290    0.267
##     0.537    0.508    0.478
##     0.531    0.493    0.390
##     0.364    0.332    0.292
##     0.378    0.340    0.303
##     0.481    0.443    0.427
##     1.000    0.052    0.052
##     1.000    0.101    0.101
##     1.000    0.473    0.473
##     1.000    0.459    0.459
##     1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2673.316    108.000      0.000      0.962      0.082      0.050 
##        aic        bic 
## 171495.069 171989.483
Mc(metric)
## [1] 0.8345523
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 124 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        91
##   Number of equality constraints                    19
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2673.316    2038.806
##   Degrees of freedom                               108         108
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.311
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1013.814     773.185
##     0                                         1659.503    1265.621
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.151    0.023    6.531    0.000    0.106
##     sswk    (.p2.)    0.152    0.023    6.503    0.000    0.106
##     sspc    (.p3.)    0.148    0.023    6.520    0.000    0.103
##     ssei    (.p4.)    0.078    0.012    6.246    0.000    0.053
##   math =~                                                      
##     ssar    (.p5.)    0.328    0.014   23.826    0.000    0.301
##     ssmk    (.p6.)    0.239    0.012   20.700    0.000    0.217
##     ssmc    (.p7.)    0.186    0.009   21.255    0.000    0.169
##     ssao    (.p8.)    0.275    0.012   23.011    0.000    0.251
##   electronic =~                                                
##     ssai    (.p9.)    0.268    0.013   20.167    0.000    0.242
##     sssi    (.10.)    0.280    0.014   19.909    0.000    0.253
##     ssmc    (.11.)    0.140    0.008   16.543    0.000    0.123
##     ssei    (.12.)    0.158    0.009   17.710    0.000    0.141
##   speed =~                                                     
##     ssno    (.13.)    0.556    0.019   29.778    0.000    0.519
##     sscs    (.14.)    0.489    0.016   30.122    0.000    0.458
##     ssmk    (.15.)    0.211    0.010   21.379    0.000    0.192
##   g =~                                                         
##     verbal  (.16.)    5.270    0.834    6.316    0.000    3.635
##     math    (.17.)    2.319    0.113   20.562    0.000    2.098
##     elctrnc (.18.)    1.826    0.095   19.147    0.000    1.639
##     speed   (.19.)    1.018    0.044   23.064    0.000    0.932
##  ci.upper   Std.lv  Std.all
##                            
##     0.197    0.813    0.888
##     0.197    0.814    0.888
##     0.192    0.792    0.866
##     0.102    0.417    0.479
##                            
##     0.355    0.829    0.904
##     0.262    0.604    0.645
##     0.203    0.470    0.529
##     0.298    0.693    0.736
##                            
##     0.294    0.557    0.692
##     0.308    0.583    0.720
##     0.156    0.291    0.327
##     0.176    0.330    0.379
##                            
##     0.592    0.793    0.833
##     0.521    0.699    0.749
##     0.231    0.302    0.322
##                            
##     6.906    0.982    0.982
##     2.540    0.918    0.918
##     2.013    0.877    0.877
##     1.105    0.713    0.713
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.120    0.017    7.097    0.000    0.087
##    .sswk              0.181    0.017   10.369    0.000    0.147
##    .sspc              0.284    0.017   16.543    0.000    0.251
##    .ssei             -0.010    0.015   -0.667    0.505   -0.040
##    .ssar              0.148    0.017    8.728    0.000    0.115
##    .ssmk              0.224    0.018   12.435    0.000    0.189
##    .ssmc              0.039    0.016    2.369    0.018    0.007
##    .ssao              0.198    0.018   11.088    0.000    0.163
##    .ssai             -0.097    0.015   -6.622    0.000   -0.126
##    .sssi             -0.131    0.015   -8.757    0.000   -0.160
##    .ssno              0.173    0.018    9.602    0.000    0.138
##    .sscs              0.271    0.018   15.206    0.000    0.236
##  ci.upper   Std.lv  Std.all
##     0.153    0.120    0.131
##     0.216    0.181    0.198
##     0.318    0.284    0.311
##     0.020   -0.010   -0.012
##     0.181    0.148    0.161
##     0.260    0.224    0.239
##     0.070    0.039    0.043
##     0.232    0.198    0.210
##    -0.069   -0.097   -0.121
##    -0.102   -0.131   -0.162
##     0.209    0.173    0.182
##     0.306    0.271    0.290
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.176    0.007   27.016    0.000    0.163
##    .sswk              0.178    0.007   26.351    0.000    0.164
##    .sspc              0.209    0.009   24.406    0.000    0.192
##    .ssei              0.238    0.008   28.386    0.000    0.222
##    .ssar              0.154    0.007   21.847    0.000    0.140
##    .ssmk              0.183    0.006   28.290    0.000    0.170
##    .ssmc              0.263    0.009   27.859    0.000    0.245
##    .ssao              0.406    0.013   31.240    0.000    0.381
##    .ssai              0.339    0.012   28.224    0.000    0.315
##    .sssi              0.317    0.012   26.894    0.000    0.294
##    .ssno              0.277    0.014   19.223    0.000    0.249
##    .sscs              0.382    0.016   23.994    0.000    0.351
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.189    0.176    0.211
##     0.191    0.178    0.212
##     0.226    0.209    0.250
##     0.255    0.238    0.315
##     0.168    0.154    0.183
##     0.196    0.183    0.209
##     0.282    0.263    0.333
##     0.432    0.406    0.458
##     0.362    0.339    0.522
##     0.340    0.317    0.482
##     0.305    0.277    0.306
##     0.413    0.382    0.439
##     1.000    0.035    0.035
##     1.000    0.157    0.157
##     1.000    0.231    0.231
##     1.000    0.491    0.491
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.151    0.023    6.531    0.000    0.106
##     sswk    (.p2.)    0.152    0.023    6.503    0.000    0.106
##     sspc    (.p3.)    0.148    0.023    6.520    0.000    0.103
##     ssei    (.p4.)    0.078    0.012    6.246    0.000    0.053
##   math =~                                                      
##     ssar    (.p5.)    0.328    0.014   23.826    0.000    0.301
##     ssmk    (.p6.)    0.239    0.012   20.700    0.000    0.217
##     ssmc    (.p7.)    0.186    0.009   21.255    0.000    0.169
##     ssao    (.p8.)    0.275    0.012   23.011    0.000    0.251
##   electronic =~                                                
##     ssai    (.p9.)    0.268    0.013   20.167    0.000    0.242
##     sssi    (.10.)    0.280    0.014   19.909    0.000    0.253
##     ssmc    (.11.)    0.140    0.008   16.543    0.000    0.123
##     ssei    (.12.)    0.158    0.009   17.710    0.000    0.141
##   speed =~                                                     
##     ssno    (.13.)    0.556    0.019   29.778    0.000    0.519
##     sscs    (.14.)    0.489    0.016   30.122    0.000    0.458
##     ssmk    (.15.)    0.211    0.010   21.379    0.000    0.192
##   g =~                                                         
##     verbal  (.16.)    5.270    0.834    6.316    0.000    3.635
##     math    (.17.)    2.319    0.113   20.562    0.000    2.098
##     elctrnc (.18.)    1.826    0.095   19.147    0.000    1.639
##     speed   (.19.)    1.018    0.044   23.064    0.000    0.932
##  ci.upper   Std.lv  Std.all
##                            
##     0.197    0.933    0.902
##     0.197    0.934    0.901
##     0.192    0.909    0.879
##     0.102    0.479    0.456
##                            
##     0.355    0.913    0.899
##     0.262    0.665    0.652
##     0.203    0.518    0.511
##     0.298    0.764    0.731
##                            
##     0.294    0.824    0.759
##     0.308    0.862    0.834
##     0.156    0.430    0.424
##     0.176    0.487    0.464
##                            
##     0.592    0.875    0.831
##     0.521    0.771    0.757
##     0.231    0.333    0.326
##                            
##     6.906    0.975    0.975
##     2.540    0.950    0.950
##     2.013    0.676    0.676
##     1.105    0.736    0.736
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.276    0.019   14.542    0.000    0.239
##    .sswk              0.179    0.018    9.735    0.000    0.143
##    .sspc              0.041    0.019    2.207    0.027    0.005
##    .ssei              0.339    0.021   16.134    0.000    0.298
##    .ssar              0.194    0.019   10.391    0.000    0.157
##    .ssmk              0.087    0.019    4.675    0.000    0.050
##    .ssmc              0.322    0.019   17.179    0.000    0.286
##    .ssao              0.081    0.019    4.256    0.000    0.044
##    .ssai              0.382    0.021   18.202    0.000    0.341
##    .sssi              0.482    0.020   24.659    0.000    0.443
##    .ssno             -0.002    0.020   -0.083    0.934   -0.040
##    .sscs             -0.080    0.019   -4.255    0.000   -0.117
##  ci.upper   Std.lv  Std.all
##     0.313    0.276    0.267
##     0.215    0.179    0.173
##     0.078    0.041    0.040
##     0.380    0.339    0.323
##     0.230    0.194    0.191
##     0.123    0.087    0.085
##     0.359    0.322    0.318
##     0.119    0.081    0.078
##     0.423    0.382    0.352
##     0.520    0.482    0.466
##     0.037   -0.002   -0.002
##    -0.043   -0.080   -0.079
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.199    0.007   27.935    0.000    0.185
##    .sswk              0.203    0.008   25.207    0.000    0.187
##    .sspc              0.243    0.009   26.103    0.000    0.225
##    .ssei              0.330    0.012   26.516    0.000    0.305
##    .ssar              0.199    0.009   22.870    0.000    0.182
##    .ssmk              0.179    0.007   25.921    0.000    0.166
##    .ssmc              0.290    0.010   27.827    0.000    0.269
##    .ssao              0.508    0.015   34.871    0.000    0.479
##    .ssai              0.500    0.019   25.941    0.000    0.462
##    .sssi              0.326    0.016   20.710    0.000    0.296
##    .ssno              0.344    0.018   18.675    0.000    0.308
##    .sscs              0.441    0.019   22.886    0.000    0.404
##    .verbal            1.906    0.612    3.115    0.002    0.706
##    .math              0.760    0.111    6.830    0.000    0.542
##    .electronic        5.149    0.555    9.273    0.000    4.061
##    .speed             1.135    0.094   12.113    0.000    0.951
##     g                 1.297    0.047   27.857    0.000    1.206
##  ci.upper   Std.lv  Std.all
##     0.213    0.199    0.186
##     0.219    0.203    0.189
##     0.261    0.243    0.227
##     0.354    0.330    0.299
##     0.216    0.199    0.192
##     0.193    0.179    0.172
##     0.310    0.290    0.282
##     0.536    0.508    0.465
##     0.537    0.500    0.424
##     0.357    0.326    0.305
##     0.380    0.344    0.310
##     0.479    0.441    0.426
##     3.105    0.050    0.050
##     0.978    0.098    0.098
##     6.237    0.543    0.543
##     1.319    0.458    0.458
##     1.388    1.000    1.000
lavTestScore(metric, release = 1:19)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 257.778 19       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs      X2 df p.value
## 1   .p1. == .p54.   0.877  1   0.349
## 2   .p2. == .p55.  47.056  1   0.000
## 3   .p3. == .p56.   8.852  1   0.003
## 4   .p4. == .p57. 132.580  1   0.000
## 5   .p5. == .p58.   9.034  1   0.003
## 6   .p6. == .p59.  26.258  1   0.000
## 7   .p7. == .p60.   3.073  1   0.080
## 8   .p8. == .p61.   4.492  1   0.034
## 9   .p9. == .p62.   4.799  1   0.028
## 10 .p10. == .p63.   0.639  1   0.424
## 11 .p11. == .p64.   0.031  1   0.859
## 12 .p12. == .p65. 133.532  1   0.000
## 13 .p13. == .p66.   4.135  1   0.042
## 14 .p14. == .p67.   0.168  1   0.682
## 15 .p15. == .p68.  17.307  1   0.000
## 16 .p16. == .p69.  15.192  1   0.000
## 17 .p17. == .p70.   2.726  1   0.099
## 18 .p18. == .p71.  87.898  1   0.000
## 19 .p19. == .p72.   0.070  1   0.791
metric2<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"), group.partial=c("electronic=~ssei"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2538.265    107.000      0.000      0.964      0.080      0.042 
##        aic        bic 
## 171362.018 171863.299
Mc(metric2)
## [1] 0.8424769
summary(metric2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 134 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        91
##   Number of equality constraints                    18
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2538.265    1935.375
##   Degrees of freedom                               107         107
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.312
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          952.055     725.923
##     0                                         1586.210    1209.452
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.155    0.023    6.710    0.000    0.109
##     sswk    (.p2.)    0.155    0.023    6.682    0.000    0.109
##     sspc    (.p3.)    0.151    0.022    6.695    0.000    0.107
##     ssei    (.p4.)    0.091    0.014    6.496    0.000    0.063
##   math =~                                                      
##     ssar    (.p5.)    0.326    0.014   23.126    0.000    0.299
##     ssmk    (.p6.)    0.238    0.012   20.153    0.000    0.215
##     ssmc    (.p7.)    0.185    0.009   20.589    0.000    0.167
##     ssao    (.p8.)    0.273    0.012   22.370    0.000    0.249
##   electronic =~                                                
##     ssai    (.p9.)    0.284    0.013   21.483    0.000    0.258
##     sssi    (.10.)    0.299    0.014   21.267    0.000    0.271
##     ssmc    (.11.)    0.149    0.009   17.042    0.000    0.132
##     ssei              0.094    0.011    8.405    0.000    0.072
##   speed =~                                                     
##     ssno    (.13.)    0.555    0.019   29.677    0.000    0.519
##     sscs    (.14.)    0.489    0.016   30.022    0.000    0.457
##     ssmk    (.15.)    0.212    0.010   21.464    0.000    0.192
##   g =~                                                         
##     verbal  (.16.)    5.210    0.805    6.476    0.000    3.633
##     math    (.17.)    2.348    0.116   20.154    0.000    2.119
##     elctrnc (.18.)    1.757    0.087   20.166    0.000    1.587
##     speed   (.19.)    1.024    0.044   23.069    0.000    0.937
##  ci.upper   Std.lv  Std.all
##                            
##     0.200    0.820    0.890
##     0.200    0.821    0.890
##     0.195    0.799    0.868
##     0.118    0.481    0.588
##                            
##     0.354    0.833    0.904
##     0.261    0.607    0.645
##     0.202    0.471    0.526
##     0.297    0.697    0.738
##                            
##     0.310    0.574    0.706
##     0.326    0.604    0.738
##     0.166    0.302    0.337
##     0.116    0.190    0.233
##                            
##     0.592    0.795    0.834
##     0.521    0.700    0.750
##     0.231    0.303    0.322
##                            
##     6.787    0.982    0.982
##     2.576    0.920    0.920
##     1.928    0.869    0.869
##     1.111    0.715    0.715
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.120    0.017    7.097    0.000    0.087
##    .sswk              0.181    0.017   10.369    0.000    0.147
##    .sspc              0.284    0.017   16.543    0.000    0.251
##    .ssei             -0.010    0.015   -0.667    0.505   -0.040
##    .ssar              0.148    0.017    8.728    0.000    0.115
##    .ssmk              0.224    0.018   12.435    0.000    0.189
##    .ssmc              0.039    0.016    2.369    0.018    0.007
##    .ssao              0.198    0.018   11.088    0.000    0.163
##    .ssai             -0.097    0.015   -6.622    0.000   -0.126
##    .sssi             -0.131    0.015   -8.757    0.000   -0.160
##    .ssno              0.173    0.018    9.602    0.000    0.138
##    .sscs              0.271    0.018   15.206    0.000    0.236
##  ci.upper   Std.lv  Std.all
##     0.153    0.120    0.130
##     0.216    0.181    0.197
##     0.318    0.284    0.309
##     0.020   -0.010   -0.012
##     0.181    0.148    0.161
##     0.260    0.224    0.238
##     0.070    0.039    0.043
##     0.232    0.198    0.209
##    -0.069   -0.097   -0.120
##    -0.102   -0.131   -0.160
##     0.209    0.173    0.182
##     0.306    0.271    0.290
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.176    0.006   27.046    0.000    0.163
##    .sswk              0.177    0.007   26.469    0.000    0.164
##    .sspc              0.209    0.009   24.343    0.000    0.192
##    .ssei              0.246    0.008   29.710    0.000    0.229
##    .ssar              0.154    0.007   21.889    0.000    0.140
##    .ssmk              0.183    0.006   28.278    0.000    0.170
##    .ssmc              0.261    0.009   27.639    0.000    0.243
##    .ssao              0.406    0.013   31.243    0.000    0.381
##    .ssai              0.333    0.012   27.506    0.000    0.309
##    .sssi              0.306    0.012   26.186    0.000    0.283
##    .ssno              0.277    0.014   19.247    0.000    0.249
##    .sscs              0.382    0.016   24.000    0.000    0.351
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.188    0.176    0.207
##     0.190    0.177    0.208
##     0.225    0.209    0.246
##     0.262    0.246    0.367
##     0.168    0.154    0.182
##     0.196    0.183    0.207
##     0.280    0.261    0.326
##     0.432    0.406    0.456
##     0.356    0.333    0.502
##     0.329    0.306    0.456
##     0.306    0.277    0.305
##     0.413    0.382    0.438
##     1.000    0.036    0.036
##     1.000    0.154    0.154
##     1.000    0.245    0.245
##     1.000    0.488    0.488
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.155    0.023    6.710    0.000    0.109
##     sswk    (.p2.)    0.155    0.023    6.682    0.000    0.109
##     sspc    (.p3.)    0.151    0.022    6.695    0.000    0.107
##     ssei    (.p4.)    0.091    0.014    6.496    0.000    0.063
##   math =~                                                      
##     ssar    (.p5.)    0.326    0.014   23.126    0.000    0.299
##     ssmk    (.p6.)    0.238    0.012   20.153    0.000    0.215
##     ssmc    (.p7.)    0.185    0.009   20.589    0.000    0.167
##     ssao    (.p8.)    0.273    0.012   22.370    0.000    0.249
##   electronic =~                                                
##     ssai    (.p9.)    0.284    0.013   21.483    0.000    0.258
##     sssi    (.10.)    0.299    0.014   21.267    0.000    0.271
##     ssmc    (.11.)    0.149    0.009   17.042    0.000    0.132
##     ssei              0.174    0.011   16.003    0.000    0.152
##   speed =~                                                     
##     ssno    (.13.)    0.555    0.019   29.677    0.000    0.519
##     sscs    (.14.)    0.489    0.016   30.022    0.000    0.457
##     ssmk    (.15.)    0.212    0.010   21.464    0.000    0.192
##   g =~                                                         
##     verbal  (.16.)    5.210    0.805    6.476    0.000    3.633
##     math    (.17.)    2.348    0.116   20.154    0.000    2.119
##     elctrnc (.18.)    1.757    0.087   20.166    0.000    1.587
##     speed   (.19.)    1.024    0.044   23.069    0.000    0.937
##  ci.upper   Std.lv  Std.all
##                            
##     0.200    0.926    0.900
##     0.200    0.927    0.899
##     0.195    0.902    0.877
##     0.118    0.543    0.490
##                            
##     0.354    0.910    0.898
##     0.261    0.663    0.652
##     0.202    0.515    0.508
##     0.297    0.761    0.730
##                            
##     0.310    0.818    0.755
##     0.326    0.861    0.832
##     0.166    0.430    0.424
##     0.195    0.500    0.452
##                            
##     0.592    0.873    0.830
##     0.521    0.769    0.757
##     0.231    0.333    0.327
##                            
##     6.787    0.977    0.977
##     2.576    0.946    0.946
##     1.928    0.685    0.685
##     1.111    0.732    0.732
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.276    0.019   14.542    0.000    0.239
##    .sswk              0.179    0.018    9.735    0.000    0.143
##    .sspc              0.041    0.019    2.207    0.027    0.005
##    .ssei              0.339    0.021   16.134    0.000    0.298
##    .ssar              0.194    0.019   10.391    0.000    0.157
##    .ssmk              0.087    0.019    4.675    0.000    0.050
##    .ssmc              0.322    0.019   17.179    0.000    0.286
##    .ssao              0.081    0.019    4.256    0.000    0.044
##    .ssai              0.382    0.021   18.202    0.000    0.341
##    .sssi              0.482    0.020   24.659    0.000    0.443
##    .ssno             -0.002    0.020   -0.083    0.934   -0.040
##    .sscs             -0.080    0.019   -4.255    0.000   -0.117
##  ci.upper   Std.lv  Std.all
##     0.313    0.276    0.268
##     0.215    0.179    0.174
##     0.078    0.041    0.040
##     0.380    0.339    0.306
##     0.230    0.194    0.191
##     0.123    0.087    0.085
##     0.359    0.322    0.318
##     0.119    0.081    0.078
##     0.423    0.382    0.353
##     0.520    0.482    0.465
##     0.037   -0.002   -0.002
##    -0.043   -0.080   -0.079
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.200    0.007   28.134    0.000    0.186
##    .sswk              0.204    0.008   25.323    0.000    0.188
##    .sspc              0.244    0.009   26.260    0.000    0.226
##    .ssei              0.315    0.012   26.668    0.000    0.292
##    .ssar              0.199    0.009   22.785    0.000    0.182
##    .ssmk              0.179    0.007   25.917    0.000    0.165
##    .ssmc              0.290    0.010   27.846    0.000    0.270
##    .ssao              0.507    0.015   34.845    0.000    0.479
##    .ssai              0.504    0.019   26.040    0.000    0.466
##    .sssi              0.331    0.016   20.836    0.000    0.300
##    .ssno              0.344    0.018   18.604    0.000    0.307
##    .sscs              0.441    0.019   22.842    0.000    0.403
##    .verbal            1.612    0.526    3.067    0.002    0.582
##    .math              0.823    0.114    7.236    0.000    0.600
##    .electronic        4.401    0.462    9.535    0.000    3.496
##    .speed             1.149    0.094   12.167    0.000    0.964
##     g                 1.263    0.045   28.120    0.000    1.175
##  ci.upper   Std.lv  Std.all
##     0.214    0.200    0.189
##     0.219    0.204    0.192
##     0.262    0.244    0.231
##     0.339    0.315    0.258
##     0.216    0.199    0.193
##     0.192    0.179    0.173
##     0.311    0.290    0.282
##     0.536    0.507    0.467
##     0.542    0.504    0.429
##     0.362    0.331    0.308
##     0.380    0.344    0.311
##     0.479    0.441    0.427
##     2.642    0.045    0.045
##     1.045    0.106    0.106
##     5.305    0.530    0.530
##     1.334    0.465    0.465
##     1.351    1.000    1.000
lavTestScore(metric2, release = 1:18)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 124.816 18       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p54.  6.824  1   0.009
## 2   .p2. == .p55. 27.925  1   0.000
## 3   .p3. == .p56.  2.437  1   0.118
## 4   .p4. == .p57.  6.175  1   0.013
## 5   .p5. == .p58. 10.503  1   0.001
## 6   .p6. == .p59. 23.282  1   0.000
## 7   .p7. == .p60.  8.816  1   0.003
## 8   .p8. == .p61.  4.019  1   0.045
## 9   .p9. == .p62. 21.275  1   0.000
## 10 .p10. == .p63.  2.828  1   0.093
## 11 .p11. == .p64.  2.791  1   0.095
## 12 .p13. == .p66.  4.682  1   0.030
## 13 .p14. == .p67.  0.217  1   0.641
## 14 .p15. == .p68. 14.999  1   0.000
## 15 .p16. == .p69. 17.110  1   0.000
## 16 .p17. == .p70.  0.069  1   0.793
## 17 .p18. == .p71. 52.570  1   0.000
## 18 .p19. == .p72.  0.020  1   0.887
scalar<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 7.033718e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   3409.614    114.000      0.000      0.951      0.090      0.046 
##        aic        bic 
## 172219.367 172672.580
Mc(scalar)
## [1] 0.7926708
summary(scalar, standardized=T, ci=T) # -.066
## lavaan 0.6-18 ended normally after 150 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3409.614    2586.348
##   Degrees of freedom                               114         114
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.318
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1351.031    1024.819
##     0                                         2058.583    1561.530
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.151    0.024    6.337    0.000    0.104
##     sswk    (.p2.)    0.151    0.024    6.311    0.000    0.104
##     sspc    (.p3.)    0.147    0.023    6.329    0.000    0.101
##     ssei    (.p4.)    0.087    0.014    6.175    0.000    0.060
##   math =~                                                      
##     ssar    (.p5.)    0.328    0.014   23.265    0.000    0.300
##     ssmk    (.p6.)    0.235    0.012   20.055    0.000    0.212
##     ssmc    (.p7.)    0.185    0.009   21.203    0.000    0.168
##     ssao    (.p8.)    0.274    0.012   22.447    0.000    0.250
##   electronic =~                                                
##     ssai    (.p9.)    0.278    0.013   21.489    0.000    0.253
##     sssi    (.10.)    0.302    0.014   21.381    0.000    0.275
##     ssmc    (.11.)    0.150    0.008   18.304    0.000    0.134
##     ssei              0.097    0.010    9.612    0.000    0.078
##   speed =~                                                     
##     ssno    (.13.)    0.540    0.018   29.656    0.000    0.505
##     sscs    (.14.)    0.494    0.017   29.682    0.000    0.462
##     ssmk    (.15.)    0.218    0.010   22.580    0.000    0.199
##   g =~                                                         
##     verbal  (.16.)    5.335    0.870    6.130    0.000    3.629
##     math    (.17.)    2.336    0.115   20.269    0.000    2.111
##     elctrnc (.18.)    1.763    0.088   20.104    0.000    1.591
##     speed   (.19.)    1.037    0.045   23.018    0.000    0.949
##  ci.upper   Std.lv  Std.all
##                            
##     0.197    0.818    0.885
##     0.198    0.822    0.891
##     0.192    0.797    0.860
##     0.115    0.474    0.579
##                            
##     0.355    0.833    0.904
##     0.258    0.598    0.635
##     0.202    0.470    0.525
##     0.298    0.697    0.737
##                            
##     0.303    0.563    0.697
##     0.330    0.612    0.743
##     0.166    0.304    0.339
##     0.117    0.197    0.242
##                            
##     0.576    0.779    0.821
##     0.527    0.712    0.756
##     0.236    0.314    0.333
##                            
##     7.040    0.983    0.983
##     2.562    0.919    0.919
##     1.934    0.870    0.870
##     1.126    0.720    0.720
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.197    0.016   11.996    0.000    0.165
##    .sswk    (.38.)    0.183    0.017   10.887    0.000    0.150
##    .sspc    (.39.)    0.173    0.017   10.123    0.000    0.140
##    .ssei    (.40.)   -0.007    0.015   -0.460    0.645   -0.036
##    .ssar    (.41.)    0.169    0.017   10.168    0.000    0.136
##    .ssmk    (.42.)    0.209    0.017   11.998    0.000    0.175
##    .ssmc    (.43.)    0.036    0.015    2.322    0.020    0.006
##    .ssao    (.44.)    0.145    0.016    8.914    0.000    0.113
##    .ssai    (.45.)   -0.122    0.014   -9.034    0.000   -0.149
##    .sssi    (.46.)   -0.118    0.014   -8.406    0.000   -0.146
##    .ssno    (.47.)    0.215    0.017   12.479    0.000    0.181
##    .sscs    (.48.)    0.220    0.017   12.806    0.000    0.186
##  ci.upper   Std.lv  Std.all
##     0.229    0.197    0.213
##     0.216    0.183    0.199
##     0.207    0.173    0.187
##     0.022   -0.007   -0.008
##     0.202    0.169    0.183
##     0.244    0.209    0.222
##     0.066    0.036    0.040
##     0.177    0.145    0.154
##    -0.096   -0.122   -0.151
##    -0.091   -0.118   -0.143
##     0.248    0.215    0.226
##     0.253    0.220    0.233
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.184    0.007   26.524    0.000    0.171
##    .sswk              0.176    0.007   26.091    0.000    0.163
##    .sspc              0.225    0.009   23.903    0.000    0.206
##    .ssei              0.245    0.008   29.597    0.000    0.229
##    .ssar              0.155    0.007   21.796    0.000    0.141
##    .ssmk              0.183    0.007   28.042    0.000    0.170
##    .ssmc              0.261    0.009   27.695    0.000    0.242
##    .ssao              0.409    0.013   31.445    0.000    0.384
##    .ssai              0.336    0.012   27.906    0.000    0.312
##    .sssi              0.304    0.012   25.779    0.000    0.281
##    .ssno              0.293    0.015   20.178    0.000    0.265
##    .sscs              0.379    0.016   23.436    0.000    0.348
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.198    0.184    0.216
##     0.189    0.176    0.206
##     0.243    0.225    0.261
##     0.261    0.245    0.367
##     0.169    0.155    0.183
##     0.196    0.183    0.206
##     0.279    0.261    0.325
##     0.435    0.409    0.458
##     0.359    0.336    0.514
##     0.327    0.304    0.448
##     0.322    0.293    0.326
##     0.411    0.379    0.428
##     1.000    0.034    0.034
##     1.000    0.155    0.155
##     1.000    0.244    0.244
##     1.000    0.482    0.482
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.151    0.024    6.337    0.000    0.104
##     sswk    (.p2.)    0.151    0.024    6.311    0.000    0.104
##     sspc    (.p3.)    0.147    0.023    6.329    0.000    0.101
##     ssei    (.p4.)    0.087    0.014    6.175    0.000    0.060
##   math =~                                                      
##     ssar    (.p5.)    0.328    0.014   23.265    0.000    0.300
##     ssmk    (.p6.)    0.235    0.012   20.055    0.000    0.212
##     ssmc    (.p7.)    0.185    0.009   21.203    0.000    0.168
##     ssao    (.p8.)    0.274    0.012   22.447    0.000    0.250
##   electronic =~                                                
##     ssai    (.p9.)    0.278    0.013   21.489    0.000    0.253
##     sssi    (.10.)    0.302    0.014   21.381    0.000    0.275
##     ssmc    (.11.)    0.150    0.008   18.304    0.000    0.134
##     ssei              0.178    0.010   17.715    0.000    0.158
##   speed =~                                                     
##     ssno    (.13.)    0.540    0.018   29.656    0.000    0.505
##     sscs    (.14.)    0.494    0.017   29.682    0.000    0.462
##     ssmk    (.15.)    0.218    0.010   22.580    0.000    0.199
##   g =~                                                         
##     verbal  (.16.)    5.335    0.870    6.130    0.000    3.629
##     math    (.17.)    2.336    0.115   20.269    0.000    2.111
##     elctrnc (.18.)    1.763    0.088   20.104    0.000    1.591
##     speed   (.19.)    1.037    0.045   23.018    0.000    0.949
##  ci.upper   Std.lv  Std.all
##                            
##     0.197    0.923    0.895
##     0.198    0.927    0.900
##     0.192    0.899    0.868
##     0.115    0.534    0.482
##                            
##     0.355    0.910    0.897
##     0.258    0.653    0.642
##     0.202    0.514    0.507
##     0.298    0.761    0.729
##                            
##     0.303    0.800    0.744
##     0.330    0.869    0.835
##     0.166    0.431    0.425
##     0.198    0.512    0.462
##                            
##     0.576    0.855    0.817
##     0.527    0.782    0.763
##     0.236    0.344    0.338
##                            
##     7.040    0.978    0.978
##     2.562    0.945    0.945
##     1.934    0.688    0.688
##     1.126    0.736    0.736
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.197    0.016   11.996    0.000    0.165
##    .sswk    (.38.)    0.183    0.017   10.887    0.000    0.150
##    .sspc    (.39.)    0.173    0.017   10.123    0.000    0.140
##    .ssei    (.40.)   -0.007    0.015   -0.460    0.645   -0.036
##    .ssar    (.41.)    0.169    0.017   10.168    0.000    0.136
##    .ssmk    (.42.)    0.209    0.017   11.998    0.000    0.175
##    .ssmc    (.43.)    0.036    0.015    2.322    0.020    0.006
##    .ssao    (.44.)    0.145    0.016    8.914    0.000    0.113
##    .ssai    (.45.)   -0.122    0.014   -9.034    0.000   -0.149
##    .sssi    (.46.)   -0.118    0.014   -8.406    0.000   -0.146
##    .ssno    (.47.)    0.215    0.017   12.479    0.000    0.181
##    .sscs    (.48.)    0.220    0.017   12.806    0.000    0.186
##    .verbal           -0.454    0.038  -12.105    0.000   -0.528
##    .math             -0.187    0.047   -3.935    0.000   -0.279
##    .elctrnc           1.802    0.097   18.659    0.000    1.613
##    .speed            -0.572    0.044  -12.905    0.000   -0.659
##     g                 0.074    0.030    2.437    0.015    0.014
##  ci.upper   Std.lv  Std.all
##     0.229    0.197    0.191
##     0.216    0.183    0.178
##     0.207    0.173    0.167
##     0.022   -0.007   -0.006
##     0.202    0.169    0.167
##     0.244    0.209    0.206
##     0.066    0.036    0.035
##     0.177    0.145    0.139
##    -0.096   -0.122   -0.114
##    -0.091   -0.118   -0.114
##     0.248    0.215    0.205
##     0.253    0.220    0.214
##    -0.381   -0.074   -0.074
##    -0.094   -0.067   -0.067
##     1.992    0.627    0.627
##    -0.485   -0.362   -0.362
##     0.134    0.066    0.066
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.211    0.008   27.096    0.000    0.196
##    .sswk              0.202    0.008   24.918    0.000    0.186
##    .sspc              0.265    0.011   24.750    0.000    0.244
##    .ssei              0.314    0.012   26.958    0.000    0.291
##    .ssar              0.200    0.009   22.817    0.000    0.183
##    .ssmk              0.178    0.007   25.745    0.000    0.165
##    .ssmc              0.290    0.010   27.816    0.000    0.270
##    .ssao              0.512    0.015   34.471    0.000    0.483
##    .ssai              0.515    0.019   27.306    0.000    0.478
##    .sssi              0.327    0.015   21.474    0.000    0.298
##    .ssno              0.364    0.019   19.579    0.000    0.327
##    .sscs              0.439    0.020   22.285    0.000    0.400
##    .verbal            1.595    0.552    2.888    0.004    0.512
##    .math              0.832    0.114    7.310    0.000    0.609
##    .electronic        4.351    0.457    9.516    0.000    3.455
##    .speed             1.147    0.095   12.092    0.000    0.961
##     g                 1.261    0.045   28.085    0.000    1.173
##  ci.upper   Std.lv  Std.all
##     0.226    0.211    0.198
##     0.218    0.202    0.190
##     0.286    0.265    0.247
##     0.337    0.314    0.255
##     0.217    0.200    0.195
##     0.192    0.178    0.172
##     0.311    0.290    0.282
##     0.541    0.512    0.469
##     0.552    0.515    0.446
##     0.357    0.327    0.302
##     0.400    0.364    0.332
##     0.477    0.439    0.418
##     2.677    0.043    0.043
##     1.055    0.108    0.108
##     5.247    0.526    0.526
##     1.333    0.458    0.458
##     1.349    1.000    1.000
lavTestScore(scalar, release = 19:30) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 847.929 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs      X2 df p.value
## 1  .p37. ==  .p90. 382.450  1   0.000
## 2  .p38. ==  .p91.   1.267  1   0.260
## 3  .p39. ==  .p92. 526.717  1   0.000
## 4  .p40. ==  .p93.   2.080  1   0.149
## 5  .p41. ==  .p94.  64.339  1   0.000
## 6  .p42. ==  .p95.   9.655  1   0.002
## 7  .p43. ==  .p96.   0.008  1   0.928
## 8  .p44. ==  .p97.  55.425  1   0.000
## 9  .p45. ==  .p98.  23.012  1   0.000
## 10 .p46. ==  .p99.  12.890  1   0.000
## 11 .p47. == .p100. 108.290  1   0.000
## 12 .p48. == .p101.  77.183  1   0.000
scalar2<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 7.251107e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2752.628    112.000      0.000      0.961      0.082      0.043 
##        aic        bic 
## 171566.380 172033.327
Mc(scalar2)
## [1] 0.8301329
summary(scalar2, standardized=T, ci=T) # g -.112 Std.all
## lavaan 0.6-18 ended normally after 154 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2752.628    2084.690
##   Degrees of freedom                               112         112
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.320
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1051.422     796.290
##     0                                         1701.206    1288.401
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.152    0.024    6.456    0.000    0.106
##     sswk    (.p2.)    0.152    0.024    6.429    0.000    0.105
##     sspc    (.p3.)    0.148    0.023    6.439    0.000    0.103
##     ssei    (.p4.)    0.091    0.014    6.316    0.000    0.063
##   math =~                                                      
##     ssar    (.p5.)    0.325    0.014   23.000    0.000    0.298
##     ssmk    (.p6.)    0.238    0.012   20.397    0.000    0.215
##     ssmc    (.p7.)    0.185    0.009   21.043    0.000    0.168
##     ssao    (.p8.)    0.272    0.012   22.198    0.000    0.248
##   electronic =~                                                
##     ssai    (.p9.)    0.280    0.013   21.602    0.000    0.255
##     sssi    (.10.)    0.305    0.014   21.489    0.000    0.277
##     ssmc    (.11.)    0.149    0.008   18.195    0.000    0.133
##     ssei              0.090    0.010    8.616    0.000    0.069
##   speed =~                                                     
##     ssno    (.13.)    0.556    0.019   29.786    0.000    0.519
##     sscs    (.14.)    0.490    0.016   30.488    0.000    0.459
##     ssmk    (.15.)    0.210    0.009   22.811    0.000    0.192
##   g =~                                                         
##     verbal  (.16.)    5.308    0.851    6.238    0.000    3.641
##     math    (.17.)    2.357    0.117   20.074    0.000    2.126
##     elctrnc (.18.)    1.748    0.087   20.189    0.000    1.578
##     speed   (.19.)    1.023    0.044   23.130    0.000    0.936
##  ci.upper   Std.lv  Std.all
##                            
##     0.198    0.821    0.889
##     0.198    0.818    0.888
##     0.193    0.799    0.868
##     0.119    0.490    0.599
##                            
##     0.353    0.833    0.904
##     0.261    0.609    0.647
##     0.202    0.473    0.529
##     0.296    0.696    0.736
##                            
##     0.306    0.564    0.698
##     0.332    0.613    0.744
##     0.165    0.300    0.335
##     0.110    0.181    0.221
##                            
##     0.592    0.795    0.834
##     0.522    0.701    0.750
##     0.228    0.300    0.319
##                            
##     6.976    0.983    0.983
##     2.587    0.921    0.921
##     1.918    0.868    0.868
##     1.109    0.715    0.715
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.161    0.016    9.857    0.000    0.129
##    .sswk    (.38.)    0.147    0.017    8.805    0.000    0.115
##    .sspc              0.287    0.017   16.758    0.000    0.253
##    .ssei    (.40.)   -0.014    0.015   -0.918    0.359   -0.043
##    .ssar    (.41.)    0.167    0.017   10.040    0.000    0.134
##    .ssmk    (.42.)    0.229    0.017   13.136    0.000    0.195
##    .ssmc    (.43.)    0.041    0.015    2.650    0.008    0.011
##    .ssao    (.44.)    0.143    0.016    8.793    0.000    0.111
##    .ssai    (.45.)   -0.114    0.013   -8.472    0.000   -0.141
##    .sssi    (.46.)   -0.109    0.014   -7.728    0.000   -0.136
##    .ssno              0.175    0.018    9.705    0.000    0.140
##    .sscs    (.48.)    0.270    0.017   15.630    0.000    0.236
##  ci.upper   Std.lv  Std.all
##     0.193    0.161    0.174
##     0.180    0.147    0.160
##     0.320    0.287    0.312
##     0.016   -0.014   -0.017
##     0.199    0.167    0.181
##     0.263    0.229    0.244
##     0.071    0.041    0.045
##     0.175    0.143    0.152
##    -0.088   -0.114   -0.141
##    -0.081   -0.109   -0.132
##     0.211    0.175    0.184
##     0.304    0.270    0.289
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.178    0.007   26.939    0.000    0.165
##    .sswk              0.180    0.007   26.275    0.000    0.166
##    .sspc              0.208    0.009   24.342    0.000    0.191
##    .ssei              0.246    0.008   29.691    0.000    0.230
##    .ssar              0.155    0.007   22.005    0.000    0.141
##    .ssmk              0.183    0.006   28.332    0.000    0.170
##    .ssmc              0.261    0.009   27.706    0.000    0.242
##    .ssao              0.410    0.013   31.531    0.000    0.385
##    .ssai              0.335    0.012   27.821    0.000    0.311
##    .sssi              0.303    0.012   25.680    0.000    0.280
##    .ssno              0.277    0.014   19.185    0.000    0.249
##    .sscs              0.382    0.016   23.929    0.000    0.350
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.191    0.178    0.209
##     0.193    0.180    0.212
##     0.225    0.208    0.246
##     0.262    0.246    0.367
##     0.169    0.155    0.183
##     0.196    0.183    0.207
##     0.279    0.261    0.326
##     0.436    0.410    0.459
##     0.359    0.335    0.513
##     0.326    0.303    0.446
##     0.305    0.277    0.305
##     0.413    0.382    0.437
##     1.000    0.034    0.034
##     1.000    0.153    0.153
##     1.000    0.247    0.247
##     1.000    0.489    0.489
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.152    0.024    6.456    0.000    0.106
##     sswk    (.p2.)    0.152    0.024    6.429    0.000    0.105
##     sspc    (.p3.)    0.148    0.023    6.439    0.000    0.103
##     ssei    (.p4.)    0.091    0.014    6.316    0.000    0.063
##   math =~                                                      
##     ssar    (.p5.)    0.325    0.014   23.000    0.000    0.298
##     ssmk    (.p6.)    0.238    0.012   20.397    0.000    0.215
##     ssmc    (.p7.)    0.185    0.009   21.043    0.000    0.168
##     ssao    (.p8.)    0.272    0.012   22.198    0.000    0.248
##   electronic =~                                                
##     ssai    (.p9.)    0.280    0.013   21.602    0.000    0.255
##     sssi    (.10.)    0.305    0.014   21.489    0.000    0.277
##     ssmc    (.11.)    0.149    0.008   18.195    0.000    0.133
##     ssei              0.169    0.010   16.998    0.000    0.150
##   speed =~                                                     
##     ssno    (.13.)    0.556    0.019   29.786    0.000    0.519
##     sscs    (.14.)    0.490    0.016   30.488    0.000    0.459
##     ssmk    (.15.)    0.210    0.009   22.811    0.000    0.192
##   g =~                                                         
##     verbal  (.16.)    5.308    0.851    6.238    0.000    3.641
##     math    (.17.)    2.357    0.117   20.074    0.000    2.126
##     elctrnc (.18.)    1.748    0.087   20.189    0.000    1.578
##     speed   (.19.)    1.023    0.044   23.130    0.000    0.936
##  ci.upper   Std.lv  Std.all
##                            
##     0.198    0.927    0.899
##     0.198    0.924    0.897
##     0.193    0.903    0.877
##     0.119    0.553    0.501
##                            
##     0.353    0.910    0.898
##     0.261    0.666    0.654
##     0.202    0.517    0.510
##     0.296    0.761    0.728
##                            
##     0.306    0.805    0.747
##     0.332    0.875    0.839
##     0.165    0.428    0.422
##     0.189    0.486    0.440
##                            
##     0.592    0.873    0.830
##     0.522    0.770    0.757
##     0.228    0.330    0.324
##                            
##     6.976    0.978    0.978
##     2.587    0.946    0.946
##     1.918    0.683    0.683
##     1.109    0.731    0.731
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.161    0.016    9.857    0.000    0.129
##    .sswk    (.38.)    0.147    0.017    8.805    0.000    0.115
##    .sspc             -0.029    0.019   -1.514    0.130   -0.067
##    .ssei    (.40.)   -0.014    0.015   -0.918    0.359   -0.043
##    .ssar    (.41.)    0.167    0.017   10.040    0.000    0.134
##    .ssmk    (.42.)    0.229    0.017   13.136    0.000    0.195
##    .ssmc    (.43.)    0.041    0.015    2.650    0.008    0.011
##    .ssao    (.44.)    0.143    0.016    8.793    0.000    0.111
##    .ssai    (.45.)   -0.114    0.013   -8.472    0.000   -0.141
##    .sssi    (.46.)   -0.109    0.014   -7.728    0.000   -0.136
##    .ssno              0.394    0.025   15.523    0.000    0.344
##    .sscs    (.48.)    0.270    0.017   15.630    0.000    0.236
##    .verbal           -0.192    0.033   -5.821    0.000   -0.257
##    .math             -0.277    0.045   -6.134    0.000   -0.365
##    .elctrnc           1.651    0.090   18.319    0.000    1.474
##    .speed            -0.840    0.049  -17.091    0.000   -0.936
##     g                 0.126    0.029    4.410    0.000    0.070
##  ci.upper   Std.lv  Std.all
##     0.193    0.161    0.156
##     0.180    0.147    0.143
##     0.009   -0.029   -0.028
##     0.016   -0.014   -0.012
##     0.199    0.167    0.164
##     0.263    0.229    0.225
##     0.071    0.041    0.040
##     0.175    0.143    0.137
##    -0.088   -0.114   -0.106
##    -0.081   -0.109   -0.104
##     0.443    0.394    0.374
##     0.304    0.270    0.266
##    -0.127   -0.031   -0.031
##    -0.188   -0.099   -0.099
##     1.828    0.574    0.574
##    -0.744   -0.535   -0.535
##     0.182    0.112    0.112
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.203    0.007   27.927    0.000    0.189
##    .sswk              0.207    0.008   25.467    0.000    0.191
##    .sspc              0.243    0.009   26.215    0.000    0.225
##    .ssei              0.318    0.012   27.355    0.000    0.295
##    .ssar              0.200    0.009   22.981    0.000    0.183
##    .ssmk              0.179    0.007   26.008    0.000    0.166
##    .ssmc              0.290    0.010   27.836    0.000    0.270
##    .ssao              0.513    0.015   34.440    0.000    0.483
##    .ssai              0.512    0.019   27.068    0.000    0.475
##    .sssi              0.321    0.015   20.913    0.000    0.291
##    .ssno              0.343    0.018   18.597    0.000    0.307
##    .sscs              0.441    0.019   23.031    0.000    0.403
##    .verbal            1.639    0.550    2.982    0.003    0.562
##    .math              0.821    0.114    7.203    0.000    0.597
##    .electronic        4.401    0.460    9.577    0.000    3.501
##    .speed             1.148    0.094   12.159    0.000    0.963
##     g                 1.263    0.045   28.147    0.000    1.175
##  ci.upper   Std.lv  Std.all
##     0.217    0.203    0.191
##     0.223    0.207    0.195
##     0.262    0.243    0.230
##     0.341    0.318    0.261
##     0.217    0.200    0.194
##     0.193    0.179    0.173
##     0.311    0.290    0.283
##     0.542    0.513    0.470
##     0.549    0.512    0.441
##     0.351    0.321    0.295
##     0.380    0.343    0.310
##     0.478    0.441    0.426
##     2.717    0.044    0.044
##     1.044    0.105    0.105
##     5.302    0.533    0.533
##     1.333    0.465    0.465
##     1.351    1.000    1.000
lavTestScore(scalar2, release = 19:28, standardized=T, epc=T) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 213.25 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs      X2 df p.value
## 1  .p37. ==  .p90. 116.499  1   0.000
## 2  .p38. ==  .p91. 102.271  1   0.000
## 3  .p40. ==  .p93.   2.090  1   0.148
## 4  .p41. ==  .p94.  33.330  1   0.000
## 5  .p42. ==  .p95.   0.402  1   0.526
## 6  .p43. ==  .p96.   0.014  1   0.907
## 7  .p44. ==  .p97.  69.963  1   0.000
## 8  .p45. ==  .p98.  16.097  1   0.000
## 9  .p46. ==  .p99.  22.504  1   0.000
## 10 .p48. == .p101.   0.402  1   0.526
## 
## $epc
## 
## expected parameter changes (epc) and expected parameter values (epv):
## 
##           lhs op        rhs block group free label plabel    est    epc
## 1      verbal =~       ssgs     1     1    1  .p1.   .p1.  0.152  0.000
## 2      verbal =~       sswk     1     1    2  .p2.   .p2.  0.152  0.001
## 3      verbal =~       sspc     1     1    3  .p3.   .p3.  0.148  0.001
## 4      verbal =~       ssei     1     1    4  .p4.   .p4.  0.091 -0.001
## 5        math =~       ssar     1     1    5  .p5.   .p5.  0.325  0.000
## 6        math =~       ssmk     1     1    6  .p6.   .p6.  0.238  0.000
## 7        math =~       ssmc     1     1    7  .p7.   .p7.  0.185 -0.001
## 8        math =~       ssao     1     1    8  .p8.   .p8.  0.272  0.000
## 9  electronic =~       ssai     1     1    9  .p9.   .p9.  0.280  0.004
## 10 electronic =~       sssi     1     1   10 .p10.  .p10.  0.305 -0.006
## 11 electronic =~       ssmc     1     1   11 .p11.  .p11.  0.149  0.001
## 12 electronic =~       ssei     1     1   12        .p12.  0.090  0.004
## 13      speed =~       ssno     1     1   13 .p13.  .p13.  0.556  0.000
## 14      speed =~       sscs     1     1   14 .p14.  .p14.  0.490 -0.001
## 15      speed =~       ssmk     1     1   15 .p15.  .p15.  0.210  0.002
## 16          g =~     verbal     1     1   16 .p16.  .p16.  5.308 -0.027
## 17          g =~       math     1     1   17 .p17.  .p17.  2.357 -0.003
## 18          g =~ electronic     1     1   18 .p18.  .p18.  1.748  0.011
## 19          g =~      speed     1     1   19 .p19.  .p19.  1.023  0.001
## 20       ssgs ~~       ssgs     1     1   20        .p20.  0.178  0.000
## 21       sswk ~~       sswk     1     1   21        .p21.  0.180  0.000
## 22       sspc ~~       sspc     1     1   22        .p22.  0.208  0.000
## 23       ssei ~~       ssei     1     1   23        .p23.  0.246  0.000
## 24       ssar ~~       ssar     1     1   24        .p24.  0.155  0.000
## 25       ssmk ~~       ssmk     1     1   25        .p25.  0.183  0.000
## 26       ssmc ~~       ssmc     1     1   26        .p26.  0.261  0.000
## 27       ssao ~~       ssao     1     1   27        .p27.  0.410  0.000
## 28       ssai ~~       ssai     1     1   28        .p28.  0.335 -0.002
## 29       sssi ~~       sssi     1     1   29        .p29.  0.303  0.004
## 30       ssno ~~       ssno     1     1   30        .p30.  0.277  0.000
## 31       sscs ~~       sscs     1     1   31        .p31.  0.382  0.000
## 32     verbal ~~     verbal     1     1    0        .p32.  1.000     NA
## 33       math ~~       math     1     1    0        .p33.  1.000     NA
## 34 electronic ~~ electronic     1     1    0        .p34.  1.000     NA
## 35      speed ~~      speed     1     1    0        .p35.  1.000     NA
## 36          g ~~          g     1     1    0        .p36.  1.000     NA
## 37       ssgs ~1                1     1   32 .p37.  .p37.  0.161 -0.041
## 38       sswk ~1                1     1   33 .p38.  .p38.  0.147  0.034
## 39       sspc ~1                1     1   34        .p39.  0.287 -0.003
## 40       ssei ~1                1     1   35 .p40.  .p40. -0.014  0.004
## 41       ssar ~1                1     1   36 .p41.  .p41.  0.167 -0.019
## 42       ssmk ~1                1     1   37 .p42.  .p42.  0.229 -0.005
## 43       ssmc ~1                1     1   38 .p43.  .p43.  0.041 -0.002
## 44       ssao ~1                1     1   39 .p44.  .p44.  0.143  0.054
## 45       ssai ~1                1     1   40 .p45.  .p45. -0.114  0.017
## 46       sssi ~1                1     1   41 .p46.  .p46. -0.109 -0.022
## 47       ssno ~1                1     1   42        .p47.  0.175 -0.002
## 48       sscs ~1                1     1   43 .p48.  .p48.  0.270  0.000
## 49     verbal ~1                1     1    0        .p49.  0.000     NA
## 50       math ~1                1     1    0        .p50.  0.000     NA
## 51 electronic ~1                1     1    0        .p51.  0.000     NA
## 52      speed ~1                1     1    0        .p52.  0.000     NA
## 53          g ~1                1     1    0        .p53.  0.000     NA
## 54     verbal =~       ssgs     2     2   44  .p1.  .p54.  0.152  0.000
## 55     verbal =~       sswk     2     2   45  .p2.  .p55.  0.152  0.001
## 56     verbal =~       sspc     2     2   46  .p3.  .p56.  0.148  0.001
## 57     verbal =~       ssei     2     2   47  .p4.  .p57.  0.091 -0.001
## 58       math =~       ssar     2     2   48  .p5.  .p58.  0.325  0.000
## 59       math =~       ssmk     2     2   49  .p6.  .p59.  0.238  0.000
## 60       math =~       ssmc     2     2   50  .p7.  .p60.  0.185 -0.001
## 61       math =~       ssao     2     2   51  .p8.  .p61.  0.272  0.000
## 62 electronic =~       ssai     2     2   52  .p9.  .p62.  0.280  0.004
## 63 electronic =~       sssi     2     2   53 .p10.  .p63.  0.305 -0.006
## 64 electronic =~       ssmc     2     2   54 .p11.  .p64.  0.149  0.001
## 65 electronic =~       ssei     2     2   55        .p65.  0.169  0.004
## 66      speed =~       ssno     2     2   56 .p13.  .p66.  0.556  0.000
## 67      speed =~       sscs     2     2   57 .p14.  .p67.  0.490 -0.001
## 68      speed =~       ssmk     2     2   58 .p15.  .p68.  0.210  0.002
## 69          g =~     verbal     2     2   59 .p16.  .p69.  5.308 -0.027
## 70          g =~       math     2     2   60 .p17.  .p70.  2.357 -0.003
## 71          g =~ electronic     2     2   61 .p18.  .p71.  1.748  0.011
##       epv sepc.lv sepc.all sepc.nox
## 1   0.152   0.002    0.003    0.003
## 2   0.153   0.006    0.006    0.006
## 3   0.149   0.004    0.004    0.004
## 4   0.090  -0.006   -0.007   -0.007
## 5   0.326   0.001    0.001    0.001
## 6   0.237  -0.001   -0.001   -0.001
## 7   0.184  -0.002   -0.003   -0.003
## 8   0.272   0.001    0.001    0.001
## 9   0.284   0.007    0.009    0.009
## 10  0.298  -0.013   -0.015   -0.015
## 11  0.150   0.001    0.001    0.001
## 12  0.093   0.008    0.009    0.009
## 13  0.555  -0.001   -0.001   -0.001
## 14  0.489  -0.001   -0.001   -0.001
## 15  0.212   0.002    0.002    0.002
## 16  5.281  -0.005   -0.005   -0.005
## 17  2.354  -0.001   -0.001   -0.001
## 18  1.759   0.006    0.006    0.006
## 19  1.024   0.001    0.001    0.001
## 20  0.178   0.178    0.209    0.209
## 21  0.179  -0.180   -0.212   -0.212
## 22  0.208  -0.208   -0.246   -0.246
## 23  0.246  -0.246   -0.367   -0.367
## 24  0.155  -0.155   -0.183   -0.183
## 25  0.183  -0.183   -0.207   -0.207
## 26  0.261  -0.261   -0.326   -0.326
## 27  0.410  -0.410   -0.459   -0.459
## 28  0.333  -0.335   -0.513   -0.513
## 29  0.307   0.303    0.446    0.446
## 30  0.278   0.277    0.305    0.305
## 31  0.382   0.382    0.437    0.437
## 32     NA      NA       NA       NA
## 33     NA      NA       NA       NA
## 34     NA      NA       NA       NA
## 35     NA      NA       NA       NA
## 36     NA      NA       NA       NA
## 37  0.120  -0.041   -0.045   -0.045
## 38  0.181   0.034    0.037    0.037
## 39  0.284  -0.003   -0.003   -0.003
## 40 -0.010   0.004    0.004    0.004
## 41  0.148  -0.019   -0.021   -0.021
## 42  0.224  -0.005   -0.005   -0.005
## 43  0.039  -0.002   -0.002   -0.002
## 44  0.198   0.054    0.057    0.057
## 45 -0.097   0.017    0.021    0.021
## 46 -0.131  -0.022   -0.027   -0.027
## 47  0.173  -0.002   -0.002   -0.002
## 48  0.271   0.000    0.000    0.000
## 49     NA      NA       NA       NA
## 50     NA      NA       NA       NA
## 51     NA      NA       NA       NA
## 52     NA      NA       NA       NA
## 53     NA      NA       NA       NA
## 54  0.152   0.003    0.003    0.003
## 55  0.153   0.007    0.006    0.006
## 56  0.149   0.005    0.004    0.004
## 57  0.090  -0.007   -0.006   -0.006
## 58  0.326   0.001    0.001    0.001
## 59  0.237  -0.001   -0.001   -0.001
## 60  0.184  -0.003   -0.003   -0.003
## 61  0.272   0.001    0.001    0.001
## 62  0.284   0.011    0.010    0.010
## 63  0.298  -0.018   -0.017   -0.017
## 64  0.150   0.002    0.002    0.002
## 65  0.173   0.012    0.011    0.011
## 66  0.555  -0.001   -0.001   -0.001
## 67  0.489  -0.001   -0.001   -0.001
## 68  0.212   0.002    0.002    0.002
## 69  5.281  -0.005   -0.005   -0.005
## 70  2.354  -0.001   -0.001   -0.001
## 71  1.759   0.004    0.004    0.004
##  [ reached 'max' / getOption("max.print") -- omitted 35 rows ]
strict<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 2.149336e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   3043.319    124.000      0.000      0.957      0.081      0.046 
##        aic        bic 
## 171833.072 172217.616
Mc(strict) 
## [1] 0.8139814
summary(strict, standardized=T, ci=T) # g -.094 Std.all
## lavaan 0.6-18 ended normally after 142 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
##   Number of equality constraints                    40
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3043.319    2282.517
##   Degrees of freedom                               124         124
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.333
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1234.624     925.979
##     0                                         1808.695    1356.537
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.142    0.025    5.622    0.000    0.093
##     sswk    (.p2.)    0.141    0.025    5.603    0.000    0.092
##     sspc    (.p3.)    0.138    0.025    5.612    0.000    0.090
##     ssei    (.p4.)    0.085    0.015    5.531    0.000    0.055
##   math =~                                                      
##     ssar    (.p5.)    0.310    0.015   20.877    0.000    0.281
##     ssmk    (.p6.)    0.226    0.012   18.612    0.000    0.202
##     ssmc    (.p7.)    0.177    0.009   19.568    0.000    0.159
##     ssao    (.p8.)    0.258    0.013   20.266    0.000    0.233
##   electronic =~                                                
##     ssai    (.p9.)    0.257    0.014   17.707    0.000    0.228
##     sssi    (.10.)    0.272    0.016   17.188    0.000    0.241
##     ssmc    (.11.)    0.133    0.009   15.362    0.000    0.116
##     ssei              0.078    0.010    7.792    0.000    0.059
##   speed =~                                                     
##     ssno    (.13.)    0.544    0.019   28.617    0.000    0.506
##     sscs    (.14.)    0.478    0.016   29.278    0.000    0.446
##     ssmk    (.15.)    0.204    0.010   21.496    0.000    0.186
##   g =~                                                         
##     verbal  (.16.)    5.685    1.041    5.464    0.000    3.646
##     math    (.17.)    2.483    0.134   18.502    0.000    2.220
##     elctrnc (.18.)    1.938    0.116   16.665    0.000    1.710
##     speed   (.19.)    1.048    0.047   22.449    0.000    0.957
##  ci.upper   Std.lv  Std.all
##                            
##     0.192    0.820    0.883
##     0.191    0.815    0.880
##     0.186    0.797    0.859
##     0.115    0.491    0.588
##                            
##     0.339    0.829    0.891
##     0.250    0.606    0.647
##     0.194    0.473    0.525
##     0.282    0.690    0.712
##                            
##     0.285    0.560    0.656
##     0.303    0.594    0.722
##     0.150    0.290    0.322
##     0.098    0.171    0.204
##                            
##     0.581    0.788    0.817
##     0.510    0.693    0.734
##     0.223    0.296    0.316
##                            
##     7.724    0.985    0.985
##     2.746    0.928    0.928
##     2.166    0.889    0.889
##     1.140    0.724    0.724
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.164    0.016   10.022    0.000    0.132
##    .sswk    (.38.)    0.145    0.017    8.687    0.000    0.112
##    .sspc              0.287    0.017   16.794    0.000    0.253
##    .ssei    (.40.)   -0.014    0.015   -0.965    0.334   -0.044
##    .ssar    (.41.)    0.169    0.017   10.130    0.000    0.136
##    .ssmk    (.42.)    0.229    0.017   13.133    0.000    0.195
##    .ssmc    (.43.)    0.042    0.015    2.762    0.006    0.012
##    .ssao    (.44.)    0.136    0.016    8.437    0.000    0.105
##    .ssai    (.45.)   -0.123    0.014   -9.069    0.000   -0.149
##    .sssi    (.46.)   -0.105    0.014   -7.486    0.000   -0.132
##    .ssno              0.175    0.018    9.715    0.000    0.140
##    .sscs    (.48.)    0.271    0.017   15.653    0.000    0.237
##  ci.upper   Std.lv  Std.all
##     0.195    0.164    0.176
##     0.177    0.145    0.156
##     0.320    0.287    0.309
##     0.015   -0.014   -0.017
##     0.202    0.169    0.182
##     0.263    0.229    0.244
##     0.072    0.042    0.047
##     0.168    0.136    0.141
##    -0.096   -0.123   -0.144
##    -0.077   -0.105   -0.127
##     0.211    0.175    0.182
##     0.305    0.271    0.287
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.20.)    0.190    0.005   38.197    0.000    0.180
##    .sswk    (.21.)    0.194    0.005   36.056    0.000    0.184
##    .sspc    (.22.)    0.226    0.006   35.104    0.000    0.214
##    .ssei    (.23.)    0.280    0.007   39.333    0.000    0.266
##    .ssar    (.24.)    0.178    0.006   31.327    0.000    0.167
##    .ssmk    (.25.)    0.182    0.005   37.671    0.000    0.172
##    .ssmc    (.26.)    0.277    0.007   39.114    0.000    0.263
##    .ssao    (.27.)    0.463    0.010   46.201    0.000    0.443
##    .ssai    (.28.)    0.414    0.011   36.919    0.000    0.392
##    .sssi    (.29.)    0.324    0.010   32.841    0.000    0.304
##    .ssno    (.30.)    0.310    0.012   24.912    0.000    0.285
##    .sscs    (.31.)    0.412    0.013   32.139    0.000    0.387
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .elctrnc           1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.200    0.190    0.221
##     0.205    0.194    0.226
##     0.239    0.226    0.263
##     0.294    0.280    0.401
##     0.189    0.178    0.206
##     0.191    0.182    0.207
##     0.291    0.277    0.342
##     0.483    0.463    0.493
##     0.436    0.414    0.569
##     0.343    0.324    0.478
##     0.334    0.310    0.333
##     0.437    0.412    0.462
##     1.000    0.030    0.030
##     1.000    0.140    0.140
##     1.000    0.210    0.210
##     1.000    0.476    0.476
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.142    0.025    5.622    0.000    0.093
##     sswk    (.p2.)    0.141    0.025    5.603    0.000    0.092
##     sspc    (.p3.)    0.138    0.025    5.612    0.000    0.090
##     ssei    (.p4.)    0.085    0.015    5.531    0.000    0.055
##   math =~                                                      
##     ssar    (.p5.)    0.310    0.015   20.877    0.000    0.281
##     ssmk    (.p6.)    0.226    0.012   18.612    0.000    0.202
##     ssmc    (.p7.)    0.177    0.009   19.568    0.000    0.159
##     ssao    (.p8.)    0.258    0.013   20.266    0.000    0.233
##   electronic =~                                                
##     ssai    (.p9.)    0.257    0.014   17.707    0.000    0.228
##     sssi    (.10.)    0.272    0.016   17.188    0.000    0.241
##     ssmc    (.11.)    0.133    0.009   15.362    0.000    0.116
##     ssei              0.153    0.010   14.738    0.000    0.132
##   speed =~                                                     
##     ssno    (.13.)    0.544    0.019   28.617    0.000    0.506
##     sscs    (.14.)    0.478    0.016   29.278    0.000    0.446
##     ssmk    (.15.)    0.204    0.010   21.496    0.000    0.186
##   g =~                                                         
##     verbal  (.16.)    5.685    1.041    5.464    0.000    3.646
##     math    (.17.)    2.483    0.134   18.502    0.000    2.220
##     elctrnc (.18.)    1.938    0.116   16.665    0.000    1.710
##     speed   (.19.)    1.048    0.047   22.449    0.000    0.957
##  ci.upper   Std.lv  Std.all
##                            
##     0.192    0.930    0.905
##     0.191    0.924    0.903
##     0.186    0.904    0.885
##     0.115    0.557    0.510
##                            
##     0.339    0.916    0.908
##     0.250    0.670    0.655
##     0.194    0.523    0.518
##     0.282    0.762    0.746
##                            
##     0.285    0.826    0.789
##     0.303    0.876    0.839
##     0.150    0.428    0.424
##     0.173    0.491    0.450
##                            
##     0.581    0.883    0.846
##     0.510    0.777    0.771
##     0.223    0.332    0.325
##                            
##     7.724    0.975    0.975
##     2.746    0.943    0.943
##     2.166    0.677    0.677
##     1.140    0.725    0.725
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.164    0.016   10.022    0.000    0.132
##    .sswk    (.38.)    0.145    0.017    8.687    0.000    0.112
##    .sspc             -0.029    0.019   -1.529    0.126   -0.067
##    .ssei    (.40.)   -0.014    0.015   -0.965    0.334   -0.044
##    .ssar    (.41.)    0.169    0.017   10.130    0.000    0.136
##    .ssmk    (.42.)    0.229    0.017   13.133    0.000    0.195
##    .ssmc    (.43.)    0.042    0.015    2.762    0.006    0.012
##    .ssao    (.44.)    0.136    0.016    8.437    0.000    0.105
##    .ssai    (.45.)   -0.123    0.014   -9.069    0.000   -0.149
##    .sssi    (.46.)   -0.105    0.014   -7.486    0.000   -0.132
##    .ssno              0.395    0.025   15.530    0.000    0.345
##    .sscs    (.48.)    0.271    0.017   15.653    0.000    0.237
##    .verbal           -0.087    0.039   -2.269    0.023   -0.163
##    .math             -0.239    0.047   -5.101    0.000   -0.331
##    .elctrnc           1.865    0.117   15.883    0.000    1.635
##    .speed            -0.841    0.052  -16.293    0.000   -0.942
##     g                 0.106    0.028    3.720    0.000    0.050
##  ci.upper   Std.lv  Std.all
##     0.195    0.164    0.159
##     0.177    0.145    0.141
##     0.008   -0.029   -0.029
##     0.015   -0.014   -0.013
##     0.202    0.169    0.167
##     0.263    0.229    0.224
##     0.072    0.042    0.042
##     0.168    0.136    0.133
##    -0.096   -0.123   -0.117
##    -0.077   -0.105   -0.100
##     0.445    0.395    0.379
##     0.305    0.271    0.269
##    -0.012   -0.013   -0.013
##    -0.147   -0.081   -0.081
##     2.095    0.580    0.580
##    -0.740   -0.518   -0.518
##     0.161    0.094    0.094
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.20.)    0.190    0.005   38.197    0.000    0.180
##    .sswk    (.21.)    0.194    0.005   36.056    0.000    0.184
##    .sspc    (.22.)    0.226    0.006   35.104    0.000    0.214
##    .ssei    (.23.)    0.280    0.007   39.333    0.000    0.266
##    .ssar    (.24.)    0.178    0.006   31.327    0.000    0.167
##    .ssmk    (.25.)    0.182    0.005   37.671    0.000    0.172
##    .ssmc    (.26.)    0.277    0.007   39.114    0.000    0.263
##    .ssao    (.27.)    0.463    0.010   46.201    0.000    0.443
##    .ssai    (.28.)    0.414    0.011   36.919    0.000    0.392
##    .sssi    (.29.)    0.324    0.010   32.841    0.000    0.304
##    .ssno    (.30.)    0.310    0.012   24.912    0.000    0.285
##    .sscs    (.31.)    0.412    0.013   32.139    0.000    0.387
##    .verbal            2.105    0.728    2.891    0.004    0.678
##    .math              0.976    0.127    7.673    0.000    0.727
##    .elctrnc           5.607    0.690    8.120    0.000    4.253
##    .speed             1.249    0.104   12.043    0.000    1.045
##     g                 1.262    0.045   28.209    0.000    1.174
##  ci.upper   Std.lv  Std.all
##     0.200    0.190    0.180
##     0.205    0.194    0.185
##     0.239    0.226    0.217
##     0.294    0.280    0.234
##     0.189    0.178    0.175
##     0.191    0.182    0.174
##     0.291    0.277    0.272
##     0.483    0.463    0.444
##     0.436    0.414    0.378
##     0.343    0.324    0.297
##     0.334    0.310    0.284
##     0.437    0.412    0.406
##     3.532    0.049    0.049
##     1.226    0.111    0.111
##     6.960    0.542    0.542
##     1.452    0.474    0.474
##     1.350    1.000    1.000
latent<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 1.451686e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   3251.881    117.000      0.000      0.954      0.087      0.099 
##        aic        bic 
## 172055.634 172488.246
Mc(latent)
## [1] 0.8017044
summary(latent, standardized=T, ci=T) # g -.056 Std.all
## lavaan 0.6-18 ended normally after 88 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        91
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3251.881    2457.265
##   Degrees of freedom                               117         117
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.323
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1336.844    1010.179
##     0                                         1915.037    1447.087
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.154    0.024    6.517    0.000    0.108
##     sswk    (.p2.)    0.154    0.024    6.488    0.000    0.107
##     sspc    (.p3.)    0.150    0.023    6.499    0.000    0.105
##     ssei    (.p4.)    0.089    0.014    6.345    0.000    0.062
##   math =~                                                      
##     ssar    (.p5.)    0.322    0.013   24.665    0.000    0.297
##     ssmk    (.p6.)    0.235    0.011   21.360    0.000    0.214
##     ssmc    (.p7.)    0.179    0.008   22.151    0.000    0.163
##     ssao    (.p8.)    0.269    0.011   23.801    0.000    0.247
##   electronic =~                                                
##     ssai    (.p9.)    0.433    0.012   36.507    0.000    0.409
##     sssi    (.10.)    0.477    0.012   38.856    0.000    0.453
##     ssmc    (.11.)    0.241    0.009   27.513    0.000    0.224
##     ssei              0.141    0.012   11.346    0.000    0.116
##   speed =~                                                     
##     ssno    (.13.)    0.580    0.015   38.426    0.000    0.550
##     sscs    (.14.)    0.511    0.013   40.483    0.000    0.486
##     ssmk    (.15.)    0.221    0.009   25.227    0.000    0.204
##   g =~                                                         
##     verbal  (.16.)    5.590    0.886    6.309    0.000    3.853
##     math    (.17.)    2.521    0.119   21.173    0.000    2.287
##     elctrnc (.18.)    1.236    0.039   32.048    0.000    1.161
##     speed   (.19.)    1.036    0.038   27.526    0.000    0.962
##  ci.upper   Std.lv  Std.all
##                            
##     0.201    0.876    0.900
##     0.200    0.874    0.901
##     0.195    0.852    0.883
##     0.117    0.506    0.594
##                            
##     0.348    0.874    0.913
##     0.257    0.638    0.651
##     0.195    0.486    0.510
##     0.291    0.729    0.750
##                            
##     0.456    0.688    0.770
##     0.502    0.759    0.826
##     0.259    0.384    0.402
##     0.165    0.224    0.263
##                            
##     0.609    0.835    0.849
##     0.536    0.736    0.766
##     0.238    0.318    0.324
##                            
##     7.327    0.984    0.984
##     2.754    0.930    0.930
##     1.312    0.778    0.778
##     1.110    0.720    0.720
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.170    0.016   10.367    0.000    0.138
##    .sswk    (.38.)    0.156    0.017    9.287    0.000    0.123
##    .sspc              0.293    0.017   17.057    0.000    0.259
##    .ssei    (.40.)   -0.016    0.015   -1.074    0.283   -0.045
##    .ssar    (.41.)    0.173    0.017   10.386    0.000    0.140
##    .ssmk    (.42.)    0.236    0.018   13.476    0.000    0.202
##    .ssmc    (.43.)    0.045    0.015    2.935    0.003    0.015
##    .ssao    (.44.)    0.149    0.016    9.089    0.000    0.116
##    .ssai    (.45.)   -0.100    0.014   -7.424    0.000   -0.127
##    .sssi    (.46.)   -0.100    0.014   -7.117    0.000   -0.128
##    .ssno              0.180    0.018    9.920    0.000    0.144
##    .sscs    (.48.)    0.274    0.017   15.793    0.000    0.240
##  ci.upper   Std.lv  Std.all
##     0.202    0.170    0.175
##     0.189    0.156    0.161
##     0.327    0.293    0.304
##     0.013   -0.016   -0.019
##     0.206    0.173    0.181
##     0.270    0.236    0.241
##     0.076    0.045    0.048
##     0.181    0.149    0.153
##    -0.074   -0.100   -0.112
##    -0.073   -0.100   -0.109
##     0.215    0.180    0.183
##     0.308    0.274    0.285
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.180    0.007   26.853    0.000    0.167
##    .sswk              0.178    0.007   26.219    0.000    0.164
##    .sspc              0.205    0.008   24.136    0.000    0.188
##    .ssei              0.246    0.008   29.705    0.000    0.230
##    .ssar              0.153    0.007   22.137    0.000    0.139
##    .ssmk              0.181    0.006   28.070    0.000    0.168
##    .ssmc              0.257    0.009   27.618    0.000    0.239
##    .ssao              0.413    0.013   31.551    0.000    0.387
##    .ssai              0.325    0.013   25.410    0.000    0.300
##    .sssi              0.268    0.012   22.493    0.000    0.245
##    .ssno              0.269    0.015   18.394    0.000    0.240
##    .sscs              0.382    0.016   23.749    0.000    0.350
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.193    0.180    0.190
##     0.191    0.178    0.189
##     0.221    0.205    0.220
##     0.262    0.246    0.339
##     0.166    0.153    0.167
##     0.194    0.181    0.188
##     0.275    0.257    0.282
##     0.438    0.413    0.437
##     0.350    0.325    0.407
##     0.292    0.268    0.318
##     0.297    0.269    0.278
##     0.413    0.382    0.413
##     1.000    0.031    0.031
##     1.000    0.136    0.136
##     1.000    0.395    0.395
##     1.000    0.482    0.482
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.154    0.024    6.517    0.000    0.108
##     sswk    (.p2.)    0.154    0.024    6.488    0.000    0.107
##     sspc    (.p3.)    0.150    0.023    6.499    0.000    0.105
##     ssei    (.p4.)    0.089    0.014    6.345    0.000    0.062
##   math =~                                                      
##     ssar    (.p5.)    0.322    0.013   24.665    0.000    0.297
##     ssmk    (.p6.)    0.235    0.011   21.360    0.000    0.214
##     ssmc    (.p7.)    0.179    0.008   22.151    0.000    0.163
##     ssao    (.p8.)    0.269    0.011   23.801    0.000    0.247
##   electronic =~                                                
##     ssai    (.p9.)    0.433    0.012   36.507    0.000    0.409
##     sssi    (.10.)    0.477    0.012   38.856    0.000    0.453
##     ssmc    (.11.)    0.241    0.009   27.513    0.000    0.224
##     ssei              0.290    0.012   25.076    0.000    0.267
##   speed =~                                                     
##     ssno    (.13.)    0.580    0.015   38.426    0.000    0.550
##     sscs    (.14.)    0.511    0.013   40.483    0.000    0.486
##     ssmk    (.15.)    0.221    0.009   25.227    0.000    0.204
##   g =~                                                         
##     verbal  (.16.)    5.590    0.886    6.309    0.000    3.853
##     math    (.17.)    2.521    0.119   21.173    0.000    2.287
##     elctrnc (.18.)    1.236    0.039   32.048    0.000    1.161
##     speed   (.19.)    1.036    0.038   27.526    0.000    0.962
##  ci.upper   Std.lv  Std.all
##                            
##     0.201    0.876    0.890
##     0.200    0.874    0.887
##     0.195    0.852    0.863
##     0.117    0.506    0.474
##                            
##     0.348    0.874    0.890
##     0.257    0.638    0.651
##     0.195    0.486    0.500
##     0.291    0.729    0.714
##                            
##     0.456    0.688    0.679
##     0.502    0.759    0.778
##     0.259    0.384    0.395
##     0.312    0.461    0.432
##                            
##     0.609    0.835    0.815
##     0.536    0.736    0.742
##     0.238    0.318    0.324
##                            
##     7.327    0.984    0.984
##     2.754    0.930    0.930
##     1.312    0.778    0.778
##     1.110    0.720    0.720
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.170    0.016   10.367    0.000    0.138
##    .sswk    (.38.)    0.156    0.017    9.287    0.000    0.123
##    .sspc             -0.019    0.019   -0.987    0.324   -0.057
##    .ssei    (.40.)   -0.016    0.015   -1.074    0.283   -0.045
##    .ssar    (.41.)    0.173    0.017   10.386    0.000    0.140
##    .ssmk    (.42.)    0.236    0.018   13.476    0.000    0.202
##    .ssmc    (.43.)    0.045    0.015    2.935    0.003    0.015
##    .ssao    (.44.)    0.149    0.016    9.089    0.000    0.116
##    .ssai    (.45.)   -0.100    0.014   -7.424    0.000   -0.127
##    .sssi    (.46.)   -0.100    0.014   -7.117    0.000   -0.128
##    .ssno              0.397    0.025   15.653    0.000    0.347
##    .sscs    (.48.)    0.274    0.017   15.793    0.000    0.240
##    .verbal            0.089    0.022    4.048    0.000    0.046
##    .math             -0.142    0.040   -3.526    0.000   -0.221
##    .elctrnc           1.092    0.038   28.688    0.000    1.018
##    .speed            -0.746    0.041  -17.981    0.000   -0.827
##     g                 0.056    0.026    2.138    0.033    0.005
##  ci.upper   Std.lv  Std.all
##     0.202    0.170    0.173
##     0.189    0.156    0.158
##     0.019   -0.019   -0.019
##     0.013   -0.016   -0.015
##     0.206    0.173    0.176
##     0.270    0.236    0.241
##     0.076    0.045    0.047
##     0.181    0.149    0.145
##    -0.074   -0.100   -0.099
##    -0.073   -0.100   -0.103
##     0.446    0.397    0.387
##     0.308    0.274    0.276
##     0.131    0.016    0.016
##    -0.063   -0.052   -0.052
##     1.167    0.687    0.687
##    -0.664   -0.518   -0.518
##     0.108    0.056    0.056
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.200    0.007   28.285    0.000    0.186
##    .sswk              0.207    0.008   26.267    0.000    0.191
##    .sspc              0.249    0.009   26.609    0.000    0.231
##    .ssei              0.315    0.012   27.137    0.000    0.292
##    .ssar              0.200    0.009   23.254    0.000    0.183
##    .ssmk              0.181    0.007   26.026    0.000    0.167
##    .ssmc              0.293    0.011   27.811    0.000    0.272
##    .ssao              0.511    0.015   34.397    0.000    0.482
##    .ssai              0.553    0.020   27.849    0.000    0.514
##    .sssi              0.376    0.016   23.871    0.000    0.345
##    .ssno              0.353    0.019   18.927    0.000    0.316
##    .sscs              0.442    0.019   23.109    0.000    0.404
##    .verbal            1.000                               1.000
##    .math              1.000                               1.000
##    .electronic        1.000                               1.000
##    .speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.214    0.200    0.207
##     0.222    0.207    0.213
##     0.268    0.249    0.256
##     0.337    0.315    0.276
##     0.217    0.200    0.208
##     0.194    0.181    0.188
##     0.313    0.293    0.309
##     0.541    0.511    0.490
##     0.592    0.553    0.539
##     0.407    0.376    0.395
##     0.389    0.353    0.336
##     0.479    0.442    0.449
##     1.000    0.031    0.031
##     1.000    0.136    0.136
##     1.000    0.395    0.395
##     1.000    0.482    0.482
##     1.000    1.000    1.000
latent2<-cfa(hof.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 5.053686e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2762.109    114.000      0.000      0.961      0.081      0.043 
##        aic        bic 
## 171571.862 172025.075
Mc(latent2)
## [1] 0.8296951
summary(latent2, standardized=T, ci=T) # -.086
## lavaan 0.6-18 ended normally after 114 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        94
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2762.109    2084.559
##   Degrees of freedom                               114         114
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.325
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1056.021     796.977
##     0                                         1706.089    1287.582
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.156    0.023    6.760    0.000    0.111
##     sswk    (.p2.)    0.155    0.023    6.730    0.000    0.110
##     sspc    (.p3.)    0.152    0.022    6.742    0.000    0.108
##     ssei    (.p4.)    0.093    0.014    6.596    0.000    0.065
##   math =~                                                      
##     ssar    (.p5.)    0.314    0.013   24.095    0.000    0.288
##     ssmk    (.p6.)    0.229    0.011   21.002    0.000    0.208
##     ssmc    (.p7.)    0.178    0.008   22.117    0.000    0.162
##     ssao    (.p8.)    0.262    0.011   23.230    0.000    0.240
##   electronic =~                                                
##     ssai    (.p9.)    0.279    0.013   21.458    0.000    0.254
##     sssi    (.10.)    0.304    0.014   21.346    0.000    0.276
##     ssmc    (.11.)    0.149    0.008   18.165    0.000    0.133
##     ssei              0.089    0.010    8.555    0.000    0.069
##   speed =~                                                     
##     ssno    (.13.)    0.575    0.015   37.905    0.000    0.546
##     sscs    (.14.)    0.508    0.013   39.999    0.000    0.483
##     ssmk    (.15.)    0.218    0.009   24.828    0.000    0.201
##   g =~                                                         
##     verbal  (.16.)    5.181    0.794    6.525    0.000    3.625
##     math    (.17.)    2.438    0.120   20.339    0.000    2.203
##     elctrnc (.18.)    1.753    0.087   20.097    0.000    1.582
##     speed   (.19.)    0.986    0.038   26.290    0.000    0.913
##  ci.upper   Std.lv  Std.all
##                            
##     0.201    0.822    0.890
##     0.201    0.820    0.888
##     0.196    0.800    0.869
##     0.121    0.491    0.600
##                            
##     0.340    0.827    0.902
##     0.251    0.605    0.643
##     0.194    0.469    0.525
##     0.284    0.691    0.733
##                            
##     0.305    0.564    0.698
##     0.332    0.613    0.744
##     0.165    0.301    0.337
##     0.109    0.180    0.220
##                            
##     0.605    0.808    0.841
##     0.533    0.713    0.756
##     0.235    0.306    0.325
##                            
##     6.737    0.982    0.982
##     2.673    0.925    0.925
##     1.924    0.869    0.869
##     1.060    0.702    0.702
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.161    0.016    9.859    0.000    0.129
##    .sswk    (.38.)    0.147    0.017    8.806    0.000    0.115
##    .sspc              0.287    0.017   16.760    0.000    0.253
##    .ssei    (.40.)   -0.014    0.015   -0.918    0.359   -0.043
##    .ssar    (.41.)    0.167    0.017   10.059    0.000    0.135
##    .ssmk    (.42.)    0.229    0.017   13.143    0.000    0.195
##    .ssmc    (.43.)    0.040    0.015    2.629    0.009    0.010
##    .ssao    (.44.)    0.143    0.016    8.791    0.000    0.111
##    .ssai    (.45.)   -0.114    0.013   -8.466    0.000   -0.141
##    .sssi    (.46.)   -0.109    0.014   -7.722    0.000   -0.136
##    .ssno              0.175    0.018    9.705    0.000    0.140
##    .sscs    (.48.)    0.270    0.017   15.631    0.000    0.236
##  ci.upper   Std.lv  Std.all
##     0.193    0.161    0.174
##     0.180    0.147    0.160
##     0.320    0.287    0.311
##     0.016   -0.014   -0.017
##     0.200    0.167    0.182
##     0.263    0.229    0.244
##     0.070    0.040    0.045
##     0.175    0.143    0.152
##    -0.088   -0.114   -0.141
##    -0.081   -0.109   -0.132
##     0.211    0.175    0.182
##     0.304    0.270    0.287
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .math              1.000                               1.000
##    .speed             1.000                               1.000
##    .ssgs              0.178    0.007   26.920    0.000    0.165
##    .sswk              0.180    0.007   26.304    0.000    0.166
##    .sspc              0.208    0.009   24.341    0.000    0.191
##    .ssei              0.246    0.008   29.717    0.000    0.230
##    .ssar              0.157    0.007   22.437    0.000    0.143
##    .ssmk              0.184    0.006   28.311    0.000    0.171
##    .ssmc              0.261    0.009   27.718    0.000    0.242
##    .ssao              0.411    0.013   31.634    0.000    0.386
##    .ssai              0.335    0.012   27.833    0.000    0.312
##    .sssi              0.303    0.012   25.693    0.000    0.280
##    .ssno              0.271    0.015   18.488    0.000    0.242
##    .sscs              0.381    0.016   23.754    0.000    0.350
##    .verbal            1.000                               1.000
##    .electronic        1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.144    0.144
##     1.000    0.507    0.507
##     0.191    0.178    0.209
##     0.193    0.180    0.211
##     0.225    0.208    0.245
##     0.262    0.246    0.368
##     0.171    0.157    0.187
##     0.196    0.184    0.208
##     0.279    0.261    0.327
##     0.436    0.411    0.462
##     0.359    0.335    0.513
##     0.326    0.303    0.447
##     0.299    0.271    0.293
##     0.412    0.381    0.428
##     1.000    0.036    0.036
##     1.000    0.245    0.245
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.156    0.023    6.760    0.000    0.111
##     sswk    (.p2.)    0.155    0.023    6.730    0.000    0.110
##     sspc    (.p3.)    0.152    0.022    6.742    0.000    0.108
##     ssei    (.p4.)    0.093    0.014    6.596    0.000    0.065
##   math =~                                                      
##     ssar    (.p5.)    0.314    0.013   24.095    0.000    0.288
##     ssmk    (.p6.)    0.229    0.011   21.002    0.000    0.208
##     ssmc    (.p7.)    0.178    0.008   22.117    0.000    0.162
##     ssao    (.p8.)    0.262    0.011   23.230    0.000    0.240
##   electronic =~                                                
##     ssai    (.p9.)    0.279    0.013   21.458    0.000    0.254
##     sssi    (.10.)    0.304    0.014   21.346    0.000    0.276
##     ssmc    (.11.)    0.149    0.008   18.165    0.000    0.133
##     ssei              0.169    0.010   16.911    0.000    0.149
##   speed =~                                                     
##     ssno    (.13.)    0.575    0.015   37.905    0.000    0.546
##     sscs    (.14.)    0.508    0.013   39.999    0.000    0.483
##     ssmk    (.15.)    0.218    0.009   24.828    0.000    0.201
##   g =~                                                         
##     verbal  (.16.)    5.181    0.794    6.525    0.000    3.625
##     math    (.17.)    2.438    0.120   20.339    0.000    2.203
##     elctrnc (.18.)    1.753    0.087   20.097    0.000    1.582
##     speed   (.19.)    0.986    0.038   26.290    0.000    0.913
##  ci.upper   Std.lv  Std.all
##                            
##     0.201    0.925    0.899
##     0.201    0.923    0.897
##     0.196    0.901    0.877
##     0.121    0.552    0.500
##                            
##     0.340    0.916    0.900
##     0.251    0.669    0.658
##     0.194    0.520    0.512
##     0.284    0.765    0.730
##                            
##     0.305    0.805    0.747
##     0.332    0.875    0.839
##     0.165    0.429    0.423
##     0.188    0.486    0.440
##                            
##     0.605    0.859    0.823
##     0.533    0.758    0.752
##     0.235    0.325    0.319
##                            
##     6.737    0.980    0.980
##     2.673    0.939    0.939
##     1.924    0.684    0.684
##     1.060    0.743    0.743
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs    (.37.)    0.161    0.016    9.859    0.000    0.129
##    .sswk    (.38.)    0.147    0.017    8.806    0.000    0.115
##    .sspc             -0.029    0.019   -1.510    0.131   -0.067
##    .ssei    (.40.)   -0.014    0.015   -0.918    0.359   -0.043
##    .ssar    (.41.)    0.167    0.017   10.059    0.000    0.135
##    .ssmk    (.42.)    0.229    0.017   13.143    0.000    0.195
##    .ssmc    (.43.)    0.040    0.015    2.629    0.009    0.010
##    .ssao    (.44.)    0.143    0.016    8.791    0.000    0.111
##    .ssai    (.45.)   -0.114    0.013   -8.466    0.000   -0.141
##    .sssi    (.46.)   -0.109    0.014   -7.722    0.000   -0.136
##    .ssno              0.393    0.025   15.522    0.000    0.343
##    .sscs    (.48.)    0.270    0.017   15.631    0.000    0.236
##    .verbal           -0.035    0.032   -1.075    0.282   -0.097
##    .math             -0.214    0.043   -4.961    0.000   -0.299
##    .elctrnc           1.706    0.092   18.541    0.000    1.526
##    .speed            -0.781    0.043  -18.065    0.000   -0.866
##     g                 0.096    0.028    3.408    0.001    0.041
##  ci.upper   Std.lv  Std.all
##     0.193    0.161    0.156
##     0.180    0.147    0.143
##     0.009   -0.029   -0.028
##     0.016   -0.014   -0.012
##     0.200    0.167    0.164
##     0.263    0.229    0.225
##     0.070    0.040    0.040
##     0.175    0.143    0.137
##    -0.088   -0.114   -0.106
##    -0.081   -0.109   -0.104
##     0.443    0.393    0.377
##     0.304    0.270    0.268
##     0.028   -0.006   -0.006
##    -0.130   -0.073   -0.073
##     1.887    0.592    0.592
##    -0.697   -0.523   -0.523
##     0.152    0.086    0.086
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .math              1.000                               1.000
##    .speed             1.000                               1.000
##    .ssgs              0.203    0.007   27.932    0.000    0.189
##    .sswk              0.206    0.008   25.445    0.000    0.191
##    .sspc              0.244    0.009   26.279    0.000    0.225
##    .ssei              0.318    0.012   27.342    0.000    0.295
##    .ssar              0.197    0.009   22.953    0.000    0.180
##    .ssmk              0.179    0.007   25.978    0.000    0.165
##    .ssmc              0.290    0.010   27.822    0.000    0.270
##    .ssao              0.512    0.015   34.414    0.000    0.483
##    .ssai              0.512    0.019   27.077    0.000    0.475
##    .sssi              0.321    0.015   20.920    0.000    0.291
##    .ssno              0.352    0.019   18.976    0.000    0.316
##    .sscs              0.442    0.019   23.170    0.000    0.405
##    .verbal            1.378    0.412    3.342    0.001    0.570
##    .electronic        4.415    0.463    9.533    0.000    3.507
##     g                 1.264    0.045   28.131    0.000    1.176
##  ci.upper   Std.lv  Std.all
##     1.000    0.118    0.118
##     1.000    0.449    0.449
##     0.217    0.203    0.192
##     0.222    0.206    0.195
##     0.262    0.244    0.231
##     0.340    0.318    0.260
##     0.214    0.197    0.190
##     0.192    0.179    0.172
##     0.311    0.290    0.282
##     0.541    0.512    0.467
##     0.549    0.512    0.441
##     0.351    0.321    0.295
##     0.388    0.352    0.323
##     0.479    0.442    0.435
##     2.186    0.039    0.039
##     5.323    0.532    0.532
##     1.352    1.000    1.000
weak<-cfa(hof.weak, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2762.109    115.000      0.000      0.961      0.081      0.043 
##        aic        bic 
## 171569.862 172016.208
Mc(weak)
## [1] 0.8297536
summary(weak, standardized=T, ci=T) # -.080
## lavaan 0.6-18 ended normally after 117 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        93
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2762.109    2102.844
##   Degrees of freedom                               115         115
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.314
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1056.021     803.968
##     0                                         1706.088    1298.876
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.156    0.023    6.761    0.000    0.111
##     sswk    (.p2.)    0.155    0.023    6.730    0.000    0.110
##     sspc    (.p3.)    0.152    0.022    6.743    0.000    0.108
##     ssei    (.p4.)    0.093    0.014    6.596    0.000    0.065
##   math =~                                                      
##     ssar    (.p5.)    0.314    0.013   24.095    0.000    0.288
##     ssmk    (.p6.)    0.229    0.011   21.002    0.000    0.208
##     ssmc    (.p7.)    0.178    0.008   22.117    0.000    0.162
##     ssao    (.p8.)    0.262    0.011   23.231    0.000    0.240
##   electronic =~                                                
##     ssai    (.p9.)    0.279    0.013   21.458    0.000    0.254
##     sssi    (.10.)    0.304    0.014   21.346    0.000    0.276
##     ssmc    (.11.)    0.149    0.008   18.165    0.000    0.133
##     ssei              0.089    0.010    8.555    0.000    0.069
##   speed =~                                                     
##     ssno    (.13.)    0.575    0.015   37.905    0.000    0.546
##     sscs    (.14.)    0.508    0.013   39.999    0.000    0.483
##     ssmk    (.15.)    0.218    0.009   24.828    0.000    0.201
##   g =~                                                         
##     verbal  (.16.)    5.181    0.794    6.525    0.000    3.625
##     math    (.17.)    2.438    0.120   20.339    0.000    2.203
##     elctrnc (.18.)    1.753    0.087   20.097    0.000    1.582
##     speed   (.19.)    0.986    0.038   26.290    0.000    0.913
##  ci.upper   Std.lv  Std.all
##                            
##     0.201    0.822    0.890
##     0.201    0.820    0.888
##     0.196    0.800    0.869
##     0.121    0.491    0.600
##                            
##     0.340    0.827    0.902
##     0.251    0.605    0.643
##     0.194    0.469    0.525
##     0.284    0.691    0.733
##                            
##     0.305    0.564    0.698
##     0.332    0.613    0.744
##     0.165    0.301    0.337
##     0.109    0.180    0.220
##                            
##     0.605    0.808    0.841
##     0.533    0.713    0.756
##     0.235    0.306    0.325
##                            
##     6.737    0.982    0.982
##     2.673    0.925    0.925
##     1.924    0.869    0.869
##     1.060    0.702    0.702
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.38.)    0.161    0.016    9.859    0.000    0.129
##    .sswk    (.39.)    0.147    0.017    8.806    0.000    0.115
##    .sspc              0.287    0.017   16.760    0.000    0.253
##    .ssei    (.41.)   -0.014    0.015   -0.918    0.359   -0.043
##    .ssar    (.42.)    0.167    0.017   10.059    0.000    0.135
##    .ssmk    (.43.)    0.229    0.017   13.143    0.000    0.195
##    .ssmc    (.44.)    0.040    0.015    2.629    0.009    0.010
##    .ssao    (.45.)    0.143    0.016    8.791    0.000    0.111
##    .ssai    (.46.)   -0.114    0.013   -8.466    0.000   -0.141
##    .sssi    (.47.)   -0.109    0.014   -7.722    0.000   -0.136
##    .ssno              0.175    0.018    9.705    0.000    0.140
##    .sscs    (.49.)    0.270    0.017   15.631    0.000    0.236
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.193    0.161    0.174
##     0.180    0.147    0.160
##     0.320    0.287    0.311
##     0.016   -0.014   -0.017
##     0.200    0.167    0.182
##     0.263    0.229    0.244
##     0.070    0.040    0.045
##     0.175    0.143    0.152
##    -0.088   -0.114   -0.141
##    -0.081   -0.109   -0.132
##     0.211    0.175    0.182
##     0.304    0.270    0.287
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .math              1.000                               1.000
##    .speed             1.000                               1.000
##    .ssgs              0.178    0.007   26.920    0.000    0.165
##    .sswk              0.180    0.007   26.304    0.000    0.166
##    .sspc              0.208    0.009   24.341    0.000    0.191
##    .ssei              0.246    0.008   29.717    0.000    0.230
##    .ssar              0.157    0.007   22.436    0.000    0.143
##    .ssmk              0.184    0.006   28.311    0.000    0.171
##    .ssmc              0.261    0.009   27.718    0.000    0.242
##    .ssao              0.411    0.013   31.634    0.000    0.386
##    .ssai              0.335    0.012   27.833    0.000    0.312
##    .sssi              0.303    0.012   25.693    0.000    0.280
##    .ssno              0.271    0.015   18.488    0.000    0.242
##    .sscs              0.381    0.016   23.754    0.000    0.350
##    .verbal            1.000                               1.000
##    .electronic        1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.144    0.144
##     1.000    0.507    0.507
##     0.191    0.178    0.209
##     0.193    0.180    0.211
##     0.225    0.208    0.245
##     0.262    0.246    0.368
##     0.171    0.157    0.187
##     0.196    0.184    0.208
##     0.279    0.261    0.327
##     0.436    0.411    0.462
##     0.359    0.335    0.513
##     0.326    0.303    0.447
##     0.299    0.271    0.293
##     0.412    0.381    0.428
##     1.000    0.036    0.036
##     1.000    0.245    0.245
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.156    0.023    6.761    0.000    0.111
##     sswk    (.p2.)    0.155    0.023    6.730    0.000    0.110
##     sspc    (.p3.)    0.152    0.022    6.743    0.000    0.108
##     ssei    (.p4.)    0.093    0.014    6.596    0.000    0.065
##   math =~                                                      
##     ssar    (.p5.)    0.314    0.013   24.095    0.000    0.288
##     ssmk    (.p6.)    0.229    0.011   21.002    0.000    0.208
##     ssmc    (.p7.)    0.178    0.008   22.117    0.000    0.162
##     ssao    (.p8.)    0.262    0.011   23.231    0.000    0.240
##   electronic =~                                                
##     ssai    (.p9.)    0.279    0.013   21.458    0.000    0.254
##     sssi    (.10.)    0.304    0.014   21.346    0.000    0.276
##     ssmc    (.11.)    0.149    0.008   18.165    0.000    0.133
##     ssei              0.169    0.010   16.911    0.000    0.149
##   speed =~                                                     
##     ssno    (.13.)    0.575    0.015   37.905    0.000    0.546
##     sscs    (.14.)    0.508    0.013   39.999    0.000    0.483
##     ssmk    (.15.)    0.218    0.009   24.828    0.000    0.201
##   g =~                                                         
##     verbal  (.16.)    5.181    0.794    6.525    0.000    3.625
##     math    (.17.)    2.438    0.120   20.339    0.000    2.203
##     elctrnc (.18.)    1.753    0.087   20.097    0.000    1.582
##     speed   (.19.)    0.986    0.038   26.290    0.000    0.913
##  ci.upper   Std.lv  Std.all
##                            
##     0.201    0.925    0.899
##     0.201    0.923    0.897
##     0.196    0.901    0.877
##     0.121    0.552    0.500
##                            
##     0.340    0.916    0.900
##     0.251    0.669    0.658
##     0.194    0.520    0.512
##     0.284    0.765    0.730
##                            
##     0.305    0.805    0.747
##     0.332    0.875    0.839
##     0.165    0.429    0.423
##     0.188    0.486    0.440
##                            
##     0.605    0.859    0.823
##     0.533    0.758    0.752
##     0.235    0.325    0.319
##                            
##     6.737    0.980    0.980
##     2.673    0.939    0.939
##     1.924    0.684    0.684
##     1.060    0.743    0.743
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.38.)    0.161    0.016    9.859    0.000    0.129
##    .sswk    (.39.)    0.147    0.017    8.806    0.000    0.115
##    .sspc             -0.029    0.019   -1.510    0.131   -0.067
##    .ssei    (.41.)   -0.014    0.015   -0.918    0.359   -0.043
##    .ssar    (.42.)    0.167    0.017   10.059    0.000    0.135
##    .ssmk    (.43.)    0.229    0.017   13.143    0.000    0.195
##    .ssmc    (.44.)    0.040    0.015    2.629    0.009    0.010
##    .ssao    (.45.)    0.143    0.016    8.791    0.000    0.111
##    .ssai    (.46.)   -0.114    0.013   -8.466    0.000   -0.141
##    .sssi    (.47.)   -0.109    0.014   -7.722    0.000   -0.136
##    .ssno              0.393    0.025   15.522    0.000    0.343
##    .sscs    (.49.)    0.270    0.017   15.631    0.000    0.236
##    .math             -0.198    0.051   -3.904    0.000   -0.297
##    .elctrnc           1.718    0.100   17.099    0.000    1.521
##    .speed            -0.775    0.044  -17.473    0.000   -0.862
##     g                 0.090    0.030    3.032    0.002    0.032
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.193    0.161    0.156
##     0.180    0.147    0.143
##     0.009   -0.029   -0.028
##     0.016   -0.014   -0.012
##     0.200    0.167    0.164
##     0.263    0.229    0.225
##     0.070    0.040    0.040
##     0.175    0.143    0.137
##    -0.088   -0.114   -0.106
##    -0.081   -0.109   -0.104
##     0.443    0.393    0.377
##     0.304    0.270    0.268
##    -0.099   -0.068   -0.068
##     1.915    0.596    0.596
##    -0.688   -0.519   -0.519
##     0.148    0.080    0.080
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .math              1.000                               1.000
##    .speed             1.000                               1.000
##    .ssgs              0.203    0.007   27.932    0.000    0.189
##    .sswk              0.206    0.008   25.445    0.000    0.191
##    .sspc              0.244    0.009   26.279    0.000    0.225
##    .ssei              0.318    0.012   27.342    0.000    0.295
##    .ssar              0.197    0.009   22.953    0.000    0.180
##    .ssmk              0.179    0.007   25.978    0.000    0.165
##    .ssmc              0.290    0.010   27.822    0.000    0.270
##    .ssao              0.512    0.015   34.414    0.000    0.483
##    .ssai              0.512    0.019   27.077    0.000    0.475
##    .sssi              0.321    0.015   20.920    0.000    0.291
##    .ssno              0.352    0.019   18.976    0.000    0.316
##    .sscs              0.442    0.019   23.170    0.000    0.405
##    .verbal            1.378    0.412    3.342    0.001    0.570
##    .electronic        4.415    0.463    9.533    0.000    3.507
##     g                 1.264    0.045   28.131    0.000    1.176
##  ci.upper   Std.lv  Std.all
##     1.000    0.118    0.118
##     1.000    0.449    0.449
##     0.217    0.203    0.192
##     0.222    0.206    0.195
##     0.262    0.244    0.231
##     0.340    0.318    0.260
##     0.214    0.197    0.190
##     0.192    0.179    0.172
##     0.311    0.290    0.282
##     0.541    0.512    0.467
##     0.549    0.512    0.441
##     0.351    0.321    0.295
##     0.388    0.352    0.323
##     0.479    0.442    0.435
##     2.186    0.039    0.039
##     5.323    0.532    0.532
##     1.352    1.000    1.000
standardizedSolution(weak) # get the correct SEs for standardized solution
##           lhs op        rhs group label est.std    se       z pvalue
## 1      verbal =~       ssgs     1  .p1.   0.890 0.004 201.870  0.000
## 2      verbal =~       sswk     1  .p2.   0.888 0.005 191.389  0.000
## 3      verbal =~       sspc     1  .p3.   0.869 0.006 151.790  0.000
## 4      verbal =~       ssei     1  .p4.   0.600 0.019  31.542  0.000
## 5        math =~       ssar     1  .p5.   0.902 0.004 201.748  0.000
## 6        math =~       ssmk     1  .p6.   0.643 0.012  51.686  0.000
## 7        math =~       ssmc     1  .p7.   0.525 0.013  40.909  0.000
## 8        math =~       ssao     1  .p8.   0.733 0.008  86.573  0.000
## 9  electronic =~       ssai     1  .p9.   0.698 0.011  65.152  0.000
## 10 electronic =~       sssi     1 .p10.   0.744 0.010  74.011  0.000
## 11 electronic =~       ssmc     1 .p11.   0.337 0.012  26.941  0.000
## 12 electronic =~       ssei     1         0.220 0.022   9.841  0.000
## 13      speed =~       ssno     1 .p13.   0.841 0.008  98.995  0.000
## 14      speed =~       sscs     1 .p14.   0.756 0.010  77.041  0.000
## 15      speed =~       ssmk     1 .p15.   0.325 0.013  24.536  0.000
## 16          g =~     verbal     1 .p16.   0.982 0.005 181.665  0.000
## 17          g =~       math     1 .p17.   0.925 0.007 141.204  0.000
## 18          g =~ electronic     1 .p18.   0.869 0.011  81.883  0.000
## 19          g =~      speed     1 .p19.   0.702 0.014  51.863  0.000
## 20       math ~~       math     1         0.144 0.012  11.881  0.000
## 21      speed ~~      speed     1         0.507 0.019  26.659  0.000
## 22     verbal ~1                1         0.000 0.000      NA     NA
## 23       ssgs ~~       ssgs     1         0.209 0.008  26.613  0.000
## 24       sswk ~~       sswk     1         0.211 0.008  25.623  0.000
## 25       sspc ~~       sspc     1         0.245 0.010  24.660  0.000
## 26       ssei ~~       ssei     1         0.368 0.012  31.425  0.000
## 27       ssar ~~       ssar     1         0.187 0.008  23.152  0.000
## 28       ssmk ~~       ssmk     1         0.208 0.008  26.960  0.000
## 29       ssmc ~~       ssmc     1         0.327 0.011  30.949  0.000
## 30       ssao ~~       ssao     1         0.462 0.012  37.245  0.000
## 31       ssai ~~       ssai     1         0.513 0.015  34.358  0.000
## 32       sssi ~~       sssi     1         0.447 0.015  29.856  0.000
## 33       ssno ~~       ssno     1         0.293 0.014  20.518  0.000
## 34       sscs ~~       sscs     1         0.428 0.015  28.860  0.000
## 35     verbal ~~     verbal     1         0.036 0.011   3.384  0.001
## 36 electronic ~~ electronic     1         0.245 0.018  13.317  0.000
## 37          g ~~          g     1         1.000 0.000      NA     NA
## 38       ssgs ~1                1 .p38.   0.174 0.018   9.818  0.000
## 39       sswk ~1                1 .p39.   0.160 0.018   8.766  0.000
## 40       sspc ~1                1         0.311 0.019  16.123  0.000
## 41       ssei ~1                1 .p41.  -0.017 0.018  -0.916  0.360
## 42       ssar ~1                1 .p42.   0.182 0.019   9.795  0.000
## 43       ssmk ~1                1 .p43.   0.244 0.019  12.874  0.000
## 44       ssmc ~1                1 .p44.   0.045 0.017   2.609  0.009
## 45       ssao ~1                1 .p45.   0.152 0.017   8.718  0.000
## 46       ssai ~1                1 .p46.  -0.141 0.017  -8.443  0.000
## 47       sssi ~1                1 .p47.  -0.132 0.017  -7.612  0.000
## 48       ssno ~1                1         0.182 0.019   9.516  0.000
## 49       sscs ~1                1 .p49.   0.287 0.019  15.360  0.000
## 50       math ~1                1         0.000 0.000      NA     NA
## 51 electronic ~1                1         0.000 0.000      NA     NA
## 52      speed ~1                1         0.000 0.000      NA     NA
## 53          g ~1                1         0.000 0.000      NA     NA
## 54     verbal =~       ssgs     2  .p1.   0.899 0.004 218.079  0.000
## 55     verbal =~       sswk     2  .p2.   0.897 0.004 208.103  0.000
## 56     verbal =~       sspc     2  .p3.   0.877 0.005 177.429  0.000
## 57     verbal =~       ssei     2  .p4.   0.500 0.014  34.781  0.000
## 58       math =~       ssar     2  .p5.   0.900 0.005 198.410  0.000
## 59       math =~       ssmk     2  .p6.   0.658 0.013  51.693  0.000
## 60       math =~       ssmc     2  .p7.   0.512 0.013  39.745  0.000
## 61       math =~       ssao     2  .p8.   0.730 0.008  91.905  0.000
## 62 electronic =~       ssai     2  .p9.   0.747 0.009  79.833  0.000
## 63 electronic =~       sssi     2 .p10.   0.839 0.008 104.106  0.000
## 64 electronic =~       ssmc     2 .p11.   0.423 0.014  31.250  0.000
## 65 electronic =~       ssei     2         0.440 0.015  29.091  0.000
## 66      speed =~       ssno     2 .p13.   0.823 0.009  89.137  0.000
## 67      speed =~       sscs     2 .p14.   0.752 0.010  77.565  0.000
## 68      speed =~       ssmk     2 .p15.   0.319 0.013  24.400  0.000
## 69          g =~     verbal     2 .p16.   0.980 0.006 174.237  0.000
## 70          g =~       math     2 .p17.   0.939 0.005 175.805  0.000
## 71          g =~ electronic     2 .p18.   0.684 0.013  51.669  0.000
## 72          g =~      speed     2 .p19.   0.743 0.012  59.598  0.000
## 73       math ~~       math     2         0.118 0.010  11.705  0.000
## 74      speed ~~      speed     2         0.449 0.019  24.242  0.000
## 75     verbal ~1                2         0.000 0.000      NA     NA
## 76       ssgs ~~       ssgs     2         0.192 0.007  25.869  0.000
## 77       sswk ~~       sswk     2         0.195 0.008  25.226  0.000
## 78       sspc ~~       sspc     2         0.231 0.009  26.624  0.000
## 79       ssei ~~       ssei     2         0.260 0.009  27.615  0.000
## 80       ssar ~~       ssar     2         0.190 0.008  23.273  0.000
## 81       ssmk ~~       ssmk     2         0.172 0.007  25.684  0.000
## 82       ssmc ~~       ssmc     2         0.282 0.010  29.506  0.000
## 83       ssao ~~       ssao     2         0.467 0.012  40.186  0.000
## 84       ssai ~~       ssai     2         0.441 0.014  31.545  0.000
## 85       sssi ~~       sssi     2         0.295 0.014  21.828  0.000
## 86       ssno ~~       ssno     2         0.323 0.015  21.269  0.000
## 87       sscs ~~       sscs     2         0.435 0.015  29.831  0.000
## 88     verbal ~~     verbal     2         0.039 0.011   3.539  0.000
## 89 electronic ~~ electronic     2         0.532 0.018  29.360  0.000
## 90          g ~~          g     2         1.000 0.000      NA     NA
##    ci.lower ci.upper
## 1     0.881    0.898
## 2     0.879    0.897
## 3     0.858    0.880
## 4     0.562    0.637
## 5     0.893    0.911
## 6     0.619    0.668
## 7     0.500    0.551
## 8     0.717    0.750
## 9     0.677    0.719
## 10    0.724    0.764
## 11    0.312    0.361
## 12    0.176    0.263
## 13    0.824    0.857
## 14    0.737    0.775
## 15    0.299    0.352
## 16    0.971    0.992
## 17    0.912    0.938
## 18    0.848    0.889
## 19    0.676    0.729
## 20    0.120    0.168
## 21    0.470    0.544
## 22    0.000    0.000
## 23    0.193    0.224
## 24    0.195    0.227
## 25    0.226    0.265
## 26    0.345    0.390
## 27    0.171    0.202
## 28    0.193    0.223
## 29    0.306    0.347
## 30    0.438    0.487
## 31    0.484    0.543
## 32    0.417    0.476
## 33    0.265    0.321
## 34    0.399    0.457
## 35    0.015    0.057
## 36    0.209    0.282
## 37    1.000    1.000
## 38    0.140    0.209
## 39    0.124    0.195
## 40    0.273    0.349
## 41   -0.052    0.019
## 42    0.146    0.219
## 43    0.207    0.281
## 44    0.011    0.079
## 45    0.118    0.186
## 46   -0.174   -0.109
## 47   -0.166   -0.098
## 48    0.145    0.220
## 49    0.250    0.323
## 50    0.000    0.000
## 51    0.000    0.000
## 52    0.000    0.000
## 53    0.000    0.000
## 54    0.891    0.907
## 55    0.889    0.906
## 56    0.867    0.887
## 57    0.472    0.528
## 58    0.891    0.909
## 59    0.633    0.683
## 60    0.486    0.537
## 61    0.715    0.746
## 62    0.729    0.766
## 63    0.824    0.855
## 64    0.396    0.449
## 65    0.411    0.470
## 66    0.805    0.841
## 67    0.733    0.771
## 68    0.294    0.345
## 69    0.969    0.991
## 70    0.929    0.950
## 71    0.658    0.710
## 72    0.718    0.767
## 73    0.098    0.137
## 74    0.412    0.485
## 75    0.000    0.000
## 76    0.177    0.206
## 77    0.180    0.210
## 78    0.214    0.248
## 79    0.242    0.279
## 80    0.174    0.206
## 81    0.159    0.185
## 82    0.263    0.300
## 83    0.444    0.489
## 84    0.414    0.469
## 85    0.269    0.322
## 86    0.293    0.353
## 87    0.406    0.463
## 88    0.017    0.061
## 89    0.496    0.567
## 90    1.000    1.000
##  [ reached 'max' / getOption("max.print") -- omitted 16 rows ]
weak2<-cfa(hof.weak2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
fitMeasures(weak2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2789.755    117.000      0.000      0.960      0.080      0.044 
##        aic        bic 
## 171593.507 172026.120
Mc(weak2)
## [1] 0.8282548
tests<-lavTestLRT(configural, metric2, scalar2, latent2, weak)
Td=tests[2:5,"Chisq diff"]
Td
## [1] 9.261594e+01 1.419000e+02 5.984379e+00 1.517153e-04
dfd=tests[2:5,"Df diff"]
dfd
## [1] 13  5  2  1
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3503+ 3590 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.04156134 0.08787756 0.02370427        NaN
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.03382688 0.04972355
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.07573808 0.10062511
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]         NA 0.04664614
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1] NA NA
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.044     0.000     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.861     0.059
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.950     0.892     0.027     0.003     0.000     0.000
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.010     0.008     0.000     0.000     0.000     0.000
tests<-lavTestLRT(configural, metric2, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1]  92.61594 141.90002 359.18499
dfd=tests[2:4,"Df diff"]
dfd
## [1] 13  5  5
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3503+ 3590 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04156134 0.08787756 0.14134854
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.07573808 0.10062511
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.1291476 0.1539235
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.861     0.059
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric2, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1]  92.61594 141.90002 199.94352
dfd=tests[2:4,"Df diff"]
dfd
## [1] 13  5 12
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3503+ 3590 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04156134 0.08787756 0.06646367
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.03382688 0.04972355
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.07573808 0.10062511
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.05853411 0.07471461
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.044     0.000     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.861     0.059
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.911     0.003     0.000
tests<-lavTestLRT(configural, metric2, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]  92.61594 612.64546
dfd=tests[2:3,"Df diff"]
dfd
## [1] 13  7
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3503+ 3590 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04156134 0.15621454
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.03382688 0.04972355
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1458650 0.1667971
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.044     0.000     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric)
Td=tests[2,"Chisq diff"]
Td
## [1] 194.7295
dfd=tests[2,"Df diff"]
dfd
## [1] 14
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3503+ 3590 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.0603409
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.05297571 0.06800495
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.989     0.544     0.000     0.000
hof.age<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
math~~1*math
speed~~1*speed
verbal~0*1
g ~agec
'

hof.ageq<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
math~~1*math
speed~~1*speed
verbal~0*1
g ~ c(a,a)*agec
'

hof.age2<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
math~~1*math
speed~~1*speed
verbal~0*1
g ~agec + agec2
'

hof.age2q<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed 
math~~1*math
speed~~1*speed
verbal~0*1
g ~c(a,a)*agec + c(b,b)*agec2
'

sem.age<-sem(hof.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   3851.654    137.000      0.000      0.947      0.087      0.047 
##       ecvi        aic        bic 
##      0.562 170705.414 171165.494
Mc(sem.age)
## [1] 0.7695953
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 113 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        95
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3851.654    2939.393
##   Degrees of freedom                               137         137
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.310
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1503.731    1147.573
##     0                                         2347.923    1791.820
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.166    0.020    8.332    0.000    0.127
##     sswk    (.p2.)    0.166    0.020    8.288    0.000    0.126
##     sspc    (.p3.)    0.161    0.019    8.303    0.000    0.123
##     ssei    (.p4.)    0.099    0.012    8.111    0.000    0.075
##   math =~                                                      
##     ssar    (.p5.)    0.312    0.012   26.511    0.000    0.289
##     ssmk    (.p6.)    0.230    0.010   23.264    0.000    0.210
##     ssmc    (.p7.)    0.177    0.008   23.466    0.000    0.162
##     ssao    (.p8.)    0.261    0.010   25.416    0.000    0.241
##   electronic =~                                                
##     ssai    (.p9.)    0.278    0.013   21.311    0.000    0.252
##     sssi    (.10.)    0.302    0.014   21.170    0.000    0.274
##     ssmc    (.11.)    0.148    0.008   18.030    0.000    0.132
##     ssei              0.088    0.010    8.560    0.000    0.068
##   speed =~                                                     
##     ssno    (.13.)    0.569    0.015   37.671    0.000    0.540
##     sscs    (.14.)    0.503    0.013   39.835    0.000    0.479
##     ssmk    (.15.)    0.213    0.009   24.495    0.000    0.196
##   g =~                                                         
##     verbal  (.16.)    4.543    0.569    7.990    0.000    3.429
##     math    (.17.)    2.296    0.104   22.154    0.000    2.093
##     elctrnc (.18.)    1.658    0.083   19.934    0.000    1.495
##     speed   (.19.)    0.940    0.035   26.571    0.000    0.871
##  ci.upper   Std.lv  Std.all
##                            
##     0.205    0.821    0.889
##     0.205    0.820    0.889
##     0.199    0.799    0.867
##     0.123    0.492    0.601
##                            
##     0.335    0.827    0.901
##     0.249    0.608    0.647
##     0.192    0.468    0.524
##     0.281    0.691    0.733
##                            
##     0.304    0.565    0.699
##     0.330    0.614    0.744
##     0.164    0.301    0.337
##     0.108    0.179    0.219
##                            
##     0.599    0.807    0.840
##     0.528    0.713    0.756
##     0.230    0.302    0.322
##                            
##     5.658    0.979    0.979
##     2.500    0.926    0.926
##     1.821    0.871    0.871
##     1.009    0.708    0.708
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.259    0.014   18.480    0.000    0.232
##  ci.upper   Std.lv  Std.all
##                            
##     0.287    0.243    0.349
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.40.)    0.168    0.015   10.885    0.000    0.138
##    .sswk    (.41.)    0.155    0.016    9.833    0.000    0.124
##    .sspc              0.294    0.016   17.843    0.000    0.261
##    .ssei    (.43.)   -0.007    0.014   -0.522    0.602   -0.035
##    .ssar    (.44.)    0.174    0.016   10.874    0.000    0.143
##    .ssmk    (.45.)    0.236    0.016   14.547    0.000    0.204
##    .ssmc    (.46.)    0.046    0.015    3.134    0.002    0.017
##    .ssao    (.47.)    0.149    0.016    9.373    0.000    0.118
##    .ssai    (.48.)   -0.110    0.013   -8.547    0.000   -0.136
##    .sssi    (.49.)   -0.104    0.014   -7.647    0.000   -0.131
##    .ssno              0.180    0.017   10.385    0.000    0.146
##    .sscs    (.51.)    0.275    0.016   16.713    0.000    0.243
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.199    0.168    0.182
##     0.185    0.155    0.167
##     0.326    0.294    0.319
##     0.020   -0.007   -0.009
##     0.206    0.174    0.190
##     0.267    0.236    0.251
##     0.075    0.046    0.052
##     0.180    0.149    0.158
##    -0.085   -0.110   -0.136
##    -0.077   -0.104   -0.126
##     0.214    0.180    0.188
##     0.308    0.275    0.292
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .math              1.000                               1.000
##    .speed             1.000                               1.000
##    .ssgs              0.179    0.007   27.112    0.000    0.166
##    .sswk              0.178    0.007   26.150    0.000    0.165
##    .sspc              0.210    0.009   24.377    0.000    0.193
##    .ssei              0.245    0.008   29.741    0.000    0.229
##    .ssar              0.159    0.007   22.637    0.000    0.145
##    .ssmk              0.181    0.006   28.165    0.000    0.169
##    .ssmc              0.262    0.009   27.715    0.000    0.243
##    .ssao              0.411    0.013   31.596    0.000    0.386
##    .ssai              0.334    0.012   27.760    0.000    0.311
##    .sssi              0.304    0.012   25.731    0.000    0.281
##    .ssno              0.273    0.015   18.641    0.000    0.244
##    .sscs              0.380    0.016   23.756    0.000    0.349
##    .verbal            1.000                               1.000
##    .electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.143    0.143
##     1.000    0.498    0.498
##     0.191    0.179    0.209
##     0.191    0.178    0.209
##     0.227    0.210    0.248
##     0.261    0.245    0.366
##     0.172    0.159    0.189
##     0.194    0.181    0.205
##     0.280    0.262    0.328
##     0.437    0.411    0.463
##     0.358    0.334    0.511
##     0.328    0.304    0.447
##     0.301    0.273    0.295
##     0.412    0.380    0.428
##     1.000    0.041    0.041
##     1.000    0.242    0.242
##     1.000    0.878    0.878
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.166    0.020    8.332    0.000    0.127
##     sswk    (.p2.)    0.166    0.020    8.288    0.000    0.126
##     sspc    (.p3.)    0.161    0.019    8.303    0.000    0.123
##     ssei    (.p4.)    0.099    0.012    8.111    0.000    0.075
##   math =~                                                      
##     ssar    (.p5.)    0.312    0.012   26.511    0.000    0.289
##     ssmk    (.p6.)    0.230    0.010   23.264    0.000    0.210
##     ssmc    (.p7.)    0.177    0.008   23.466    0.000    0.162
##     ssao    (.p8.)    0.261    0.010   25.416    0.000    0.241
##   electronic =~                                                
##     ssai    (.p9.)    0.278    0.013   21.311    0.000    0.252
##     sssi    (.10.)    0.302    0.014   21.170    0.000    0.274
##     ssmc    (.11.)    0.148    0.008   18.030    0.000    0.132
##     ssei              0.168    0.010   16.842    0.000    0.148
##   speed =~                                                     
##     ssno    (.13.)    0.569    0.015   37.671    0.000    0.540
##     sscs    (.14.)    0.503    0.013   39.835    0.000    0.479
##     ssmk    (.15.)    0.213    0.009   24.495    0.000    0.196
##   g =~                                                         
##     verbal  (.16.)    4.543    0.569    7.990    0.000    3.429
##     math    (.17.)    2.296    0.104   22.154    0.000    2.093
##     elctrnc (.18.)    1.658    0.083   19.934    0.000    1.495
##     speed   (.19.)    0.940    0.035   26.571    0.000    0.871
##  ci.upper   Std.lv  Std.all
##                            
##     0.205    0.926    0.899
##     0.205    0.925    0.899
##     0.199    0.900    0.876
##     0.123    0.554    0.502
##                            
##     0.335    0.915    0.899
##     0.249    0.673    0.661
##     0.192    0.518    0.510
##     0.281    0.765    0.730
##                            
##     0.304    0.804    0.747
##     0.330    0.873    0.838
##     0.164    0.429    0.422
##     0.187    0.485    0.439
##                            
##     0.599    0.858    0.822
##     0.528    0.759    0.752
##     0.230    0.322    0.316
##                            
##     5.658    0.976    0.976
##     2.500    0.940    0.940
##     1.821    0.688    0.688
##     1.009    0.748    0.748
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.297    0.016   18.921    0.000    0.266
##  ci.upper   Std.lv  Std.all
##                            
##     0.327    0.247    0.355
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.40.)    0.168    0.015   10.885    0.000    0.138
##    .sswk    (.41.)    0.155    0.016    9.833    0.000    0.124
##    .sspc             -0.022    0.018   -1.176    0.240   -0.058
##    .ssei    (.43.)   -0.007    0.014   -0.522    0.602   -0.035
##    .ssar    (.44.)    0.174    0.016   10.874    0.000    0.143
##    .ssmk    (.45.)    0.236    0.016   14.547    0.000    0.204
##    .ssmc    (.46.)    0.046    0.015    3.134    0.002    0.017
##    .ssao    (.47.)    0.149    0.016    9.373    0.000    0.118
##    .ssai    (.48.)   -0.110    0.013   -8.547    0.000   -0.136
##    .sssi    (.49.)   -0.104    0.014   -7.647    0.000   -0.131
##    .ssno              0.399    0.025   16.253    0.000    0.350
##    .sscs    (.51.)    0.275    0.016   16.713    0.000    0.243
##    .math             -0.201    0.051   -3.953    0.000   -0.301
##    .elctrnc           1.729    0.102   17.019    0.000    1.530
##    .speed            -0.784    0.045  -17.487    0.000   -0.872
##    .g                 0.106    0.030    3.556    0.000    0.048
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.199    0.168    0.163
##     0.185    0.155    0.150
##     0.014   -0.022   -0.021
##     0.020   -0.007   -0.007
##     0.206    0.174    0.171
##     0.267    0.236    0.231
##     0.075    0.046    0.046
##     0.180    0.149    0.142
##    -0.085   -0.110   -0.102
##    -0.077   -0.104   -0.100
##     0.447    0.399    0.382
##     0.308    0.275    0.273
##    -0.101   -0.069   -0.069
##     1.928    0.598    0.598
##    -0.696   -0.520   -0.520
##     0.165    0.088    0.088
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .math              1.000                               1.000
##    .speed             1.000                               1.000
##    .ssgs              0.203    0.007   28.054    0.000    0.189
##    .sswk              0.204    0.008   25.414    0.000    0.188
##    .sspc              0.246    0.009   26.268    0.000    0.228
##    .ssei              0.317    0.012   27.364    0.000    0.294
##    .ssar              0.199    0.009   23.166    0.000    0.182
##    .ssmk              0.176    0.007   25.698    0.000    0.162
##    .ssmc              0.292    0.010   27.862    0.000    0.271
##    .ssao              0.512    0.015   34.348    0.000    0.483
##    .ssai              0.511    0.019   27.045    0.000    0.474
##    .sssi              0.322    0.015   20.984    0.000    0.292
##    .ssno              0.354    0.019   19.089    0.000    0.318
##    .sscs              0.442    0.019   23.203    0.000    0.404
##    .verbal            1.450    0.373    3.889    0.000    0.719
##    .electronic        4.412    0.466    9.475    0.000    3.499
##    .g                 1.257    0.047   26.958    0.000    1.166
##  ci.upper   Std.lv  Std.all
##     1.000    0.116    0.116
##     1.000    0.440    0.440
##     0.218    0.203    0.192
##     0.220    0.204    0.193
##     0.264    0.246    0.233
##     0.340    0.317    0.260
##     0.215    0.199    0.192
##     0.189    0.176    0.169
##     0.312    0.292    0.283
##     0.541    0.512    0.467
##     0.548    0.511    0.442
##     0.352    0.322    0.297
##     0.390    0.354    0.325
##     0.479    0.442    0.434
##     2.180    0.047    0.047
##     5.324    0.527    0.527
##     1.349    0.874    0.874
sem.ageq<-sem(hof.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   3855.846    138.000      0.000      0.946      0.087      0.050 
##       ecvi        aic        bic 
##      0.562 170707.606 171160.819
Mc(sem.ageq)
## [1] 0.7694222
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 114 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        95
##   Number of equality constraints                    29
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3855.846    2944.471
##   Degrees of freedom                               138         138
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.310
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1505.307    1149.510
##     0                                         2350.539    1794.961
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.166    0.020    8.335    0.000    0.127
##     sswk    (.p2.)    0.166    0.020    8.290    0.000    0.127
##     sspc    (.p3.)    0.161    0.019    8.305    0.000    0.123
##     ssei    (.p4.)    0.099    0.012    8.114    0.000    0.075
##   math =~                                                      
##     ssar    (.p5.)    0.312    0.012   26.485    0.000    0.289
##     ssmk    (.p6.)    0.230    0.010   23.242    0.000    0.210
##     ssmc    (.p7.)    0.177    0.008   23.444    0.000    0.162
##     ssao    (.p8.)    0.261    0.010   25.386    0.000    0.241
##   electronic =~                                                
##     ssai    (.p9.)    0.278    0.013   21.312    0.000    0.252
##     sssi    (.10.)    0.302    0.014   21.170    0.000    0.274
##     ssmc    (.11.)    0.148    0.008   18.027    0.000    0.132
##     ssei              0.088    0.010    8.545    0.000    0.068
##   speed =~                                                     
##     ssno    (.13.)    0.569    0.015   37.650    0.000    0.540
##     sscs    (.14.)    0.503    0.013   39.817    0.000    0.479
##     ssmk    (.15.)    0.213    0.009   24.496    0.000    0.196
##   g =~                                                         
##     verbal  (.16.)    4.545    0.569    7.993    0.000    3.431
##     math    (.17.)    2.296    0.104   22.117    0.000    2.092
##     elctrnc (.18.)    1.658    0.083   19.930    0.000    1.495
##     speed   (.19.)    0.940    0.035   26.535    0.000    0.871
##  ci.upper   Std.lv  Std.all
##                            
##     0.205    0.828    0.891
##     0.205    0.827    0.891
##     0.199    0.805    0.869
##     0.123    0.496    0.603
##                            
##     0.336    0.833    0.902
##     0.249    0.613    0.648
##     0.192    0.471    0.525
##     0.281    0.696    0.735
##                            
##     0.304    0.569    0.701
##     0.330    0.617    0.746
##     0.164    0.303    0.337
##     0.108    0.180    0.219
##                            
##     0.599    0.810    0.841
##     0.528    0.716    0.758
##     0.231    0.304    0.321
##                            
##     5.660    0.980    0.980
##     2.499    0.927    0.927
##     1.821    0.872    0.872
##     1.010    0.711    0.711
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.276    0.011   25.405    0.000    0.255
##  ci.upper   Std.lv  Std.all
##                            
##     0.297    0.256    0.369
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.40.)    0.169    0.015   10.929    0.000    0.139
##    .sswk    (.41.)    0.155    0.016    9.885    0.000    0.124
##    .sspc              0.294    0.016   17.862    0.000    0.262
##    .ssei    (.43.)   -0.007    0.014   -0.495    0.621   -0.034
##    .ssar    (.44.)    0.175    0.016   10.901    0.000    0.143
##    .ssmk    (.45.)    0.236    0.016   14.621    0.000    0.205
##    .ssmc    (.46.)    0.047    0.015    3.162    0.002    0.018
##    .ssao    (.47.)    0.150    0.016    9.396    0.000    0.118
##    .ssai    (.48.)   -0.110    0.013   -8.534    0.000   -0.135
##    .sssi    (.49.)   -0.104    0.014   -7.625    0.000   -0.130
##    .ssno              0.181    0.017   10.421    0.000    0.147
##    .sscs    (.51.)    0.276    0.016   16.775    0.000    0.243
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.199    0.169    0.182
##     0.186    0.155    0.167
##     0.326    0.294    0.318
##     0.021   -0.007   -0.008
##     0.206    0.175    0.189
##     0.268    0.236    0.250
##     0.076    0.047    0.052
##     0.181    0.150    0.158
##    -0.085   -0.110   -0.136
##    -0.077   -0.104   -0.125
##     0.215    0.181    0.188
##     0.308    0.276    0.292
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .math              1.000                               1.000
##    .speed             1.000                               1.000
##    .ssgs              0.179    0.007   27.127    0.000    0.166
##    .sswk              0.178    0.007   26.150    0.000    0.165
##    .sspc              0.210    0.009   24.370    0.000    0.193
##    .ssei              0.245    0.008   29.745    0.000    0.229
##    .ssar              0.159    0.007   22.646    0.000    0.145
##    .ssmk              0.181    0.006   28.173    0.000    0.169
##    .ssmc              0.262    0.009   27.715    0.000    0.243
##    .ssao              0.411    0.013   31.591    0.000    0.386
##    .ssai              0.334    0.012   27.756    0.000    0.311
##    .sssi              0.304    0.012   25.732    0.000    0.281
##    .ssno              0.273    0.015   18.645    0.000    0.244
##    .sscs              0.380    0.016   23.755    0.000    0.349
##    .verbal            1.000                               1.000
##    .electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.141    0.141
##     1.000    0.494    0.494
##     0.191    0.179    0.207
##     0.191    0.178    0.206
##     0.227    0.210    0.245
##     0.261    0.245    0.363
##     0.173    0.159    0.186
##     0.194    0.181    0.203
##     0.280    0.262    0.325
##     0.437    0.411    0.459
##     0.358    0.334    0.508
##     0.328    0.304    0.444
##     0.301    0.273    0.293
##     0.412    0.380    0.426
##     1.000    0.040    0.040
##     1.000    0.239    0.239
##     1.000    0.864    0.864
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.166    0.020    8.335    0.000    0.127
##     sswk    (.p2.)    0.166    0.020    8.290    0.000    0.127
##     sspc    (.p3.)    0.161    0.019    8.305    0.000    0.123
##     ssei    (.p4.)    0.099    0.012    8.114    0.000    0.075
##   math =~                                                      
##     ssar    (.p5.)    0.312    0.012   26.485    0.000    0.289
##     ssmk    (.p6.)    0.230    0.010   23.242    0.000    0.210
##     ssmc    (.p7.)    0.177    0.008   23.444    0.000    0.162
##     ssao    (.p8.)    0.261    0.010   25.386    0.000    0.241
##   electronic =~                                                
##     ssai    (.p9.)    0.278    0.013   21.312    0.000    0.252
##     sssi    (.10.)    0.302    0.014   21.170    0.000    0.274
##     ssmc    (.11.)    0.148    0.008   18.027    0.000    0.132
##     ssei              0.168    0.010   16.844    0.000    0.148
##   speed =~                                                     
##     ssno    (.13.)    0.569    0.015   37.650    0.000    0.540
##     sscs    (.14.)    0.503    0.013   39.817    0.000    0.479
##     ssmk    (.15.)    0.213    0.009   24.496    0.000    0.196
##   g =~                                                         
##     verbal  (.16.)    4.545    0.569    7.993    0.000    3.431
##     math    (.17.)    2.296    0.104   22.117    0.000    2.092
##     elctrnc (.18.)    1.658    0.083   19.930    0.000    1.495
##     speed   (.19.)    0.940    0.035   26.535    0.000    0.871
##  ci.upper   Std.lv  Std.all
##                            
##     0.205    0.918    0.898
##     0.205    0.917    0.897
##     0.199    0.893    0.874
##     0.123    0.550    0.501
##                            
##     0.336    0.909    0.898
##     0.249    0.669    0.660
##     0.192    0.514    0.509
##     0.281    0.759    0.728
##                            
##     0.304    0.801    0.746
##     0.330    0.870    0.837
##     0.164    0.427    0.423
##     0.187    0.483    0.439
##                            
##     0.599    0.854    0.821
##     0.528    0.755    0.751
##     0.231    0.320    0.316
##                            
##     5.660    0.976    0.976
##     2.499    0.939    0.939
##     1.821    0.684    0.684
##     1.010    0.745    0.745
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.276    0.011   25.405    0.000    0.255
##  ci.upper   Std.lv  Std.all
##                            
##     0.297    0.232    0.333
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.40.)    0.169    0.015   10.929    0.000    0.139
##    .sswk    (.41.)    0.155    0.016    9.885    0.000    0.124
##    .sspc             -0.021    0.018   -1.149    0.251   -0.057
##    .ssei    (.43.)   -0.007    0.014   -0.495    0.621   -0.034
##    .ssar    (.44.)    0.175    0.016   10.901    0.000    0.143
##    .ssmk    (.45.)    0.236    0.016   14.621    0.000    0.205
##    .ssmc    (.46.)    0.047    0.015    3.162    0.002    0.018
##    .ssao    (.47.)    0.150    0.016    9.396    0.000    0.118
##    .ssai    (.48.)   -0.110    0.013   -8.534    0.000   -0.135
##    .sssi    (.49.)   -0.104    0.014   -7.625    0.000   -0.130
##    .ssno              0.399    0.024   16.300    0.000    0.351
##    .sscs    (.51.)    0.276    0.016   16.775    0.000    0.243
##    .math             -0.201    0.051   -3.950    0.000   -0.301
##    .elctrnc           1.729    0.102   17.019    0.000    1.530
##    .speed            -0.784    0.045  -17.477    0.000   -0.872
##    .g                 0.104    0.030    3.501    0.000    0.046
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.199    0.169    0.165
##     0.186    0.155    0.152
##     0.015   -0.021   -0.021
##     0.021   -0.007   -0.006
##     0.206    0.175    0.173
##     0.268    0.236    0.233
##     0.076    0.047    0.046
##     0.181    0.150    0.143
##    -0.085   -0.110   -0.102
##    -0.077   -0.104   -0.100
##     0.447    0.399    0.383
##     0.308    0.276    0.274
##    -0.101   -0.069   -0.069
##     1.929    0.600    0.600
##    -0.696   -0.522   -0.522
##     0.162    0.087    0.087
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .math              1.000                               1.000
##    .speed             1.000                               1.000
##    .ssgs              0.203    0.007   28.047    0.000    0.189
##    .sswk              0.204    0.008   25.413    0.000    0.188
##    .sspc              0.246    0.009   26.256    0.000    0.228
##    .ssei              0.317    0.012   27.359    0.000    0.294
##    .ssar              0.198    0.009   23.149    0.000    0.182
##    .ssmk              0.176    0.007   25.731    0.000    0.162
##    .ssmc              0.292    0.010   27.864    0.000    0.271
##    .ssao              0.512    0.015   34.353    0.000    0.483
##    .ssai              0.511    0.019   27.047    0.000    0.474
##    .sssi              0.322    0.015   20.983    0.000    0.292
##    .ssno              0.354    0.019   19.087    0.000    0.318
##    .sscs              0.442    0.019   23.200    0.000    0.404
##    .verbal            1.435    0.371    3.873    0.000    0.709
##    .electronic        4.418    0.466    9.474    0.000    3.504
##    .g                 1.258    0.047   26.953    0.000    1.166
##  ci.upper   Std.lv  Std.all
##     1.000    0.118    0.118
##     1.000    0.444    0.444
##     0.218    0.203    0.194
##     0.220    0.204    0.195
##     0.264    0.246    0.236
##     0.340    0.317    0.262
##     0.215    0.198    0.194
##     0.189    0.176    0.172
##     0.312    0.292    0.286
##     0.541    0.512    0.470
##     0.548    0.511    0.443
##     0.352    0.322    0.299
##     0.390    0.354    0.327
##     0.479    0.442    0.437
##     2.161    0.047    0.047
##     5.331    0.532    0.532
##     1.349    0.889    0.889
sem.age2<-sem(hof.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   3963.875    159.000      0.000      0.945      0.082      0.045 
##       ecvi        aic        bic 
##      0.578 170682.731 171156.544
Mc(sem.age2)
## [1] 0.7647157
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 118 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        97
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3963.875    3033.688
##   Degrees of freedom                               159         159
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.307
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1578.656    1208.199
##     0                                         2385.219    1825.489
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.168    0.020    8.576    0.000    0.130
##     sswk    (.p2.)    0.168    0.020    8.528    0.000    0.129
##     sspc    (.p3.)    0.163    0.019    8.543    0.000    0.126
##     ssei    (.p4.)    0.100    0.012    8.325    0.000    0.076
##   math =~                                                      
##     ssar    (.p5.)    0.311    0.012   26.339    0.000    0.288
##     ssmk    (.p6.)    0.229    0.010   23.175    0.000    0.210
##     ssmc    (.p7.)    0.176    0.008   23.386    0.000    0.161
##     ssao    (.p8.)    0.260    0.010   25.276    0.000    0.240
##   electronic =~                                                
##     ssai    (.p9.)    0.278    0.013   21.341    0.000    0.253
##     sssi    (.10.)    0.302    0.014   21.201    0.000    0.274
##     ssmc    (.11.)    0.148    0.008   18.061    0.000    0.132
##     ssei              0.090    0.010    8.871    0.000    0.070
##   speed =~                                                     
##     ssno    (.13.)    0.569    0.015   37.640    0.000    0.539
##     sscs    (.14.)    0.503    0.013   39.768    0.000    0.478
##     ssmk    (.15.)    0.213    0.009   24.447    0.000    0.196
##   g =~                                                         
##     verbal  (.16.)    4.465    0.544    8.213    0.000    3.400
##     math    (.17.)    2.300    0.104   22.056    0.000    2.095
##     elctrnc (.18.)    1.651    0.083   19.943    0.000    1.488
##     speed   (.19.)    0.939    0.035   26.588    0.000    0.869
##  ci.upper   Std.lv  Std.all
##                            
##     0.207    0.821    0.889
##     0.206    0.820    0.889
##     0.201    0.799    0.867
##     0.123    0.488    0.597
##                            
##     0.334    0.826    0.901
##     0.248    0.609    0.647
##     0.191    0.468    0.523
##     0.280    0.691    0.733
##                            
##     0.304    0.565    0.699
##     0.330    0.614    0.744
##     0.164    0.301    0.337
##     0.110    0.183    0.224
##                            
##     0.598    0.807    0.839
##     0.528    0.713    0.756
##     0.230    0.302    0.321
##                            
##     5.531    0.979    0.979
##     2.504    0.927    0.927
##     1.813    0.870    0.870
##     1.008    0.709    0.709
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.256    0.014   18.028    0.000    0.228
##     agec2            -0.044    0.010   -4.268    0.000   -0.065
##  ci.upper   Std.lv  Std.all
##                            
##     0.283    0.239    0.344
##    -0.024   -0.041   -0.077
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.43.)    0.235    0.022   10.777    0.000    0.193
##    .sswk    (.44.)    0.221    0.022   10.020    0.000    0.178
##    .sspc              0.359    0.022   16.077    0.000    0.316
##    .ssei    (.46.)    0.049    0.019    2.554    0.011    0.011
##    .ssar    (.47.)    0.239    0.022   11.043    0.000    0.196
##    .ssmk    (.48.)    0.301    0.022   13.513    0.000    0.257
##    .ssmc    (.49.)    0.104    0.020    5.270    0.000    0.066
##    .ssao    (.50.)    0.203    0.020    9.967    0.000    0.163
##    .ssai    (.51.)   -0.070    0.016   -4.382    0.000   -0.101
##    .sssi    (.52.)   -0.060    0.017   -3.558    0.000   -0.093
##    .ssno              0.228    0.021   11.070    0.000    0.188
##    .sscs    (.54.)    0.318    0.019   16.494    0.000    0.280
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.278    0.235    0.255
##     0.265    0.221    0.240
##     0.403    0.359    0.390
##     0.086    0.049    0.060
##     0.281    0.239    0.260
##     0.345    0.301    0.320
##     0.143    0.104    0.117
##     0.243    0.203    0.216
##    -0.039   -0.070   -0.086
##    -0.027   -0.060   -0.073
##     0.269    0.228    0.238
##     0.356    0.318    0.337
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .math              1.000                               1.000
##    .speed             1.000                               1.000
##    .ssgs              0.178    0.007   27.096    0.000    0.166
##    .sswk              0.178    0.007   26.149    0.000    0.165
##    .sspc              0.210    0.009   24.411    0.000    0.193
##    .ssei              0.245    0.008   29.740    0.000    0.229
##    .ssar              0.159    0.007   22.681    0.000    0.145
##    .ssmk              0.181    0.006   28.139    0.000    0.169
##    .ssmc              0.262    0.009   27.708    0.000    0.243
##    .ssao              0.411    0.013   31.601    0.000    0.386
##    .ssai              0.334    0.012   27.750    0.000    0.311
##    .sssi              0.304    0.012   25.724    0.000    0.281
##    .ssno              0.273    0.015   18.650    0.000    0.244
##    .sscs              0.380    0.016   23.766    0.000    0.349
##    .verbal            1.000                               1.000
##    .electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.142    0.142
##     1.000    0.497    0.497
##     0.191    0.178    0.209
##     0.191    0.178    0.209
##     0.227    0.210    0.248
##     0.261    0.245    0.366
##     0.173    0.159    0.189
##     0.194    0.181    0.205
##     0.280    0.262    0.328
##     0.437    0.411    0.463
##     0.358    0.334    0.512
##     0.327    0.304    0.447
##     0.301    0.273    0.295
##     0.412    0.380    0.428
##     1.000    0.042    0.042
##     1.000    0.242    0.242
##     1.000    0.872    0.872
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.168    0.020    8.576    0.000    0.130
##     sswk    (.p2.)    0.168    0.020    8.528    0.000    0.129
##     sspc    (.p3.)    0.163    0.019    8.543    0.000    0.126
##     ssei    (.p4.)    0.100    0.012    8.325    0.000    0.076
##   math =~                                                      
##     ssar    (.p5.)    0.311    0.012   26.339    0.000    0.288
##     ssmk    (.p6.)    0.229    0.010   23.175    0.000    0.210
##     ssmc    (.p7.)    0.176    0.008   23.386    0.000    0.161
##     ssao    (.p8.)    0.260    0.010   25.276    0.000    0.240
##   electronic =~                                                
##     ssai    (.p9.)    0.278    0.013   21.341    0.000    0.253
##     sssi    (.10.)    0.302    0.014   21.201    0.000    0.274
##     ssmc    (.11.)    0.148    0.008   18.061    0.000    0.132
##     ssei              0.170    0.010   16.920    0.000    0.150
##   speed =~                                                     
##     ssno    (.13.)    0.569    0.015   37.640    0.000    0.539
##     sscs    (.14.)    0.503    0.013   39.768    0.000    0.478
##     ssmk    (.15.)    0.213    0.009   24.447    0.000    0.196
##   g =~                                                         
##     verbal  (.16.)    4.465    0.544    8.213    0.000    3.400
##     math    (.17.)    2.300    0.104   22.056    0.000    2.095
##     elctrnc (.18.)    1.651    0.083   19.943    0.000    1.488
##     speed   (.19.)    0.939    0.035   26.588    0.000    0.869
##  ci.upper   Std.lv  Std.all
##                            
##     0.207    0.926    0.899
##     0.206    0.925    0.898
##     0.201    0.900    0.876
##     0.123    0.550    0.498
##                            
##     0.334    0.915    0.899
##     0.248    0.674    0.661
##     0.191    0.518    0.510
##     0.280    0.765    0.730
##                            
##     0.304    0.803    0.747
##     0.330    0.872    0.838
##     0.164    0.428    0.422
##     0.190    0.491    0.444
##                            
##     0.598    0.858    0.822
##     0.528    0.759    0.752
##     0.230    0.321    0.315
##                            
##     5.531    0.976    0.976
##     2.504    0.940    0.940
##     1.813    0.688    0.688
##     1.008    0.749    0.749
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.295    0.016   18.510    0.000    0.264
##     agec2            -0.022    0.012   -1.903    0.057   -0.045
##  ci.upper   Std.lv  Std.all
##                            
##     0.326    0.245    0.353
##     0.001   -0.018   -0.034
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.43.)    0.235    0.022   10.777    0.000    0.193
##    .sswk    (.44.)    0.221    0.022   10.020    0.000    0.178
##    .sspc              0.043    0.024    1.812    0.070   -0.004
##    .ssei    (.46.)    0.049    0.019    2.554    0.011    0.011
##    .ssar    (.47.)    0.239    0.022   11.043    0.000    0.196
##    .ssmk    (.48.)    0.301    0.022   13.513    0.000    0.257
##    .ssmc    (.49.)    0.104    0.020    5.270    0.000    0.066
##    .ssao    (.50.)    0.203    0.020    9.967    0.000    0.163
##    .ssai    (.51.)   -0.070    0.016   -4.382    0.000   -0.101
##    .sssi    (.52.)   -0.060    0.017   -3.558    0.000   -0.093
##    .ssno              0.447    0.027   16.373    0.000    0.393
##    .sscs    (.54.)    0.318    0.019   16.494    0.000    0.280
##    .math             -0.207    0.051   -4.042    0.000   -0.307
##    .elctrnc           1.732    0.101   17.070    0.000    1.533
##    .speed            -0.786    0.045  -17.497    0.000   -0.874
##    .g                 0.064    0.043    1.492    0.136   -0.020
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.278    0.235    0.229
##     0.265    0.221    0.215
##     0.089    0.043    0.042
##     0.086    0.049    0.044
##     0.281    0.239    0.235
##     0.345    0.301    0.296
##     0.143    0.104    0.103
##     0.243    0.203    0.194
##    -0.039   -0.070   -0.065
##    -0.027   -0.060   -0.058
##     0.500    0.447    0.428
##     0.356    0.318    0.315
##    -0.107   -0.070   -0.070
##     1.931    0.600    0.600
##    -0.698   -0.521   -0.521
##     0.147    0.053    0.053
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .math              1.000                               1.000
##    .speed             1.000                               1.000
##    .ssgs              0.203    0.007   28.061    0.000    0.189
##    .sswk              0.204    0.008   25.400    0.000    0.188
##    .sspc              0.246    0.009   26.269    0.000    0.228
##    .ssei              0.316    0.012   27.248    0.000    0.293
##    .ssar              0.199    0.009   23.179    0.000    0.182
##    .ssmk              0.176    0.007   25.686    0.000    0.162
##    .ssmc              0.292    0.010   27.872    0.000    0.271
##    .ssao              0.512    0.015   34.350    0.000    0.483
##    .ssai              0.512    0.019   27.087    0.000    0.475
##    .sssi              0.323    0.015   21.053    0.000    0.293
##    .ssno              0.354    0.019   19.096    0.000    0.318
##    .sscs              0.442    0.019   23.211    0.000    0.405
##    .verbal            1.440    0.362    3.980    0.000    0.731
##    .electronic        4.389    0.463    9.481    0.000    3.482
##    .g                 1.264    0.047   26.889    0.000    1.172
##  ci.upper   Std.lv  Std.all
##     1.000    0.115    0.115
##     1.000    0.439    0.439
##     0.218    0.203    0.192
##     0.220    0.204    0.193
##     0.264    0.246    0.233
##     0.339    0.316    0.259
##     0.216    0.199    0.192
##     0.189    0.176    0.169
##     0.312    0.292    0.283
##     0.541    0.512    0.467
##     0.549    0.512    0.442
##     0.354    0.323    0.298
##     0.390    0.354    0.325
##     0.479    0.442    0.434
##     2.150    0.048    0.048
##     5.296    0.527    0.527
##     1.356    0.872    0.872
sem.age2q<-sem(hof.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   3970.492    161.000      0.000      0.945      0.082      0.047 
##       ecvi        aic        bic 
##      0.579 170685.347 171145.427
Mc(sem.age2q)
## [1] 0.7644668
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 114 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        97
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3970.492    3041.491
##   Degrees of freedom                               161         161
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.305
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1581.385    1211.378
##     0                                         2389.107    1830.112
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.168    0.020    8.569    0.000    0.130
##     sswk    (.p2.)    0.168    0.020    8.522    0.000    0.129
##     sspc    (.p3.)    0.163    0.019    8.536    0.000    0.126
##     ssei    (.p4.)    0.100    0.012    8.323    0.000    0.076
##   math =~                                                      
##     ssar    (.p5.)    0.311    0.012   26.321    0.000    0.288
##     ssmk    (.p6.)    0.229    0.010   23.159    0.000    0.210
##     ssmc    (.p7.)    0.176    0.008   23.366    0.000    0.161
##     ssao    (.p8.)    0.260    0.010   25.256    0.000    0.240
##   electronic =~                                                
##     ssai    (.p9.)    0.278    0.013   21.335    0.000    0.253
##     sssi    (.10.)    0.302    0.014   21.192    0.000    0.274
##     ssmc    (.11.)    0.148    0.008   18.051    0.000    0.132
##     ssei              0.089    0.010    8.783    0.000    0.070
##   speed =~                                                     
##     ssno    (.13.)    0.569    0.015   37.624    0.000    0.539
##     sscs    (.14.)    0.503    0.013   39.754    0.000    0.478
##     ssmk    (.15.)    0.213    0.009   24.450    0.000    0.196
##   g =~                                                         
##     verbal  (.16.)    4.471    0.545    8.208    0.000    3.403
##     math    (.17.)    2.300    0.104   22.029    0.000    2.095
##     elctrnc (.18.)    1.651    0.083   19.933    0.000    1.489
##     speed   (.19.)    0.939    0.035   26.558    0.000    0.870
##  ci.upper   Std.lv  Std.all
##                            
##     0.206    0.827    0.891
##     0.206    0.826    0.891
##     0.201    0.804    0.869
##     0.124    0.492    0.600
##                            
##     0.334    0.832    0.902
##     0.248    0.612    0.648
##     0.191    0.471    0.525
##     0.280    0.695    0.735
##                            
##     0.304    0.568    0.701
##     0.330    0.617    0.745
##     0.164    0.303    0.337
##     0.109    0.183    0.223
##                            
##     0.599    0.810    0.840
##     0.528    0.716    0.757
##     0.230    0.303    0.321
##                            
##     5.539    0.979    0.979
##     2.505    0.927    0.927
##     1.813    0.872    0.872
##     1.008    0.711    0.711
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.273    0.011   24.896    0.000    0.252
##     agec2      (b)   -0.034    0.008   -4.442    0.000   -0.050
##  ci.upper   Std.lv  Std.all
##                            
##     0.295    0.253    0.365
##    -0.019   -0.032   -0.060
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.43.)    0.221    0.019   11.454    0.000    0.183
##    .sswk    (.44.)    0.207    0.020   10.606    0.000    0.169
##    .sspc              0.345    0.020   17.276    0.000    0.306
##    .ssei    (.46.)    0.037    0.017    2.152    0.031    0.003
##    .ssar    (.47.)    0.225    0.019   11.622    0.000    0.187
##    .ssmk    (.48.)    0.287    0.020   14.493    0.000    0.248
##    .ssmc    (.49.)    0.092    0.018    5.175    0.000    0.057
##    .ssao    (.50.)    0.192    0.019   10.317    0.000    0.155
##    .ssai    (.51.)   -0.078    0.015   -5.352    0.000   -0.107
##    .sssi    (.52.)   -0.070    0.016   -4.479    0.000   -0.100
##    .ssno              0.218    0.019   11.315    0.000    0.180
##    .sscs    (.54.)    0.309    0.018   17.068    0.000    0.273
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.259    0.221    0.238
##     0.245    0.207    0.223
##     0.385    0.345    0.373
##     0.070    0.037    0.045
##     0.263    0.225    0.244
##     0.326    0.287    0.304
##     0.127    0.092    0.103
##     0.228    0.192    0.203
##    -0.050   -0.078   -0.097
##    -0.039   -0.070   -0.084
##     0.256    0.218    0.226
##     0.344    0.309    0.327
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .math              1.000                               1.000
##    .speed             1.000                               1.000
##    .ssgs              0.178    0.007   27.115    0.000    0.166
##    .sswk              0.178    0.007   26.148    0.000    0.165
##    .sspc              0.210    0.009   24.397    0.000    0.193
##    .ssei              0.245    0.008   29.744    0.000    0.229
##    .ssar              0.159    0.007   22.686    0.000    0.145
##    .ssmk              0.181    0.006   28.157    0.000    0.168
##    .ssmc              0.262    0.009   27.709    0.000    0.243
##    .ssao              0.411    0.013   31.597    0.000    0.386
##    .ssai              0.334    0.012   27.748    0.000    0.311
##    .sssi              0.304    0.012   25.726    0.000    0.281
##    .ssno              0.273    0.015   18.654    0.000    0.244
##    .sscs              0.380    0.016   23.764    0.000    0.349
##    .verbal            1.000                               1.000
##    .electronic        1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    0.140    0.140
##     1.000    0.494    0.494
##     0.191    0.178    0.207
##     0.191    0.178    0.207
##     0.227    0.210    0.245
##     0.261    0.245    0.363
##     0.173    0.159    0.187
##     0.194    0.181    0.203
##     0.280    0.262    0.325
##     0.437    0.411    0.460
##     0.358    0.334    0.509
##     0.328    0.304    0.444
##     0.301    0.273    0.294
##     0.412    0.380    0.426
##     1.000    0.041    0.041
##     1.000    0.240    0.240
##     1.000    0.860    0.860
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs    (.p1.)    0.168    0.020    8.569    0.000    0.130
##     sswk    (.p2.)    0.168    0.020    8.522    0.000    0.129
##     sspc    (.p3.)    0.163    0.019    8.536    0.000    0.126
##     ssei    (.p4.)    0.100    0.012    8.323    0.000    0.076
##   math =~                                                      
##     ssar    (.p5.)    0.311    0.012   26.321    0.000    0.288
##     ssmk    (.p6.)    0.229    0.010   23.159    0.000    0.210
##     ssmc    (.p7.)    0.176    0.008   23.366    0.000    0.161
##     ssao    (.p8.)    0.260    0.010   25.256    0.000    0.240
##   electronic =~                                                
##     ssai    (.p9.)    0.278    0.013   21.335    0.000    0.253
##     sssi    (.10.)    0.302    0.014   21.192    0.000    0.274
##     ssmc    (.11.)    0.148    0.008   18.051    0.000    0.132
##     ssei              0.170    0.010   16.913    0.000    0.150
##   speed =~                                                     
##     ssno    (.13.)    0.569    0.015   37.624    0.000    0.539
##     sscs    (.14.)    0.503    0.013   39.754    0.000    0.478
##     ssmk    (.15.)    0.213    0.009   24.450    0.000    0.196
##   g =~                                                         
##     verbal  (.16.)    4.471    0.545    8.208    0.000    3.403
##     math    (.17.)    2.300    0.104   22.029    0.000    2.095
##     elctrnc (.18.)    1.651    0.083   19.933    0.000    1.489
##     speed   (.19.)    0.939    0.035   26.558    0.000    0.870
##  ci.upper   Std.lv  Std.all
##                            
##     0.206    0.919    0.898
##     0.206    0.918    0.897
##     0.201    0.894    0.875
##     0.124    0.547    0.497
##                            
##     0.334    0.909    0.898
##     0.248    0.670    0.661
##     0.191    0.515    0.509
##     0.280    0.760    0.728
##                            
##     0.304    0.801    0.746
##     0.330    0.870    0.837
##     0.164    0.427    0.422
##     0.189    0.488    0.443
##                            
##     0.599    0.855    0.821
##     0.528    0.756    0.751
##     0.230    0.320    0.316
##                            
##     5.539    0.976    0.976
##     2.505    0.940    0.940
##     1.813    0.685    0.685
##     1.008    0.746    0.746
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.273    0.011   24.896    0.000    0.252
##     agec2      (b)   -0.034    0.008   -4.442    0.000   -0.050
##  ci.upper   Std.lv  Std.all
##                            
##     0.295    0.229    0.329
##    -0.019   -0.029   -0.054
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .verbal            0.000                               0.000
##    .ssgs    (.43.)    0.221    0.019   11.454    0.000    0.183
##    .sswk    (.44.)    0.207    0.020   10.606    0.000    0.169
##    .sspc              0.029    0.022    1.350    0.177   -0.013
##    .ssei    (.46.)    0.037    0.017    2.152    0.031    0.003
##    .ssar    (.47.)    0.225    0.019   11.622    0.000    0.187
##    .ssmk    (.48.)    0.287    0.020   14.493    0.000    0.248
##    .ssmc    (.49.)    0.092    0.018    5.175    0.000    0.057
##    .ssao    (.50.)    0.192    0.019   10.317    0.000    0.155
##    .ssai    (.51.)   -0.078    0.015   -5.352    0.000   -0.107
##    .sssi    (.52.)   -0.070    0.016   -4.479    0.000   -0.100
##    .ssno              0.436    0.026   16.643    0.000    0.385
##    .sscs    (.54.)    0.309    0.018   17.068    0.000    0.273
##    .math             -0.206    0.051   -4.021    0.000   -0.306
##    .elctrnc           1.732    0.102   17.060    0.000    1.533
##    .speed            -0.786    0.045  -17.485    0.000   -0.874
##    .g                 0.107    0.030    3.576    0.000    0.048
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.259    0.221    0.216
##     0.245    0.207    0.202
##     0.071    0.029    0.028
##     0.070    0.037    0.033
##     0.263    0.225    0.222
##     0.326    0.287    0.283
##     0.127    0.092    0.091
##     0.228    0.192    0.184
##    -0.050   -0.078   -0.073
##    -0.039   -0.070   -0.067
##     0.488    0.436    0.419
##     0.344    0.309    0.307
##    -0.105   -0.070   -0.070
##     1.931    0.601    0.601
##    -0.698   -0.523   -0.523
##     0.165    0.089    0.089
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .math              1.000                               1.000
##    .speed             1.000                               1.000
##    .ssgs              0.203    0.007   28.059    0.000    0.189
##    .sswk              0.204    0.008   25.401    0.000    0.188
##    .sspc              0.246    0.009   26.263    0.000    0.228
##    .ssei              0.316    0.012   27.265    0.000    0.294
##    .ssar              0.199    0.009   23.160    0.000    0.182
##    .ssmk              0.176    0.007   25.716    0.000    0.162
##    .ssmc              0.292    0.010   27.872    0.000    0.271
##    .ssao              0.512    0.015   34.354    0.000    0.483
##    .ssai              0.512    0.019   27.080    0.000    0.475
##    .sssi              0.323    0.015   21.048    0.000    0.293
##    .ssno              0.354    0.019   19.094    0.000    0.318
##    .sscs              0.442    0.019   23.210    0.000    0.405
##    .verbal            1.434    0.361    3.966    0.000    0.725
##    .electronic        4.401    0.464    9.479    0.000    3.491
##    .g                 1.264    0.047   26.877    0.000    1.172
##  ci.upper   Std.lv  Std.all
##     1.000    0.117    0.117
##     1.000    0.443    0.443
##     0.218    0.203    0.194
##     0.220    0.204    0.195
##     0.264    0.246    0.235
##     0.339    0.316    0.261
##     0.215    0.199    0.194
##     0.189    0.176    0.171
##     0.312    0.292    0.285
##     0.541    0.512    0.470
##     0.549    0.512    0.444
##     0.353    0.323    0.299
##     0.390    0.354    0.326
##     0.479    0.442    0.436
##     2.142    0.048    0.048
##     5.311    0.531    0.531
##     1.356    0.886    0.886
# BIFACTOR MODEL (verbal ill defined because only wk has high loading, and removing the nonsignificant ei worsens the outcome, causing wk to be out of bound, then gs has negative loading)

bf.notworking<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk 
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
'

baseline<-cfa(bf.notworking, data=dgroup, meanstructure=T, sampling.weights="sweight", std.lv=T, orthogonal=T)
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2233.877     38.000      0.000      0.968      0.090      0.039 
##        aic        bic 
## 174403.951 174761.028
Mc(baseline)
## [1] 0.8565748
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 50 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        52
## 
##   Number of observations                          7093
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2233.877    2342.239
##   Degrees of freedom                                38          38
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  0.954
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal =~                                                    
##     ssgs              0.134    0.128    1.044    0.297   -0.118
##     sswk              0.362    0.099    3.650    0.000    0.168
##     sspc              0.176    0.112    1.574    0.116   -0.043
##     ssei              0.067    0.124    0.538    0.591   -0.177
##   math =~                                                      
##     ssar              0.268    0.078    3.436    0.001    0.115
##     sspc              0.220    0.034    6.554    0.000    0.154
##     ssmk              0.250    0.062    4.041    0.000    0.129
##     ssmc              0.233    0.020   11.674    0.000    0.194
##     ssao              0.412    0.025   16.465    0.000    0.363
##   electronic =~                                                
##     ssai              0.510    0.021   24.585    0.000    0.469
##     sssi              0.573    0.018   32.261    0.000    0.539
##     ssmc              0.297    0.016   18.369    0.000    0.265
##     ssei              0.311    0.027   11.671    0.000    0.259
##   speed =~                                                     
##     ssno              0.704    0.026   27.011    0.000    0.653
##     sscs              0.446    0.028   16.078    0.000    0.392
##     ssmk              0.231    0.018   12.834    0.000    0.195
##   g =~                                                         
##     ssgs              0.868    0.027   32.641    0.000    0.816
##     ssar              0.816    0.029   28.114    0.000    0.759
##     sswk              0.847    0.023   36.281    0.000    0.801
##     sspc              0.803    0.018   45.270    0.000    0.769
##     ssno              0.582    0.025   22.902    0.000    0.532
##     sscs              0.542    0.020   26.488    0.000    0.502
##     ssai              0.565    0.016   34.793    0.000    0.533
##     sssi              0.589    0.018   33.440    0.000    0.555
##     ssmk              0.810    0.027   29.724    0.000    0.757
##     ssmc              0.745    0.011   67.495    0.000    0.724
##     ssei              0.784    0.030   26.589    0.000    0.727
##     ssao              0.647    0.017   37.323    0.000    0.613
##  ci.upper   Std.lv  Std.all
##                            
##     0.386    0.134    0.137
##     0.557    0.362    0.371
##     0.396    0.176    0.179
##     0.310    0.067    0.067
##                            
##     0.421    0.268    0.276
##     0.286    0.220    0.223
##     0.371    0.250    0.255
##     0.272    0.233    0.238
##     0.461    0.412    0.414
##                            
##     0.550    0.510    0.508
##     0.608    0.573    0.576
##     0.328    0.297    0.303
##     0.363    0.311    0.310
##                            
##     0.755    0.704    0.698
##     0.501    0.446    0.450
##     0.266    0.231    0.235
##                            
##     0.920    0.868    0.886
##     0.872    0.816    0.840
##     0.893    0.847    0.867
##     0.838    0.803    0.816
##     0.632    0.582    0.577
##     0.582    0.542    0.546
##     0.597    0.565    0.563
##     0.624    0.589    0.592
##     0.864    0.810    0.826
##     0.767    0.745    0.762
##     0.842    0.784    0.782
##     0.681    0.647    0.649
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   verbal ~~                                                    
##     math              0.000                               0.000
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.199    0.013   15.604    0.000    0.174
##    .sswk              0.180    0.013   14.181    0.000    0.155
##    .sspc              0.160    0.013   12.482    0.000    0.135
##    .ssei              0.168    0.013   12.604    0.000    0.142
##    .ssar              0.171    0.013   13.560    0.000    0.147
##    .ssmk              0.154    0.013   11.881    0.000    0.129
##    .ssmc              0.183    0.013   14.520    0.000    0.159
##    .ssao              0.138    0.013   10.543    0.000    0.113
##    .ssai              0.147    0.013   11.020    0.000    0.121
##    .sssi              0.181    0.013   13.829    0.000    0.156
##    .ssno              0.084    0.013    6.248    0.000    0.058
##    .sscs              0.092    0.013    6.963    0.000    0.066
##  ci.upper   Std.lv  Std.all
##     0.224    0.199    0.203
##     0.205    0.180    0.184
##     0.186    0.160    0.163
##     0.194    0.168    0.167
##     0.196    0.171    0.176
##     0.180    0.154    0.157
##     0.208    0.183    0.187
##     0.164    0.138    0.139
##     0.173    0.147    0.147
##     0.207    0.181    0.182
##     0.110    0.084    0.083
##     0.118    0.092    0.092
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssgs              0.189    0.012   16.024    0.000    0.166
##    .sswk              0.106    0.097    1.090    0.276   -0.085
##    .sspc              0.244    0.026    9.325    0.000    0.193
##    .ssei              0.289    0.008   34.156    0.000    0.272
##    .ssar              0.206    0.008   24.690    0.000    0.189
##    .ssmk              0.190    0.008   23.117    0.000    0.174
##    .ssmc              0.259    0.011   24.047    0.000    0.238
##    .ssao              0.404    0.026   15.259    0.000    0.352
##    .ssai              0.428    0.013   33.483    0.000    0.403
##    .sssi              0.315    0.012   25.326    0.000    0.291
##    .ssno              0.184    0.026    6.960    0.000    0.132
##    .sscs              0.492    0.015   32.485    0.000    0.463
##     verbal            1.000                               1.000
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.212    0.189    0.197
##     0.297    0.106    0.111
##     0.295    0.244    0.252
##     0.305    0.289    0.287
##     0.222    0.206    0.218
##     0.206    0.190    0.197
##     0.281    0.259    0.271
##     0.456    0.404    0.407
##     0.453    0.428    0.425
##     0.339    0.315    0.318
##     0.236    0.184    0.181
##     0.522    0.492    0.500
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
bf.model<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
'

bf.lv<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
'

bf.reduced<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
g~0*1
'

baseline<-cfa(bf.model, data=dgroup, meanstructure=T, sampling.weights="sweight", std.lv=T, orthogonal=T)
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2403.374     42.000      0.000      0.965      0.089      0.040 
##        aic        bic 
## 174565.448 174895.058
Mc(baseline)
## [1] 0.8466384
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 41 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        48
## 
##   Number of observations                          7093
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2403.374    1846.367
##   Degrees of freedom                                42          42
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.302
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar              0.328    0.015   22.151    0.000    0.299
##     sspc              0.188    0.012   15.529    0.000    0.164
##     ssmk              0.296    0.014   21.325    0.000    0.269
##     ssmc              0.248    0.015   16.265    0.000    0.218
##     ssao              0.425    0.020   21.721    0.000    0.387
##   electronic =~                                                
##     ssai              0.512    0.017   29.327    0.000    0.478
##     sssi              0.574    0.014   39.869    0.000    0.545
##     ssmc              0.300    0.011   27.584    0.000    0.278
##     ssei              0.311    0.013   24.669    0.000    0.286
##   speed =~                                                     
##     ssno              0.712    0.021   33.475    0.000    0.671
##     sscs              0.461    0.017   27.568    0.000    0.428
##     ssmk              0.242    0.010   23.910    0.000    0.222
##   g =~                                                         
##     ssgs              0.885    0.010   92.567    0.000    0.866
##     ssar              0.791    0.011   73.418    0.000    0.770
##     sswk              0.882    0.009   93.026    0.000    0.863
##     sspc              0.825    0.009   91.645    0.000    0.807
##     ssno              0.567    0.013   42.818    0.000    0.541
##     sscs              0.531    0.012   43.762    0.000    0.508
##     ssai              0.563    0.012   45.435    0.000    0.539
##     sssi              0.588    0.012   49.007    0.000    0.565
##     ssmk              0.789    0.010   77.373    0.000    0.769
##     ssmc              0.736    0.011   69.302    0.000    0.715
##     ssei              0.791    0.012   68.435    0.000    0.768
##     ssao              0.630    0.011   58.983    0.000    0.609
##  ci.upper   Std.lv  Std.all
##                            
##     0.357    0.328    0.338
##     0.212    0.188    0.191
##     0.323    0.296    0.303
##     0.278    0.248    0.254
##     0.464    0.425    0.427
##                            
##     0.546    0.512    0.510
##     0.602    0.574    0.576
##     0.321    0.300    0.307
##     0.335    0.311    0.310
##                            
##     0.754    0.712    0.706
##     0.493    0.461    0.464
##     0.261    0.242    0.247
##                            
##     0.904    0.885    0.903
##     0.813    0.791    0.815
##     0.901    0.882    0.902
##     0.842    0.825    0.839
##     0.593    0.567    0.562
##     0.555    0.531    0.535
##     0.587    0.563    0.561
##     0.612    0.588    0.591
##     0.809    0.789    0.808
##     0.756    0.736    0.753
##     0.813    0.791    0.788
##     0.651    0.630    0.633
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.171    0.013   13.560    0.000    0.147
##    .sspc              0.160    0.013   12.482    0.000    0.135
##    .ssmk              0.154    0.013   11.881    0.000    0.129
##    .ssmc              0.183    0.013   14.520    0.000    0.159
##    .ssao              0.138    0.013   10.543    0.000    0.113
##    .ssai              0.147    0.013   11.020    0.000    0.121
##    .sssi              0.181    0.013   13.829    0.000    0.156
##    .ssei              0.168    0.013   12.604    0.000    0.142
##    .ssno              0.084    0.013    6.248    0.000    0.058
##    .sscs              0.092    0.013    6.963    0.000    0.066
##    .ssgs              0.199    0.013   15.604    0.000    0.174
##    .sswk              0.180    0.013   14.181    0.000    0.155
##  ci.upper   Std.lv  Std.all
##     0.196    0.171    0.176
##     0.186    0.160    0.163
##     0.180    0.154    0.158
##     0.208    0.183    0.188
##     0.164    0.138    0.139
##     0.173    0.147    0.147
##     0.207    0.181    0.182
##     0.194    0.168    0.167
##     0.110    0.084    0.083
##     0.118    0.092    0.092
##     0.224    0.199    0.203
##     0.205    0.180    0.184
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.209    0.007   28.992    0.000    0.195
##    .sspc              0.252    0.006   39.381    0.000    0.239
##    .ssmk              0.185    0.006   29.548    0.000    0.173
##    .ssmc              0.261    0.008   31.862    0.000    0.245
##    .ssao              0.414    0.014   29.035    0.000    0.386
##    .ssai              0.428    0.013   33.544    0.000    0.403
##    .sssi              0.316    0.012   26.279    0.000    0.292
##    .ssei              0.286    0.008   37.243    0.000    0.271
##    .ssno              0.190    0.024    7.737    0.000    0.142
##    .sscs              0.491    0.015   32.650    0.000    0.461
##    .ssgs              0.177    0.005   34.831    0.000    0.167
##    .sswk              0.177    0.005   33.913    0.000    0.167
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.223    0.209    0.222
##     0.264    0.252    0.260
##     0.198    0.185    0.194
##     0.277    0.261    0.274
##     0.442    0.414    0.417
##     0.453    0.428    0.425
##     0.339    0.316    0.319
##     0.301    0.286    0.284
##     0.238    0.190    0.186
##     0.520    0.491    0.498
##     0.187    0.177    0.185
##     0.188    0.177    0.186
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
configural<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2014.783     84.000      0.000      0.971      0.081      0.032 
##        aic        bic 
## 170884.535 171543.754
Mc(configural)
## [1] 0.8727344
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        96
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2014.783    1580.281
##   Degrees of freedom                                84          84
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.275
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          708.459     555.675
##     0                                         1306.324    1024.606
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar              0.333    0.019   17.238    0.000    0.296
##     sspc              0.139    0.015    9.186    0.000    0.109
##     ssmk              0.290    0.017   16.610    0.000    0.255
##     ssmc              0.245    0.021   11.924    0.000    0.205
##     ssao              0.407    0.026   15.630    0.000    0.356
##   electronic =~                                                
##     ssai              0.223    0.025    8.996    0.000    0.174
##     sssi              0.330    0.029   11.377    0.000    0.273
##     ssmc              0.194    0.021    9.411    0.000    0.154
##     ssei              0.118    0.019    6.069    0.000    0.080
##   speed =~                                                     
##     ssno              0.688    0.033   21.160    0.000    0.625
##     sscs              0.403    0.024   16.975    0.000    0.356
##     ssmk              0.215    0.015   14.616    0.000    0.186
##   g =~                                                         
##     ssgs              0.814    0.012   65.165    0.000    0.790
##     ssar              0.735    0.014   50.862    0.000    0.706
##     sswk              0.852    0.013   64.811    0.000    0.827
##     sspc              0.794    0.013   62.638    0.000    0.769
##     ssno              0.529    0.017   30.676    0.000    0.495
##     sscs              0.509    0.016   31.458    0.000    0.477
##     ssai              0.464    0.014   33.741    0.000    0.437
##     sssi              0.499    0.014   35.513    0.000    0.472
##     ssmk              0.773    0.014   55.194    0.000    0.746
##     ssmc              0.656    0.013   49.289    0.000    0.629
##     ssei              0.637    0.013   49.866    0.000    0.612
##     ssao              0.614    0.015   42.039    0.000    0.585
##  ci.upper   Std.lv  Std.all
##                            
##     0.371    0.333    0.366
##     0.168    0.139    0.149
##     0.324    0.290    0.303
##     0.285    0.245    0.279
##     0.458    0.407    0.426
##                            
##     0.272    0.223    0.283
##     0.387    0.330    0.410
##     0.234    0.194    0.221
##     0.156    0.118    0.145
##                            
##     0.752    0.688    0.728
##     0.449    0.403    0.432
##     0.243    0.215    0.225
##                            
##     0.839    0.814    0.892
##     0.763    0.735    0.806
##     0.878    0.852    0.903
##     0.819    0.794    0.855
##     0.563    0.529    0.559
##     0.541    0.509    0.546
##     0.491    0.464    0.589
##     0.527    0.499    0.621
##     0.801    0.773    0.809
##     0.682    0.656    0.747
##     0.662    0.637    0.783
##     0.643    0.614    0.643
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.148    0.017    8.728    0.000    0.115
##    .sspc              0.284    0.017   16.543    0.000    0.251
##    .ssmk              0.224    0.018   12.435    0.000    0.189
##    .ssmc              0.039    0.016    2.369    0.018    0.007
##    .ssao              0.198    0.018   11.088    0.000    0.163
##    .ssai             -0.097    0.015   -6.622    0.000   -0.126
##    .sssi             -0.131    0.015   -8.757    0.000   -0.160
##    .ssei             -0.010    0.015   -0.667    0.505   -0.040
##    .ssno              0.173    0.018    9.602    0.000    0.138
##    .sscs              0.271    0.018   15.206    0.000    0.236
##    .ssgs              0.120    0.017    7.097    0.000    0.087
##    .sswk              0.181    0.017   10.369    0.000    0.147
##  ci.upper   Std.lv  Std.all
##     0.181    0.148    0.162
##     0.318    0.284    0.306
##     0.260    0.224    0.235
##     0.070    0.039    0.044
##     0.232    0.198    0.207
##    -0.069   -0.097   -0.124
##    -0.102   -0.131   -0.163
##     0.020   -0.010   -0.013
##     0.209    0.173    0.183
##     0.306    0.271    0.291
##     0.153    0.120    0.131
##     0.216    0.181    0.192
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.179    0.010   18.410    0.000    0.160
##    .sspc              0.212    0.008   25.654    0.000    0.196
##    .ssmk              0.186    0.008   22.746    0.000    0.170
##    .ssmc              0.243    0.012   20.764    0.000    0.220
##    .ssao              0.369    0.018   20.245    0.000    0.333
##    .ssai              0.356    0.013   26.424    0.000    0.330
##    .sssi              0.289    0.018   16.024    0.000    0.254
##    .ssei              0.241    0.008   28.393    0.000    0.225
##    .ssno              0.141    0.036    3.941    0.000    0.071
##    .sscs              0.447    0.019   23.807    0.000    0.410
##    .ssgs              0.170    0.006   26.224    0.000    0.157
##    .sswk              0.164    0.007   24.880    0.000    0.151
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.199    0.179    0.216
##     0.228    0.212    0.246
##     0.202    0.186    0.204
##     0.266    0.243    0.316
##     0.405    0.369    0.405
##     0.383    0.356    0.573
##     0.325    0.289    0.447
##     0.258    0.241    0.365
##     0.211    0.141    0.158
##     0.484    0.447    0.515
##     0.182    0.170    0.204
##     0.177    0.164    0.184
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar              0.339    0.025   13.313    0.000    0.289
##     sspc              0.184    0.018   10.400    0.000    0.150
##     ssmk              0.295    0.022   13.352    0.000    0.251
##     ssmc              0.246    0.027    9.112    0.000    0.193
##     ssao              0.404    0.034   11.784    0.000    0.337
##   electronic =~                                                
##     ssai              0.590    0.025   23.392    0.000    0.540
##     sssi              0.601    0.020   30.104    0.000    0.562
##     ssmc              0.296    0.015   19.528    0.000    0.267
##     ssei              0.325    0.018   18.118    0.000    0.290
##   speed =~                                                     
##     ssno              0.752    0.032   23.284    0.000    0.689
##     sscs              0.448    0.024   19.040    0.000    0.402
##     ssmk              0.244    0.015   16.687    0.000    0.215
##   g =~                                                         
##     ssgs              0.945    0.014   68.645    0.000    0.918
##     ssar              0.841    0.016   53.736    0.000    0.810
##     sswk              0.908    0.014   66.997    0.000    0.882
##     sspc              0.870    0.012   72.502    0.000    0.846
##     ssno              0.604    0.019   31.379    0.000    0.566
##     sscs              0.567    0.017   32.942    0.000    0.533
##     ssai              0.651    0.019   35.060    0.000    0.614
##     sssi              0.666    0.017   38.875    0.000    0.633
##     ssmk              0.810    0.014   56.318    0.000    0.782
##     ssmc              0.810    0.015   52.392    0.000    0.780
##     ssei              0.927    0.017   54.303    0.000    0.893
##     ssao              0.659    0.015   42.938    0.000    0.629
##  ci.upper   Std.lv  Std.all
##                            
##     0.389    0.339    0.331
##     0.219    0.184    0.181
##     0.338    0.295    0.296
##     0.299    0.246    0.236
##     0.471    0.404    0.392
##                            
##     0.639    0.590    0.524
##     0.641    0.601    0.564
##     0.326    0.296    0.285
##     0.361    0.325    0.288
##                            
##     0.816    0.752    0.710
##     0.494    0.448    0.440
##     0.273    0.244    0.245
##                            
##     0.972    0.945    0.913
##     0.872    0.841    0.821
##     0.935    0.908    0.900
##     0.893    0.870    0.853
##     0.642    0.604    0.570
##     0.600    0.567    0.556
##     0.687    0.651    0.579
##     0.700    0.666    0.625
##     0.838    0.810    0.815
##     0.841    0.810    0.778
##     0.960    0.927    0.819
##     0.689    0.659    0.639
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.194    0.019   10.391    0.000    0.157
##    .sspc              0.041    0.019    2.207    0.027    0.005
##    .ssmk              0.087    0.019    4.675    0.000    0.050
##    .ssmc              0.322    0.019   17.179    0.000    0.286
##    .ssao              0.081    0.019    4.256    0.000    0.044
##    .ssai              0.382    0.021   18.202    0.000    0.341
##    .sssi              0.482    0.020   24.659    0.000    0.443
##    .ssei              0.339    0.021   16.134    0.000    0.298
##    .ssno             -0.002    0.020   -0.083    0.934   -0.040
##    .sscs             -0.080    0.019   -4.255    0.000   -0.117
##    .ssgs              0.276    0.019   14.542    0.000    0.239
##    .sswk              0.179    0.018    9.735    0.000    0.143
##  ci.upper   Std.lv  Std.all
##     0.230    0.194    0.189
##     0.078    0.041    0.041
##     0.123    0.087    0.087
##     0.359    0.322    0.310
##     0.119    0.081    0.079
##     0.423    0.382    0.340
##     0.520    0.482    0.452
##     0.380    0.339    0.299
##     0.037   -0.002   -0.002
##    -0.043   -0.080   -0.079
##     0.313    0.276    0.267
##     0.215    0.179    0.178
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.228    0.013   17.407    0.000    0.202
##    .sspc              0.249    0.009   28.666    0.000    0.232
##    .ssmk              0.186    0.010   18.479    0.000    0.166
##    .ssmc              0.279    0.013   21.613    0.000    0.254
##    .ssao              0.466    0.023   19.950    0.000    0.420
##    .ssai              0.494    0.022   22.721    0.000    0.451
##    .sssi              0.332    0.018   18.525    0.000    0.297
##    .ssei              0.316    0.012   26.741    0.000    0.293
##    .ssno              0.191    0.042    4.600    0.000    0.110
##    .sscs              0.516    0.022   23.480    0.000    0.473
##    .ssgs              0.179    0.007   25.260    0.000    0.165
##    .sswk              0.193    0.008   24.843    0.000    0.178
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.253    0.228    0.217
##     0.267    0.249    0.240
##     0.205    0.186    0.188
##     0.304    0.279    0.257
##     0.511    0.466    0.438
##     0.536    0.494    0.390
##     0.367    0.332    0.292
##     0.340    0.316    0.247
##     0.273    0.191    0.171
##     0.559    0.516    0.497
##     0.193    0.179    0.167
##     0.208    0.193    0.190
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2295.700    104.000      0.000      0.968      0.077      0.049 
##        aic        bic 
## 171125.453 171647.335
Mc(metric)
## [1] 0.856827
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 70 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       100
##   Number of equality constraints                    24
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2295.700    1769.021
##   Degrees of freedom                               104         104
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.298
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          845.570     651.579
##     0                                         1450.130    1117.442
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.332    0.017   19.791    0.000    0.299
##     sspc    (.p2.)    0.158    0.011   13.765    0.000    0.136
##     ssmk    (.p3.)    0.292    0.015   19.131    0.000    0.262
##     ssmc    (.p4.)    0.243    0.017   14.313    0.000    0.210
##     ssao    (.p5.)    0.407    0.023   18.009    0.000    0.363
##   electronic =~                                                
##     ssai    (.p6.)    0.267    0.014   18.742    0.000    0.239
##     sssi    (.p7.)    0.276    0.016   17.633    0.000    0.245
##     ssmc    (.p8.)    0.142    0.009   15.064    0.000    0.123
##     ssei    (.p9.)    0.154    0.009   17.050    0.000    0.136
##   speed =~                                                     
##     ssno    (.10.)    0.687    0.025   26.962    0.000    0.637
##     sscs    (.11.)    0.405    0.018   22.434    0.000    0.370
##     ssmk    (.12.)    0.219    0.010   21.009    0.000    0.198
##   g =~                                                         
##     ssgs    (.13.)    0.819    0.011   71.977    0.000    0.797
##     ssar    (.14.)    0.734    0.012   60.246    0.000    0.710
##     sswk    (.15.)    0.819    0.012   67.740    0.000    0.795
##     sspc    (.16.)    0.775    0.011   67.859    0.000    0.753
##     ssno    (.17.)    0.529    0.013   40.428    0.000    0.503
##     sscs    (.18.)    0.502    0.012   41.327    0.000    0.478
##     ssai    (.19.)    0.492    0.011   44.645    0.000    0.471
##     sssi    (.20.)    0.518    0.011   47.286    0.000    0.497
##     ssmk    (.21.)    0.735    0.012   60.873    0.000    0.712
##     ssmc    (.22.)    0.671    0.011   61.379    0.000    0.650
##     ssei    (.23.)    0.708    0.011   64.513    0.000    0.686
##     ssao    (.24.)    0.593    0.012   51.205    0.000    0.570
##  ci.upper   Std.lv  Std.all
##                            
##     0.365    0.332    0.365
##     0.181    0.158    0.172
##     0.322    0.292    0.314
##     0.276    0.243    0.274
##     0.451    0.407    0.432
##                            
##     0.295    0.267    0.331
##     0.307    0.276    0.340
##     0.160    0.142    0.160
##     0.172    0.154    0.177
##                            
##     0.737    0.687    0.726
##     0.440    0.405    0.436
##     0.239    0.219    0.236
##                            
##     0.842    0.819    0.895
##     0.758    0.734    0.806
##     0.842    0.819    0.893
##     0.798    0.775    0.846
##     0.555    0.529    0.559
##     0.526    0.502    0.541
##     0.514    0.492    0.610
##     0.540    0.518    0.637
##     0.759    0.735    0.792
##     0.692    0.671    0.758
##     0.729    0.708    0.812
##     0.615    0.593    0.630
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.148    0.017    8.728    0.000    0.115
##    .sspc              0.284    0.017   16.543    0.000    0.251
##    .ssmk              0.224    0.018   12.435    0.000    0.189
##    .ssmc              0.039    0.016    2.369    0.018    0.007
##    .ssao              0.198    0.018   11.088    0.000    0.163
##    .ssai             -0.097    0.015   -6.622    0.000   -0.126
##    .sssi             -0.131    0.015   -8.757    0.000   -0.160
##    .ssei             -0.010    0.015   -0.667    0.505   -0.040
##    .ssno              0.173    0.018    9.602    0.000    0.138
##    .sscs              0.271    0.018   15.206    0.000    0.236
##    .ssgs              0.120    0.017    7.097    0.000    0.087
##    .sswk              0.181    0.017   10.369    0.000    0.147
##  ci.upper   Std.lv  Std.all
##     0.181    0.148    0.162
##     0.318    0.284    0.310
##     0.260    0.224    0.242
##     0.070    0.039    0.044
##     0.232    0.198    0.210
##    -0.069   -0.097   -0.121
##    -0.102   -0.131   -0.161
##     0.020   -0.010   -0.012
##     0.209    0.173    0.183
##     0.306    0.271    0.292
##     0.153    0.120    0.131
##     0.216    0.181    0.198
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.181    0.009   20.239    0.000    0.163
##    .sspc              0.214    0.008   26.458    0.000    0.198
##    .ssmk              0.188    0.008   24.519    0.000    0.173
##    .ssmc              0.255    0.010   24.938    0.000    0.235
##    .ssao              0.369    0.017   21.935    0.000    0.336
##    .ssai              0.338    0.012   28.028    0.000    0.315
##    .sssi              0.317    0.012   26.418    0.000    0.293
##    .ssei              0.235    0.008   28.049    0.000    0.219
##    .ssno              0.144    0.026    5.485    0.000    0.093
##    .sscs              0.446    0.017   26.414    0.000    0.413
##    .ssgs              0.166    0.006   26.459    0.000    0.154
##    .sswk              0.171    0.007   25.633    0.000    0.158
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.198    0.181    0.218
##     0.230    0.214    0.255
##     0.203    0.188    0.218
##     0.275    0.255    0.325
##     0.402    0.369    0.416
##     0.362    0.338    0.519
##     0.340    0.317    0.479
##     0.252    0.235    0.310
##     0.196    0.144    0.161
##     0.479    0.446    0.517
##     0.179    0.166    0.199
##     0.184    0.171    0.203
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.332    0.017   19.791    0.000    0.299
##     sspc    (.p2.)    0.158    0.011   13.765    0.000    0.136
##     ssmk    (.p3.)    0.292    0.015   19.131    0.000    0.262
##     ssmc    (.p4.)    0.243    0.017   14.313    0.000    0.210
##     ssao    (.p5.)    0.407    0.023   18.009    0.000    0.363
##   electronic =~                                                
##     ssai    (.p6.)    0.267    0.014   18.742    0.000    0.239
##     sssi    (.p7.)    0.276    0.016   17.633    0.000    0.245
##     ssmc    (.p8.)    0.142    0.009   15.064    0.000    0.123
##     ssei    (.p9.)    0.154    0.009   17.050    0.000    0.136
##   speed =~                                                     
##     ssno    (.10.)    0.687    0.025   26.962    0.000    0.637
##     sscs    (.11.)    0.405    0.018   22.434    0.000    0.370
##     ssmk    (.12.)    0.219    0.010   21.009    0.000    0.198
##   g =~                                                         
##     ssgs    (.13.)    0.819    0.011   71.977    0.000    0.797
##     ssar    (.14.)    0.734    0.012   60.246    0.000    0.710
##     sswk    (.15.)    0.819    0.012   67.740    0.000    0.795
##     sspc    (.16.)    0.775    0.011   67.859    0.000    0.753
##     ssno    (.17.)    0.529    0.013   40.428    0.000    0.503
##     sscs    (.18.)    0.502    0.012   41.327    0.000    0.478
##     ssai    (.19.)    0.492    0.011   44.645    0.000    0.471
##     sssi    (.20.)    0.518    0.011   47.286    0.000    0.497
##     ssmk    (.21.)    0.735    0.012   60.873    0.000    0.712
##     ssmc    (.22.)    0.671    0.011   61.379    0.000    0.650
##     ssei    (.23.)    0.708    0.011   64.513    0.000    0.686
##     ssao    (.24.)    0.593    0.012   51.205    0.000    0.570
##  ci.upper   Std.lv  Std.all
##                            
##     0.365    0.334    0.326
##     0.181    0.159    0.154
##     0.322    0.293    0.288
##     0.276    0.244    0.241
##     0.451    0.409    0.391
##                            
##     0.295    0.597    0.551
##     0.307    0.617    0.599
##     0.160    0.317    0.312
##     0.172    0.344    0.327
##                            
##     0.737    0.751    0.710
##     0.440    0.443    0.433
##     0.239    0.239    0.235
##                            
##     0.842    0.939    0.910
##     0.758    0.841    0.822
##     0.842    0.939    0.907
##     0.798    0.889    0.862
##     0.555    0.607    0.573
##     0.526    0.576    0.564
##     0.514    0.564    0.521
##     0.540    0.594    0.576
##     0.759    0.843    0.827
##     0.692    0.769    0.759
##     0.729    0.811    0.772
##     0.615    0.679    0.650
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.194    0.019   10.391    0.000    0.157
##    .sspc              0.041    0.019    2.207    0.027    0.005
##    .ssmk              0.087    0.019    4.675    0.000    0.050
##    .ssmc              0.322    0.019   17.179    0.000    0.286
##    .ssao              0.081    0.019    4.256    0.000    0.044
##    .ssai              0.382    0.021   18.202    0.000    0.341
##    .sssi              0.482    0.020   24.659    0.000    0.443
##    .ssei              0.339    0.021   16.134    0.000    0.298
##    .ssno             -0.002    0.020   -0.083    0.934   -0.040
##    .sscs             -0.080    0.019   -4.255    0.000   -0.117
##    .ssgs              0.276    0.019   14.542    0.000    0.239
##    .sswk              0.179    0.018    9.735    0.000    0.143
##  ci.upper   Std.lv  Std.all
##     0.230    0.194    0.189
##     0.078    0.041    0.040
##     0.123    0.087    0.085
##     0.359    0.322    0.318
##     0.119    0.081    0.078
##     0.423    0.382    0.353
##     0.520    0.482    0.467
##     0.380    0.339    0.322
##     0.037   -0.002   -0.002
##    -0.043   -0.080   -0.079
##     0.313    0.276    0.267
##     0.215    0.179    0.173
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.228    0.010   22.303    0.000    0.208
##    .sspc              0.248    0.009   28.591    0.000    0.231
##    .ssmk              0.185    0.008   22.364    0.000    0.169
##    .ssmc              0.277    0.011   24.407    0.000    0.255
##    .ssao              0.463    0.018   25.323    0.000    0.427
##    .ssai              0.498    0.021   23.423    0.000    0.456
##    .sssi              0.329    0.017   18.905    0.000    0.295
##    .ssei              0.329    0.012   26.407    0.000    0.305
##    .ssno              0.188    0.034    5.601    0.000    0.122
##    .sscs              0.516    0.021   25.063    0.000    0.476
##    .ssgs              0.184    0.007   26.549    0.000    0.170
##    .sswk              0.189    0.008   24.466    0.000    0.174
##     math              1.010    0.083   12.161    0.000    0.847
##     electronic        4.997    0.550    9.090    0.000    3.919
##     speed             1.195    0.085   14.023    0.000    1.028
##     g                 1.315    0.047   28.131    0.000    1.223
##  ci.upper   Std.lv  Std.all
##     0.248    0.228    0.218
##     0.265    0.248    0.233
##     0.201    0.185    0.178
##     0.299    0.277    0.269
##     0.499    0.463    0.424
##     0.539    0.498    0.425
##     0.363    0.329    0.310
##     0.353    0.329    0.298
##     0.254    0.188    0.168
##     0.557    0.516    0.495
##     0.198    0.184    0.173
##     0.204    0.189    0.177
##     1.173    1.000    1.000
##     6.074    1.000    1.000
##     1.362    1.000    1.000
##     1.406    1.000    1.000
lavTestScore(metric, release = 1:24)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 272.038 24       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs      X2 df p.value
## 1   .p1. == .p63.   0.228  1   0.633
## 2   .p2. == .p64.   3.901  1   0.048
## 3   .p3. == .p65.   0.338  1   0.561
## 4   .p4. == .p66.   0.240  1   0.624
## 5   .p5. == .p67.   0.324  1   0.569
## 6   .p6. == .p68.   2.792  1   0.095
## 7   .p7. == .p69.   2.933  1   0.087
## 8   .p8. == .p70.  11.056  1   0.001
## 9   .p9. == .p71.   9.171  1   0.002
## 10 .p10. == .p72.   0.000  1   0.997
## 11 .p11. == .p73.   0.003  1   0.953
## 12 .p12. == .p74.   0.003  1   0.953
## 13 .p13. == .p75.   0.460  1   0.498
## 14 .p14. == .p76.   4.615  1   0.032
## 15 .p15. == .p77.  51.712  1   0.000
## 16 .p16. == .p78.   4.611  1   0.032
## 17 .p17. == .p79.   4.231  1   0.040
## 18 .p18. == .p80.   0.150  1   0.698
## 19 .p19. == .p81.   4.733  1   0.030
## 20 .p20. == .p82.   0.008  1   0.928
## 21 .p21. == .p83.  26.981  1   0.000
## 22 .p22. == .p84.   3.900  1   0.048
## 23 .p23. == .p85. 133.472  1   0.000
## 24 .p24. == .p86.   1.804  1   0.179
metric2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"), group.partial=c("g=~ssei"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2159.783    103.000      0.000      0.970      0.075      0.041 
##        aic        bic 
## 170991.536 171520.284
Mc(metric2)
## [1] 0.865016
scalar<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   3135.666    112.000      0.000      0.955      0.087      0.053 
##        aic        bic 
## 171949.419 172416.366
Mc(scalar)
## [1] 0.8080152
summary(scalar, standardized=T, ci=T) # -.044
## lavaan 0.6-18 ended normally after 87 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       104
##   Number of equality constraints                    36
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3135.666    2435.316
##   Degrees of freedom                               112         112
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.288
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1246.913     968.415
##     0                                         1888.753    1466.901
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.306    0.018   17.195    0.000    0.271
##     sspc    (.p2.)    0.194    0.013   15.138    0.000    0.168
##     ssmk    (.p3.)    0.278    0.017   16.309    0.000    0.245
##     ssmc    (.p4.)    0.254    0.016   16.353    0.000    0.223
##     ssao    (.p5.)    0.425    0.021   20.711    0.000    0.385
##   electronic =~                                                
##     ssai    (.p6.)    0.249    0.013   19.614    0.000    0.225
##     sssi    (.p7.)    0.288    0.015   19.631    0.000    0.259
##     ssmc    (.p8.)    0.153    0.009   16.663    0.000    0.135
##     ssei    (.p9.)    0.155    0.008   18.641    0.000    0.139
##   speed =~                                                     
##     ssno    (.10.)    0.619    0.024   26.201    0.000    0.573
##     sscs    (.11.)    0.460    0.019   24.479    0.000    0.423
##     ssmk    (.12.)    0.233    0.010   23.873    0.000    0.213
##   g =~                                                         
##     ssgs    (.13.)    0.820    0.011   71.478    0.000    0.797
##     ssar    (.14.)    0.736    0.012   59.888    0.000    0.712
##     sswk    (.15.)    0.818    0.012   67.296    0.000    0.794
##     sspc    (.16.)    0.767    0.012   66.090    0.000    0.744
##     ssno    (.17.)    0.531    0.013   40.393    0.000    0.505
##     sscs    (.18.)    0.497    0.012   40.850    0.000    0.473
##     ssai    (.19.)    0.495    0.011   44.971    0.000    0.473
##     sssi    (.20.)    0.518    0.011   47.279    0.000    0.496
##     ssmk    (.21.)    0.736    0.012   60.378    0.000    0.712
##     ssmc    (.22.)    0.668    0.011   61.152    0.000    0.647
##     ssei    (.23.)    0.708    0.011   64.514    0.000    0.686
##     ssao    (.24.)    0.589    0.011   51.227    0.000    0.566
##  ci.upper   Std.lv  Std.all
##                            
##     0.341    0.306    0.336
##     0.219    0.194    0.209
##     0.312    0.278    0.300
##     0.284    0.254    0.287
##     0.466    0.425    0.452
##                            
##     0.274    0.249    0.309
##     0.317    0.288    0.354
##     0.171    0.153    0.173
##     0.172    0.155    0.178
##                            
##     0.665    0.619    0.656
##     0.497    0.460    0.490
##     0.252    0.233    0.251
##                            
##     0.842    0.820    0.893
##     0.760    0.736    0.809
##     0.842    0.818    0.892
##     0.790    0.767    0.830
##     0.556    0.531    0.562
##     0.521    0.497    0.529
##     0.516    0.495    0.612
##     0.539    0.518    0.637
##     0.760    0.736    0.794
##     0.689    0.668    0.755
##     0.729    0.708    0.812
##     0.611    0.589    0.626
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.195    0.016   11.978    0.000    0.163
##    .sspc    (.48.)    0.179    0.017   10.574    0.000    0.146
##    .ssmk    (.49.)    0.231    0.018   13.094    0.000    0.196
##    .ssmc    (.50.)    0.050    0.016    3.177    0.001    0.019
##    .ssao    (.51.)    0.191    0.018   10.806    0.000    0.157
##    .ssai    (.52.)   -0.115    0.014   -8.301    0.000   -0.143
##    .sssi    (.53.)   -0.125    0.015   -8.612    0.000   -0.154
##    .ssei    (.54.)   -0.009    0.015   -0.606    0.545   -0.038
##    .ssno    (.55.)    0.204    0.018   11.393    0.000    0.169
##    .sscs    (.56.)    0.187    0.018   10.173    0.000    0.151
##    .ssgs    (.57.)    0.175    0.017   10.424    0.000    0.142
##    .sswk    (.58.)    0.160    0.017    9.335    0.000    0.126
##  ci.upper   Std.lv  Std.all
##     0.227    0.195    0.214
##     0.213    0.179    0.194
##     0.265    0.231    0.249
##     0.081    0.050    0.056
##     0.226    0.191    0.203
##    -0.088   -0.115   -0.143
##    -0.097   -0.125   -0.154
##     0.020   -0.009   -0.010
##     0.239    0.204    0.216
##     0.223    0.187    0.199
##     0.208    0.175    0.191
##     0.194    0.160    0.175
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.193    0.009   22.019    0.000    0.176
##    .sspc              0.228    0.009   26.139    0.000    0.211
##    .ssmk              0.187    0.008   24.232    0.000    0.172
##    .ssmc              0.249    0.010   24.401    0.000    0.229
##    .ssao              0.357    0.017   21.122    0.000    0.324
##    .ssai              0.346    0.012   29.149    0.000    0.323
##    .sssi              0.311    0.012   25.859    0.000    0.287
##    .ssei              0.235    0.008   27.943    0.000    0.218
##    .ssno              0.226    0.021   10.682    0.000    0.185
##    .sscs              0.423    0.018   22.880    0.000    0.387
##    .ssgs              0.170    0.007   25.874    0.000    0.157
##    .sswk              0.171    0.007   25.166    0.000    0.158
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.210    0.193    0.233
##     0.246    0.228    0.267
##     0.202    0.187    0.217
##     0.268    0.249    0.318
##     0.391    0.357    0.404
##     0.369    0.346    0.530
##     0.334    0.311    0.470
##     0.251    0.235    0.309
##     0.268    0.226    0.254
##     0.459    0.423    0.480
##     0.183    0.170    0.202
##     0.185    0.171    0.204
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.306    0.018   17.195    0.000    0.271
##     sspc    (.p2.)    0.194    0.013   15.138    0.000    0.168
##     ssmk    (.p3.)    0.278    0.017   16.309    0.000    0.245
##     ssmc    (.p4.)    0.254    0.016   16.353    0.000    0.223
##     ssao    (.p5.)    0.425    0.021   20.711    0.000    0.385
##   electronic =~                                                
##     ssai    (.p6.)    0.249    0.013   19.614    0.000    0.225
##     sssi    (.p7.)    0.288    0.015   19.631    0.000    0.259
##     ssmc    (.p8.)    0.153    0.009   16.663    0.000    0.135
##     ssei    (.p9.)    0.155    0.008   18.641    0.000    0.139
##   speed =~                                                     
##     ssno    (.10.)    0.619    0.024   26.201    0.000    0.573
##     sscs    (.11.)    0.460    0.019   24.479    0.000    0.423
##     ssmk    (.12.)    0.233    0.010   23.873    0.000    0.213
##   g =~                                                         
##     ssgs    (.13.)    0.820    0.011   71.478    0.000    0.797
##     ssar    (.14.)    0.736    0.012   59.888    0.000    0.712
##     sswk    (.15.)    0.818    0.012   67.296    0.000    0.794
##     sspc    (.16.)    0.767    0.012   66.090    0.000    0.744
##     ssno    (.17.)    0.531    0.013   40.393    0.000    0.505
##     sscs    (.18.)    0.497    0.012   40.850    0.000    0.473
##     ssai    (.19.)    0.495    0.011   44.971    0.000    0.473
##     sssi    (.20.)    0.518    0.011   47.279    0.000    0.496
##     ssmk    (.21.)    0.736    0.012   60.378    0.000    0.712
##     ssmc    (.22.)    0.668    0.011   61.152    0.000    0.647
##     ssei    (.23.)    0.708    0.011   64.514    0.000    0.686
##     ssao    (.24.)    0.589    0.011   51.227    0.000    0.566
##  ci.upper   Std.lv  Std.all
##                            
##     0.341    0.310    0.303
##     0.219    0.196    0.189
##     0.312    0.282    0.276
##     0.284    0.257    0.252
##     0.466    0.431    0.412
##                            
##     0.274    0.549    0.512
##     0.317    0.633    0.612
##     0.171    0.337    0.331
##     0.172    0.342    0.325
##                            
##     0.665    0.678    0.642
##     0.497    0.504    0.487
##     0.252    0.255    0.250
##                            
##     0.842    0.941    0.908
##     0.760    0.844    0.824
##     0.842    0.939    0.908
##     0.790    0.880    0.848
##     0.556    0.609    0.577
##     0.521    0.570    0.551
##     0.516    0.568    0.530
##     0.539    0.594    0.575
##     0.760    0.844    0.828
##     0.689    0.767    0.753
##     0.729    0.812    0.772
##     0.611    0.676    0.646
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.195    0.016   11.978    0.000    0.163
##    .sspc    (.48.)    0.179    0.017   10.574    0.000    0.146
##    .ssmk    (.49.)    0.231    0.018   13.094    0.000    0.196
##    .ssmc    (.50.)    0.050    0.016    3.177    0.001    0.019
##    .ssao    (.51.)    0.191    0.018   10.806    0.000    0.157
##    .ssai    (.52.)   -0.115    0.014   -8.301    0.000   -0.143
##    .sssi    (.53.)   -0.125    0.015   -8.612    0.000   -0.154
##    .ssei    (.54.)   -0.009    0.015   -0.606    0.545   -0.038
##    .ssno    (.55.)    0.204    0.018   11.393    0.000    0.169
##    .sscs    (.56.)    0.187    0.018   10.173    0.000    0.151
##    .ssgs    (.57.)    0.175    0.017   10.424    0.000    0.142
##    .sswk    (.58.)    0.160    0.017    9.335    0.000    0.126
##     math             -0.311    0.054   -5.776    0.000   -0.417
##     elctrnc           1.998    0.116   17.282    0.000    1.772
##     speed            -0.434    0.046   -9.491    0.000   -0.523
##     g                 0.051    0.031    1.656    0.098   -0.009
##  ci.upper   Std.lv  Std.all
##     0.227    0.195    0.191
##     0.213    0.179    0.173
##     0.265    0.231    0.226
##     0.081    0.050    0.049
##     0.226    0.191    0.183
##    -0.088   -0.115   -0.108
##    -0.097   -0.125   -0.121
##     0.020   -0.009   -0.009
##     0.239    0.204    0.193
##     0.223    0.187    0.181
##     0.208    0.175    0.169
##     0.194    0.160    0.155
##    -0.206   -0.307   -0.307
##     2.225    0.909    0.909
##    -0.344   -0.396   -0.396
##     0.111    0.044    0.044
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.240    0.010   24.193    0.000    0.221
##    .sspc              0.265    0.010   27.450    0.000    0.246
##    .ssmk              0.183    0.008   22.457    0.000    0.167
##    .ssmc              0.269    0.011   23.614    0.000    0.247
##    .ssao              0.451    0.018   24.753    0.000    0.416
##    .ssai              0.525    0.019   27.751    0.000    0.488
##    .sssi              0.315    0.015   20.626    0.000    0.285
##    .ssei              0.331    0.012   27.134    0.000    0.307
##    .ssno              0.283    0.028   10.255    0.000    0.229
##    .sscs              0.492    0.022   22.488    0.000    0.449
##    .ssgs              0.188    0.007   25.639    0.000    0.173
##    .sswk              0.188    0.008   24.235    0.000    0.173
##     math              1.024    0.085   11.993    0.000    0.857
##     electronic        4.838    0.525    9.221    0.000    3.809
##     speed             1.199    0.088   13.593    0.000    1.026
##     g                 1.317    0.047   27.924    0.000    1.225
##  ci.upper   Std.lv  Std.all
##     0.259    0.240    0.229
##     0.284    0.265    0.246
##     0.199    0.183    0.176
##     0.291    0.269    0.260
##     0.487    0.451    0.413
##     0.562    0.525    0.457
##     0.345    0.315    0.294
##     0.355    0.331    0.299
##     0.337    0.283    0.254
##     0.535    0.492    0.459
##     0.202    0.188    0.175
##     0.203    0.188    0.176
##     1.192    1.000    1.000
##     5.866    1.000    1.000
##     1.372    1.000    1.000
##     1.410    1.000    1.000
lavTestScore(scalar, release = 25:36) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 822.754 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs      X2 df p.value
## 1  .p47. == .p109. 134.408  1   0.000
## 2  .p48. == .p110. 446.050  1   0.000
## 3  .p49. == .p111.   2.624  1   0.105
## 4  .p50. == .p112.   8.316  1   0.004
## 5  .p51. == .p113.   1.299  1   0.254
## 6  .p52. == .p114.  20.354  1   0.000
## 7  .p53. == .p115.   2.875  1   0.090
## 8  .p54. == .p116.   0.099  1   0.753
## 9  .p55. == .p117. 125.706  1   0.000
## 10 .p56. == .p118. 182.620  1   0.000
## 11 .p57. == .p119. 229.924  1   0.000
## 12 .p58. == .p120.  33.331  1   0.000
scalar2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "sswk~1")) # RMSEAD bad unless sswk freed
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2369.324    109.000      0.000      0.967      0.076      0.050 
##        aic        bic 
## 171189.077 171676.624
Mc(scalar2)
## [1] 0.8526916
summary(scalar2, standardized=T, ci=T) # -.167 but -.090 if sswk is not freed
## lavaan 0.6-18 ended normally after 91 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       104
##   Number of equality constraints                    33
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2369.324    1826.952
##   Degrees of freedom                               109         109
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.297
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          869.314     670.315
##     0                                         1500.011    1156.637
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.320    0.018   18.261    0.000    0.286
##     sspc    (.p2.)    0.158    0.011   13.866    0.000    0.136
##     ssmk    (.p3.)    0.280    0.017   16.853    0.000    0.248
##     ssmc    (.p4.)    0.248    0.016   15.765    0.000    0.218
##     ssao    (.p5.)    0.431    0.022   19.883    0.000    0.388
##   electronic =~                                                
##     ssai    (.p6.)    0.256    0.013   19.733    0.000    0.231
##     sssi    (.p7.)    0.297    0.015   19.487    0.000    0.267
##     ssmc    (.p8.)    0.146    0.009   16.191    0.000    0.128
##     ssei    (.p9.)    0.147    0.008   17.790    0.000    0.131
##   speed =~                                                     
##     ssno    (.10.)    0.687    0.026   26.580    0.000    0.636
##     sscs    (.11.)    0.415    0.017   23.771    0.000    0.381
##     ssmk    (.12.)    0.210    0.010   21.216    0.000    0.191
##   g =~                                                         
##     ssgs    (.13.)    0.819    0.011   72.004    0.000    0.797
##     ssar    (.14.)    0.736    0.012   60.103    0.000    0.712
##     sswk    (.15.)    0.818    0.012   67.762    0.000    0.795
##     sspc    (.16.)    0.775    0.011   67.784    0.000    0.753
##     ssno    (.17.)    0.530    0.013   40.411    0.000    0.504
##     sscs    (.18.)    0.500    0.012   41.326    0.000    0.476
##     ssai    (.19.)    0.494    0.011   44.775    0.000    0.472
##     sssi    (.20.)    0.518    0.011   47.354    0.000    0.497
##     ssmk    (.21.)    0.738    0.012   60.620    0.000    0.714
##     ssmc    (.22.)    0.671    0.011   61.569    0.000    0.650
##     ssei    (.23.)    0.707    0.011   64.466    0.000    0.686
##     ssao    (.24.)    0.587    0.011   51.481    0.000    0.565
##  ci.upper   Std.lv  Std.all
##                            
##     0.355    0.320    0.352
##     0.180    0.158    0.173
##     0.313    0.280    0.302
##     0.279    0.248    0.280
##     0.473    0.431    0.457
##                            
##     0.282    0.256    0.317
##     0.327    0.297    0.365
##     0.164    0.146    0.165
##     0.163    0.147    0.169
##                            
##     0.737    0.687    0.725
##     0.449    0.415    0.446
##     0.229    0.210    0.226
##                            
##     0.841    0.819    0.895
##     0.760    0.736    0.808
##     0.842    0.818    0.892
##     0.798    0.775    0.846
##     0.555    0.530    0.560
##     0.524    0.500    0.537
##     0.515    0.494    0.611
##     0.540    0.518    0.636
##     0.762    0.738    0.796
##     0.692    0.671    0.757
##     0.729    0.707    0.812
##     0.610    0.587    0.623
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.157    0.017    9.478    0.000    0.124
##    .sspc              0.284    0.017   16.543    0.000    0.251
##    .ssmk    (.49.)    0.239    0.017   13.681    0.000    0.205
##    .ssmc    (.50.)    0.042    0.016    2.680    0.007    0.011
##    .ssao    (.51.)    0.164    0.018    9.254    0.000    0.129
##    .ssai    (.52.)   -0.111    0.014   -8.013    0.000   -0.138
##    .sssi    (.53.)   -0.116    0.015   -7.894    0.000   -0.144
##    .ssei    (.54.)   -0.021    0.015   -1.434    0.152   -0.050
##    .ssno              0.173    0.018    9.602    0.000    0.138
##    .sscs    (.56.)    0.253    0.017   14.543    0.000    0.219
##    .ssgs    (.57.)    0.120    0.017    7.179    0.000    0.087
##    .sswk              0.181    0.017   10.369    0.000    0.147
##  ci.upper   Std.lv  Std.all
##     0.189    0.157    0.172
##     0.318    0.284    0.310
##     0.273    0.239    0.258
##     0.072    0.042    0.047
##     0.199    0.164    0.174
##    -0.084   -0.111   -0.137
##    -0.087   -0.116   -0.142
##     0.008   -0.021   -0.024
##     0.209    0.173    0.183
##     0.288    0.253    0.272
##     0.152    0.120    0.131
##     0.216    0.181    0.198
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.185    0.009   20.784    0.000    0.168
##    .sspc              0.214    0.008   26.443    0.000    0.198
##    .ssmk              0.192    0.008   24.924    0.000    0.177
##    .ssmc              0.252    0.010   24.650    0.000    0.232
##    .ssao              0.358    0.018   19.941    0.000    0.323
##    .ssai              0.343    0.012   28.839    0.000    0.320
##    .sssi              0.307    0.012   25.101    0.000    0.283
##    .ssei              0.237    0.008   28.175    0.000    0.220
##    .ssno              0.144    0.027    5.410    0.000    0.092
##    .sscs              0.445    0.017   25.811    0.000    0.411
##    .ssgs              0.167    0.006   26.488    0.000    0.155
##    .sswk              0.171    0.007   25.677    0.000    0.158
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.203    0.185    0.223
##     0.230    0.214    0.255
##     0.208    0.192    0.224
##     0.272    0.252    0.320
##     0.393    0.358    0.403
##     0.367    0.343    0.526
##     0.331    0.307    0.463
##     0.253    0.237    0.312
##     0.196    0.144    0.161
##     0.479    0.445    0.513
##     0.179    0.167    0.199
##     0.184    0.171    0.204
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.320    0.018   18.261    0.000    0.286
##     sspc    (.p2.)    0.158    0.011   13.866    0.000    0.136
##     ssmk    (.p3.)    0.280    0.017   16.853    0.000    0.248
##     ssmc    (.p4.)    0.248    0.016   15.765    0.000    0.218
##     ssao    (.p5.)    0.431    0.022   19.883    0.000    0.388
##   electronic =~                                                
##     ssai    (.p6.)    0.256    0.013   19.733    0.000    0.231
##     sssi    (.p7.)    0.297    0.015   19.487    0.000    0.267
##     ssmc    (.p8.)    0.146    0.009   16.191    0.000    0.128
##     ssei    (.p9.)    0.147    0.008   17.790    0.000    0.131
##   speed =~                                                     
##     ssno    (.10.)    0.687    0.026   26.580    0.000    0.636
##     sscs    (.11.)    0.415    0.017   23.771    0.000    0.381
##     ssmk    (.12.)    0.210    0.010   21.216    0.000    0.191
##   g =~                                                         
##     ssgs    (.13.)    0.819    0.011   72.004    0.000    0.797
##     ssar    (.14.)    0.736    0.012   60.103    0.000    0.712
##     sswk    (.15.)    0.818    0.012   67.762    0.000    0.795
##     sspc    (.16.)    0.775    0.011   67.784    0.000    0.753
##     ssno    (.17.)    0.530    0.013   40.411    0.000    0.504
##     sscs    (.18.)    0.500    0.012   41.326    0.000    0.476
##     ssai    (.19.)    0.494    0.011   44.775    0.000    0.472
##     sssi    (.20.)    0.518    0.011   47.354    0.000    0.497
##     ssmk    (.21.)    0.738    0.012   60.620    0.000    0.714
##     ssmc    (.22.)    0.671    0.011   61.569    0.000    0.650
##     ssei    (.23.)    0.707    0.011   64.466    0.000    0.686
##     ssao    (.24.)    0.587    0.011   51.481    0.000    0.565
##  ci.upper   Std.lv  Std.all
##                            
##     0.355    0.323    0.315
##     0.180    0.159    0.155
##     0.313    0.283    0.277
##     0.279    0.250    0.247
##     0.473    0.434    0.415
##                            
##     0.282    0.561    0.522
##     0.327    0.650    0.626
##     0.164    0.320    0.315
##     0.163    0.322    0.307
##                            
##     0.737    0.752    0.710
##     0.449    0.455    0.444
##     0.229    0.230    0.226
##                            
##     0.841    0.939    0.909
##     0.760    0.844    0.824
##     0.842    0.939    0.907
##     0.798    0.889    0.862
##     0.555    0.608    0.574
##     0.524    0.574    0.560
##     0.515    0.566    0.527
##     0.540    0.594    0.573
##     0.762    0.847    0.830
##     0.692    0.770    0.758
##     0.729    0.811    0.774
##     0.610    0.674    0.644
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.157    0.017    9.478    0.000    0.124
##    .sspc             -0.050    0.019   -2.646    0.008   -0.087
##    .ssmk    (.49.)    0.239    0.017   13.681    0.000    0.205
##    .ssmc    (.50.)    0.042    0.016    2.680    0.007    0.011
##    .ssao    (.51.)    0.164    0.018    9.254    0.000    0.129
##    .ssai    (.52.)   -0.111    0.014   -8.013    0.000   -0.138
##    .sssi    (.53.)   -0.116    0.015   -7.894    0.000   -0.144
##    .ssei    (.54.)   -0.021    0.015   -1.434    0.152   -0.050
##    .ssno              0.575    0.047   12.322    0.000    0.484
##    .sscs    (.56.)    0.253    0.017   14.543    0.000    0.219
##    .ssgs    (.57.)    0.120    0.017    7.179    0.000    0.087
##    .sswk              0.023    0.020    1.155    0.248   -0.016
##     math             -0.357    0.045   -7.916    0.000   -0.446
##     elctrnc           1.628    0.100   16.232    0.000    1.432
##     speed            -0.988    0.062  -16.041    0.000   -1.108
##     g                 0.191    0.031    6.237    0.000    0.131
##  ci.upper   Std.lv  Std.all
##     0.189    0.157    0.153
##    -0.013   -0.050   -0.049
##     0.273    0.239    0.235
##     0.072    0.042    0.041
##     0.199    0.164    0.157
##    -0.084   -0.111   -0.103
##    -0.087   -0.116   -0.111
##     0.008   -0.021   -0.020
##     0.667    0.575    0.543
##     0.288    0.253    0.247
##     0.152    0.120    0.116
##     0.061    0.023    0.022
##    -0.269   -0.355   -0.355
##     1.825    0.744    0.744
##    -0.867   -0.902   -0.902
##     0.251    0.167    0.167
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.232    0.010   23.062    0.000    0.212
##    .sspc              0.248    0.009   28.610    0.000    0.231
##    .ssmk              0.190    0.008   22.887    0.000    0.174
##    .ssmc              0.274    0.011   24.128    0.000    0.252
##    .ssao              0.452    0.019   23.445    0.000    0.414
##    .ssai              0.521    0.019   26.835    0.000    0.483
##    .sssi              0.301    0.016   18.569    0.000    0.269
##    .ssei              0.336    0.012   27.519    0.000    0.312
##    .ssno              0.186    0.034    5.459    0.000    0.119
##    .sscs              0.515    0.021   24.691    0.000    0.474
##    .ssgs              0.184    0.007   26.525    0.000    0.171
##    .sswk              0.189    0.008   24.525    0.000    0.174
##     math              1.016    0.083   12.181    0.000    0.853
##     electronic        4.785    0.513    9.320    0.000    3.779
##     speed             1.200    0.086   13.921    0.000    1.031
##     g                 1.315    0.047   28.117    0.000    1.224
##  ci.upper   Std.lv  Std.all
##     0.252    0.232    0.221
##     0.265    0.248    0.233
##     0.206    0.190    0.183
##     0.297    0.274    0.266
##     0.490    0.452    0.413
##     0.559    0.521    0.451
##     0.333    0.301    0.280
##     0.360    0.336    0.306
##     0.253    0.186    0.166
##     0.556    0.515    0.490
##     0.198    0.184    0.173
##     0.205    0.189    0.177
##     1.180    1.000    1.000
##     5.791    1.000    1.000
##     1.369    1.000    1.000
##     1.407    1.000    1.000
lavTestScore(scalar2, release = 25:33) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to 
##    ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 73.549  9       0
## 
## $uni
## 
## univariate score tests:
## 
##     lhs op    rhs     X2 df p.value
## 1 .p47. == .p109.  6.349  1   0.012
## 2 .p49. == .p111. 21.444  1   0.000
## 3 .p50. == .p112.  0.570  1   0.450
## 4 .p51. == .p113. 43.004  1   0.000
## 5 .p52. == .p114.  9.737  1   0.002
## 6 .p53. == .p115. 18.720  1   0.000
## 7 .p54. == .p116.  7.830  1   0.005
## 8 .p56. == .p118. 21.444  1   0.000
## 9 .p57. == .p119.  0.010  1   0.920
strict<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1", "ssno~1", "sswk~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2668.434    121.000      0.000      0.962      0.077      0.053 
##        aic        bic 
## 171464.186 171869.331
Mc(strict)
## [1] 0.8356051
summary(strict, standardized=T, ci=T) # -.165
## lavaan 0.6-18 ended normally after 92 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       104
##   Number of equality constraints                    45
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2668.434    2045.448
##   Degrees of freedom                               121         121
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.305
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1062.451     814.406
##     0                                         1605.983    1231.042
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.308    0.019   16.574    0.000    0.271
##     sspc    (.p2.)    0.155    0.011   13.868    0.000    0.133
##     ssmk    (.p3.)    0.269    0.018   15.304    0.000    0.235
##     ssmc    (.p4.)    0.238    0.016   15.355    0.000    0.208
##     ssao    (.p5.)    0.415    0.021   19.333    0.000    0.373
##   electronic =~                                                
##     ssai    (.p6.)    0.243    0.014   16.951    0.000    0.214
##     sssi    (.p7.)    0.258    0.017   15.259    0.000    0.225
##     ssmc    (.p8.)    0.130    0.010   13.614    0.000    0.111
##     ssei    (.p9.)    0.136    0.009   15.362    0.000    0.119
##   speed =~                                                     
##     ssno    (.10.)    0.682    0.026   26.150    0.000    0.631
##     sscs    (.11.)    0.404    0.017   23.780    0.000    0.371
##     ssmk    (.12.)    0.205    0.010   20.653    0.000    0.185
##   g =~                                                         
##     ssgs    (.13.)    0.818    0.011   71.875    0.000    0.796
##     ssar    (.14.)    0.736    0.012   60.181    0.000    0.712
##     sswk    (.15.)    0.816    0.012   67.501    0.000    0.792
##     sspc    (.16.)    0.773    0.011   67.615    0.000    0.751
##     ssno    (.17.)    0.529    0.013   40.432    0.000    0.504
##     sscs    (.18.)    0.499    0.012   41.228    0.000    0.475
##     ssai    (.19.)    0.491    0.011   44.118    0.000    0.469
##     sssi    (.20.)    0.518    0.011   47.394    0.000    0.497
##     ssmk    (.21.)    0.738    0.012   60.440    0.000    0.714
##     ssmc    (.22.)    0.671    0.011   61.362    0.000    0.649
##     ssei    (.23.)    0.716    0.011   65.264    0.000    0.694
##     ssao    (.24.)    0.587    0.011   51.301    0.000    0.564
##  ci.upper   Std.lv  Std.all
##                            
##     0.344    0.308    0.334
##     0.177    0.155    0.168
##     0.304    0.269    0.292
##     0.269    0.238    0.268
##     0.457    0.415    0.432
##                            
##     0.271    0.243    0.287
##     0.291    0.258    0.318
##     0.149    0.130    0.147
##     0.154    0.136    0.151
##                            
##     0.733    0.682    0.718
##     0.438    0.404    0.427
##     0.224    0.205    0.222
##                            
##     0.841    0.818    0.890
##     0.760    0.736    0.800
##     0.839    0.816    0.887
##     0.796    0.773    0.837
##     0.555    0.529    0.558
##     0.523    0.499    0.527
##     0.513    0.491    0.581
##     0.539    0.518    0.637
##     0.762    0.738    0.799
##     0.692    0.671    0.756
##     0.737    0.716    0.794
##     0.609    0.587    0.611
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.158    0.017    9.487    0.000    0.125
##    .sspc              0.284    0.017   16.543    0.000    0.251
##    .ssmk    (.49.)    0.239    0.018   13.639    0.000    0.205
##    .ssmc    (.50.)    0.044    0.016    2.806    0.005    0.013
##    .ssao    (.51.)    0.159    0.018    8.888    0.000    0.124
##    .ssai    (.52.)   -0.123    0.014   -8.879    0.000   -0.150
##    .sssi    (.53.)   -0.105    0.015   -7.177    0.000   -0.134
##    .ssei    (.54.)   -0.026    0.015   -1.776    0.076   -0.056
##    .ssno              0.173    0.018    9.602    0.000    0.138
##    .sscs    (.56.)    0.252    0.017   14.490    0.000    0.218
##    .ssgs    (.57.)    0.120    0.017    7.232    0.000    0.088
##    .sswk              0.181    0.017   10.369    0.000    0.147
##  ci.upper   Std.lv  Std.all
##     0.190    0.158    0.171
##     0.318    0.284    0.308
##     0.273    0.239    0.259
##     0.074    0.044    0.049
##     0.194    0.159    0.166
##    -0.096   -0.123   -0.145
##    -0.077   -0.105   -0.130
##     0.003   -0.026   -0.029
##     0.209    0.173    0.183
##     0.286    0.252    0.266
##     0.153    0.120    0.131
##     0.216    0.181    0.197
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.25.)    0.210    0.008   25.633    0.000    0.194
##    .sspc    (.26.)    0.231    0.006   38.680    0.000    0.219
##    .ssmk    (.27.)    0.193    0.007   28.822    0.000    0.180
##    .ssmc    (.28.)    0.264    0.008   31.131    0.000    0.248
##    .ssao    (.29.)    0.405    0.017   24.114    0.000    0.372
##    .ssai    (.30.)    0.414    0.012   35.172    0.000    0.391
##    .sssi    (.31.)    0.326    0.011   30.830    0.000    0.305
##    .ssei    (.32.)    0.283    0.007   38.509    0.000    0.268
##    .ssno    (.33.)    0.155    0.029    5.339    0.000    0.098
##    .sscs    (.34.)    0.484    0.015   32.615    0.000    0.455
##    .ssgs    (.35.)    0.175    0.005   36.143    0.000    0.166
##    .sswk    (.36.)    0.181    0.005   34.790    0.000    0.171
##     math              1.000                               1.000
##     elctrnc           1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.226    0.210    0.248
##     0.243    0.231    0.271
##     0.206    0.193    0.226
##     0.281    0.264    0.336
##     0.438    0.405    0.440
##     0.437    0.414    0.580
##     0.347    0.326    0.493
##     0.297    0.283    0.348
##     0.212    0.155    0.173
##     0.513    0.484    0.540
##     0.185    0.175    0.207
##     0.191    0.181    0.214
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.308    0.019   16.574    0.000    0.271
##     sspc    (.p2.)    0.155    0.011   13.868    0.000    0.133
##     ssmk    (.p3.)    0.269    0.018   15.304    0.000    0.235
##     ssmc    (.p4.)    0.238    0.016   15.355    0.000    0.208
##     ssao    (.p5.)    0.415    0.021   19.333    0.000    0.373
##   electronic =~                                                
##     ssai    (.p6.)    0.243    0.014   16.951    0.000    0.214
##     sssi    (.p7.)    0.258    0.017   15.259    0.000    0.225
##     ssmc    (.p8.)    0.130    0.010   13.614    0.000    0.111
##     ssei    (.p9.)    0.136    0.009   15.362    0.000    0.119
##   speed =~                                                     
##     ssno    (.10.)    0.682    0.026   26.150    0.000    0.631
##     sscs    (.11.)    0.404    0.017   23.780    0.000    0.371
##     ssmk    (.12.)    0.205    0.010   20.653    0.000    0.185
##   g =~                                                         
##     ssgs    (.13.)    0.818    0.011   71.875    0.000    0.796
##     ssar    (.14.)    0.736    0.012   60.181    0.000    0.712
##     sswk    (.15.)    0.816    0.012   67.501    0.000    0.792
##     sspc    (.16.)    0.773    0.011   67.615    0.000    0.751
##     ssno    (.17.)    0.529    0.013   40.432    0.000    0.504
##     sscs    (.18.)    0.499    0.012   41.228    0.000    0.475
##     ssai    (.19.)    0.491    0.011   44.118    0.000    0.469
##     sssi    (.20.)    0.518    0.011   47.394    0.000    0.497
##     ssmk    (.21.)    0.738    0.012   60.440    0.000    0.714
##     ssmc    (.22.)    0.671    0.011   61.362    0.000    0.649
##     ssei    (.23.)    0.716    0.011   65.264    0.000    0.694
##     ssao    (.24.)    0.587    0.011   51.301    0.000    0.564
##  ci.upper   Std.lv  Std.all
##                            
##     0.344    0.333    0.327
##     0.177    0.168    0.164
##     0.304    0.291    0.284
##     0.269    0.258    0.254
##     0.457    0.449    0.436
##                            
##     0.271    0.600    0.574
##     0.291    0.638    0.612
##     0.149    0.322    0.317
##     0.154    0.337    0.325
##                            
##     0.733    0.770    0.728
##     0.438    0.457    0.452
##     0.224    0.231    0.226
##                            
##     0.841    0.941    0.914
##     0.760    0.847    0.831
##     0.839    0.938    0.911
##     0.796    0.889    0.868
##     0.555    0.609    0.575
##     0.523    0.574    0.568
##     0.513    0.565    0.540
##     0.539    0.596    0.571
##     0.762    0.848    0.827
##     0.692    0.771    0.760
##     0.737    0.823    0.794
##     0.609    0.675    0.655
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.158    0.017    9.487    0.000    0.125
##    .sspc             -0.048    0.019   -2.556    0.011   -0.085
##    .ssmk    (.49.)    0.239    0.018   13.639    0.000    0.205
##    .ssmc    (.50.)    0.044    0.016    2.806    0.005    0.013
##    .ssao    (.51.)    0.159    0.018    8.888    0.000    0.124
##    .ssai    (.52.)   -0.123    0.014   -8.879    0.000   -0.150
##    .sssi    (.53.)   -0.105    0.015   -7.177    0.000   -0.134
##    .ssei    (.54.)   -0.026    0.015   -1.776    0.076   -0.056
##    .ssno              0.588    0.049   12.041    0.000    0.492
##    .sscs    (.56.)    0.252    0.017   14.490    0.000    0.218
##    .ssgs    (.57.)    0.120    0.017    7.232    0.000    0.088
##    .sswk              0.025    0.020    1.253    0.210   -0.014
##     math             -0.366    0.048   -7.687    0.000   -0.459
##     elctrnc           1.799    0.129   13.899    0.000    1.545
##     speed            -1.012    0.064  -15.727    0.000   -1.138
##     g                 0.190    0.031    6.201    0.000    0.130
##  ci.upper   Std.lv  Std.all
##     0.190    0.158    0.155
##    -0.011   -0.048   -0.047
##     0.273    0.239    0.233
##     0.074    0.044    0.043
##     0.194    0.159    0.154
##    -0.096   -0.123   -0.118
##    -0.077   -0.105   -0.101
##     0.003   -0.026   -0.026
##     0.684    0.588    0.556
##     0.286    0.252    0.250
##     0.153    0.120    0.117
##     0.063    0.025    0.024
##    -0.273   -0.338   -0.338
##     2.052    0.728    0.728
##    -0.886   -0.896   -0.896
##     0.249    0.165    0.165
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.25.)    0.210    0.008   25.633    0.000    0.194
##    .sspc    (.26.)    0.231    0.006   38.680    0.000    0.219
##    .ssmk    (.27.)    0.193    0.007   28.822    0.000    0.180
##    .ssmc    (.28.)    0.264    0.008   31.131    0.000    0.248
##    .ssao    (.29.)    0.405    0.017   24.114    0.000    0.372
##    .ssai    (.30.)    0.414    0.012   35.172    0.000    0.391
##    .sssi    (.31.)    0.326    0.011   30.830    0.000    0.305
##    .ssei    (.32.)    0.283    0.007   38.509    0.000    0.268
##    .ssno    (.33.)    0.155    0.029    5.339    0.000    0.098
##    .sscs    (.34.)    0.484    0.015   32.615    0.000    0.455
##    .ssgs    (.35.)    0.175    0.005   36.143    0.000    0.166
##    .sswk    (.36.)    0.181    0.005   34.790    0.000    0.171
##     math              1.170    0.096   12.219    0.000    0.982
##     elctrnc           6.112    0.798    7.661    0.000    4.548
##     speed             1.276    0.083   15.392    0.000    1.113
##     g                 1.322    0.047   28.136    0.000    1.230
##  ci.upper   Std.lv  Std.all
##     0.226    0.210    0.202
##     0.243    0.231    0.220
##     0.206    0.193    0.183
##     0.281    0.264    0.257
##     0.438    0.405    0.382
##     0.437    0.414    0.379
##     0.347    0.326    0.299
##     0.297    0.283    0.263
##     0.212    0.155    0.139
##     0.513    0.484    0.474
##     0.185    0.175    0.165
##     0.191    0.181    0.171
##     1.358    1.000    1.000
##     7.676    1.000    1.000
##     1.438    1.000    1.000
##     1.414    1.000    1.000
latent<-cfa(bf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "sswk~1"))
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2369.380    110.000      0.000      0.967      0.076      0.050 
##        aic        bic 
## 171187.133 171667.813
Mc(latent)
## [1] 0.8527484
summary(latent, standardized=T, ci=T) # -.167
## lavaan 0.6-18 ended normally after 82 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       103
##   Number of equality constraints                    33
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2369.380    1825.375
##   Degrees of freedom                               110         110
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.298
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          869.326     669.730
##     0                                         1500.055    1155.645
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.322    0.016   19.584    0.000    0.289
##     sspc    (.p2.)    0.159    0.011   13.792    0.000    0.136
##     ssmk    (.p3.)    0.281    0.015   18.165    0.000    0.251
##     ssmc    (.p4.)    0.249    0.015   16.160    0.000    0.219
##     ssao    (.p5.)    0.432    0.020   21.393    0.000    0.393
##   electronic =~                                                
##     ssai    (.p6.)    0.256    0.013   19.733    0.000    0.231
##     sssi    (.p7.)    0.297    0.015   19.488    0.000    0.267
##     ssmc    (.p8.)    0.146    0.009   16.186    0.000    0.128
##     ssei    (.p9.)    0.147    0.008   17.792    0.000    0.131
##   speed =~                                                     
##     ssno    (.10.)    0.687    0.026   26.572    0.000    0.636
##     sscs    (.11.)    0.415    0.017   23.783    0.000    0.381
##     ssmk    (.12.)    0.210    0.010   21.235    0.000    0.191
##   g =~                                                         
##     ssgs    (.13.)    0.819    0.011   72.067    0.000    0.797
##     ssar    (.14.)    0.736    0.012   60.161    0.000    0.712
##     sswk    (.15.)    0.818    0.012   67.806    0.000    0.795
##     sspc    (.16.)    0.775    0.011   67.805    0.000    0.753
##     ssno    (.17.)    0.530    0.013   40.407    0.000    0.504
##     sscs    (.18.)    0.500    0.012   41.317    0.000    0.476
##     ssai    (.19.)    0.494    0.011   44.780    0.000    0.472
##     sssi    (.20.)    0.518    0.011   47.376    0.000    0.497
##     ssmk    (.21.)    0.738    0.012   60.664    0.000    0.714
##     ssmc    (.22.)    0.671    0.011   61.593    0.000    0.650
##     ssei    (.23.)    0.707    0.011   64.484    0.000    0.686
##     ssao    (.24.)    0.587    0.011   51.530    0.000    0.565
##  ci.upper   Std.lv  Std.all
##                            
##     0.354    0.322    0.353
##     0.181    0.159    0.173
##     0.312    0.281    0.303
##     0.280    0.249    0.281
##     0.472    0.432    0.458
##                            
##     0.282    0.256    0.317
##     0.327    0.297    0.365
##     0.164    0.146    0.165
##     0.163    0.147    0.169
##                            
##     0.737    0.687    0.725
##     0.449    0.415    0.446
##     0.229    0.210    0.226
##                            
##     0.841    0.819    0.895
##     0.760    0.736    0.808
##     0.842    0.818    0.892
##     0.798    0.775    0.846
##     0.555    0.530    0.560
##     0.524    0.500    0.537
##     0.515    0.494    0.611
##     0.539    0.518    0.636
##     0.762    0.738    0.796
##     0.692    0.671    0.757
##     0.729    0.707    0.812
##     0.610    0.587    0.623
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.157    0.017    9.477    0.000    0.124
##    .sspc              0.284    0.017   16.543    0.000    0.251
##    .ssmk    (.49.)    0.239    0.017   13.681    0.000    0.205
##    .ssmc    (.50.)    0.042    0.016    2.681    0.007    0.011
##    .ssao    (.51.)    0.164    0.018    9.254    0.000    0.129
##    .ssai    (.52.)   -0.111    0.014   -8.013    0.000   -0.138
##    .sssi    (.53.)   -0.116    0.015   -7.894    0.000   -0.144
##    .ssei    (.54.)   -0.021    0.015   -1.434    0.152   -0.050
##    .ssno              0.173    0.018    9.602    0.000    0.138
##    .sscs    (.56.)    0.253    0.017   14.541    0.000    0.219
##    .ssgs    (.57.)    0.120    0.017    7.179    0.000    0.087
##    .sswk              0.181    0.017   10.369    0.000    0.147
##  ci.upper   Std.lv  Std.all
##     0.189    0.157    0.172
##     0.318    0.284    0.310
##     0.273    0.239    0.258
##     0.072    0.042    0.047
##     0.199    0.164    0.174
##    -0.084   -0.111   -0.137
##    -0.087   -0.116   -0.142
##     0.008   -0.021   -0.024
##     0.209    0.173    0.183
##     0.288    0.253    0.272
##     0.152    0.120    0.131
##     0.216    0.181    0.198
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.185    0.009   20.801    0.000    0.168
##    .sspc              0.214    0.008   26.447    0.000    0.198
##    .ssmk              0.192    0.008   24.973    0.000    0.177
##    .ssmc              0.252    0.010   24.636    0.000    0.231
##    .ssao              0.358    0.018   19.949    0.000    0.323
##    .ssai              0.343    0.012   28.836    0.000    0.320
##    .sssi              0.307    0.012   25.100    0.000    0.283
##    .ssei              0.237    0.008   28.164    0.000    0.220
##    .ssno              0.144    0.027    5.411    0.000    0.092
##    .sscs              0.445    0.017   25.811    0.000    0.411
##    .ssgs              0.167    0.006   26.468    0.000    0.155
##    .sswk              0.171    0.007   25.665    0.000    0.158
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.202    0.185    0.223
##     0.230    0.214    0.255
##     0.207    0.192    0.223
##     0.272    0.252    0.320
##     0.393    0.358    0.402
##     0.367    0.343    0.526
##     0.331    0.307    0.463
##     0.253    0.237    0.312
##     0.197    0.144    0.161
##     0.479    0.445    0.513
##     0.179    0.167    0.199
##     0.184    0.171    0.203
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.322    0.016   19.584    0.000    0.289
##     sspc    (.p2.)    0.159    0.011   13.792    0.000    0.136
##     ssmk    (.p3.)    0.281    0.015   18.165    0.000    0.251
##     ssmc    (.p4.)    0.249    0.015   16.160    0.000    0.219
##     ssao    (.p5.)    0.432    0.020   21.393    0.000    0.393
##   electronic =~                                                
##     ssai    (.p6.)    0.256    0.013   19.733    0.000    0.231
##     sssi    (.p7.)    0.297    0.015   19.488    0.000    0.267
##     ssmc    (.p8.)    0.146    0.009   16.186    0.000    0.128
##     ssei    (.p9.)    0.147    0.008   17.792    0.000    0.131
##   speed =~                                                     
##     ssno    (.10.)    0.687    0.026   26.572    0.000    0.636
##     sscs    (.11.)    0.415    0.017   23.783    0.000    0.381
##     ssmk    (.12.)    0.210    0.010   21.235    0.000    0.191
##   g =~                                                         
##     ssgs    (.13.)    0.819    0.011   72.067    0.000    0.797
##     ssar    (.14.)    0.736    0.012   60.161    0.000    0.712
##     sswk    (.15.)    0.818    0.012   67.806    0.000    0.795
##     sspc    (.16.)    0.775    0.011   67.805    0.000    0.753
##     ssno    (.17.)    0.530    0.013   40.407    0.000    0.504
##     sscs    (.18.)    0.500    0.012   41.317    0.000    0.476
##     ssai    (.19.)    0.494    0.011   44.780    0.000    0.472
##     sssi    (.20.)    0.518    0.011   47.376    0.000    0.497
##     ssmk    (.21.)    0.738    0.012   60.664    0.000    0.714
##     ssmc    (.22.)    0.671    0.011   61.593    0.000    0.650
##     ssei    (.23.)    0.707    0.011   64.484    0.000    0.686
##     ssao    (.24.)    0.587    0.011   51.530    0.000    0.565
##  ci.upper   Std.lv  Std.all
##                            
##     0.354    0.322    0.314
##     0.181    0.159    0.154
##     0.312    0.281    0.276
##     0.280    0.249    0.246
##     0.472    0.432    0.413
##                            
##     0.282    0.561    0.522
##     0.327    0.650    0.626
##     0.164    0.320    0.315
##     0.163    0.322    0.307
##                            
##     0.737    0.752    0.710
##     0.449    0.455    0.444
##     0.229    0.230    0.226
##                            
##     0.841    0.939    0.909
##     0.760    0.844    0.825
##     0.842    0.939    0.907
##     0.798    0.889    0.862
##     0.555    0.608    0.574
##     0.524    0.574    0.560
##     0.515    0.566    0.527
##     0.539    0.594    0.573
##     0.762    0.847    0.831
##     0.692    0.770    0.758
##     0.729    0.811    0.774
##     0.610    0.674    0.644
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.47.)    0.157    0.017    9.477    0.000    0.124
##    .sspc             -0.050    0.019   -2.649    0.008   -0.087
##    .ssmk    (.49.)    0.239    0.017   13.681    0.000    0.205
##    .ssmc    (.50.)    0.042    0.016    2.681    0.007    0.011
##    .ssao    (.51.)    0.164    0.018    9.254    0.000    0.129
##    .ssai    (.52.)   -0.111    0.014   -8.013    0.000   -0.138
##    .sssi    (.53.)   -0.116    0.015   -7.894    0.000   -0.144
##    .ssei    (.54.)   -0.021    0.015   -1.434    0.152   -0.050
##    .ssno              0.575    0.047   12.320    0.000    0.484
##    .sscs    (.56.)    0.253    0.017   14.541    0.000    0.219
##    .ssgs    (.57.)    0.120    0.017    7.179    0.000    0.087
##    .sswk              0.023    0.020    1.156    0.248   -0.016
##     math             -0.356    0.044   -8.104    0.000   -0.442
##     elctrnc           1.628    0.100   16.232    0.000    1.432
##     speed            -0.988    0.062  -16.048    0.000   -1.108
##     g                 0.191    0.031    6.237    0.000    0.131
##  ci.upper   Std.lv  Std.all
##     0.189    0.157    0.153
##    -0.013   -0.050   -0.049
##     0.273    0.239    0.235
##     0.072    0.042    0.041
##     0.199    0.164    0.157
##    -0.084   -0.111   -0.103
##    -0.087   -0.116   -0.111
##     0.008   -0.021   -0.020
##     0.667    0.575    0.543
##     0.288    0.253    0.247
##     0.152    0.120    0.116
##     0.061    0.023    0.022
##    -0.270   -0.356   -0.356
##     1.825    0.744    0.744
##    -0.867   -0.902   -0.902
##     0.251    0.167    0.167
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.232    0.010   23.098    0.000    0.212
##    .sspc              0.248    0.009   28.610    0.000    0.231
##    .ssmk              0.190    0.008   22.877    0.000    0.174
##    .ssmc              0.274    0.011   24.161    0.000    0.252
##    .ssao              0.452    0.019   23.669    0.000    0.415
##    .ssai              0.521    0.019   26.834    0.000    0.483
##    .sssi              0.301    0.016   18.568    0.000    0.269
##    .ssei              0.336    0.012   27.522    0.000    0.312
##    .ssno              0.186    0.034    5.464    0.000    0.119
##    .sscs              0.515    0.021   24.716    0.000    0.474
##    .ssgs              0.185    0.007   26.598    0.000    0.171
##    .sswk              0.190    0.008   24.731    0.000    0.175
##     electronic        4.785    0.513    9.320    0.000    3.779
##     speed             1.200    0.086   13.954    0.000    1.031
##     g                 1.315    0.047   28.156    0.000    1.224
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.252    0.232    0.221
##     0.265    0.248    0.233
##     0.206    0.190    0.183
##     0.297    0.274    0.266
##     0.490    0.452    0.414
##     0.559    0.521    0.451
##     0.333    0.301    0.280
##     0.360    0.336    0.306
##     0.253    0.186    0.166
##     0.556    0.515    0.490
##     0.198    0.185    0.173
##     0.205    0.190    0.177
##     5.791    1.000    1.000
##     1.368    1.000    1.000
##     1.407    1.000    1.000
standardizedSolution(latent) # get the correct SEs for standardized solution
##           lhs op        rhs group label est.std    se       z pvalue
## 1        math =~       ssar     1  .p1.   0.353 0.018  19.414  0.000
## 2        math =~       sspc     1  .p2.   0.173 0.013  13.757  0.000
## 3        math =~       ssmk     1  .p3.   0.303 0.017  17.976  0.000
## 4        math =~       ssmc     1  .p4.   0.281 0.017  16.270  0.000
## 5        math =~       ssao     1  .p5.   0.458 0.021  21.747  0.000
## 6  electronic =~       ssai     1  .p6.   0.317 0.015  20.477  0.000
## 7  electronic =~       sssi     1  .p7.   0.365 0.018  20.295  0.000
## 8  electronic =~       ssmc     1  .p8.   0.165 0.010  16.248  0.000
## 9  electronic =~       ssei     1  .p9.   0.169 0.010  17.682  0.000
## 10      speed =~       ssno     1 .p10.   0.725 0.024  30.705  0.000
## 11      speed =~       sscs     1 .p11.   0.446 0.017  25.553  0.000
## 12      speed =~       ssmk     1 .p12.   0.226 0.011  20.980  0.000
## 13          g =~       ssgs     1 .p13.   0.895 0.004 206.645  0.000
## 14          g =~       ssar     1 .p14.   0.808 0.007 121.918  0.000
## 15          g =~       sswk     1 .p15.   0.892 0.005 192.795  0.000
## 16          g =~       sspc     1 .p16.   0.846 0.006 132.616  0.000
## 17          g =~       ssno     1 .p17.   0.560 0.013  42.764  0.000
## 18          g =~       sscs     1 .p18.   0.537 0.011  46.763  0.000
## 19          g =~       ssai     1 .p19.   0.611 0.011  58.105  0.000
## 20          g =~       sssi     1 .p20.   0.636 0.010  63.977  0.000
## 21          g =~       ssmk     1 .p21.   0.796 0.007 116.463  0.000
## 22          g =~       ssmc     1 .p22.   0.757 0.007 101.129  0.000
## 23          g =~       ssei     1 .p23.   0.812 0.006 141.246  0.000
## 24          g =~       ssao     1 .p24.   0.623 0.010  62.431  0.000
## 25       math ~~       math     1         1.000 0.000      NA     NA
## 26       ssar ~~       ssar     1         0.223 0.011  21.134  0.000
## 27       sspc ~~       sspc     1         0.255 0.010  26.625  0.000
## 28       ssmk ~~       ssmk     1         0.223 0.009  24.425  0.000
## 29       ssmc ~~       ssmc     1         0.320 0.012  26.597  0.000
## 30       ssao ~~       ssao     1         0.402 0.019  21.114  0.000
## 31       ssai ~~       ssai     1         0.526 0.014  36.760  0.000
## 32       sssi ~~       sssi     1         0.463 0.016  29.429  0.000
## 33       ssei ~~       ssei     1         0.312 0.009  34.289  0.000
## 34       ssno ~~       ssno     1         0.161 0.030   5.379  0.000
## 35       sscs ~~       sscs     1         0.513 0.016  31.437  0.000
## 36       ssgs ~~       ssgs     1         0.199 0.008  25.717  0.000
## 37       sswk ~~       sswk     1         0.203 0.008  24.628  0.000
## 38 electronic ~~ electronic     1         1.000 0.000      NA     NA
## 39      speed ~~      speed     1         1.000 0.000      NA     NA
## 40          g ~~          g     1         1.000 0.000      NA     NA
## 41       math ~~ electronic     1         0.000 0.000      NA     NA
## 42       math ~~      speed     1         0.000 0.000      NA     NA
## 43       math ~~          g     1         0.000 0.000      NA     NA
## 44 electronic ~~      speed     1         0.000 0.000      NA     NA
## 45 electronic ~~          g     1         0.000 0.000      NA     NA
## 46      speed ~~          g     1         0.000 0.000      NA     NA
## 47       ssar ~1                1 .p47.   0.172 0.019   9.257  0.000
## 48       sspc ~1                1         0.310 0.019  15.935  0.000
## 49       ssmk ~1                1 .p49.   0.258 0.019  13.396  0.000
## 50       ssmc ~1                1 .p50.   0.047 0.018   2.661  0.008
## 51       ssao ~1                1 .p51.   0.174 0.019   9.188  0.000
## 52       ssai ~1                1 .p52.  -0.137 0.017  -7.975  0.000
## 53       sssi ~1                1 .p53.  -0.142 0.018  -7.755  0.000
## 54       ssei ~1                1 .p54.  -0.024 0.017  -1.432  0.152
## 55       ssno ~1                1         0.183 0.020   9.366  0.000
## 56       sscs ~1                1 .p56.   0.272 0.019  14.290  0.000
## 57       ssgs ~1                1 .p57.   0.131 0.018   7.173  0.000
## 58       sswk ~1                1         0.198 0.019  10.293  0.000
## 59       math ~1                1         0.000 0.000      NA     NA
## 60 electronic ~1                1         0.000 0.000      NA     NA
## 61      speed ~1                1         0.000 0.000      NA     NA
## 62          g ~1                1         0.000 0.000      NA     NA
## 63       math =~       ssar     2  .p1.   0.314 0.016  19.418  0.000
## 64       math =~       sspc     2  .p2.   0.154 0.011  13.726  0.000
## 65       math =~       ssmk     2  .p3.   0.276 0.015  17.853  0.000
## 66       math =~       ssmc     2  .p4.   0.246 0.015  16.185  0.000
## 67       math =~       ssao     2  .p5.   0.413 0.019  21.401  0.000
## 68 electronic =~       ssai     2  .p6.   0.522 0.017  30.250  0.000
## 69 electronic =~       sssi     2  .p7.   0.626 0.014  45.388  0.000
## 70 electronic =~       ssmc     2  .p8.   0.315 0.013  24.983  0.000
## 71 electronic =~       ssei     2  .p9.   0.307 0.015  20.956  0.000
## 72      speed =~       ssno     2 .p10.   0.710 0.023  30.317  0.000
## 73      speed =~       sscs     2 .p11.   0.444 0.016  27.019  0.000
## 74      speed =~       ssmk     2 .p12.   0.226 0.011  20.809  0.000
## 75          g =~       ssgs     2 .p13.   0.909 0.004 233.953  0.000
## 76          g =~       ssar     2 .p14.   0.825 0.006 136.566  0.000
## 77          g =~       sswk     2 .p15.   0.907 0.004 228.966  0.000
## 78          g =~       sspc     2 .p16.   0.862 0.005 165.678  0.000
## 79          g =~       ssno     2 .p17.   0.574 0.012  46.192  0.000
## 80          g =~       sscs     2 .p18.   0.560 0.011  50.540  0.000
## 81          g =~       ssai     2 .p19.   0.527 0.012  44.235  0.000
## 82          g =~       sssi     2 .p20.   0.573 0.011  51.882  0.000
## 83          g =~       ssmk     2 .p21.   0.831 0.006 149.095  0.000
## 84          g =~       ssmc     2 .p22.   0.758 0.008  98.282  0.000
## 85          g =~       ssei     2 .p23.   0.774 0.008  94.353  0.000
## 86          g =~       ssao     2 .p24.   0.644 0.009  68.942  0.000
## 87       math ~~       math     2         1.000 0.000      NA     NA
## 88       ssar ~~       ssar     2         0.221 0.010  23.242  0.000
## 89       sspc ~~       sspc     2         0.233 0.008  28.749  0.000
## 90       ssmk ~~       ssmk     2         0.183 0.008  22.897  0.000
##    ci.lower ci.upper
## 1     0.317    0.389
## 2     0.148    0.198
## 3     0.270    0.336
## 4     0.248    0.315
## 5     0.417    0.499
## 6     0.287    0.348
## 7     0.329    0.400
## 8     0.145    0.185
## 9     0.150    0.188
## 10    0.679    0.771
## 11    0.412    0.480
## 12    0.205    0.248
## 13    0.886    0.903
## 14    0.795    0.821
## 15    0.883    0.902
## 16    0.833    0.858
## 17    0.534    0.585
## 18    0.515    0.560
## 19    0.590    0.632
## 20    0.616    0.655
## 21    0.782    0.809
## 22    0.743    0.772
## 23    0.801    0.823
## 24    0.603    0.642
## 25    1.000    1.000
## 26    0.202    0.244
## 27    0.236    0.273
## 28    0.206    0.241
## 29    0.297    0.344
## 30    0.365    0.440
## 31    0.498    0.554
## 32    0.432    0.494
## 33    0.294    0.330
## 34    0.102    0.220
## 35    0.481    0.545
## 36    0.184    0.214
## 37    0.187    0.220
## 38    1.000    1.000
## 39    1.000    1.000
## 40    1.000    1.000
## 41    0.000    0.000
## 42    0.000    0.000
## 43    0.000    0.000
## 44    0.000    0.000
## 45    0.000    0.000
## 46    0.000    0.000
## 47    0.136    0.209
## 48    0.272    0.348
## 49    0.220    0.296
## 50    0.012    0.082
## 51    0.137    0.211
## 52   -0.171   -0.103
## 53   -0.178   -0.106
## 54   -0.057    0.009
## 55    0.145    0.221
## 56    0.235    0.309
## 57    0.095    0.166
## 58    0.160    0.235
## 59    0.000    0.000
## 60    0.000    0.000
## 61    0.000    0.000
## 62    0.000    0.000
## 63    0.282    0.346
## 64    0.132    0.176
## 65    0.246    0.306
## 66    0.216    0.275
## 67    0.375    0.451
## 68    0.488    0.555
## 69    0.599    0.654
## 70    0.290    0.339
## 71    0.279    0.336
## 72    0.664    0.756
## 73    0.411    0.476
## 74    0.204    0.247
## 75    0.902    0.917
## 76    0.813    0.836
## 77    0.899    0.915
## 78    0.852    0.872
## 79    0.550    0.598
## 80    0.538    0.581
## 81    0.503    0.550
## 82    0.551    0.594
## 83    0.820    0.841
## 84    0.743    0.773
## 85    0.758    0.790
## 86    0.626    0.663
## 87    1.000    1.000
## 88    0.203    0.240
## 89    0.217    0.249
## 90    0.167    0.199
##  [ reached 'max' / getOption("max.print") -- omitted 34 rows ]
reduced<-cfa(bf.reduced, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "sswk~1"))
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   2416.081    110.000      0.000      0.966      0.077      0.054 
##        aic        bic 
## 171233.833 171714.514
Mc(reduced)
## [1] 0.8499453
summary(reduced, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 88 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       103
##   Number of equality constraints                    33
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2416.081    1865.567
##   Degrees of freedom                               110         110
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.295
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          892.070     688.809
##     0                                         1524.010    1176.759
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.321    0.018   17.874    0.000    0.286
##     sspc    (.p2.)    0.158    0.011   13.851    0.000    0.136
##     ssmk    (.p3.)    0.282    0.017   16.726    0.000    0.249
##     ssmc    (.p4.)    0.248    0.016   15.367    0.000    0.217
##     ssao    (.p5.)    0.428    0.022   19.177    0.000    0.385
##   electronic =~                                                
##     ssai    (.p6.)    0.256    0.013   19.720    0.000    0.230
##     sssi    (.p7.)    0.296    0.015   19.514    0.000    0.266
##     ssmc    (.p8.)    0.146    0.009   16.220    0.000    0.128
##     ssei    (.p9.)    0.149    0.008   18.019    0.000    0.133
##   speed =~                                                     
##     ssno    (.10.)    0.687    0.026   26.592    0.000    0.636
##     sscs    (.11.)    0.415    0.017   23.709    0.000    0.380
##     ssmk    (.12.)    0.210    0.010   21.221    0.000    0.191
##   g =~                                                         
##     ssgs    (.13.)    0.822    0.011   71.750    0.000    0.799
##     ssar    (.14.)    0.738    0.012   59.830    0.000    0.714
##     sswk    (.15.)    0.820    0.012   67.670    0.000    0.797
##     sspc    (.16.)    0.777    0.012   67.553    0.000    0.755
##     ssno    (.17.)    0.531    0.013   40.360    0.000    0.505
##     sscs    (.18.)    0.502    0.012   41.246    0.000    0.478
##     ssai    (.19.)    0.495    0.011   44.769    0.000    0.473
##     sssi    (.20.)    0.519    0.011   47.270    0.000    0.497
##     ssmk    (.21.)    0.740    0.012   60.278    0.000    0.716
##     ssmc    (.22.)    0.673    0.011   61.329    0.000    0.651
##     ssei    (.23.)    0.709    0.011   64.326    0.000    0.688
##     ssao    (.24.)    0.589    0.011   51.351    0.000    0.567
##  ci.upper   Std.lv  Std.all
##                            
##     0.356    0.321    0.352
##     0.180    0.158    0.172
##     0.315    0.282    0.303
##     0.280    0.248    0.280
##     0.472    0.428    0.454
##                            
##     0.281    0.256    0.316
##     0.326    0.296    0.363
##     0.163    0.146    0.164
##     0.166    0.149    0.171
##                            
##     0.737    0.687    0.725
##     0.449    0.415    0.445
##     0.230    0.210    0.226
##                            
##     0.844    0.822    0.895
##     0.762    0.738    0.809
##     0.844    0.820    0.893
##     0.800    0.777    0.847
##     0.557    0.531    0.561
##     0.526    0.502    0.538
##     0.517    0.495    0.612
##     0.540    0.519    0.636
##     0.764    0.740    0.796
##     0.694    0.673    0.758
##     0.731    0.709    0.813
##     0.612    0.589    0.625
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     g                 0.000                               0.000
##    .ssar    (.48.)    0.211    0.014   14.933    0.000    0.183
##    .sspc              0.339    0.015   22.754    0.000    0.310
##    .ssmk    (.50.)    0.291    0.015   19.021    0.000    0.261
##    .ssmc    (.51.)    0.088    0.014    6.343    0.000    0.061
##    .ssao    (.52.)    0.202    0.017   12.063    0.000    0.169
##    .ssai    (.53.)   -0.076    0.013   -5.927    0.000   -0.101
##    .sssi    (.54.)   -0.080    0.014   -5.861    0.000   -0.107
##    .ssei    (.55.)    0.032    0.013    2.556    0.011    0.008
##    .ssno              0.211    0.017   12.237    0.000    0.177
##    .sscs    (.57.)    0.289    0.017   17.339    0.000    0.256
##    .ssgs    (.58.)    0.190    0.013   14.960    0.000    0.165
##    .sswk              0.239    0.015   16.208    0.000    0.210
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.239    0.211    0.231
##     0.368    0.339    0.369
##     0.321    0.291    0.314
##     0.115    0.088    0.099
##     0.235    0.202    0.214
##    -0.051   -0.076   -0.094
##    -0.053   -0.080   -0.099
##     0.057    0.032    0.037
##     0.245    0.211    0.222
##     0.321    0.289    0.310
##     0.215    0.190    0.207
##     0.268    0.239    0.260
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.185    0.009   20.491    0.000    0.167
##    .sspc              0.214    0.008   26.441    0.000    0.198
##    .ssmk              0.192    0.008   24.625    0.000    0.177
##    .ssmc              0.252    0.010   24.525    0.000    0.232
##    .ssao              0.360    0.018   19.766    0.000    0.324
##    .ssai              0.344    0.012   28.875    0.000    0.320
##    .sssi              0.308    0.012   25.204    0.000    0.284
##    .ssei              0.236    0.008   28.133    0.000    0.220
##    .ssno              0.144    0.027    5.400    0.000    0.092
##    .sscs              0.445    0.017   25.826    0.000    0.411
##    .ssgs              0.167    0.006   26.450    0.000    0.155
##    .sswk              0.171    0.007   25.672    0.000    0.158
##     math              1.000                               1.000
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##     g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     0.203    0.185    0.222
##     0.230    0.214    0.254
##     0.207    0.192    0.223
##     0.272    0.252    0.320
##     0.395    0.360    0.404
##     0.367    0.344    0.525
##     0.332    0.308    0.463
##     0.253    0.236    0.310
##     0.196    0.144    0.160
##     0.479    0.445    0.512
##     0.179    0.167    0.198
##     0.184    0.171    0.203
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.321    0.018   17.874    0.000    0.286
##     sspc    (.p2.)    0.158    0.011   13.851    0.000    0.136
##     ssmk    (.p3.)    0.282    0.017   16.726    0.000    0.249
##     ssmc    (.p4.)    0.248    0.016   15.367    0.000    0.217
##     ssao    (.p5.)    0.428    0.022   19.177    0.000    0.385
##   electronic =~                                                
##     ssai    (.p6.)    0.256    0.013   19.720    0.000    0.230
##     sssi    (.p7.)    0.296    0.015   19.514    0.000    0.266
##     ssmc    (.p8.)    0.146    0.009   16.220    0.000    0.128
##     ssei    (.p9.)    0.149    0.008   18.019    0.000    0.133
##   speed =~                                                     
##     ssno    (.10.)    0.687    0.026   26.592    0.000    0.636
##     sscs    (.11.)    0.415    0.017   23.709    0.000    0.380
##     ssmk    (.12.)    0.210    0.010   21.221    0.000    0.191
##   g =~                                                         
##     ssgs    (.13.)    0.822    0.011   71.750    0.000    0.799
##     ssar    (.14.)    0.738    0.012   59.830    0.000    0.714
##     sswk    (.15.)    0.820    0.012   67.670    0.000    0.797
##     sspc    (.16.)    0.777    0.012   67.553    0.000    0.755
##     ssno    (.17.)    0.531    0.013   40.360    0.000    0.505
##     sscs    (.18.)    0.502    0.012   41.246    0.000    0.478
##     ssai    (.19.)    0.495    0.011   44.769    0.000    0.473
##     sssi    (.20.)    0.519    0.011   47.270    0.000    0.497
##     ssmk    (.21.)    0.740    0.012   60.278    0.000    0.716
##     ssmc    (.22.)    0.673    0.011   61.329    0.000    0.651
##     ssei    (.23.)    0.709    0.011   64.326    0.000    0.688
##     ssao    (.24.)    0.589    0.011   51.351    0.000    0.567
##  ci.upper   Std.lv  Std.all
##                            
##     0.356    0.323    0.315
##     0.180    0.159    0.154
##     0.315    0.284    0.278
##     0.280    0.250    0.246
##     0.472    0.432    0.412
##                            
##     0.281    0.560    0.521
##     0.326    0.649    0.625
##     0.163    0.319    0.314
##     0.166    0.327    0.311
##                            
##     0.737    0.752    0.710
##     0.449    0.454    0.443
##     0.230    0.230    0.225
##                            
##     0.844    0.943    0.910
##     0.762    0.847    0.825
##     0.844    0.941    0.908
##     0.800    0.892    0.863
##     0.557    0.609    0.575
##     0.526    0.576    0.561
##     0.517    0.568    0.528
##     0.540    0.595    0.574
##     0.764    0.849    0.831
##     0.694    0.772    0.759
##     0.731    0.814    0.775
##     0.612    0.676    0.646
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##     g                 0.000                               0.000
##   speed ~~                                                     
##     g                 0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     g                 0.000                               0.000
##    .ssar    (.48.)    0.211    0.014   14.933    0.000    0.183
##    .sspc              0.020    0.015    1.308    0.191   -0.010
##    .ssmk    (.50.)    0.291    0.015   19.021    0.000    0.261
##    .ssmc    (.51.)    0.088    0.014    6.343    0.000    0.061
##    .ssao    (.52.)    0.202    0.017   12.063    0.000    0.169
##    .ssai    (.53.)   -0.076    0.013   -5.927    0.000   -0.101
##    .sssi    (.54.)   -0.080    0.014   -5.861    0.000   -0.107
##    .ssei    (.55.)    0.032    0.013    2.556    0.011    0.008
##    .ssno              0.604    0.046   13.260    0.000    0.515
##    .sscs    (.57.)    0.289    0.017   17.339    0.000    0.256
##    .ssgs    (.58.)    0.190    0.013   14.960    0.000    0.165
##    .sswk              0.106    0.015    7.309    0.000    0.078
##     math             -0.301    0.044   -6.767    0.000   -0.388
##     elctrnc           1.697    0.103   16.418    0.000    1.495
##     speed            -0.951    0.060  -15.835    0.000   -1.068
##  ci.upper   Std.lv  Std.all
##     0.000    0.000    0.000
##     0.239    0.211    0.206
##     0.050    0.020    0.019
##     0.321    0.291    0.285
##     0.115    0.088    0.087
##     0.235    0.202    0.193
##    -0.051   -0.076   -0.071
##    -0.053   -0.080   -0.077
##     0.057    0.032    0.031
##     0.693    0.604    0.570
##     0.321    0.289    0.281
##     0.215    0.190    0.183
##     0.135    0.106    0.102
##    -0.214   -0.299   -0.299
##     1.900    0.775    0.775
##    -0.833   -0.868   -0.868
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar              0.232    0.010   22.741    0.000    0.212
##    .sspc              0.248    0.009   28.604    0.000    0.231
##    .ssmk              0.190    0.008   22.554    0.000    0.173
##    .ssmc              0.275    0.011   24.009    0.000    0.252
##    .ssao              0.454    0.020   23.138    0.000    0.415
##    .ssai              0.521    0.019   26.989    0.000    0.483
##    .sssi              0.302    0.016   18.879    0.000    0.271
##    .ssei              0.335    0.012   27.459    0.000    0.311
##    .ssno              0.186    0.034    5.453    0.000    0.119
##    .sscs              0.515    0.021   24.691    0.000    0.474
##    .ssgs              0.185    0.007   26.492    0.000    0.171
##    .sswk              0.189    0.008   24.514    0.000    0.174
##     math              1.016    0.083   12.173    0.000    0.852
##     electronic        4.803    0.516    9.308    0.000    3.792
##     speed             1.200    0.086   13.923    0.000    1.031
##     g                 1.317    0.047   27.961    0.000    1.224
##  ci.upper   Std.lv  Std.all
##     0.252    0.232    0.220
##     0.265    0.248    0.232
##     0.206    0.190    0.182
##     0.297    0.275    0.265
##     0.492    0.454    0.413
##     0.559    0.521    0.450
##     0.334    0.302    0.281
##     0.359    0.335    0.303
##     0.253    0.186    0.166
##     0.556    0.515    0.489
##     0.198    0.185    0.172
##     0.204    0.189    0.176
##     1.179    1.000    1.000
##     5.814    1.000    1.000
##     1.368    1.000    1.000
##     1.409    1.000    1.000
tests<-lavTestLRT(configural, metric, scalar2, reduced)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 201.61105  57.55581  42.46979
dfd=tests[2:4,"Df diff"]
dfd
## [1] 20  5  1
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3503+ 3590 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05060779 0.05444859 0.10815016
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04439061 0.05706437
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.04232668 0.06750731
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.08181647 0.13706082
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.577     0.008     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.741     0.255     0.001     0.000
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.998     0.960     0.713
tests<-lavTestLRT(configural, metric, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 201.61105319  57.55580921   0.03923921
dfd=tests[2:4,"Df diff"]
dfd
## [1] 20  5  1
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3503+ 3590 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.05060779 0.05444859        NaN
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.04232668 0.06750731
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]         NA 0.02557208
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.741     0.255     0.001     0.000
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.157     0.132     0.002     0.000     0.000     0.000
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 201.61105  57.55581 217.61233
dfd=tests[2:4,"Df diff"]
dfd
## [1] 20  5 12
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3503+ 3590 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05060779 0.05444859 0.06951767
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04439061 0.05706437
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.04232668 0.06750731
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.06159157 0.07775209
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.577     0.008     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.741     0.255     0.001     0.000
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.976     0.018     0.000
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1] 201.6111 726.7885
dfd=tests[2:3,"Df diff"]
dfd
## [1] 20  8
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3503+ 3590 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05060779 0.15919039
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04439061 0.05706437
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1494990 0.1690784
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.577     0.008     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
bf.age<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
g ~ agec
'

bf.ageq<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
g ~ c(a,a)*agec
'

bf.age2<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
g ~ agec+agec2
'

bf.age2q<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei  
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao 
math~~1*math
g ~ c(a,a)*agec+c(b,b)*agec2
'

sem.age<-sem(bf.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "sswk~1"))
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   3457.618    132.000      0.000      0.952      0.084      0.053 
##       ecvi        aic        bic 
##      0.508 170321.378 170815.792
Mc(sem.age)
## [1] 0.7909958
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 81 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       105
##   Number of equality constraints                    33
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3457.618    2665.997
##   Degrees of freedom                               132         132
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.297
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1309.684    1009.832
##     0                                         2147.933    1656.164
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.322    0.016   19.747    0.000    0.290
##     sspc    (.p2.)    0.162    0.012   14.114    0.000    0.140
##     ssmk    (.p3.)    0.276    0.015   18.246    0.000    0.247
##     ssmc    (.p4.)    0.255    0.015   16.899    0.000    0.226
##     ssao    (.p5.)    0.436    0.020   22.233    0.000    0.398
##   electronic =~                                                
##     ssai    (.p6.)    0.254    0.013   19.736    0.000    0.229
##     sssi    (.p7.)    0.297    0.015   19.436    0.000    0.267
##     ssmc    (.p8.)    0.147    0.009   16.144    0.000    0.130
##     ssei    (.p9.)    0.146    0.008   17.713    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.687    0.026   26.194    0.000    0.635
##     sscs    (.11.)    0.411    0.018   23.466    0.000    0.376
##     ssmk    (.12.)    0.207    0.010   21.058    0.000    0.188
##   g =~                                                         
##     ssgs    (.13.)    0.765    0.011   68.875    0.000    0.743
##     ssar    (.14.)    0.688    0.012   57.886    0.000    0.665
##     sswk    (.15.)    0.767    0.012   65.864    0.000    0.744
##     sspc    (.16.)    0.724    0.011   64.192    0.000    0.702
##     ssno    (.17.)    0.498    0.012   40.216    0.000    0.474
##     sscs    (.18.)    0.471    0.011   41.518    0.000    0.448
##     ssai    (.19.)    0.465    0.010   45.445    0.000    0.445
##     sssi    (.20.)    0.486    0.010   46.584    0.000    0.465
##     ssmk    (.21.)    0.694    0.011   60.397    0.000    0.671
##     ssmc    (.22.)    0.627    0.011   58.807    0.000    0.606
##     ssei    (.23.)    0.664    0.011   62.777    0.000    0.643
##     ssao    (.24.)    0.549    0.011   49.840    0.000    0.527
##  ci.upper   Std.lv  Std.all
##                            
##     0.354    0.322    0.354
##     0.185    0.162    0.177
##     0.306    0.276    0.298
##     0.285    0.255    0.288
##     0.475    0.436    0.463
##                            
##     0.280    0.254    0.314
##     0.327    0.297    0.365
##     0.165    0.147    0.166
##     0.162    0.146    0.167
##                            
##     0.738    0.687    0.726
##     0.445    0.411    0.441
##     0.227    0.207    0.223
##                            
##     0.787    0.817    0.893
##     0.711    0.735    0.806
##     0.789    0.819    0.893
##     0.747    0.774    0.844
##     0.522    0.532    0.562
##     0.493    0.502    0.540
##     0.485    0.497    0.614
##     0.506    0.519    0.636
##     0.716    0.741    0.798
##     0.648    0.669    0.755
##     0.684    0.709    0.813
##     0.571    0.586    0.622
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.260    0.014   18.686    0.000    0.233
##  ci.upper   Std.lv  Std.all
##                            
##     0.288    0.244    0.351
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.164    0.016   10.309    0.000    0.133
##    .sspc              0.292    0.017   17.640    0.000    0.259
##    .ssmk    (.48.)    0.246    0.016   15.140    0.000    0.214
##    .ssmc    (.49.)    0.048    0.015    3.190    0.001    0.019
##    .ssao    (.50.)    0.171    0.017    9.811    0.000    0.137
##    .ssai    (.51.)   -0.105    0.013   -7.970    0.000   -0.131
##    .sssi    (.52.)   -0.112    0.014   -7.841    0.000   -0.139
##    .ssei    (.53.)   -0.014    0.014   -1.003    0.316   -0.041
##    .ssno              0.179    0.017   10.268    0.000    0.144
##    .sscs    (.55.)    0.259    0.017   15.623    0.000    0.227
##    .ssgs    (.56.)    0.127    0.016    8.019    0.000    0.096
##    .sswk              0.189    0.016   11.534    0.000    0.157
##  ci.upper   Std.lv  Std.all
##     0.196    0.164    0.180
##     0.324    0.292    0.318
##     0.277    0.246    0.265
##     0.078    0.048    0.054
##     0.205    0.171    0.181
##    -0.079   -0.105   -0.130
##    -0.084   -0.112   -0.137
##     0.013   -0.014   -0.016
##     0.213    0.179    0.189
##     0.292    0.259    0.278
##     0.158    0.127    0.139
##     0.221    0.189    0.206
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.186    0.009   20.947    0.000    0.169
##    .sspc              0.215    0.008   26.514    0.000    0.199
##    .ssmk              0.193    0.008   25.531    0.000    0.178
##    .ssmc              0.251    0.010   24.542    0.000    0.231
##    .ssao              0.356    0.018   20.092    0.000    0.321
##    .ssai              0.343    0.012   28.861    0.000    0.319
##    .sssi              0.307    0.012   25.058    0.000    0.283
##    .ssei              0.236    0.008   28.198    0.000    0.219
##    .ssno              0.141    0.027    5.207    0.000    0.088
##    .sscs              0.446    0.017   25.874    0.000    0.412
##    .ssgs              0.169    0.006   26.895    0.000    0.157
##    .sswk              0.170    0.007   25.561    0.000    0.157
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.204    0.186    0.224
##     0.231    0.215    0.256
##     0.208    0.193    0.224
##     0.271    0.251    0.319
##     0.390    0.356    0.400
##     0.366    0.343    0.524
##     0.331    0.307    0.462
##     0.252    0.236    0.310
##     0.195    0.141    0.158
##     0.479    0.446    0.514
##     0.181    0.169    0.202
##     0.183    0.170    0.203
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.877    0.877
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.322    0.016   19.747    0.000    0.290
##     sspc    (.p2.)    0.162    0.012   14.114    0.000    0.140
##     ssmk    (.p3.)    0.276    0.015   18.246    0.000    0.247
##     ssmc    (.p4.)    0.255    0.015   16.899    0.000    0.226
##     ssao    (.p5.)    0.436    0.020   22.233    0.000    0.398
##   electronic =~                                                
##     ssai    (.p6.)    0.254    0.013   19.736    0.000    0.229
##     sssi    (.p7.)    0.297    0.015   19.436    0.000    0.267
##     ssmc    (.p8.)    0.147    0.009   16.144    0.000    0.130
##     ssei    (.p9.)    0.146    0.008   17.713    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.687    0.026   26.194    0.000    0.635
##     sscs    (.11.)    0.411    0.018   23.466    0.000    0.376
##     ssmk    (.12.)    0.207    0.010   21.058    0.000    0.188
##   g =~                                                         
##     ssgs    (.13.)    0.765    0.011   68.875    0.000    0.743
##     ssar    (.14.)    0.688    0.012   57.886    0.000    0.665
##     sswk    (.15.)    0.767    0.012   65.864    0.000    0.744
##     sspc    (.16.)    0.724    0.011   64.192    0.000    0.702
##     ssno    (.17.)    0.498    0.012   40.216    0.000    0.474
##     sscs    (.18.)    0.471    0.011   41.518    0.000    0.448
##     ssai    (.19.)    0.465    0.010   45.445    0.000    0.445
##     sssi    (.20.)    0.486    0.010   46.584    0.000    0.465
##     ssmk    (.21.)    0.694    0.011   60.397    0.000    0.671
##     ssmc    (.22.)    0.627    0.011   58.807    0.000    0.606
##     ssei    (.23.)    0.664    0.011   62.777    0.000    0.643
##     ssao    (.24.)    0.549    0.011   49.840    0.000    0.527
##  ci.upper   Std.lv  Std.all
##                            
##     0.354    0.322    0.315
##     0.185    0.162    0.158
##     0.306    0.276    0.271
##     0.285    0.255    0.251
##     0.475    0.436    0.417
##                            
##     0.280    0.554    0.516
##     0.327    0.648    0.625
##     0.165    0.321    0.316
##     0.162    0.318    0.303
##                            
##     0.738    0.753    0.711
##     0.445    0.450    0.439
##     0.227    0.227    0.223
##                            
##     0.787    0.938    0.908
##     0.711    0.843    0.823
##     0.789    0.939    0.908
##     0.747    0.888    0.861
##     0.522    0.610    0.576
##     0.493    0.576    0.562
##     0.485    0.570    0.531
##     0.506    0.595    0.574
##     0.716    0.850    0.833
##     0.648    0.768    0.756
##     0.684    0.813    0.776
##     0.571    0.673    0.643
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.299    0.016   18.744    0.000    0.267
##  ci.upper   Std.lv  Std.all
##                            
##     0.330    0.244    0.350
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.164    0.016   10.309    0.000    0.133
##    .sspc             -0.041    0.018   -2.258    0.024   -0.077
##    .ssmk    (.48.)    0.246    0.016   15.140    0.000    0.214
##    .ssmc    (.49.)    0.048    0.015    3.190    0.001    0.019
##    .ssao    (.50.)    0.171    0.017    9.811    0.000    0.137
##    .ssai    (.51.)   -0.105    0.013   -7.970    0.000   -0.131
##    .sssi    (.52.)   -0.112    0.014   -7.841    0.000   -0.139
##    .ssei    (.53.)   -0.014    0.014   -1.003    0.316   -0.041
##    .ssno              0.592    0.047   12.465    0.000    0.499
##    .sscs    (.55.)    0.259    0.017   15.623    0.000    0.227
##    .ssgs    (.56.)    0.127    0.016    8.019    0.000    0.096
##    .sswk              0.030    0.019    1.565    0.118   -0.007
##     math             -0.359    0.043   -8.271    0.000   -0.445
##     elctrnc           1.631    0.101   16.220    0.000    1.434
##     speed            -1.005    0.063  -15.966    0.000   -1.128
##    .g                 0.215    0.031    6.908    0.000    0.154
##  ci.upper   Std.lv  Std.all
##     0.196    0.164    0.161
##    -0.005   -0.041   -0.040
##     0.277    0.246    0.241
##     0.078    0.048    0.047
##     0.205    0.171    0.163
##    -0.079   -0.105   -0.098
##    -0.084   -0.112   -0.108
##     0.013   -0.014   -0.013
##     0.685    0.592    0.559
##     0.292    0.259    0.253
##     0.158    0.127    0.123
##     0.067    0.030    0.029
##    -0.274   -0.359   -0.359
##     1.828    0.749    0.749
##    -0.882   -0.916   -0.916
##     0.276    0.175    0.175
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.233    0.010   23.296    0.000    0.214
##    .sspc              0.249    0.009   28.660    0.000    0.232
##    .ssmk              0.191    0.008   23.461    0.000    0.175
##    .ssmc              0.273    0.011   23.983    0.000    0.251
##    .ssao              0.450    0.019   23.867    0.000    0.413
##    .ssai              0.522    0.019   27.023    0.000    0.484
##    .sssi              0.300    0.016   18.537    0.000    0.269
##    .ssei              0.336    0.012   27.561    0.000    0.312
##    .ssno              0.182    0.035    5.245    0.000    0.114
##    .sscs              0.516    0.021   24.789    0.000    0.476
##    .ssgs              0.188    0.007   26.995    0.000    0.174
##    .sswk              0.189    0.008   24.853    0.000    0.174
##     electronic        4.744    0.510    9.295    0.000    3.743
##     speed             1.203    0.087   13.847    0.000    1.033
##    .g                 1.317    0.048   27.178    0.000    1.222
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.253    0.233    0.223
##     0.266    0.249    0.234
##     0.207    0.191    0.183
##     0.295    0.273    0.265
##     0.487    0.450    0.412
##     0.560    0.522    0.453
##     0.332    0.300    0.280
##     0.360    0.336    0.306
##     0.250    0.182    0.162
##     0.557    0.516    0.491
##     0.201    0.188    0.176
##     0.204    0.189    0.176
##     5.744    1.000    1.000
##     1.373    1.000    1.000
##     1.412    0.877    0.877
sem.ageq<-sem(bf.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "sswk~1"))
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   3461.936    133.000      0.000      0.952      0.084      0.055 
##       ecvi        aic        bic 
##      0.508 170323.696 170811.243
Mc(sem.ageq)
## [1] 0.7908108
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 84 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       105
##   Number of equality constraints                    34
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3461.936    2670.778
##   Degrees of freedom                               133         133
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.296
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1311.035    1011.423
##     0                                         2150.901    1659.355
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.322    0.016   19.743    0.000    0.290
##     sspc    (.p2.)    0.162    0.012   14.111    0.000    0.140
##     ssmk    (.p3.)    0.276    0.015   18.242    0.000    0.247
##     ssmc    (.p4.)    0.255    0.015   16.905    0.000    0.226
##     ssao    (.p5.)    0.436    0.020   22.237    0.000    0.398
##   electronic =~                                                
##     ssai    (.p6.)    0.254    0.013   19.742    0.000    0.229
##     sssi    (.p7.)    0.297    0.015   19.430    0.000    0.267
##     ssmc    (.p8.)    0.147    0.009   16.143    0.000    0.130
##     ssei    (.p9.)    0.146    0.008   17.723    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.687    0.026   26.175    0.000    0.635
##     sscs    (.11.)    0.411    0.017   23.467    0.000    0.376
##     ssmk    (.12.)    0.207    0.010   21.063    0.000    0.188
##   g =~                                                         
##     ssgs    (.13.)    0.766    0.011   68.792    0.000    0.744
##     ssar    (.14.)    0.688    0.012   57.836    0.000    0.665
##     sswk    (.15.)    0.767    0.012   65.823    0.000    0.744
##     sspc    (.16.)    0.725    0.011   64.156    0.000    0.703
##     ssno    (.17.)    0.498    0.012   40.196    0.000    0.474
##     sscs    (.18.)    0.471    0.011   41.501    0.000    0.448
##     ssai    (.19.)    0.465    0.010   45.404    0.000    0.445
##     sssi    (.20.)    0.486    0.010   46.537    0.000    0.465
##     ssmk    (.21.)    0.694    0.011   60.340    0.000    0.671
##     ssmc    (.22.)    0.627    0.011   58.734    0.000    0.606
##     ssei    (.23.)    0.664    0.011   62.670    0.000    0.643
##     ssao    (.24.)    0.549    0.011   49.810    0.000    0.528
##  ci.upper   Std.lv  Std.all
##                            
##     0.354    0.322    0.352
##     0.185    0.162    0.176
##     0.306    0.276    0.296
##     0.285    0.255    0.287
##     0.475    0.436    0.461
##                            
##     0.280    0.254    0.313
##     0.327    0.297    0.363
##     0.165    0.147    0.166
##     0.162    0.146    0.167
##                            
##     0.738    0.687    0.724
##     0.445    0.411    0.440
##     0.227    0.207    0.222
##                            
##     0.787    0.824    0.895
##     0.712    0.741    0.809
##     0.790    0.826    0.895
##     0.747    0.780    0.846
##     0.522    0.536    0.565
##     0.493    0.507    0.543
##     0.485    0.501    0.617
##     0.506    0.523    0.639
##     0.716    0.747    0.801
##     0.648    0.675    0.758
##     0.684    0.715    0.816
##     0.571    0.591    0.625
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.277    0.011   25.480    0.000    0.256
##  ci.upper   Std.lv  Std.all
##                            
##     0.299    0.257    0.371
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.165    0.016   10.337    0.000    0.134
##    .sspc              0.292    0.017   17.657    0.000    0.260
##    .ssmk    (.48.)    0.246    0.016   15.214    0.000    0.214
##    .ssmc    (.49.)    0.049    0.015    3.218    0.001    0.019
##    .ssao    (.50.)    0.171    0.017    9.828    0.000    0.137
##    .ssai    (.51.)   -0.105    0.013   -7.960    0.000   -0.131
##    .sssi    (.52.)   -0.111    0.014   -7.816    0.000   -0.139
##    .ssei    (.53.)   -0.013    0.014   -0.975    0.329   -0.041
##    .ssno              0.179    0.017   10.303    0.000    0.145
##    .sscs    (.55.)    0.259    0.017   15.682    0.000    0.227
##    .ssgs    (.56.)    0.128    0.016    8.056    0.000    0.097
##    .sswk              0.190    0.016   11.579    0.000    0.158
##  ci.upper   Std.lv  Std.all
##     0.196    0.165    0.180
##     0.325    0.292    0.317
##     0.278    0.246    0.264
##     0.078    0.049    0.055
##     0.205    0.171    0.181
##    -0.079   -0.105   -0.129
##    -0.083   -0.111   -0.136
##     0.014   -0.013   -0.015
##     0.213    0.179    0.188
##     0.292    0.259    0.278
##     0.159    0.128    0.139
##     0.222    0.190    0.206
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.186    0.009   20.949    0.000    0.169
##    .sspc              0.215    0.008   26.511    0.000    0.199
##    .ssmk              0.193    0.008   25.543    0.000    0.178
##    .ssmc              0.251    0.010   24.542    0.000    0.231
##    .ssao              0.356    0.018   20.090    0.000    0.321
##    .ssai              0.343    0.012   28.859    0.000    0.319
##    .sssi              0.308    0.012   25.065    0.000    0.283
##    .ssei              0.236    0.008   28.200    0.000    0.219
##    .ssno              0.142    0.027    5.215    0.000    0.088
##    .sscs              0.445    0.017   25.879    0.000    0.412
##    .ssgs              0.169    0.006   26.926    0.000    0.157
##    .sswk              0.170    0.007   25.562    0.000    0.157
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.204    0.186    0.222
##     0.231    0.215    0.253
##     0.207    0.193    0.221
##     0.271    0.251    0.316
##     0.390    0.356    0.397
##     0.366    0.343    0.521
##     0.332    0.308    0.459
##     0.252    0.236    0.307
##     0.195    0.142    0.157
##     0.479    0.445    0.512
##     0.182    0.169    0.199
##     0.183    0.170    0.200
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.863    0.863
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.322    0.016   19.743    0.000    0.290
##     sspc    (.p2.)    0.162    0.012   14.111    0.000    0.140
##     ssmk    (.p3.)    0.276    0.015   18.242    0.000    0.247
##     ssmc    (.p4.)    0.255    0.015   16.905    0.000    0.226
##     ssao    (.p5.)    0.436    0.020   22.237    0.000    0.398
##   electronic =~                                                
##     ssai    (.p6.)    0.254    0.013   19.742    0.000    0.229
##     sssi    (.p7.)    0.297    0.015   19.430    0.000    0.267
##     ssmc    (.p8.)    0.147    0.009   16.143    0.000    0.130
##     ssei    (.p9.)    0.146    0.008   17.723    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.687    0.026   26.175    0.000    0.635
##     sscs    (.11.)    0.411    0.017   23.467    0.000    0.376
##     ssmk    (.12.)    0.207    0.010   21.063    0.000    0.188
##   g =~                                                         
##     ssgs    (.13.)    0.766    0.011   68.792    0.000    0.744
##     ssar    (.14.)    0.688    0.012   57.836    0.000    0.665
##     sswk    (.15.)    0.767    0.012   65.823    0.000    0.744
##     sspc    (.16.)    0.725    0.011   64.156    0.000    0.703
##     ssno    (.17.)    0.498    0.012   40.196    0.000    0.474
##     sscs    (.18.)    0.471    0.011   41.501    0.000    0.448
##     ssai    (.19.)    0.465    0.010   45.404    0.000    0.445
##     sssi    (.20.)    0.486    0.010   46.537    0.000    0.465
##     ssmk    (.21.)    0.694    0.011   60.340    0.000    0.671
##     ssmc    (.22.)    0.627    0.011   58.734    0.000    0.606
##     ssei    (.23.)    0.664    0.011   62.670    0.000    0.643
##     ssao    (.24.)    0.549    0.011   49.810    0.000    0.528
##  ci.upper   Std.lv  Std.all
##                            
##     0.354    0.322    0.317
##     0.185    0.162    0.158
##     0.306    0.276    0.272
##     0.285    0.255    0.253
##     0.475    0.436    0.419
##                            
##     0.280    0.554    0.517
##     0.327    0.648    0.627
##     0.165    0.321    0.318
##     0.162    0.318    0.305
##                            
##     0.738    0.754    0.713
##     0.445    0.451    0.440
##     0.227    0.227    0.224
##                            
##     0.787    0.930    0.907
##     0.712    0.836    0.821
##     0.790    0.931    0.906
##     0.747    0.880    0.859
##     0.522    0.605    0.573
##     0.493    0.572    0.559
##     0.485    0.565    0.527
##     0.506    0.590    0.571
##     0.716    0.843    0.831
##     0.648    0.762    0.754
##     0.684    0.806    0.773
##     0.571    0.667    0.640
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.277    0.011   25.480    0.000    0.256
##  ci.upper   Std.lv  Std.all
##                            
##     0.299    0.228    0.328
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.46.)    0.165    0.016   10.337    0.000    0.134
##    .sspc             -0.041    0.018   -2.232    0.026   -0.077
##    .ssmk    (.48.)    0.246    0.016   15.214    0.000    0.214
##    .ssmc    (.49.)    0.049    0.015    3.218    0.001    0.019
##    .ssao    (.50.)    0.171    0.017    9.828    0.000    0.137
##    .ssai    (.51.)   -0.105    0.013   -7.960    0.000   -0.131
##    .sssi    (.52.)   -0.111    0.014   -7.816    0.000   -0.139
##    .ssei    (.53.)   -0.013    0.014   -0.975    0.329   -0.041
##    .ssno              0.592    0.047   12.480    0.000    0.499
##    .sscs    (.55.)    0.259    0.017   15.682    0.000    0.227
##    .ssgs    (.56.)    0.128    0.016    8.056    0.000    0.097
##    .sswk              0.030    0.019    1.595    0.111   -0.007
##     math             -0.359    0.043   -8.270    0.000   -0.445
##     elctrnc           1.631    0.101   16.221    0.000    1.434
##     speed            -1.005    0.063  -15.965    0.000   -1.129
##    .g                 0.213    0.031    6.870    0.000    0.152
##  ci.upper   Std.lv  Std.all
##     0.196    0.165    0.162
##    -0.005   -0.041   -0.040
##     0.278    0.246    0.243
##     0.078    0.049    0.048
##     0.205    0.171    0.164
##    -0.079   -0.105   -0.098
##    -0.083   -0.111   -0.108
##     0.014   -0.013   -0.013
##     0.685    0.592    0.561
##     0.292    0.259    0.254
##     0.159    0.128    0.124
##     0.067    0.030    0.029
##    -0.274   -0.359   -0.359
##     1.828    0.748    0.748
##    -0.882   -0.916   -0.916
##     0.273    0.175    0.175
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.233    0.010   23.293    0.000    0.214
##    .sspc              0.249    0.009   28.647    0.000    0.232
##    .ssmk              0.191    0.008   23.472    0.000    0.175
##    .ssmc              0.273    0.011   23.991    0.000    0.251
##    .ssao              0.450    0.019   23.861    0.000    0.413
##    .ssai              0.522    0.019   27.013    0.000    0.484
##    .sssi              0.300    0.016   18.540    0.000    0.269
##    .ssei              0.336    0.012   27.556    0.000    0.312
##    .ssno              0.182    0.035    5.240    0.000    0.114
##    .sscs              0.516    0.021   24.785    0.000    0.476
##    .ssgs              0.187    0.007   26.973    0.000    0.174
##    .sswk              0.189    0.008   24.838    0.000    0.174
##     electronic        4.751    0.511    9.292    0.000    3.749
##     speed             1.204    0.087   13.848    0.000    1.034
##    .g                 1.317    0.048   27.168    0.000    1.222
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.253    0.233    0.225
##     0.266    0.249    0.237
##     0.207    0.191    0.185
##     0.295    0.273    0.267
##     0.487    0.450    0.414
##     0.560    0.522    0.455
##     0.332    0.300    0.281
##     0.360    0.336    0.309
##     0.249    0.182    0.163
##     0.557    0.516    0.494
##     0.201    0.187    0.178
##     0.204    0.189    0.179
##     5.753    1.000    1.000
##     1.375    1.000    1.000
##     1.412    0.892    0.892
sem.age2<-sem(bf.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "sswk~1"))
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   3574.176    154.000      0.000      0.951      0.079      0.050 
##       ecvi        aic        bic 
##      0.525 170303.032 170811.180
Mc(sem.age2)
## [1] 0.7857401
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 87 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       107
##   Number of equality constraints                    33
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3574.176    2760.485
##   Degrees of freedom                               154         154
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.295
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1387.460    1071.593
##     0                                         2186.716    1688.892
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.322    0.016   19.681    0.000    0.290
##     sspc    (.p2.)    0.162    0.012   14.105    0.000    0.140
##     ssmk    (.p3.)    0.276    0.015   18.188    0.000    0.246
##     ssmc    (.p4.)    0.255    0.015   16.894    0.000    0.226
##     ssao    (.p5.)    0.436    0.020   22.207    0.000    0.398
##   electronic =~                                                
##     ssai    (.p6.)    0.255    0.013   19.742    0.000    0.229
##     sssi    (.p7.)    0.298    0.015   19.450    0.000    0.268
##     ssmc    (.p8.)    0.148    0.009   16.152    0.000    0.130
##     ssei    (.p9.)    0.146    0.008   17.716    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.687    0.026   26.170    0.000    0.635
##     sscs    (.11.)    0.410    0.018   23.449    0.000    0.376
##     ssmk    (.12.)    0.207    0.010   21.053    0.000    0.188
##   g =~                                                         
##     ssgs    (.13.)    0.763    0.011   68.471    0.000    0.741
##     ssar    (.14.)    0.686    0.012   57.730    0.000    0.663
##     sswk    (.15.)    0.764    0.012   65.497    0.000    0.741
##     sspc    (.16.)    0.722    0.011   64.070    0.000    0.700
##     ssno    (.17.)    0.497    0.012   40.263    0.000    0.472
##     sscs    (.18.)    0.469    0.011   41.437    0.000    0.447
##     ssai    (.19.)    0.464    0.010   45.244    0.000    0.444
##     sssi    (.20.)    0.484    0.010   46.509    0.000    0.464
##     ssmk    (.21.)    0.692    0.011   60.348    0.000    0.669
##     ssmc    (.22.)    0.625    0.011   58.647    0.000    0.604
##     ssei    (.23.)    0.662    0.011   62.500    0.000    0.641
##     ssao    (.24.)    0.548    0.011   49.714    0.000    0.526
##  ci.upper   Std.lv  Std.all
##                            
##     0.354    0.322    0.354
##     0.185    0.162    0.177
##     0.305    0.276    0.297
##     0.285    0.255    0.288
##     0.475    0.436    0.462
##                            
##     0.280    0.255    0.315
##     0.327    0.298    0.365
##     0.166    0.148    0.167
##     0.162    0.146    0.168
##                            
##     0.738    0.687    0.725
##     0.445    0.410    0.441
##     0.226    0.207    0.223
##                            
##     0.785    0.817    0.893
##     0.709    0.735    0.806
##     0.787    0.819    0.893
##     0.744    0.774    0.844
##     0.521    0.532    0.562
##     0.491    0.503    0.540
##     0.484    0.497    0.614
##     0.505    0.519    0.636
##     0.714    0.741    0.799
##     0.646    0.669    0.755
##     0.682    0.709    0.813
##     0.569    0.586    0.622
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.257    0.014   18.257    0.000    0.230
##     agec2            -0.041    0.010   -3.942    0.000   -0.061
##  ci.upper   Std.lv  Std.all
##                            
##     0.285    0.240    0.346
##    -0.021   -0.038   -0.072
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.49.)    0.223    0.021   10.445    0.000    0.181
##    .sspc              0.353    0.023   15.681    0.000    0.309
##    .ssmk    (.51.)    0.304    0.022   13.857    0.000    0.261
##    .ssmc    (.52.)    0.101    0.020    5.068    0.000    0.062
##    .ssao    (.53.)    0.217    0.021   10.279    0.000    0.176
##    .ssai    (.54.)   -0.066    0.016   -3.993    0.000   -0.098
##    .sssi    (.55.)   -0.070    0.018   -3.985    0.000   -0.105
##    .ssei    (.56.)    0.042    0.020    2.151    0.031    0.004
##    .ssno              0.221    0.020   10.871    0.000    0.181
##    .sscs    (.58.)    0.299    0.019   15.462    0.000    0.261
##    .ssgs    (.59.)    0.192    0.023    8.492    0.000    0.148
##    .sswk              0.254    0.023   10.995    0.000    0.209
##  ci.upper   Std.lv  Std.all
##     0.264    0.223    0.244
##     0.397    0.353    0.385
##     0.347    0.304    0.328
##     0.140    0.101    0.114
##     0.259    0.217    0.230
##    -0.034   -0.066   -0.081
##    -0.036   -0.070   -0.086
##     0.081    0.042    0.049
##     0.260    0.221    0.233
##     0.337    0.299    0.321
##     0.236    0.192    0.210
##     0.299    0.254    0.277
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.186    0.009   20.935    0.000    0.169
##    .sspc              0.215    0.008   26.555    0.000    0.199
##    .ssmk              0.193    0.008   25.551    0.000    0.178
##    .ssmc              0.251    0.010   24.530    0.000    0.231
##    .ssao              0.356    0.018   20.059    0.000    0.321
##    .ssai              0.343    0.012   28.848    0.000    0.320
##    .sssi              0.307    0.012   25.058    0.000    0.283
##    .ssei              0.236    0.008   28.211    0.000    0.219
##    .ssno              0.141    0.027    5.209    0.000    0.088
##    .sscs              0.446    0.017   25.877    0.000    0.412
##    .ssgs              0.169    0.006   26.897    0.000    0.157
##    .sswk              0.170    0.007   25.595    0.000    0.157
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.204    0.186    0.225
##     0.231    0.215    0.256
##     0.208    0.193    0.224
##     0.271    0.251    0.319
##     0.390    0.356    0.400
##     0.366    0.343    0.524
##     0.331    0.307    0.462
##     0.252    0.236    0.310
##     0.195    0.141    0.158
##     0.479    0.446    0.514
##     0.181    0.169    0.202
##     0.183    0.170    0.203
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.872    0.872
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.322    0.016   19.681    0.000    0.290
##     sspc    (.p2.)    0.162    0.012   14.105    0.000    0.140
##     ssmk    (.p3.)    0.276    0.015   18.188    0.000    0.246
##     ssmc    (.p4.)    0.255    0.015   16.894    0.000    0.226
##     ssao    (.p5.)    0.436    0.020   22.207    0.000    0.398
##   electronic =~                                                
##     ssai    (.p6.)    0.255    0.013   19.742    0.000    0.229
##     sssi    (.p7.)    0.298    0.015   19.450    0.000    0.268
##     ssmc    (.p8.)    0.148    0.009   16.152    0.000    0.130
##     ssei    (.p9.)    0.146    0.008   17.716    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.687    0.026   26.170    0.000    0.635
##     sscs    (.11.)    0.410    0.018   23.449    0.000    0.376
##     ssmk    (.12.)    0.207    0.010   21.053    0.000    0.188
##   g =~                                                         
##     ssgs    (.13.)    0.763    0.011   68.471    0.000    0.741
##     ssar    (.14.)    0.686    0.012   57.730    0.000    0.663
##     sswk    (.15.)    0.764    0.012   65.497    0.000    0.741
##     sspc    (.16.)    0.722    0.011   64.070    0.000    0.700
##     ssno    (.17.)    0.497    0.012   40.263    0.000    0.472
##     sscs    (.18.)    0.469    0.011   41.437    0.000    0.447
##     ssai    (.19.)    0.464    0.010   45.244    0.000    0.444
##     sssi    (.20.)    0.484    0.010   46.509    0.000    0.464
##     ssmk    (.21.)    0.692    0.011   60.348    0.000    0.669
##     ssmc    (.22.)    0.625    0.011   58.647    0.000    0.604
##     ssei    (.23.)    0.662    0.011   62.500    0.000    0.641
##     ssao    (.24.)    0.548    0.011   49.714    0.000    0.526
##  ci.upper   Std.lv  Std.all
##                            
##     0.354    0.322    0.315
##     0.185    0.162    0.157
##     0.305    0.276    0.270
##     0.285    0.255    0.251
##     0.475    0.436    0.417
##                            
##     0.280    0.554    0.516
##     0.327    0.648    0.625
##     0.166    0.321    0.316
##     0.162    0.318    0.303
##                            
##     0.738    0.753    0.711
##     0.445    0.450    0.439
##     0.226    0.227    0.223
##                            
##     0.785    0.937    0.908
##     0.709    0.843    0.823
##     0.787    0.939    0.907
##     0.744    0.888    0.861
##     0.521    0.610    0.576
##     0.491    0.577    0.562
##     0.484    0.570    0.531
##     0.505    0.595    0.574
##     0.714    0.850    0.833
##     0.646    0.768    0.756
##     0.682    0.813    0.776
##     0.569    0.673    0.644
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec              0.297    0.016   18.348    0.000    0.266
##     agec2            -0.019    0.012   -1.652    0.099   -0.043
##  ci.upper   Std.lv  Std.all
##                            
##     0.329    0.242    0.348
##     0.004   -0.016   -0.030
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.49.)    0.223    0.021   10.445    0.000    0.181
##    .sspc              0.020    0.024    0.840    0.401   -0.027
##    .ssmk    (.51.)    0.304    0.022   13.857    0.000    0.261
##    .ssmc    (.52.)    0.101    0.020    5.068    0.000    0.062
##    .ssao    (.53.)    0.217    0.021   10.279    0.000    0.176
##    .ssai    (.54.)   -0.066    0.016   -3.993    0.000   -0.098
##    .sssi    (.55.)   -0.070    0.018   -3.985    0.000   -0.105
##    .ssei    (.56.)    0.042    0.020    2.151    0.031    0.004
##    .ssno              0.634    0.049   12.997    0.000    0.539
##    .sscs    (.58.)    0.299    0.019   15.462    0.000    0.261
##    .ssgs    (.59.)    0.192    0.023    8.492    0.000    0.148
##    .sswk              0.095    0.025    3.811    0.000    0.046
##     math             -0.360    0.043   -8.277    0.000   -0.445
##     elctrnc           1.630    0.100   16.226    0.000    1.433
##     speed            -1.006    0.063  -15.964    0.000   -1.130
##    .g                 0.171    0.044    3.880    0.000    0.085
##  ci.upper   Std.lv  Std.all
##     0.264    0.223    0.217
##     0.067    0.020    0.019
##     0.347    0.304    0.298
##     0.140    0.101    0.100
##     0.259    0.217    0.208
##    -0.034   -0.066   -0.061
##    -0.036   -0.070   -0.068
##     0.081    0.042    0.040
##     0.730    0.634    0.599
##     0.337    0.299    0.292
##     0.236    0.192    0.186
##     0.143    0.095    0.091
##    -0.275   -0.360   -0.360
##     1.827    0.749    0.749
##    -0.883   -0.917   -0.917
##     0.257    0.139    0.139
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.233    0.010   23.280    0.000    0.214
##    .sspc              0.249    0.009   28.666    0.000    0.232
##    .ssmk              0.191    0.008   23.476    0.000    0.175
##    .ssmc              0.273    0.011   23.970    0.000    0.251
##    .ssao              0.450    0.019   23.836    0.000    0.413
##    .ssai              0.522    0.019   27.019    0.000    0.484
##    .sssi              0.301    0.016   18.545    0.000    0.269
##    .ssei              0.336    0.012   27.562    0.000    0.312
##    .ssno              0.182    0.035    5.239    0.000    0.114
##    .sscs              0.516    0.021   24.789    0.000    0.476
##    .ssgs              0.188    0.007   27.016    0.000    0.174
##    .sswk              0.189    0.008   24.865    0.000    0.174
##     electronic        4.738    0.509    9.299    0.000    3.739
##     speed             1.204    0.087   13.841    0.000    1.033
##    .g                 1.323    0.049   27.098    0.000    1.227
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.253    0.233    0.223
##     0.266    0.249    0.234
##     0.207    0.191    0.183
##     0.295    0.273    0.265
##     0.487    0.450    0.412
##     0.560    0.522    0.453
##     0.332    0.301    0.280
##     0.360    0.336    0.306
##     0.250    0.182    0.162
##     0.557    0.516    0.491
##     0.201    0.188    0.176
##     0.204    0.189    0.176
##     5.736    1.000    1.000
##     1.374    1.000    1.000
##     1.419    0.876    0.876
sem.age2q<-sem(bf.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "sswk~1"))
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr 
##   3580.732    156.000      0.000      0.951      0.079      0.052 
##       ecvi        aic        bic 
##      0.525 170305.588 170800.002
Mc(sem.age2q)
## [1] 0.7854878
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 85 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       107
##   Number of equality constraints                    35
## 
##   Number of observations per group:                   
##     1                                             3503
##     0                                             3590
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3580.732    2767.620
##   Degrees of freedom                               156         156
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.294
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1389.827    1074.225
##     0                                         2190.906    1693.395
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.322    0.016   19.684    0.000    0.290
##     sspc    (.p2.)    0.162    0.012   14.108    0.000    0.140
##     ssmk    (.p3.)    0.276    0.015   18.189    0.000    0.246
##     ssmc    (.p4.)    0.255    0.015   16.899    0.000    0.226
##     ssao    (.p5.)    0.436    0.020   22.213    0.000    0.398
##   electronic =~                                                
##     ssai    (.p6.)    0.254    0.013   19.746    0.000    0.229
##     sssi    (.p7.)    0.297    0.015   19.437    0.000    0.267
##     ssmc    (.p8.)    0.148    0.009   16.148    0.000    0.130
##     ssei    (.p9.)    0.146    0.008   17.724    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.686    0.026   26.155    0.000    0.635
##     sscs    (.11.)    0.410    0.017   23.455    0.000    0.376
##     ssmk    (.12.)    0.207    0.010   21.059    0.000    0.188
##   g =~                                                         
##     ssgs    (.13.)    0.763    0.011   68.419    0.000    0.742
##     ssar    (.14.)    0.686    0.012   57.704    0.000    0.663
##     sswk    (.15.)    0.765    0.012   65.501    0.000    0.742
##     sspc    (.16.)    0.723    0.011   64.060    0.000    0.701
##     ssno    (.17.)    0.497    0.012   40.246    0.000    0.473
##     sscs    (.18.)    0.469    0.011   41.422    0.000    0.447
##     ssai    (.19.)    0.464    0.010   45.214    0.000    0.444
##     sssi    (.20.)    0.484    0.010   46.489    0.000    0.464
##     ssmk    (.21.)    0.692    0.011   60.297    0.000    0.670
##     ssmc    (.22.)    0.625    0.011   58.610    0.000    0.604
##     ssei    (.23.)    0.662    0.011   62.404    0.000    0.641
##     ssao    (.24.)    0.548    0.011   49.698    0.000    0.526
##  ci.upper   Std.lv  Std.all
##                            
##     0.354    0.322    0.352
##     0.185    0.162    0.176
##     0.305    0.276    0.296
##     0.285    0.255    0.287
##     0.475    0.436    0.461
##                            
##     0.280    0.254    0.314
##     0.327    0.297    0.364
##     0.165    0.148    0.166
##     0.162    0.146    0.167
##                            
##     0.738    0.686    0.724
##     0.445    0.410    0.440
##     0.226    0.207    0.222
##                            
##     0.785    0.823    0.895
##     0.710    0.740    0.809
##     0.788    0.825    0.894
##     0.745    0.780    0.846
##     0.521    0.536    0.565
##     0.492    0.506    0.543
##     0.484    0.500    0.617
##     0.505    0.522    0.639
##     0.715    0.747    0.801
##     0.646    0.674    0.758
##     0.683    0.714    0.815
##     0.569    0.591    0.625
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.275    0.011   24.991    0.000    0.253
##     agec2      (b)   -0.032    0.008   -4.036    0.000   -0.047
##  ci.upper   Std.lv  Std.all
##                            
##     0.296    0.255    0.367
##    -0.016   -0.029   -0.055
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.49.)    0.210    0.019   10.936    0.000    0.172
##    .sspc              0.339    0.020   16.827    0.000    0.300
##    .ssmk    (.51.)    0.291    0.020   14.823    0.000    0.253
##    .ssmc    (.52.)    0.090    0.018    4.958    0.000    0.054
##    .ssao    (.53.)    0.207    0.020   10.521    0.000    0.168
##    .ssai    (.54.)   -0.075    0.015   -4.927    0.000   -0.104
##    .sssi    (.55.)   -0.079    0.016   -4.872    0.000   -0.111
##    .ssei    (.56.)    0.030    0.017    1.714    0.086   -0.004
##    .ssno              0.211    0.019   11.062    0.000    0.174
##    .sscs    (.58.)    0.290    0.018   15.952    0.000    0.255
##    .ssgs    (.59.)    0.178    0.020    8.898    0.000    0.138
##    .sswk              0.240    0.021   11.697    0.000    0.200
##  ci.upper   Std.lv  Std.all
##     0.247    0.210    0.229
##     0.379    0.339    0.368
##     0.330    0.291    0.313
##     0.125    0.090    0.101
##     0.246    0.207    0.219
##    -0.045   -0.075   -0.092
##    -0.047   -0.079   -0.097
##     0.064    0.030    0.034
##     0.249    0.211    0.223
##     0.326    0.290    0.311
##     0.217    0.178    0.193
##     0.280    0.240    0.260
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.186    0.009   20.937    0.000    0.169
##    .sspc              0.215    0.008   26.542    0.000    0.199
##    .ssmk              0.193    0.008   25.562    0.000    0.178
##    .ssmc              0.251    0.010   24.530    0.000    0.231
##    .ssao              0.356    0.018   20.061    0.000    0.321
##    .ssai              0.343    0.012   28.849    0.000    0.319
##    .sssi              0.307    0.012   25.064    0.000    0.283
##    .ssei              0.236    0.008   28.209    0.000    0.219
##    .ssno              0.142    0.027    5.218    0.000    0.088
##    .sscs              0.445    0.017   25.880    0.000    0.412
##    .ssgs              0.169    0.006   26.929    0.000    0.157
##    .sswk              0.170    0.007   25.590    0.000    0.157
##     electronic        1.000                               1.000
##     speed             1.000                               1.000
##    .g                 1.000                               1.000
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.204    0.186    0.222
##     0.231    0.215    0.253
##     0.207    0.193    0.222
##     0.271    0.251    0.316
##     0.390    0.356    0.397
##     0.366    0.343    0.521
##     0.332    0.307    0.460
##     0.252    0.236    0.307
##     0.195    0.142    0.157
##     0.479    0.445    0.512
##     0.182    0.169    0.200
##     0.183    0.170    0.200
##     1.000    1.000    1.000
##     1.000    1.000    1.000
##     1.000    0.860    0.860
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math =~                                                      
##     ssar    (.p1.)    0.322    0.016   19.684    0.000    0.290
##     sspc    (.p2.)    0.162    0.012   14.108    0.000    0.140
##     ssmk    (.p3.)    0.276    0.015   18.189    0.000    0.246
##     ssmc    (.p4.)    0.255    0.015   16.899    0.000    0.226
##     ssao    (.p5.)    0.436    0.020   22.213    0.000    0.398
##   electronic =~                                                
##     ssai    (.p6.)    0.254    0.013   19.746    0.000    0.229
##     sssi    (.p7.)    0.297    0.015   19.437    0.000    0.267
##     ssmc    (.p8.)    0.148    0.009   16.148    0.000    0.130
##     ssei    (.p9.)    0.146    0.008   17.724    0.000    0.130
##   speed =~                                                     
##     ssno    (.10.)    0.686    0.026   26.155    0.000    0.635
##     sscs    (.11.)    0.410    0.017   23.455    0.000    0.376
##     ssmk    (.12.)    0.207    0.010   21.059    0.000    0.188
##   g =~                                                         
##     ssgs    (.13.)    0.763    0.011   68.419    0.000    0.742
##     ssar    (.14.)    0.686    0.012   57.704    0.000    0.663
##     sswk    (.15.)    0.765    0.012   65.501    0.000    0.742
##     sspc    (.16.)    0.723    0.011   64.060    0.000    0.701
##     ssno    (.17.)    0.497    0.012   40.246    0.000    0.473
##     sscs    (.18.)    0.469    0.011   41.422    0.000    0.447
##     ssai    (.19.)    0.464    0.010   45.214    0.000    0.444
##     sssi    (.20.)    0.484    0.010   46.489    0.000    0.464
##     ssmk    (.21.)    0.692    0.011   60.297    0.000    0.670
##     ssmc    (.22.)    0.625    0.011   58.610    0.000    0.604
##     ssei    (.23.)    0.662    0.011   62.404    0.000    0.641
##     ssao    (.24.)    0.548    0.011   49.698    0.000    0.526
##  ci.upper   Std.lv  Std.all
##                            
##     0.354    0.322    0.316
##     0.185    0.162    0.158
##     0.305    0.276    0.272
##     0.285    0.255    0.252
##     0.475    0.436    0.419
##                            
##     0.280    0.554    0.517
##     0.327    0.648    0.627
##     0.165    0.321    0.318
##     0.162    0.318    0.305
##                            
##     0.738    0.753    0.713
##     0.445    0.450    0.440
##     0.226    0.227    0.224
##                            
##     0.785    0.931    0.907
##     0.710    0.837    0.822
##     0.788    0.932    0.906
##     0.745    0.881    0.859
##     0.521    0.606    0.573
##     0.492    0.572    0.559
##     0.484    0.566    0.528
##     0.505    0.591    0.571
##     0.715    0.844    0.831
##     0.646    0.762    0.754
##     0.683    0.807    0.773
##     0.569    0.668    0.641
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   g ~                                                          
##     agec       (a)    0.275    0.011   24.991    0.000    0.253
##     agec2      (b)   -0.032    0.008   -4.036    0.000   -0.047
##  ci.upper   Std.lv  Std.all
##                            
##     0.296    0.225    0.324
##    -0.016   -0.026   -0.048
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   math ~~                                                      
##     electronic        0.000                               0.000
##     speed             0.000                               0.000
##   electronic ~~                                                
##     speed             0.000                               0.000
##  ci.upper   Std.lv  Std.all
##                            
##     0.000    0.000    0.000
##     0.000    0.000    0.000
##                            
##     0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##    .ssar    (.49.)    0.210    0.019   10.936    0.000    0.172
##    .sspc              0.006    0.022    0.297    0.767   -0.036
##    .ssmk    (.51.)    0.291    0.020   14.823    0.000    0.253
##    .ssmc    (.52.)    0.090    0.018    4.958    0.000    0.054
##    .ssao    (.53.)    0.207    0.020   10.521    0.000    0.168
##    .ssai    (.54.)   -0.075    0.015   -4.927    0.000   -0.104
##    .sssi    (.55.)   -0.079    0.016   -4.872    0.000   -0.111
##    .ssei    (.56.)    0.030    0.017    1.714    0.086   -0.004
##    .ssno              0.625    0.048   12.977    0.000    0.530
##    .sscs    (.58.)    0.290    0.018   15.952    0.000    0.255
##    .ssgs    (.59.)    0.178    0.020    8.898    0.000    0.138
##    .sswk              0.080    0.022    3.589    0.000    0.036
##     math             -0.360    0.043   -8.275    0.000   -0.445
##     elctrnc           1.630    0.100   16.225    0.000    1.433
##     speed            -1.006    0.063  -15.964    0.000   -1.130
##    .g                 0.213    0.031    6.872    0.000    0.152
##  ci.upper   Std.lv  Std.all
##     0.247    0.210    0.206
##     0.049    0.006    0.006
##     0.330    0.291    0.287
##     0.125    0.090    0.089
##     0.246    0.207    0.199
##    -0.045   -0.075   -0.070
##    -0.047   -0.079   -0.077
##     0.064    0.030    0.029
##     0.719    0.625    0.591
##     0.326    0.290    0.284
##     0.217    0.178    0.173
##     0.124    0.080    0.078
##    -0.275   -0.360   -0.360
##     1.827    0.748    0.748
##    -0.883   -0.917   -0.917
##     0.274    0.175    0.175
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower
##     math              1.000                               1.000
##    .ssar              0.233    0.010   23.279    0.000    0.214
##    .sspc              0.249    0.009   28.655    0.000    0.232
##    .ssmk              0.191    0.008   23.487    0.000    0.175
##    .ssmc              0.273    0.011   23.978    0.000    0.251
##    .ssao              0.450    0.019   23.833    0.000    0.413
##    .ssai              0.522    0.019   27.008    0.000    0.484
##    .sssi              0.301    0.016   18.548    0.000    0.269
##    .ssei              0.336    0.012   27.554    0.000    0.312
##    .ssno              0.181    0.035    5.237    0.000    0.114
##    .sscs              0.516    0.021   24.785    0.000    0.476
##    .ssgs              0.187    0.007   27.008    0.000    0.174
##    .sswk              0.189    0.008   24.854    0.000    0.174
##     electronic        4.747    0.511    9.294    0.000    3.746
##     speed             1.205    0.087   13.843    0.000    1.034
##    .g                 1.323    0.049   27.077    0.000    1.227
##  ci.upper   Std.lv  Std.all
##     1.000    1.000    1.000
##     0.253    0.233    0.225
##     0.266    0.249    0.237
##     0.207    0.191    0.185
##     0.295    0.273    0.267
##     0.487    0.450    0.414
##     0.560    0.522    0.454
##     0.332    0.301    0.281
##     0.360    0.336    0.309
##     0.249    0.181    0.163
##     0.557    0.516    0.493
##     0.201    0.187    0.178
##     0.204    0.189    0.179
##     5.747    1.000    1.000
##     1.375    1.000    1.000
##     1.419    0.890    0.890
# CROSS VALIDATION

set.seed(123) # For reproducibility, set seed if needed
split_indices <- sample(1:nrow(dgroup), size = nrow(dgroup) / 2)
dhalf1 <- dgroup[split_indices, ]
dhalf2 <- dgroup[-split_indices, ]

# ALL RACE GROUP

# CORRELATED FACTOR MODEL

cf.model<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
'

cf.lv<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
verbal~~1*verbal
math~~1*math
speed~~1*speed
'

cf.reduced<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
'

baseline<-cfa(cf.model, data=dhalf1, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1027.175    45.000     0.000     0.971     0.871     0.078     0.027 
##       aic       bic 
## 87169.392 87447.203
configural<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   933.086    90.000     0.000     0.975     0.888     0.073     0.025 
##       aic       bic 
## 85306.914 85862.536
metric<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1075.373   101.000     0.000     0.971     0.872     0.074     0.039 
##       aic       bic 
## 85427.201 85914.914
scalar<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1481.455   109.000     0.000     0.959     0.824     0.084     0.042 
##       aic       bic 
## 85817.283 86255.607
scalar2<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1162.143   107.000     0.000     0.968     0.862     0.075     0.040 
##       aic       bic 
## 85501.971 85952.642
strict<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1", "ssno~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1312.685   119.000     0.000     0.964     0.845     0.075     0.044 
##       aic       bic 
## 85628.513 86005.102
cf.cov<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1"))
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1283.196   113.000     0.000     0.965     0.848     0.076     0.103 
##       aic       bic 
## 85611.024 86024.654
cf.vcov<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("sspc~1", "ssno~1"))
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1564.473   117.000     0.000     0.957     0.815     0.084     0.123 
##       aic       bic 
## 85884.301 86273.236
cf.cov2<-cfa(cf.lv, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1"))
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1287.709   116.000     0.000     0.965     0.848     0.075     0.102 
##       aic       bic 
## 85609.537 86004.646
reduced<-cfa(cf.reduced, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1"))
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1291.103   117.000     0.000     0.965     0.847     0.075     0.102 
##       aic       bic 
## 85610.931 85999.866
baseline<-cfa(cf.model, data=dhalf2, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1054.900    45.000     0.000     0.971     0.867     0.080     0.028 
##       aic       bic 
## 87030.381 87308.204
configural<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   918.421    90.000     0.000     0.976     0.890     0.072     0.025 
##       aic       bic 
## 85310.932 85866.579
metric<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##   985.639   101.000     0.000     0.974     0.883     0.070     0.033 
##       aic       bic 
## 85356.151 85843.885
scalar<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1477.093   109.000     0.000     0.960     0.825     0.084     0.038 
##       aic       bic 
## 85831.604 86269.948
scalar2<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1128.410   107.000     0.000     0.970     0.866     0.073     0.035 
##       aic       bic 
## 85486.921 85937.613
strict<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1", "ssno~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1289.034   119.000     0.000     0.966     0.848     0.074     0.037 
##       aic       bic 
## 85623.546 86000.151
cf.cov<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1"))
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1243.560   113.000     0.000     0.967     0.853     0.075     0.088 
##       aic       bic 
## 85590.071 86003.720
cf.vcov<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("sspc~1", "ssno~1"))
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1438.294   117.000     0.000     0.961     0.830     0.080     0.107 
##       aic       bic 
## 85776.806 86165.759
cf.cov2<-cfa(cf.lv, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1"))
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1245.224   116.000     0.000     0.967     0.853     0.074     0.088 
##       aic       bic 
## 85585.735 85980.862
reduced<-cfa(cf.reduced, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sspc~1", "ssno~1"))
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1248.661   117.000     0.000     0.967     0.853     0.074     0.088 
##       aic       bic 
## 85587.173 85976.126
# HIGH ORDER FACTOR

hof.model<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed
'

hof.lv<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed
math~~1*math
speed~~1*speed
'

hof.weak<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed
math~~1*math
speed~~1*speed
verbal~0*1
'

hof.weak2<-'
verbal =~ ssgs + sswk + sspc + ssei
math =~ ssar + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
g =~ verbal + math + electronic + speed
math~~1*math
speed~~1*speed
verbal~0*1
math~0*1
g~0*1
'

baseline<-cfa(hof.model, data=dhalf1, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1474.262    47.000     0.000     0.957     0.818     0.093     0.042 
##       aic       bic 
## 87612.479 87877.943
configural<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1290.926    94.000     0.000     0.964     0.845     0.085     0.035 
##       aic       bic 
## 85656.754 86187.682
metric<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1478.106   108.000     0.000     0.959     0.824     0.085     0.054 
##       aic       bic 
## 85815.934 86260.432
metric2<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"), group.partial=c("electronic=~ssei"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1389.940   107.000     0.000     0.962     0.835     0.082     0.045 
##       aic       bic 
## 85729.768 86180.439
scalar<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 5.480728e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1784.858   114.000     0.000     0.950     0.790     0.091     0.048 
##       aic       bic 
## 86110.686 86518.142
scalar2<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 9.706880e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1469.347   112.000     0.000     0.959     0.826     0.083     0.045 
##       aic       bic 
## 85799.176 86218.979
strict<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 8.773901e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1615.348   124.000     0.000     0.955     0.810     0.082     0.049 
##       aic       bic 
## 85921.177 86266.897
latent<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 7.060389e-14) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1761.709   117.000     0.000     0.951     0.793     0.089     0.105 
##       aic       bic 
## 86081.537 86470.473
latent2<-cfa(hof.lv, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 5.307590e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1474.120   114.000     0.000     0.959     0.825     0.082     0.045 
##       aic       bic 
## 85799.949 86207.405
weak<-cfa(hof.weak, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1474.120   115.000     0.000     0.959     0.826     0.082     0.045 
##       aic       bic 
## 85797.949 86199.231
weak2<-cfa(hof.weak2, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
fitMeasures(weak2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1487.261   117.000     0.000     0.959     0.824     0.081     0.046 
##       aic       bic 
## 85807.090 86196.025
baseline<-cfa(hof.model, data=dhalf2, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1456.378    47.000     0.000     0.959     0.820     0.092     0.039 
##       aic       bic 
## 87427.859 87693.335
configural<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1255.041    94.000     0.000     0.966     0.849     0.083     0.033 
##       aic       bic 
## 85639.553 86170.505
metric<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1363.387   108.000     0.000     0.963     0.838     0.081     0.048 
##       aic       bic 
## 85719.899 86164.417
metric2<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"), group.partial=c("electronic=~ssei"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1310.888   107.000     0.000     0.965     0.844     0.080     0.042 
##       aic       bic 
## 85669.400 86120.091
scalar<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 7.183670e-13) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1801.412   114.000     0.000     0.951     0.788     0.091     0.047 
##       aic       bic 
## 86145.923 86553.398
scalar2<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1459.623   112.000     0.000     0.961     0.827     0.082     0.044 
##       aic       bic 
## 85808.135 86227.957
strict<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1619.020   124.000     0.000     0.956     0.810     0.082     0.046 
##       aic       bic 
## 85943.532 86289.268
latent<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 8.915235e-14) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1672.659   117.000     0.000     0.955     0.803     0.087     0.094 
##       aic       bic 
## 86011.171 86400.124
latent2<-cfa(hof.lv, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) 
##    does not appear to be positive definite! The smallest eigenvalue 
##    (= 1.423960e-12) is close to zero. This may be a symptom that the 
##    model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1465.043   114.000     0.000     0.961     0.827     0.082     0.044 
##       aic       bic 
## 85809.555 86217.029
weak<-cfa(hof.weak, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1465.043   115.000     0.000     0.961     0.827     0.081     0.044 
##       aic       bic 
## 85807.555 86208.856
weak2<-cfa(hof.weak2, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssei", "sspc~1", "ssno~1"))
fitMeasures(weak2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1486.102   117.000     0.000     0.960     0.824     0.081     0.047 
##       aic       bic 
## 85824.613 86213.566
# BIFACTOR MODEL

bf.model<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao
'

bf.lv<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao
math~~1*math
'

bf.reduced<-'
math =~ ssar + sspc + ssmk + ssmc + ssao
electronic =~ ssai + sssi + ssmc + ssei
speed =~ ssno + sscs + ssmk
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssai + sssi + ssmk + ssmc + ssei + ssao
g~0*1
'

baseline<-cfa(bf.model, data=dhalf1, meanstructure=T, sampling.weights="sweight", std.lv=T, orthogonal=T)
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1242.533    42.000     0.000     0.964     0.844     0.090     0.042 
##       aic       bic 
## 87390.751 87687.082
configural<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1086.074    84.000     0.000     0.970     0.868     0.082     0.034 
##       aic       bic 
## 85471.902 86064.565
metric<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1299.194   104.000     0.000     0.964     0.845     0.081     0.054 
##       aic       bic 
## 85645.023 86114.214
metric2<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"), group.partial=c("g=~ssei"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1205.084   103.000     0.000     0.967     0.856     0.078     0.045 
##       aic       bic 
## 85552.912 86028.277
scalar<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1662.522   112.000     0.000     0.953     0.804     0.088     0.057 
##       aic       bic 
## 85992.350 86412.154
scalar2<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "sswk~1")) # RMSEAD bad unless sswk freed
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1318.098   109.000     0.000     0.964     0.843     0.079     0.054 
##       aic       bic 
## 85653.926 86092.250
strict<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1", "ssno~1", "sswk~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1466.056   121.000     0.000     0.960     0.827     0.079     0.058 
##       aic       bic 
## 85777.884 86142.125
latent<-cfa(bf.lv, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "sswk~1"))
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1318.098   110.000     0.000     0.964     0.843     0.079     0.054 
##       aic       bic 
## 85651.927 86084.077
reduced<-cfa(bf.reduced, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "sswk~1"))
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1326.174   110.000     0.000     0.964     0.842     0.079     0.055 
##       aic       bic 
## 85660.002 86092.153
baseline<-cfa(bf.model, data=dhalf2, meanstructure=T, sampling.weights="sweight", std.lv=T, orthogonal=T)
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1226.098    42.000     0.000     0.965     0.846     0.089     0.038 
##       aic       bic 
## 87207.579 87503.924
configural<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1031.511    84.000     0.000     0.972     0.875     0.080     0.031 
##       aic       bic 
## 85436.023 86028.713
metric<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1152.408   104.000     0.000     0.969     0.863     0.075     0.048 
##       aic       bic 
## 85516.920 85986.133
metric2<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"), group.partial=c("g=~ssei"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1104.876   103.000     0.000     0.971     0.868     0.074     0.042 
##       aic       bic 
## 85471.388 85946.775
scalar<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1641.330   112.000     0.000     0.955     0.806     0.088     0.052 
##       aic       bic 
## 85989.841 86409.664
scalar2<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "sswk~1")) # RMSEAD bad unless sswk freed
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1218.747   109.000     0.000     0.968     0.855     0.076     0.049 
##       aic       bic 
## 85573.258 86011.602
strict<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1", "ssno~1", "sswk~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1380.272   121.000     0.000     0.963     0.837     0.077     0.052 
##       aic       bic 
## 85710.784 86075.041
latent<-cfa(bf.lv, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "sswk~1"))
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1218.835   110.000     0.000     0.968     0.855     0.075     0.049 
##       aic       bic 
## 85571.347 86003.517
reduced<-cfa(bf.reduced, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssno~1", "sswk~1"))
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi       mfi     rmsea      srmr 
##  1265.257   110.000     0.000     0.966     0.850     0.077     0.056 
##       aic       bic 
## 85617.768 86049.939