13. This question should be answered using the Weekly data set, which is part of the ISLR2 package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1,089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010

library(knitr)
library(caret)
## Warning: package 'caret' was built under R version 4.4.2
## Loading required package: ggplot2
## Loading required package: lattice
library(e1071)
library(class)
library(MASS)
library(GGally)
## Warning: package 'GGally' was built under R version 4.4.3
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
library(ggplot2)
library(ISLR2)
## Warning: package 'ISLR2' was built under R version 4.4.2
## 
## Attaching package: 'ISLR2'
## The following object is masked from 'package:MASS':
## 
##     Boston
attach(Weekly)
str(Weekly)
## 'data.frame':    1089 obs. of  9 variables:
##  $ Year     : num  1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 ...
##  $ Lag1     : num  0.816 -0.27 -2.576 3.514 0.712 ...
##  $ Lag2     : num  1.572 0.816 -0.27 -2.576 3.514 ...
##  $ Lag3     : num  -3.936 1.572 0.816 -0.27 -2.576 ...
##  $ Lag4     : num  -0.229 -3.936 1.572 0.816 -0.27 ...
##  $ Lag5     : num  -3.484 -0.229 -3.936 1.572 0.816 ...
##  $ Volume   : num  0.155 0.149 0.16 0.162 0.154 ...
##  $ Today    : num  -0.27 -2.576 3.514 0.712 1.178 ...
##  $ Direction: Factor w/ 2 levels "Down","Up": 1 1 2 2 2 1 2 2 2 1 ...
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 

(a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

(cor(Weekly[sapply(Weekly, is.numeric)]))
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000
pairs(Weekly)

From examining the plot, we can observe a clear correlation between Year and Volume, with both variables demonstrating a positive trend over time. The data reveals a consistent increase in volume as years progress, suggesting a sustained pattern of growth rather than random fluctuation.

ggplot(Weekly, aes(x = Direction)) + 
  geom_bar()

Your bar plot correctly represents the count of each category in the Direction variable. The bars clearly show that there are more instances of “Up” compared to “Down”.

(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

Weekly_glm <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume,
                  data = Weekly, family = binomial)
summary(Weekly_glm)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

Looking at the results, we can see that the predictor Lag2 is significant, having a p-value less than 0.05.

(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

Weekly_glm <- predict(Weekly_glm, newdata = Weekly, type = 'response')
Weekly_glm_pred <- ifelse(Weekly_glm > 0.5, 'Up', 'Down')
table(Weekly_glm_pred, Weekly$Direction)
##                
## Weekly_glm_pred Down  Up
##            Down   54  48
##            Up    430 557
confusionMatrix(as.factor(Weekly_glm_pred),Weekly$Direction,positive = 'Up')
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down  Up
##       Down   54  48
##       Up    430 557
##                                          
##                Accuracy : 0.5611         
##                  95% CI : (0.531, 0.5908)
##     No Information Rate : 0.5556         
##     P-Value [Acc > NIR] : 0.369          
##                                          
##                   Kappa : 0.035          
##                                          
##  Mcnemar's Test P-Value : <2e-16         
##                                          
##             Sensitivity : 0.9207         
##             Specificity : 0.1116         
##          Pos Pred Value : 0.5643         
##          Neg Pred Value : 0.5294         
##              Prevalence : 0.5556         
##          Detection Rate : 0.5115         
##    Detection Prevalence : 0.9063         
##       Balanced Accuracy : 0.5161         
##                                          
##        'Positive' Class : Up             
## 

56.1% of your predictions were correct.

  • False Positives (48): These are cases where the model predicted “Up” but the true label was actually “Down.” The model is incorrectly saying “Up” when it should have said “Down.”

  • False Negatives (430): These are cases where the model predicted “Down” but the true label was actually “Up.” The model is missing a lot of “Up” cases and saying “Down” when it should have said “Up.”

(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

Weekly_glm2 <- glm(Direction ~ Lag2, data = Weekly, subset = (Year <= 2008), family = binomial)
Weekly_glm_prob <- predict(Weekly_glm2, Weekly[Weekly$Year >= 2009, ], type = "response")
Weekly_glm_pred2 <- ifelse(Weekly_glm_prob > 0.5, "Up", "Down")
confusionMatrix(as.factor(Weekly_glm_pred2), as.factor(Weekly$Direction[Weekly$Year >= 2009]), positive = "Up")
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down    9  5
##       Up     34 56
##                                          
##                Accuracy : 0.625          
##                  95% CI : (0.5247, 0.718)
##     No Information Rate : 0.5865         
##     P-Value [Acc > NIR] : 0.2439         
##                                          
##                   Kappa : 0.1414         
##                                          
##  Mcnemar's Test P-Value : 7.34e-06       
##                                          
##             Sensitivity : 0.9180         
##             Specificity : 0.2093         
##          Pos Pred Value : 0.6222         
##          Neg Pred Value : 0.6429         
##              Prevalence : 0.5865         
##          Detection Rate : 0.5385         
##    Detection Prevalence : 0.8654         
##       Balanced Accuracy : 0.5637         
##                                          
##        'Positive' Class : Up             
## 

Accuracy score is 62%

The model correctly predicted 9 “Down” (True Negatives) and 56 “Up” cases (True Positives), but it misclassified 5 “Up” cases as “Down” (False Positives) and 34 “Down” cases as “Up” (False Negatives).

(e) Repeat (d) using LDA.

Weekly_lda <- lda(Direction ~ Lag2, data = Weekly, subset = (Year <= 2008))
Weekly_lda_pred <- predict(Weekly_lda, Weekly[Weekly$Year >= 2009, ])$class
confusionMatrix(as.factor(Weekly_lda_pred), as.factor(Weekly$Direction[Weekly$Year >= 2009]), positive = "Up")
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down    9  5
##       Up     34 56
##                                          
##                Accuracy : 0.625          
##                  95% CI : (0.5247, 0.718)
##     No Information Rate : 0.5865         
##     P-Value [Acc > NIR] : 0.2439         
##                                          
##                   Kappa : 0.1414         
##                                          
##  Mcnemar's Test P-Value : 7.34e-06       
##                                          
##             Sensitivity : 0.9180         
##             Specificity : 0.2093         
##          Pos Pred Value : 0.6222         
##          Neg Pred Value : 0.6429         
##              Prevalence : 0.5865         
##          Detection Rate : 0.5385         
##    Detection Prevalence : 0.8654         
##       Balanced Accuracy : 0.5637         
##                                          
##        'Positive' Class : Up             
## 

Accuracy score is 62%.

The result is the same as (d)

(f) Repeat (d) using QDA.

Weekly_qda <- qda(Direction ~ Lag2, data = Weekly, subset = (Year <= 2008))
Weekly_qda_pred <- predict(Weekly_qda, Weekly[Weekly$Year >= 2009, ])$class
confusionMatrix(as.factor(Weekly_qda_pred), as.factor(Weekly$Direction[Weekly$Year >= 2009]), positive = "Up")
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down    0  0
##       Up     43 61
##                                           
##                Accuracy : 0.5865          
##                  95% CI : (0.4858, 0.6823)
##     No Information Rate : 0.5865          
##     P-Value [Acc > NIR] : 0.5419          
##                                           
##                   Kappa : 0               
##                                           
##  Mcnemar's Test P-Value : 1.504e-10       
##                                           
##             Sensitivity : 1.0000          
##             Specificity : 0.0000          
##          Pos Pred Value : 0.5865          
##          Neg Pred Value :    NaN          
##              Prevalence : 0.5865          
##          Detection Rate : 0.5865          
##    Detection Prevalence : 1.0000          
##       Balanced Accuracy : 0.5000          
##                                           
##        'Positive' Class : Up              
## 

Accuracy score is 58%

The model correctly predicted 61 ‘Up’ cases (True Positives), but it misclassified 43 ‘Down’ cases as ‘Up’ (False Positives). It did not misclassify any ‘Up’ cases as ‘Down’ (False Negatives), and it did not correctly predict any ‘Down’ cases as ‘Down’ (True Negatives).

(g) Repeat (d) using KNN with K=1.

set.seed(1)

train <- Weekly$Year <= 2008

Week_train <- as.matrix(Weekly[train, "Lag2"]) 
Week_test <- as.matrix(Weekly[!train, "Lag2"]) 
train_Direction <- Weekly[train, "Direction"]
test_Direction <- Weekly[!train, "Direction"]

Weekknn_pred <- knn(Week_train, Week_test, train_Direction, k = 1)

confusionMatrix(as.factor(Weekknn_pred), as.factor(Weekly$Direction[!train]), positive = 'Up')
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down   21 30
##       Up     22 31
##                                           
##                Accuracy : 0.5             
##                  95% CI : (0.4003, 0.5997)
##     No Information Rate : 0.5865          
##     P-Value [Acc > NIR] : 0.9700          
##                                           
##                   Kappa : -0.0033         
##                                           
##  Mcnemar's Test P-Value : 0.3317          
##                                           
##             Sensitivity : 0.5082          
##             Specificity : 0.4884          
##          Pos Pred Value : 0.5849          
##          Neg Pred Value : 0.4118          
##              Prevalence : 0.5865          
##          Detection Rate : 0.2981          
##    Detection Prevalence : 0.5096          
##       Balanced Accuracy : 0.4983          
##                                           
##        'Positive' Class : Up              
## 

Accuracy score is 50%

The model correctly predicted 21 ‘Down’ cases (True Negatives) and 31 ‘Up’ cases (True Positives). However, it misclassified 22 ‘Down’ cases as ‘Up’ (False Positives) and 30 ‘Up’ cases as ‘Down’ (False Negatives).

(h) Repeat (d) using naive Bayes.

weekly_nabay <- naiveBayes(Direction~Lag2 ,data=Weekly ,subset=train)
weekly_nabay_pred <- predict(weekly_nabay, newdata = Weekly[!train, ])
confusionMatrix(weekly_nabay_pred, test_Direction)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down    0  0
##       Up     43 61
##                                           
##                Accuracy : 0.5865          
##                  95% CI : (0.4858, 0.6823)
##     No Information Rate : 0.5865          
##     P-Value [Acc > NIR] : 0.5419          
##                                           
##                   Kappa : 0               
##                                           
##  Mcnemar's Test P-Value : 1.504e-10       
##                                           
##             Sensitivity : 0.0000          
##             Specificity : 1.0000          
##          Pos Pred Value :    NaN          
##          Neg Pred Value : 0.5865          
##              Prevalence : 0.4135          
##          Detection Rate : 0.0000          
##    Detection Prevalence : 0.0000          
##       Balanced Accuracy : 0.5000          
##                                           
##        'Positive' Class : Down            
## 

Accuracy score is 58%

Result is the same as the QDA

(i) Which of these methods appears to provide the best results on this data?

After performing LDA, QDA, KNN, and Naive Bayes, LDA appears to have the best results, with an accuracy score of 62%.

(j) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier

LDA

Weekly_lda2 <- lda(Direction ~ I(Lag3^2), data = Weekly, subset = (Year <= 2008), family = binomial)
Weekly_lda_pred2 <- predict(Weekly_lda2, Weekly[Weekly$Year >= 2009, ])$class
confusionMatrix(as.factor(Weekly_lda_pred2), as.factor(Weekly$Direction[Weekly$Year >= 2009]), positive = "Up")
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down    0  0
##       Up     43 61
##                                           
##                Accuracy : 0.5865          
##                  95% CI : (0.4858, 0.6823)
##     No Information Rate : 0.5865          
##     P-Value [Acc > NIR] : 0.5419          
##                                           
##                   Kappa : 0               
##                                           
##  Mcnemar's Test P-Value : 1.504e-10       
##                                           
##             Sensitivity : 1.0000          
##             Specificity : 0.0000          
##          Pos Pred Value : 0.5865          
##          Neg Pred Value :    NaN          
##              Prevalence : 0.5865          
##          Detection Rate : 0.5865          
##    Detection Prevalence : 1.0000          
##       Balanced Accuracy : 0.5000          
##                                           
##        'Positive' Class : Up              
## 

Using the predictor Lag3^2, LDA achieved an accuracy score of 58%.

QDA

Weekly_qda2 <- qda(Direction ~ Lag1:Lag5, data = Weekly, subset = (Year <= 2008))
Weekly_qda_pred2 <- predict(Weekly_qda2, Weekly[Weekly$Year >= 2009, ])$class
confusionMatrix(as.factor(Weekly_qda_pred2), as.factor(Weekly$Direction[Weekly$Year >= 2009]), positive = "Up")
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down   10 14
##       Up     33 47
##                                           
##                Accuracy : 0.5481          
##                  95% CI : (0.4474, 0.6459)
##     No Information Rate : 0.5865          
##     P-Value [Acc > NIR] : 0.81516         
##                                           
##                   Kappa : 0.0033          
##                                           
##  Mcnemar's Test P-Value : 0.00865         
##                                           
##             Sensitivity : 0.7705          
##             Specificity : 0.2326          
##          Pos Pred Value : 0.5875          
##          Neg Pred Value : 0.4167          
##              Prevalence : 0.5865          
##          Detection Rate : 0.4519          
##    Detection Prevalence : 0.7692          
##       Balanced Accuracy : 0.5015          
##                                           
##        'Positive' Class : Up              
## 

Using the predictor Lag1:Lag5, QDA achieved an accuracy score of 54%. Which is 4% lower than our previous QDA

KNN

set.seed(1)
Weekknn_pred2 <- knn(Week_train, Week_test, train_Direction, k = 13)

confusionMatrix(as.factor(Weekknn_pred2), as.factor(Weekly$Direction[!train]), positive = 'Up')
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down   20 19
##       Up     23 42
##                                           
##                Accuracy : 0.5962          
##                  95% CI : (0.4954, 0.6913)
##     No Information Rate : 0.5865          
##     P-Value [Acc > NIR] : 0.4626          
##                                           
##                   Kappa : 0.1558          
##                                           
##  Mcnemar's Test P-Value : 0.6434          
##                                           
##             Sensitivity : 0.6885          
##             Specificity : 0.4651          
##          Pos Pred Value : 0.6462          
##          Neg Pred Value : 0.5128          
##              Prevalence : 0.5865          
##          Detection Rate : 0.4038          
##    Detection Prevalence : 0.6250          
##       Balanced Accuracy : 0.5768          
##                                           
##        'Positive' Class : Up              
## 

After performing KNN with K=13, our accuracy score increased to 59%, which was better than our previous accuracy in part (g) when using K=1.

14. In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

library(ISLR2)
attach(Auto)
## The following object is masked from package:ggplot2:
## 
##     mpg

(a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

Auto$mpg01 <- ifelse(Auto$mpg > median(Auto$mpg), 1, 0)

(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings

pairs(Auto[, sapply(Auto, is.numeric)])

As the plot shows, displacement, horsepower, and weight are predictors with useful predictive power for mpg01, and there are linear negative relationships between these variables and mpg01.

boxplot(Auto$cylinders ~ Auto$mpg01, main = "Cylinders vs mpg01")

boxplot(displacement ~ Auto$mpg01, main = "Displacement vs mpg01")

boxplot(horsepower ~ Auto$mpg01, main = "Horsepower vs mpg01")

boxplot(weight ~ Auto$mpg01, main = "Weight vs mpg01")

boxplot(acceleration ~ Auto$mpg01, main = "Acceleration vs mpg01")

boxplot(year ~ Auto$mpg01, main = "Year vs mpg01")

Looking at our box plot, it still shows that displacement, horsepower, and weight still that relationship with mpg01 compared to the others. However, we do observe that acceleration and Year has a positive relationship. Additionally, when looking at cylinders, there is a large gap.

(c) Split the data into a training set and a test set.

set.seed(27)
Auto_trainIndex <- createDataPartition(Auto$mpg01, p = 0.7, list = FALSE)
Auto_train_data <- Auto[Auto_trainIndex, ]
Auto_test_data <- Auto[-Auto_trainIndex, ]

(d) Perform LDA on the training data in order to predict mpg01using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

Auto_lda <- lda(mpg01 ~ cylinders + displacement + weight, data = Auto_train_data)

Auto_lda_pred <- predict(Auto_lda, Auto_test_data)
Auto_lda_class <- Auto_lda_pred$class

confusionMatrix(Auto_lda_class, as.factor(Auto_test_data$mpg01))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 52  5
##          1  6 53
##                                           
##                Accuracy : 0.9052          
##                  95% CI : (0.8367, 0.9517)
##     No Information Rate : 0.5             
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.8103          
##                                           
##  Mcnemar's Test P-Value : 1               
##                                           
##             Sensitivity : 0.8966          
##             Specificity : 0.9138          
##          Pos Pred Value : 0.9123          
##          Neg Pred Value : 0.8983          
##              Prevalence : 0.5000          
##          Detection Rate : 0.4483          
##    Detection Prevalence : 0.4914          
##       Balanced Accuracy : 0.9052          
##                                           
##        'Positive' Class : 0               
## 

After performing LDA, we achieved a test accuracy of 90%.

(e) Perform QDA on the training data in order to predict mpg01using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

Auto_qda <- qda(mpg01 ~ cylinders + displacement + horsepower + weight, data = Auto_train_data)

Auto_qda_pred <- predict(Auto_qda, Auto_test_data)
Auto_qda_class <- Auto_qda_pred$class

confusionMatrix(Auto_qda_class, as.factor(Auto_test_data$mpg01))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 53  5
##          1  5 53
##                                           
##                Accuracy : 0.9138          
##                  95% CI : (0.8472, 0.9579)
##     No Information Rate : 0.5             
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.8276          
##                                           
##  Mcnemar's Test P-Value : 1               
##                                           
##             Sensitivity : 0.9138          
##             Specificity : 0.9138          
##          Pos Pred Value : 0.9138          
##          Neg Pred Value : 0.9138          
##              Prevalence : 0.5000          
##          Detection Rate : 0.4569          
##    Detection Prevalence : 0.5000          
##       Balanced Accuracy : 0.9138          
##                                           
##        'Positive' Class : 0               
## 

After performing QDA, we achieved a test accuracy of 91%.

(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

Auto_glm <- glm(mpg01 ~ cylinders + displacement + horsepower + weight, data = Auto_train_data)

Auto_glm_prob <- predict(Auto_glm, Auto_test_data, type = 'response')
Auto_glm_pred <- ifelse(Auto_glm_prob > 0.5, 1, 0)

confusionMatrix(as.factor(Auto_glm_pred), as.factor(Auto_test_data$mpg01))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 52  3
##          1  6 55
##                                           
##                Accuracy : 0.9224          
##                  95% CI : (0.8578, 0.9639)
##     No Information Rate : 0.5             
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.8448          
##                                           
##  Mcnemar's Test P-Value : 0.505           
##                                           
##             Sensitivity : 0.8966          
##             Specificity : 0.9483          
##          Pos Pred Value : 0.9455          
##          Neg Pred Value : 0.9016          
##              Prevalence : 0.5000          
##          Detection Rate : 0.4483          
##    Detection Prevalence : 0.4741          
##       Balanced Accuracy : 0.9224          
##                                           
##        'Positive' Class : 0               
## 

After performing logistic regression, we achieved a test accuracy of 92%.

(g) Perform naive Bayes on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

Auto_nabay <- naiveBayes(mpg01 ~ cylinders + displacement + horsepower + weight, data = Auto_train_data)

Auto_nabay_pred <- predict(Auto_nabay, Auto_test_data)

confusionMatrix(as.factor(Auto_nabay_pred), as.factor(Auto_test_data$mpg01))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 52  5
##          1  6 53
##                                           
##                Accuracy : 0.9052          
##                  95% CI : (0.8367, 0.9517)
##     No Information Rate : 0.5             
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.8103          
##                                           
##  Mcnemar's Test P-Value : 1               
##                                           
##             Sensitivity : 0.8966          
##             Specificity : 0.9138          
##          Pos Pred Value : 0.9123          
##          Neg Pred Value : 0.8983          
##              Prevalence : 0.5000          
##          Detection Rate : 0.4483          
##    Detection Prevalence : 0.4914          
##       Balanced Accuracy : 0.9052          
##                                           
##        'Positive' Class : 0               
## 

After performing naive Bayes, we achieved a test accuracy of 90%.

(h) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

set.seed(30)

Auto_Knn_train1 <- Auto_train_data[, c("cylinders", "displacement", "horsepower", "weight")]
Auto_Knn_test1 <- Auto_test_data[, c("cylinders", "displacement", "horsepower", "weight")]

Auto_Knn_train2 <- Auto_train_data$mpg01
Auto_Knn_test2 <- Auto_test_data$mpg01


Auto_knn_preds1 <- knn(Auto_Knn_train1, Auto_Knn_test1, Auto_Knn_train2, k = 2)
Auto_knn_preds2 <- knn(Auto_Knn_train1, Auto_Knn_test1, Auto_Knn_train2, k = 4)
Auto_knn_preds3 <- knn(Auto_Knn_train1, Auto_Knn_test1, Auto_Knn_train2, k = 6)
Auto_knn_preds4 <- knn(Auto_Knn_train1, Auto_Knn_test1, Auto_Knn_train2, k = 8)


confusionMatrix(as.factor(Auto_knn_preds1), as.factor(Auto_Knn_test2))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 48  7
##          1 10 51
##                                           
##                Accuracy : 0.8534          
##                  95% CI : (0.7758, 0.9122)
##     No Information Rate : 0.5             
##     P-Value [Acc > NIR] : 1.478e-15       
##                                           
##                   Kappa : 0.7069          
##                                           
##  Mcnemar's Test P-Value : 0.6276          
##                                           
##             Sensitivity : 0.8276          
##             Specificity : 0.8793          
##          Pos Pred Value : 0.8727          
##          Neg Pred Value : 0.8361          
##              Prevalence : 0.5000          
##          Detection Rate : 0.4138          
##    Detection Prevalence : 0.4741          
##       Balanced Accuracy : 0.8534          
##                                           
##        'Positive' Class : 0               
## 

K = 2 gave an accuracy score of 85%

K = 4

confusionMatrix(as.factor(Auto_knn_preds2), as.factor(Auto_Knn_test2))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 52  4
##          1  6 54
##                                           
##                Accuracy : 0.9138          
##                  95% CI : (0.8472, 0.9579)
##     No Information Rate : 0.5             
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.8276          
##                                           
##  Mcnemar's Test P-Value : 0.7518          
##                                           
##             Sensitivity : 0.8966          
##             Specificity : 0.9310          
##          Pos Pred Value : 0.9286          
##          Neg Pred Value : 0.9000          
##              Prevalence : 0.5000          
##          Detection Rate : 0.4483          
##    Detection Prevalence : 0.4828          
##       Balanced Accuracy : 0.9138          
##                                           
##        'Positive' Class : 0               
## 

K = 4 gave an accuracy score of 91%

K= 6

confusionMatrix(as.factor(Auto_knn_preds3), as.factor(Auto_Knn_test2))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 53  6
##          1  5 52
##                                           
##                Accuracy : 0.9052          
##                  95% CI : (0.8367, 0.9517)
##     No Information Rate : 0.5             
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.8103          
##                                           
##  Mcnemar's Test P-Value : 1               
##                                           
##             Sensitivity : 0.9138          
##             Specificity : 0.8966          
##          Pos Pred Value : 0.8983          
##          Neg Pred Value : 0.9123          
##              Prevalence : 0.5000          
##          Detection Rate : 0.4569          
##    Detection Prevalence : 0.5086          
##       Balanced Accuracy : 0.9052          
##                                           
##        'Positive' Class : 0               
## 

K = 6 gave an accuracy score of 91%

K = 8

confusionMatrix(as.factor(Auto_knn_preds4), as.factor(Auto_Knn_test2))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 53  5
##          1  5 53
##                                           
##                Accuracy : 0.9138          
##                  95% CI : (0.8472, 0.9579)
##     No Information Rate : 0.5             
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.8276          
##                                           
##  Mcnemar's Test P-Value : 1               
##                                           
##             Sensitivity : 0.9138          
##             Specificity : 0.9138          
##          Pos Pred Value : 0.9138          
##          Neg Pred Value : 0.9138          
##              Prevalence : 0.5000          
##          Detection Rate : 0.4569          
##    Detection Prevalence : 0.5000          
##       Balanced Accuracy : 0.9138          
##                                           
##        'Positive' Class : 0               
## 

K = 8 gave an accuracy score of 91%

16. Using the Boston data set, fit classification models in order to predict whether a given census tract has a crime rate above or below the median. Explore logistic regression, LDA, naive Bayes, and KNN models using various subsets of the predictors. Describe your findings.

data('Boston')
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          lstat      
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   : 1.73  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.: 6.95  
##  Median : 5.000   Median :330.0   Median :19.05   Median :11.36  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :12.65  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:16.95  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :37.97  
##       medv      
##  Min.   : 5.00  
##  1st Qu.:17.02  
##  Median :21.20  
##  Mean   :22.53  
##  3rd Qu.:25.00  
##  Max.   :50.00

Create binary target variable

1 = High crime

0 = Low crime

Boston$crim01 <- ifelse(Boston$crim > median(Boston$crim), 1, 0)

Exploring the Data

pairs(Boston)

Convert crim01 to a factor for visualization

Boston$crim01 <- as.factor(Boston$crim01)
ggplot(Boston, aes(x = dis, y = lstat, color = crim01)) +
  geom_point(alpha = 0.6) +
  labs(title = "Distance vs. Lower Status",
       x = "Distance to Jobs",
       y = "% Lower Status") +
  theme_minimal()

ggplot(Boston, aes(x = rm, y = ptratio, color = crim01)) +
  geom_point(alpha = 0.6) +
  labs(title = "Rooms vs. Pupil-Teacher Ratio",
       x = "Avg. Rooms",
       y = "Pupil-Teacher Ratio") +
  theme_minimal()

ggplot(Boston, aes(x = crim01, y = tax, fill = crim01)) +
  geom_boxplot() +
  labs(title = "Tax Rate by Crime Level",
       x = "Crime Level",
       y = "Tax Rate") +
  theme_minimal()

ggplot(Boston, aes(x = crim01, y = age, fill = crim01)) +
  geom_boxplot() +
  labs(title = "Older Homes by Crime Level",
       x = "Crime Level",
       y = "% Older Homes") +
  theme_minimal()

Identify Significant Predictors Using Logistic Regression

Boston_glm <- glm(crim01 ~ ., data = Boston[, -which(names(Boston) == "crim")], family = binomial)

summary(Boston_glm)
## 
## Call:
## glm(formula = crim01 ~ ., family = binomial, data = Boston[, 
##     -which(names(Boston) == "crim")])
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -38.832417   6.086280  -6.380 1.77e-10 ***
## zn           -0.086228   0.034090  -2.529   0.0114 *  
## indus        -0.052438   0.042817  -1.225   0.2207    
## chas          0.619914   0.722150   0.858   0.3907    
## nox          47.913820   7.344213   6.524 6.84e-11 ***
## rm           -0.271941   0.676239  -0.402   0.6876    
## age           0.021474   0.012105   1.774   0.0761 .  
## dis           0.669991   0.214618   3.122   0.0018 ** 
## rad           0.669240   0.151742   4.410 1.03e-05 ***
## tax          -0.006165   0.002622  -2.351   0.0187 *  
## ptratio       0.326433   0.116296   2.807   0.0050 ** 
## lstat         0.053537   0.047105   1.137   0.2557    
## medv          0.147987   0.064347   2.300   0.0215 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 701.46  on 505  degrees of freedom
## Residual deviance: 218.75  on 493  degrees of freedom
## AIC: 244.75
## 
## Number of Fisher Scoring iterations: 9

After analyzing the results, variables such as nox, dis, rad, and ptratio appear to be the most influential in predicting whether a census tract has a high or low crime rate.

Train and Test split

set.seed(25)
Boston_train_index <- createDataPartition(Boston$crim01, p = 0.7, list = FALSE)

Boston_train<- Boston[Boston_train_index, ]
Boston_test <- Boston[-Boston_train_index, ]

Since we have already performed logistic regression to identify significant variables, let’s now use those variables to predict the outcome using Logistic Regression, LDA, QDA, Naive Bayes, and KNN.

Logistic Regresesion

Boston_glm_model <- glm(crim01 ~ nox + dis + rad + ptratio, data = Boston_train, family = binomial)

Boston_glm_probs <- predict(Boston_glm_model, Boston_test, type = "response")
Boston_glm_preds <- ifelse(Boston_glm_probs > 0.5, 1, 0)

confusionMatrix(as.factor(Boston_glm_preds), as.factor(Boston_test$crim01))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 69 12
##          1  6 63
##                                          
##                Accuracy : 0.88           
##                  95% CI : (0.817, 0.9273)
##     No Information Rate : 0.5            
##     P-Value [Acc > NIR] : <2e-16         
##                                          
##                   Kappa : 0.76           
##                                          
##  Mcnemar's Test P-Value : 0.2386         
##                                          
##             Sensitivity : 0.9200         
##             Specificity : 0.8400         
##          Pos Pred Value : 0.8519         
##          Neg Pred Value : 0.9130         
##              Prevalence : 0.5000         
##          Detection Rate : 0.4600         
##    Detection Prevalence : 0.5400         
##       Balanced Accuracy : 0.8800         
##                                          
##        'Positive' Class : 0              
## 

The logistic regression model has an accuracy score of 88%.

LDA

Boston_lda_model <- lda(crim01 ~ nox + dis + rad + ptratio, data = Boston_train)

Boston_lda_preds <- predict(Boston_lda_model, Boston_test)$class

confusionMatrix(as.factor(Boston_lda_preds), as.factor(Boston_test$crim01))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 70 17
##          1  5 58
##                                           
##                Accuracy : 0.8533          
##                  95% CI : (0.7864, 0.9057)
##     No Information Rate : 0.5             
##     P-Value [Acc > NIR] : < 2e-16         
##                                           
##                   Kappa : 0.7067          
##                                           
##  Mcnemar's Test P-Value : 0.01902         
##                                           
##             Sensitivity : 0.9333          
##             Specificity : 0.7733          
##          Pos Pred Value : 0.8046          
##          Neg Pred Value : 0.9206          
##              Prevalence : 0.5000          
##          Detection Rate : 0.4667          
##    Detection Prevalence : 0.5800          
##       Balanced Accuracy : 0.8533          
##                                           
##        'Positive' Class : 0               
## 

The LDA model has an accuracy score of 85%.

QDA

Boston_qda_model <- qda(crim01 ~ nox + dis + rad + ptratio, data = Boston_train)

Boston_qda_preds <- predict(Boston_qda_model, Boston_test)$class

confusionMatrix(as.factor(Boston_qda_preds), as.factor(Boston_test$crim01))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 73 18
##          1  2 57
##                                           
##                Accuracy : 0.8667          
##                  95% CI : (0.8016, 0.9166)
##     No Information Rate : 0.5             
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.7333          
##                                           
##  Mcnemar's Test P-Value : 0.0007962       
##                                           
##             Sensitivity : 0.9733          
##             Specificity : 0.7600          
##          Pos Pred Value : 0.8022          
##          Neg Pred Value : 0.9661          
##              Prevalence : 0.5000          
##          Detection Rate : 0.4867          
##    Detection Prevalence : 0.6067          
##       Balanced Accuracy : 0.8667          
##                                           
##        'Positive' Class : 0               
## 

The QDA model has an accuracy score of 86%.

Naive Bayes

Boston_nb_model <- naiveBayes(crim01 ~ nox + dis + rad + ptratio, data = Boston_train)

Boston_nb_preds <- predict(Boston_nb_model, Boston_test)

confusionMatrix(as.factor(Boston_nb_preds), as.factor(Boston_test$crim01))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 68 16
##          1  7 59
##                                           
##                Accuracy : 0.8467          
##                  95% CI : (0.7789, 0.9002)
##     No Information Rate : 0.5             
##     P-Value [Acc > NIR] : < 2e-16         
##                                           
##                   Kappa : 0.6933          
##                                           
##  Mcnemar's Test P-Value : 0.09529         
##                                           
##             Sensitivity : 0.9067          
##             Specificity : 0.7867          
##          Pos Pred Value : 0.8095          
##          Neg Pred Value : 0.8939          
##              Prevalence : 0.5000          
##          Detection Rate : 0.4533          
##    Detection Prevalence : 0.5600          
##       Balanced Accuracy : 0.8467          
##                                           
##        'Positive' Class : 0               
## 

The Naive Bayes model has an accuracy score of 84%.

KNN

KNN with k = 3

bosKNN_train_x <- Boston_train[, c('nox', 'dis', 'rad', 'ptratio')]
bosKNNtest_x <- Boston_test[, c('nox', 'dis', 'rad', 'ptratio')]
bosKNNtrain_y <- Boston_train$crim01

bosKNN_preds_3 <- knn(bosKNN_train_x, bosKNNtest_x, bosKNNtrain_y, k = 3)
bosKNN_preds_6 <- knn(bosKNN_train_x, bosKNNtest_x, bosKNNtrain_y, k = 6)
bosKNN_preds_9 <- knn(bosKNN_train_x, bosKNNtest_x, bosKNNtrain_y, k = 9)

confusionMatrix(as.factor(bosKNN_preds_3), as.factor(Boston_test$crim01))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 71  3
##          1  4 72
##                                          
##                Accuracy : 0.9533         
##                  95% CI : (0.9062, 0.981)
##     No Information Rate : 0.5            
##     P-Value [Acc > NIR] : <2e-16         
##                                          
##                   Kappa : 0.9067         
##                                          
##  Mcnemar's Test P-Value : 1              
##                                          
##             Sensitivity : 0.9467         
##             Specificity : 0.9600         
##          Pos Pred Value : 0.9595         
##          Neg Pred Value : 0.9474         
##              Prevalence : 0.5000         
##          Detection Rate : 0.4733         
##    Detection Prevalence : 0.4933         
##       Balanced Accuracy : 0.9533         
##                                          
##        'Positive' Class : 0              
## 

K = 3 gave an accuracy score of 95%

KNN with k = 6

confusionMatrix(as.factor(bosKNN_preds_6), as.factor(Boston_test$crim01))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 73  4
##          1  2 71
##                                          
##                Accuracy : 0.96           
##                  95% CI : (0.915, 0.9852)
##     No Information Rate : 0.5            
##     P-Value [Acc > NIR] : <2e-16         
##                                          
##                   Kappa : 0.92           
##                                          
##  Mcnemar's Test P-Value : 0.6831         
##                                          
##             Sensitivity : 0.9733         
##             Specificity : 0.9467         
##          Pos Pred Value : 0.9481         
##          Neg Pred Value : 0.9726         
##              Prevalence : 0.5000         
##          Detection Rate : 0.4867         
##    Detection Prevalence : 0.5133         
##       Balanced Accuracy : 0.9600         
##                                          
##        'Positive' Class : 0              
## 

K = 6 gave an accuracy score of 96%

KNN with k = 9

confusionMatrix(as.factor(bosKNN_preds_9), as.factor(Boston_test$crim01))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 72  4
##          1  3 71
##                                          
##                Accuracy : 0.9533         
##                  95% CI : (0.9062, 0.981)
##     No Information Rate : 0.5            
##     P-Value [Acc > NIR] : <2e-16         
##                                          
##                   Kappa : 0.9067         
##                                          
##  Mcnemar's Test P-Value : 1              
##                                          
##             Sensitivity : 0.9600         
##             Specificity : 0.9467         
##          Pos Pred Value : 0.9474         
##          Neg Pred Value : 0.9595         
##              Prevalence : 0.5000         
##          Detection Rate : 0.4800         
##    Detection Prevalence : 0.5067         
##       Balanced Accuracy : 0.9533         
##                                          
##        'Positive' Class : 0              
## 

K = 9 gave an accuracy score of 95%

Findings

After evaluating all the prediction models, it appears that KNN delivered the best accuracy, with K = 3 achieving an accuracy score of 95%, K = 6 achieving 96%, and K = 9 achieving 95%, with the highest accuracy at K = 6. Compared to other models, our lowest accuracy score came from the Naive Bayes , which had a score of 84%.