Sys.setenv(LANG = "en") # make R environment in english

require(haven)
require(srvyr)
require(tidyverse)
require(MASS)
require(MVN)
require(RVAideMemoire)
require(lavaan) # get SEM, CFA, MGCFA programs
require(leaps) # FactoMineR() doesn't seem to work without leaps installed or loaded
require(FactoMineR) # get PCA() function
require(nFactors) # get nScree() and parallel() functions
require(GPArotation) # get quartimax rotation
require(psych) # get fa.parallel() and VSS() functions 
require(semPlot)
require(psy)
require(dplyr)
require(mice)
require(rms) # for rcs() 
require(NlsyLinks)

Mc<-function(object, digits=3){ # McDonald's NC Index, from Beaujean
fit<-inspect(object, "fit")
chisq=unlist(fit["chisq"])
df<-unlist(fit["df"])
n<-object@SampleStats@ntotal
ncp<-max(chisq-df,0)
d<-ncp/(n-1)
Mc=exp((d)*-.5)
Mc
}

# RMSEAd functions taken from Savalei et al. (2023) : https://osf.io/ne5ar for RMSEA CI and https://osf.io/cfubt for RMSEAd
# make sure you DO NOT FORGET TO ADJUST the sample size in the N function or it will produce wrong numbers

RMSEA.CI<-function(T,df,N,G){
  
#functions taken from lavaan (lav_fit_measures.R)
lower.lambda <- function(lambda) {
  (pchisq(T, df=df, ncp=lambda) - 0.95)
}
upper.lambda <- function(lambda) {
  (pchisq(T, df=df, ncp=lambda) - 0.05)
}

#RMSEA CI
lambda.l <- try(uniroot(f=lower.lambda, lower=0, upper=T)$root,silent=TRUE) 
if(inherits(lambda.l, "try-error")) { lambda.l <- NA; RMSEA.CI.l<-NA 
} else { if(lambda.l<0){
  RMSEA.CI.l=0
} else {
  RMSEA.CI.l<-sqrt(lambda.l*G/((N-1)*df))
}
}

N.RMSEA <- max(N, T*4) 
lambda.u <- try(uniroot(f=upper.lambda, lower=0,upper=N.RMSEA)$root,silent=TRUE)
if(inherits(lambda.u, "try-error")) { lambda.u <- NA; RMSEA.CI.u<-NA 
} else { if(lambda.u<0){
  RMSEA.CI.u=0
} else {
  RMSEA.CI.u<-sqrt(lambda.u*G/((N-1)*df))
}
}
RMSEA.CI<-c(RMSEA.CI.l,RMSEA.CI.u)
return(RMSEA.CI)
}

#p-values associated with the critical values of the RMSEA for most common cutoffs
pvals<-function(T,df,N,G){
  RMSEA0<-c(0,.01,.05,.06,.08,.1)
  eps0<-df*RMSEA0^2/G 
  nonc<-eps0*(N-G) 
  pvals<-pchisq(T,df=df,ncp=nonc)
  names(pvals)<-c("RMSEA>0","RMSEA>.01","RMSEA>.05","RMSEA>.06","RMSEA>.08","RMSEA>.10")
  return(pvals)
}  

#based on Yuan & Chan (2016)
min.tol<-function(T,df,N,G){

 lower.lambda.mintol <- function(lambda) {
 (pchisq(T, df=df, ncp=lambda) - 0.05)
}

l.min.tol<-try(uniroot(f=lower.lambda.mintol, lower=0, upper=T)$root)
l.min.tol
RMSEA.mintol<-sqrt(l.min.tol*G/((N-1)*df))
RMSEA.mintol
out<-c(l.min.tol,RMSEA.mintol)
names(out)<-c("ncp(T)","RMSEA.pop")
return(out)
}

d<-read_csv(file = "C:\\Users\\mh198\\OneDrive\\Documents\\Data\\NLSY\\NLSY79 IQ wage.csv")
## Rows: 12686 Columns: 165
## ── Column specification ───────────────────────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (165): E5780100, E5780200, E5780300, E5780400, E5780500, E5780600, E5780700, E5780800, E578...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
d$weight2000<- d$R7006200
d$sweight<- d$R0614600 
d$cweight<- d$R0614601
d$asvabweight<- d$R0614700
sum(d$sweight == 0)
## [1] 491
sum(d$cweight == 0)
## [1] 6794
cor(d$sweight, d$cweight)
## [1] 0.7864714
cor(d$sweight, d$asvabweight)
## [1] 0.9439677
# R0214700 has no white category, the value 3 indicates the respondent is neither hispanic nor black
d$bhw<- rep(NA)
d$bhw[d$R0214700==2] <- 1
d$bhw[d$R0214700==1] <- 2
d$bhw[d$R0214700==3] <- 3
d$bw<- rep(NA)
d$bw[d$R0214700==2] <- 0
d$bw[d$R0214700==3] <- 1

d<- d %>% mutate(nonwhite = case_when(
R0009600==0 ~ 1, # none
R0009600==2 ~ 1, # chinese
R0009600==4 ~ 1, # filipino
R0009600==8 ~ 1, # hawaiian
R0009600==9 ~ 1, # native american
R0009600==10 ~ 1, # asian indian
R0009600==13 ~ 1, # japanese
R0009600==14 ~ 1, # korean
R0009600==26 ~ 1, # vietnamese
R0009600==28 ~ 1)) # others

d$id<-d$R0000100
d$hhid<-d$R0000149
d$momeduc<-ifelse(d$R0006500 < 0, NA, d$R0006500)
d$dadeduc<-ifelse(d$R0007900 < 0, NA, d$R0007900)
d$pareduc<- rowMeans(d[, c("momeduc", "dadeduc")], na.rm = TRUE)
d$educ2000<- ifelse(d$R7007300 < 0, NA, d$R7007300)
d$sex<-d$R0214800-1 # where 0 is male 1 is female
d$age<-d$R0000600-18
d$age2<- d$age^2
d$agesex<-d$sex*d$age
d$agesex2<- d$agesex^2
d$age14<- as.numeric(d$R0000600==14)
d$age15<- as.numeric(d$R0000600==15)
d$age16<- as.numeric(d$R0000600==16)
d$age17<- as.numeric(d$R0000600==17)
d$age18<- as.numeric(d$R0000600==18)
d$age19<- as.numeric(d$R0000600==19)
d$age20<- as.numeric(d$R0000600==20)
d$age21<- as.numeric(d$R0000600==21)
d$age22<- as.numeric(d$R0000600==22)
d$ssgs <- ifelse(d$R0615000 < 0, NA, d$R0615000)
d$ssar <- ifelse(d$R0615100 < 0, NA, d$R0615100)
d$sswk <- ifelse(d$R0615200 < 0, NA, d$R0615200)
d$sspc <- ifelse(d$R0615300 < 0, NA, d$R0615300)
d$ssno <- ifelse(d$R0615400 < 0, NA, d$R0615400)
d$sscs <- ifelse(d$R0615500 < 0, NA, d$R0615500)
d$ssasi <- ifelse(d$R0615600 < 0, NA, d$R0615600)
d$ssmk <- ifelse(d$R0615700 < 0, NA, d$R0615700)
d$ssmc <- ifelse(d$R0615800 < 0, NA, d$R0615800)
d$ssei <- ifelse(d$R0615900 < 0, NA, d$R0615900)
d$R0618301<- ifelse(d$R0618301 < 0, NA, d$R0618301)
d$afqtz<- scale(d$R0618301, center = TRUE, scale = TRUE)
d$afqt<- d$afqtz*15+100
cor(d$afqtz, d$afqt, use="pairwise.complete.obs", method="pearson")
##      [,1]
## [1,]    1
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(afqt, na.rm = TRUE), SD = survey_sd(afqt, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  104.   0.254  15.5
## 2     1  104.   0.242  14.7
datagroup <- dplyr::select(d, starts_with("ss"))
efa_fit = fa(datagroup[,1:10], nfactors=1, rotate="none", scores="Bartlett") # Bartlett necessary if the factor is used as dependent variable in a regression but here produces same numbers as the default "regression", also could use weight=datagroup$sweight but it didn't change the results
d$efa = efa_fit$scores[, 1]
d$efa<- d$efa*15+100
describeBy(d$efa) 
## Warning in describeBy(d$efa): no grouping variable requested
##    vars     n mean    sd median trimmed   mad   min    max range  skew kurtosis   se
## X1    1 11914  100 15.36 100.38  100.18 18.15 54.86 133.69 78.84 -0.11    -0.85 0.14
describeBy(d$afqt) 
## Warning in describeBy(d$afqt): no grouping variable requested
##    vars     n mean sd median trimmed   mad   min    max range skew kurtosis   se
## X1    1 11914  100 15  98.03    99.3 18.62 77.91 130.02 52.11 0.31    -1.11 0.14
cor(d$efa, d$afqt, use="pairwise.complete.obs", method="pearson")
##           [,1]
## [1,] 0.9249239
datagroup<- na.omit(datagroup)

d_clean <- d %>% filter(sweight > 0) # summarise by subgroup doesn't work with weights if there are zero
d_survey_clean <- d_clean %>% as_survey_design(ids = id, weights = sweight)

survey_results <- d_survey_clean %>%
group_by(age, sex) %>%
summarise(
MEAN = survey_mean(efa, na.rm = TRUE),
SD = survey_sd(efa, na.rm = TRUE)
)
print(survey_results)
## # A tibble: 18 Ă— 5
## # Groups:   age [9]
##      age   sex  MEAN MEAN_se    SD
##    <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    -4     0  98.6   0.759  14.5
##  2    -4     1  99.4   0.711  12.7
##  3    -3     0 103.    0.632  15.0
##  4    -3     1  98.9   0.571  12.8
##  5    -2     0 104.    0.636  15.3
##  6    -2     1 100.    0.556  12.6
##  7    -1     0 106.    0.658  14.9
##  8    -1     1 102.    0.561  12.9
##  9     0     0 106.    0.666  15.6
## 10     0     1 102.    0.565  13.4
## 11     1     0 108.    0.689  15.3
## 12     1     1 103.    0.603  13.8
## 13     2     0 111.    0.671  14.8
## 14     2     1 104.    0.620  13.4
## 15     3     0 110.    0.695  15.2
## 16     3     1 105.    0.608  13.7
## 17     4     0 110.    1.37   15.1
## 18     4     1 106.    1.16   11.9
describeBy(d$efa, d$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n   mean    sd median trimmed   mad   min    max range  skew kurtosis   se
## X1    1 5975 101.55 16.38 102.74  101.93 19.89 54.86 133.69 78.84 -0.19    -0.97 0.21
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean    sd median trimmed   mad   min    max range skew kurtosis   se
## X1    1 5939 98.44 14.09  98.68   98.57 16.32 54.86 130.66  75.8 -0.1    -0.73 0.18
d <- d %>% filter(!is.na(afqt)) # n=11914
d <- d %>% filter(!(nonwhite %in% c(1))) # remove cases that self-identify with a race/ethnicity other than black, white or hispanic, n=10918

d<- d %>% mutate(sibling = case_when(
R0000151>=6 & R0000151<=7 ~ 0, # brother and sister
R0000151==16 ~ 1, # cousin
R0000151>=26 & R0000151<=27 ~ 1, # brother/sister in law
R0000151==36 ~ 1, # other non relative
R0000151>=39 & R0000151<=40 ~ 1, # step brother/sister
R0000151>=52 & R0000151<=53 ~ 1, # foster brother/sister
R0000151>=59 & R0000151<=65 ~ 1)) # adopted, cousin, etc
nrow(d) # 10918
## [1] 10918
#d <- d %>% filter(!(R4521500 %in% c(1))) ## remove twins and triplets

#d <- d %>% mutate(across(starts_with("ss"), ~scale(.x, center = TRUE, scale = TRUE)))
d$ssno<- scale(d$ssno, center = TRUE, scale = TRUE)
d$sscs<- scale(d$sscs, center = TRUE, scale = TRUE)
dk<-d

d %>%
as_survey_design(ids = id, weights = sweight) %>%
group_by(sex) %>%
summarise(across(starts_with("ss"), list(MEAN = ~ survey_mean(.), SD = ~ survey_sd(.)),
.names = "{.col}_{.fn}")) %>%
pivot_longer(cols = starts_with("ss"), names_to = c(".value", "variable"), names_sep = "_")
## Warning: Expected 2 pieces. Additional pieces discarded in 10 rows [2, 5, 8, 11, 14, 17, 20, 23,
## 26, 29].
## # A tibble: 6 Ă— 12
##     sex variable    ssgs   ssar   sswk    sspc   ssno    sscs   ssasi   ssmk    ssmc    ssei
##   <dbl> <chr>      <dbl>  <dbl>  <dbl>   <dbl>  <dbl>   <dbl>   <dbl>  <dbl>   <dbl>   <dbl>
## 1     0 MEAN     16.4    18.4   25.5   10.4    0.0839 -0.0418 16.3    13.6   15.6    12.5   
## 2     0 MEAN      0.0869  0.130  0.130  0.0593 0.0162  0.0161  0.0920  0.116  0.0920  0.0718
## 3     0 SD        5.29    7.54   8.11   3.60   0.967   0.937   5.59    6.59   5.49    4.37  
## 4     1 MEAN     14.7    16.6   25.6   11.1    0.302   0.380  11.0    13.2   11.8     9.61  
## 5     1 MEAN      0.0782  0.123  0.123  0.0527 0.0154  0.0157  0.0638  0.108  0.0756  0.0615
## 6     1 SD        4.65    7.00   7.64   3.28   0.928   0.940   3.76    6.13   4.31    3.58
# NORMALITY TEST

dblack<- subset(dk, bhw==1)
dwhite<- subset(dk, bhw==3)
datablack<- dplyr::select(dblack, starts_with("ss"))
datawhite<- dplyr::select(dwhite, starts_with("ss"))

mqqnorm(datablack, main = "Multi-normal Q-Q Plot")

## [1] 1836  911
mqqnorm(datawhite, main = "Multi-normal Q-Q Plot")

## [1] 1118 3799
mqqnorm(datagroup, main = "Multi-normal Q-Q Plot")

## [1] 1624 5291
mvn(data = datablack, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic              p value Result
## 1 Mardia Skewness 2266.64009628387                    0     NO
## 2 Mardia Kurtosis 7.22063301630499 5.17363929475323e-13     NO
## 3             MVN             <NA>                 <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs      13.9795  <0.001      NO    
## 2  Anderson-Darling   ssar      62.5313  <0.001      NO    
## 3  Anderson-Darling   sswk      15.1514  <0.001      NO    
## 4  Anderson-Darling   sspc      28.7517  <0.001      NO    
## 5  Anderson-Darling   ssno       3.5004  <0.001      NO    
## 6  Anderson-Darling   sscs      10.3566  <0.001      NO    
## 7  Anderson-Darling   ssasi     41.7441  <0.001      NO    
## 8  Anderson-Darling   ssmk      76.9507  <0.001      NO    
## 9  Anderson-Darling   ssmc      43.4728  <0.001      NO    
## 10 Anderson-Darling   ssei      35.0841  <0.001      NO    
## 
## $Descriptives
##          n       Mean   Std.Dev     Median       Min       Max      25th       75th        Skew
## ssgs  2994 11.1295925 4.3875000 11.0000000  0.000000 25.000000  8.000000 14.0000000  0.38540936
## ssar  2994 11.4709419 5.1077914 10.0000000  0.000000 30.000000  8.000000 14.0000000  1.04113313
## sswk  2994 18.2321309 8.0379086 18.0000000  0.000000 35.000000 12.000000 24.0000000  0.17098981
## sspc  2994  7.9605878 3.5484970  8.0000000  0.000000 15.000000  5.000000 11.0000000  0.02888516
## ssno  2994 -0.4624243 0.9780054 -0.4846101 -2.736272  1.593847 -1.177429  0.2082090  0.01695172
## sscs  2994 -0.4952273 0.9395854 -0.4134647 -2.494567  2.500078 -1.245906  0.1811359 -0.04248575
## ssasi 2994  9.0845023 3.9480261  8.0000000  0.000000 25.000000  6.000000 11.0000000  0.86959273
## ssmk  2994  9.1686707 4.6889845  8.0000000  0.000000 25.000000  6.000000 11.0000000  1.09271693
## ssmc  2994  9.3326653 3.7531884  9.0000000  0.000000 25.000000  7.000000 11.0000000  0.88087552
## ssei  2994  7.5871743 3.4443574  7.0000000  0.000000 20.000000  5.000000 10.0000000  0.68646918
##         Kurtosis
## ssgs  -0.0839087
## ssar   1.0747015
## sswk  -0.8296500
## sspc  -0.9983582
## ssno  -0.5549781
## sscs  -0.5168196
## ssasi  0.8856102
## ssmk   0.9828757
## ssmc   1.0471244
## ssei   0.2876448
mvn(data = datawhite, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic              p value Result
## 1 Mardia Skewness 3922.29814591995                    0     NO
## 2 Mardia Kurtosis 7.57356303505293 3.64153152077051e-14     NO
## 3             MVN             <NA>                 <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs      24.0746  <0.001      NO    
## 2  Anderson-Darling   ssar      58.6086  <0.001      NO    
## 3  Anderson-Darling   sswk     195.7633  <0.001      NO    
## 4  Anderson-Darling   sspc     227.1347  <0.001      NO    
## 5  Anderson-Darling   ssno      42.8925  <0.001      NO    
## 6  Anderson-Darling   sscs      21.2531  <0.001      NO    
## 7  Anderson-Darling   ssasi     40.4712  <0.001      NO    
## 8  Anderson-Darling   ssmk      76.0697  <0.001      NO    
## 9  Anderson-Darling   ssmc      29.9868  <0.001      NO    
## 10 Anderson-Darling   ssei      32.5599  <0.001      NO    
## 
## $Descriptives
##          n       Mean   Std.Dev     Median       Min       Max       25th       75th        Skew
## ssgs  6161 16.3905210 4.6302297 17.0000000  0.000000 25.000000 13.0000000 20.0000000 -0.32932101
## ssar  6161 18.5177731 7.0450119 18.0000000  1.000000 30.000000 13.0000000 25.0000000 -0.07617875
## sswk  6161 26.9009901 7.1039316 29.0000000  1.000000 35.000000 23.0000000 32.0000000 -1.07500497
## sspc  6161 11.2325921 3.1699609 12.0000000  0.000000 15.000000 10.0000000 14.0000000 -1.09930729
## ssno  6161  0.3009822 0.8994054  0.3814138 -2.736272  1.593847 -0.3114053  0.9876305 -0.47240273
## sscs  6161  0.3011659 0.9183528  0.3595161 -2.494567  2.500078 -0.2350845  0.8946566 -0.36095948
## ssasi 6161 14.6955040 5.2252006 14.0000000  0.000000 25.000000 11.0000000 19.0000000  0.09167924
## ssmk  6161 13.8805389 6.2191065 13.0000000  0.000000 25.000000  9.0000000 19.0000000  0.16202921
## ssmc  6161 14.6033112 5.0708054 14.0000000  0.000000 25.000000 11.0000000 19.0000000  0.01735101
## ssei  6161 11.8375264 4.0214596 12.0000000  0.000000 20.000000  9.0000000 15.0000000 -0.16635923
##          Kurtosis
## ssgs  -0.31350403
## ssar  -1.08144547
## sswk   0.51822397
## sspc   0.58495264
## ssno  -0.32573652
## sscs   0.08674834
## ssasi -0.82617255
## ssmk  -1.10238320
## ssmc  -0.81454486
## ssei  -0.69895259
mvn(data = datagroup, mvnTest = "mardia") 
## $multivariateNormality
##              Test          Statistic           p value Result
## 1 Mardia Skewness   5293.37990043677                 0     NO
## 2 Mardia Kurtosis -0.735865642639813 0.461812468016037    YES
## 3             MVN               <NA>              <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs      36.4896  <0.001      NO    
## 2  Anderson-Darling   ssar     169.0011  <0.001      NO    
## 3  Anderson-Darling   sswk     210.0292  <0.001      NO    
## 4  Anderson-Darling   sspc     272.6056  <0.001      NO    
## 5  Anderson-Darling   ssno      49.8691  <0.001      NO    
## 6  Anderson-Darling   sscs      44.7109  <0.001      NO    
## 7  Anderson-Darling   ssasi    105.4991  <0.001      NO    
## 8  Anderson-Darling   ssmk     222.0899  <0.001      NO    
## 9  Anderson-Darling   ssmc     109.0926  <0.001      NO    
## 10 Anderson-Darling   ssei      75.8909  <0.001      NO    
## 
## $Descriptives
##           n      Mean   Std.Dev Median Min Max 25th 75th        Skew   Kurtosis
## ssgs  11914 14.320631  5.253142     14   0  25   10   18 -0.08615219 -0.6257330
## ssar  11914 15.821303  7.222702     15   0  30   10   22  0.33542654 -0.9638784
## sswk  11914 23.554474  8.527227     25   0  35   17   31 -0.54412481 -0.7162933
## sspc  11914  9.944015  3.705358     11   0  15    7   13 -0.59653344 -0.6670781
## ssno  11914 31.728555 11.519421     32   0  50   24   40 -0.31092027 -0.5541453
## sscs  11914 42.192463 16.764929     44   0  84   32   54 -0.26701668 -0.2781619
## ssasi 11914 12.607437  5.548932     12   0  25    8   17  0.33518543 -0.6939238
## ssmk  11914 12.000671  6.174238     11   0  25    7   17  0.49615130 -0.7889924
## ssmc  11914 12.633121  5.297491     12   0  25    8   16  0.32689991 -0.7116053
## ssei  11914 10.184405  4.366969     10   0  20    7   14  0.13085884 -0.8024524
mvn(data = datablack, mvnTest = "hz", multivariatePlot = "qq", multivariateOutlierMethod = "quan") 

## $multivariateNormality
##            Test       HZ p value MVN
## 1 Henze-Zirkler 1.316072       0  NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs      13.9795  <0.001      NO    
## 2  Anderson-Darling   ssar      62.5313  <0.001      NO    
## 3  Anderson-Darling   sswk      15.1514  <0.001      NO    
## 4  Anderson-Darling   sspc      28.7517  <0.001      NO    
## 5  Anderson-Darling   ssno       3.5004  <0.001      NO    
## 6  Anderson-Darling   sscs      10.3566  <0.001      NO    
## 7  Anderson-Darling   ssasi     41.7441  <0.001      NO    
## 8  Anderson-Darling   ssmk      76.9507  <0.001      NO    
## 9  Anderson-Darling   ssmc      43.4728  <0.001      NO    
## 10 Anderson-Darling   ssei      35.0841  <0.001      NO    
## 
## $Descriptives
##          n       Mean   Std.Dev     Median       Min       Max      25th       75th        Skew
## ssgs  2994 11.1295925 4.3875000 11.0000000  0.000000 25.000000  8.000000 14.0000000  0.38540936
## ssar  2994 11.4709419 5.1077914 10.0000000  0.000000 30.000000  8.000000 14.0000000  1.04113313
## sswk  2994 18.2321309 8.0379086 18.0000000  0.000000 35.000000 12.000000 24.0000000  0.17098981
## sspc  2994  7.9605878 3.5484970  8.0000000  0.000000 15.000000  5.000000 11.0000000  0.02888516
## ssno  2994 -0.4624243 0.9780054 -0.4846101 -2.736272  1.593847 -1.177429  0.2082090  0.01695172
## sscs  2994 -0.4952273 0.9395854 -0.4134647 -2.494567  2.500078 -1.245906  0.1811359 -0.04248575
## ssasi 2994  9.0845023 3.9480261  8.0000000  0.000000 25.000000  6.000000 11.0000000  0.86959273
## ssmk  2994  9.1686707 4.6889845  8.0000000  0.000000 25.000000  6.000000 11.0000000  1.09271693
## ssmc  2994  9.3326653 3.7531884  9.0000000  0.000000 25.000000  7.000000 11.0000000  0.88087552
## ssei  2994  7.5871743 3.4443574  7.0000000  0.000000 20.000000  5.000000 10.0000000  0.68646918
##         Kurtosis
## ssgs  -0.0839087
## ssar   1.0747015
## sswk  -0.8296500
## sspc  -0.9983582
## ssno  -0.5549781
## sscs  -0.5168196
## ssasi  0.8856102
## ssmk   0.9828757
## ssmc   1.0471244
## ssei   0.2876448
mvn(data = datawhite, mvnTest = "hz", multivariatePlot = "qq", multivariateOutlierMethod = "quan") 

## $multivariateNormality
##            Test       HZ p value MVN
## 1 Henze-Zirkler 1.807967       0  NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs      24.0746  <0.001      NO    
## 2  Anderson-Darling   ssar      58.6086  <0.001      NO    
## 3  Anderson-Darling   sswk     195.7633  <0.001      NO    
## 4  Anderson-Darling   sspc     227.1347  <0.001      NO    
## 5  Anderson-Darling   ssno      42.8925  <0.001      NO    
## 6  Anderson-Darling   sscs      21.2531  <0.001      NO    
## 7  Anderson-Darling   ssasi     40.4712  <0.001      NO    
## 8  Anderson-Darling   ssmk      76.0697  <0.001      NO    
## 9  Anderson-Darling   ssmc      29.9868  <0.001      NO    
## 10 Anderson-Darling   ssei      32.5599  <0.001      NO    
## 
## $Descriptives
##          n       Mean   Std.Dev     Median       Min       Max       25th       75th        Skew
## ssgs  6161 16.3905210 4.6302297 17.0000000  0.000000 25.000000 13.0000000 20.0000000 -0.32932101
## ssar  6161 18.5177731 7.0450119 18.0000000  1.000000 30.000000 13.0000000 25.0000000 -0.07617875
## sswk  6161 26.9009901 7.1039316 29.0000000  1.000000 35.000000 23.0000000 32.0000000 -1.07500497
## sspc  6161 11.2325921 3.1699609 12.0000000  0.000000 15.000000 10.0000000 14.0000000 -1.09930729
## ssno  6161  0.3009822 0.8994054  0.3814138 -2.736272  1.593847 -0.3114053  0.9876305 -0.47240273
## sscs  6161  0.3011659 0.9183528  0.3595161 -2.494567  2.500078 -0.2350845  0.8946566 -0.36095948
## ssasi 6161 14.6955040 5.2252006 14.0000000  0.000000 25.000000 11.0000000 19.0000000  0.09167924
## ssmk  6161 13.8805389 6.2191065 13.0000000  0.000000 25.000000  9.0000000 19.0000000  0.16202921
## ssmc  6161 14.6033112 5.0708054 14.0000000  0.000000 25.000000 11.0000000 19.0000000  0.01735101
## ssei  6161 11.8375264 4.0214596 12.0000000  0.000000 20.000000  9.0000000 15.0000000 -0.16635923
##          Kurtosis
## ssgs  -0.31350403
## ssar  -1.08144547
## sswk   0.51822397
## sspc   0.58495264
## ssno  -0.32573652
## sscs   0.08674834
## ssasi -0.82617255
## ssmk  -1.10238320
## ssmc  -0.81454486
## ssei  -0.69895259
mvn(data = datagroup, mvnTest = "hz", multivariatePlot = "qq", multivariateOutlierMethod = "quan") 

## $multivariateNormality
##            Test       HZ p value MVN
## 1 Henze-Zirkler 1.859271       0  NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs      36.4896  <0.001      NO    
## 2  Anderson-Darling   ssar     169.0011  <0.001      NO    
## 3  Anderson-Darling   sswk     210.0292  <0.001      NO    
## 4  Anderson-Darling   sspc     272.6056  <0.001      NO    
## 5  Anderson-Darling   ssno      49.8691  <0.001      NO    
## 6  Anderson-Darling   sscs      44.7109  <0.001      NO    
## 7  Anderson-Darling   ssasi    105.4991  <0.001      NO    
## 8  Anderson-Darling   ssmk     222.0899  <0.001      NO    
## 9  Anderson-Darling   ssmc     109.0926  <0.001      NO    
## 10 Anderson-Darling   ssei      75.8909  <0.001      NO    
## 
## $Descriptives
##           n      Mean   Std.Dev Median Min Max 25th 75th        Skew   Kurtosis
## ssgs  11914 14.320631  5.253142     14   0  25   10   18 -0.08615219 -0.6257330
## ssar  11914 15.821303  7.222702     15   0  30   10   22  0.33542654 -0.9638784
## sswk  11914 23.554474  8.527227     25   0  35   17   31 -0.54412481 -0.7162933
## sspc  11914  9.944015  3.705358     11   0  15    7   13 -0.59653344 -0.6670781
## ssno  11914 31.728555 11.519421     32   0  50   24   40 -0.31092027 -0.5541453
## sscs  11914 42.192463 16.764929     44   0  84   32   54 -0.26701668 -0.2781619
## ssasi 11914 12.607437  5.548932     12   0  25    8   17  0.33518543 -0.6939238
## ssmk  11914 12.000671  6.174238     11   0  25    7   17  0.49615130 -0.7889924
## ssmc  11914 12.633121  5.297491     12   0  25    8   16  0.32689991 -0.7116053
## ssei  11914 10.184405  4.366969     10   0  20    7   14  0.13085884 -0.8024524
dwhitem<- subset(dk, sex==0 & bhw==3)
dwhitef<- subset(dk, sex==1 & bhw==3)
datawhitem<- dplyr::select(dwhitem, starts_with("ss"))
datawhitef<- dplyr::select(dwhitef, starts_with("ss"))
mqqnorm(datawhitem, main = "Multi-normal Q-Q Plot")

## [1]  562 1895
mqqnorm(datawhitef, main = "Multi-normal Q-Q Plot")

## [1] 1039  956
mvn(data = datawhitem, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic p value Result
## 1 Mardia Skewness  2302.1409596443       0     NO
## 2 Mardia Kurtosis 11.0991151376095       0     NO
## 3             MVN             <NA>    <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs      22.7194  <0.001      NO    
## 2  Anderson-Darling   ssar      40.8422  <0.001      NO    
## 3  Anderson-Darling   sswk     108.7868  <0.001      NO    
## 4  Anderson-Darling   sspc      99.3066  <0.001      NO    
## 5  Anderson-Darling   ssno      15.7588  <0.001      NO    
## 6  Anderson-Darling   sscs      10.6851  <0.001      NO    
## 7  Anderson-Darling   ssasi     40.9097  <0.001      NO    
## 8  Anderson-Darling   ssmk      45.4680  <0.001      NO    
## 9  Anderson-Darling   ssmc      30.9151  <0.001      NO    
## 10 Anderson-Darling   ssei      45.4217  <0.001      NO    
## 
## $Descriptives
##          n        Mean   Std.Dev     Median       Min       Max       25th       75th       Skew
## ssgs  3094 17.18584357 4.8815964 18.0000000  1.000000 25.000000 14.0000000 21.0000000 -0.5414934
## ssar  3094 19.27925016 7.2242436 20.0000000  1.000000 30.000000 13.0000000 26.0000000 -0.2153913
## sswk  3094 26.66451196 7.4398062 29.0000000  1.000000 35.000000 23.0000000 32.0000000 -1.0835362
## sspc  3094 10.80607628 3.3852558 12.0000000  0.000000 15.000000  9.0000000 13.0000000 -0.9263760
## ssno  3094  0.18167408 0.9276262  0.2082090 -2.736272  1.593847 -0.3980077  0.9010281 -0.3981409
## sscs  3094  0.06955699 0.9060932  0.1514059 -2.494567  2.500078 -0.4729248  0.7162764 -0.3047979
## ssasi 3094 17.56367162 4.9874384 18.0000000  1.000000 25.000000 14.0000000 22.0000000 -0.6553983
## ssmk  3094 13.99547511 6.4515388 13.0000000  0.000000 25.000000  9.0000000 20.0000000  0.1545661
## ssmc  3094 16.53878474 5.0961288 17.0000000  0.000000 25.000000 13.0000000 21.0000000 -0.4267266
## ssei  3094 13.26470588 4.0674958 14.0000000  0.000000 20.000000 11.0000000 16.0000000 -0.6330201
##          Kurtosis
## ssgs  -0.15634130
## ssar  -1.09662380
## sswk   0.42239473
## sspc   0.06419374
## ssno  -0.41565716
## sscs  -0.05418987
## ssasi -0.21015230
## ssmk  -1.15911506
## ssmc  -0.63766334
## ssei  -0.27373198
mvn(data = datawhitef, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic               p value Result
## 1 Mardia Skewness 2189.55223689514 5.21239256362515e-321     NO
## 2 Mardia Kurtosis 5.88517570047261   3.9763135006865e-09     NO
## 3             MVN             <NA>                  <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs      10.6312  <0.001      NO    
## 2  Anderson-Darling   ssar      21.5122  <0.001      NO    
## 3  Anderson-Darling   sswk      87.2707  <0.001      NO    
## 4  Anderson-Darling   sspc     120.1071  <0.001      NO    
## 5  Anderson-Darling   ssno      27.6213  <0.001      NO    
## 6  Anderson-Darling   sscs      11.0897  <0.001      NO    
## 7  Anderson-Darling   ssasi     11.7323  <0.001      NO    
## 8  Anderson-Darling   ssmk      32.4684  <0.001      NO    
## 9  Anderson-Darling   ssmc      10.7403  <0.001      NO    
## 10 Anderson-Darling   ssei      12.3650  <0.001      NO    
## 
## $Descriptives
##          n       Mean   Std.Dev     Median       Min       Max        25th      75th         Skew
## ssgs  3067 15.5881969 4.2132836 16.0000000  0.000000 25.000000 13.00000000 19.000000 -0.223824802
## ssar  3067 17.7495924 6.7744312 18.0000000  2.000000 30.000000 12.00000000 23.000000  0.044765417
## sswk  3067 27.1395500 6.7409980 29.0000000  1.000000 35.000000 23.00000000 32.000000 -1.034766286
## sspc  3067 11.6628627 2.8739217 12.0000000  0.000000 15.000000 10.00000000 14.000000 -1.262123159
## ssno  3067  0.4213407 0.8534192  0.4680162 -2.649670  1.593847 -0.13820052  1.160835 -0.518285524
## sscs  3067  0.5348137 0.8703272  0.5973563 -2.316187  2.500078  0.06221577  1.132497 -0.437710800
## ssasi 3067 11.8020867 3.6173310 12.0000000  0.000000 23.000000  9.00000000 14.000000  0.135557410
## ssmk  3067 13.7645908 5.9742881 13.0000000  0.000000 25.000000  9.00000000 19.000000  0.161130374
## ssmc  3067 12.6507988 4.2270448 12.0000000  2.000000 25.000000 10.00000000 16.000000  0.188030513
## ssei  3067 10.3977828 3.4165432 10.0000000  1.000000 20.000000  8.00000000 13.000000  0.006430677
##         Kurtosis
## ssgs  -0.3366270
## ssar  -1.0011772
## sswk   0.5179849
## sspc   1.2372973
## ssno  -0.2680411
## sscs   0.3893419
## ssasi -0.1061248
## ssmk  -1.0567015
## ssmc  -0.4274462
## ssei  -0.4650131
mvn(data = datawhitem, mvnTest = "hz", multivariatePlot = "qq", multivariateOutlierMethod = "quan") 

## $multivariateNormality
##            Test      HZ p value MVN
## 1 Henze-Zirkler 1.90853       0  NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs      22.7194  <0.001      NO    
## 2  Anderson-Darling   ssar      40.8422  <0.001      NO    
## 3  Anderson-Darling   sswk     108.7868  <0.001      NO    
## 4  Anderson-Darling   sspc      99.3066  <0.001      NO    
## 5  Anderson-Darling   ssno      15.7588  <0.001      NO    
## 6  Anderson-Darling   sscs      10.6851  <0.001      NO    
## 7  Anderson-Darling   ssasi     40.9097  <0.001      NO    
## 8  Anderson-Darling   ssmk      45.4680  <0.001      NO    
## 9  Anderson-Darling   ssmc      30.9151  <0.001      NO    
## 10 Anderson-Darling   ssei      45.4217  <0.001      NO    
## 
## $Descriptives
##          n        Mean   Std.Dev     Median       Min       Max       25th       75th       Skew
## ssgs  3094 17.18584357 4.8815964 18.0000000  1.000000 25.000000 14.0000000 21.0000000 -0.5414934
## ssar  3094 19.27925016 7.2242436 20.0000000  1.000000 30.000000 13.0000000 26.0000000 -0.2153913
## sswk  3094 26.66451196 7.4398062 29.0000000  1.000000 35.000000 23.0000000 32.0000000 -1.0835362
## sspc  3094 10.80607628 3.3852558 12.0000000  0.000000 15.000000  9.0000000 13.0000000 -0.9263760
## ssno  3094  0.18167408 0.9276262  0.2082090 -2.736272  1.593847 -0.3980077  0.9010281 -0.3981409
## sscs  3094  0.06955699 0.9060932  0.1514059 -2.494567  2.500078 -0.4729248  0.7162764 -0.3047979
## ssasi 3094 17.56367162 4.9874384 18.0000000  1.000000 25.000000 14.0000000 22.0000000 -0.6553983
## ssmk  3094 13.99547511 6.4515388 13.0000000  0.000000 25.000000  9.0000000 20.0000000  0.1545661
## ssmc  3094 16.53878474 5.0961288 17.0000000  0.000000 25.000000 13.0000000 21.0000000 -0.4267266
## ssei  3094 13.26470588 4.0674958 14.0000000  0.000000 20.000000 11.0000000 16.0000000 -0.6330201
##          Kurtosis
## ssgs  -0.15634130
## ssar  -1.09662380
## sswk   0.42239473
## sspc   0.06419374
## ssno  -0.41565716
## sscs  -0.05418987
## ssasi -0.21015230
## ssmk  -1.15911506
## ssmc  -0.63766334
## ssei  -0.27373198
mvn(data = datawhitef, mvnTest = "hz", multivariatePlot = "qq", multivariateOutlierMethod = "quan") 

## $multivariateNormality
##            Test       HZ p value MVN
## 1 Henze-Zirkler 1.296356       0  NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs      10.6312  <0.001      NO    
## 2  Anderson-Darling   ssar      21.5122  <0.001      NO    
## 3  Anderson-Darling   sswk      87.2707  <0.001      NO    
## 4  Anderson-Darling   sspc     120.1071  <0.001      NO    
## 5  Anderson-Darling   ssno      27.6213  <0.001      NO    
## 6  Anderson-Darling   sscs      11.0897  <0.001      NO    
## 7  Anderson-Darling   ssasi     11.7323  <0.001      NO    
## 8  Anderson-Darling   ssmk      32.4684  <0.001      NO    
## 9  Anderson-Darling   ssmc      10.7403  <0.001      NO    
## 10 Anderson-Darling   ssei      12.3650  <0.001      NO    
## 
## $Descriptives
##          n       Mean   Std.Dev     Median       Min       Max        25th      75th         Skew
## ssgs  3067 15.5881969 4.2132836 16.0000000  0.000000 25.000000 13.00000000 19.000000 -0.223824802
## ssar  3067 17.7495924 6.7744312 18.0000000  2.000000 30.000000 12.00000000 23.000000  0.044765417
## sswk  3067 27.1395500 6.7409980 29.0000000  1.000000 35.000000 23.00000000 32.000000 -1.034766286
## sspc  3067 11.6628627 2.8739217 12.0000000  0.000000 15.000000 10.00000000 14.000000 -1.262123159
## ssno  3067  0.4213407 0.8534192  0.4680162 -2.649670  1.593847 -0.13820052  1.160835 -0.518285524
## sscs  3067  0.5348137 0.8703272  0.5973563 -2.316187  2.500078  0.06221577  1.132497 -0.437710800
## ssasi 3067 11.8020867 3.6173310 12.0000000  0.000000 23.000000  9.00000000 14.000000  0.135557410
## ssmk  3067 13.7645908 5.9742881 13.0000000  0.000000 25.000000  9.00000000 19.000000  0.161130374
## ssmc  3067 12.6507988 4.2270448 12.0000000  2.000000 25.000000 10.00000000 16.000000  0.188030513
## ssei  3067 10.3977828 3.4165432 10.0000000  1.000000 20.000000  8.00000000 13.000000  0.006430677
##         Kurtosis
## ssgs  -0.3366270
## ssar  -1.0011772
## sswk   0.5179849
## sspc   1.2372973
## ssno  -0.2680411
## sscs   0.3893419
## ssasi -0.1061248
## ssmk  -1.0567015
## ssmc  -0.4274462
## ssei  -0.4650131
dfullm<- subset(dk, sex==0)
dfullf<- subset(dk, sex==1)
datafullm<- dplyr::select(dfullm, starts_with("ss"))
datafullf<- dplyr::select(dfullf, starts_with("ss"))
mqqnorm(datafullm, main = "Multi-normal Q-Q Plot")

## [1]  736 2341
mqqnorm(datafullf, main = "Multi-normal Q-Q Plot")

## [1] 4423 1381
mvn(data = datafullm, mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic            p value Result
## 1 Mardia Skewness 2474.87778333186                  0     NO
## 2 Mardia Kurtosis 2.69992921890835 0.0069354229573364     NO
## 3             MVN             <NA>               <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs      25.6066  <0.001      NO    
## 2  Anderson-Darling   ssar      82.1725  <0.001      NO    
## 3  Anderson-Darling   sswk     107.1790  <0.001      NO    
## 4  Anderson-Darling   sspc     108.3298  <0.001      NO    
## 5  Anderson-Darling   ssno      15.6332  <0.001      NO    
## 6  Anderson-Darling   sscs      16.2744  <0.001      NO    
## 7  Anderson-Darling   ssasi     48.5724  <0.001      NO    
## 8  Anderson-Darling   ssmk     117.7090  <0.001      NO    
## 9  Anderson-Darling   ssmc      46.4374  <0.001      NO    
## 10 Anderson-Darling   ssei      49.8168  <0.001      NO    
## 
## $Descriptives
##          n       Mean   Std.Dev      Median       Min       Max       25th       75th         Skew
## ssgs  5469 14.8816968 5.5995424 15.00000000  0.000000 25.000000 11.0000000 19.0000000 -0.170443464
## ssar  5469 16.3731944 7.4874109 15.00000000  0.000000 30.000000 10.0000000 23.0000000  0.247810262
## sswk  5469 23.2607424 8.8425860 25.00000000  0.000000 35.000000 17.0000000 31.0000000 -0.541274236
## sspc  5469  9.5258731 3.8203434 10.00000000  0.000000 15.000000  6.0000000 13.0000000 -0.448278169
## ssno  5469 -0.1147645 1.0039385 -0.05159814 -2.736272  1.593847 -0.8310196  0.6412209 -0.206562599
## sscs  5469 -0.2106656 0.9611496 -0.11616442 -2.494567  2.500078 -0.8296851  0.4784362 -0.164910391
## ssasi 5469 14.8299506 5.8952676 15.00000000  0.000000 25.000000 10.0000000 20.0000000 -0.152023273
## ssmk  5469 12.0501006 6.3309465 11.00000000  0.000000 25.000000  7.0000000 17.0000000  0.522992232
## ssmc  5469 14.1078808 5.6870075 14.00000000  0.000000 25.000000  9.0000000 19.0000000  0.002940784
## ssei  5469 11.3316877 4.6378015 12.00000000  0.000000 20.000000  8.0000000 15.0000000 -0.172415213
##         Kurtosis
## ssgs  -0.7532686
## ssar  -1.0967571
## sswk  -0.7953042
## sspc  -0.8989933
## ssno  -0.6209683
## sscs  -0.3922488
## ssasi -0.9894640
## ssmk  -0.8155823
## ssmc  -0.9975137
## ssei  -0.9446280
mvn(data = datafullf, mvnTest = "mardia")
## $multivariateNormality
##              Test         Statistic           p value Result
## 1 Mardia Skewness  2794.89854987819                 0     NO
## 2 Mardia Kurtosis 0.812585556592171 0.416455715301972    YES
## 3             MVN              <NA>              <NA>     NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs      15.3243  <0.001      NO    
## 2  Anderson-Darling   ssar      74.2353  <0.001      NO    
## 3  Anderson-Darling   sswk      85.1263  <0.001      NO    
## 4  Anderson-Darling   sspc     135.9202  <0.001      NO    
## 5  Anderson-Darling   ssno      30.8167  <0.001      NO    
## 6  Anderson-Darling   sscs      32.6009  <0.001      NO    
## 7  Anderson-Darling   ssasi     23.0705  <0.001      NO    
## 8  Anderson-Darling   ssmk      89.7146  <0.001      NO    
## 9  Anderson-Darling   ssmc      43.3883  <0.001      NO    
## 10 Anderson-Darling   ssei      30.8359  <0.001      NO    
## 
## $Descriptives
##          n       Mean   Std.Dev     Median       Min       Max       25th       75th        Skew
## ssgs  5449 13.5966232 4.8268358 14.0000000  0.000000 25.000000 10.0000000 17.0000000 -0.06431556
## ssar  5449 15.0348688 6.8554856 14.0000000  0.000000 30.000000  9.0000000 20.0000000  0.44455878
## sswk  5449 23.6298403 8.3077771 25.0000000  0.000000 35.000000 17.0000000 31.0000000 -0.49370237
## sspc  5449 10.2780327 3.5711712 11.0000000  0.000000 15.000000  8.0000000 13.0000000 -0.71377382
## ssno  5449  0.1151857 0.9827361  0.2082090 -2.736272  1.593847 -0.5712124  0.9010281 -0.41323831
## sscs  5449  0.2114388 0.9936746  0.3595161 -2.494567  2.500078 -0.3540047  0.8351966 -0.42469524
## ssasi 5449 10.1367223 3.9416900 10.0000000  0.000000 23.000000  7.0000000 13.0000000  0.26289126
## ssmk  5449 11.8249220 5.9750303 11.0000000  0.000000 25.000000  7.0000000 16.0000000  0.48018621
## ssmc  5449 10.9427418 4.3022323 10.0000000  0.000000 25.000000  8.0000000 14.0000000  0.45501842
## ssei  5449  8.8537346 3.6843227  9.0000000  0.000000 20.000000  6.0000000 11.0000000  0.25437200
##          Kurtosis
## ssgs  -0.52108084
## ssar  -0.75090205
## sswk  -0.72724367
## sspc  -0.41291365
## ssno  -0.44056651
## sscs  -0.01971192
## ssasi -0.20025521
## ssmk  -0.75440722
## ssmc  -0.18157957
## ssei  -0.45930917
mvn(data = datafullm, mvnTest = "hz", multivariatePlot = "qq", multivariateOutlierMethod = "quan") 

## $multivariateNormality
##            Test       HZ p value MVN
## 1 Henze-Zirkler 1.759128       0  NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs      25.6066  <0.001      NO    
## 2  Anderson-Darling   ssar      82.1725  <0.001      NO    
## 3  Anderson-Darling   sswk     107.1790  <0.001      NO    
## 4  Anderson-Darling   sspc     108.3298  <0.001      NO    
## 5  Anderson-Darling   ssno      15.6332  <0.001      NO    
## 6  Anderson-Darling   sscs      16.2744  <0.001      NO    
## 7  Anderson-Darling   ssasi     48.5724  <0.001      NO    
## 8  Anderson-Darling   ssmk     117.7090  <0.001      NO    
## 9  Anderson-Darling   ssmc      46.4374  <0.001      NO    
## 10 Anderson-Darling   ssei      49.8168  <0.001      NO    
## 
## $Descriptives
##          n       Mean   Std.Dev      Median       Min       Max       25th       75th         Skew
## ssgs  5469 14.8816968 5.5995424 15.00000000  0.000000 25.000000 11.0000000 19.0000000 -0.170443464
## ssar  5469 16.3731944 7.4874109 15.00000000  0.000000 30.000000 10.0000000 23.0000000  0.247810262
## sswk  5469 23.2607424 8.8425860 25.00000000  0.000000 35.000000 17.0000000 31.0000000 -0.541274236
## sspc  5469  9.5258731 3.8203434 10.00000000  0.000000 15.000000  6.0000000 13.0000000 -0.448278169
## ssno  5469 -0.1147645 1.0039385 -0.05159814 -2.736272  1.593847 -0.8310196  0.6412209 -0.206562599
## sscs  5469 -0.2106656 0.9611496 -0.11616442 -2.494567  2.500078 -0.8296851  0.4784362 -0.164910391
## ssasi 5469 14.8299506 5.8952676 15.00000000  0.000000 25.000000 10.0000000 20.0000000 -0.152023273
## ssmk  5469 12.0501006 6.3309465 11.00000000  0.000000 25.000000  7.0000000 17.0000000  0.522992232
## ssmc  5469 14.1078808 5.6870075 14.00000000  0.000000 25.000000  9.0000000 19.0000000  0.002940784
## ssei  5469 11.3316877 4.6378015 12.00000000  0.000000 20.000000  8.0000000 15.0000000 -0.172415213
##         Kurtosis
## ssgs  -0.7532686
## ssar  -1.0967571
## sswk  -0.7953042
## sspc  -0.8989933
## ssno  -0.6209683
## sscs  -0.3922488
## ssasi -0.9894640
## ssmk  -0.8155823
## ssmc  -0.9975137
## ssei  -0.9446280
mvn(data = datafullf, mvnTest = "hz", multivariatePlot = "qq", multivariateOutlierMethod = "quan") 

## $multivariateNormality
##            Test       HZ p value MVN
## 1 Henze-Zirkler 1.347076       0  NO
## 
## $univariateNormality
##                Test  Variable Statistic   p value Normality
## 1  Anderson-Darling   ssgs      15.3243  <0.001      NO    
## 2  Anderson-Darling   ssar      74.2353  <0.001      NO    
## 3  Anderson-Darling   sswk      85.1263  <0.001      NO    
## 4  Anderson-Darling   sspc     135.9202  <0.001      NO    
## 5  Anderson-Darling   ssno      30.8167  <0.001      NO    
## 6  Anderson-Darling   sscs      32.6009  <0.001      NO    
## 7  Anderson-Darling   ssasi     23.0705  <0.001      NO    
## 8  Anderson-Darling   ssmk      89.7146  <0.001      NO    
## 9  Anderson-Darling   ssmc      43.3883  <0.001      NO    
## 10 Anderson-Darling   ssei      30.8359  <0.001      NO    
## 
## $Descriptives
##          n       Mean   Std.Dev     Median       Min       Max       25th       75th        Skew
## ssgs  5449 13.5966232 4.8268358 14.0000000  0.000000 25.000000 10.0000000 17.0000000 -0.06431556
## ssar  5449 15.0348688 6.8554856 14.0000000  0.000000 30.000000  9.0000000 20.0000000  0.44455878
## sswk  5449 23.6298403 8.3077771 25.0000000  0.000000 35.000000 17.0000000 31.0000000 -0.49370237
## sspc  5449 10.2780327 3.5711712 11.0000000  0.000000 15.000000  8.0000000 13.0000000 -0.71377382
## ssno  5449  0.1151857 0.9827361  0.2082090 -2.736272  1.593847 -0.5712124  0.9010281 -0.41323831
## sscs  5449  0.2114388 0.9936746  0.3595161 -2.494567  2.500078 -0.3540047  0.8351966 -0.42469524
## ssasi 5449 10.1367223 3.9416900 10.0000000  0.000000 23.000000  7.0000000 13.0000000  0.26289126
## ssmk  5449 11.8249220 5.9750303 11.0000000  0.000000 25.000000  7.0000000 16.0000000  0.48018621
## ssmc  5449 10.9427418 4.3022323 10.0000000  0.000000 25.000000  8.0000000 14.0000000  0.45501842
## ssei  5449  8.8537346 3.6843227  9.0000000  0.000000 20.000000  6.0000000 11.0000000  0.25437200
##          Kurtosis
## ssgs  -0.52108084
## ssar  -0.75090205
## sswk  -0.72724367
## sspc  -0.41291365
## ssno  -0.44056651
## sscs  -0.01971192
## ssasi -0.20025521
## ssmk  -0.75440722
## ssmc  -0.18157957
## ssei  -0.45930917
# NLSYLINKS

d<- dplyr::select(d, id, hhid, starts_with("ss"), afqt, efa, momeduc, dadeduc, pareduc, educ2000, age, sex, agesex, age2, agesex2, age14:age22, bhw, bw, sweight, weight2000, cweight, asvabweight, sibling)
dh <- d %>% group_by(hhid) %>% filter(n() == 1) %>% ungroup() # Keep cases with one count in hhid
dh %>% group_by(bhw, sex) %>% summarise(mean=mean(afqt), sd=sd(afqt))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  92.6  12.0
## 2     1     1  91.9  11.4
## 3     2     0  95.8  14.0
## 4     2     1  93.6  13.4
## 5     3     0 106.   14.4
## 6     3     1 106.   13.6
dh %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(afqt), SD = survey_sd(afqt))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  92.6   0.564  12.2
## 2     1     1  91.7   0.514  11.5
## 3     2     0  96.6   0.895  14.5
## 4     2     1  92.9   0.662  12.9
## 5     3     0 108.    0.441  14.2
## 6     3     1 106.    0.428  13.7
dh %>% group_by(bhw, sex) %>% summarise(mean=mean(efa), sd=sd(efa))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  93.0  13.5
## 2     1     1  90.6  11.2
## 3     2     0  96.4  16.1
## 4     2     1  91.0  14.2
## 5     3     0 110.   13.4
## 6     3     1 105.   11.9
dh %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  92.5   0.631  13.7
## 2     1     1  90.2   0.500  11.2
## 3     2     0  97.0   1.02   16.6
## 4     2     1  90.3   0.746  14.1
## 5     3     0 111.    0.397  13.0
## 6     3     1 105.    0.358  11.5
links79<- subset(Links79PairExpanded, RelationshipPath == "Gen1Housemates")
links79$hhid<-links79$ExtendedID
links79<- dplyr::select(links79, hhid, RelationshipPath, R, RFull)
matching_indices<- match(d$hhid, links79$hhid)
d$R<- links79$R[matching_indices]
d<- subset(d, R==0.5)
nrow(d) # N=4410
## [1] 4410
result <- d %>% group_by(hhid) %>% summarise(identical_count = n()) %>% group_by(identical_count) %>% summarise(case_count = n())
print(result)
## # A tibble: 6 Ă— 2
##   identical_count case_count
##             <int>      <int>
## 1               1        175
## 2               2       1211
## 3               3        421
## 4               4        109
## 5               5         18
## 6               6          4
d<- d %>% group_by(hhid) %>% filter(n() > 1) %>% ungroup() # remove cases with one count in hhid
d<- d %>% group_by(hhid) %>% filter(any(sex == 0) & any(sex == 1)) %>% ungroup() # retain hhid with 2 distinct sexes
nrow(d) # N=2586
## [1] 2586
result <- d %>% group_by(hhid) %>% summarise(identical_count = n()) %>% group_by(identical_count) %>% summarise(case_count = n())
print(result)
## # A tibble: 5 Ă— 2
##   identical_count case_count
##             <int>      <int>
## 1               2        592
## 2               3        298
## 3               4        101
## 4               5         16
## 5               6          4
result <- d %>% group_by(hhid) %>% summarise(sex_distinct = n_distinct(sex)) %>% ungroup() # calculates the number of distinct values of sex within each group
result$all_same_sex <- result$sex_distinct == 1
result$all_same_sex # check if number of distinct sex = 1
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [16] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [31] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [46] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [76] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [91] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [106] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [136] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [151] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [166] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [196] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [211] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [226] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [256] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [271] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [286] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [316] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [331] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [346] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [376] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [391] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [406] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [436] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [451] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [466] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [496] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [511] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [526] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [556] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [571] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [586] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [616] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [631] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [646] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [676] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [691] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [706] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [736] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [751] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [766] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [796] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [811] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [826] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [856] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [871] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [886] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [916] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [931] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [946] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [976] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [991] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [ reached getOption("max.print") -- omitted 11 entries ]
# SELECTING HOUSEHOLDS WITH EQUAL NUMBER OF OPPOSITE SEX SIBLINGS

two<- d %>% group_by(hhid) %>% filter(n() == 2) %>% ungroup() # keep hhid with 2 members

# among cases sharing the same hhid value, if there are 2 individuals with sex=0 or sex=1, removes the youngest individual in the respective category.
three<- d %>% group_by(hhid) %>% filter(n() == 3) %>% ungroup() # keep hhid with 3 members
three <- three %>%
  group_by(hhid, sex) %>%
  arrange(desc(age)) %>%
  filter(row_number() <= ifelse(n() == 2, 1, n())) %>%
  arrange(hhid) %>%
  ungroup()

four<- d %>% group_by(hhid) %>% filter(n() == 4) %>% ungroup() # keep hhid with 4 members
four <- four %>%
  group_by(hhid, sex) %>%
  arrange(desc(age)) %>%
  filter(row_number() <= ifelse(n() == 3, 1, n())) %>%
  arrange(hhid) %>%
  ungroup()

# among cases sharing the same hhid value, if there are 4 same sex individuals then remove 3 of youngest individuals in the respective categories, if there are 3 same sex individuals then remove the 1 youngest individual in the respective categories.
five<- d %>% group_by(hhid) %>% filter(n() == 5) %>% ungroup() # keep hhid with 5 members
five <- five %>%
  group_by(hhid, sex) %>%
  arrange(desc(age)) %>%
  filter(row_number() <= ifelse(n() == 3, 2, ifelse(n() == 4, 1, n()))) %>%
  arrange(hhid) %>%
  ungroup()

six<- d %>% group_by(hhid) %>% filter(n() == 6) %>% ungroup() # keep hhid with 6 members
six <- six %>%
  group_by(hhid, sex) %>%
  arrange(desc(age)) %>%
  filter(row_number() <= ifelse(n() == 4, 2, ifelse(n() == 5, 1, n()))) %>%
  arrange(hhid) %>%
  ungroup()

d<- bind_rows(two, three, four, five, six) %>% arrange(id)
nrow(d) # N=2134
## [1] 2134
result <- d %>% group_by(hhid) %>% summarise(identical_count = n()) %>% group_by(identical_count) %>% summarise(case_count = n())
print(result)
## # A tibble: 3 Ă— 2
##   identical_count case_count
##             <int>      <int>
## 1               2        957
## 2               4         52
## 3               6          2
result <- d %>% group_by(hhid) %>% summarise(sex_distinct = n_distinct(sex)) %>% ungroup() # calculates the number of distinct values of sex within each group
result$all_same_sex <- result$sex_distinct == 1
result$all_same_sex # check if number of distinct sex = 1
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [16] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [31] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [46] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [76] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [91] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [106] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [136] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [151] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [166] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [196] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [211] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [226] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [256] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [271] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [286] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [316] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [331] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [346] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [376] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [391] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [406] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [436] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [451] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [466] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [496] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [511] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [526] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [556] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [571] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [586] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [616] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [631] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [646] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [676] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [691] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [706] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [736] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [751] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [766] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [796] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [811] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [826] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [856] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [871] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [886] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [916] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [931] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [946] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [976] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [991] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [ reached getOption("max.print") -- omitted 11 entries ]
hist(d$age)

# DESCRIPTIVE STATS

describeBy(d$age, d$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1067 -0.53 2.07     -1   -0.58 2.97  -4   4     8 0.15    -0.84 0.06
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1067 -0.49 2.06     -1   -0.53 2.97  -4   4     8 0.12    -0.89 0.06
describeBy(dk$age, dk$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 5469 -0.18 2.34      0   -0.17 2.97  -4   4     8    0    -1.16 0.03
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 5449 -0.12 2.28      0   -0.09 2.97  -4   4     8 -0.06    -1.14 0.03
describeBy(d$pareduc, d$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 1035 10.71 3.36   11.5   10.86 2.22   0  20    20 -0.5      0.4 0.1
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1043 10.57 3.4     11   10.76 2.97   0  19    19 -0.56     0.26 0.11
describeBy(dk$pareduc, dk$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 5249 10.9 3.28   11.5   11.08 2.22   0  20    20 -0.64     1.06 0.05
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 5304 10.77 3.26   11.5   10.96 2.22   0  20    20 -0.63      0.9 0.04
describeBy(d$momeduc, d$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range  skew kurtosis  se
## X1    1 1006 10.73 3.22     12   10.95 1.48   0  18    18 -0.78     0.83 0.1
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean   sd median trimmed  mad min max range  skew kurtosis  se
## X1    1 1016 10.65 3.27     12   10.84 2.97   0  19    19 -0.69     0.68 0.1
describeBy(dk$momeduc, dk$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 5083 10.95 3.18     12   11.16 1.48   0  20    20 -0.85     1.62 0.04
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 5172 10.8 3.16     12   11.02 1.48   0  20    20 -0.83     1.41 0.04
describeBy(d$dadeduc, d$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 943 10.74 4.08     12    10.9 2.97   0  20    20 -0.33     0.02 0.13
## -------------------------------------------------------------------------- 
## group: 1
##    vars   n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 954 10.61 4.17     12   10.82 3.71   0  20    20 -0.42     0.01 0.14
describeBy(dk$dadeduc, dk$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 4674 11.02 3.92     12   11.17 2.97   0  20    20 -0.39     0.51 0.06
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 4678 10.9 3.95     12   11.07 2.97   0  20    20 -0.44     0.48 0.06
t.test(age ~ sex, data = d)
## 
##  Welch Two Sample t-test
## 
## data:  age by sex
## t = -0.50277, df = 2132, p-value = 0.6152
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.2204563  0.1304844
## sample estimates:
## mean in group 0 mean in group 1 
##      -0.5313964      -0.4864105
t.test(age ~ sex, data = dk)
## 
##  Welch Two Sample t-test
## 
## data:  age by sex
## t = -1.4394, df = 10911, p-value = 0.1501
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.1501208  0.0229964
## sample estimates:
## mean in group 0 mean in group 1 
##      -0.1824831      -0.1189209
t.test(pareduc ~ sex, data = d)
## 
##  Welch Two Sample t-test
## 
## data:  pareduc by sex
## t = 0.96146, df = 2075.9, p-value = 0.3364
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.1482291  0.4333616
## sample estimates:
## mean in group 0 mean in group 1 
##        10.71208        10.56951
t.test(pareduc ~ sex, data = dk)
## 
##  Welch Two Sample t-test
## 
## data:  pareduc by sex
## t = 2.0138, df = 10549, p-value = 0.04405
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  0.003413779 0.252980279
## sample estimates:
## mean in group 0 mean in group 1 
##        10.89922        10.77102
t.test(momeduc ~ sex, data = d)
## 
##  Welch Two Sample t-test
## 
## data:  momeduc by sex
## t = 0.58927, df = 2019.9, p-value = 0.5557
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.1977636  0.3676576
## sample estimates:
## mean in group 0 mean in group 1 
##        10.73062        10.64567
t.test(momeduc ~ sex, data = dk)
## 
##  Welch Two Sample t-test
## 
## data:  momeduc by sex
## t = 2.2978, df = 10248, p-value = 0.0216
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  0.02113875 0.26663578
## sample estimates:
## mean in group 0 mean in group 1 
##        10.94590        10.80201
t.test(dadeduc ~ sex, data = d)
## 
##  Welch Two Sample t-test
## 
## data:  dadeduc by sex
## t = 0.69215, df = 1894.8, p-value = 0.4889
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.2405111  0.5028635
## sample estimates:
## mean in group 0 mean in group 1 
##        10.74019        10.60901
t.test(dadeduc ~ sex, data = dk)
## 
##  Welch Two Sample t-test
## 
## data:  dadeduc by sex
## t = 1.4966, df = 9349.4, p-value = 0.1345
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.03774794  0.28147110
## sample estimates:
## mean in group 0 mean in group 1 
##        11.01712        10.89525
describeBy(d$educ2000, d$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n  mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 838 13.04 2.4     12   12.92 1.48   4  20    16 0.64     0.86 0.08
## -------------------------------------------------------------------------- 
## group: 1
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 866 13.49 2.34     13   13.37 1.48   6  20    14  0.4     0.07 0.08
describeBy(dk$educ2000, dk$sex)
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 3482 13.06 2.49     12   12.95 1.48   1  20    19 0.47     0.96 0.04
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 3678 13.31 2.46     12   13.22 1.48   0  20    20 0.16     1.09 0.04
t.test(educ2000 ~ sex, data = dk)
## 
##  Welch Two Sample t-test
## 
## data:  educ2000 by sex
## t = -4.1832, df = 7128.7, p-value = 2.909e-05
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.3593938 -0.1300388
## sample estimates:
## mean in group 0 mean in group 1 
##        13.06088        13.30560
t.test(educ2000 ~ sex, data = d)
## 
##  Welch Two Sample t-test
## 
## data:  educ2000 by sex
## t = -3.9092, df = 1696.9, p-value = 9.623e-05
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
##  -0.6741527 -0.2236850
## sample estimates:
## mean in group 0 mean in group 1 
##        13.04415        13.49307
# FACTOR ANALYSIS (fa uses "minres" by default while factanal uses "ml")

d %>% group_by(bhw, sex) %>% summarise(mean=mean(age), sd=sd(age))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex   mean    sd
##   <dbl> <dbl>  <dbl> <dbl>
## 1     1     0 -0.512  2.00
## 2     1     1 -0.387  2.08
## 3     2     0 -0.673  1.98
## 4     2     1 -0.639  2.05
## 5     3     0 -0.489  2.15
## 6     3     1 -0.490  2.06
d %>% group_by(bhw, sex) %>% summarise(mean=mean(ssgs), sd=sd(ssgs))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  10.7  4.65
## 2     1     1  10.5  3.86
## 3     2     0  12.8  5.47
## 4     2     1  11.7  4.53
## 5     3     0  17.3  4.88
## 6     3     1  15.5  4.22
d %>% group_by(bhw, sex) %>% summarise(mean=mean(ssar), sd=sd(ssar))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  11.4  5.22
## 2     1     1  11.0  4.78
## 3     2     0  14.6  6.91
## 4     2     1  12.4  5.32
## 5     3     0  19.5  7.28
## 6     3     1  17.9  6.80
d %>% group_by(bhw, sex) %>% summarise(mean=mean(sswk), sd=sd(sswk))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  16.9  8.39
## 2     1     1  17.7  7.41
## 3     2     0  20.6  8.22
## 4     2     1  20.6  7.47
## 5     3     0  26.6  7.40
## 6     3     1  27.0  6.77
d %>% group_by(bhw, sex) %>% summarise(mean=mean(sspc), sd=sd(sspc))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  7.19  3.44
## 2     1     1  8.08  3.26
## 3     2     0  8.29  3.93
## 4     2     1  8.86  3.40
## 5     3     0 10.9   3.32
## 6     3     1 11.7   2.81
d %>% group_by(bhw, sex) %>% summarise(mean=mean(ssno), sd=sd(ssno))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.664  0.919
## 2     1     1 -0.385  0.996
## 3     2     0 -0.293  0.977
## 4     2     1 -0.0710 0.972
## 5     3     0  0.173  0.912
## 6     3     1  0.433  0.870
d %>% group_by(bhw, sex) %>% summarise(mean=mean(sscs), sd=sd(sscs))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.739  0.851
## 2     1     1 -0.324  0.948
## 3     2     0 -0.397  0.897
## 4     2     1 -0.0149 0.886
## 5     3     0  0.0177 0.857
## 6     3     1  0.564  0.852
d %>% group_by(bhw, sex) %>% summarise(mean=mean(ssasi), sd=sd(ssasi))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0 10.1   4.08
## 2     1     1  7.60  2.91
## 3     2     0 12.9   5.64
## 4     2     1  8.36  3.48
## 5     3     0 17.3   4.95
## 6     3     1 11.5   3.49
d %>% group_by(bhw, sex) %>% summarise(mean=mean(ssmk), sd=sd(ssmk))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  8.93  4.78
## 2     1     1  9.29  4.78
## 3     2     0 11.0   6.13
## 4     2     1  9.96  5.38
## 5     3     0 14.6   6.66
## 6     3     1 14.3   6.24
d %>% group_by(bhw, sex) %>% summarise(mean=mean(ssmc), sd=sd(ssmc))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  9.81  4.16
## 2     1     1  8.40  2.86
## 3     2     0 13.0   5.26
## 4     2     1  9.25  3.65
## 5     3     0 16.6   5.09
## 6     3     1 12.6   4.03
d %>% group_by(bhw, sex) %>% summarise(mean=mean(ssei), sd=sd(ssei))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  7.97  3.81
## 2     1     1  6.51  2.54
## 3     2     0  9.41  4.36
## 4     2     1  7.27  3.15
## 5     3     0 13.1   4.13
## 6     3     1 10.0   3.15
d %>% group_by(bhw, sex) %>% summarise(mean=mean(afqt), sd=sd(afqt))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  89.7  11.3
## 2     1     1  90.2  10.2
## 3     2     0  95.6  14.0
## 4     2     1  93.9  12.3
## 5     3     0 107.   15.0
## 6     3     1 107.   14.0
d %>% group_by(bhw, sex) %>% summarise(mean=mean(efa), sd=sd(efa))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  88.3  12.7
## 2     1     1  88.1  10.6
## 3     2     0  95.7  15.6
## 4     2     1  92.2  12.0
## 5     3     0 109.   14.3
## 6     3     1 105.   12.0
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(age), SD = survey_sd(age))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex   MEAN MEAN_se    SD
##   <dbl> <dbl>  <dbl>   <dbl> <dbl>
## 1     1     0 -0.385   0.132  2.12
## 2     1     1 -0.312   0.128  2.16
## 3     2     0 -0.604   0.162  2.06
## 4     2     1 -0.563   0.162  2.13
## 5     3     0 -0.240   0.106  2.21
## 6     3     1 -0.317   0.105  2.16
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssgs), SD = survey_sd(ssgs))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  10.7   0.287  4.76
## 2     1     1  10.6   0.228  3.95
## 3     2     0  12.8   0.447  5.69
## 4     2     1  11.9   0.348  4.64
## 5     3     0  17.9   0.210  4.54
## 6     3     1  16.1   0.190  4.10
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssar), SD = survey_sd(ssar))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  11.3   0.309  5.23
## 2     1     1  11.1   0.285  4.92
## 3     2     0  14.9   0.603  7.26
## 4     2     1  12.4   0.401  5.41
## 5     3     0  20.3   0.336  7.14
## 6     3     1  18.6   0.312  6.67
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(sswk), SD = survey_sd(sswk))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  16.8   0.505  8.51
## 2     1     1  17.8   0.435  7.56
## 3     2     0  20.9   0.654  8.37
## 4     2     1  20.7   0.567  7.62
## 5     3     0  27.6   0.309  6.72
## 6     3     1  28.0   0.286  6.25
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(sspc), SD = survey_sd(sspc))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  7.21   0.201  3.44
## 2     1     1  8.11   0.185  3.26
## 3     2     0  8.44   0.319  4.06
## 4     2     1  8.88   0.260  3.47
## 5     3     0 11.2    0.144  3.11
## 6     3     1 12.1    0.116  2.55
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssno), SD = survey_sd(ssno))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex    MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl>   <dbl> <dbl>
## 1     1     0 -0.692   0.0534 0.910
## 2     1     1 -0.384   0.0560 0.991
## 3     2     0 -0.248   0.0764 0.991
## 4     2     1 -0.0350  0.0698 0.960
## 5     3     0  0.244   0.0415 0.886
## 6     3     1  0.511   0.0393 0.847
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(sscs), SD = survey_sd(sscs))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex    MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl>   <dbl> <dbl>
## 1     1     0 -0.733   0.0497 0.848
## 2     1     1 -0.329   0.0559 0.965
## 3     2     0 -0.343   0.0809 0.947
## 4     2     1  0.0247  0.0630 0.870
## 5     3     0  0.0761  0.0399 0.841
## 6     3     1  0.629   0.0386 0.832
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssasi), SD = survey_sd(ssasi))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 10.0    0.240  4.09
## 2     1     1  7.58   0.176  2.99
## 3     2     0 12.9    0.448  5.79
## 4     2     1  8.40   0.251  3.44
## 5     3     0 17.8    0.221  4.74
## 6     3     1 11.7    0.159  3.41
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssmk), SD = survey_sd(ssmk))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  8.91   0.290  4.86
## 2     1     1  9.38   0.276  4.84
## 3     2     0 11.2    0.521  6.37
## 4     2     1 10.1    0.405  5.44
## 5     3     0 15.3    0.316  6.66
## 6     3     1 15.0    0.291  6.21
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssmc), SD = survey_sd(ssmc))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  9.82   0.239  4.12
## 2     1     1  8.46   0.169  2.92
## 3     2     0 13.1    0.402  5.32
## 4     2     1  9.42   0.269  3.66
## 5     3     0 17.1    0.231  4.94
## 6     3     1 12.9    0.187  3.99
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssei), SD = survey_sd(ssei))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  7.92   0.221  3.80
## 2     1     1  6.58   0.153  2.62
## 3     2     0  9.70   0.352  4.46
## 4     2     1  7.34   0.232  3.18
## 5     3     0 13.5    0.177  3.84
## 6     3     1 10.4    0.143  3.09
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(afqt), SD = survey_sd(afqt))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  89.7   0.681  11.5
## 2     1     1  90.4   0.608  10.5
## 3     2     0  96.4   1.23   14.8
## 4     2     1  94.2   0.946  12.6
## 5     3     0 108.    0.686  14.6
## 6     3     1 109.    0.636  13.6
d %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  88.3   0.764  12.9
## 2     1     1  88.3   0.631  10.9
## 3     2     0  96.4   1.32   16.3
## 4     2     1  92.5   0.917  12.3
## 5     3     0 110.    0.615  13.3
## 6     3     1 106.    0.524  11.3
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(age), sd=sd(age))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.330   2.28
## 2     1     1 -0.273   2.23
## 3     2     0 -0.478   2.26
## 4     2     1 -0.377   2.28
## 5     3     0 -0.0275  2.37
## 6     3     1  0.0310  2.29
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssgs), sd=sd(ssgs))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  11.4  4.70
## 2     1     1  10.8  4.03
## 3     2     0  12.7  5.46
## 4     2     1  11.4  4.77
## 5     3     0  17.2  4.88
## 6     3     1  15.6  4.21
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssar), sd=sd(ssar))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  11.9  5.44
## 2     1     1  11.1  4.72
## 3     2     0  13.8  6.65
## 4     2     1  12.3  5.76
## 5     3     0  19.3  7.22
## 6     3     1  17.7  6.77
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(sswk), sd=sd(sswk))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  17.9  8.38
## 2     1     1  18.6  7.67
## 3     2     0  20.4  8.63
## 4     2     1  20.0  8.31
## 5     3     0  26.7  7.44
## 6     3     1  27.1  6.74
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(sspc), sd=sd(sspc))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  7.60  3.61
## 2     1     1  8.33  3.44
## 3     2     0  8.31  3.83
## 4     2     1  8.77  3.81
## 5     3     0 10.8   3.39
## 6     3     1 11.7   2.87
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssno), sd=sd(ssno))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex   mean    sd
##   <dbl> <dbl>  <dbl> <dbl>
## 1     1     0 -0.582 0.957
## 2     1     1 -0.342 0.984
## 3     2     0 -0.361 0.971
## 4     2     1 -0.175 1.01 
## 5     3     0  0.182 0.928
## 6     3     1  0.421 0.853
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(sscs), sd=sd(sscs))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex    mean    sd
##   <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 -0.691  0.879
## 2     1     1 -0.297  0.958
## 3     2     0 -0.376  0.920
## 4     2     1 -0.0522 1.02 
## 5     3     0  0.0696 0.906
## 6     3     1  0.535  0.870
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssasi), sd=sd(ssasi))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0 10.4   4.41
## 2     1     1  7.76  2.87
## 3     2     0 12.8   5.63
## 4     2     1  8.38  3.76
## 5     3     0 17.6   4.99
## 6     3     1 11.8   3.62
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssmk), sd=sd(ssmk))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  9.13  4.76
## 2     1     1  9.21  4.62
## 3     2     0 10.2   5.75
## 4     2     1  9.52  5.49
## 5     3     0 14.0   6.45
## 6     3     1 13.8   5.97
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssmc), sd=sd(ssmc))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0 10.2   4.26
## 2     1     1  8.49  2.93
## 3     2     0 12.3   5.33
## 4     2     1  9.17  3.75
## 5     3     0 16.5   5.10
## 6     3     1 12.7   4.23
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(ssei), sd=sd(ssei))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  8.43  3.84
## 2     1     1  6.73  2.74
## 3     2     0  9.48  4.43
## 4     2     1  7.08  3.38
## 5     3     0 13.3   4.07
## 6     3     1 10.4   3.42
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(afqt), sd=sd(afqt))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  90.7  11.5
## 2     1     1  90.9  10.8
## 3     2     0  94.7  13.4
## 4     2     1  93.6  12.9
## 5     3     0 106.   14.8
## 6     3     1 106.   13.8
dk %>% group_by(bhw, sex) %>% summarise(mean=mean(efa), sd=sd(efa))
## `summarise()` has grouped output by 'bhw'. You can override using the `.groups` argument.
## # A tibble: 6 Ă— 4
## # Groups:   bhw [3]
##     bhw   sex  mean    sd
##   <dbl> <dbl> <dbl> <dbl>
## 1     1     0  90.0  13.1
## 2     1     1  89.0  10.9
## 3     2     0  94.9  15.5
## 4     2     1  91.3  13.3
## 5     3     0 108.   14.3
## 6     3     1 105.   12.1
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(age), SD = survey_sd(age))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex   MEAN MEAN_se    SD
##   <dbl> <dbl>  <dbl>   <dbl> <dbl>
## 1     1     0 -0.371  0.0685  2.33
## 2     1     1 -0.271  0.0674  2.31
## 3     2     0 -0.448  0.0892  2.33
## 4     2     1 -0.287  0.0901  2.36
## 5     3     0 -0.214  0.0514  2.36
## 6     3     1 -0.219  0.0517  2.32
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssgs), SD = survey_sd(ssgs))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  11.3  0.136   4.73
## 2     1     1  10.8  0.116   4.09
## 3     2     0  12.8  0.212   5.57
## 4     2     1  11.3  0.180   4.82
## 5     3     0  17.6  0.0970  4.62
## 6     3     1  15.8  0.0899  4.16
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssar), SD = survey_sd(ssar))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  11.8   0.157  5.49
## 2     1     1  11.1   0.134  4.74
## 3     2     0  14.1   0.264  6.81
## 4     2     1  12.2   0.213  5.74
## 5     3     0  20.0   0.151  7.09
## 6     3     1  18.1   0.146  6.75
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(sswk), SD = survey_sd(sswk))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  17.7   0.243  8.46
## 2     1     1  18.5   0.218  7.69
## 3     2     0  20.7   0.327  8.71
## 4     2     1  20.0   0.312  8.37
## 5     3     0  27.3   0.142  6.86
## 6     3     1  27.5   0.136  6.40
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(sspc), SD = survey_sd(sspc))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  7.56  0.104   3.64
## 2     1     1  8.36  0.0970  3.45
## 3     2     0  8.47  0.146   3.87
## 4     2     1  8.74  0.142   3.84
## 5     3     0 11.1   0.0677  3.23
## 6     3     1 11.9   0.0588  2.77
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssno), SD = survey_sd(ssno))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex   MEAN MEAN_se    SD
##   <dbl> <dbl>  <dbl>   <dbl> <dbl>
## 1     1     0 -0.619  0.0270 0.955
## 2     1     1 -0.357  0.0274 0.981
## 3     2     0 -0.339  0.0384 0.993
## 4     2     1 -0.177  0.0388 1.03 
## 5     3     0  0.253  0.0188 0.894
## 6     3     1  0.474  0.0178 0.830
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(sscs), SD = survey_sd(sscs))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex    MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl>   <dbl> <dbl>
## 1     1     0 -0.715   0.0243 0.868
## 2     1     1 -0.310   0.0267 0.954
## 3     2     0 -0.346   0.0356 0.932
## 4     2     1 -0.0577  0.0387 1.03 
## 5     3     0  0.112   0.0190 0.886
## 6     3     1  0.555   0.0183 0.850
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssasi), SD = survey_sd(ssasi))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 10.2   0.127   4.39
## 2     1     1  7.73  0.0816  2.87
## 3     2     0 12.9   0.217   5.73
## 4     2     1  8.39  0.143   3.79
## 5     3     0 17.8   0.102   4.80
## 6     3     1 11.8   0.0744  3.45
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssmk), SD = survey_sd(ssmk))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  9.12   0.138  4.81
## 2     1     1  9.24   0.132  4.67
## 3     2     0 10.4    0.225  5.89
## 4     2     1  9.48   0.203  5.50
## 5     3     0 14.7    0.139  6.48
## 6     3     1 14.2    0.130  6.00
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssmc), SD = survey_sd(ssmc))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0 10.1   0.122   4.25
## 2     1     1  8.47  0.0824  2.92
## 3     2     0 12.5   0.204   5.39
## 4     2     1  9.07  0.138   3.72
## 5     3     0 16.9   0.104   4.92
## 6     3     1 12.7   0.0901  4.15
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(ssei), SD = survey_sd(ssei))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  8.34  0.109   3.84
## 2     1     1  6.73  0.0779  2.74
## 3     2     0  9.62  0.174   4.52
## 4     2     1  7.08  0.130   3.42
## 5     3     0 13.6   0.0802  3.84
## 6     3     1 10.4   0.0722  3.34
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(afqt), SD = survey_sd(afqt))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  90.7   0.334  11.6
## 2     1     1  91.0   0.315  11.0
## 3     2     0  95.4   0.530  13.8
## 4     2     1  93.5   0.469  12.8
## 5     3     0 107.    0.310  14.6
## 6     3     1 107.    0.298  13.8
dk %>% as_survey_design(ids = id, weights = sweight) %>% group_by(bhw, sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 6 Ă— 5
## # Groups:   bhw [3]
##     bhw   sex  MEAN MEAN_se    SD
##   <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1     0  89.7   0.379  13.2
## 2     1     1  88.9   0.310  10.9
## 3     2     0  95.5   0.608  15.8
## 4     2     1  91.2   0.506  13.4
## 5     3     0 110.    0.282  13.5
## 6     3     1 106.    0.250  11.7
# full sibling sample

m<- subset(d, sex==0)
f<- subset(d, sex==1) 
dm<- dplyr::select(m, starts_with("ss"), sweight)
df<- dplyr::select(f, starts_with("ss"), sweight)

ev <- eigen(cor(dm)) # get eigenvalues
ev$values
##  [1] 7.5064649 0.8957738 0.6561243 0.4922016 0.3402431 0.2636506 0.2302194 0.1869160 0.1610041
## [10] 0.1439423 0.1234600
ev <- eigen(cor(df)) # get eigenvalues
ev$values
##  [1] 6.9619283 0.8521744 0.6659142 0.5249446 0.4563668 0.3650880 0.3387081 0.2801558 0.2262488
## [10] 0.1783797 0.1500912
fa3<-fa(dm[,1:10], nfactors=3, rotate="promax", fm="minres")
fa3
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 3, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   h2   u2 com
## ssgs   0.70  0.25 -0.01 0.83 0.17 1.3
## ssar   0.14  0.76  0.06 0.84 0.16 1.1
## sswk   0.63  0.16  0.19 0.83 0.17 1.3
## sspc   0.44  0.28  0.21 0.74 0.26 2.2
## ssno  -0.06  0.08  0.87 0.78 0.22 1.0
## sscs   0.05 -0.05  0.82 0.68 0.32 1.0
## ssasi  1.04 -0.21 -0.01 0.77 0.23 1.1
## ssmk  -0.07  0.96  0.02 0.85 0.15 1.0
## ssmc   0.76  0.13  0.00 0.74 0.26 1.1
## ssei   0.90  0.06 -0.04 0.84 0.16 1.0
## 
##                        MR1  MR3  MR2
## SS loadings           3.98 2.15 1.77
## Proportion Var        0.40 0.22 0.18
## Cumulative Var        0.40 0.61 0.79
## Proportion Explained  0.50 0.27 0.22
## Cumulative Proportion 0.50 0.78 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.80 0.71
## MR3 0.80 1.00 0.78
## MR2 0.71 0.78 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  10.31 with Chi Square =  10948.52
## df of  the model are 18  and the objective function was  0.24 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  1067 with the empirical chi square  24.37  with prob <  0.14 
## The total n.obs was  1067  with Likelihood Chi Square =  252.42  with prob <  2.6e-43 
## 
## Tucker Lewis Index of factoring reliability =  0.946
## RMSEA index =  0.11  and the 90 % confidence intervals are  0.099 0.123
## BIC =  126.91
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.98 0.97 0.94
## Multiple R square of scores with factors          0.95 0.93 0.88
## Minimum correlation of possible factor scores     0.90 0.86 0.77
fa3<-fa(df[,1:10], nfactors=3, rotate="promax", fm="minres")
fa3
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 3, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   h2   u2 com
## ssgs   0.81  0.13 -0.03 0.80 0.20 1.1
## ssar   0.13  0.78  0.07 0.87 0.13 1.1
## sswk   0.84 -0.04  0.16 0.85 0.15 1.1
## sspc   0.65 -0.02  0.29 0.74 0.26 1.4
## ssno  -0.12  0.21  0.80 0.74 0.26 1.2
## sscs   0.12 -0.09  0.77 0.64 0.36 1.1
## ssasi  0.68  0.08  0.00 0.56 0.44 1.0
## ssmk   0.14  0.69  0.09 0.76 0.24 1.1
## ssmc   0.45  0.40 -0.07 0.56 0.44 2.0
## ssei   0.74  0.12 -0.06 0.63 0.37 1.1
## 
##                        MR1  MR3  MR2
## SS loadings           3.65 1.87 1.64
## Proportion Var        0.37 0.19 0.16
## Cumulative Var        0.37 0.55 0.72
## Proportion Explained  0.51 0.26 0.23
## Cumulative Proportion 0.51 0.77 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.78 0.69
## MR3 0.78 1.00 0.64
## MR2 0.69 0.64 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  8.14 with Chi Square =  8638.83
## df of  the model are 18  and the objective function was  0.08 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  1067 with the empirical chi square  17.35  with prob <  0.5 
## The total n.obs was  1067  with Likelihood Chi Square =  84.61  with prob <  1.3e-10 
## 
## Tucker Lewis Index of factoring reliability =  0.981
## RMSEA index =  0.059  and the 90 % confidence intervals are  0.047 0.072
## BIC =  -40.89
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.97 0.95 0.92
## Multiple R square of scores with factors          0.94 0.90 0.85
## Minimum correlation of possible factor scores     0.87 0.80 0.70
fa4<-fa(dm[,1:10], nfactors=4, rotate="promax", fm="minres")
fa4
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 4, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR4   MR2   h2    u2 com
## ssgs   0.42  0.19  0.41 -0.05 0.83 0.166 2.4
## ssar   0.12  0.79 -0.01  0.06 0.86 0.143 1.1
## sswk   0.20 -0.03  0.76  0.07 0.93 0.072 1.2
## sspc   0.18  0.20  0.44  0.14 0.76 0.243 2.0
## ssno  -0.05  0.14  0.07  0.73 0.74 0.262 1.1
## sscs   0.07 -0.05 -0.02  0.86 0.74 0.263 1.0
## ssasi  0.98 -0.15  0.00  0.03 0.81 0.192 1.1
## ssmk  -0.05  0.93 -0.01  0.04 0.85 0.154 1.0
## ssmc   0.80  0.23 -0.16  0.05 0.80 0.202 1.3
## ssei   0.67  0.06  0.26 -0.04 0.83 0.173 1.3
## 
##                        MR1  MR3  MR4  MR2
## SS loadings           2.91 2.07 1.58 1.58
## Proportion Var        0.29 0.21 0.16 0.16
## Cumulative Var        0.29 0.50 0.66 0.81
## Proportion Explained  0.36 0.25 0.19 0.19
## Cumulative Proportion 0.36 0.61 0.81 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR4  MR2
## MR1 1.00 0.75 0.79 0.64
## MR3 0.75 1.00 0.80 0.75
## MR4 0.79 0.80 1.00 0.71
## MR2 0.64 0.75 0.71 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  10.31 with Chi Square =  10948.52
## df of  the model are 11  and the objective function was  0.04 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  1067 with the empirical chi square  2.58  with prob <  1 
## The total n.obs was  1067  with Likelihood Chi Square =  39.88  with prob <  3.8e-05 
## 
## Tucker Lewis Index of factoring reliability =  0.989
## RMSEA index =  0.05  and the 90 % confidence intervals are  0.034 0.067
## BIC =  -36.82
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR4  MR2
## Correlation of (regression) scores with factors   0.97 0.96 0.96 0.93
## Multiple R square of scores with factors          0.93 0.93 0.93 0.87
## Minimum correlation of possible factor scores     0.87 0.86 0.86 0.73
fa4<-fa(df[,1:10], nfactors=4, rotate="promax", fm="minres")
fa4
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 4, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR4   MR2   h2   u2 com
## ssgs   0.60  0.15  0.27 -0.08 0.80 0.20 1.6
## ssar   0.02  0.72  0.19  0.04 0.84 0.16 1.2
## sswk   0.85  0.03  0.06  0.03 0.89 0.11 1.0
## sspc   0.61  0.06  0.07  0.20 0.75 0.25 1.3
## ssno   0.02  0.27 -0.08  0.67 0.68 0.32 1.3
## sscs   0.01 -0.13  0.09  0.88 0.73 0.27 1.1
## ssasi  0.17 -0.07  0.64  0.08 0.60 0.40 1.2
## ssmk   0.11  0.81  0.01 -0.01 0.81 0.19 1.0
## ssmc  -0.09  0.27  0.63  0.01 0.62 0.38 1.4
## ssei   0.34  0.05  0.47 -0.02 0.64 0.36 1.9
## 
##                        MR1  MR3  MR4  MR2
## SS loadings           2.26 1.83 1.81 1.46
## Proportion Var        0.23 0.18 0.18 0.15
## Cumulative Var        0.23 0.41 0.59 0.74
## Proportion Explained  0.31 0.25 0.25 0.20
## Cumulative Proportion 0.31 0.56 0.80 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR4  MR2
## MR1 1.00 0.75 0.81 0.71
## MR3 0.75 1.00 0.76 0.67
## MR4 0.81 0.76 1.00 0.59
## MR2 0.71 0.67 0.59 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  8.14 with Chi Square =  8638.83
## df of  the model are 11  and the objective function was  0.01 
## 
## The root mean square of the residuals (RMSR) is  0 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  1067 with the empirical chi square  1.29  with prob <  1 
## The total n.obs was  1067  with Likelihood Chi Square =  9.36  with prob <  0.59 
## 
## Tucker Lewis Index of factoring reliability =  1.001
## RMSEA index =  0  and the 90 % confidence intervals are  0 0.028
## BIC =  -67.34
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR4  MR2
## Correlation of (regression) scores with factors   0.96 0.95 0.92 0.92
## Multiple R square of scores with factors          0.93 0.90 0.85 0.85
## Minimum correlation of possible factor scores     0.86 0.80 0.70 0.70
fa3<-fa(dm[,1:10], nfactors=3, rotate="promax", fm="minres", weight=dm$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   h2   u2 com
## ssgs   0.69  0.25  0.01 0.81 0.19 1.3
## ssar   0.13  0.72  0.10 0.83 0.17 1.1
## sswk   0.63  0.13  0.20 0.81 0.19 1.3
## sspc   0.44  0.23  0.26 0.72 0.28 2.2
## ssno  -0.09  0.03  0.93 0.80 0.20 1.0
## sscs   0.04 -0.04  0.79 0.63 0.37 1.0
## ssasi  1.03 -0.21 -0.04 0.72 0.28 1.1
## ssmk  -0.10  1.04 -0.02 0.90 0.10 1.0
## ssmc   0.78  0.14 -0.06 0.73 0.27 1.1
## ssei   0.93  0.00 -0.01 0.85 0.15 1.0
## 
##                        MR1  MR3  MR2
## SS loadings           3.90 2.09 1.81
## Proportion Var        0.39 0.21 0.18
## Cumulative Var        0.39 0.60 0.78
## Proportion Explained  0.50 0.27 0.23
## Cumulative Proportion 0.50 0.77 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.77 0.70
## MR3 0.77 1.00 0.78
## MR2 0.70 0.78 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  9.88 with Chi Square =  10495.49
## df of  the model are 18  and the objective function was  0.33 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  1067 with the empirical chi square  37.7  with prob <  0.0042 
## The total n.obs was  1067  with Likelihood Chi Square =  345.11  with prob <  2.3e-62 
## 
## Tucker Lewis Index of factoring reliability =  0.922
## RMSEA index =  0.131  and the 90 % confidence intervals are  0.119 0.143
## BIC =  219.6
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.97 0.97 0.94
## Multiple R square of scores with factors          0.95 0.94 0.89
## Minimum correlation of possible factor scores     0.90 0.89 0.78
fa3<-fa(df[,1:10], nfactors=3, rotate="promax", fm="minres", weight=df$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   h2   u2 com
## ssgs   0.82  0.14 -0.05 0.80 0.20 1.1
## ssar   0.12  0.80  0.05 0.88 0.12 1.1
## sswk   0.85 -0.05  0.16 0.85 0.15 1.1
## sspc   0.67 -0.01  0.26 0.72 0.28 1.3
## ssno  -0.11  0.26  0.75 0.73 0.27 1.3
## sscs   0.09 -0.10  0.81 0.65 0.35 1.1
## ssasi  0.66  0.07  0.00 0.51 0.49 1.0
## ssmk   0.08  0.76  0.08 0.77 0.23 1.0
## ssmc   0.39  0.44 -0.07 0.54 0.46 2.0
## ssei   0.75  0.10 -0.07 0.62 0.38 1.1
## 
##                        MR1  MR3  MR2
## SS loadings           3.53 2.01 1.54
## Proportion Var        0.35 0.20 0.15
## Cumulative Var        0.35 0.55 0.71
## Proportion Explained  0.50 0.28 0.22
## Cumulative Proportion 0.50 0.78 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.78 0.66
## MR3 0.78 1.00 0.63
## MR2 0.66 0.63 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  7.86 with Chi Square =  8346.61
## df of  the model are 18  and the objective function was  0.08 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  1067 with the empirical chi square  18.11  with prob <  0.45 
## The total n.obs was  1067  with Likelihood Chi Square =  86.2  with prob <  6.9e-11 
## 
## Tucker Lewis Index of factoring reliability =  0.979
## RMSEA index =  0.06  and the 90 % confidence intervals are  0.047 0.073
## BIC =  -39.31
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.97 0.95 0.92
## Multiple R square of scores with factors          0.94 0.91 0.84
## Minimum correlation of possible factor scores     0.87 0.82 0.68
fa4<-fa(dm[,1:10], nfactors=4, rotate="promax", fm="minres", weight=dm$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR4   MR3   MR1   MR2   h2     u2 com
## ssgs   0.40  0.22  0.39 -0.05 0.82 0.1847 2.6
## ssar   0.12  0.77 -0.03  0.11 0.85 0.1517 1.1
## sswk   0.06 -0.06  0.98  0.02 1.00 0.0048 1.0
## sspc   0.15  0.19  0.43  0.17 0.73 0.2653 2.0
## ssno  -0.05  0.04 -0.01  0.91 0.82 0.1792 1.0
## sscs   0.07 -0.01  0.01  0.74 0.63 0.3748 1.0
## ssasi  1.03 -0.18 -0.04  0.02 0.78 0.2248 1.1
## ssmk  -0.10  1.01 -0.02  0.01 0.89 0.1138 1.0
## ssmc   0.82  0.22 -0.14  0.01 0.78 0.2194 1.2
## ssei   0.72  0.03  0.21 -0.01 0.83 0.1684 1.2
## 
##                        MR4  MR3  MR1  MR2
## SS loadings           2.79 2.03 1.68 1.61
## Proportion Var        0.28 0.20 0.17 0.16
## Cumulative Var        0.28 0.48 0.65 0.81
## Proportion Explained  0.34 0.25 0.21 0.20
## Cumulative Proportion 0.34 0.59 0.80 1.00
## 
##  With factor correlations of 
##      MR4  MR3  MR1  MR2
## MR4 1.00 0.74 0.80 0.62
## MR3 0.74 1.00 0.79 0.75
## MR1 0.80 0.79 1.00 0.71
## MR2 0.62 0.75 0.71 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  9.88 with Chi Square =  10495.49
## df of  the model are 11  and the objective function was  0.05 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  1067 with the empirical chi square  3.92  with prob <  0.97 
## The total n.obs was  1067  with Likelihood Chi Square =  51.01  with prob <  4.1e-07 
## 
## Tucker Lewis Index of factoring reliability =  0.984
## RMSEA index =  0.058  and the 90 % confidence intervals are  0.043 0.075
## BIC =  -25.69
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR4  MR3  MR1  MR2
## Correlation of (regression) scores with factors   0.97 0.97 1.00 0.94
## Multiple R square of scores with factors          0.93 0.94 1.00 0.89
## Minimum correlation of possible factor scores     0.87 0.88 0.99 0.77
fa4<-fa(df[,1:10], nfactors=4, rotate="promax", fm="minres", weight=df$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   MR4   h2    u2 com
## ssgs   0.80  0.18 -0.09  0.06 0.80 0.199 1.1
## ssar   0.12  0.79  0.03  0.06 0.86 0.143 1.1
## sswk   0.95  0.00  0.04 -0.10 0.91 0.085 1.0
## sspc   0.67  0.05  0.19 -0.02 0.72 0.278 1.2
## ssno  -0.05  0.30  0.64 -0.03 0.68 0.324 1.4
## sscs   0.04 -0.13  0.92  0.06 0.74 0.256 1.1
## ssasi  0.59 -0.03  0.08  0.31 0.57 0.428 1.6
## ssmk   0.06  0.86  0.00 -0.04 0.81 0.192 1.0
## ssmc   0.29  0.39 -0.01  0.27 0.58 0.417 2.7
## ssei   0.69  0.08 -0.04  0.17 0.62 0.383 1.2
## 
##                        MR1  MR3  MR2  MR4
## SS loadings           3.42 2.10 1.44 0.33
## Proportion Var        0.34 0.21 0.14 0.03
## Cumulative Var        0.34 0.55 0.70 0.73
## Proportion Explained  0.47 0.29 0.20 0.05
## Cumulative Proportion 0.47 0.76 0.95 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2  MR4
## MR1 1.00 0.78 0.67 0.23
## MR3 0.78 1.00 0.64 0.29
## MR2 0.67 0.64 1.00 0.05
## MR4 0.23 0.29 0.05 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  7.86 with Chi Square =  8346.61
## df of  the model are 11  and the objective function was  0.02 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  1067 with the empirical chi square  3.41  with prob <  0.98 
## The total n.obs was  1067  with Likelihood Chi Square =  22.33  with prob <  0.022 
## 
## Tucker Lewis Index of factoring reliability =  0.994
## RMSEA index =  0.031  and the 90 % confidence intervals are  0.011 0.05
## BIC =  -54.37
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2   MR4
## Correlation of (regression) scores with factors   0.98 0.96 0.92  0.66
## Multiple R square of scores with factors          0.95 0.92 0.85  0.43
## Minimum correlation of possible factor scores     0.90 0.83 0.70 -0.13
# white sibling sample

dw<- subset(d, bhw==3)
m<- subset(dw, sex==0)
f<- subset(dw, sex==1) 
dm<- dplyr::select(m, starts_with("ss"), sweight)
df<- dplyr::select(f, starts_with("ss"), sweight)

ev <- eigen(cor(dm)) # get eigenvalues
ev$values
##  [1] 6.6534982 1.1486107 0.8898470 0.5753375 0.4261700 0.3139847 0.2980345 0.2341430 0.1766542
## [10] 0.1516864 0.1320338
ev <- eigen(cor(df)) # get eigenvalues
ev$values
##  [1] 6.0712643 1.0003917 0.9154149 0.6826670 0.5292353 0.4477126 0.4216869 0.3073626 0.2682701
## [10] 0.1850292 0.1709653
fa3<-fa(dm[,1:10], nfactors=3, rotate="promax", fm="minres")
fa3
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 3, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   h2   u2 com
## ssgs   0.60  0.33  0.00 0.76 0.24 1.5
## ssar   0.06  0.79  0.09 0.81 0.19 1.0
## sswk   0.57  0.21  0.18 0.77 0.23 1.5
## sspc   0.38  0.27  0.27 0.68 0.32 2.7
## ssno  -0.12  0.00  0.98 0.83 0.17 1.0
## sscs   0.05 -0.03  0.76 0.58 0.42 1.0
## ssasi  1.01 -0.24 -0.05 0.67 0.33 1.1
## ssmk  -0.14  1.06 -0.03 0.88 0.12 1.0
## ssmc   0.75  0.16 -0.07 0.69 0.31 1.1
## ssei   0.93 -0.01  0.01 0.85 0.15 1.0
## 
##                        MR1  MR3  MR2
## SS loadings           3.47 2.28 1.77
## Proportion Var        0.35 0.23 0.18
## Cumulative Var        0.35 0.57 0.75
## Proportion Explained  0.46 0.30 0.24
## Cumulative Proportion 0.46 0.76 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.75 0.63
## MR3 0.75 1.00 0.77
## MR2 0.63 0.77 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  8.8 with Chi Square =  4582.88
## df of  the model are 18  and the objective function was  0.34 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic n.obs is  526 with the empirical chi square  25.05  with prob <  0.12 
## The total n.obs was  526  with Likelihood Chi Square =  177.68  with prob <  2.8e-28 
## 
## Tucker Lewis Index of factoring reliability =  0.912
## RMSEA index =  0.13  and the 90 % confidence intervals are  0.113 0.148
## BIC =  64.9
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.97 0.97 0.95
## Multiple R square of scores with factors          0.94 0.94 0.90
## Minimum correlation of possible factor scores     0.88 0.88 0.80
fa3<-fa(df[,1:10], nfactors=3, rotate="promax", fm="minres")
fa3
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 3, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   h2   u2 com
## ssgs   0.79  0.16 -0.07 0.76 0.24 1.1
## ssar   0.07  0.83  0.08 0.88 0.12 1.0
## sswk   0.87 -0.07  0.15 0.83 0.17 1.1
## sspc   0.63 -0.01  0.25 0.65 0.35 1.3
## ssno  -0.12  0.26  0.75 0.73 0.27 1.3
## sscs   0.09 -0.10  0.77 0.58 0.42 1.1
## ssasi  0.61  0.07 -0.01 0.42 0.58 1.0
## ssmk   0.06  0.76  0.10 0.76 0.24 1.0
## ssmc   0.32  0.49 -0.09 0.49 0.51 1.8
## ssei   0.72  0.07 -0.07 0.55 0.45 1.0
## 
##                        MR1  MR3  MR2
## SS loadings           3.17 2.01 1.46
## Proportion Var        0.32 0.20 0.15
## Cumulative Var        0.32 0.52 0.66
## Proportion Explained  0.48 0.30 0.22
## Cumulative Proportion 0.48 0.78 1.00
## 
##  With factor correlations of 
##      MR1  MR3 MR2
## MR1 1.00 0.76 0.6
## MR3 0.76 1.00 0.6
## MR2 0.60 0.60 1.0
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  6.74 with Chi Square =  3512.19
## df of  the model are 18  and the objective function was  0.1 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  526 with the empirical chi square  14.12  with prob <  0.72 
## The total n.obs was  526  with Likelihood Chi Square =  51.47  with prob <  4.5e-05 
## 
## Tucker Lewis Index of factoring reliability =  0.976
## RMSEA index =  0.059  and the 90 % confidence intervals are  0.041 0.079
## BIC =  -61.3
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.96 0.96 0.91
## Multiple R square of scores with factors          0.92 0.91 0.82
## Minimum correlation of possible factor scores     0.84 0.83 0.64
fa4<-fa(dm[,1:10], nfactors=4, rotate="promax", fm="minres")
fa4
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 4, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR4   MR3   MR1   MR2   h2     u2 com
## ssgs   0.32  0.25  0.43 -0.06 0.77 0.2294 2.5
## ssar   0.08  0.80 -0.04  0.11 0.82 0.1752 1.1
## sswk   0.00 -0.07  1.05  0.00 1.00 0.0037 1.0
## sspc   0.15  0.19  0.39  0.20 0.69 0.3092 2.3
## ssno  -0.07  0.01 -0.02  0.97 0.86 0.1438 1.0
## sscs   0.07  0.01  0.00  0.71 0.58 0.4239 1.0
## ssasi  1.01 -0.19 -0.05  0.01 0.72 0.2753 1.1
## ssmk  -0.11  1.03 -0.02  0.00 0.88 0.1205 1.0
## ssmc   0.79  0.25 -0.14 -0.01 0.74 0.2590 1.3
## ssei   0.71  0.00  0.23  0.00 0.83 0.1744 1.2
## 
##                        MR4  MR3  MR1  MR2
## SS loadings           2.49 2.05 1.73 1.61
## Proportion Var        0.25 0.21 0.17 0.16
## Cumulative Var        0.25 0.45 0.63 0.79
## Proportion Explained  0.32 0.26 0.22 0.20
## Cumulative Proportion 0.32 0.58 0.80 1.00
## 
##  With factor correlations of 
##      MR4  MR3  MR1  MR2
## MR4 1.00 0.70 0.78 0.54
## MR3 0.70 1.00 0.78 0.74
## MR1 0.78 0.78 1.00 0.68
## MR2 0.54 0.74 0.68 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  8.8 with Chi Square =  4582.88
## df of  the model are 11  and the objective function was  0.07 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  526 with the empirical chi square  3.6  with prob <  0.98 
## The total n.obs was  526  with Likelihood Chi Square =  36.51  with prob <  0.00014 
## 
## Tucker Lewis Index of factoring reliability =  0.977
## RMSEA index =  0.066  and the 90 % confidence intervals are  0.043 0.091
## BIC =  -32.41
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR4  MR3  MR1  MR2
## Correlation of (regression) scores with factors   0.96 0.97 1.00 0.95
## Multiple R square of scores with factors          0.92 0.94 1.00 0.90
## Minimum correlation of possible factor scores     0.84 0.88 0.99 0.81
fa4<-fa(df[,1:10], nfactors=4, rotate="promax", fm="minres")
fa4
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 4, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR3   MR1   MR4   MR2   h2    u2 com
## ssgs   0.16  0.47  0.37 -0.08 0.75 0.251 2.2
## ssar   0.89  0.08  0.00 -0.02 0.88 0.123 1.0
## sswk  -0.05  0.18  0.89 -0.04 0.93 0.067 1.1
## sspc   0.09  0.14  0.55  0.11 0.65 0.346 1.3
## ssno   0.41 -0.13  0.10  0.48 0.62 0.380 2.2
## sscs  -0.13  0.11 -0.05  0.97 0.83 0.168 1.1
## ssasi -0.04  0.69 -0.02  0.10 0.49 0.513 1.0
## ssmk   0.85  0.01  0.05 -0.02 0.77 0.230 1.0
## ssmc   0.45  0.46 -0.14 -0.03 0.52 0.480 2.2
## ssei   0.02  0.58  0.19 -0.01 0.56 0.442 1.2
## 
##                        MR3  MR1  MR4  MR2
## SS loadings           2.22 1.88 1.68 1.23
## Proportion Var        0.22 0.19 0.17 0.12
## Cumulative Var        0.22 0.41 0.58 0.70
## Proportion Explained  0.32 0.27 0.24 0.17
## Cumulative Proportion 0.32 0.58 0.83 1.00
## 
##  With factor correlations of 
##      MR3  MR1  MR4  MR2
## MR3 1.00 0.72 0.74 0.59
## MR1 0.72 1.00 0.75 0.42
## MR4 0.74 0.75 1.00 0.60
## MR2 0.59 0.42 0.60 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  6.74 with Chi Square =  3512.19
## df of  the model are 11  and the objective function was  0.02 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  526 with the empirical chi square  2.82  with prob <  0.99 
## The total n.obs was  526  with Likelihood Chi Square =  12.37  with prob <  0.34 
## 
## Tucker Lewis Index of factoring reliability =  0.998
## RMSEA index =  0.015  and the 90 % confidence intervals are  0 0.05
## BIC =  -56.55
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR3  MR1  MR4  MR2
## Correlation of (regression) scores with factors   0.96 0.91 0.97 0.93
## Multiple R square of scores with factors          0.92 0.84 0.94 0.87
## Minimum correlation of possible factor scores     0.85 0.67 0.87 0.74
fa3<-fa(dm[,1:10], nfactors=3, rotate="promax", fm="minres", weight=dm$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   h2   u2 com
## ssgs   0.58  0.34  0.00 0.74 0.26 1.6
## ssar   0.04  0.78  0.11 0.80 0.20 1.0
## sswk   0.54  0.21  0.19 0.72 0.28 1.6
## sspc   0.36  0.27  0.27 0.65 0.35 2.8
## ssno  -0.13  0.00  0.96 0.80 0.20 1.0
## sscs   0.03 -0.04  0.75 0.55 0.45 1.0
## ssasi  0.97 -0.25 -0.05 0.61 0.39 1.1
## ssmk  -0.15  1.09 -0.05 0.89 0.11 1.0
## ssmc   0.74  0.17 -0.09 0.66 0.34 1.1
## ssei   0.93 -0.03  0.01 0.83 0.17 1.0
## 
##                        MR1  MR3  MR2
## SS loadings           3.24 2.30 1.72
## Proportion Var        0.32 0.23 0.17
## Cumulative Var        0.32 0.55 0.73
## Proportion Explained  0.45 0.32 0.24
## Cumulative Proportion 0.45 0.76 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.74 0.60
## MR3 0.74 1.00 0.77
## MR2 0.60 0.77 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  8.08 with Chi Square =  4210.93
## df of  the model are 18  and the objective function was  0.39 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic n.obs is  526 with the empirical chi square  36.57  with prob <  0.006 
## The total n.obs was  526  with Likelihood Chi Square =  204.43  with prob <  1.3e-33 
## 
## Tucker Lewis Index of factoring reliability =  0.888
## RMSEA index =  0.14  and the 90 % confidence intervals are  0.123 0.158
## BIC =  91.65
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.96 0.97 0.94
## Multiple R square of scores with factors          0.93 0.94 0.89
## Minimum correlation of possible factor scores     0.86 0.89 0.77
fa3<-fa(df[,1:10], nfactors=3, rotate="promax", fm="minres", weight=df$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   h2   u2 com
## ssgs   0.80  0.15 -0.07 0.76 0.24 1.1
## ssar   0.08  0.83  0.07 0.87 0.13 1.0
## sswk   0.89 -0.10  0.15 0.83 0.17 1.1
## sspc   0.64 -0.01  0.23 0.61 0.39 1.2
## ssno  -0.11  0.27  0.73 0.71 0.29 1.3
## sscs   0.07 -0.10  0.77 0.57 0.43 1.1
## ssasi  0.56  0.09 -0.03 0.38 0.62 1.1
## ssmk   0.05  0.77  0.09 0.75 0.25 1.0
## ssmc   0.28  0.49 -0.09 0.47 0.53 1.7
## ssei   0.70  0.09 -0.08 0.53 0.47 1.1
## 
##                        MR1  MR3  MR2
## SS loadings           3.07 2.01 1.38
## Proportion Var        0.31 0.20 0.14
## Cumulative Var        0.31 0.51 0.65
## Proportion Explained  0.48 0.31 0.21
## Cumulative Proportion 0.48 0.79 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.75 0.55
## MR3 0.75 1.00 0.56
## MR2 0.55 0.56 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  6.26 with Chi Square =  3261.83
## df of  the model are 18  and the objective function was  0.1 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  526 with the empirical chi square  15.53  with prob <  0.63 
## The total n.obs was  526  with Likelihood Chi Square =  49.72  with prob <  8.3e-05 
## 
## Tucker Lewis Index of factoring reliability =  0.975
## RMSEA index =  0.058  and the 90 % confidence intervals are  0.039 0.077
## BIC =  -63.05
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.96 0.95 0.90
## Multiple R square of scores with factors          0.92 0.91 0.80
## Minimum correlation of possible factor scores     0.84 0.82 0.61
fa4<-fa(dm[,1:10], nfactors=4, rotate="promax", fm="minres", weight=dm$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR4   MR3   MR1   MR2   h2     u2 com
## ssgs   0.30  0.25  0.43 -0.06 0.74 0.2562 2.5
## ssar   0.06  0.81 -0.05  0.12 0.82 0.1758 1.1
## sswk  -0.05 -0.09  1.12 -0.02 1.00 0.0009 1.0
## sspc   0.10  0.18  0.45  0.17 0.66 0.3372 1.8
## ssno  -0.05 -0.01 -0.05  1.01 0.89 0.1058 1.0
## sscs   0.05  0.04  0.03  0.64 0.52 0.4811 1.0
## ssasi  0.99 -0.20 -0.07  0.02 0.68 0.3166 1.1
## ssmk  -0.13  1.04 -0.01 -0.01 0.88 0.1151 1.0
## ssmc   0.77  0.27 -0.13 -0.04 0.72 0.2786 1.3
## ssei   0.70 -0.02  0.25  0.01 0.80 0.1979 1.2
## 
##                        MR4  MR3  MR1  MR2
## SS loadings           2.29 2.06 1.83 1.55
## Proportion Var        0.23 0.21 0.18 0.15
## Cumulative Var        0.23 0.44 0.62 0.77
## Proportion Explained  0.30 0.27 0.24 0.20
## Cumulative Proportion 0.30 0.56 0.80 1.00
## 
##  With factor correlations of 
##      MR4  MR3  MR1  MR2
## MR4 1.00 0.68 0.76 0.49
## MR3 0.68 1.00 0.77 0.72
## MR1 0.76 0.77 1.00 0.65
## MR2 0.49 0.72 0.65 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  8.08 with Chi Square =  4210.93
## df of  the model are 11  and the objective function was  0.07 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  526 with the empirical chi square  4.24  with prob <  0.96 
## The total n.obs was  526  with Likelihood Chi Square =  35.72  with prob <  0.00019 
## 
## Tucker Lewis Index of factoring reliability =  0.976
## RMSEA index =  0.065  and the 90 % confidence intervals are  0.042 0.09
## BIC =  -33.19
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR4  MR3 MR1  MR2
## Correlation of (regression) scores with factors   0.95 0.97   1 0.96
## Multiple R square of scores with factors          0.91 0.94   1 0.92
## Minimum correlation of possible factor scores     0.81 0.88   1 0.85
fa4<-fa(df[,1:10], nfactors=4, rotate="promax", fm="minres", weight=df$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR3   MR1   MR4   MR2   h2   u2 com
## ssgs   0.15  0.46  0.38 -0.09 0.74 0.26 2.2
## ssar   0.85  0.02  0.10 -0.02 0.86 0.14 1.0
## sswk  -0.04  0.97  0.04 -0.02 0.93 0.07 1.0
## sspc   0.09  0.56  0.11  0.12 0.61 0.39 1.2
## ssno   0.39  0.06 -0.11  0.51 0.61 0.39 2.0
## sscs  -0.15 -0.04  0.10  0.95 0.79 0.21 1.1
## ssasi -0.05  0.03  0.65  0.08 0.45 0.55 1.1
## ssmk   0.87  0.06 -0.02 -0.03 0.78 0.22 1.0
## ssmc   0.41 -0.14  0.49 -0.02 0.50 0.50 2.1
## ssei   0.02  0.28  0.49 -0.03 0.53 0.47 1.6
## 
##                        MR3  MR1  MR4  MR2
## SS loadings           2.11 1.94 1.54 1.20
## Proportion Var        0.21 0.19 0.15 0.12
## Cumulative Var        0.21 0.41 0.56 0.68
## Proportion Explained  0.31 0.29 0.23 0.18
## Cumulative Proportion 0.31 0.60 0.82 1.00
## 
##  With factor correlations of 
##      MR3  MR1  MR4  MR2
## MR3 1.00 0.72 0.71 0.57
## MR1 0.72 1.00 0.76 0.56
## MR4 0.71 0.76 1.00 0.36
## MR2 0.57 0.56 0.36 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  6.26 with Chi Square =  3261.83
## df of  the model are 11  and the objective function was  0.04 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  526 with the empirical chi square  4.65  with prob <  0.95 
## The total n.obs was  526  with Likelihood Chi Square =  19.02  with prob <  0.061 
## 
## Tucker Lewis Index of factoring reliability =  0.99
## RMSEA index =  0.037  and the 90 % confidence intervals are  0 0.065
## BIC =  -49.89
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR3  MR1  MR4  MR2
## Correlation of (regression) scores with factors   0.96 0.97 0.90 0.92
## Multiple R square of scores with factors          0.92 0.95 0.81 0.84
## Minimum correlation of possible factor scores     0.83 0.89 0.62 0.69
# full total sample

m<- subset(dk, sex==0)
f<- subset(dk, sex==1) 
dm<- dplyr::select(m, starts_with("ss"), sweight)
df<- dplyr::select(f, starts_with("ss"), sweight)

ev <- eigen(cor(dm)) # get eigenvalues
ev$values
##  [1] 7.3264300 0.9038625 0.7753772 0.4860249 0.3652766 0.2602612 0.2301454 0.1915608 0.1758508
## [10] 0.1569553 0.1282552
ev <- eigen(cor(df)) # get eigenvalues
ev$values
##  [1] 6.7866452 0.8895363 0.8273077 0.5481897 0.4505542 0.3351343 0.3186843 0.2703994 0.2460046
## [10] 0.1771029 0.1504414
fa3<-fa(dm[,1:10], nfactors=3, rotate="promax", fm="minres")
fa3
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 3, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   h2   u2 com
## ssgs   0.69  0.23  0.02 0.82 0.18 1.2
## ssar   0.19  0.66  0.10 0.81 0.19 1.2
## sswk   0.62  0.14  0.21 0.82 0.18 1.3
## sspc   0.45  0.24  0.23 0.72 0.28 2.1
## ssno  -0.07  0.06  0.90 0.79 0.21 1.0
## sscs   0.07 -0.04  0.80 0.67 0.33 1.0
## ssasi  1.03 -0.21  0.01 0.77 0.23 1.1
## ssmk  -0.09  0.99  0.01 0.87 0.13 1.0
## ssmc   0.79  0.12 -0.04 0.74 0.26 1.1
## ssei   0.91  0.04 -0.04 0.83 0.17 1.0
## 
##                        MR1  MR3  MR2
## SS loadings           4.01 1.99 1.84
## Proportion Var        0.40 0.20 0.18
## Cumulative Var        0.40 0.60 0.78
## Proportion Explained  0.51 0.25 0.24
## Cumulative Proportion 0.51 0.76 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.79 0.73
## MR3 0.79 1.00 0.79
## MR2 0.73 0.79 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  10.06 with Chi Square =  54984.53
## df of  the model are 18  and the objective function was  0.26 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  5469 with the empirical chi square  155.51  with prob <  6.3e-24 
## The total n.obs was  5469  with Likelihood Chi Square =  1434.18  with prob <  6.5e-294 
## 
## Tucker Lewis Index of factoring reliability =  0.936
## RMSEA index =  0.12  and the 90 % confidence intervals are  0.115 0.125
## BIC =  1279.26
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.98 0.96 0.94
## Multiple R square of scores with factors          0.95 0.93 0.89
## Minimum correlation of possible factor scores     0.90 0.86 0.78
fa3<-fa(df[,1:10], nfactors=3, rotate="promax", fm="minres")
fa3
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 3, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   h2   u2 com
## ssgs   0.80  0.09  0.01 0.78 0.22 1.0
## ssar   0.15  0.75  0.07 0.84 0.16 1.1
## sswk   0.77 -0.04  0.22 0.82 0.18 1.2
## sspc   0.59  0.02  0.30 0.72 0.28 1.5
## ssno  -0.12  0.13  0.88 0.80 0.20 1.1
## sscs   0.11 -0.04  0.73 0.62 0.38 1.0
## ssasi  0.80 -0.01 -0.03 0.59 0.41 1.0
## ssmk   0.06  0.77  0.10 0.79 0.21 1.0
## ssmc   0.53  0.35 -0.08 0.60 0.40 1.8
## ssei   0.81  0.08 -0.06 0.68 0.32 1.0
## 
##                        MR1  MR3  MR2
## SS loadings           3.71 1.77 1.76
## Proportion Var        0.37 0.18 0.18
## Cumulative Var        0.37 0.55 0.72
## Proportion Explained  0.51 0.24 0.24
## Cumulative Proportion 0.51 0.76 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.78 0.70
## MR3 0.78 1.00 0.68
## MR2 0.70 0.68 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  8.25 with Chi Square =  44928.78
## df of  the model are 18  and the objective function was  0.15 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  5449 with the empirical chi square  139.34  with prob <  8.6e-21 
## The total n.obs was  5449  with Likelihood Chi Square =  811.49  with prob <  1.1e-160 
## 
## Tucker Lewis Index of factoring reliability =  0.956
## RMSEA index =  0.09  and the 90 % confidence intervals are  0.085 0.095
## BIC =  656.63
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.97 0.95 0.94
## Multiple R square of scores with factors          0.93 0.90 0.88
## Minimum correlation of possible factor scores     0.87 0.79 0.75
fa4<-fa(dm[,1:10], nfactors=4, rotate="promax", fm="minres")
fa4
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 4, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR4   MR3   MR1   MR2   h2    u2 com
## ssgs   0.37  0.18  0.45 -0.04 0.82 0.175 2.3
## ssar   0.17  0.71 -0.01  0.11 0.83 0.167 1.2
## sswk   0.12 -0.04  0.85  0.07 0.93 0.067 1.1
## sspc   0.11  0.16  0.53  0.13 0.75 0.248 1.4
## ssno  -0.04  0.08  0.03  0.83 0.79 0.211 1.0
## sscs   0.08 -0.02  0.02  0.77 0.69 0.314 1.0
## ssasi  0.99 -0.17 -0.01  0.06 0.82 0.183 1.1
## ssmk  -0.08  0.93  0.02  0.04 0.85 0.151 1.0
## ssmc   0.80  0.21 -0.11  0.01 0.79 0.212 1.2
## ssei   0.66  0.06  0.26 -0.04 0.81 0.186 1.3
## 
##                        MR4  MR3  MR1  MR2
## SS loadings           2.78 1.87 1.82 1.61
## Proportion Var        0.28 0.19 0.18 0.16
## Cumulative Var        0.28 0.47 0.65 0.81
## Proportion Explained  0.34 0.23 0.23 0.20
## Cumulative Proportion 0.34 0.58 0.80 1.00
## 
##  With factor correlations of 
##      MR4  MR3  MR1  MR2
## MR4 1.00 0.75 0.81 0.65
## MR3 0.75 1.00 0.79 0.75
## MR1 0.81 0.79 1.00 0.73
## MR2 0.65 0.75 0.73 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  10.06 with Chi Square =  54984.53
## df of  the model are 11  and the objective function was  0.02 
## 
## The root mean square of the residuals (RMSR) is  0 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  5469 with the empirical chi square  7.79  with prob <  0.73 
## The total n.obs was  5469  with Likelihood Chi Square =  112.34  with prob <  6.2e-19 
## 
## Tucker Lewis Index of factoring reliability =  0.992
## RMSEA index =  0.041  and the 90 % confidence intervals are  0.034 0.048
## BIC =  17.67
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR4  MR3  MR1  MR2
## Correlation of (regression) scores with factors   0.97 0.96 0.97 0.94
## Multiple R square of scores with factors          0.93 0.92 0.94 0.87
## Minimum correlation of possible factor scores     0.87 0.85 0.89 0.75
fa4<-fa(df[,1:10], nfactors=4, rotate="promax", fm="minres")
fa4
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 4, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR4   MR2   h2    u2 com
## ssgs   0.42  0.13  0.44 -0.05 0.78 0.222 2.2
## ssar   0.21  0.68 -0.01  0.08 0.81 0.189 1.2
## sswk   0.14  0.00  0.83  0.02 0.92 0.079 1.1
## sspc   0.14  0.08  0.54  0.17 0.74 0.261 1.4
## ssno  -0.10  0.17  0.05  0.76 0.74 0.265 1.1
## sscs   0.11 -0.10 -0.02  0.84 0.70 0.302 1.1
## ssasi  0.83 -0.12  0.03  0.06 0.65 0.354 1.1
## ssmk  -0.05  0.91  0.06  0.00 0.85 0.151 1.0
## ssmc   0.66  0.29 -0.12  0.01 0.64 0.359 1.5
## ssei   0.66  0.05  0.18 -0.02 0.68 0.318 1.2
## 
##                        MR1  MR3  MR4  MR2
## SS loadings           2.41 1.82 1.74 1.52
## Proportion Var        0.24 0.18 0.17 0.15
## Cumulative Var        0.24 0.42 0.60 0.75
## Proportion Explained  0.32 0.24 0.23 0.20
## Cumulative Proportion 0.32 0.56 0.80 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR4  MR2
## MR1 1.00 0.77 0.79 0.63
## MR3 0.77 1.00 0.74 0.69
## MR4 0.79 0.74 1.00 0.71
## MR2 0.63 0.69 0.71 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  8.25 with Chi Square =  44928.78
## df of  the model are 11  and the objective function was  0.01 
## 
## The root mean square of the residuals (RMSR) is  0 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  5449 with the empirical chi square  5.75  with prob <  0.89 
## The total n.obs was  5449  with Likelihood Chi Square =  55.08  with prob <  7.5e-08 
## 
## Tucker Lewis Index of factoring reliability =  0.996
## RMSEA index =  0.027  and the 90 % confidence intervals are  0.02 0.034
## BIC =  -39.56
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR4  MR2
## Correlation of (regression) scores with factors   0.94 0.96 0.96 0.93
## Multiple R square of scores with factors          0.89 0.91 0.93 0.86
## Minimum correlation of possible factor scores     0.78 0.83 0.86 0.71
fa3<-fa(dm[,1:10], nfactors=3, rotate="promax", fm="minres", weight=dm$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   h2   u2 com
## ssgs   0.57  0.40 -0.03 0.80 0.20 1.8
## ssar   0.11  0.72  0.12 0.81 0.19 1.1
## sswk   0.51  0.31  0.14 0.79 0.21 1.8
## sspc   0.35  0.37  0.20 0.70 0.30 2.5
## ssno  -0.05  0.04  0.90 0.81 0.19 1.0
## sscs   0.05  0.02  0.76 0.65 0.35 1.0
## ssasi  1.06 -0.29  0.03 0.76 0.24 1.1
## ssmk  -0.16  1.00  0.04 0.84 0.16 1.1
## ssmc   0.76  0.14 -0.03 0.73 0.27 1.1
## ssei   0.85  0.10 -0.03 0.81 0.19 1.0
## 
##                        MR1  MR3  MR2
## SS loadings           3.49 2.49 1.74
## Proportion Var        0.35 0.25 0.17
## Cumulative Var        0.35 0.60 0.77
## Proportion Explained  0.45 0.32 0.23
## Cumulative Proportion 0.45 0.77 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.78 0.67
## MR3 0.78 1.00 0.79
## MR2 0.67 0.79 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  9.56 with Chi Square =  52251.07
## df of  the model are 18  and the objective function was  0.31 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  5469 with the empirical chi square  201.06  with prob <  6.2e-33 
## The total n.obs was  5469  with Likelihood Chi Square =  1672.77  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.921
## RMSEA index =  0.13  and the 90 % confidence intervals are  0.124 0.135
## BIC =  1517.85
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.97 0.97 0.94
## Multiple R square of scores with factors          0.94 0.93 0.89
## Minimum correlation of possible factor scores     0.88 0.87 0.77
fa3<-fa(df[,1:10], nfactors=3, rotate="promax", fm="minres", weight=df$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   h2   u2 com
## ssgs   0.79  0.12 -0.01 0.76 0.24 1.0
## ssar   0.13  0.77  0.06 0.85 0.15 1.1
## sswk   0.79 -0.03  0.18 0.81 0.19 1.1
## sspc   0.61  0.04  0.25 0.69 0.31 1.3
## ssno  -0.11  0.14  0.87 0.79 0.21 1.1
## sscs   0.09 -0.06  0.75 0.60 0.40 1.0
## ssasi  0.76 -0.03 -0.01 0.53 0.47 1.0
## ssmk   0.03  0.81  0.07 0.80 0.20 1.0
## ssmc   0.49  0.37 -0.08 0.58 0.42 1.9
## ssei   0.82  0.05 -0.08 0.65 0.35 1.0
## 
##                        MR1  MR3  MR2
## SS loadings           3.57 1.85 1.64
## Proportion Var        0.36 0.18 0.16
## Cumulative Var        0.36 0.54 0.71
## Proportion Explained  0.51 0.26 0.23
## Cumulative Proportion 0.51 0.77 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.78 0.67
## MR3 0.78 1.00 0.66
## MR2 0.67 0.66 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  7.72 with Chi Square =  42014.1
## df of  the model are 18  and the objective function was  0.15 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  5449 with the empirical chi square  166.95  with prob <  3.6e-26 
## The total n.obs was  5449  with Likelihood Chi Square =  830.41  with prob <  1.1e-164 
## 
## Tucker Lewis Index of factoring reliability =  0.952
## RMSEA index =  0.091  and the 90 % confidence intervals are  0.086 0.096
## BIC =  675.55
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.96 0.95 0.93
## Multiple R square of scores with factors          0.93 0.91 0.87
## Minimum correlation of possible factor scores     0.85 0.81 0.73
fa4<-fa(dm[,1:10], nfactors=4, rotate="promax", fm="minres", weight=dm$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR4   MR3   MR1   MR2   h2    u2 com
## ssgs   0.33  0.22  0.46 -0.05 0.81 0.193 2.3
## ssar   0.15  0.70 -0.01  0.14 0.83 0.172 1.2
## sswk   0.07 -0.06  0.93  0.04 0.94 0.061 1.0
## sspc   0.08  0.14  0.55  0.15 0.73 0.266 1.3
## ssno  -0.03  0.03  0.02  0.88 0.81 0.189 1.0
## sscs   0.06  0.03  0.02  0.73 0.65 0.352 1.0
## ssasi  1.01 -0.21 -0.01  0.05 0.79 0.208 1.1
## ssmk  -0.12  0.97  0.02  0.05 0.87 0.126 1.0
## ssmc   0.80  0.23 -0.12  0.00 0.78 0.221 1.2
## ssei   0.67  0.06  0.24 -0.03 0.80 0.199 1.3
## 
##                        MR4  MR3  MR1  MR2
## SS loadings           2.61 1.90 1.88 1.62
## Proportion Var        0.26 0.19 0.19 0.16
## Cumulative Var        0.26 0.45 0.64 0.80
## Proportion Explained  0.33 0.24 0.24 0.20
## Cumulative Proportion 0.33 0.56 0.80 1.00
## 
##  With factor correlations of 
##      MR4  MR3  MR1  MR2
## MR4 1.00 0.72 0.80 0.61
## MR3 0.72 1.00 0.80 0.75
## MR1 0.80 0.80 1.00 0.71
## MR2 0.61 0.75 0.71 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  9.56 with Chi Square =  52251.07
## df of  the model are 11  and the objective function was  0.02 
## 
## The root mean square of the residuals (RMSR) is  0 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  5469 with the empirical chi square  10.16  with prob <  0.52 
## The total n.obs was  5469  with Likelihood Chi Square =  126.48  with prob <  9e-22 
## 
## Tucker Lewis Index of factoring reliability =  0.991
## RMSEA index =  0.044  and the 90 % confidence intervals are  0.037 0.051
## BIC =  31.8
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR4  MR3  MR1  MR2
## Correlation of (regression) scores with factors   0.96 0.96 0.98 0.94
## Multiple R square of scores with factors          0.93 0.93 0.95 0.88
## Minimum correlation of possible factor scores     0.86 0.86 0.90 0.76
fa4<-fa(df[,1:10], nfactors=4, rotate="promax", fm="minres", weight=df$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR4   MR3   MR1   MR2   h2    u2 com
## ssgs   0.35  0.17  0.46 -0.06 0.75 0.245 2.2
## ssar   0.13  0.75  0.01  0.07 0.83 0.174 1.1
## sswk   0.07 -0.02  0.90  0.03 0.92 0.076 1.0
## sspc   0.12  0.09  0.56  0.16 0.71 0.294 1.3
## ssno  -0.08  0.17  0.02  0.78 0.75 0.252 1.1
## sscs   0.10 -0.08  0.01  0.80 0.65 0.346 1.1
## ssasi  0.83 -0.13  0.01  0.07 0.62 0.383 1.1
## ssmk  -0.09  0.92  0.06  0.02 0.83 0.167 1.0
## ssmc   0.59  0.36 -0.12  0.00 0.62 0.377 1.7
## ssei   0.57  0.06  0.25 -0.06 0.65 0.355 1.4
## 
##                        MR4  MR3  MR1  MR2
## SS loadings           2.02 1.97 1.88 1.46
## Proportion Var        0.20 0.20 0.19 0.15
## Cumulative Var        0.20 0.40 0.59 0.73
## Proportion Explained  0.28 0.27 0.26 0.20
## Cumulative Proportion 0.28 0.54 0.80 1.00
## 
##  With factor correlations of 
##      MR4  MR3  MR1  MR2
## MR4 1.00 0.75 0.80 0.59
## MR3 0.75 1.00 0.75 0.66
## MR1 0.80 0.75 1.00 0.67
## MR2 0.59 0.66 0.67 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  7.72 with Chi Square =  42014.1
## df of  the model are 11  and the objective function was  0.02 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  5449 with the empirical chi square  14.42  with prob <  0.21 
## The total n.obs was  5449  with Likelihood Chi Square =  109.9  with prob <  1.9e-18 
## 
## Tucker Lewis Index of factoring reliability =  0.99
## RMSEA index =  0.041  and the 90 % confidence intervals are  0.034 0.048
## BIC =  15.26
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR4  MR3  MR1  MR2
## Correlation of (regression) scores with factors   0.93 0.96 0.97 0.92
## Multiple R square of scores with factors          0.87 0.92 0.94 0.85
## Minimum correlation of possible factor scores     0.74 0.83 0.88 0.69
# white total sample

dw<- subset(dk, bhw==3)
m<- subset(dw, sex==0)
f<- subset(dw, sex==1) 
dm<- dplyr::select(m, starts_with("ss"), sweight)
df<- dplyr::select(f, starts_with("ss"), sweight)

ev <- eigen(cor(dm)) # get eigenvalues
ev$values
##  [1] 6.6655940 1.0517313 0.9716068 0.5476495 0.4282921 0.2910217 0.2820806 0.2330632 0.2079487
## [10] 0.1669759 0.1540363
ev <- eigen(cor(df)) # get eigenvalues
ev$values
##  [1] 5.9806203 1.0788210 0.9591717 0.6436575 0.5636444 0.3987126 0.3752899 0.3182300 0.3019231
## [10] 0.1995904 0.1803392
fa3<-fa(dm[,1:10], nfactors=3, rotate="promax", fm="minres")
fa3
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 3, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR3   MR1   MR2   h2   u2 com
## ssgs   0.52  0.45 -0.04 0.78 0.22 2.0
## ssar   0.05  0.77  0.10 0.79 0.21 1.0
## sswk   0.47  0.37  0.11 0.77 0.23 2.0
## sspc   0.30  0.44  0.17 0.68 0.32 2.1
## ssno  -0.06  0.06  0.88 0.80 0.20 1.0
## sscs   0.06  0.01  0.74 0.62 0.38 1.0
## ssasi  1.05 -0.30  0.03 0.74 0.26 1.2
## ssmk  -0.18  1.00  0.04 0.81 0.19 1.1
## ssmc   0.71  0.17 -0.03 0.69 0.31 1.1
## ssei   0.80  0.13 -0.03 0.79 0.21 1.1
## 
##                        MR3  MR1  MR2
## SS loadings           3.14 2.70 1.62
## Proportion Var        0.31 0.27 0.16
## Cumulative Var        0.31 0.58 0.75
## Proportion Explained  0.42 0.36 0.22
## Cumulative Proportion 0.42 0.78 1.00
## 
##  With factor correlations of 
##      MR3  MR1  MR2
## MR3 1.00 0.77 0.61
## MR1 0.77 1.00 0.77
## MR2 0.61 0.77 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  8.68 with Chi Square =  26819.03
## df of  the model are 18  and the objective function was  0.29 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic n.obs is  3094 with the empirical chi square  130.44  with prob <  4.4e-19 
## The total n.obs was  3094  with Likelihood Chi Square =  906.88  with prob <  5.3e-181 
## 
## Tucker Lewis Index of factoring reliability =  0.917
## RMSEA index =  0.126  and the 90 % confidence intervals are  0.119 0.133
## BIC =  762.21
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR3  MR1  MR2
## Correlation of (regression) scores with factors   0.96 0.96 0.94
## Multiple R square of scores with factors          0.93 0.93 0.87
## Minimum correlation of possible factor scores     0.86 0.86 0.75
fa3<-fa(df[,1:10], nfactors=3, rotate="promax", fm="minres")
fa3
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 3, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   h2   u2 com
## ssgs   0.77  0.12 -0.03 0.72 0.28 1.1
## ssar   0.11  0.76  0.09 0.82 0.18 1.1
## sswk   0.76 -0.02  0.18 0.76 0.24 1.1
## sspc   0.56  0.05  0.25 0.62 0.38 1.4
## ssno  -0.12  0.14  0.84 0.75 0.25 1.1
## sscs   0.07 -0.07  0.75 0.56 0.44 1.0
## ssasi  0.77 -0.07 -0.04 0.48 0.52 1.0
## ssmk  -0.01  0.88  0.05 0.81 0.19 1.0
## ssmc   0.48  0.37 -0.09 0.54 0.46 2.0
## ssei   0.81  0.02 -0.06 0.62 0.38 1.0
## 
##                        MR1  MR3  MR2
## SS loadings           3.29 1.86 1.54
## Proportion Var        0.33 0.19 0.15
## Cumulative Var        0.33 0.52 0.67
## Proportion Explained  0.49 0.28 0.23
## Cumulative Proportion 0.49 0.77 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.76 0.62
## MR3 0.76 1.00 0.66
## MR2 0.62 0.66 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  6.73 with Chi Square =  20595.45
## df of  the model are 18  and the objective function was  0.18 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic n.obs is  3067 with the empirical chi square  145.86  with prob <  4.7e-22 
## The total n.obs was  3067  with Likelihood Chi Square =  540.78  with prob <  2.7e-103 
## 
## Tucker Lewis Index of factoring reliability =  0.936
## RMSEA index =  0.097  and the 90 % confidence intervals are  0.09 0.104
## BIC =  396.27
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.95 0.95 0.92
## Multiple R square of scores with factors          0.91 0.91 0.84
## Minimum correlation of possible factor scores     0.82 0.81 0.69
fa4<-fa(dm[,1:10], nfactors=4, rotate="promax", fm="minres")
fa4
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 4, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR2   MR4   MR1   MR3   h2    u2 com
## ssgs   0.29  0.50  0.21 -0.06 0.79 0.214 2.1
## ssar   0.11  0.00  0.73  0.13 0.81 0.190 1.1
## sswk   0.04  0.96 -0.07  0.04 0.93 0.072 1.0
## sspc   0.07  0.54  0.16  0.14 0.71 0.293 1.3
## ssno  -0.04  0.03  0.05  0.86 0.80 0.205 1.0
## sscs   0.07  0.01  0.01  0.74 0.63 0.375 1.0
## ssasi  1.00 -0.02 -0.22  0.05 0.77 0.235 1.1
## ssmk  -0.12  0.01  0.96  0.04 0.85 0.146 1.0
## ssmc   0.76 -0.12  0.27 -0.01 0.74 0.259 1.3
## ssei   0.64  0.26  0.06 -0.03 0.78 0.222 1.4
## 
##                        MR2  MR4  MR1  MR3
## SS loadings           2.38 1.93 1.93 1.55
## Proportion Var        0.24 0.19 0.19 0.16
## Cumulative Var        0.24 0.43 0.62 0.78
## Proportion Explained  0.31 0.25 0.25 0.20
## Cumulative Proportion 0.31 0.55 0.80 1.00
## 
##  With factor correlations of 
##      MR2  MR4  MR1  MR3
## MR2 1.00 0.78 0.69 0.55
## MR4 0.78 1.00 0.80 0.69
## MR1 0.69 0.80 1.00 0.74
## MR3 0.55 0.69 0.74 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  8.68 with Chi Square =  26819.03
## df of  the model are 11  and the objective function was  0.03 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  3094 with the empirical chi square  8.69  with prob <  0.65 
## The total n.obs was  3094  with Likelihood Chi Square =  89.92  with prob <  1.7e-14 
## 
## Tucker Lewis Index of factoring reliability =  0.988
## RMSEA index =  0.048  and the 90 % confidence intervals are  0.039 0.058
## BIC =  1.51
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR2  MR4  MR1  MR3
## Correlation of (regression) scores with factors   0.96 0.97 0.96 0.93
## Multiple R square of scores with factors          0.91 0.95 0.92 0.87
## Minimum correlation of possible factor scores     0.83 0.90 0.85 0.74
fa4<-fa(df[,1:10], nfactors=4, rotate="promax", fm="minres")
fa4
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 4, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR3   MR1   MR4   MR2   h2    u2 com
## ssgs   0.18  0.42  0.37 -0.07 0.71 0.292 2.4
## ssar   0.79  0.03  0.05  0.08 0.82 0.185 1.0
## sswk  -0.05  0.97  0.03 -0.01 0.92 0.083 1.0
## sspc   0.10  0.61  0.05  0.12 0.65 0.350 1.1
## ssno   0.18  0.01 -0.08  0.76 0.72 0.281 1.1
## sscs  -0.09  0.01  0.10  0.78 0.61 0.388 1.1
## ssasi -0.14 -0.03  0.86  0.06 0.59 0.405 1.1
## ssmk   0.94  0.03 -0.09  0.01 0.82 0.180 1.0
## ssmc   0.41 -0.12  0.53 -0.02 0.59 0.412 2.0
## ssei   0.06  0.21  0.58 -0.03 0.61 0.388 1.3
## 
##                        MR3  MR1  MR4  MR2
## SS loadings           2.03 1.85 1.82 1.34
## Proportion Var        0.20 0.19 0.18 0.13
## Cumulative Var        0.20 0.39 0.57 0.70
## Proportion Explained  0.29 0.26 0.26 0.19
## Cumulative Proportion 0.29 0.55 0.81 1.00
## 
##  With factor correlations of 
##      MR3  MR1  MR4  MR2
## MR3 1.00 0.75 0.72 0.64
## MR1 0.75 1.00 0.77 0.63
## MR4 0.72 0.77 1.00 0.50
## MR2 0.64 0.63 0.50 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  6.73 with Chi Square =  20595.45
## df of  the model are 11  and the objective function was  0.02 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  3067 with the empirical chi square  10.38  with prob <  0.5 
## The total n.obs was  3067  with Likelihood Chi Square =  62.27  with prob <  3.5e-09 
## 
## Tucker Lewis Index of factoring reliability =  0.99
## RMSEA index =  0.039  and the 90 % confidence intervals are  0.03 0.049
## BIC =  -26.04
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR3  MR1  MR4  MR2
## Correlation of (regression) scores with factors   0.96 0.97 0.92 0.91
## Multiple R square of scores with factors          0.92 0.94 0.85 0.82
## Minimum correlation of possible factor scores     0.83 0.88 0.70 0.64
fa3<-fa(dm[,1:10], nfactors=3, rotate="promax", fm="minres", weight=dm$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR2   MR3   h2   u2 com
## ssgs   0.77  0.23 -0.10 0.77 0.23 1.2
## ssar   0.72 -0.02  0.22 0.76 0.24 1.2
## sswk   0.73  0.18  0.01 0.76 0.24 1.1
## sspc   0.66  0.09  0.12 0.67 0.33 1.1
## ssno   0.08  0.00  0.81 0.76 0.24 1.0
## sscs   0.03  0.08  0.73 0.62 0.38 1.0
## ssasi -0.21  1.00  0.06 0.79 0.21 1.1
## ssmk   0.86 -0.21  0.18 0.75 0.25 1.2
## ssmc   0.30  0.57  0.02 0.67 0.33 1.5
## ssei   0.39  0.57 -0.05 0.75 0.25 1.8
## 
##                        MR1  MR2  MR3
## SS loadings           3.63 2.06 1.60
## Proportion Var        0.36 0.21 0.16
## Cumulative Var        0.36 0.57 0.73
## Proportion Explained  0.50 0.28 0.22
## Cumulative Proportion 0.50 0.78 1.00
## 
##  With factor correlations of 
##     MR1  MR2  MR3
## MR1 1.0 0.70 0.70
## MR2 0.7 1.00 0.41
## MR3 0.7 0.41 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  8.06 with Chi Square =  24883.77
## df of  the model are 18  and the objective function was  0.33 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic n.obs is  3094 with the empirical chi square  157.45  with prob <  2.6e-24 
## The total n.obs was  3094  with Likelihood Chi Square =  1005.32  with prob <  5.1e-202 
## 
## Tucker Lewis Index of factoring reliability =  0.901
## RMSEA index =  0.133  and the 90 % confidence intervals are  0.126 0.14
## BIC =  860.65
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR2  MR3
## Correlation of (regression) scores with factors   0.97 0.95 0.92
## Multiple R square of scores with factors          0.94 0.89 0.85
## Minimum correlation of possible factor scores     0.87 0.79 0.70
fa3<-fa(df[,1:10], nfactors=3, rotate="promax", fm="minres", weight=df$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR3   MR2   h2   u2 com
## ssgs   0.76  0.14 -0.04 0.71 0.29 1.1
## ssar   0.11  0.78  0.06 0.83 0.17 1.1
## sswk   0.78 -0.01  0.15 0.75 0.25 1.1
## sspc   0.57  0.07  0.21 0.60 0.40 1.3
## ssno  -0.11  0.15  0.83 0.75 0.25 1.1
## sscs   0.07 -0.08  0.75 0.55 0.45 1.0
## ssasi  0.72 -0.07 -0.02 0.43 0.57 1.0
## ssmk  -0.01  0.87  0.04 0.80 0.20 1.0
## ssmc   0.45  0.37 -0.08 0.52 0.48 2.0
## ssei   0.81  0.00 -0.07 0.60 0.40 1.0
## 
##                        MR1  MR3  MR2
## SS loadings           3.18 1.89 1.45
## Proportion Var        0.32 0.19 0.14
## Cumulative Var        0.32 0.51 0.65
## Proportion Explained  0.49 0.29 0.22
## Cumulative Proportion 0.49 0.78 1.00
## 
##  With factor correlations of 
##      MR1  MR3  MR2
## MR1 1.00 0.76 0.59
## MR3 0.76 1.00 0.64
## MR2 0.59 0.64 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  6.35 with Chi Square =  19448.39
## df of  the model are 18  and the objective function was  0.17 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic n.obs is  3067 with the empirical chi square  152.29  with prob <  2.7e-23 
## The total n.obs was  3067  with Likelihood Chi Square =  506.64  with prob <  4.2e-96 
## 
## Tucker Lewis Index of factoring reliability =  0.937
## RMSEA index =  0.094  and the 90 % confidence intervals are  0.087 0.101
## BIC =  362.13
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.95 0.95 0.91
## Multiple R square of scores with factors          0.91 0.91 0.83
## Minimum correlation of possible factor scores     0.81 0.81 0.67
fa4<-fa(dm[,1:10], nfactors=4, rotate="promax", fm="minres", weight=dm$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = dm[, 1:10], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = dm$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR2   MR1   MR4   MR3   h2    u2 com
## ssgs   0.25  0.50  0.24 -0.07 0.76 0.243 2.0
## ssar   0.10  0.00  0.71  0.15 0.80 0.198 1.1
## sswk  -0.01  1.02 -0.08  0.02 0.93 0.074 1.0
## sspc   0.05  0.56  0.13  0.16 0.68 0.317 1.3
## ssno  -0.03  0.02  0.02  0.88 0.79 0.207 1.0
## sscs   0.05  0.00  0.04  0.72 0.60 0.400 1.0
## ssasi  0.99 -0.03 -0.24  0.05 0.73 0.273 1.1
## ssmk  -0.15  0.01  0.98  0.05 0.87 0.127 1.1
## ssmc   0.75 -0.12  0.27 -0.02 0.73 0.271 1.3
## ssei   0.64  0.26  0.05 -0.03 0.75 0.246 1.3
## 
##                        MR2  MR1  MR4  MR3
## SS loadings           2.21 1.98 1.91 1.54
## Proportion Var        0.22 0.20 0.19 0.15
## Cumulative Var        0.22 0.42 0.61 0.76
## Proportion Explained  0.29 0.26 0.25 0.20
## Cumulative Proportion 0.29 0.55 0.80 1.00
## 
##  With factor correlations of 
##      MR2  MR1  MR4  MR3
## MR2 1.00 0.75 0.67 0.50
## MR1 0.75 1.00 0.80 0.66
## MR4 0.67 0.80 1.00 0.73
## MR3 0.50 0.66 0.73 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  8.06 with Chi Square =  24883.77
## df of  the model are 11  and the objective function was  0.03 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  3094 with the empirical chi square  10.43  with prob <  0.49 
## The total n.obs was  3094  with Likelihood Chi Square =  92.13  with prob <  6.4e-15 
## 
## Tucker Lewis Index of factoring reliability =  0.987
## RMSEA index =  0.049  and the 90 % confidence intervals are  0.04 0.058
## BIC =  3.72
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR2  MR1  MR4  MR3
## Correlation of (regression) scores with factors   0.95 0.97 0.96 0.93
## Multiple R square of scores with factors          0.90 0.95 0.93 0.87
## Minimum correlation of possible factor scores     0.80 0.90 0.86 0.73
fa4<-fa(df[,1:10], nfactors=4, rotate="promax", fm="minres", weight=df$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = df[, 1:10], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = df$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR3   MR1   MR4   MR2   h2    u2 com
## ssgs   0.20  0.46  0.30 -0.08 0.69 0.308 2.2
## ssar   0.81  0.03  0.04  0.06 0.82 0.177 1.0
## sswk  -0.06  1.01 -0.02  0.01 0.92 0.084 1.0
## sspc   0.11  0.58  0.05  0.12 0.62 0.382 1.2
## ssno   0.18  0.00 -0.07  0.76 0.72 0.280 1.1
## sscs  -0.09  0.02  0.09  0.76 0.59 0.414 1.1
## ssasi -0.14 -0.03  0.83  0.07 0.56 0.440 1.1
## ssmk   0.94  0.04 -0.11  0.02 0.81 0.194 1.0
## ssmc   0.42 -0.12  0.51 -0.02 0.57 0.427 2.1
## ssei   0.06  0.29  0.50 -0.06 0.58 0.417 1.7
## 
##                        MR3  MR1  MR4  MR2
## SS loadings           2.06 1.95 1.56 1.31
## Proportion Var        0.21 0.19 0.16 0.13
## Cumulative Var        0.21 0.40 0.56 0.69
## Proportion Explained  0.30 0.28 0.23 0.19
## Cumulative Proportion 0.30 0.58 0.81 1.00
## 
##  With factor correlations of 
##      MR3  MR1  MR4  MR2
## MR3 1.00 0.76 0.72 0.61
## MR1 0.76 1.00 0.77 0.58
## MR4 0.72 0.77 1.00 0.45
## MR2 0.61 0.58 0.45 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  6.35 with Chi Square =  19448.39
## df of  the model are 11  and the objective function was  0.03 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.02 
## 
## The harmonic n.obs is  3067 with the empirical chi square  17.14  with prob <  0.1 
## The total n.obs was  3067  with Likelihood Chi Square =  88  with prob <  4.1e-14 
## 
## Tucker Lewis Index of factoring reliability =  0.984
## RMSEA index =  0.048  and the 90 % confidence intervals are  0.039 0.057
## BIC =  -0.31
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR3  MR1  MR4  MR2
## Correlation of (regression) scores with factors   0.96 0.97 0.91 0.90
## Multiple R square of scores with factors          0.92 0.94 0.83 0.81
## Minimum correlation of possible factor scores     0.83 0.88 0.65 0.62
# full sample black vs white

white<- subset(dk, bw==1) 
black<- subset(dk, bw==0)
dw<- dplyr::select(white, starts_with("ss"), sweight)
db<- dplyr::select(black, starts_with("ss"), sweight)

ev <- eigen(cor(dm)) # get eigenvalues
ev$values
##  [1] 6.6655940 1.0517313 0.9716068 0.5476495 0.4282921 0.2910217 0.2820806 0.2330632 0.2079487
## [10] 0.1669759 0.1540363
ev <- eigen(cor(df)) # get eigenvalues
ev$values
##  [1] 5.9806203 1.0788210 0.9591717 0.6436575 0.5636444 0.3987126 0.3752899 0.3182300 0.3019231
## [10] 0.1995904 0.1803392
fa3<-fa(db[,1:10], nfactors=3, rotate="promax", fm="minres")
fa3
## Factor Analysis using method =  minres
## Call: fa(r = db[, 1:10], nfactors = 3, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR2   MR3   h2   u2 com
## ssgs   0.64  0.18  0.07 0.69 0.31 1.2
## ssar   0.21  0.05  0.59 0.63 0.37 1.3
## sswk   0.50  0.42  0.04 0.76 0.24 2.0
## sspc   0.31  0.45  0.15 0.66 0.34 2.0
## ssno  -0.09  0.82  0.08 0.68 0.32 1.0
## sscs  -0.10  0.93 -0.11 0.63 0.37 1.1
## ssasi  0.86 -0.09 -0.08 0.56 0.44 1.0
## ssmk  -0.10 -0.04  1.03 0.86 0.14 1.0
## ssmc   0.71 -0.09  0.08 0.50 0.50 1.1
## ssei   0.91 -0.05 -0.07 0.68 0.32 1.0
## 
##                        MR1  MR2  MR3
## SS loadings           3.00 2.09 1.56
## Proportion Var        0.30 0.21 0.16
## Cumulative Var        0.30 0.51 0.66
## Proportion Explained  0.45 0.31 0.23
## Cumulative Proportion 0.45 0.77 1.00
## 
##  With factor correlations of 
##      MR1  MR2  MR3
## MR1 1.00 0.65 0.75
## MR2 0.65 1.00 0.74
## MR3 0.75 0.74 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  6.42 with Chi Square =  19202.44
## df of  the model are 18  and the objective function was  0.22 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic n.obs is  2994 with the empirical chi square  162.14  with prob <  3.2e-25 
## The total n.obs was  2994  with Likelihood Chi Square =  661.69  with prob <  7.6e-129 
## 
## Tucker Lewis Index of factoring reliability =  0.916
## RMSEA index =  0.109  and the 90 % confidence intervals are  0.102 0.117
## BIC =  517.61
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR2  MR3
## Correlation of (regression) scores with factors   0.95 0.94 0.96
## Multiple R square of scores with factors          0.90 0.88 0.91
## Minimum correlation of possible factor scores     0.80 0.75 0.83
fa3<-fa(dw[,1:10], nfactors=3, rotate="promax", fm="minres")
fa3
## Factor Analysis using method =  minres
## Call: fa(r = dw[, 1:10], nfactors = 3, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR2   MR1   MR3   h2    u2 com
## ssgs   0.50  0.12  0.36 0.76 0.243 2.0
## ssar   0.41  0.66 -0.10 0.78 0.215 1.7
## sswk   0.12  0.15  0.76 0.90 0.099 1.1
## sspc   0.02  0.38  0.51 0.69 0.311 1.9
## ssno  -0.13  0.86  0.03 0.67 0.332 1.0
## sscs  -0.21  0.74  0.13 0.53 0.471 1.2
## ssasi  0.91 -0.22  0.03 0.68 0.318 1.1
## ssmk   0.27  0.70 -0.05 0.70 0.303 1.3
## ssmc   0.87  0.10 -0.12 0.74 0.256 1.1
## ssei   0.77 -0.06  0.20 0.75 0.245 1.1
## 
##                        MR2  MR1  MR3
## SS loadings           2.99 2.76 1.45
## Proportion Var        0.30 0.28 0.15
## Cumulative Var        0.30 0.58 0.72
## Proportion Explained  0.42 0.38 0.20
## Cumulative Proportion 0.42 0.80 1.00
## 
##  With factor correlations of 
##      MR2  MR1  MR3
## MR2 1.00 0.56 0.62
## MR1 0.56 1.00 0.69
## MR3 0.62 0.69 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  7.84 with Chi Square =  48260.32
## df of  the model are 18  and the objective function was  0.31 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic n.obs is  6161 with the empirical chi square  436.21  with prob <  2.5e-81 
## The total n.obs was  6161  with Likelihood Chi Square =  1913.4  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.902
## RMSEA index =  0.131  and the 90 % confidence intervals are  0.126 0.136
## BIC =  1756.33
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR2  MR1  MR3
## Correlation of (regression) scores with factors   0.96 0.95 0.95
## Multiple R square of scores with factors          0.92 0.90 0.90
## Minimum correlation of possible factor scores     0.83 0.80 0.79
fa4<-fa(db[,1:10], nfactors=4, rotate="promax", fm="minres")
fa4
## Factor Analysis using method =  minres
## Call: fa(r = db[, 1:10], nfactors = 4, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR4   MR1   MR3   MR2   h2    u2 com
## ssgs   0.30  0.55  0.08 -0.03 0.71 0.289 1.6
## ssar   0.17 -0.03  0.70  0.03 0.67 0.330 1.1
## sswk   0.01  0.95 -0.04  0.04 0.91 0.086 1.0
## sspc   0.01  0.57  0.16  0.17 0.69 0.311 1.3
## ssno   0.00  0.00  0.13  0.74 0.70 0.303 1.1
## sscs   0.01  0.02 -0.10  0.87 0.69 0.313 1.0
## ssasi  0.83 -0.03 -0.07  0.02 0.61 0.394 1.0
## ssmk  -0.08  0.05  0.91 -0.02 0.78 0.217 1.0
## ssmc   0.72 -0.11  0.11  0.03 0.55 0.448 1.1
## ssei   0.69  0.22 -0.04 -0.05 0.66 0.340 1.2
## 
##                        MR4  MR1  MR3  MR2
## SS loadings           2.05 1.92 1.54 1.46
## Proportion Var        0.20 0.19 0.15 0.15
## Cumulative Var        0.20 0.40 0.55 0.70
## Proportion Explained  0.29 0.28 0.22 0.21
## Cumulative Proportion 0.29 0.57 0.79 1.00
## 
##  With factor correlations of 
##      MR4  MR1  MR3  MR2
## MR4 1.00 0.74 0.69 0.47
## MR1 0.74 1.00 0.76 0.68
## MR3 0.69 0.76 1.00 0.67
## MR2 0.47 0.68 0.67 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  6.42 with Chi Square =  19202.44
## df of  the model are 11  and the objective function was  0.01 
## 
## The root mean square of the residuals (RMSR) is  0 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  2994 with the empirical chi square  4.57  with prob <  0.95 
## The total n.obs was  2994  with Likelihood Chi Square =  26.26  with prob <  0.0059 
## 
## Tucker Lewis Index of factoring reliability =  0.997
## RMSEA index =  0.022  and the 90 % confidence intervals are  0.011 0.032
## BIC =  -61.79
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR4  MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.93 0.97 0.94 0.92
## Multiple R square of scores with factors          0.86 0.94 0.88 0.84
## Minimum correlation of possible factor scores     0.72 0.88 0.76 0.69
fa4<-fa(dw[,1:10], nfactors=4, rotate="promax", fm="minres")
fa4
## Factor Analysis using method =  minres
## Call: fa(r = dw[, 1:10], nfactors = 4, rotate = "promax", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR2   MR1   MR3   MR4   h2    u2 com
## ssgs   0.33  0.50  0.17 -0.06 0.76 0.241 2.0
## ssar   0.13  0.00  0.76  0.09 0.82 0.184 1.1
## sswk   0.01  0.99 -0.07  0.02 0.91 0.087 1.0
## sspc  -0.06  0.67  0.10  0.17 0.69 0.314 1.2
## ssno   0.03 -0.03  0.13  0.78 0.73 0.267 1.1
## sscs   0.00  0.06 -0.07  0.81 0.65 0.347 1.0
## ssasi  1.05 -0.09 -0.20  0.04 0.80 0.202 1.1
## ssmk  -0.10  0.02  0.95  0.01 0.83 0.166 1.0
## ssmc   0.73 -0.09  0.26  0.00 0.72 0.282 1.3
## ssei   0.69  0.23  0.02 -0.03 0.75 0.253 1.2
## 
##                        MR2  MR1  MR3  MR4
## SS loadings           2.38 1.99 1.82 1.47
## Proportion Var        0.24 0.20 0.18 0.15
## Cumulative Var        0.24 0.44 0.62 0.77
## Proportion Explained  0.31 0.26 0.24 0.19
## Cumulative Proportion 0.31 0.57 0.81 1.00
## 
##  With factor correlations of 
##      MR2  MR1  MR3  MR4
## MR2 1.00 0.67 0.66 0.32
## MR1 0.67 1.00 0.78 0.65
## MR3 0.66 0.78 1.00 0.66
## MR4 0.32 0.65 0.66 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  7.84 with Chi Square =  48260.32
## df of  the model are 11  and the objective function was  0.03 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  6161 with the empirical chi square  18.48  with prob <  0.071 
## The total n.obs was  6161  with Likelihood Chi Square =  167.1  with prob <  4.7e-30 
## 
## Tucker Lewis Index of factoring reliability =  0.987
## RMSEA index =  0.048  and the 90 % confidence intervals are  0.042 0.055
## BIC =  71.11
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR2  MR1  MR3  MR4
## Correlation of (regression) scores with factors   0.96 0.97 0.96 0.92
## Multiple R square of scores with factors          0.92 0.94 0.92 0.84
## Minimum correlation of possible factor scores     0.83 0.88 0.84 0.69
fa3<-fa(db[,1:10], nfactors=3, rotate="promax", fm="minres", weight=db$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = db[, 1:10], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = db$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR1   MR2   MR3   h2   u2 com
## ssgs   0.63  0.19  0.08 0.69 0.31 1.2
## ssar   0.21  0.05  0.58 0.63 0.37 1.3
## sswk   0.49  0.43  0.05 0.77 0.23 2.0
## sspc   0.30  0.46  0.15 0.67 0.33 2.0
## ssno  -0.10  0.82  0.08 0.67 0.33 1.0
## sscs  -0.10  0.94 -0.11 0.64 0.36 1.1
## ssasi  0.85 -0.08 -0.08 0.55 0.45 1.0
## ssmk  -0.10 -0.04  1.03 0.86 0.14 1.0
## ssmc   0.71 -0.10  0.08 0.50 0.50 1.1
## ssei   0.90 -0.05 -0.07 0.67 0.33 1.0
## 
##                        MR1  MR2  MR3
## SS loadings           2.97 2.13 1.56
## Proportion Var        0.30 0.21 0.16
## Cumulative Var        0.30 0.51 0.67
## Proportion Explained  0.45 0.32 0.23
## Cumulative Proportion 0.45 0.77 1.00
## 
##  With factor correlations of 
##      MR1  MR2  MR3
## MR1 1.00 0.65 0.76
## MR2 0.65 1.00 0.74
## MR3 0.76 0.74 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  6.46 with Chi Square =  19318.85
## df of  the model are 18  and the objective function was  0.21 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic n.obs is  2994 with the empirical chi square  152.92  with prob <  2e-23 
## The total n.obs was  2994  with Likelihood Chi Square =  635.4  with prob <  2.8e-123 
## 
## Tucker Lewis Index of factoring reliability =  0.92
## RMSEA index =  0.107  and the 90 % confidence intervals are  0.1 0.114
## BIC =  491.33
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1  MR2  MR3
## Correlation of (regression) scores with factors   0.95 0.94 0.96
## Multiple R square of scores with factors          0.90 0.88 0.91
## Minimum correlation of possible factor scores     0.80 0.76 0.83
fa3<-fa(dw[,1:10], nfactors=3, rotate="promax", fm="minres", weight=dw$sweight)
fa3
## Factor Analysis using method =  minres
## Call: fa(r = dw[, 1:10], nfactors = 3, rotate = "promax", fm = "minres", 
##     weight = dw$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR2   MR3   MR1   h2   u2 com
## ssgs   0.42  0.02  0.50 0.74 0.26 1.9
## ssar   0.40  0.54  0.06 0.75 0.25 1.9
## sswk  -0.03 -0.01  0.97 0.89 0.11 1.0
## sspc  -0.07  0.26  0.65 0.66 0.34 1.3
## ssno  -0.06  0.92 -0.08 0.70 0.30 1.0
## sscs  -0.17  0.77  0.03 0.53 0.47 1.1
## ssasi  0.94 -0.16 -0.08 0.67 0.33 1.1
## ssmk   0.23  0.56  0.13 0.67 0.33 1.4
## ssmc   0.90  0.11 -0.14 0.74 0.26 1.1
## ssei   0.75 -0.09  0.21 0.74 0.26 1.2
## 
##                        MR2  MR3  MR1
## SS loadings           2.78 2.34 1.97
## Proportion Var        0.28 0.23 0.20
## Cumulative Var        0.28 0.51 0.71
## Proportion Explained  0.39 0.33 0.28
## Cumulative Proportion 0.39 0.72 1.00
## 
##  With factor correlations of 
##      MR2  MR3  MR1
## MR2 1.00 0.49 0.70
## MR3 0.49 1.00 0.74
## MR1 0.70 0.74 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  45  with the objective function =  7.43 with Chi Square =  45766.47
## df of  the model are 18  and the objective function was  0.35 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.05 
## 
## The harmonic n.obs is  6161 with the empirical chi square  470.12  with prob <  2e-88 
## The total n.obs was  6161  with Likelihood Chi Square =  2170.21  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.882
## RMSEA index =  0.139  and the 90 % confidence intervals are  0.134 0.144
## BIC =  2013.15
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR2  MR3  MR1
## Correlation of (regression) scores with factors   0.96 0.94 0.96
## Multiple R square of scores with factors          0.91 0.88 0.93
## Minimum correlation of possible factor scores     0.82 0.77 0.86
fa4<-fa(db[,1:10], nfactors=4, rotate="promax", fm="minres", weight=db$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = db[, 1:10], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = db$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR4   MR1   MR3   MR2   h2    u2 com
## ssgs   0.30  0.55  0.08 -0.03 0.71 0.288 1.6
## ssar   0.17 -0.02  0.67  0.05 0.67 0.335 1.1
## sswk   0.03  0.91 -0.03  0.05 0.90 0.097 1.0
## sspc   0.00  0.59  0.15  0.16 0.70 0.301 1.3
## ssno   0.02 -0.04  0.10  0.80 0.73 0.270 1.0
## sscs  -0.01  0.07 -0.09  0.82 0.65 0.349 1.0
## ssasi  0.82 -0.02 -0.07  0.03 0.59 0.405 1.0
## ssmk  -0.07  0.07  0.90 -0.02 0.79 0.212 1.0
## ssmc   0.72 -0.10  0.11  0.03 0.55 0.451 1.1
## ssei   0.69  0.22 -0.04 -0.05 0.66 0.345 1.2
## 
##                        MR4  MR1  MR3  MR2
## SS loadings           2.04 1.93 1.50 1.48
## Proportion Var        0.20 0.19 0.15 0.15
## Cumulative Var        0.20 0.40 0.55 0.69
## Proportion Explained  0.29 0.28 0.22 0.21
## Cumulative Proportion 0.29 0.57 0.79 1.00
## 
##  With factor correlations of 
##      MR4  MR1  MR3  MR2
## MR4 1.00 0.74 0.70 0.47
## MR1 0.74 1.00 0.76 0.69
## MR3 0.70 0.76 1.00 0.67
## MR2 0.47 0.69 0.67 1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  6.46 with Chi Square =  19318.85
## df of  the model are 11  and the objective function was  0.01 
## 
## The root mean square of the residuals (RMSR) is  0 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  2994 with the empirical chi square  4.47  with prob <  0.95 
## The total n.obs was  2994  with Likelihood Chi Square =  25.61  with prob <  0.0074 
## 
## Tucker Lewis Index of factoring reliability =  0.997
## RMSEA index =  0.021  and the 90 % confidence intervals are  0.01 0.032
## BIC =  -62.44
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR4  MR1  MR3  MR2
## Correlation of (regression) scores with factors   0.93 0.96 0.94 0.92
## Multiple R square of scores with factors          0.86 0.93 0.88 0.85
## Minimum correlation of possible factor scores     0.72 0.86 0.75 0.69
fa4<-fa(dw[,1:10], nfactors=4, rotate="promax", fm="minres", weight=dw$sweight)
fa4
## Factor Analysis using method =  minres
## Call: fa(r = dw[, 1:10], nfactors = 4, rotate = "promax", fm = "minres", 
##     weight = dw$sweight)
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR2   MR1   MR4   MR3   h2    u2 com
## ssgs   0.31  0.49  0.20 -0.07 0.74 0.262 2.1
## ssar   0.12  0.00  0.77  0.09 0.82 0.182 1.1
## sswk   0.00  1.02 -0.09  0.01 0.91 0.087 1.0
## sspc  -0.06  0.65  0.09  0.17 0.66 0.344 1.2
## ssno   0.03 -0.03  0.13  0.77 0.72 0.283 1.1
## sscs   0.00  0.06 -0.07  0.81 0.64 0.358 1.0
## ssasi  1.05 -0.09 -0.21  0.05 0.79 0.213 1.1
## ssmk  -0.11  0.02  0.96  0.02 0.83 0.167 1.0
## ssmc   0.72 -0.09  0.26  0.00 0.71 0.287 1.3
## ssei   0.69  0.24  0.01 -0.04 0.73 0.266 1.2
## 
##                        MR2  MR1  MR4  MR3
## SS loadings           2.32 1.96 1.84 1.43
## Proportion Var        0.23 0.20 0.18 0.14
## Cumulative Var        0.23 0.43 0.61 0.76
## Proportion Explained  0.31 0.26 0.24 0.19
## Cumulative Proportion 0.31 0.57 0.81 1.00
## 
##  With factor correlations of 
##      MR2  MR1  MR4  MR3
## MR2 1.00 0.64 0.64 0.25
## MR1 0.64 1.00 0.78 0.61
## MR4 0.64 0.78 1.00 0.64
## MR3 0.25 0.61 0.64 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  45  with the objective function =  7.43 with Chi Square =  45766.47
## df of  the model are 11  and the objective function was  0.03 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.01 
## 
## The harmonic n.obs is  6161 with the empirical chi square  24.5  with prob <  0.011 
## The total n.obs was  6161  with Likelihood Chi Square =  194.17  with prob <  1.2e-35 
## 
## Tucker Lewis Index of factoring reliability =  0.984
## RMSEA index =  0.052  and the 90 % confidence intervals are  0.046 0.059
## BIC =  98.19
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR2  MR1  MR4  MR3
## Correlation of (regression) scores with factors   0.95 0.97 0.96 0.91
## Multiple R square of scores with factors          0.91 0.94 0.92 0.83
## Minimum correlation of possible factor scores     0.82 0.88 0.84 0.67
# MGCFA USING SIBLING DATA

# WHITE SAMPLE

dw<- filter(d, bhw==3)
nrow(dw)
## [1] 1052
dgroup<- dplyr::select(dw, id, starts_with("ss"), afqt, efa, educ2000, age, sex, agesex, age2, agesex2, age14:age22, sweight, weight2000, cweight, asvabweight)

fit<-lm(efa ~ sex + rcs(age, 3) + sex*rcs(age, 3), data=dgroup)
summary(fit)
## 
## Call:
## lm(formula = efa ~ sex + rcs(age, 3) + sex * rcs(age, 3), data = dgroup)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -46.457  -8.287   1.416  10.253  25.160 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         109.08303    1.68241  64.837   <2e-16 ***
## sex                  -2.75632    2.35698  -1.169    0.242    
## rcs(age, 3)age        0.99371    0.70449   1.411    0.159    
## rcs(age, 3)age'      -0.05216    0.97784  -0.053    0.957    
## sex:rcs(age, 3)age    0.74893    0.99704   0.751    0.453    
## sex:rcs(age, 3)age'  -0.50551    1.38954  -0.364    0.716    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.96 on 1046 degrees of freedom
## Multiple R-squared:  0.05494,    Adjusted R-squared:  0.05042 
## F-statistic: 12.16 on 5 and 1046 DF,  p-value: 1.787e-11
dgroup$pred1<-fitted(fit) 

original_age_min <- 14
original_age_max <- 22
mean_centered_min <- min(dgroup$age)
mean_centered_max <- max(dgroup$age)
original_age_mean <- (original_age_min + original_age_max) / 2
mean_centered_age_mean <- (mean_centered_min + mean_centered_max) / 2
age_difference <- original_age_mean - mean_centered_age_mean

xyplot(dgroup$pred1 ~ dgroup$age, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted IQ", xlab="age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2))

xyplot(dgroup$pred1 ~ dgroup$age, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted IQ", xlab="Age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2), scales=list(x=list(at=seq(mean_centered_min, mean_centered_max), labels=seq(original_age_min, original_age_max))))

describeBy(dgroup$pred1, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n   mean   sd median trimmed  mad    min    max range skew kurtosis   se
## X1    1 526 108.53 2.06 108.07  108.49 2.81 105.11 112.77  7.66  0.1    -0.96 0.09
## -------------------------------------------------------------------------- 
## group: 1
##    vars   n   mean   sd median trimmed  mad   min    max range  skew kurtosis   se
## X1    1 526 104.78 2.86 105.76  104.85 3.36 99.36 110.17 10.82 -0.24    -0.83 0.12
describeBy(dgroup$efa, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n   mean    sd median trimmed   mad   min    max range  skew kurtosis   se
## X1    1 526 108.53 14.25 110.78  109.64 14.95 66.31 131.19 64.88 -0.62    -0.36 0.62
## -------------------------------------------------------------------------- 
## group: 1
##    vars   n   mean    sd median trimmed   mad   min    max range  skew kurtosis   se
## X1    1 526 104.78 11.99  105.7  105.38 13.15 69.41 127.45 58.03 -0.39    -0.48 0.52
describeBy(dgroup$afqt, dgroup$sex) 
## 
##  Descriptive statistics by group 
## INDICES: 0
##    vars   n   mean    sd median trimmed   mad   min    max range  skew kurtosis   se
## V1    1 526 106.69 15.03 107.79  107.17 19.08 77.91 130.02 52.11 -0.21    -1.16 0.66
## -------------------------------------------------------------------------- 
## INDICES: 1
##    vars   n   mean    sd median trimmed   mad   min    max range  skew kurtosis   se
## V1    1 526 106.83 14.02 107.28  107.15 17.51 78.34 130.02 51.68 -0.15    -1.05 0.61
describeBy(dgroup$educ2000, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 392 13.73 2.57     12   13.48 1.48   7  20    13 0.62     -0.1 0.13
## -------------------------------------------------------------------------- 
## group: 1
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 393 14.07 2.42     14   13.89 2.97   7  20    13 0.35    -0.66 0.12
cor(dgroup$efa, dgroup$afqt, use="pairwise.complete.obs", method="pearson")
##           [,1]
## [1,] 0.9181601
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(age, sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 18 Ă— 5
## # Groups:   age [9]
##      age   sex  MEAN  MEAN_se       SD
##    <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1    -4     0 105.  1.19e-15 6.91e-15
##  2    -4     1  99.4 0        0       
##  3    -3     0 106.  1.97e-16 1.68e-15
##  4    -3     1 101.  7.50e-16 5.12e-15
##  5    -2     0 107.  1.24e-15 9.55e-15
##  6    -2     1 103.  0        0       
##  7    -1     0 108.  1.67e-16 1.55e-15
##  8    -1     1 104.  0        0       
##  9     0     0 109.  8.80e-16 7.12e-15
## 10     0     1 106.  0        0       
## 11     1     0 110.  7.05e-16 5.87e-15
## 12     1     1 107.  0        0       
## 13     2     0 111.  1.42e-13 7.92e-13
## 14     2     1 108.  6.53e-16 4.41e-15
## 15     3     0 112.  0        0       
## 16     3     1 109.  1.45e-15 8.63e-15
## 17     4     0 113.  3.74e-15 1.28e-14
## 18     4     1 110.  0        0
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(age, sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 18 Ă— 5
## # Groups:   age [9]
##      age   sex  MEAN MEAN_se    SD
##    <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    -4     0  105.   2.24  13.1 
##  2    -4     1  102.   2.05  11.7 
##  3    -3     0  108.   1.55  13.0 
##  4    -3     1  103.   1.29   9.87
##  5    -2     0  112.   1.65  13.0 
##  6    -2     1  107.   1.30  10.2 
##  7    -1     0  109.   1.31  11.8 
##  8    -1     1  105.   1.30  11.6 
##  9     0     0  111.   1.52  12.5 
## 10     0     1  108.   1.16  10.6 
## 11     1     0  110.   1.78  14.4 
## 12     1     1  106.   1.55  12.9 
## 13     2     0  114.   1.84  12.7 
## 14     2     1  108.   1.79  11.9 
## 15     3     0  113.   1.99  13.1 
## 16     3     1  109.   1.76  10.6 
## 17     4     0  108.   5.59  19.4 
## 18     4     1  116.   0.785  2.61
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(age, sex) %>% summarise(MEAN = survey_mean(afqt), SD = survey_sd(afqt))
## # A tibble: 18 Ă— 5
## # Groups:   age [9]
##      age   sex  MEAN MEAN_se    SD
##    <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    -4     0  108.    2.55 14.8 
##  2    -4     1  108.    2.44 13.6 
##  3    -3     0  109.    1.82 15.0 
##  4    -3     1  110.    1.63 12.5 
##  5    -2     0  112.    1.85 14.4 
##  6    -2     1  110.    1.59 12.4 
##  7    -1     0  108.    1.60 13.8 
##  8    -1     1  106.    1.55 13.8 
##  9     0     0  108.    1.74 14.2 
## 10     0     1  110.    1.48 13.4 
## 11     1     0  107.    1.96 15.4 
## 12     1     1  108.    1.76 14.7 
## 13     2     0  109.    2.04 14.1 
## 14     2     1  108.    2.23 14.8 
## 15     3     0  107.    2.24 14.6 
## 16     3     1  107.    2.37 14.2 
## 17     4     0  103.    5.22 17.6 
## 18     4     1  118.    2.14  7.00
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  109.   0.101  2.12
## 2     1  105.   0.144  2.96
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  110.   0.615  13.3
## 2     1  106.   0.524  11.3
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(afqt), SD = survey_sd(afqt))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  108.   0.686  14.6
## 2     1  109.   0.636  13.6
dgroup %>% as_survey_design(ids = id, weights = weight2000) %>% group_by(sex) %>% summarise(MEAN = survey_mean(educ2000, na.rm = TRUE), SD = survey_sd(educ2000, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  13.8   0.133  2.58
## 2     1  14.1   0.125  2.43
# CORRELATED FACTOR MODEL, INTERCEPT BIAS IN BOTH SSNO AND SSCS BUT FREEING BOTH CAUSES NONPOSITIVE MATRIX

cf.model<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
'

cf.lv<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
verbal~~1*verbal
math~~1*math
speed~~1*speed
'

cf.reduced<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
'

baseline<-cfa(cf.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   369.321    27.000     0.000     0.956     0.110     0.045 48913.861 49102.282
Mc(baseline)
## [1] 0.8497145
configural<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   234.371    54.000     0.000     0.976     0.080     0.028 47841.441 48218.283
Mc(configural)
## [1] 0.9177692
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 52 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        76
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               234.371     201.180
##   Degrees of freedom                                54          54
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.165
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          177.916     152.720
##     1                                           56.455      48.460
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              2.724    0.307    8.884    0.000    2.123    3.325    2.724    0.600
##     sswk              6.154    0.286   21.552    0.000    5.595    6.714    6.154    0.916
##     sspc              2.601    0.145   17.994    0.000    2.318    2.885    2.601    0.836
##   math =~                                                                                 
##     ssar              6.723    0.191   35.132    0.000    6.348    7.098    6.723    0.943
##     ssmk              5.949    0.170   35.025    0.000    5.616    6.281    5.949    0.894
##     ssmc              1.040    0.236    4.404    0.000    0.577    1.502    1.040    0.211
##   electronic =~                                                                           
##     ssgs              1.392    0.307    4.530    0.000    0.790    1.994    1.392    0.307
##     ssasi             3.537    0.208   16.974    0.000    3.129    3.946    3.537    0.746
##     ssmc              3.197    0.239   13.397    0.000    2.729    3.664    3.197    0.648
##     ssei              3.608    0.131   27.445    0.000    3.350    3.866    3.608    0.940
##   speed =~                                                                                
##     ssno              0.775    0.037   20.810    0.000    0.702    0.848    0.775    0.876
##     sscs              0.641    0.042   15.444    0.000    0.560    0.723    0.641    0.763
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.810    0.022   36.047    0.000    0.766    0.854    0.810    0.810
##     electronic        0.822    0.024   33.823    0.000    0.775    0.870    0.822    0.822
##     speed             0.699    0.039   18.047    0.000    0.623    0.774    0.699    0.699
##   math ~~                                                                                 
##     electronic        0.664    0.033   19.980    0.000    0.599    0.729    0.664    0.664
##     speed             0.755    0.028   26.669    0.000    0.699    0.810    0.755    0.755
##   electronic ~~                                                                           
##     speed             0.501    0.051    9.870    0.000    0.402    0.601    0.501    0.501
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             17.910    0.210   85.392    0.000   17.498   18.321   17.910    3.948
##    .sswk             27.643    0.309   89.548    0.000   27.038   28.248   27.643    4.115
##    .sspc             11.207    0.144   77.836    0.000   10.925   11.490   11.207    3.603
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.848
##    .ssmk             15.277    0.316   48.361    0.000   14.658   15.896   15.277    2.296
##    .ssmc             17.082    0.231   73.903    0.000   16.629   17.535   17.082    3.462
##    .ssasi            17.796    0.221   80.523    0.000   17.363   18.230   17.796    3.756
##    .ssei             13.530    0.177   76.269    0.000   13.182   13.877   13.530    3.524
##    .ssno              0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.275
##    .sscs              0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.091
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.985    0.426   11.711    0.000    4.151    5.819    4.985    0.242
##    .sswk              7.240    0.938    7.722    0.000    5.403    9.078    7.240    0.160
##    .sspc              2.911    0.247   11.770    0.000    2.426    3.396    2.911    0.301
##    .ssar              5.652    0.984    5.745    0.000    3.723    7.580    5.652    0.111
##    .ssmk              8.874    0.974    9.109    0.000    6.965   10.784    8.874    0.201
##    .ssmc              8.630    0.701   12.308    0.000    7.256   10.004    8.630    0.355
##    .ssasi             9.943    0.911   10.913    0.000    8.157   11.729    9.943    0.443
##    .ssei              1.726    0.373    4.631    0.000    0.995    2.456    1.726    0.117
##    .ssno              0.182    0.034    5.398    0.000    0.116    0.248    0.182    0.232
##    .sscs              0.295    0.048    6.181    0.000    0.201    0.388    0.295    0.418
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              0.633    0.655    0.966    0.334   -0.651    1.916    0.633    0.154
##     sswk              5.819    0.261   22.299    0.000    5.308    6.331    5.819    0.933
##     sspc              2.037    0.136   15.026    0.000    1.771    2.303    2.037    0.799
##   math =~                                                                                 
##     ssar              6.231    0.183   34.048    0.000    5.873    6.590    6.231    0.935
##     ssmk              5.380    0.164   32.716    0.000    5.058    5.702    5.380    0.867
##     ssmc              1.760    0.314    5.609    0.000    1.145    2.375    1.760    0.442
##   electronic =~                                                                           
##     ssgs              3.039    0.649    4.680    0.000    1.766    4.312    3.039    0.742
##     ssasi             2.111    0.151   13.952    0.000    1.814    2.407    2.111    0.619
##     ssmc              1.030    0.315    3.269    0.001    0.412    1.647    1.030    0.258
##     ssei              2.291    0.114   20.115    0.000    2.067    2.514    2.291    0.743
##   speed =~                                                                                
##     ssno              0.779    0.039   20.147    0.000    0.703    0.854    0.779    0.921
##     sscs              0.552    0.046   11.946    0.000    0.461    0.642    0.552    0.664
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.771    0.022   34.970    0.000    0.728    0.814    0.771    0.771
##     electronic        0.896    0.030   29.890    0.000    0.837    0.954    0.896    0.896
##     speed             0.613    0.050   12.174    0.000    0.515    0.712    0.613    0.613
##   math ~~                                                                                 
##     electronic        0.811    0.027   29.554    0.000    0.757    0.865    0.811    0.811
##     speed             0.678    0.033   20.656    0.000    0.614    0.742    0.678    0.678
##   electronic ~~                                                                           
##     speed             0.504    0.054    9.325    0.000    0.398    0.610    0.504    0.504
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             16.094    0.190   84.654    0.000   15.721   16.467   16.094    3.927
##    .sswk             27.980    0.285   98.025    0.000   27.421   28.540   27.980    4.485
##    .sspc             12.116    0.116  104.370    0.000   11.888   12.343   12.116    4.750
##    .ssar             18.639    0.312   59.821    0.000   18.028   19.250   18.639    2.796
##    .ssmk             14.968    0.291   51.396    0.000   14.397   15.539   14.968    2.413
##    .ssmc             12.925    0.187   68.955    0.000   12.557   13.292   12.925    3.242
##    .ssasi            11.745    0.159   73.710    0.000   11.433   12.058   11.745    3.447
##    .ssei             10.387    0.143   72.446    0.000   10.106   10.668   10.387    3.370
##    .ssno              0.511    0.039   13.006    0.000    0.434    0.588    0.511    0.604
##    .sscs              0.629    0.039   16.289    0.000    0.554    0.705    0.629    0.758
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              3.718    0.486    7.646    0.000    2.765    4.671    3.718    0.221
##    .sswk              5.067    0.996    5.086    0.000    3.114    7.019    5.067    0.130
##    .sspc              2.357    0.198   11.929    0.000    1.970    2.744    2.357    0.362
##    .ssar              5.606    0.972    5.765    0.000    3.700    7.512    5.606    0.126
##    .ssmk              9.526    0.946   10.072    0.000    7.672   11.379    9.526    0.248
##    .ssmc              8.795    0.593   14.822    0.000    7.632    9.957    8.795    0.553
##    .ssasi             7.158    0.561   12.749    0.000    6.058    8.258    7.158    0.616
##    .ssei              4.256    0.387   10.993    0.000    3.497    5.015    4.256    0.448
##    .ssno              0.109    0.046    2.361    0.018    0.019    0.200    0.109    0.153
##    .sscs              0.386    0.050    7.642    0.000    0.287    0.485    0.386    0.559
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
modificationIndices(configural, sort=T, maximum.number=30)
##            lhs op   rhs block group level     mi     epc sepc.lv sepc.all sepc.nox
## 97      verbal =~  ssei     1     1     1 47.864   2.698   2.698    0.703    0.703
## 101       math =~  sswk     1     1     1 46.052  -2.875  -2.875   -0.428   -0.428
## 156       ssmc ~~ ssasi     1     1     1 37.198   2.999   2.999    0.324    0.324
## 122       ssgs ~~  sspc     1     1     1 22.686  -1.069  -1.069   -0.281   -0.281
## 152       ssmk ~~ ssasi     1     1     1 22.628  -2.358  -2.358   -0.251   -0.251
## 96      verbal =~ ssasi     1     1     1 22.201  -1.801  -1.801   -0.380   -0.380
## 115      speed =~  sspc     1     1     1 21.820   0.700   0.700    0.225    0.225
## 157       ssmc ~~  ssei     1     1     1 20.305  -2.033  -2.033   -0.527   -0.527
## 120      speed =~  ssei     1     1     1 19.745   0.759   0.759    0.198    0.198
## 102       math =~  sspc     1     1     1 19.196   0.826   0.826    0.266    0.266
## 135       sswk ~~  ssei     1     1     1 16.753   1.386   1.386    0.392    0.392
## 114      speed =~  sswk     1     1     1 15.918  -1.320  -1.320   -0.196   -0.196
## 103       math =~ ssasi     1     1     1 15.799  -0.936  -0.936   -0.198   -0.198
## 124       ssgs ~~  ssmk     1     1     1 14.874   1.413   1.413    0.212    0.212
## 158       ssmc ~~  ssno     1     1     1 14.114  -0.297  -0.297   -0.237   -0.237
## 133       sswk ~~  ssmc     1     1     1 13.775  -1.720  -1.720   -0.218   -0.218
## 119      speed =~ ssasi     1     1     1 11.275  -0.673  -0.673   -0.142   -0.142
## 100       math =~  ssgs     1     1     1 10.956   0.783   0.783    0.172    0.172
## 145       ssar ~~  ssmk     1     1     1 10.247 -15.891 -15.891   -2.244   -2.244
## 107 electronic =~  sswk     1     1     1  9.877   1.615   1.615    0.240    0.240
## 108 electronic =~  sspc     1     1     1  9.877  -0.683  -0.683   -0.219   -0.219
## 171     verbal =~  ssno     2     2     1  8.669  -0.267  -0.267   -0.316   -0.316
## 172     verbal =~  sscs     2     2     1  8.669   0.190   0.190    0.228    0.228
## 131       sswk ~~  ssar     1     1     1  8.187  -1.584  -1.584   -0.248   -0.248
## 217       sspc ~~  sscs     2     2     1  8.140   0.137   0.137    0.144    0.144
## 95      verbal =~  ssmc     1     1     1  8.134  -1.274  -1.274   -0.258   -0.258
## 229       ssmc ~~ ssasi     2     2     1  7.712   1.057   1.057    0.133    0.133
## 179       math =~  sscs     2     2     1  7.574  -0.310  -0.310   -0.373   -0.373
## 178       math =~  ssno     2     2     1  7.574   0.437   0.437    0.517    0.517
## 121       ssgs ~~  sswk     1     1     1  7.338   1.350   1.350    0.225    0.225
metric<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   281.220    62.000     0.000     0.971     0.082     0.039 47872.289 48209.464
Mc(metric)
## [1] 0.9009631
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 59 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        80
##   Number of equality constraints                    12
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               281.220     242.359
##   Degrees of freedom                                62          62
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.160
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          188.061     162.074
##     1                                           93.159      80.286
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.686    0.257   10.471    0.000    2.183    3.189    2.686    0.578
##     sswk    (.p2.)    6.258    0.275   22.715    0.000    5.718    6.798    6.258    0.923
##     sspc    (.p3.)    2.431    0.130   18.627    0.000    2.175    2.686    2.431    0.813
##   math =~                                                                                 
##     ssar    (.p4.)    6.755    0.179   37.681    0.000    6.403    7.106    6.755    0.945
##     ssmk    (.p5.)    5.906    0.161   36.681    0.000    5.591    6.222    5.906    0.891
##     ssmc    (.p6.)    1.163    0.191    6.088    0.000    0.788    1.537    1.163    0.239
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.581    0.280    5.654    0.000    1.033    2.129    1.581    0.340
##     ssasi   (.p8.)    3.482    0.186   18.686    0.000    3.117    3.847    3.482    0.739
##     ssmc    (.p9.)    2.987    0.226   13.217    0.000    2.544    3.430    2.987    0.614
##     ssei    (.10.)    3.622    0.130   27.891    0.000    3.367    3.876    3.622    0.943
##   speed =~                                                                                
##     ssno    (.11.)    0.793    0.034   23.032    0.000    0.726    0.860    0.793    0.890
##     sscs    (.12.)    0.615    0.038   16.208    0.000    0.541    0.690    0.615    0.743
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.804    0.023   34.988    0.000    0.759    0.849    0.804    0.804
##     electronic        0.818    0.025   33.174    0.000    0.769    0.866    0.818    0.818
##     speed             0.688    0.040   17.297    0.000    0.610    0.766    0.688    0.688
##   math ~~                                                                                 
##     electronic        0.663    0.033   20.259    0.000    0.599    0.727    0.663    0.663
##     speed             0.750    0.029   25.710    0.000    0.692    0.807    0.750    0.750
##   electronic ~~                                                                           
##     speed             0.495    0.051    9.749    0.000    0.395    0.594    0.495    0.495
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             17.910    0.210   85.392    0.000   17.498   18.321   17.910    3.853
##    .sswk             27.643    0.309   89.548    0.000   27.038   28.248   27.643    4.078
##    .sspc             11.207    0.144   77.836    0.000   10.925   11.490   11.207    3.748
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.841
##    .ssmk             15.277    0.316   48.361    0.000   14.658   15.896   15.277    2.306
##    .ssmc             17.082    0.231   73.903    0.000   16.629   17.535   17.082    3.511
##    .ssasi            17.796    0.221   80.523    0.000   17.363   18.230   17.796    3.779
##    .ssei             13.530    0.177   76.269    0.000   13.182   13.877   13.530    3.522
##    .ssno              0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.274
##    .sscs              0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.092
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.949    0.415   11.940    0.000    4.137    5.762    4.949    0.229
##    .sswk              6.786    0.958    7.081    0.000    4.908    8.665    6.786    0.148
##    .sspc              3.034    0.254   11.956    0.000    2.537    3.532    3.034    0.339
##    .ssar              5.477    0.921    5.947    0.000    3.672    7.282    5.477    0.107
##    .ssmk              9.022    0.911    9.901    0.000    7.236   10.808    9.022    0.205
##    .ssmc              8.794    0.691   12.723    0.000    7.439   10.148    8.794    0.371
##    .ssasi            10.052    0.909   11.059    0.000    8.271   11.834   10.052    0.453
##    .ssei              1.641    0.370    4.440    0.000    0.917    2.366    1.641    0.111
##    .ssno              0.165    0.033    5.049    0.000    0.101    0.229    0.165    0.208
##    .sscs              0.306    0.046    6.718    0.000    0.217    0.396    0.306    0.447
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.686    0.257   10.471    0.000    2.183    3.189    2.417    0.608
##     sswk    (.p2.)    6.258    0.275   22.715    0.000    5.718    6.798    5.632    0.912
##     sspc    (.p3.)    2.431    0.130   18.627    0.000    2.175    2.686    2.187    0.821
##   math =~                                                                                 
##     ssar    (.p4.)    6.755    0.179   37.681    0.000    6.403    7.106    6.204    0.934
##     ssmk    (.p5.)    5.906    0.161   36.681    0.000    5.591    6.222    5.425    0.870
##     ssmc    (.p6.)    1.163    0.191    6.088    0.000    0.788    1.537    1.068    0.262
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.581    0.280    5.654    0.000    1.033    2.129    1.014    0.255
##     ssasi   (.p8.)    3.482    0.186   18.686    0.000    3.117    3.847    2.234    0.650
##     ssmc    (.p9.)    2.987    0.226   13.217    0.000    2.544    3.430    1.916    0.471
##     ssei    (.10.)    3.622    0.130   27.891    0.000    3.367    3.876    2.324    0.756
##   speed =~                                                                                
##     ssno    (.11.)    0.793    0.034   23.032    0.000    0.726    0.860    0.756    0.900
##     sscs    (.12.)    0.615    0.038   16.208    0.000    0.541    0.690    0.586    0.693
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.656    0.060   10.860    0.000    0.538    0.775    0.794    0.794
##     electronic        0.506    0.051    9.834    0.000    0.405    0.607    0.877    0.877
##     speed             0.539    0.079    6.828    0.000    0.384    0.693    0.628    0.628
##   math ~~                                                                                 
##     electronic        0.469    0.041   11.405    0.000    0.388    0.549    0.795    0.795
##     speed             0.602    0.060   10.016    0.000    0.484    0.720    0.688    0.688
##   electronic ~~                                                                           
##     speed             0.300    0.045    6.588    0.000    0.211    0.389    0.490    0.490
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             16.094    0.190   84.654    0.000   15.721   16.467   16.094    4.050
##    .sswk             27.980    0.285   98.025    0.000   27.421   28.540   27.980    4.533
##    .sspc             12.116    0.116  104.370    0.000   11.888   12.343   12.116    4.548
##    .ssar             18.639    0.312   59.821    0.000   18.028   19.250   18.639    2.805
##    .ssmk             14.968    0.291   51.396    0.000   14.397   15.539   14.968    2.401
##    .ssmc             12.925    0.187   68.955    0.000   12.557   13.292   12.925    3.175
##    .ssasi            11.745    0.159   73.710    0.000   11.433   12.058   11.745    3.417
##    .ssei             10.387    0.143   72.446    0.000   10.106   10.668   10.387    3.377
##    .ssno              0.511    0.039   13.006    0.000    0.434    0.588    0.511    0.608
##    .sscs              0.629    0.039   16.289    0.000    0.554    0.705    0.629    0.743
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.618    0.383   12.043    0.000    3.867    5.370    4.618    0.293
##    .sswk              6.390    0.928    6.883    0.000    4.570    8.210    6.390    0.168
##    .sspc              2.312    0.194   11.910    0.000    1.931    2.692    2.312    0.326
##    .ssar              5.674    0.931    6.097    0.000    3.850    7.498    5.674    0.128
##    .ssmk              9.428    0.903   10.446    0.000    7.659   11.197    9.428    0.243
##    .ssmc              8.505    0.579   14.690    0.000    7.371    9.640    8.505    0.513
##    .ssasi             6.821    0.533   12.801    0.000    5.776    7.865    6.821    0.577
##    .ssei              4.060    0.384   10.563    0.000    3.307    4.814    4.060    0.429
##    .ssno              0.135    0.037    3.615    0.000    0.062    0.208    0.135    0.191
##    .sscs              0.373    0.047    7.963    0.000    0.281    0.465    0.373    0.520
##     verbal            0.810    0.101    8.006    0.000    0.612    1.008    1.000    1.000
##     math              0.844    0.060   14.136    0.000    0.727    0.961    1.000    1.000
##     electronic        0.412    0.046    8.988    0.000    0.322    0.501    1.000    1.000
##     speed             0.908    0.113    8.012    0.000    0.686    1.131    1.000    1.000
lavTestScore(metric, release = 1:12)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 43.259 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p47.  4.694  1   0.030
## 2   .p2. == .p48.  2.600  1   0.107
## 3   .p3. == .p49. 12.500  1   0.000
## 4   .p4. == .p50.  0.342  1   0.558
## 5   .p5. == .p51.  0.252  1   0.616
## 6   .p6. == .p52.  0.113  1   0.736
## 7   .p7. == .p53. 12.758  1   0.000
## 8   .p8. == .p54.  0.377  1   0.539
## 9   .p9. == .p55.  3.540  1   0.060
## 10 .p10. == .p56.  0.036  1   0.851
## 11 .p11. == .p57.  3.048  1   0.081
## 12 .p12. == .p58.  3.048  1   0.081
metric2<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"), group.partial=c("electronic=~ssgs", "verbal=~sspc"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   259.500    60.000     0.000     0.973     0.080     0.032 47854.570 48201.661
Mc(metric2)
## [1] 0.9094553
scalar<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssgs", "verbal=~sspc"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   529.426    66.000     0.000     0.938     0.116     0.068 48112.496 48429.837
Mc(scalar)
## [1] 0.8021423
summary(scalar, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 128 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
##   Number of equality constraints                    20
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               529.426     453.940
##   Degrees of freedom                                66          66
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.166
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          313.515     268.813
##     1                                          215.912     185.126
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.629    0.161   16.293    0.000    2.312    2.945    2.629    0.580
##     sswk    (.p2.)    6.135    0.277   22.118    0.000    5.592    6.679    6.135    0.912
##     sspc              2.613    0.146   17.901    0.000    2.327    2.899    2.613    0.833
##   math =~                                                                                 
##     ssar    (.p4.)    6.783    0.177   38.295    0.000    6.436    7.130    6.783    0.946
##     ssmk    (.p5.)    5.842    0.169   34.593    0.000    5.511    6.173    5.842    0.885
##     ssmc    (.p6.)    0.981    0.168    5.843    0.000    0.652    1.310    0.981    0.198
##   electronic =~                                                                           
##     ssgs              1.500    0.172    8.742    0.000    1.164    1.837    1.500    0.331
##     ssasi   (.p8.)    4.186    0.155   26.967    0.000    3.882    4.490    4.186    0.796
##     ssmc    (.p9.)    3.335    0.181   18.395    0.000    2.980    3.690    3.335    0.674
##     ssei    (.10.)    3.301    0.142   23.253    0.000    3.023    3.579    3.301    0.897
##   speed =~                                                                                
##     ssno    (.11.)    0.754    0.037   20.471    0.000    0.682    0.826    0.754    0.857
##     sscs    (.12.)    0.660    0.037   17.843    0.000    0.587    0.732    0.660    0.769
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.810    0.022   36.134    0.000    0.766    0.854    0.810    0.810
##     electronic        0.821    0.026   30.982    0.000    0.769    0.873    0.821    0.821
##     speed             0.710    0.038   18.674    0.000    0.635    0.784    0.710    0.710
##   math ~~                                                                                 
##     electronic        0.667    0.034   19.753    0.000    0.601    0.734    0.667    0.667
##     speed             0.761    0.028   27.179    0.000    0.706    0.816    0.761    0.761
##   electronic ~~                                                                           
##     speed             0.500    0.053    9.452    0.000    0.396    0.604    0.500    0.500
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   18.077    0.221   81.802    0.000   17.644   18.510   18.077    3.988
##    .sswk    (.34.)   27.549    0.340   80.922    0.000   26.881   28.216   27.549    4.097
##    .sspc    (.35.)   11.600    0.139   83.358    0.000   11.327   11.873   11.600    3.700
##    .ssar    (.36.)   20.317    0.355   57.181    0.000   19.620   21.013   20.317    2.834
##    .ssmk    (.37.)   15.820    0.319   49.635    0.000   15.196   16.445   15.820    2.398
##    .ssmc    (.38.)   17.148    0.242   70.945    0.000   16.674   17.622   17.148    3.465
##    .ssasi   (.39.)   17.216    0.259   66.549    0.000   16.709   17.723   17.216    3.274
##    .ssei    (.40.)   13.854    0.178   77.677    0.000   13.505   14.204   13.854    3.763
##    .ssno    (.41.)    0.205    0.043    4.731    0.000    0.120    0.290    0.205    0.233
##    .sscs    (.42.)    0.188    0.042    4.498    0.000    0.106    0.270    0.188    0.219
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.916    0.407   12.070    0.000    4.118    5.715    4.916    0.239
##    .sswk              7.569    0.996    7.597    0.000    5.617    9.522    7.569    0.167
##    .sspc              3.005    0.261   11.524    0.000    2.494    3.516    3.005    0.306
##    .ssar              5.368    0.966    5.559    0.000    3.476    7.261    5.368    0.104
##    .ssmk              9.411    0.961    9.796    0.000    7.528   11.294    9.411    0.216
##    .ssmc              8.036    0.673   11.949    0.000    6.718    9.354    8.036    0.328
##    .ssasi            10.133    1.028    9.858    0.000    8.118   12.147   10.133    0.366
##    .ssei              2.654    0.369    7.198    0.000    1.932    3.377    2.654    0.196
##    .ssno              0.205    0.032    6.349    0.000    0.142    0.268    0.205    0.265
##    .sscs              0.300    0.050    6.045    0.000    0.203    0.397    0.300    0.408
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.629    0.161   16.293    0.000    2.312    2.945    2.424    0.593
##     sswk    (.p2.)    6.135    0.277   22.118    0.000    5.592    6.679    5.658    0.911
##     sspc              2.245    0.155   14.502    0.000    1.942    2.549    2.070    0.800
##   math =~                                                                                 
##     ssar    (.p4.)    6.783    0.177   38.295    0.000    6.436    7.130    6.236    0.935
##     ssmk    (.p5.)    5.842    0.169   34.593    0.000    5.511    6.173    5.371    0.863
##     ssmc    (.p6.)    0.981    0.168    5.843    0.000    0.652    1.310    0.902    0.224
##   electronic =~                                                                           
##     ssgs              1.959    0.169   11.580    0.000    1.628    2.291    1.172    0.287
##     ssasi   (.p8.)    4.186    0.155   26.967    0.000    3.882    4.490    2.505    0.685
##     ssmc    (.p9.)    3.335    0.181   18.395    0.000    2.980    3.690    1.996    0.496
##     ssei    (.10.)    3.301    0.142   23.253    0.000    3.023    3.579    1.976    0.671
##   speed =~                                                                                
##     ssno    (.11.)    0.754    0.037   20.471    0.000    0.682    0.826    0.712    0.857
##     sscs    (.12.)    0.660    0.037   17.843    0.000    0.587    0.732    0.623    0.713
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.673    0.063   10.620    0.000    0.549    0.797    0.794    0.794
##     electronic        0.487    0.053    9.224    0.000    0.383    0.590    0.882    0.882
##     speed             0.565    0.084    6.710    0.000    0.400    0.729    0.648    0.648
##   math ~~                                                                                 
##     electronic        0.449    0.039   11.365    0.000    0.371    0.526    0.816    0.816
##     speed             0.608    0.062    9.738    0.000    0.485    0.730    0.700    0.700
##   electronic ~~                                                                           
##     speed             0.287    0.045    6.346    0.000    0.199    0.376    0.508    0.508
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   18.077    0.221   81.802    0.000   17.644   18.510   18.077    4.422
##    .sswk    (.34.)   27.549    0.340   80.922    0.000   26.881   28.216   27.549    4.438
##    .sspc    (.35.)   11.600    0.139   83.358    0.000   11.327   11.873   11.600    4.480
##    .ssar    (.36.)   20.317    0.355   57.181    0.000   19.620   21.013   20.317    3.046
##    .ssmk    (.37.)   15.820    0.319   49.635    0.000   15.196   16.445   15.820    2.543
##    .ssmc    (.38.)   17.148    0.242   70.945    0.000   16.674   17.622   17.148    4.259
##    .ssasi   (.39.)   17.216    0.259   66.549    0.000   16.709   17.723   17.216    4.711
##    .ssei    (.40.)   13.854    0.178   77.677    0.000   13.505   14.204   13.854    4.706
##    .ssno    (.41.)    0.205    0.043    4.731    0.000    0.120    0.290    0.205    0.247
##    .sscs    (.42.)    0.188    0.042    4.498    0.000    0.106    0.270    0.188    0.215
##     verbal            0.115    0.071    1.617    0.106   -0.024    0.255    0.125    0.125
##     math             -0.218    0.070   -3.097    0.002   -0.356   -0.080   -0.237   -0.237
##     elctrnc          -1.185    0.090  -13.183    0.000   -1.361   -1.009   -1.980   -1.980
##     speed             0.477    0.084    5.695    0.000    0.313    0.642    0.505    0.505
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.444    0.388   11.462    0.000    3.684    5.204    4.444    0.266
##    .sswk              6.528    0.973    6.707    0.000    4.620    8.435    6.528    0.169
##    .sspc              2.418    0.207   11.703    0.000    2.013    2.823    2.418    0.361
##    .ssar              5.597    0.956    5.857    0.000    3.724    7.470    5.597    0.126
##    .ssmk              9.851    0.923   10.674    0.000    8.042   11.660    9.851    0.255
##    .ssmc              8.479    0.580   14.627    0.000    7.343    9.615    8.479    0.523
##    .ssasi             7.079    0.589   12.022    0.000    5.925    8.234    7.079    0.530
##    .ssei              4.764    0.401   11.868    0.000    3.977    5.551    4.764    0.550
##    .ssno              0.183    0.038    4.870    0.000    0.109    0.257    0.183    0.265
##    .sscs              0.376    0.052    7.207    0.000    0.274    0.478    0.376    0.492
##     verbal            0.850    0.113    7.505    0.000    0.628    1.072    1.000    1.000
##     math              0.845    0.060   14.066    0.000    0.727    0.963    1.000    1.000
##     electronic        0.358    0.041    8.755    0.000    0.278    0.438    1.000    1.000
##     speed             0.892    0.118    7.553    0.000    0.661    1.124    1.000    1.000
lavTestScore(scalar, release = 11:20)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 259.116 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs      X2 df p.value
## 1  .p33. == .p79.   4.179  1   0.041
## 2  .p34. == .p80.  47.677  1   0.000
## 3  .p35. == .p81.  42.051  1   0.000
## 4  .p36. == .p82.  23.815  1   0.000
## 5  .p37. == .p83.  25.326  1   0.000
## 6  .p38. == .p84.   1.037  1   0.308
## 7  .p39. == .p85. 109.808  1   0.000
## 8  .p40. == .p86. 103.410  1   0.000
## 9  .p41. == .p87.  61.106  1   0.000
## 10 .p42. == .p88.  61.106  1   0.000
scalar2<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("electronic=~ssgs", "verbal=~sspc", "sswk~1", "ssar~1", "ssei~1", "sscs~1")) # no and cs biased but one needs to be constrained
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   269.709    62.000     0.000     0.972     0.080     0.034 47860.779 48197.954
Mc(scalar2)
## [1] 0.9059102
summary(scalar2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 105 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
##   Number of equality constraints                    16
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               269.709     231.884
##   Degrees of freedom                                62          62
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.163
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          188.400     161.978
##     1                                           81.309      69.906
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.665    0.157   16.933    0.000    2.357    2.974    2.665    0.589
##     sswk    (.p2.)    6.176    0.277   22.287    0.000    5.633    6.719    6.176    0.918
##     sspc              2.603    0.144   18.136    0.000    2.321    2.884    2.603    0.837
##   math =~                                                                                 
##     ssar    (.p4.)    6.752    0.179   37.671    0.000    6.401    7.104    6.752    0.945
##     ssmk    (.p5.)    5.907    0.161   36.736    0.000    5.592    6.222    5.907    0.891
##     ssmc    (.p6.)    1.412    0.157    9.002    0.000    1.105    1.720    1.412    0.294
##   electronic =~                                                                           
##     ssgs              1.434    0.171    8.407    0.000    1.099    1.768    1.434    0.317
##     ssasi   (.p8.)    3.626    0.182   19.923    0.000    3.269    3.983    3.626    0.752
##     ssmc    (.p9.)    2.650    0.183   14.454    0.000    2.290    3.009    2.650    0.552
##     ssei    (.10.)    3.658    0.127   28.785    0.000    3.409    3.907    3.658    0.950
##   speed =~                                                                                
##     ssno    (.11.)    0.793    0.034   23.014    0.000    0.725    0.860    0.793    0.889
##     sscs    (.12.)    0.615    0.038   16.224    0.000    0.541    0.690    0.615    0.744
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.810    0.022   36.722    0.000    0.767    0.853    0.810    0.810
##     electronic        0.817    0.024   33.709    0.000    0.770    0.865    0.817    0.817
##     speed             0.692    0.040   17.482    0.000    0.615    0.770    0.692    0.692
##   math ~~                                                                                 
##     electronic        0.659    0.032   20.588    0.000    0.596    0.722    0.659    0.659
##     speed             0.749    0.029   25.687    0.000    0.692    0.807    0.749    0.749
##   electronic ~~                                                                           
##     speed             0.494    0.050    9.799    0.000    0.395    0.593    0.494    0.494
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   17.917    0.210   85.505    0.000   17.507   18.328   17.917    3.961
##    .sswk             27.618    0.314   87.939    0.000   27.002   28.233   27.618    4.104
##    .sspc    (.35.)   11.180    0.147   76.150    0.000   10.892   11.468   11.180    3.594
##    .ssar             20.289    0.339   59.860    0.000   19.624   20.953   20.289    2.838
##    .ssmk    (.37.)   15.235    0.318   47.921    0.000   14.611   15.858   15.235    2.299
##    .ssmc    (.38.)   17.165    0.227   75.668    0.000   16.721   17.610   17.165    3.576
##    .ssasi   (.39.)   17.677    0.227   77.957    0.000   17.233   18.122   17.677    3.665
##    .ssei             13.515    0.180   74.935    0.000   13.161   13.868   13.515    3.510
##    .ssno    (.41.)    0.242    0.042    5.791    0.000    0.160    0.323    0.242    0.271
##    .sscs              0.074    0.040    1.860    0.063   -0.004    0.153    0.074    0.090
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.056    0.413   12.246    0.000    4.247    5.865    5.056    0.247
##    .sswk              7.137    0.932    7.659    0.000    5.311    8.964    7.137    0.158
##    .sspc              2.905    0.243   11.977    0.000    2.429    3.380    2.905    0.300
##    .ssar              5.515    0.911    6.054    0.000    3.729    7.300    5.515    0.108
##    .ssmk              9.028    0.902   10.007    0.000    7.260   10.796    9.028    0.206
##    .ssmc              9.096    0.686   13.254    0.000    7.751   10.441    9.096    0.395
##    .ssasi            10.117    0.925   10.939    0.000    8.304   11.929   10.117    0.435
##    .ssei              1.446    0.345    4.185    0.000    0.769    2.123    1.446    0.098
##    .ssno              0.166    0.033    5.084    0.000    0.102    0.230    0.166    0.209
##    .sscs              0.306    0.046    6.723    0.000    0.217    0.395    0.306    0.447
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.665    0.157   16.933    0.000    2.357    2.974    2.465    0.601
##     sswk    (.p2.)    6.176    0.277   22.287    0.000    5.633    6.719    5.712    0.917
##     sspc              2.193    0.136   16.135    0.000    1.926    2.459    2.028    0.797
##   math =~                                                                                 
##     ssar    (.p4.)    6.752    0.179   37.671    0.000    6.401    7.104    6.202    0.933
##     ssmk    (.p5.)    5.907    0.161   36.736    0.000    5.592    6.222    5.426    0.870
##     ssmc    (.p6.)    1.412    0.157    9.002    0.000    1.105    1.720    1.297    0.321
##   electronic =~                                                                           
##     ssgs              1.858    0.168   11.049    0.000    1.528    2.187    1.160    0.283
##     ssasi   (.p8.)    3.626    0.182   19.923    0.000    3.269    3.983    2.265    0.656
##     ssmc    (.p9.)    2.650    0.183   14.454    0.000    2.290    3.009    1.655    0.409
##     ssei    (.10.)    3.658    0.127   28.785    0.000    3.409    3.907    2.285    0.751
##   speed =~                                                                                
##     ssno    (.11.)    0.793    0.034   23.014    0.000    0.725    0.860    0.756    0.900
##     sscs    (.12.)    0.615    0.038   16.224    0.000    0.541    0.690    0.587    0.693
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.673    0.061   10.945    0.000    0.552    0.793    0.792    0.792
##     electronic        0.503    0.053    9.509    0.000    0.399    0.607    0.871    0.871
##     speed             0.552    0.080    6.864    0.000    0.395    0.710    0.626    0.626
##   math ~~                                                                                 
##     electronic        0.452    0.039   11.597    0.000    0.375    0.528    0.787    0.787
##     speed             0.602    0.060   10.004    0.000    0.484    0.720    0.688    0.688
##   electronic ~~                                                                           
##     speed             0.287    0.045    6.410    0.000    0.199    0.374    0.481    0.481
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   17.917    0.210   85.505    0.000   17.507   18.328   17.917    4.368
##    .sswk             25.303    0.505   50.109    0.000   24.313   26.292   25.303    4.063
##    .sspc    (.35.)   11.180    0.147   76.150    0.000   10.892   11.468   11.180    4.392
##    .ssar             18.914    0.414   45.718    0.000   18.103   19.725   18.914    2.846
##    .ssmk    (.37.)   15.235    0.318   47.921    0.000   14.611   15.858   15.235    2.444
##    .ssmc    (.38.)   17.165    0.227   75.668    0.000   16.721   17.610   17.165    4.245
##    .ssasi   (.39.)   17.677    0.227   77.957    0.000   17.233   18.122   17.677    5.119
##    .ssei             16.296    0.405   40.269    0.000   15.503   17.089   16.296    5.354
##    .ssno    (.41.)    0.242    0.042    5.791    0.000    0.160    0.323    0.242    0.288
##    .sscs              0.420    0.047    8.864    0.000    0.327    0.513    0.420    0.496
##     verbal            0.434    0.087    4.997    0.000    0.263    0.604    0.469    0.469
##     math             -0.041    0.073   -0.558    0.577   -0.184    0.102   -0.044   -0.044
##     elctrnc          -1.615    0.127  -12.724    0.000   -1.864   -1.367   -2.586   -2.586
##     speed             0.340    0.071    4.764    0.000    0.200    0.480    0.356    0.356
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.419    0.387   11.414    0.000    3.660    5.178    4.419    0.263
##    .sswk              6.156    0.927    6.641    0.000    4.339    7.973    6.156    0.159
##    .sspc              2.367    0.193   12.239    0.000    1.988    2.746    2.367    0.365
##    .ssar              5.686    0.919    6.184    0.000    3.884    7.488    5.686    0.129
##    .ssmk              9.423    0.900   10.472    0.000    7.659   11.186    9.423    0.242
##    .ssmc              8.549    0.578   14.783    0.000    7.416    9.682    8.549    0.523
##    .ssasi             6.795    0.535   12.693    0.000    5.746    7.844    6.795    0.570
##    .ssei              4.044    0.384   10.523    0.000    3.290    4.797    4.044    0.437
##    .ssno              0.135    0.037    3.620    0.000    0.062    0.207    0.135    0.191
##    .sscs              0.373    0.047    7.958    0.000    0.281    0.465    0.373    0.520
##     verbal            0.855    0.107    7.987    0.000    0.645    1.065    1.000    1.000
##     math              0.844    0.060   14.139    0.000    0.727    0.961    1.000    1.000
##     electronic        0.390    0.043    8.985    0.000    0.305    0.475    1.000    1.000
##     speed             0.909    0.114    8.006    0.000    0.686    1.132    1.000    1.000
strict<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("electronic=~ssgs", "verbal=~sspc", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   326.652    72.000     0.000     0.966     0.082     0.041 47897.722 48185.312
Mc(strict) 
## [1] 0.8859032
cf.cov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("electronic=~ssgs", "verbal=~sspc", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   299.664    68.000     0.000     0.969     0.080     0.091 47878.734 48186.157
Mc(cf.cov)
## [1] 0.895645
summary(cf.cov, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 106 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               299.664     256.547
##   Degrees of freedom                                68          68
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.168
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          205.549     175.974
##     1                                           94.115      80.573
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.443    0.125   19.492    0.000    2.197    2.688    2.443    0.573
##     sswk    (.p2.)    5.791    0.202   28.702    0.000    5.395    6.186    5.791    0.904
##     sspc              2.470    0.115   21.555    0.000    2.246    2.695    2.470    0.827
##   math =~                                                                                 
##     ssar    (.p4.)    6.575    0.152   43.238    0.000    6.277    6.873    6.575    0.941
##     ssmk    (.p5.)    5.759    0.136   42.237    0.000    5.492    6.026    5.759    0.887
##     ssmc    (.p6.)    1.380    0.150    9.174    0.000    1.085    1.675    1.380    0.304
##   electronic =~                                                                           
##     ssgs              1.408    0.149    9.473    0.000    1.117    1.700    1.408    0.330
##     ssasi   (.p8.)    3.240    0.140   23.069    0.000    2.964    3.515    3.240    0.714
##     ssmc    (.p9.)    2.367    0.152   15.576    0.000    2.069    2.665    2.367    0.521
##     ssei    (.10.)    3.335    0.092   36.448    0.000    3.156    3.514    3.335    0.940
##   speed =~                                                                                
##     ssno    (.11.)    0.767    0.029   26.462    0.000    0.710    0.824    0.767    0.884
##     sscs    (.12.)    0.593    0.033   18.165    0.000    0.529    0.657    0.593    0.731
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.813    0.020   41.389    0.000    0.775    0.852    0.813    0.813
##     elctrnc (.28.)    0.752    0.027   28.348    0.000    0.700    0.804    0.752    0.752
##     speed   (.29.)    0.686    0.034   19.986    0.000    0.619    0.753    0.686    0.686
##   math ~~                                                                                 
##     elctrnc (.30.)    0.612    0.026   23.741    0.000    0.562    0.663    0.612    0.612
##     speed   (.31.)    0.720    0.026   27.214    0.000    0.668    0.772    0.720    0.720
##   electronic ~~                                                                           
##     speed   (.32.)    0.429    0.035   12.124    0.000    0.360    0.498    0.429    0.429
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   17.919    0.209   85.760    0.000   17.510   18.329   17.919    4.202
##    .sswk             27.628    0.312   88.685    0.000   27.017   28.238   27.628    4.315
##    .sspc    (.35.)   11.188    0.145   77.004    0.000   10.903   11.473   11.188    3.744
##    .ssar             20.297    0.338   60.085    0.000   19.635   20.959   20.297    2.905
##    .ssmk    (.37.)   15.241    0.317   48.076    0.000   14.620   15.863   15.241    2.348
##    .ssmc    (.38.)   17.174    0.226   75.973    0.000   16.731   17.617   17.174    3.781
##    .ssasi   (.39.)   17.688    0.225   78.604    0.000   17.247   18.129   17.688    3.898
##    .ssei             13.522    0.179   75.574    0.000   13.171   13.872   13.522    3.813
##    .ssno    (.41.)    0.242    0.042    5.831    0.000    0.161    0.324    0.242    0.279
##    .sscs              0.075    0.040    1.880    0.060   -0.003    0.153    0.075    0.093
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.065    0.413   12.278    0.000    4.256    5.873    5.065    0.278
##    .sswk              7.466    0.957    7.802    0.000    5.590    9.341    7.466    0.182
##    .sspc              2.830    0.237   11.932    0.000    2.365    3.294    2.830    0.317
##    .ssar              5.588    0.903    6.185    0.000    3.817    7.358    5.588    0.114
##    .ssmk              8.979    0.900    9.979    0.000    7.216   10.743    8.979    0.213
##    .ssmc              9.129    0.688   13.275    0.000    7.781   10.476    9.129    0.442
##    .ssasi            10.097    0.923   10.935    0.000    8.287   11.907   10.097    0.490
##    .ssei              1.455    0.367    3.969    0.000    0.736    2.174    1.455    0.116
##    .ssno              0.164    0.033    4.974    0.000    0.100    0.229    0.164    0.218
##    .sscs              0.307    0.045    6.753    0.000    0.218    0.396    0.307    0.466
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.443    0.125   19.492    0.000    2.197    2.688    2.577    0.595
##     sswk    (.p2.)    5.791    0.202   28.702    0.000    5.395    6.186    6.110    0.928
##     sspc              2.044    0.120   17.052    0.000    1.809    2.278    2.156    0.813
##   math =~                                                                                 
##     ssar    (.p4.)    6.575    0.152   43.238    0.000    6.277    6.873    6.404    0.937
##     ssmk    (.p5.)    5.759    0.136   42.237    0.000    5.492    6.026    5.610    0.878
##     ssmc    (.p6.)    1.380    0.150    9.174    0.000    1.085    1.675    1.344    0.318
##   electronic =~                                                                           
##     ssgs              1.636    0.132   12.373    0.000    1.377    1.896    1.286    0.297
##     ssasi   (.p8.)    3.240    0.140   23.069    0.000    2.964    3.515    2.545    0.698
##     ssmc    (.p9.)    2.367    0.152   15.576    0.000    2.069    2.665    1.859    0.440
##     ssei    (.10.)    3.335    0.092   36.448    0.000    3.156    3.514    2.620    0.795
##   speed =~                                                                                
##     ssno    (.11.)    0.767    0.029   26.462    0.000    0.710    0.824    0.788    0.910
##     sscs    (.12.)    0.593    0.033   18.165    0.000    0.529    0.657    0.609    0.705
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.813    0.020   41.389    0.000    0.775    0.852    0.791    0.791
##     elctrnc (.28.)    0.752    0.027   28.348    0.000    0.700    0.804    0.907    0.907
##     speed   (.29.)    0.686    0.034   19.986    0.000    0.619    0.753    0.633    0.633
##   math ~~                                                                                 
##     elctrnc (.30.)    0.612    0.026   23.741    0.000    0.562    0.663    0.800    0.800
##     speed   (.31.)    0.720    0.026   27.214    0.000    0.668    0.772    0.720    0.720
##   electronic ~~                                                                           
##     speed   (.32.)    0.429    0.035   12.124    0.000    0.360    0.498    0.532    0.532
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   17.919    0.209   85.760    0.000   17.510   18.329   17.919    4.140
##    .sswk             25.319    0.507   49.918    0.000   24.325   26.313   25.319    3.844
##    .sspc    (.35.)   11.188    0.145   77.004    0.000   10.903   11.473   11.188    4.217
##    .ssar             18.921    0.412   45.890    0.000   18.113   19.730   18.921    2.767
##    .ssmk    (.37.)   15.241    0.317   48.076    0.000   14.620   15.863   15.241    2.384
##    .ssmc    (.38.)   17.174    0.226   75.973    0.000   16.731   17.617   17.174    4.062
##    .ssasi   (.39.)   17.688    0.225   78.604    0.000   17.247   18.129   17.688    4.849
##    .ssei             16.432    0.411   39.996    0.000   15.627   17.237   16.432    4.988
##    .ssno    (.41.)    0.242    0.042    5.831    0.000    0.161    0.324    0.242    0.280
##    .sscs              0.422    0.047    8.917    0.000    0.329    0.514    0.422    0.488
##     verbal            0.460    0.099    4.661    0.000    0.266    0.653    0.436    0.436
##     math             -0.043    0.075   -0.575    0.566   -0.189    0.104   -0.044   -0.044
##     elctrnc          -1.812    0.129  -14.098    0.000   -2.064   -1.560   -2.307   -2.307
##     speed             0.350    0.076    4.606    0.000    0.201    0.499    0.341    0.341
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.430    0.387   11.443    0.000    3.672    5.189    4.430    0.236
##    .sswk              6.055    0.933    6.492    0.000    4.227    7.884    6.055    0.140
##    .sspc              2.389    0.194   12.297    0.000    2.008    2.770    2.389    0.339
##    .ssar              5.742    0.934    6.147    0.000    3.911    7.573    5.742    0.123
##    .ssmk              9.387    0.899   10.441    0.000    7.625   11.149    9.387    0.230
##    .ssmc              8.611    0.582   14.805    0.000    7.471    9.751    8.611    0.482
##    .ssasi             6.829    0.536   12.732    0.000    5.778    7.880    6.829    0.513
##    .ssei              3.987    0.384   10.371    0.000    3.233    4.740    3.987    0.367
##    .ssno              0.129    0.037    3.540    0.000    0.058    0.201    0.129    0.172
##    .sscs              0.376    0.047    8.010    0.000    0.284    0.468    0.376    0.503
##     verbal            1.113    0.052   21.499    0.000    1.012    1.215    1.000    1.000
##     math              0.949    0.036   26.646    0.000    0.879    1.019    1.000    1.000
##     electronic        0.617    0.042   14.554    0.000    0.534    0.700    1.000    1.000
##     speed             1.055    0.075   14.085    0.000    0.908    1.202    1.000    1.000
cf.vcov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("electronic=~ssgs", "verbal=~sspc", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   373.254    72.000     0.000     0.960     0.089     0.117 47944.324 48231.914
Mc(cf.vcov)
## [1] 0.8664786
cf.cov2<-cfa(cf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("electronic=~ssgs", "verbal=~sspc", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   307.970    71.000     0.000     0.968     0.080     0.091 47881.040 48173.588
Mc(cf.cov2)
## [1] 0.8933871
summary(cf.cov2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 101 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        81
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               307.970     265.087
##   Degrees of freedom                                71          71
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.162
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          211.417     181.979
##     1                                           96.552      83.108
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.529    0.122   20.652    0.000    2.289    2.769    2.529    0.590
##     sswk    (.p2.)    5.946    0.196   30.336    0.000    5.562    6.330    5.946    0.915
##     sspc              2.487    0.116   21.477    0.000    2.260    2.714    2.487    0.827
##   math =~                                                                                 
##     ssar    (.p4.)    6.488    0.132   49.024    0.000    6.229    6.748    6.488    0.938
##     ssmk    (.p5.)    5.679    0.119   47.613    0.000    5.445    5.913    5.679    0.884
##     ssmc    (.p6.)    1.374    0.149    9.221    0.000    1.082    1.666    1.374    0.303
##   electronic =~                                                                           
##     ssgs              1.369    0.151    9.097    0.000    1.074    1.664    1.369    0.319
##     ssasi   (.p8.)    3.209    0.143   22.510    0.000    2.930    3.489    3.209    0.710
##     ssmc    (.p9.)    2.337    0.154   15.151    0.000    2.034    2.639    2.337    0.516
##     ssei    (.10.)    3.319    0.092   36.111    0.000    3.139    3.500    3.319    0.941
##   speed =~                                                                                
##     ssno    (.11.)    0.774    0.027   28.916    0.000    0.722    0.827    0.774    0.889
##     sscs    (.12.)    0.601    0.031   19.281    0.000    0.540    0.663    0.601    0.736
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.803    0.015   51.959    0.000    0.773    0.833    0.803    0.803
##     elctrnc (.28.)    0.731    0.026   28.596    0.000    0.681    0.781    0.731    0.731
##     speed   (.29.)    0.662    0.031   21.677    0.000    0.603    0.722    0.662    0.662
##   math ~~                                                                                 
##     elctrnc (.30.)    0.626    0.025   25.463    0.000    0.578    0.675    0.626    0.626
##     speed   (.31.)    0.721    0.022   33.119    0.000    0.678    0.763    0.721    0.721
##   electronic ~~                                                                           
##     speed   (.32.)    0.428    0.034   12.557    0.000    0.361    0.495    0.428    0.428
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   17.922    0.209   85.743    0.000   17.512   18.332   17.922    4.181
##    .sswk             27.627    0.312   88.672    0.000   27.016   28.237   27.627    4.252
##    .sspc    (.35.)   11.185    0.145   77.019    0.000   10.901   11.470   11.185    3.719
##    .ssar             20.297    0.338   60.068    0.000   19.634   20.959   20.297    2.936
##    .ssmk    (.37.)   15.242    0.317   48.083    0.000   14.621   15.864   15.242    2.373
##    .ssmc    (.38.)   17.168    0.226   75.902    0.000   16.724   17.611   17.168    3.791
##    .ssasi   (.39.)   17.689    0.225   78.560    0.000   17.248   18.131   17.689    3.915
##    .ssei             13.521    0.179   75.575    0.000   13.171   13.872   13.521    3.832
##    .ssno    (.41.)    0.242    0.042    5.829    0.000    0.161    0.324    0.242    0.278
##    .sscs              0.075    0.040    1.880    0.060   -0.003    0.153    0.075    0.092
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssgs              5.040    0.412   12.219    0.000    4.231    5.848    5.040    0.274
##    .sswk              6.857    0.905    7.574    0.000    5.083    8.631    6.857    0.162
##    .sspc              2.860    0.241   11.865    0.000    2.388    3.332    2.860    0.316
##    .ssar              5.703    0.869    6.566    0.000    4.001    7.406    5.703    0.119
##    .ssmk              9.010    0.884   10.195    0.000    7.278   10.742    9.010    0.218
##    .ssmc              9.143    0.697   13.110    0.000    7.776   10.510    9.143    0.446
##    .ssasi            10.115    0.922   10.971    0.000    8.308   11.922   10.115    0.496
##    .ssei              1.429    0.384    3.726    0.000    0.678    2.181    1.429    0.115
##    .ssno              0.160    0.032    5.009    0.000    0.097    0.222    0.160    0.211
##    .sscs              0.307    0.046    6.677    0.000    0.217    0.397    0.307    0.459
##     electronic        1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.529    0.122   20.652    0.000    2.289    2.769    2.529    0.589
##     sswk    (.p2.)    5.946    0.196   30.336    0.000    5.562    6.330    5.946    0.917
##     sspc              2.138    0.125   17.153    0.000    1.894    2.382    2.138    0.810
##   math =~                                                                                 
##     ssar    (.p4.)    6.488    0.132   49.024    0.000    6.229    6.748    6.488    0.940
##     ssmk    (.p5.)    5.679    0.119   47.613    0.000    5.445    5.913    5.679    0.880
##     ssmc    (.p6.)    1.374    0.149    9.221    0.000    1.082    1.666    1.374    0.324
##   electronic =~                                                                           
##     ssgs              1.620    0.132   12.281    0.000    1.362    1.879    1.289    0.300
##     ssasi   (.p8.)    3.209    0.143   22.510    0.000    2.930    3.489    2.553    0.698
##     ssmc    (.p9.)    2.337    0.154   15.151    0.000    2.034    2.639    1.859    0.438
##     ssei    (.10.)    3.319    0.092   36.111    0.000    3.139    3.500    2.640    0.798
##   speed =~                                                                                
##     ssno    (.11.)    0.774    0.027   28.916    0.000    0.722    0.827    0.774    0.900
##     sscs    (.12.)    0.601    0.031   19.281    0.000    0.540    0.663    0.601    0.702
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.803    0.015   51.959    0.000    0.773    0.833    0.803    0.803
##     elctrnc (.28.)    0.731    0.026   28.596    0.000    0.681    0.781    0.919    0.919
##     speed   (.29.)    0.662    0.031   21.677    0.000    0.603    0.722    0.662    0.662
##   math ~~                                                                                 
##     elctrnc (.30.)    0.626    0.025   25.463    0.000    0.578    0.675    0.787    0.787
##     speed   (.31.)    0.721    0.022   33.119    0.000    0.678    0.763    0.721    0.721
##   electronic ~~                                                                           
##     speed   (.32.)    0.428    0.034   12.557    0.000    0.361    0.495    0.538    0.538
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   17.922    0.209   85.743    0.000   17.512   18.332   17.922    4.175
##    .sswk             25.355    0.499   50.807    0.000   24.377   26.333   25.355    3.912
##    .sspc    (.35.)   11.185    0.145   77.019    0.000   10.901   11.470   11.185    4.236
##    .ssar             18.924    0.413   45.865    0.000   18.115   19.733   18.924    2.741
##    .ssmk    (.37.)   15.242    0.317   48.083    0.000   14.621   15.864   15.242    2.362
##    .ssmc    (.38.)   17.168    0.226   75.902    0.000   16.724   17.611   17.168    4.044
##    .ssasi   (.39.)   17.689    0.225   78.560    0.000   17.248   18.131   17.689    4.840
##    .ssei             16.463    0.421   39.064    0.000   15.637   17.289   16.463    4.974
##    .ssno    (.41.)    0.242    0.042    5.829    0.000    0.161    0.324    0.242    0.282
##    .sscs              0.421    0.047    8.889    0.000    0.328    0.514    0.421    0.491
##     verbal            0.441    0.095    4.634    0.000    0.255    0.628    0.441    0.441
##     math             -0.044    0.076   -0.580    0.562   -0.193    0.105   -0.044   -0.044
##     elctrnc          -1.830    0.132  -13.824    0.000   -2.090   -1.571   -2.301   -2.301
##     speed             0.347    0.075    4.609    0.000    0.199    0.494    0.347    0.347
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssgs              4.381    0.384   11.401    0.000    3.628    5.135    4.381    0.238
##    .sswk              6.661    0.913    7.295    0.000    4.871    8.451    6.661    0.159
##    .sspc              2.401    0.198   12.147    0.000    2.013    2.788    2.401    0.344
##    .ssar              5.554    0.921    6.030    0.000    3.749    7.359    5.554    0.117
##    .ssmk              9.407    0.916   10.265    0.000    7.611   11.203    9.407    0.226
##    .ssmc              8.659    0.583   14.846    0.000    7.516    9.802    8.659    0.480
##    .ssasi             6.844    0.536   12.773    0.000    5.793    7.894    6.844    0.512
##    .ssei              3.981    0.388   10.250    0.000    3.220    4.742    3.981    0.363
##    .ssno              0.141    0.034    4.183    0.000    0.075    0.207    0.141    0.190
##    .sscs              0.372    0.047    7.985    0.000    0.281    0.464    0.372    0.507
##     electronic        0.633    0.045   14.165    0.000    0.545    0.720    1.000    1.000
reduced<-cfa(cf.reduced, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("electronic=~ssgs", "verbal=~sspc", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   308.366    72.000     0.000     0.968     0.079     0.092 47879.436 48167.026
Mc(reduced)
## [1] 0.8936438
summary(reduced, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 96 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        80
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               308.366     265.366
##   Degrees of freedom                                72          72
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.162
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          211.559     182.058
##     1                                           96.807      83.308
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.528    0.123   20.634    0.000    2.288    2.768    2.528    0.590
##     sswk    (.p2.)    5.946    0.196   30.355    0.000    5.562    6.330    5.946    0.915
##     sspc              2.488    0.116   21.517    0.000    2.261    2.715    2.488    0.827
##   math =~                                                                                 
##     ssar    (.p4.)    6.490    0.132   49.190    0.000    6.231    6.748    6.490    0.938
##     ssmk    (.p5.)    5.680    0.119   47.570    0.000    5.446    5.914    5.680    0.884
##     ssmc    (.p6.)    1.372    0.149    9.207    0.000    1.080    1.664    1.372    0.303
##   electronic =~                                                                           
##     ssgs              1.371    0.150    9.111    0.000    1.076    1.665    1.371    0.320
##     ssasi   (.p8.)    3.208    0.143   22.493    0.000    2.929    3.488    3.208    0.710
##     ssmc    (.p9.)    2.341    0.154   15.218    0.000    2.039    2.642    2.341    0.517
##     ssei    (.10.)    3.319    0.092   36.116    0.000    3.139    3.499    3.319    0.941
##   speed =~                                                                                
##     ssno    (.11.)    0.774    0.027   28.919    0.000    0.722    0.827    0.774    0.889
##     sscs    (.12.)    0.601    0.031   19.283    0.000    0.540    0.663    0.601    0.736
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.28.)    0.803    0.015   51.971    0.000    0.773    0.833    0.803    0.803
##     elctrnc (.29.)    0.731    0.026   28.600    0.000    0.681    0.781    0.731    0.731
##     speed   (.30.)    0.663    0.031   21.687    0.000    0.603    0.722    0.663    0.663
##   math ~~                                                                                 
##     elctrnc (.31.)    0.626    0.025   25.466    0.000    0.578    0.675    0.626    0.626
##     speed   (.32.)    0.721    0.022   33.139    0.000    0.678    0.764    0.721    0.721
##   electronic ~~                                                                           
##     speed   (.33.)    0.428    0.034   12.564    0.000    0.362    0.495    0.428    0.428
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.34.)   17.874    0.183   97.516    0.000   17.514   18.233   17.874    4.170
##    .sswk             27.547    0.276   99.654    0.000   27.005   28.089   27.547    4.240
##    .sspc    (.36.)   11.152    0.129   86.524    0.000   10.900   11.405   11.152    3.707
##    .ssar             20.188    0.265   76.080    0.000   19.668   20.708   20.188    2.919
##    .ssmk    (.38.)   15.121    0.216   70.117    0.000   14.699   15.544   15.121    2.354
##    .ssmc    (.39.)   17.119    0.203   84.336    0.000   16.721   17.516   17.119    3.779
##    .ssasi   (.40.)   17.657    0.219   80.486    0.000   17.227   18.087   17.657    3.909
##    .ssei             13.487    0.164   82.322    0.000   13.165   13.808   13.487    3.822
##    .ssno    (.42.)    0.233    0.038    6.204    0.000    0.159    0.307    0.233    0.267
##    .sscs              0.068    0.037    1.824    0.068   -0.005    0.141    0.068    0.083
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssgs              5.040    0.412   12.220    0.000    4.232    5.848    5.040    0.274
##    .sswk              6.857    0.905    7.572    0.000    5.082    8.631    6.857    0.162
##    .sspc              2.860    0.241   11.858    0.000    2.387    3.332    2.860    0.316
##    .ssar              5.701    0.869    6.560    0.000    3.998    7.404    5.701    0.119
##    .ssmk              9.014    0.884   10.195    0.000    7.281   10.747    9.014    0.218
##    .ssmc              9.138    0.698   13.094    0.000    7.770   10.506    9.138    0.445
##    .ssasi            10.113    0.922   10.969    0.000    8.306   11.920   10.113    0.496
##    .ssei              1.432    0.383    3.737    0.000    0.681    2.183    1.432    0.115
##    .ssno              0.160    0.032    5.009    0.000    0.097    0.222    0.160    0.210
##    .sscs              0.307    0.046    6.677    0.000    0.217    0.397    0.307    0.459
##     electronic        1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.528    0.123   20.634    0.000    2.288    2.768    2.528    0.589
##     sswk    (.p2.)    5.946    0.196   30.355    0.000    5.562    6.330    5.946    0.917
##     sspc              2.138    0.125   17.150    0.000    1.894    2.382    2.138    0.810
##   math =~                                                                                 
##     ssar    (.p4.)    6.490    0.132   49.190    0.000    6.231    6.748    6.490    0.940
##     ssmk    (.p5.)    5.680    0.119   47.570    0.000    5.446    5.914    5.680    0.880
##     ssmc    (.p6.)    1.372    0.149    9.207    0.000    1.080    1.664    1.372    0.323
##   electronic =~                                                                           
##     ssgs              1.623    0.132   12.276    0.000    1.364    1.882    1.291    0.301
##     ssasi   (.p8.)    3.208    0.143   22.493    0.000    2.929    3.488    2.552    0.698
##     ssmc    (.p9.)    2.341    0.154   15.218    0.000    2.039    2.642    1.862    0.438
##     ssei    (.10.)    3.319    0.092   36.116    0.000    3.139    3.499    2.640    0.798
##   speed =~                                                                                
##     ssno    (.11.)    0.774    0.027   28.919    0.000    0.722    0.827    0.774    0.900
##     sscs    (.12.)    0.601    0.031   19.283    0.000    0.540    0.663    0.601    0.702
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.28.)    0.803    0.015   51.971    0.000    0.773    0.833    0.803    0.803
##     elctrnc (.29.)    0.731    0.026   28.600    0.000    0.681    0.781    0.919    0.919
##     speed   (.30.)    0.663    0.031   21.687    0.000    0.603    0.722    0.663    0.663
##   math ~~                                                                                 
##     elctrnc (.31.)    0.626    0.025   25.466    0.000    0.578    0.675    0.787    0.787
##     speed   (.32.)    0.721    0.022   33.139    0.000    0.678    0.764    0.721    0.721
##   electronic ~~                                                                           
##     speed   (.33.)    0.428    0.034   12.564    0.000    0.362    0.495    0.539    0.539
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.34.)   17.874    0.183   97.516    0.000   17.514   18.233   17.874    4.163
##    .sswk             25.263    0.454   55.601    0.000   24.372   26.153   25.263    3.897
##    .sspc    (.36.)   11.152    0.129   86.524    0.000   10.900   11.405   11.152    4.224
##    .ssar             18.753    0.262   71.632    0.000   18.240   19.266   18.753    2.716
##    .ssmk    (.38.)   15.121    0.216   70.117    0.000   14.699   15.544   15.121    2.342
##    .ssmc    (.39.)   17.119    0.203   84.336    0.000   16.721   17.516   17.119    4.031
##    .ssasi   (.40.)   17.657    0.219   80.486    0.000   17.227   18.087   17.657    4.831
##    .ssei             16.431    0.418   39.351    0.000   15.613   17.250   16.431    4.965
##    .ssno    (.42.)    0.233    0.038    6.204    0.000    0.159    0.307    0.233    0.271
##    .sscs              0.414    0.045    9.247    0.000    0.326    0.501    0.414    0.483
##     verbal            0.471    0.077    6.100    0.000    0.320    0.623    0.471    0.471
##     elctrnc          -1.810    0.127  -14.205    0.000   -2.060   -1.560   -2.275   -2.275
##     speed             0.371    0.062    5.967    0.000    0.249    0.493    0.371    0.371
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssgs              4.381    0.384   11.401    0.000    3.628    5.134    4.381    0.238
##    .sswk              6.660    0.913    7.295    0.000    4.871    8.449    6.660    0.158
##    .sspc              2.401    0.198   12.148    0.000    2.013    2.788    2.401    0.344
##    .ssar              5.552    0.921    6.028    0.000    3.747    7.357    5.552    0.116
##    .ssmk              9.412    0.918   10.258    0.000    7.614   11.210    9.412    0.226
##    .ssmc              8.659    0.583   14.843    0.000    7.515    9.802    8.659    0.480
##    .ssasi             6.844    0.536   12.775    0.000    5.794    7.894    6.844    0.512
##    .ssei              3.982    0.388   10.253    0.000    3.221    4.743    3.982    0.364
##    .ssno              0.141    0.034    4.183    0.000    0.075    0.207    0.141    0.190
##    .sscs              0.372    0.047    7.985    0.000    0.281    0.464    0.372    0.507
##     electronic        0.633    0.045   14.170    0.000    0.545    0.720    1.000    1.000
tests<-lavTestLRT(configural, metric2, scalar2, cf.cov, cf.cov2, reduced)
Td=tests[2:6,"Chisq diff"]
Td
## [1] 21.4160944  9.4329700 24.5698454  8.1511306  0.3352272
dfd=tests[2:6,"Df diff"]
dfd
## [1] 6 2 6 3 1
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-526 + 526 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.06995712 0.08413691 0.07678013 0.05718880        NaN
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.03943611 0.10306430
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.03575879 0.14133825
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.04677058 0.10946959
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1] 0.009106328 0.105998965
RMSEA.CI(T=Td[5],df=dfd[5],N=N,G=2)
## [1]         NA 0.09587373
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.998     0.998     0.871     0.734     0.339     0.070
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.991     0.989     0.889     0.821     0.617     0.371
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     0.999     0.931     0.836     0.474     0.129
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.957     0.949     0.670     0.532     0.255     0.079
round(pvals(T=Td[5],df=dfd[5],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.437     0.427     0.243     0.188     0.097     0.041
tests<-lavTestLRT(configural, metric2, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 21.41609  9.43297 40.00921
dfd=tests[2:4,"Df diff"]
dfd
## [1]  6  2 10
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-526 + 526 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06995712 0.08413691 0.07560449
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.03943611 0.10306430
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.03575879 0.14133825
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.05197196 0.10078747
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.998     0.998     0.871     0.734     0.339     0.070
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.991     0.989     0.889     0.821     0.617     0.371
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.962     0.869     0.414     0.056
tests<-lavTestLRT(configural, metric2, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]  21.41609 230.49948
dfd=tests[2:3,"Df diff"]
dfd
## [1] 6 6
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-526 + 526 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06995712 0.26696381
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.03943611 0.10306430
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.2379598 0.2968726
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.998     0.998     0.871     0.734     0.339     0.070
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric)
Td=tests[2,"Chisq diff"]
Td
## [1] 41.49454
dfd=tests[2,"Df diff"]
dfd
## [1] 8
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-526 + 526 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.08930225
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.06355752 0.11697473
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.993     0.968     0.742     0.280
# ONE FACTOR, just for checking if gap direction aligns with HOF

fmodel<-'
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
'

configural<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##  1345.119    70.000     0.000     0.830     0.186     0.069 48920.189 49217.696
Mc(configural)
## [1] 0.5451895
metric<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##  1397.059    79.000     0.000     0.824     0.178     0.084 48954.128 49207.009
Mc(metric)
## [1] 0.5341654
scalar<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##  3026.630    88.000     0.000     0.607     0.252     0.175 50565.700 50773.955
Mc(scalar)
## [1] 0.2470866
summary(scalar, standardized=T, ci=T) # -0.326 Std.all
## lavaan 0.6-18 ended normally after 97 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        62
##   Number of equality constraints                    20
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3026.630    2562.854
##   Degrees of freedom                                88          88
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.181
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                         1860.432    1575.355
##     1                                         1166.198     987.500
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g =~                                                                                    
##     ssgs    (.p1.)    4.008    0.150   26.756    0.000    3.714    4.302    4.008    0.864
##     ssar    (.p2.)    6.290    0.205   30.616    0.000    5.887    6.692    6.290    0.855
##     sswk    (.p3.)    5.761    0.274   21.042    0.000    5.224    6.298    5.761    0.848
##     sspc    (.p4.)    2.255    0.136   16.563    0.000    1.988    2.522    2.255    0.740
##     ssno    (.p5.)    0.547    0.041   13.439    0.000    0.467    0.627    0.547    0.610
##     sscs    (.p6.)    0.425    0.044    9.598    0.000    0.338    0.512    0.425    0.496
##     ssasi   (.p7.)    2.810    0.202   13.921    0.000    2.414    3.205    2.810    0.449
##     ssmk    (.p8.)    5.490    0.199   27.572    0.000    5.100    5.880    5.490    0.815
##     ssmc    (.p9.)    3.616    0.176   20.543    0.000    3.271    3.961    3.616    0.693
##     ssei    (.10.)    3.002    0.147   20.400    0.000    2.714    3.291    3.002    0.756
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.22.)   17.558    0.239   73.558    0.000   17.090   18.025   17.558    3.783
##    .ssar    (.23.)   20.353    0.358   56.810    0.000   19.650   21.055   20.353    2.766
##    .sswk    (.24.)   28.610    0.301   94.948    0.000   28.019   29.200   28.610    4.211
##    .sspc    (.25.)   12.049    0.136   88.580    0.000   11.782   12.316   12.049    3.952
##    .ssno    (.26.)    0.449    0.038   11.764    0.000    0.374    0.524    0.449    0.501
##    .sscs    (.27.)    0.367    0.046    8.011    0.000    0.277    0.456    0.367    0.428
##    .ssasi   (.28.)   13.778    0.373   36.923    0.000   13.047   14.509   13.778    2.204
##    .ssmk    (.29.)   15.890    0.326   48.711    0.000   15.250   16.529   15.890    2.360
##    .ssmc    (.30.)   15.378    0.309   49.742    0.000   14.772   15.984   15.378    2.948
##    .ssei    (.31.)   12.379    0.255   48.519    0.000   11.879   12.879   12.379    3.115
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.477    0.572    9.581    0.000    4.357    6.598    5.477    0.254
##    .ssar             14.589    1.404   10.387    0.000   11.836   17.341   14.589    0.269
##    .sswk             12.969    1.364    9.507    0.000   10.295   15.643   12.969    0.281
##    .sspc              4.211    0.383   10.988    0.000    3.460    4.962    4.211    0.453
##    .ssno              0.504    0.037   13.725    0.000    0.432    0.576    0.504    0.627
##    .sscs              0.553    0.061    9.119    0.000    0.434    0.672    0.553    0.754
##    .ssasi            31.190    3.421    9.118    0.000   24.486   37.895   31.190    0.798
##    .ssmk             15.186    1.420   10.694    0.000   12.403   17.970   15.186    0.335
##    .ssmc             14.127    1.307   10.806    0.000   11.565   16.689   14.127    0.519
##    .ssei              6.776    0.823    8.235    0.000    5.164    8.389    6.776    0.429
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g =~                                                                                    
##     ssgs    (.p1.)    4.008    0.150   26.756    0.000    3.714    4.302    3.425    0.834
##     ssar    (.p2.)    6.290    0.205   30.616    0.000    5.887    6.692    5.374    0.836
##     sswk    (.p3.)    5.761    0.274   21.042    0.000    5.224    6.298    4.922    0.813
##     sspc    (.p4.)    2.255    0.136   16.563    0.000    1.988    2.522    1.927    0.728
##     ssno    (.p5.)    0.547    0.041   13.439    0.000    0.467    0.627    0.467    0.551
##     sscs    (.p6.)    0.425    0.044    9.598    0.000    0.338    0.512    0.363    0.401
##     ssasi   (.p7.)    2.810    0.202   13.921    0.000    2.414    3.205    2.401    0.620
##     ssmk    (.p8.)    5.490    0.199   27.572    0.000    5.100    5.880    4.691    0.779
##     ssmc    (.p9.)    3.616    0.176   20.543    0.000    3.271    3.961    3.090    0.675
##     ssei    (.10.)    3.002    0.147   20.400    0.000    2.714    3.291    2.565    0.710
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.22.)   17.558    0.239   73.558    0.000   17.090   18.025   17.558    4.275
##    .ssar    (.23.)   20.353    0.358   56.810    0.000   19.650   21.055   20.353    3.165
##    .sswk    (.24.)   28.610    0.301   94.948    0.000   28.019   29.200   28.610    4.726
##    .sspc    (.25.)   12.049    0.136   88.580    0.000   11.782   12.316   12.049    4.549
##    .ssno    (.26.)    0.449    0.038   11.764    0.000    0.374    0.524    0.449    0.530
##    .sscs    (.27.)    0.367    0.046    8.011    0.000    0.277    0.456    0.367    0.405
##    .ssasi   (.28.)   13.778    0.373   36.923    0.000   13.047   14.509   13.778    3.560
##    .ssmk    (.29.)   15.890    0.326   48.711    0.000   15.250   16.529   15.890    2.637
##    .ssmc    (.30.)   15.378    0.309   49.742    0.000   14.772   15.984   15.378    3.361
##    .ssei    (.31.)   12.379    0.255   48.519    0.000   11.879   12.879   12.379    3.427
##     g                -0.278    0.084   -3.318    0.001   -0.443   -0.114   -0.326   -0.326
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.137    0.482   10.655    0.000    4.192    6.082    5.137    0.305
##    .ssar             12.463    1.085   11.492    0.000   10.337   14.589   12.463    0.301
##    .sswk             12.415    1.197   10.374    0.000   10.070   14.761   12.415    0.339
##    .sspc              3.301    0.314   10.528    0.000    2.687    3.916    3.301    0.471
##    .ssno              0.500    0.035   14.188    0.000    0.431    0.569    0.500    0.696
##    .sscs              0.689    0.064   10.807    0.000    0.564    0.814    0.689    0.839
##    .ssasi             9.220    1.034    8.917    0.000    7.194   11.247    9.220    0.615
##    .ssmk             14.294    1.073   13.323    0.000   12.191   16.397   14.294    0.394
##    .ssmc             11.385    1.003   11.348    0.000    9.418   13.351   11.385    0.544
##    .ssei              6.468    0.597   10.826    0.000    5.297    7.639    6.468    0.496
##     g                 0.730    0.067   10.821    0.000    0.598    0.862    1.000    1.000
# HIGH ORDER FACTOR 

hof.model<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
'

hof.lv<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal # yes, verbal variance among females is greater, but non-significant and no fit decrement
math~~1*math
speed~~1*speed
g~~1*g
'

hof.weak<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal 
math~~1*math
speed~~1*speed
g~~1*g
math~0*1
'

baseline<-cfa(hof.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   519.597    29.000     0.000     0.936     0.127     0.066 49060.137 49238.641
Mc(baseline)
## [1] 0.7918404
configural<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   353.773    58.000     0.000     0.960     0.098     0.038 47952.843 48309.851
Mc(configural)
## [1] 0.8687409
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 91 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        72
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               353.773     301.959
##   Degrees of freedom                                58          58
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.172
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          241.478     206.110
##     1                                          112.296      95.848
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              0.614    0.222    2.764    0.006    0.179    1.049    2.569    0.567
##     sswk              1.462    0.550    2.659    0.008    0.384    2.540    6.120    0.911
##     sspc              0.627    0.234    2.684    0.007    0.169    1.085    2.625    0.844
##   math =~                                                                                 
##     ssar              3.512    0.259   13.579    0.000    3.005    4.019    6.711    0.941
##     ssmk              3.117    0.227   13.749    0.000    2.673    3.562    5.956    0.895
##     ssmc              0.546    0.141    3.886    0.000    0.271    0.822    1.043    0.211
##   electronic =~                                                                           
##     ssgs              0.924    0.166    5.570    0.000    0.599    1.249    1.577    0.348
##     ssasi             2.069    0.160   12.938    0.000    1.755    2.382    3.533    0.746
##     ssmc              1.865    0.166   11.222    0.000    1.539    2.191    3.185    0.644
##     ssei              2.115    0.125   16.975    0.000    1.871    2.360    3.613    0.941
##   speed =~                                                                                
##     ssno              0.501    0.033   15.246    0.000    0.437    0.565    0.756    0.854
##     sscs              0.436    0.033   13.121    0.000    0.371    0.501    0.658    0.783
##   g =~                                                                                    
##     verbal            4.065    1.625    2.502    0.012    0.880    7.250    0.971    0.971
##     math              1.628    0.157   10.343    0.000    1.320    1.937    0.852    0.852
##     electronic        1.384    0.129   10.703    0.000    1.131    1.638    0.811    0.811
##     speed             1.129    0.124    9.143    0.000    0.887    1.372    0.749    0.749
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             17.910    0.210   85.392    0.000   17.498   18.321   17.910    3.954
##    .sswk             27.643    0.309   89.548    0.000   27.038   28.248   27.643    4.115
##    .sspc             11.207    0.144   77.836    0.000   10.925   11.490   11.207    3.603
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.848
##    .ssmk             15.277    0.316   48.361    0.000   14.658   15.896   15.277    2.296
##    .ssmc             17.082    0.231   73.903    0.000   16.629   17.535   17.082    3.455
##    .ssasi            17.796    0.221   80.523    0.000   17.363   18.230   17.796    3.756
##    .ssei             13.530    0.177   76.269    0.000   13.182   13.877   13.530    3.524
##    .ssno              0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.275
##    .sscs              0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.091
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.042    0.420   12.004    0.000    4.219    5.866    5.042    0.246
##    .sswk              7.665    0.986    7.775    0.000    5.733    9.597    7.665    0.170
##    .sspc              2.786    0.241   11.558    0.000    2.313    3.258    2.786    0.288
##    .ssar              5.815    1.054    5.517    0.000    3.750    7.881    5.815    0.114
##    .ssmk              8.786    1.006    8.736    0.000    6.815   10.757    8.786    0.199
##    .ssmc              8.624    0.719   12.000    0.000    7.215   10.032    8.624    0.353
##    .ssasi             9.975    0.910   10.959    0.000    8.191   11.759    9.975    0.444
##    .ssei              1.691    0.395    4.279    0.000    0.916    2.466    1.691    0.115
##    .ssno              0.212    0.035    6.063    0.000    0.143    0.280    0.212    0.270
##    .sscs              0.273    0.048    5.667    0.000    0.179    0.368    0.273    0.387
##    .verbal            1.000                               1.000    1.000    0.057    0.057
##    .math              1.000                               1.000    1.000    0.274    0.274
##    .electronic        1.000                               1.000    1.000    0.343    0.343
##    .speed             1.000                               1.000    1.000    0.439    0.439
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              0.640    0.182    3.528    0.000    0.285    0.996    1.578    0.386
##     sswk              2.349    0.308    7.636    0.000    1.746    2.952    5.791    0.928
##     sspc              0.831    0.111    7.476    0.000    0.613    1.049    2.048    0.803
##   math =~                                                                                 
##     ssar              2.992    0.251   11.916    0.000    2.500    3.484    6.234    0.935
##     ssmk              2.579    0.218   11.845    0.000    2.152    3.006    5.375    0.867
##     ssmc              0.843    0.180    4.688    0.000    0.491    1.196    1.757    0.441
##   electronic =~                                                                           
##     ssgs              0.920    0.155    5.954    0.000    0.617    1.223    2.125    0.519
##     ssasi             0.942    0.139    6.764    0.000    0.669    1.215    2.175    0.638
##     ssmc              0.463    0.166    2.794    0.005    0.138    0.787    1.068    0.268
##     ssei              1.018    0.152    6.699    0.000    0.720    1.316    2.351    0.763
##   speed =~                                                                                
##     ssno              0.558    0.039   14.251    0.000    0.482    0.635    0.761    0.900
##     sscs              0.414    0.031   13.518    0.000    0.354    0.474    0.564    0.679
##   g =~                                                                                    
##     verbal            2.253    0.345    6.539    0.000    1.578    2.928    0.914    0.914
##     math              1.828    0.200    9.125    0.000    1.435    2.221    0.877    0.877
##     electronic        2.081    0.346    6.014    0.000    1.403    2.760    0.901    0.901
##     speed             0.927    0.101    9.166    0.000    0.729    1.125    0.680    0.680
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             16.094    0.190   84.654    0.000   15.721   16.467   16.094    3.933
##    .sswk             27.980    0.285   98.025    0.000   27.421   28.540   27.980    4.485
##    .sspc             12.116    0.116  104.370    0.000   11.888   12.343   12.116    4.750
##    .ssar             18.639    0.312   59.821    0.000   18.028   19.250   18.639    2.796
##    .ssmk             14.968    0.291   51.396    0.000   14.397   15.539   14.968    2.413
##    .ssmc             12.925    0.187   68.955    0.000   12.557   13.292   12.925    3.242
##    .ssasi            11.745    0.159   73.710    0.000   11.433   12.058   11.745    3.447
##    .ssei             10.387    0.143   72.446    0.000   10.106   10.668   10.387    3.370
##    .ssno              0.511    0.039   13.006    0.000    0.434    0.588    0.511    0.604
##    .sscs              0.629    0.039   16.289    0.000    0.554    0.705    0.629    0.758
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.210    0.435    9.679    0.000    3.358    5.063    4.210    0.251
##    .sswk              5.396    0.995    5.422    0.000    3.445    7.347    5.396    0.139
##    .sspc              2.312    0.193   11.959    0.000    1.933    2.691    2.312    0.355
##    .ssar              5.572    0.994    5.608    0.000    3.625    7.520    5.572    0.125
##    .ssmk              9.583    0.977    9.809    0.000    7.668   11.498    9.583    0.249
##    .ssmc              8.697    0.581   14.974    0.000    7.559    9.835    8.697    0.547
##    .ssasi             6.884    0.555   12.404    0.000    5.796    7.972    6.884    0.593
##    .ssei              3.975    0.376   10.565    0.000    3.238    4.713    3.975    0.418
##    .ssno              0.136    0.050    2.705    0.007    0.037    0.234    0.136    0.190
##    .sscs              0.372    0.056    6.697    0.000    0.263    0.481    0.372    0.539
##    .verbal            1.000                               1.000    1.000    0.165    0.165
##    .math              1.000                               1.000    1.000    0.230    0.230
##    .electronic        1.000                               1.000    1.000    0.188    0.188
##    .speed             1.000                               1.000    1.000    0.538    0.538
##     g                 1.000                               1.000    1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   404.583    69.000     0.000     0.955     0.096     0.053 47981.653 48284.118
Mc(metric)
## [1] 0.8524427
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 80 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        77
##   Number of equality constraints                    16
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               404.583     346.383
##   Degrees of freedom                                69          69
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.168
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          259.666     222.313
##     1                                          144.917     124.070
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.724    0.188    3.848    0.000    0.355    1.093    2.584    0.568
##     sswk    (.p2.)    1.756    0.467    3.759    0.000    0.841    2.672    6.268    0.917
##     sspc    (.p3.)    0.691    0.182    3.794    0.000    0.334    1.048    2.467    0.823
##   math =~                                                                                 
##     ssar    (.p4.)    3.388    0.256   13.257    0.000    2.887    3.889    6.916    0.945
##     ssmk    (.p5.)    2.967    0.223   13.299    0.000    2.530    3.405    6.058    0.897
##     ssmc    (.p6.)    0.592    0.114    5.173    0.000    0.367    0.816    1.208    0.254
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.058    0.149    7.111    0.000    0.766    1.349    1.655    0.364
##     ssasi   (.p8.)    2.104    0.152   13.872    0.000    1.807    2.402    3.292    0.720
##     ssmc    (.p9.)    1.792    0.169   10.576    0.000    1.460    2.124    2.803    0.589
##     ssei    (.10.)    2.216    0.121   18.305    0.000    1.979    2.453    3.466    0.939
##   speed =~                                                                                
##     ssno    (.11.)    0.507    0.032   15.812    0.000    0.444    0.570    0.774    0.869
##     sscs    (.12.)    0.416    0.029   14.212    0.000    0.359    0.474    0.635    0.765
##   g =~                                                                                    
##     verbal  (.13.)    3.426    0.982    3.488    0.000    1.501    5.350    0.960    0.960
##     math    (.14.)    1.780    0.158   11.241    0.000    1.469    2.090    0.872    0.872
##     elctrnc (.15.)    1.203    0.110   10.899    0.000    0.986    1.419    0.769    0.769
##     speed   (.16.)    1.153    0.109   10.553    0.000    0.939    1.367    0.755    0.755
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             17.910    0.210   85.392    0.000   17.498   18.321   17.910    3.936
##    .sswk             27.643    0.309   89.548    0.000   27.038   28.248   27.643    4.045
##    .sspc             11.207    0.144   77.836    0.000   10.925   11.490   11.207    3.740
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.776
##    .ssmk             15.277    0.316   48.361    0.000   14.658   15.896   15.277    2.262
##    .ssmc             17.082    0.231   73.903    0.000   16.629   17.535   17.082    3.589
##    .ssasi            17.796    0.221   80.523    0.000   17.363   18.230   17.796    3.893
##    .ssei             13.530    0.177   76.269    0.000   13.182   13.877   13.530    3.667
##    .ssno              0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.274
##    .sscs              0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.092
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.974    0.410   12.123    0.000    4.170    5.778    4.974    0.240
##    .sswk              7.429    0.996    7.457    0.000    5.476    9.381    7.429    0.159
##    .sspc              2.895    0.244   11.844    0.000    2.416    3.374    2.895    0.322
##    .ssar              5.681    0.960    5.920    0.000    3.800    7.562    5.681    0.106
##    .ssmk              8.910    0.927    9.614    0.000    7.094   10.727    8.910    0.195
##    .ssmc              8.807    0.718   12.261    0.000    7.399   10.215    8.807    0.389
##    .ssasi            10.067    0.912   11.036    0.000    8.279   11.855   10.067    0.482
##    .ssei              1.602    0.410    3.906    0.000    0.798    2.406    1.602    0.118
##    .ssno              0.194    0.033    5.879    0.000    0.129    0.259    0.194    0.244
##    .sscs              0.287    0.046    6.296    0.000    0.197    0.376    0.287    0.415
##    .verbal            1.000                               1.000    1.000    0.079    0.079
##    .math              1.000                               1.000    1.000    0.240    0.240
##    .electronic        1.000                               1.000    1.000    0.409    0.409
##    .speed             1.000                               1.000    1.000    0.429    0.429
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.724    0.188    3.848    0.000    0.355    1.093    2.294    0.574
##     sswk    (.p2.)    1.756    0.467    3.759    0.000    0.841    2.672    5.565    0.910
##     sspc    (.p3.)    0.691    0.182    3.794    0.000    0.334    1.048    2.190    0.824
##   math =~                                                                                 
##     ssar    (.p4.)    3.388    0.256   13.257    0.000    2.887    3.889    6.023    0.930
##     ssmk    (.p5.)    2.967    0.223   13.299    0.000    2.530    3.405    5.276    0.864
##     ssmc    (.p6.)    0.592    0.114    5.173    0.000    0.367    0.816    1.052    0.255
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.058    0.149    7.111    0.000    0.766    1.349    1.182    0.296
##     ssasi   (.p8.)    2.104    0.152   13.872    0.000    1.807    2.402    2.352    0.671
##     ssmc    (.p9.)    1.792    0.169   10.576    0.000    1.460    2.124    2.002    0.486
##     ssei    (.10.)    2.216    0.121   18.305    0.000    1.979    2.453    2.476    0.778
##   speed =~                                                                                
##     ssno    (.11.)    0.507    0.032   15.812    0.000    0.444    0.570    0.731    0.870
##     sscs    (.12.)    0.416    0.029   14.212    0.000    0.359    0.474    0.600    0.711
##   g =~                                                                                    
##     verbal  (.13.)    3.426    0.982    3.488    0.000    1.501    5.350    0.927    0.927
##     math    (.14.)    1.780    0.158   11.241    0.000    1.469    2.090    0.858    0.858
##     elctrnc (.15.)    1.203    0.110   10.899    0.000    0.986    1.419    0.923    0.923
##     speed   (.16.)    1.153    0.109   10.553    0.000    0.939    1.367    0.686    0.686
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             16.094    0.190   84.654    0.000   15.721   16.467   16.094    4.026
##    .sswk             27.980    0.285   98.025    0.000   27.421   28.540   27.980    4.576
##    .sspc             12.116    0.116  104.370    0.000   11.888   12.343   12.116    4.558
##    .ssar             18.639    0.312   59.821    0.000   18.028   19.250   18.639    2.878
##    .ssmk             14.968    0.291   51.396    0.000   14.397   15.539   14.968    2.451
##    .ssmc             12.925    0.187   68.955    0.000   12.557   13.292   12.925    3.136
##    .ssasi            11.745    0.159   73.710    0.000   11.433   12.058   11.745    3.354
##    .ssei             10.387    0.143   72.446    0.000   10.106   10.668   10.387    3.262
##    .ssno              0.511    0.039   13.006    0.000    0.434    0.588    0.511    0.608
##    .sscs              0.629    0.039   16.289    0.000    0.554    0.705    0.629    0.747
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.682    0.383   12.228    0.000    3.932    5.433    4.682    0.293
##    .sswk              6.430    0.926    6.946    0.000    4.616    8.245    6.430    0.172
##    .sspc              2.270    0.191   11.877    0.000    1.896    2.645    2.270    0.321
##    .ssar              5.666    0.945    5.994    0.000    3.813    7.518    5.666    0.135
##    .ssmk              9.451    0.928   10.189    0.000    7.633   11.269    9.451    0.253
##    .ssmc              8.531    0.580   14.720    0.000    7.395    9.667    8.531    0.502
##    .ssasi             6.737    0.540   12.484    0.000    5.679    7.794    6.737    0.549
##    .ssei              4.009    0.377   10.625    0.000    3.270    4.749    4.009    0.395
##    .ssno              0.172    0.039    4.385    0.000    0.095    0.249    0.172    0.244
##    .sscs              0.351    0.050    7.056    0.000    0.254    0.449    0.351    0.494
##    .verbal            1.411    0.731    1.930    0.054   -0.022    2.843    0.141    0.141
##    .math              0.832    0.140    5.939    0.000    0.557    1.106    0.263    0.263
##    .electronic        0.185    0.060    3.105    0.002    0.068    0.302    0.148    0.148
##    .speed             1.098    0.170    6.451    0.000    0.764    1.432    0.529    0.529
##     g                 0.735    0.079    9.270    0.000    0.580    0.891    1.000    1.000
lavTestScore(metric, release = 1:16)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 49.933 16       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p47.  3.094  1   0.079
## 2   .p2. == .p48.  4.994  1   0.025
## 3   .p3. == .p49. 12.186  1   0.000
## 4   .p4. == .p50.  3.524  1   0.060
## 5   .p5. == .p51.  0.002  1   0.968
## 6   .p6. == .p52.  0.809  1   0.369
## 7   .p7. == .p53.  7.057  1   0.008
## 8   .p8. == .p54.  2.073  1   0.150
## 9   .p9. == .p55.  6.218  1   0.013
## 10 .p10. == .p56.  2.785  1   0.095
## 11 .p11. == .p57.  1.185  1   0.276
## 12 .p12. == .p58.  1.924  1   0.165
## 13 .p13. == .p59.  0.431  1   0.511
## 14 .p14. == .p60.  5.205  1   0.023
## 15 .p15. == .p61. 11.685  1   0.001
## 16 .p16. == .p62.  0.000  1   0.993
metric2<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"), group.partial=c("g=~electronic"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   392.935    68.000     0.000     0.957     0.095     0.048 47972.005 48279.429
Mc(metric2)
## [1] 0.8567718
scalar<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 2.577983e-13) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   649.510    73.000     0.000     0.923     0.123     0.078 48218.580 48501.212
Mc(scalar)
## [1] 0.7601287
summary(scalar, standardized=T, ci=T) # -.153
## lavaan 0.6-18 ended normally after 148 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    25
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               649.510     547.578
##   Degrees of freedom                                73          73
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.186
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          382.628     322.580
##     1                                          266.882     224.998
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.776    0.176    4.405    0.000    0.431    1.121    2.533    0.546
##     sswk    (.p2.)    1.885    0.421    4.478    0.000    1.060    2.711    6.155    0.914
##     sspc    (.p3.)    0.750    0.165    4.537    0.000    0.426    1.074    2.448    0.815
##   math =~                                                                                 
##     ssar    (.p4.)    3.394    0.256   13.252    0.000    2.892    3.896    6.867    0.946
##     ssmk    (.p5.)    2.925    0.216   13.510    0.000    2.500    3.349    5.918    0.889
##     ssmc    (.p6.)    0.489    0.097    5.067    0.000    0.300    0.678    0.990    0.201
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.071    0.092   11.674    0.000    0.891    1.251    1.802    0.389
##     ssasi   (.p8.)    2.468    0.170   14.550    0.000    2.135    2.800    4.152    0.796
##     ssmc    (.p9.)    1.963    0.148   13.230    0.000    1.672    2.253    3.302    0.669
##     ssei    (.10.)    1.929    0.120   16.082    0.000    1.694    2.164    3.245    0.888
##   speed =~                                                                                
##     ssno    (.11.)    0.469    0.030   15.415    0.000    0.409    0.529    0.720    0.826
##     sscs    (.12.)    0.440    0.032   13.660    0.000    0.377    0.503    0.675    0.793
##   g =~                                                                                    
##     verbal  (.13.)    3.108    0.756    4.110    0.000    1.625    4.590    0.952    0.952
##     math    (.14.)    1.759    0.162   10.863    0.000    1.442    2.076    0.869    0.869
##     elctrnc           1.353    0.142    9.505    0.000    1.074    1.632    0.804    0.804
##     speed   (.16.)    1.165    0.113   10.349    0.000    0.945    1.386    0.759    0.759
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   17.888    0.207   86.229    0.000   17.481   18.294   17.888    3.857
##    .sswk    (.33.)   27.357    0.316   86.599    0.000   26.738   27.976   27.357    4.062
##    .sspc    (.34.)   11.513    0.135   85.600    0.000   11.250   11.777   11.513    3.831
##    .ssar    (.35.)   20.122    0.342   58.884    0.000   19.452   20.791   20.122    2.773
##    .ssmk    (.36.)   15.654    0.307   51.069    0.000   15.053   16.255   15.654    2.350
##    .ssmc    (.37.)   17.056    0.231   73.882    0.000   16.604   17.509   17.056    3.456
##    .ssasi   (.38.)   17.142    0.247   69.417    0.000   16.658   17.626   17.142    3.287
##    .ssei    (.39.)   13.785    0.168   82.197    0.000   13.456   14.113   13.785    3.771
##    .ssno    (.40.)    0.178    0.042    4.232    0.000    0.096    0.261    0.178    0.204
##    .sscs    (.41.)    0.154    0.041    3.736    0.000    0.073    0.234    0.154    0.180
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.848    0.403   12.017    0.000    4.058    5.639    4.848    0.225
##    .sswk              7.487    1.054    7.103    0.000    5.421    9.553    7.487    0.165
##    .sspc              3.039    0.267   11.366    0.000    2.515    3.563    3.039    0.337
##    .ssar              5.516    1.015    5.434    0.000    3.526    7.505    5.516    0.105
##    .ssmk              9.339    0.981    9.517    0.000    7.416   11.262    9.339    0.211
##    .ssmc              7.908    0.686   11.523    0.000    6.563    9.253    7.908    0.325
##    .ssasi             9.955    1.017    9.785    0.000    7.961   11.949    9.955    0.366
##    .ssei              2.835    0.401    7.066    0.000    2.049    3.621    2.835    0.212
##    .ssno              0.242    0.034    7.180    0.000    0.176    0.308    0.242    0.318
##    .sscs              0.269    0.049    5.452    0.000    0.172    0.365    0.269    0.371
##    .verbal            1.000                               1.000    1.000    0.094    0.094
##    .math              1.000                               1.000    1.000    0.244    0.244
##    .electronic        1.000                               1.000    1.000    0.353    0.353
##    .speed             1.000                               1.000    1.000    0.424    0.424
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.776    0.176    4.405    0.000    0.431    1.121    2.319    0.584
##     sswk    (.p2.)    1.885    0.421    4.478    0.000    1.060    2.711    5.633    0.909
##     sspc    (.p3.)    0.750    0.165    4.537    0.000    0.426    1.074    2.240    0.826
##   math =~                                                                                 
##     ssar    (.p4.)    3.394    0.256   13.252    0.000    2.892    3.896    6.147    0.934
##     ssmk    (.p5.)    2.925    0.216   13.510    0.000    2.500    3.349    5.297    0.860
##     ssmc    (.p6.)    0.489    0.097    5.067    0.000    0.300    0.678    0.886    0.220
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.071    0.092   11.674    0.000    0.891    1.251    1.112    0.280
##     ssasi   (.p8.)    2.468    0.170   14.550    0.000    2.135    2.800    2.561    0.700
##     ssmc    (.p9.)    1.963    0.148   13.230    0.000    1.672    2.253    2.037    0.505
##     ssei    (.10.)    1.929    0.120   16.082    0.000    1.694    2.164    2.002    0.675
##   speed =~                                                                                
##     ssno    (.11.)    0.469    0.030   15.415    0.000    0.409    0.529    0.688    0.825
##     sscs    (.12.)    0.440    0.032   13.660    0.000    0.377    0.503    0.645    0.739
##   g =~                                                                                    
##     verbal  (.13.)    3.108    0.756    4.110    0.000    1.625    4.590    0.931    0.931
##     math    (.14.)    1.759    0.162   10.863    0.000    1.442    2.076    0.870    0.870
##     elctrnc           1.062    0.102   10.429    0.000    0.862    1.261    0.916    0.916
##     speed   (.16.)    1.165    0.113   10.349    0.000    0.945    1.386    0.712    0.712
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   17.888    0.207   86.229    0.000   17.481   18.294   17.888    4.504
##    .sswk    (.33.)   27.357    0.316   86.599    0.000   26.738   27.976   27.357    4.413
##    .sspc    (.34.)   11.513    0.135   85.600    0.000   11.250   11.777   11.513    4.244
##    .ssar    (.35.)   20.122    0.342   58.884    0.000   19.452   20.791   20.122    3.058
##    .ssmk    (.36.)   15.654    0.307   51.069    0.000   15.053   16.255   15.654    2.541
##    .ssmc    (.37.)   17.056    0.231   73.882    0.000   16.604   17.509   17.056    4.231
##    .ssasi   (.38.)   17.142    0.247   69.417    0.000   16.658   17.626   17.142    4.687
##    .ssei    (.39.)   13.785    0.168   82.197    0.000   13.456   14.113   13.785    4.650
##    .ssno    (.40.)    0.178    0.042    4.232    0.000    0.096    0.261    0.178    0.214
##    .sscs    (.41.)    0.154    0.041    3.736    0.000    0.073    0.234    0.154    0.176
##    .verbal            0.898    0.112    7.986    0.000    0.678    1.119    0.301    0.301
##    .math             -0.137    0.104   -1.320    0.187   -0.341    0.067   -0.076   -0.076
##    .elctrnc          -1.851    0.149  -12.402    0.000   -2.143   -1.558   -1.783   -1.783
##    .speed             1.003    0.127    7.913    0.000    0.755    1.252    0.684    0.684
##     g                -0.137    0.074   -1.856    0.063   -0.281    0.008   -0.153   -0.153
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.761    0.390   12.220    0.000    3.997    5.525    4.761    0.302
##    .sswk              6.688    0.958    6.981    0.000    4.811    8.566    6.688    0.174
##    .sspc              2.339    0.202   11.571    0.000    1.943    2.735    2.339    0.318
##    .ssar              5.524    0.974    5.671    0.000    3.615    7.433    5.524    0.128
##    .ssmk              9.891    0.954   10.367    0.000    8.021   11.761    9.891    0.261
##    .ssmc              8.443    0.577   14.629    0.000    7.312    9.575    8.443    0.519
##    .ssasi             6.813    0.586   11.626    0.000    5.665    7.962    6.813    0.509
##    .ssei              4.779    0.400   11.962    0.000    3.996    5.562    4.779    0.544
##    .ssno              0.223    0.040    5.557    0.000    0.144    0.301    0.223    0.320
##    .sscs              0.345    0.056    6.177    0.000    0.235    0.454    0.345    0.453
##    .verbal            1.182    0.544    2.174    0.030    0.117    2.248    0.132    0.132
##    .math              0.799    0.140    5.719    0.000    0.525    1.073    0.244    0.244
##    .electronic        0.173    0.059    2.940    0.003    0.058    0.288    0.161    0.161
##    .speed             1.060    0.175    6.048    0.000    0.717    1.404    0.493    0.493
##     g                 0.802    0.088    9.132    0.000    0.630    0.974    1.000    1.000
lavTestScore(scalar, release = 16:25) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 243.406 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs      X2 df p.value
## 1  .p32. == .p78.   0.523  1   0.470
## 2  .p33. == .p79.  35.927  1   0.000
## 3  .p34. == .p80.  42.231  1   0.000
## 4  .p35. == .p81.  24.201  1   0.000
## 5  .p36. == .p82.  25.049  1   0.000
## 6  .p37. == .p83.   0.288  1   0.591
## 7  .p38. == .p84. 101.181  1   0.000
## 8  .p39. == .p85. 105.628  1   0.000
## 9  .p40. == .p86.  54.688  1   0.000
## 10 .p41. == .p87.  54.688  1   0.000
scalar2<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 2.669465e-14) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   398.423    69.000     0.000     0.956     0.095     0.049 47975.493 48277.959
Mc(scalar2)
## [1] 0.8549443
summary(scalar2, standardized=T, ci=T) # -.103
## lavaan 0.6-18 ended normally after 155 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    21
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               398.423     335.430
##   Degrees of freedom                                69          69
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.188
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          260.642     219.433
##     1                                          137.781     115.997
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.727    0.179    4.058    0.000    0.376    1.077    2.618    0.566
##     sswk    (.p2.)    1.720    0.426    4.039    0.000    0.885    2.554    6.196    0.917
##     sspc    (.p3.)    0.674    0.165    4.084    0.000    0.351    0.998    2.429    0.817
##   math =~                                                                                 
##     ssar    (.p4.)    3.450    0.237   14.579    0.000    2.986    3.914    6.836    0.944
##     ssmk    (.p5.)    3.023    0.206   14.703    0.000    2.620    3.426    5.990    0.895
##     ssmc    (.p6.)    0.742    0.096    7.718    0.000    0.554    0.931    1.471    0.305
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.992    0.085   11.628    0.000    0.825    1.160    1.670    0.361
##     ssasi   (.p8.)    2.119    0.147   14.387    0.000    1.831    2.408    3.566    0.745
##     ssmc    (.p9.)    1.532    0.128   11.931    0.000    1.280    1.784    2.578    0.535
##     ssei    (.10.)    2.173    0.125   17.429    0.000    1.929    2.418    3.657    0.952
##   speed =~                                                                                
##     ssno    (.11.)    0.513    0.032   16.293    0.000    0.452    0.575    0.769    0.867
##     sscs    (.12.)    0.422    0.029   14.577    0.000    0.365    0.479    0.633    0.764
##   g =~                                                                                    
##     verbal  (.13.)    3.462    0.921    3.758    0.000    1.656    5.267    0.961    0.961
##     math    (.14.)    1.711    0.146   11.750    0.000    1.425    1.996    0.863    0.863
##     elctrnc           1.353    0.125   10.821    0.000    1.108    1.598    0.804    0.804
##     speed   (.16.)    1.117    0.105   10.682    0.000    0.912    1.321    0.745    0.745
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   17.904    0.208   85.988    0.000   17.496   18.312   17.904    3.870
##    .sswk             27.643    0.309   89.548    0.000   27.038   28.248   27.643    4.092
##    .sspc    (.34.)   11.211    0.142   78.734    0.000   10.932   11.490   11.211    3.770
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.804
##    .ssmk    (.36.)   15.254    0.315   48.359    0.000   14.636   15.872   15.254    2.278
##    .ssmc    (.37.)   17.179    0.225   76.396    0.000   16.738   17.620   17.179    3.565
##    .ssasi   (.38.)   17.724    0.220   80.426    0.000   17.292   18.156   17.724    3.703
##    .ssei             13.530    0.177   76.269    0.000   13.182   13.877   13.530    3.522
##    .ssno    (.40.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.275
##    .sscs              0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.092
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.005    0.411   12.166    0.000    4.198    5.811    5.005    0.234
##    .sswk              7.245    0.989    7.322    0.000    5.305    9.184    7.245    0.159
##    .sspc              2.941    0.247   11.932    0.000    2.458    3.425    2.941    0.333
##    .ssar              5.726    0.958    5.978    0.000    3.849    7.603    5.726    0.109
##    .ssmk              8.946    0.915    9.774    0.000    7.152   10.739    8.946    0.200
##    .ssmc              9.138    0.691   13.220    0.000    7.783   10.493    9.138    0.394
##    .ssasi            10.191    0.923   11.039    0.000    8.382   12.000   10.191    0.445
##    .ssei              1.384    0.363    3.814    0.000    0.673    2.094    1.384    0.094
##    .ssno              0.195    0.033    5.879    0.000    0.130    0.260    0.195    0.248
##    .sscs              0.286    0.046    6.270    0.000    0.197    0.375    0.286    0.417
##    .verbal            1.000                               1.000    1.000    0.077    0.077
##    .math              1.000                               1.000    1.000    0.255    0.255
##    .electronic        1.000                               1.000    1.000    0.353    0.353
##    .speed             1.000                               1.000    1.000    0.445    0.445
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.727    0.179    4.058    0.000    0.376    1.077    2.393    0.601
##     sswk    (.p2.)    1.720    0.426    4.039    0.000    0.885    2.554    5.665    0.913
##     sspc    (.p3.)    0.674    0.165    4.084    0.000    0.351    0.998    2.221    0.827
##   math =~                                                                                 
##     ssar    (.p4.)    3.450    0.237   14.579    0.000    2.986    3.914    6.105    0.932
##     ssmk    (.p5.)    3.023    0.206   14.703    0.000    2.620    3.426    5.349    0.867
##     ssmc    (.p6.)    0.742    0.096    7.718    0.000    0.554    0.931    1.314    0.325
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.992    0.085   11.628    0.000    0.825    1.160    1.071    0.269
##     ssasi   (.p8.)    2.119    0.147   14.387    0.000    1.831    2.408    2.287    0.663
##     ssmc    (.p9.)    1.532    0.128   11.931    0.000    1.280    1.784    1.653    0.409
##     ssei    (.10.)    2.173    0.125   17.429    0.000    1.929    2.418    2.345    0.762
##   speed =~                                                                                
##     ssno    (.11.)    0.513    0.032   16.293    0.000    0.452    0.575    0.735    0.870
##     sscs    (.12.)    0.422    0.029   14.577    0.000    0.365    0.479    0.604    0.714
##   g =~                                                                                    
##     verbal  (.13.)    3.462    0.921    3.758    0.000    1.656    5.267    0.938    0.938
##     math    (.14.)    1.711    0.146   11.750    0.000    1.425    1.996    0.863    0.863
##     elctrnc           1.084    0.096   11.289    0.000    0.896    1.272    0.896    0.896
##     speed   (.16.)    1.117    0.105   10.682    0.000    0.912    1.321    0.696    0.696
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   17.904    0.208   85.988    0.000   17.496   18.312   17.904    4.492
##    .sswk             25.680    0.411   62.443    0.000   24.874   26.486   25.680    4.137
##    .sspc    (.34.)   11.211    0.142   78.734    0.000   10.932   11.490   11.211    4.176
##    .ssar             18.936    0.410   46.155    0.000   18.132   19.740   18.936    2.889
##    .ssmk    (.36.)   15.254    0.315   48.359    0.000   14.636   15.872   15.254    2.473
##    .ssmc    (.37.)   17.179    0.225   76.396    0.000   16.738   17.620   17.179    4.246
##    .ssasi   (.38.)   17.724    0.220   80.426    0.000   17.292   18.156   17.724    5.139
##    .ssei             16.467    0.412   39.941    0.000   15.659   17.275   16.467    5.354
##    .ssno    (.40.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.289
##    .sscs              0.410    0.048    8.507    0.000    0.315    0.504    0.410    0.484
##    .verbal            1.657    0.174    9.531    0.000    1.316    1.997    0.503    0.503
##    .math              0.072    0.159    0.450    0.652   -0.240    0.383    0.040    0.040
##    .elctrnc          -2.697    0.253  -10.654    0.000   -3.194   -2.201   -2.500   -2.500
##    .speed             0.623    0.132    4.729    0.000    0.365    0.882    0.436    0.436
##     g                -0.092    0.096   -0.957    0.338   -0.281    0.097   -0.103   -0.103
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.703    0.385   12.231    0.000    3.949    5.457    4.703    0.296
##    .sswk              6.441    0.903    7.129    0.000    4.670    8.211    6.441    0.167
##    .sspc              2.273    0.191   11.906    0.000    1.899    2.647    2.273    0.315
##    .ssar              5.676    0.925    6.133    0.000    3.862    7.490    5.676    0.132
##    .ssmk              9.438    0.924   10.213    0.000    7.627   11.249    9.438    0.248
##    .ssmc              8.549    0.576   14.841    0.000    7.420    9.678    8.549    0.522
##    .ssasi             6.667    0.541   12.325    0.000    5.606    7.727    6.667    0.560
##    .ssei              3.959    0.381   10.388    0.000    3.212    4.706    3.959    0.419
##    .ssno              0.173    0.039    4.435    0.000    0.096    0.249    0.173    0.242
##    .sscs              0.351    0.050    7.067    0.000    0.253    0.448    0.351    0.490
##    .verbal            1.311    0.664    1.975    0.048    0.010    2.612    0.121    0.121
##    .math              0.802    0.132    6.060    0.000    0.542    1.061    0.256    0.256
##    .electronic        0.229    0.066    3.479    0.001    0.100    0.357    0.196    0.196
##    .speed             1.055    0.162    6.516    0.000    0.738    1.373    0.515    0.515
##     g                 0.796    0.087    9.107    0.000    0.625    0.968    1.000    1.000
strict<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("g=~electronic", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 4.537227e-13) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   454.384    79.000     0.000     0.950     0.095     0.055 48011.454 48264.335
Mc(strict) 
## [1] 0.8364536
summary(strict, standardized=T, ci=T) # -.040, lv variance of verbal now almost group equal
## lavaan 0.6-18 ended normally after 116 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               454.384     372.230
##   Degrees of freedom                                79          79
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.221
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          291.042     238.421
##     1                                          163.342     133.810
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.805    0.170    4.738    0.000    0.472    1.138    2.594    0.563
##     sswk    (.p2.)    1.932    0.412    4.685    0.000    1.124    2.740    6.226    0.921
##     sspc    (.p3.)    0.766    0.161    4.749    0.000    0.450    1.082    2.470    0.838
##   math =~                                                                                 
##     ssar    (.p4.)    3.367    0.243   13.852    0.000    2.891    3.844    6.814    0.944
##     ssmk    (.p5.)    2.949    0.211   14.006    0.000    2.536    3.361    5.967    0.891
##     ssmc    (.p6.)    0.686    0.095    7.221    0.000    0.500    0.872    1.388    0.291
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.036    0.095   10.909    0.000    0.850    1.223    1.716    0.373
##     ssasi   (.p8.)    2.197    0.173   12.710    0.000    1.858    2.536    3.638    0.789
##     ssmc    (.p9.)    1.616    0.148   10.915    0.000    1.326    1.906    2.676    0.560
##     ssei    (.10.)    2.137    0.126   16.990    0.000    1.890    2.383    3.538    0.896
##   speed =~                                                                                
##     ssno    (.11.)    0.512    0.033   15.529    0.000    0.447    0.577    0.770    0.874
##     sscs    (.12.)    0.419    0.027   15.552    0.000    0.366    0.472    0.630    0.745
##   g =~                                                                                    
##     verbal  (.13.)    3.064    0.714    4.292    0.000    1.665    4.464    0.951    0.951
##     math    (.14.)    1.759    0.158   11.148    0.000    1.450    2.069    0.869    0.869
##     elctrnc           1.320    0.135    9.753    0.000    1.054    1.585    0.797    0.797
##     speed   (.16.)    1.123    0.106   10.552    0.000    0.915    1.332    0.747    0.747
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   17.912    0.208   86.034    0.000   17.504   18.320   17.912    3.890
##    .sswk             27.643    0.309   89.548    0.000   27.038   28.248   27.643    4.090
##    .sspc    (.34.)   11.206    0.143   78.565    0.000   10.926   11.486   11.206    3.801
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.814
##    .ssmk    (.36.)   15.249    0.316   48.316    0.000   14.630   15.868   15.249    2.278
##    .ssmc    (.37.)   17.195    0.224   76.742    0.000   16.756   17.634   17.195    3.601
##    .ssasi   (.38.)   17.717    0.219   80.740    0.000   17.287   18.147   17.717    3.842
##    .ssei             13.530    0.177   76.269    0.000   13.182   13.877   13.530    3.426
##    .ssno    (.40.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.277
##    .sscs              0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.090
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.17.)    4.775    0.285   16.737    0.000    4.216    5.335    4.775    0.225
##    .sswk    (.18.)    6.901    0.685   10.081    0.000    5.559    8.242    6.901    0.151
##    .sspc    (.19.)    2.593    0.155   16.679    0.000    2.289    2.898    2.593    0.298
##    .ssar    (.20.)    5.675    0.718    7.907    0.000    4.268    7.081    5.675    0.109
##    .ssmk    (.21.)    9.200    0.697   13.199    0.000    7.834   10.566    9.200    0.205
##    .ssmc    (.22.)    8.558    0.457   18.730    0.000    7.663    9.454    8.558    0.375
##    .ssasi   (.23.)    8.026    0.544   14.744    0.000    6.959    9.093    8.026    0.378
##    .ssei    (.24.)    3.079    0.301   10.237    0.000    2.489    3.668    3.079    0.197
##    .ssno    (.25.)    0.183    0.029    6.300    0.000    0.126    0.240    0.183    0.236
##    .sscs    (.26.)    0.318    0.037    8.704    0.000    0.247    0.390    0.318    0.445
##    .verbal            1.000                               1.000    1.000    0.096    0.096
##    .math              1.000                               1.000    1.000    0.244    0.244
##    .elctrnc           1.000                               1.000    1.000    0.365    0.365
##    .speed             1.000                               1.000    1.000    0.442    0.442
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.805    0.170    4.738    0.000    0.472    1.138    2.336    0.585
##     sswk    (.p2.)    1.932    0.412    4.685    0.000    1.124    2.740    5.607    0.906
##     sspc    (.p3.)    0.766    0.161    4.749    0.000    0.450    1.082    2.224    0.810
##   math =~                                                                                 
##     ssar    (.p4.)    3.367    0.243   13.852    0.000    2.891    3.844    6.128    0.932
##     ssmk    (.p5.)    2.949    0.211   14.006    0.000    2.536    3.361    5.366    0.871
##     ssmc    (.p6.)    0.686    0.095    7.221    0.000    0.500    0.872    1.249    0.306
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.036    0.095   10.909    0.000    0.850    1.223    1.141    0.286
##     ssasi   (.p8.)    2.197    0.173   12.710    0.000    1.858    2.536    2.418    0.649
##     ssmc    (.p9.)    1.616    0.148   10.915    0.000    1.326    1.906    1.779    0.436
##     ssei    (.10.)    2.137    0.126   16.990    0.000    1.890    2.383    2.351    0.801
##   speed =~                                                                                
##     ssno    (.11.)    0.512    0.033   15.529    0.000    0.447    0.577    0.735    0.865
##     sscs    (.12.)    0.419    0.027   15.552    0.000    0.366    0.472    0.602    0.729
##   g =~                                                                                    
##     verbal  (.13.)    3.064    0.714    4.292    0.000    1.665    4.464    0.942    0.942
##     math    (.14.)    1.759    0.158   11.148    0.000    1.450    2.069    0.863    0.863
##     elctrnc           1.086    0.100   10.842    0.000    0.889    1.282    0.880    0.880
##     speed   (.16.)    1.123    0.106   10.552    0.000    0.915    1.332    0.698    0.698
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   17.912    0.208   86.034    0.000   17.504   18.320   17.912    4.484
##    .sswk             25.683    0.403   63.666    0.000   24.892   26.474   25.683    4.148
##    .sspc    (.34.)   11.206    0.143   78.565    0.000   10.926   11.486   11.206    4.081
##    .ssar             18.926    0.411   46.059    0.000   18.121   19.731   18.926    2.879
##    .ssmk    (.36.)   15.249    0.316   48.316    0.000   14.630   15.868   15.249    2.474
##    .ssmc    (.37.)   17.195    0.224   76.742    0.000   16.756   17.634   17.195    4.214
##    .ssasi   (.38.)   17.717    0.219   80.740    0.000   17.287   18.147   17.717    4.757
##    .ssei             16.112    0.380   42.370    0.000   15.367   16.858   16.112    5.492
##    .ssno    (.40.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.287
##    .sscs              0.411    0.048    8.601    0.000    0.317    0.504    0.411    0.498
##    .verbal            1.298    0.154    8.406    0.000    0.995    1.601    0.447    0.447
##    .math             -0.023    0.123   -0.186    0.852   -0.263    0.218   -0.013   -0.013
##    .elctrnc          -2.641    0.256  -10.320    0.000   -3.143   -2.139   -2.400   -2.400
##    .speed             0.562    0.110    5.094    0.000    0.346    0.778    0.391    0.391
##     g                -0.035    0.076   -0.466    0.641   -0.185    0.114   -0.040   -0.040
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.17.)    4.775    0.285   16.737    0.000    4.216    5.335    4.775    0.299
##    .sswk    (.18.)    6.901    0.685   10.081    0.000    5.559    8.242    6.901    0.180
##    .sspc    (.19.)    2.593    0.155   16.679    0.000    2.289    2.898    2.593    0.344
##    .ssar    (.20.)    5.675    0.718    7.907    0.000    4.268    7.081    5.675    0.131
##    .ssmk    (.21.)    9.200    0.697   13.199    0.000    7.834   10.566    9.200    0.242
##    .ssmc    (.22.)    8.558    0.457   18.730    0.000    7.663    9.454    8.558    0.514
##    .ssasi   (.23.)    8.026    0.544   14.744    0.000    6.959    9.093    8.026    0.579
##    .ssei    (.24.)    3.079    0.301   10.237    0.000    2.489    3.668    3.079    0.358
##    .ssno    (.25.)    0.183    0.029    6.300    0.000    0.126    0.240    0.183    0.253
##    .sscs    (.26.)    0.318    0.037    8.704    0.000    0.247    0.390    0.318    0.468
##    .verbal            0.947    0.411    2.304    0.021    0.142    1.753    0.112    0.112
##    .math              0.847    0.134    6.338    0.000    0.585    1.109    0.256    0.256
##    .elctrnc           0.272    0.078    3.495    0.000    0.120    0.425    0.225    0.225
##    .speed             1.058    0.146    7.226    0.000    0.771    1.345    0.513    0.513
##     g                 0.796    0.087    9.152    0.000    0.626    0.967    1.000    1.000
latent<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("g=~electronic", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 1.322148e-14) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   457.700    74.000     0.000     0.949     0.099     0.078 48024.770 48302.443
Mc(latent)
## [1] 0.8331508
summary(latent, standardized=T, ci=T) # g -.073 Std.all
## lavaan 0.6-18 ended normally after 126 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        77
##   Number of equality constraints                    21
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               457.700     386.995
##   Degrees of freedom                                74          74
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.183
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          286.252     242.032
##     1                                          171.449     144.963
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.772    0.122    6.326    0.000    0.533    1.012    2.508    0.560
##     sswk    (.p2.)    1.833    0.290    6.318    0.000    1.264    2.401    5.951    0.914
##     sspc    (.p3.)    0.715    0.112    6.376    0.000    0.495    0.934    2.320    0.801
##   math =~                                                                                 
##     ssar    (.p4.)    3.348    0.177   18.917    0.000    3.001    3.695    6.484    0.936
##     ssmk    (.p5.)    2.931    0.153   19.189    0.000    2.632    3.230    5.677    0.884
##     ssmc    (.p6.)    0.737    0.087    8.474    0.000    0.567    0.908    1.428    0.306
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.783    0.063   12.353    0.000    0.659    0.907    1.554    0.347
##     ssasi   (.p8.)    1.644    0.106   15.450    0.000    1.435    1.852    3.263    0.712
##     ssmc    (.p9.)    1.185    0.094   12.647    0.000    1.001    1.369    2.353    0.504
##     ssei    (.10.)    1.717    0.104   16.505    0.000    1.513    1.921    3.410    0.932
##   speed =~                                                                                
##     ssno    (.11.)    0.521    0.024   21.756    0.000    0.474    0.568    0.751    0.860
##     sscs    (.12.)    0.430    0.023   19.092    0.000    0.386    0.474    0.620    0.758
##   g =~                                                                                    
##     verbal  (.13.)    3.089    0.541    5.706    0.000    2.028    4.151    0.951    0.951
##     math    (.14.)    1.659    0.115   14.447    0.000    1.434    1.884    0.856    0.856
##     elctrnc           1.715    0.152   11.295    0.000    1.418    2.013    0.864    0.864
##     speed   (.16.)    1.039    0.078   13.256    0.000    0.886    1.193    0.721    0.721
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   17.916    0.208   86.036    0.000   17.508   18.324   17.916    4.001
##    .sswk             27.643    0.309   89.548    0.000   27.038   28.248   27.643    4.247
##    .sspc    (.34.)   11.203    0.142   78.679    0.000   10.924   11.482   11.203    3.865
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.931
##    .ssmk    (.36.)   15.255    0.315   48.356    0.000   14.637   15.874   15.255    2.375
##    .ssmc    (.37.)   17.172    0.225   76.364    0.000   16.731   17.613   17.172    3.681
##    .ssasi   (.38.)   17.717    0.222   79.981    0.000   17.283   18.152   17.717    3.868
##    .ssei             13.530    0.177   76.269    0.000   13.182   13.877   13.530    3.698
##    .ssno    (.40.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.279
##    .sscs              0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.093
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.930    0.407   12.109    0.000    4.132    5.728    4.930    0.246
##    .sswk              6.951    0.904    7.688    0.000    5.179    8.722    6.951    0.164
##    .sspc              3.016    0.251   12.017    0.000    2.524    3.508    3.016    0.359
##    .ssar              5.988    0.924    6.483    0.000    4.177    7.798    5.988    0.125
##    .ssmk              9.020    0.880   10.247    0.000    7.295   10.745    9.020    0.219
##    .ssmc              9.213    0.674   13.673    0.000    7.892   10.533    9.213    0.423
##    .ssasi            10.336    0.923   11.198    0.000    8.527   12.145   10.336    0.493
##    .ssei              1.763    0.338    5.220    0.000    1.101    2.425    1.763    0.132
##    .ssno              0.199    0.033    6.110    0.000    0.135    0.262    0.199    0.260
##    .sscs              0.284    0.045    6.246    0.000    0.195    0.373    0.284    0.425
##    .verbal            1.000                               1.000    1.000    0.095    0.095
##    .math              1.000                               1.000    1.000    0.267    0.267
##    .electronic        1.000                               1.000    1.000    0.254    0.254
##    .speed             1.000                               1.000    1.000    0.481    0.481
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.772    0.122    6.326    0.000    0.533    1.012    2.508    0.608
##     sswk    (.p2.)    1.833    0.290    6.318    0.000    1.264    2.401    5.951    0.920
##     sspc    (.p3.)    0.715    0.112    6.376    0.000    0.495    0.934    2.320    0.841
##   math =~                                                                                 
##     ssar    (.p4.)    3.348    0.177   18.917    0.000    3.001    3.695    6.484    0.942
##     ssmk    (.p5.)    2.931    0.153   19.189    0.000    2.632    3.230    5.677    0.879
##     ssmc    (.p6.)    0.737    0.087    8.474    0.000    0.567    0.908    1.428    0.341
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.783    0.063   12.353    0.000    0.659    0.907    1.236    0.300
##     ssasi   (.p8.)    1.644    0.106   15.450    0.000    1.435    1.852    2.596    0.712
##     ssmc    (.p9.)    1.185    0.094   12.647    0.000    1.001    1.369    1.872    0.446
##     ssei    (.10.)    1.717    0.104   16.505    0.000    1.513    1.921    2.712    0.824
##   speed =~                                                                                
##     ssno    (.11.)    0.521    0.024   21.756    0.000    0.474    0.568    0.751    0.874
##     sscs    (.12.)    0.430    0.023   19.092    0.000    0.386    0.474    0.620    0.724
##   g =~                                                                                    
##     verbal  (.13.)    3.089    0.541    5.706    0.000    2.028    4.151    0.951    0.951
##     math    (.14.)    1.659    0.115   14.447    0.000    1.434    1.884    0.856    0.856
##     elctrnc           1.223    0.098   12.491    0.000    1.031    1.414    0.774    0.774
##     speed   (.16.)    1.039    0.078   13.256    0.000    0.886    1.193    0.721    0.721
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   17.916    0.208   86.036    0.000   17.508   18.324   17.916    4.342
##    .sswk             25.630    0.415   61.698    0.000   24.816   26.445   25.630    3.962
##    .sspc    (.34.)   11.203    0.142   78.679    0.000   10.924   11.482   11.203    4.059
##    .ssar             18.939    0.411   46.129    0.000   18.135   19.744   18.939    2.751
##    .ssmk    (.36.)   15.255    0.315   48.356    0.000   14.637   15.874   15.255    2.363
##    .ssmc    (.37.)   17.172    0.225   76.364    0.000   16.731   17.613   17.172    4.096
##    .ssasi   (.38.)   17.717    0.222   79.981    0.000   17.283   18.152   17.717    4.859
##    .ssei             16.572    0.418   39.689    0.000   15.753   17.390   16.572    5.036
##    .ssno    (.40.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.284
##    .sscs              0.409    0.048    8.450    0.000    0.314    0.503    0.409    0.477
##    .verbal            1.509    0.144   10.455    0.000    1.226    1.792    0.465    0.465
##    .math              0.032    0.119    0.270    0.787   -0.201    0.265    0.017    0.017
##    .elctrnc          -3.512    0.274  -12.793    0.000   -4.050   -2.974   -2.223   -2.223
##    .speed             0.590    0.102    5.764    0.000    0.389    0.790    0.409    0.409
##     g                -0.073    0.084   -0.872    0.383   -0.239    0.092   -0.073   -0.073
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.637    0.378   12.282    0.000    3.897    5.377    4.637    0.272
##    .sswk              6.424    0.892    7.201    0.000    4.675    8.172    6.424    0.154
##    .sspc              2.235    0.189   11.845    0.000    1.865    2.605    2.235    0.293
##    .ssar              5.369    0.941    5.706    0.000    3.525    7.213    5.369    0.113
##    .ssmk              9.460    0.968    9.768    0.000    7.561   11.358    9.460    0.227
##    .ssmc              8.486    0.581   14.603    0.000    7.347    9.625    8.486    0.483
##    .ssasi             6.557    0.547   11.981    0.000    5.485    7.630    6.557    0.493
##    .ssei              3.474    0.401    8.668    0.000    2.688    4.259    3.474    0.321
##    .ssno              0.174    0.037    4.768    0.000    0.103    0.246    0.174    0.236
##    .sscs              0.349    0.049    7.093    0.000    0.253    0.445    0.349    0.476
##    .verbal            1.000                               1.000    1.000    0.095    0.095
##    .math              1.000                               1.000    1.000    0.267    0.267
##    .electronic        1.000                               1.000    1.000    0.401    0.401
##    .speed             1.000                               1.000    1.000    0.481    0.481
##     g                 1.000                               1.000    1.000    1.000    1.000
latent2<-cfa(hof.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 7.604739e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   405.518    73.000     0.000     0.956     0.093     0.074 47974.588 48257.220
Mc(latent2)
## [1] 0.8536864
summary(latent2, standardized=T, ci=T) # g -.149 Std.all 
## lavaan 0.6-18 ended normally after 119 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        78
##   Number of equality constraints                    21
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               405.518     342.961
##   Degrees of freedom                                73          73
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.182
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          264.203     223.445
##     1                                          141.315     119.515
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.786    0.118    6.675    0.000    0.555    1.017    2.509    0.560
##     sswk    (.p2.)    1.861    0.278    6.683    0.000    1.315    2.407    5.940    0.911
##     sspc    (.p3.)    0.729    0.108    6.723    0.000    0.516    0.941    2.327    0.805
##   math =~                                                                                 
##     ssar    (.p4.)    3.269    0.180   18.171    0.000    2.917    3.622    6.485    0.936
##     ssmk    (.p5.)    2.863    0.155   18.432    0.000    2.559    3.168    5.679    0.885
##     ssmc    (.p6.)    0.706    0.088    7.996    0.000    0.533    0.879    1.400    0.297
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.997    0.086   11.538    0.000    0.828    1.167    1.631    0.364
##     ssasi   (.p8.)    2.127    0.150   14.191    0.000    1.833    2.421    3.479    0.737
##     ssmc    (.p9.)    1.535    0.130   11.786    0.000    1.280    1.791    2.511    0.533
##     ssei    (.10.)    2.179    0.126   17.259    0.000    1.932    2.427    3.565    0.949
##   speed =~                                                                                
##     ssno    (.11.)    0.519    0.024   21.486    0.000    0.471    0.566    0.752    0.864
##     sscs    (.12.)    0.427    0.022   19.277    0.000    0.384    0.471    0.619    0.757
##   g =~                                                                                    
##     verbal  (.13.)    3.031    0.505    6.004    0.000    2.042    4.021    0.950    0.950
##     math    (.14.)    1.713    0.122   14.027    0.000    1.474    1.952    0.864    0.864
##     elctrnc           1.294    0.117   11.094    0.000    1.066    1.523    0.791    0.791
##     speed   (.16.)    1.049    0.079   13.282    0.000    0.894    1.204    0.724    0.724
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   17.905    0.208   86.030    0.000   17.497   18.313   17.905    3.994
##    .sswk             27.643    0.309   89.547    0.000   27.038   28.248   27.643    4.240
##    .sspc    (.34.)   11.210    0.142   78.719    0.000   10.931   11.489   11.210    3.876
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.933
##    .ssmk    (.36.)   15.254    0.315   48.362    0.000   14.636   15.873   15.254    2.376
##    .ssmc    (.37.)   17.177    0.225   76.429    0.000   16.736   17.617   17.177    3.646
##    .ssasi   (.38.)   17.725    0.221   80.376    0.000   17.293   18.157   17.725    3.755
##    .ssei             13.530    0.177   76.269    0.000   13.182   13.877   13.530    3.603
##    .ssno    (.40.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.280
##    .sscs              0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.093
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.098    0.098
##    .math              1.000                               1.000    1.000    0.254    0.254
##    .speed             1.000                               1.000    1.000    0.476    0.476
##     g                 1.000                               1.000    1.000    1.000    1.000
##    .ssgs              4.990    0.410   12.169    0.000    4.187    5.794    4.990    0.248
##    .sswk              7.222    0.943    7.661    0.000    5.374    9.070    7.222    0.170
##    .sspc              2.949    0.247   11.946    0.000    2.465    3.433    2.949    0.353
##    .ssar              5.904    0.920    6.417    0.000    4.101    7.707    5.904    0.123
##    .ssmk              8.953    0.895   10.005    0.000    7.199   10.707    8.953    0.217
##    .ssmc              9.127    0.693   13.172    0.000    7.769   10.486    9.127    0.411
##    .ssasi            10.183    0.921   11.052    0.000    8.377   11.989   10.183    0.457
##    .ssei              1.394    0.368    3.793    0.000    0.674    2.115    1.394    0.099
##    .ssno              0.192    0.033    5.866    0.000    0.128    0.256    0.192    0.253
##    .sscs              0.286    0.046    6.238    0.000    0.196    0.376    0.286    0.427
##    .electronic        1.000                               1.000    1.000    0.374    0.374
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.786    0.118    6.675    0.000    0.555    1.017    2.509    0.608
##     sswk    (.p2.)    1.861    0.278    6.683    0.000    1.315    2.407    5.940    0.920
##     sspc    (.p3.)    0.729    0.108    6.723    0.000    0.516    0.941    2.327    0.839
##   math =~                                                                                 
##     ssar    (.p4.)    3.269    0.180   18.171    0.000    2.917    3.622    6.485    0.941
##     ssmk    (.p5.)    2.863    0.155   18.432    0.000    2.559    3.168    5.679    0.879
##     ssmc    (.p6.)    0.706    0.088    7.996    0.000    0.533    0.879    1.400    0.338
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.997    0.086   11.538    0.000    0.828    1.167    1.112    0.270
##     ssasi   (.p8.)    2.127    0.150   14.191    0.000    1.833    2.421    2.372    0.677
##     ssmc    (.p9.)    1.535    0.130   11.786    0.000    1.280    1.791    1.712    0.413
##     ssei    (.10.)    2.179    0.126   17.259    0.000    1.932    2.427    2.430    0.774
##   speed =~                                                                                
##     ssno    (.11.)    0.519    0.024   21.486    0.000    0.471    0.566    0.752    0.872
##     sscs    (.12.)    0.427    0.022   19.277    0.000    0.384    0.471    0.619    0.723
##   g =~                                                                                    
##     verbal  (.13.)    3.031    0.505    6.004    0.000    2.042    4.021    0.950    0.950
##     math    (.14.)    1.713    0.122   14.027    0.000    1.474    1.952    0.864    0.864
##     elctrnc           1.007    0.077   13.089    0.000    0.856    1.157    0.903    0.903
##     speed   (.16.)    1.049    0.079   13.282    0.000    0.894    1.204    0.724    0.724
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   17.905    0.208   86.030    0.000   17.497   18.313   17.905    4.340
##    .sswk             25.675    0.413   62.166    0.000   24.865   26.484   25.675    3.975
##    .sspc    (.34.)   11.210    0.142   78.719    0.000   10.931   11.489   11.210    4.042
##    .ssar             18.937    0.410   46.139    0.000   18.133   19.741   18.937    2.748
##    .ssmk    (.36.)   15.254    0.315   48.362    0.000   14.636   15.873   15.254    2.361
##    .ssmc    (.37.)   17.177    0.225   76.429    0.000   16.736   17.617   17.177    4.143
##    .ssasi   (.38.)   17.725    0.221   80.376    0.000   17.293   18.157   17.725    5.057
##    .ssei             16.463    0.414   39.813    0.000   15.653   17.274   16.463    5.244
##    .ssno    (.40.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.283
##    .sscs              0.409    0.048    8.491    0.000    0.315    0.504    0.409    0.478
##    .verbal            1.689    0.145   11.683    0.000    1.406    1.973    0.529    0.529
##    .math              0.163    0.126    1.295    0.195   -0.084    0.410    0.082    0.082
##    .elctrnc          -2.638    0.239  -11.047    0.000   -3.107   -2.170   -2.366   -2.366
##    .speed             0.671    0.105    6.370    0.000    0.464    0.877    0.463    0.463
##     g                -0.149    0.085   -1.754    0.079   -0.314    0.017   -0.149   -0.149
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.098    0.098
##    .math              1.000                               1.000    1.000    0.254    0.254
##    .speed             1.000                               1.000    1.000    0.476    0.476
##     g                 1.000                               1.000    1.000    1.000    1.000
##    .ssgs              4.700    0.384   12.234    0.000    3.947    5.453    4.700    0.276
##    .sswk              6.444    0.873    7.381    0.000    4.733    8.155    6.444    0.154
##    .sspc              2.279    0.191   11.908    0.000    1.904    2.654    2.279    0.296
##    .ssar              5.439    0.930    5.849    0.000    3.616    7.261    5.439    0.115
##    .ssmk              9.483    0.951    9.971    0.000    7.619   11.347    9.483    0.227
##    .ssmc              8.563    0.575   14.882    0.000    7.435    9.691    8.563    0.498
##    .ssasi             6.662    0.540   12.332    0.000    5.603    7.720    6.662    0.542
##    .ssei              3.949    0.381   10.364    0.000    3.202    4.696    3.949    0.401
##    .ssno              0.178    0.036    4.881    0.000    0.106    0.249    0.178    0.239
##    .sscs              0.350    0.049    7.093    0.000    0.253    0.446    0.350    0.477
##    .electronic        0.230    0.065    3.516    0.000    0.102    0.358    0.185    0.185
weak<-cfa(hof.weak, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   405.518    74.000     0.000     0.956     0.092     0.074 47972.588 48250.261
Mc(weak)
## [1] 0.8540926
summary(weak, standardized=T, ci=T) # -0.053 Std.all
## lavaan 0.6-18 ended normally after 127 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        77
##   Number of equality constraints                    21
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               405.518     347.659
##   Degrees of freedom                                74          74
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.166
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          264.203     226.506
##     1                                          141.315     121.152
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.786    0.118    6.675    0.000    0.555    1.017    2.509    0.560
##     sswk    (.p2.)    1.861    0.278    6.683    0.000    1.315    2.407    5.940    0.911
##     sspc    (.p3.)    0.729    0.108    6.723    0.000    0.516    0.941    2.327    0.805
##   math =~                                                                                 
##     ssar    (.p4.)    3.269    0.180   18.170    0.000    2.917    3.622    6.485    0.936
##     ssmk    (.p5.)    2.863    0.155   18.432    0.000    2.559    3.168    5.679    0.885
##     ssmc    (.p6.)    0.706    0.088    7.996    0.000    0.533    0.879    1.400    0.297
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.997    0.086   11.538    0.000    0.828    1.167    1.631    0.364
##     ssasi   (.p8.)    2.127    0.150   14.191    0.000    1.833    2.421    3.479    0.737
##     ssmc    (.p9.)    1.535    0.130   11.786    0.000    1.280    1.791    2.511    0.533
##     ssei    (.10.)    2.179    0.126   17.259    0.000    1.932    2.427    3.565    0.949
##   speed =~                                                                                
##     ssno    (.11.)    0.519    0.024   21.486    0.000    0.471    0.566    0.752    0.864
##     sscs    (.12.)    0.427    0.022   19.277    0.000    0.384    0.471    0.619    0.757
##   g =~                                                                                    
##     verbal  (.13.)    3.031    0.505    6.004    0.000    2.042    4.021    0.950    0.950
##     math    (.14.)    1.713    0.122   14.027    0.000    1.474    1.952    0.864    0.864
##     elctrnc           1.294    0.117   11.094    0.000    1.066    1.523    0.791    0.791
##     speed   (.16.)    1.049    0.079   13.282    0.000    0.894    1.204    0.724    0.724
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.33.)   17.905    0.208   86.030    0.000   17.497   18.313   17.905    3.994
##    .sswk             27.643    0.309   89.547    0.000   27.038   28.248   27.643    4.240
##    .sspc    (.35.)   11.210    0.142   78.719    0.000   10.931   11.489   11.210    3.876
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.933
##    .ssmk    (.37.)   15.254    0.315   48.362    0.000   14.636   15.873   15.254    2.376
##    .ssmc    (.38.)   17.177    0.225   76.429    0.000   16.736   17.617   17.177    3.646
##    .ssasi   (.39.)   17.725    0.221   80.376    0.000   17.293   18.157   17.725    3.755
##    .ssei             13.530    0.177   76.269    0.000   13.182   13.877   13.530    3.603
##    .ssno    (.41.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.280
##    .sscs              0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.093
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.098    0.098
##    .math              1.000                               1.000    1.000    0.254    0.254
##    .speed             1.000                               1.000    1.000    0.476    0.476
##     g                 1.000                               1.000    1.000    1.000    1.000
##    .ssgs              4.990    0.410   12.169    0.000    4.187    5.794    4.990    0.248
##    .sswk              7.222    0.943    7.661    0.000    5.374    9.070    7.222    0.170
##    .sspc              2.949    0.247   11.946    0.000    2.465    3.433    2.949    0.353
##    .ssar              5.904    0.920    6.417    0.000    4.101    7.707    5.904    0.123
##    .ssmk              8.953    0.895   10.005    0.000    7.199   10.707    8.953    0.217
##    .ssmc              9.127    0.693   13.172    0.000    7.769   10.486    9.127    0.411
##    .ssasi            10.183    0.921   11.052    0.000    8.377   11.989   10.183    0.457
##    .ssei              1.394    0.368    3.793    0.000    0.674    2.115    1.394    0.099
##    .ssno              0.192    0.033    5.866    0.000    0.128    0.256    0.192    0.253
##    .sscs              0.286    0.046    6.238    0.000    0.196    0.376    0.286    0.427
##    .electronic        1.000                               1.000    1.000    0.374    0.374
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.786    0.118    6.675    0.000    0.555    1.017    2.509    0.608
##     sswk    (.p2.)    1.861    0.278    6.683    0.000    1.315    2.407    5.940    0.920
##     sspc    (.p3.)    0.729    0.108    6.723    0.000    0.516    0.941    2.327    0.839
##   math =~                                                                                 
##     ssar    (.p4.)    3.269    0.180   18.170    0.000    2.917    3.622    6.485    0.941
##     ssmk    (.p5.)    2.863    0.155   18.432    0.000    2.559    3.168    5.679    0.879
##     ssmc    (.p6.)    0.706    0.088    7.996    0.000    0.533    0.879    1.400    0.338
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.997    0.086   11.538    0.000    0.828    1.167    1.112    0.270
##     ssasi   (.p8.)    2.127    0.150   14.191    0.000    1.833    2.421    2.372    0.677
##     ssmc    (.p9.)    1.535    0.130   11.786    0.000    1.280    1.791    1.712    0.413
##     ssei    (.10.)    2.179    0.126   17.259    0.000    1.932    2.427    2.430    0.774
##   speed =~                                                                                
##     ssno    (.11.)    0.519    0.024   21.486    0.000    0.471    0.566    0.752    0.872
##     sscs    (.12.)    0.427    0.022   19.277    0.000    0.384    0.471    0.619    0.723
##   g =~                                                                                    
##     verbal  (.13.)    3.031    0.505    6.004    0.000    2.042    4.021    0.950    0.950
##     math    (.14.)    1.713    0.122   14.027    0.000    1.474    1.952    0.864    0.864
##     elctrnc           1.007    0.077   13.089    0.000    0.856    1.157    0.903    0.903
##     speed   (.16.)    1.049    0.079   13.282    0.000    0.894    1.204    0.724    0.724
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.33.)   17.905    0.208   86.030    0.000   17.497   18.313   17.905    4.340
##    .sswk             25.675    0.413   62.166    0.000   24.865   26.484   25.675    3.975
##    .sspc    (.35.)   11.210    0.142   78.719    0.000   10.931   11.489   11.210    4.042
##    .ssar             18.937    0.410   46.139    0.000   18.133   19.741   18.937    2.748
##    .ssmk    (.37.)   15.254    0.315   48.362    0.000   14.636   15.873   15.254    2.361
##    .ssmc    (.38.)   17.177    0.225   76.429    0.000   16.736   17.617   17.177    4.143
##    .ssasi   (.39.)   17.725    0.221   80.376    0.000   17.293   18.157   17.725    5.057
##    .ssei             16.463    0.414   39.813    0.000   15.653   17.274   16.463    5.244
##    .ssno    (.41.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.283
##    .sscs              0.409    0.048    8.491    0.000    0.315    0.504    0.409    0.478
##    .verbal            1.400    0.303    4.617    0.000    0.806    1.995    0.439    0.439
##    .elctrnc          -2.734    0.243  -11.240    0.000   -3.211   -2.258   -2.452   -2.452
##    .speed             0.571    0.100    5.729    0.000    0.376    0.766    0.394    0.394
##     g                -0.053    0.087   -0.609    0.542   -0.224    0.118   -0.053   -0.053
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.098    0.098
##    .math              1.000                               1.000    1.000    0.254    0.254
##    .speed             1.000                               1.000    1.000    0.476    0.476
##     g                 1.000                               1.000    1.000    1.000    1.000
##    .ssgs              4.700    0.384   12.234    0.000    3.947    5.453    4.700    0.276
##    .sswk              6.444    0.873    7.381    0.000    4.733    8.155    6.444    0.154
##    .sspc              2.279    0.191   11.908    0.000    1.904    2.654    2.279    0.296
##    .ssar              5.439    0.930    5.850    0.000    3.616    7.261    5.439    0.115
##    .ssmk              9.483    0.951    9.971    0.000    7.619   11.347    9.483    0.227
##    .ssmc              8.563    0.575   14.882    0.000    7.435    9.691    8.563    0.498
##    .ssasi             6.662    0.540   12.332    0.000    5.603    7.720    6.662    0.542
##    .ssei              3.949    0.381   10.364    0.000    3.202    4.696    3.949    0.401
##    .ssno              0.178    0.036    4.881    0.000    0.106    0.249    0.178    0.239
##    .sscs              0.350    0.049    7.093    0.000    0.253    0.446    0.350    0.477
##    .electronic        0.230    0.065    3.516    0.000    0.102    0.358    0.185    0.185
lvstrict<-cfa(hof.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("g=~electronic", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 3.808067e-13) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(lvstrict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   461.342    83.000     0.000     0.949     0.093     0.082 48010.412 48243.459
Mc(lvstrict)
## [1] 0.8352775
summary(lvstrict, standardized=T, ci=T) # -.028
## lavaan 0.6-18 ended normally after 101 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        78
##   Number of equality constraints                    31
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               461.342     379.776
##   Degrees of freedom                                83          83
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.215
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          294.418     242.364
##     1                                          166.924     137.412
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.799    0.121    6.616    0.000    0.562    1.036    2.473    0.555
##     sswk    (.p2.)    1.918    0.289    6.626    0.000    1.351    2.485    5.935    0.915
##     sspc    (.p3.)    0.760    0.113    6.714    0.000    0.538    0.982    2.352    0.825
##   math =~                                                                                 
##     ssar    (.p4.)    3.232    0.185   17.445    0.000    2.869    3.596    6.484    0.939
##     ssmk    (.p5.)    2.831    0.160   17.729    0.000    2.518    3.144    5.679    0.882
##     ssmc    (.p6.)    0.660    0.087    7.557    0.000    0.489    0.831    1.324    0.284
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.039    0.094   11.067    0.000    0.855    1.223    1.675    0.376
##     ssasi   (.p8.)    2.199    0.172   12.810    0.000    1.863    2.536    3.546    0.781
##     ssmc    (.p9.)    1.617    0.147   10.989    0.000    1.329    1.905    2.607    0.558
##     ssei    (.10.)    2.139    0.125   17.182    0.000    1.895    2.384    3.449    0.891
##   speed =~                                                                                
##     ssno    (.11.)    0.520    0.024   21.391    0.000    0.472    0.567    0.754    0.870
##     sscs    (.12.)    0.425    0.022   19.227    0.000    0.381    0.468    0.616    0.737
##   g =~                                                                                    
##     verbal  (.13.)    2.928    0.494    5.928    0.000    1.960    3.897    0.946    0.946
##     math    (.14.)    1.739    0.128   13.552    0.000    1.487    1.990    0.867    0.867
##     elctrnc           1.265    0.124   10.216    0.000    1.022    1.507    0.784    0.784
##     speed   (.16.)    1.051    0.079   13.238    0.000    0.895    1.206    0.724    0.724
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   17.912    0.208   86.039    0.000   17.504   18.320   17.912    4.022
##    .sswk             27.643    0.309   89.548    0.000   27.038   28.248   27.643    4.260
##    .sspc    (.34.)   11.206    0.143   78.594    0.000   10.926   11.485   11.206    3.930
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.940
##    .ssmk    (.36.)   15.249    0.316   48.320    0.000   14.631   15.868   15.249    2.369
##    .ssmc    (.37.)   17.194    0.224   76.767    0.000   16.755   17.633   17.194    3.682
##    .ssasi   (.38.)   17.717    0.219   80.721    0.000   17.287   18.147   17.717    3.903
##    .ssei             13.530    0.177   76.269    0.000   13.182   13.877   13.530    3.496
##    .ssno    (.40.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.281
##    .sscs              0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.091
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.104    0.104
##    .math              1.000                               1.000    1.000    0.249    0.249
##    .speed             1.000                               1.000    1.000    0.475    0.475
##     g                 1.000                               1.000    1.000    1.000    1.000
##    .ssgs    (.21.)    4.769    0.284   16.764    0.000    4.211    5.326    4.769    0.240
##    .sswk    (.22.)    6.880    0.680   10.111    0.000    5.547    8.214    6.880    0.163
##    .sspc    (.23.)    2.601    0.155   16.777    0.000    2.297    2.905    2.601    0.320
##    .ssar    (.24.)    5.679    0.720    7.893    0.000    4.269    7.090    5.679    0.119
##    .ssmk    (.25.)    9.200    0.698   13.177    0.000    7.831   10.568    9.200    0.222
##    .ssmc    (.26.)    8.558    0.456   18.747    0.000    7.663    9.452    8.558    0.392
##    .ssasi   (.27.)    8.028    0.544   14.762    0.000    6.962    9.094    8.028    0.390
##    .ssei    (.28.)    3.076    0.300   10.251    0.000    2.488    3.664    3.076    0.205
##    .ssno    (.29.)    0.182    0.029    6.294    0.000    0.125    0.238    0.182    0.242
##    .sscs    (.30.)    0.319    0.037    8.735    0.000    0.247    0.391    0.319    0.457
##    .elctrnc           1.000                               1.000    1.000    0.385    0.385
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.799    0.121    6.616    0.000    0.562    1.036    2.473    0.596
##     sswk    (.p2.)    1.918    0.289    6.626    0.000    1.351    2.485    5.935    0.915
##     sspc    (.p3.)    0.760    0.113    6.714    0.000    0.538    0.982    2.352    0.825
##   math =~                                                                                 
##     ssar    (.p4.)    3.232    0.185   17.445    0.000    2.869    3.596    6.484    0.939
##     ssmk    (.p5.)    2.831    0.160   17.729    0.000    2.518    3.144    5.679    0.882
##     ssmc    (.p6.)    0.660    0.087    7.557    0.000    0.489    0.831    1.324    0.317
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.039    0.094   11.067    0.000    0.855    1.223    1.183    0.285
##     ssasi   (.p8.)    2.199    0.172   12.810    0.000    1.863    2.536    2.506    0.663
##     ssmc    (.p9.)    1.617    0.147   10.989    0.000    1.329    1.905    1.842    0.441
##     ssei    (.10.)    2.139    0.125   17.182    0.000    1.895    2.384    2.438    0.812
##   speed =~                                                                                
##     ssno    (.11.)    0.520    0.024   21.391    0.000    0.472    0.567    0.754    0.870
##     sscs    (.12.)    0.425    0.022   19.227    0.000    0.381    0.468    0.616    0.737
##   g =~                                                                                    
##     verbal  (.13.)    2.928    0.494    5.928    0.000    1.960    3.897    0.946    0.946
##     math    (.14.)    1.739    0.128   13.552    0.000    1.487    1.990    0.867    0.867
##     elctrnc           1.013    0.080   12.583    0.000    0.855    1.171    0.889    0.889
##     speed   (.16.)    1.051    0.079   13.238    0.000    0.895    1.206    0.724    0.724
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   17.912    0.208   86.039    0.000   17.504   18.320   17.912    4.318
##    .sswk             25.679    0.404   63.494    0.000   24.886   26.472   25.679    3.958
##    .sspc    (.34.)   11.206    0.143   78.594    0.000   10.926   11.485   11.206    3.930
##    .ssar             18.926    0.411   46.062    0.000   18.121   19.732   18.926    2.740
##    .ssmk    (.36.)   15.249    0.316   48.320    0.000   14.631   15.868   15.249    2.369
##    .ssmc    (.37.)   17.194    0.224   76.767    0.000   16.755   17.633   17.194    4.114
##    .ssasi   (.38.)   17.717    0.219   80.721    0.000   17.287   18.147   17.717    4.684
##    .ssei             16.115    0.380   42.444    0.000   15.371   16.859   16.115    5.366
##    .ssno    (.40.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.281
##    .sscs              0.411    0.048    8.635    0.000    0.318    0.504    0.411    0.492
##    .verbal            1.283    0.130    9.879    0.000    1.028    1.537    0.415    0.415
##    .math             -0.040    0.108   -0.365    0.715   -0.252    0.173   -0.020   -0.020
##    .elctrnc          -2.648    0.247  -10.737    0.000   -3.132   -2.165   -2.324   -2.324
##    .speed             0.544    0.097    5.634    0.000    0.355    0.733    0.375    0.375
##     g                -0.028    0.078   -0.364    0.716   -0.181    0.124   -0.028   -0.028
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.104    0.104
##    .math              1.000                               1.000    1.000    0.249    0.249
##    .speed             1.000                               1.000    1.000    0.475    0.475
##     g                 1.000                               1.000    1.000    1.000    1.000
##    .ssgs    (.21.)    4.769    0.284   16.764    0.000    4.211    5.326    4.769    0.277
##    .sswk    (.22.)    6.880    0.680   10.111    0.000    5.547    8.214    6.880    0.163
##    .sspc    (.23.)    2.601    0.155   16.777    0.000    2.297    2.905    2.601    0.320
##    .ssar    (.24.)    5.679    0.720    7.893    0.000    4.269    7.090    5.679    0.119
##    .ssmk    (.25.)    9.200    0.698   13.177    0.000    7.831   10.568    9.200    0.222
##    .ssmc    (.26.)    8.558    0.456   18.747    0.000    7.663    9.452    8.558    0.490
##    .ssasi   (.27.)    8.028    0.544   14.762    0.000    6.962    9.094    8.028    0.561
##    .ssei    (.28.)    3.076    0.300   10.251    0.000    2.488    3.664    3.076    0.341
##    .ssno    (.29.)    0.182    0.029    6.294    0.000    0.125    0.238    0.182    0.242
##    .sscs    (.30.)    0.319    0.037    8.735    0.000    0.247    0.391    0.319    0.457
##    .elctrnc           0.272    0.078    3.514    0.000    0.120    0.424    0.210    0.210
tests<-lavTestLRT(configural, metric2, scalar2, latent2, weak)
## Warning: lavaan->lav_test_diff_SatorraBentler2001():  
##    scaling factor is negative
Td=tests[2:5,"Chisq diff"]
Td
## [1] 33.389792  2.410328  6.512958        NA
dfd=tests[2:5,"Df diff"]
dfd
## [1] 10  1  4  1
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-526 + 526 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06674727 0.05182990 0.03459258         NA
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04255477 0.09238715
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1]        NA 0.1394781
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]         NA 0.08074373
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1] NA NA
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.881     0.703     0.212     0.015
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.879     0.870     0.654     0.569     0.389     0.230
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.836     0.814     0.354     0.218     0.054     0.007
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##        NA        NA        NA        NA        NA        NA
tests<-lavTestLRT(configural, metric2, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 33.389792  2.410328 53.288094
dfd=tests[2:4,"Df diff"]
dfd
## [1] 10  1  5
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-526 + 526 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06674727 0.05182990 0.13562988
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1]        NA 0.1394781
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.1040732 0.1695945
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.879     0.870     0.654     0.569     0.389     0.230
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.998     0.968
tests<-lavTestLRT(configural, metric2, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 33.389792  2.410328 38.653246
dfd=tests[2:4,"Df diff"]
dfd
## [1] 10  1 10
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-526 + 526 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06674727 0.05182990 0.07387666
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04255477 0.09238715
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1]        NA 0.1394781
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.05015608 0.09913933
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.881     0.703     0.212     0.015
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.879     0.870     0.654     0.569     0.389     0.230
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.951     0.843     0.370     0.044
tests<-lavTestLRT(configural, metric2, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]  33.38979 185.71070
dfd=tests[2:3,"Df diff"]
dfd
## [1] 10  5
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-526 + 526 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06674727 0.26237792
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04255477 0.09238715
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.2306935 0.2952273
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.881     0.703     0.212     0.015
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric)
Td=tests[2,"Chisq diff"]
Td
## [1] 44.21409
dfd=tests[2,"Df diff"]
dfd
## [1] 11
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-526 + 526 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.07583771
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.05326756 0.09980853
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.969     0.882     0.413     0.049
hof.age<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal 
math~~1*math
speed~~1*speed
g~~1*g
math~0*1
g ~ age 
'

hof.ageq<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal 
math~~1*math
speed~~1*speed
g~~1*g
math~0*1
g ~ c(a,a)*age
'

hof.age2<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal 
math~~1*math
speed~~1*speed
g~~1*g
math~0*1
g ~ age + age2 
'

hof.age2q<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal 
math~~1*math
speed~~1*speed
g~~1*g
math~0*1
g ~ c(a,a)*age + c(b,b)*age2
'

sem.age<-sem(hof.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   513.448    92.000     0.000     0.945     0.093     0.077     0.598 47946.484 48234.074
Mc(sem.age)
## [1] 0.8183227
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 156 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        79
##   Number of equality constraints                    21
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               513.448     429.698
##   Degrees of freedom                                92          92
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.195
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          315.355     263.916
##     1                                          198.093     165.781
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.761    0.117    6.498    0.000    0.531    0.990    2.493    0.558
##     sswk    (.p2.)    1.803    0.279    6.453    0.000    1.256    2.351    5.910    0.911
##     sspc    (.p3.)    0.704    0.109    6.467    0.000    0.491    0.917    2.307    0.801
##   math =~                                                                                 
##     ssar    (.p4.)    3.339    0.173   19.276    0.000    2.999    3.678    6.458    0.937
##     ssmk    (.p5.)    2.917    0.150   19.459    0.000    2.623    3.211    5.642    0.883
##     ssmc    (.p6.)    0.723    0.089    8.139    0.000    0.549    0.897    1.398    0.298
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.985    0.085   11.576    0.000    0.818    1.151    1.620    0.363
##     ssasi   (.p8.)    2.104    0.148   14.191    0.000    1.813    2.394    3.460    0.735
##     ssmc    (.p9.)    1.517    0.128   11.821    0.000    1.266    1.769    2.496    0.531
##     ssei    (.10.)    2.161    0.125   17.257    0.000    1.915    2.406    3.555    0.950
##   speed =~                                                                                
##     ssno    (.11.)    0.520    0.024   21.551    0.000    0.472    0.567    0.747    0.862
##     sscs    (.12.)    0.430    0.022   19.391    0.000    0.386    0.473    0.618    0.757
##   g =~                                                                                    
##     verbal  (.13.)    3.094    0.524    5.905    0.000    2.067    4.121    0.952    0.952
##     math    (.14.)    1.641    0.114   14.367    0.000    1.417    1.865    0.856    0.856
##     elctrnc           1.295    0.115   11.278    0.000    1.070    1.520    0.794    0.794
##     speed   (.16.)    1.024    0.079   13.003    0.000    0.870    1.179    0.719    0.719
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.060    0.026    2.309    0.021    0.009    0.111    0.060    0.132
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   17.956    0.213   84.234    0.000   17.538   18.374   17.956    4.019
##    .sswk             27.723    0.314   88.360    0.000   27.108   28.338   27.723    4.274
##    .sspc    (.37.)   11.243    0.144   77.995    0.000   10.960   11.525   11.243    3.905
##    .ssar             20.390    0.341   59.863    0.000   19.722   21.058   20.390    2.958
##    .ssmk    (.39.)   15.324    0.321   47.770    0.000   14.695   15.952   15.324    2.397
##    .ssmc    (.40.)   17.221    0.227   75.738    0.000   16.776   17.667   17.221    3.666
##    .ssasi   (.41.)   17.766    0.220   80.676    0.000   17.335   18.198   17.766    3.773
##    .ssei             13.570    0.178   76.340    0.000   13.222   13.918   13.570    3.625
##    .ssno    (.43.)    0.251    0.042    6.022    0.000    0.170    0.333    0.251    0.290
##    .sscs              0.082    0.040    2.053    0.040    0.004    0.161    0.082    0.101
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.093    0.093
##    .math              1.000                               1.000    1.000    0.267    0.267
##    .speed             1.000                               1.000    1.000    0.484    0.484
##    .g                 1.000                               1.000    1.000    0.983    0.983
##    .ssgs              5.014    0.412   12.159    0.000    4.206    5.822    5.014    0.251
##    .sswk              7.136    0.939    7.598    0.000    5.295    8.977    7.136    0.170
##    .sspc              2.967    0.248   11.965    0.000    2.481    3.453    2.967    0.358
##    .ssar              5.799    0.924    6.279    0.000    3.989    7.609    5.799    0.122
##    .ssmk              9.021    0.899   10.036    0.000    7.259   10.783    9.021    0.221
##    .ssmc              9.149    0.692   13.226    0.000    7.793   10.504    9.149    0.415
##    .ssasi            10.198    0.923   11.044    0.000    8.388   12.008   10.198    0.460
##    .ssei              1.375    0.362    3.796    0.000    0.665    2.085    1.375    0.098
##    .ssno              0.194    0.033    5.932    0.000    0.130    0.258    0.194    0.257
##    .sscs              0.285    0.046    6.206    0.000    0.195    0.375    0.285    0.427
##    .electronic        1.000                               1.000    1.000    0.370    0.370
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.761    0.117    6.498    0.000    0.531    0.990    2.527    0.610
##     sswk    (.p2.)    1.803    0.279    6.453    0.000    1.256    2.351    5.991    0.922
##     sspc    (.p3.)    0.704    0.109    6.467    0.000    0.491    0.917    2.338    0.839
##   math =~                                                                                 
##     ssar    (.p4.)    3.339    0.173   19.276    0.000    2.999    3.678    6.530    0.943
##     ssmk    (.p5.)    2.917    0.150   19.459    0.000    2.623    3.211    5.704    0.879
##     ssmc    (.p6.)    0.723    0.089    8.139    0.000    0.549    0.897    1.413    0.340
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.985    0.085   11.576    0.000    0.818    1.151    1.113    0.269
##     ssasi   (.p8.)    2.104    0.148   14.191    0.000    1.813    2.394    2.378    0.677
##     ssmc    (.p9.)    1.517    0.128   11.821    0.000    1.266    1.769    1.715    0.412
##     ssei    (.10.)    2.161    0.125   17.257    0.000    1.915    2.406    2.443    0.777
##   speed =~                                                                                
##     ssno    (.11.)    0.520    0.024   21.551    0.000    0.472    0.567    0.753    0.871
##     sscs    (.12.)    0.430    0.022   19.391    0.000    0.386    0.473    0.623    0.726
##   g =~                                                                                    
##     verbal  (.13.)    3.094    0.524    5.905    0.000    2.067    4.121    0.954    0.954
##     math    (.14.)    1.641    0.114   14.367    0.000    1.417    1.865    0.859    0.859
##     elctrnc           1.000    0.076   13.167    0.000    0.851    1.149    0.906    0.906
##     speed   (.16.)    1.024    0.079   13.003    0.000    0.870    1.179    0.724    0.724
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.102    0.022    4.678    0.000    0.059    0.145    0.100    0.215
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   17.956    0.213   84.234    0.000   17.538   18.374   17.956    4.332
##    .sswk             25.752    0.419   61.510    0.000   24.931   26.572   25.752    3.965
##    .sspc    (.37.)   11.243    0.144   77.995    0.000   10.960   11.525   11.243    4.034
##    .ssar             19.017    0.417   45.658    0.000   18.200   19.833   19.017    2.746
##    .ssmk    (.39.)   15.324    0.321   47.770    0.000   14.695   15.952   15.324    2.361
##    .ssmc    (.40.)   17.221    0.227   75.738    0.000   16.776   17.667   17.221    4.142
##    .ssasi   (.41.)   17.766    0.220   80.676    0.000   17.335   18.198   17.766    5.058
##    .ssei             16.523    0.418   39.540    0.000   15.704   17.342   16.523    5.252
##    .ssno    (.43.)    0.251    0.042    6.022    0.000    0.170    0.333    0.251    0.291
##    .sscs              0.415    0.048    8.568    0.000    0.320    0.510    0.415    0.484
##    .verbal            1.449    0.319    4.543    0.000    0.824    2.074    0.436    0.436
##    .elctrnc          -2.770    0.247  -11.209    0.000   -3.255   -2.286   -2.451   -2.451
##    .speed             0.570    0.099    5.732    0.000    0.375    0.765    0.393    0.393
##    .g                -0.036    0.091   -0.400    0.689   -0.215    0.142   -0.036   -0.036
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.091    0.091
##    .math              1.000                               1.000    1.000    0.261    0.261
##    .speed             1.000                               1.000    1.000    0.476    0.476
##    .g                 1.000                               1.000    1.000    0.954    0.954
##    .ssgs              4.692    0.382   12.279    0.000    3.943    5.441    4.692    0.273
##    .sswk              6.299    0.863    7.302    0.000    4.608    7.989    6.299    0.149
##    .sspc              2.300    0.193   11.942    0.000    1.922    2.677    2.300    0.296
##    .ssar              5.330    0.934    5.708    0.000    3.500    7.160    5.330    0.111
##    .ssmk              9.579    0.957   10.007    0.000    7.703   11.455    9.579    0.227
##    .ssmc              8.576    0.576   14.892    0.000    7.447    9.705    8.576    0.496
##    .ssasi             6.683    0.540   12.375    0.000    5.624    7.741    6.683    0.542
##    .ssei              3.928    0.381   10.298    0.000    3.180    4.676    3.928    0.397
##    .ssno              0.181    0.037    4.941    0.000    0.109    0.252    0.181    0.242
##    .sscs              0.348    0.049    7.031    0.000    0.251    0.445    0.348    0.473
##    .electronic        0.229    0.066    3.456    0.001    0.099    0.359    0.179    0.179
sem.ageq<-sem(hof.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   515.412    93.000     0.000     0.944     0.093     0.072     0.598 47946.448 48229.079
Mc(sem.ageq)
## [1] 0.8179475
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 139 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        79
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               515.412     431.187
##   Degrees of freedom                                93          93
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.195
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          316.259     264.579
##     1                                          199.153     166.609
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.769    0.115    6.673    0.000    0.543    0.995    2.510    0.559
##     sswk    (.p2.)    1.825    0.274    6.651    0.000    1.287    2.362    5.952    0.913
##     sspc    (.p3.)    0.712    0.107    6.672    0.000    0.503    0.922    2.324    0.803
##   math =~                                                                                 
##     ssar    (.p4.)    3.330    0.173   19.266    0.000    2.991    3.669    6.495    0.938
##     ssmk    (.p5.)    2.909    0.150   19.429    0.000    2.616    3.203    5.674    0.884
##     ssmc    (.p6.)    0.720    0.088    8.137    0.000    0.547    0.893    1.404    0.298
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.984    0.085   11.567    0.000    0.817    1.151    1.628    0.362
##     ssasi   (.p8.)    2.102    0.148   14.179    0.000    1.811    2.392    3.476    0.736
##     ssmc    (.p9.)    1.516    0.128   11.807    0.000    1.264    1.767    2.507    0.532
##     ssei    (.10.)    2.158    0.125   17.239    0.000    1.913    2.403    3.570    0.950
##   speed =~                                                                                
##     ssno    (.11.)    0.519    0.024   21.528    0.000    0.472    0.567    0.751    0.863
##     sscs    (.12.)    0.429    0.022   19.401    0.000    0.386    0.473    0.620    0.758
##   g =~                                                                                    
##     verbal  (.13.)    3.057    0.503    6.074    0.000    2.071    4.044    0.952    0.952
##     math    (.14.)    1.649    0.114   14.426    0.000    1.425    1.873    0.859    0.859
##     elctrnc           1.297    0.115   11.255    0.000    1.071    1.523    0.797    0.797
##     speed   (.16.)    1.027    0.079   13.031    0.000    0.873    1.182    0.722    0.722
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.080    0.018    4.552    0.000    0.046    0.115    0.079    0.174
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   17.974    0.211   85.249    0.000   17.560   18.387   17.974    4.003
##    .sswk             27.750    0.310   89.573    0.000   27.143   28.357   27.750    4.255
##    .sspc    (.37.)   11.253    0.143   78.501    0.000   10.972   11.534   11.253    3.890
##    .ssar             20.416    0.338   60.403    0.000   19.754   21.079   20.416    2.948
##    .ssmk    (.39.)   15.347    0.320   47.978    0.000   14.720   15.974   15.347    2.390
##    .ssmc    (.40.)   17.237    0.225   76.483    0.000   16.795   17.678   17.237    3.656
##    .ssasi   (.41.)   17.779    0.218   81.622    0.000   17.352   18.206   17.779    3.767
##    .ssei             13.583    0.176   77.318    0.000   13.239   13.928   13.583    3.615
##    .ssno    (.43.)    0.254    0.041    6.120    0.000    0.173    0.335    0.254    0.292
##    .sscs              0.085    0.040    2.119    0.034    0.006    0.163    0.085    0.103
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.094    0.094
##    .math              1.000                               1.000    1.000    0.263    0.263
##    .speed             1.000                               1.000    1.000    0.479    0.479
##    .g                 1.000                               1.000    1.000    0.970    0.970
##    .ssgs              5.019    0.413   12.167    0.000    4.211    5.828    5.019    0.249
##    .sswk              7.108    0.937    7.584    0.000    5.271    8.945    7.108    0.167
##    .sspc              2.969    0.248   11.971    0.000    2.483    3.455    2.969    0.355
##    .ssar              5.789    0.922    6.281    0.000    3.982    7.595    5.789    0.121
##    .ssmk              9.036    0.899   10.053    0.000    7.274   10.797    9.036    0.219
##    .ssmc              9.149    0.692   13.221    0.000    7.792   10.505    9.149    0.412
##    .ssasi            10.196    0.924   11.039    0.000    8.386   12.006   10.196    0.458
##    .ssei              1.376    0.362    3.804    0.000    0.667    2.085    1.376    0.097
##    .ssno              0.194    0.033    5.934    0.000    0.130    0.258    0.194    0.256
##    .sscs              0.285    0.046    6.207    0.000    0.195    0.375    0.285    0.425
##    .electronic        1.000                               1.000    1.000    0.366    0.366
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.769    0.115    6.673    0.000    0.543    0.995    2.508    0.608
##     sswk    (.p2.)    1.825    0.274    6.651    0.000    1.287    2.362    5.948    0.921
##     sspc    (.p3.)    0.712    0.107    6.672    0.000    0.503    0.922    2.322    0.838
##   math =~                                                                                 
##     ssar    (.p4.)    3.330    0.173   19.266    0.000    2.991    3.669    6.491    0.942
##     ssmk    (.p5.)    2.909    0.150   19.429    0.000    2.616    3.203    5.671    0.878
##     ssmc    (.p6.)    0.720    0.088    8.137    0.000    0.547    0.893    1.403    0.339
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.984    0.085   11.567    0.000    0.817    1.151    1.108    0.269
##     ssasi   (.p8.)    2.102    0.148   14.179    0.000    1.811    2.392    2.366    0.675
##     ssmc    (.p9.)    1.516    0.128   11.807    0.000    1.264    1.767    1.706    0.412
##     ssei    (.10.)    2.158    0.125   17.239    0.000    1.913    2.403    2.429    0.775
##   speed =~                                                                                
##     ssno    (.11.)    0.519    0.024   21.528    0.000    0.472    0.567    0.750    0.870
##     sscs    (.12.)    0.429    0.022   19.401    0.000    0.386    0.473    0.620    0.724
##   g =~                                                                                    
##     verbal  (.13.)    3.057    0.503    6.074    0.000    2.071    4.044    0.952    0.952
##     math    (.14.)    1.649    0.114   14.426    0.000    1.425    1.873    0.858    0.858
##     elctrnc           1.003    0.076   13.169    0.000    0.854    1.153    0.905    0.905
##     speed   (.16.)    1.027    0.079   13.031    0.000    0.873    1.182    0.722    0.722
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.080    0.018    4.552    0.000    0.046    0.115    0.079    0.170
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   17.974    0.211   85.249    0.000   17.560   18.387   17.974    4.360
##    .sswk             25.778    0.417   61.821    0.000   24.960   26.595   25.778    3.992
##    .sspc    (.37.)   11.253    0.143   78.501    0.000   10.972   11.534   11.253    4.059
##    .ssar             19.043    0.416   45.752    0.000   18.227   19.859   19.043    2.764
##    .ssmk    (.39.)   15.347    0.320   47.978    0.000   14.720   15.974   15.347    2.376
##    .ssmc    (.40.)   17.237    0.225   76.483    0.000   16.795   17.678   17.237    4.159
##    .ssasi   (.41.)   17.779    0.218   81.622    0.000   17.352   18.206   17.779    5.075
##    .ssei             16.534    0.417   39.655    0.000   15.716   17.351   16.534    5.273
##    .ssno    (.43.)    0.254    0.041    6.120    0.000    0.173    0.335    0.254    0.295
##    .sscs              0.417    0.048    8.653    0.000    0.323    0.512    0.417    0.487
##    .verbal            1.432    0.310    4.617    0.000    0.824    2.040    0.439    0.439
##    .elctrnc          -2.774    0.247  -11.210    0.000   -3.259   -2.289   -2.465   -2.465
##    .speed             0.570    0.099    5.732    0.000    0.375    0.765    0.395    0.395
##    .g                -0.048    0.090   -0.535    0.593   -0.225    0.128   -0.047   -0.047
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.094    0.094
##    .math              1.000                               1.000    1.000    0.263    0.263
##    .speed             1.000                               1.000    1.000    0.479    0.479
##    .g                 1.000                               1.000    1.000    0.971    0.971
##    .ssgs              4.695    0.382   12.277    0.000    3.946    5.445    4.695    0.276
##    .sswk              6.314    0.864    7.307    0.000    4.620    8.008    6.314    0.151
##    .sspc              2.295    0.192   11.944    0.000    1.918    2.671    2.295    0.299
##    .ssar              5.337    0.934    5.716    0.000    3.507    7.167    5.337    0.112
##    .ssmk              9.567    0.957    9.999    0.000    7.691   11.442    9.567    0.229
##    .ssmc              8.573    0.576   14.890    0.000    7.445    9.702    8.573    0.499
##    .ssasi             6.678    0.540   12.364    0.000    5.620    7.737    6.678    0.544
##    .ssei              3.932    0.381   10.313    0.000    3.185    4.679    3.932    0.400
##    .ssno              0.180    0.037    4.933    0.000    0.109    0.252    0.180    0.242
##    .sscs              0.348    0.049    7.043    0.000    0.251    0.445    0.348    0.475
##    .electronic        0.230    0.067    3.461    0.001    0.100    0.361    0.182    0.182
sem.age2<-sem(hof.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   544.735   110.000     0.000     0.943     0.087     0.072     0.632 47947.667 48245.174
Mc(sem.age2)
## [1] 0.8131662
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 148 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        81
##   Number of equality constraints                    21
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               544.735     457.467
##   Degrees of freedom                               110         110
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.191
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          332.055     278.858
##     1                                          212.681     178.609
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.760    0.117    6.501    0.000    0.531    0.990    2.496    0.558
##     sswk    (.p2.)    1.804    0.279    6.463    0.000    1.257    2.351    5.919    0.912
##     sspc    (.p3.)    0.704    0.109    6.479    0.000    0.491    0.917    2.310    0.802
##   math =~                                                                                 
##     ssar    (.p4.)    3.342    0.173   19.316    0.000    3.003    3.681    6.465    0.937
##     ssmk    (.p5.)    2.920    0.150   19.530    0.000    2.627    3.213    5.648    0.883
##     ssmc    (.p6.)    0.724    0.089    8.140    0.000    0.549    0.898    1.400    0.298
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.983    0.085   11.570    0.000    0.816    1.149    1.620    0.362
##     ssasi   (.p8.)    2.100    0.148   14.183    0.000    1.810    2.390    3.462    0.735
##     ssmc    (.p9.)    1.514    0.128   11.811    0.000    1.263    1.765    2.496    0.531
##     ssei    (.10.)    2.158    0.125   17.232    0.000    1.913    2.404    3.558    0.950
##   speed =~                                                                                
##     ssno    (.11.)    0.520    0.024   21.580    0.000    0.473    0.567    0.748    0.862
##     sscs    (.12.)    0.430    0.022   19.414    0.000    0.386    0.473    0.618    0.757
##   g =~                                                                                    
##     verbal  (.13.)    3.089    0.523    5.912    0.000    2.065    4.113    0.952    0.952
##     math    (.14.)    1.637    0.114   14.399    0.000    1.414    1.859    0.856    0.856
##     elctrnc           1.295    0.114   11.325    0.000    1.071    1.519    0.795    0.795
##     speed   (.16.)    1.022    0.078   13.055    0.000    0.869    1.175    0.719    0.719
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.054    0.027    1.992    0.046    0.001    0.107    0.053    0.118
##     age2             -0.016    0.012   -1.312    0.190   -0.040    0.008   -0.016   -0.077
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   18.236    0.281   64.932    0.000   17.686   18.787   18.236    4.078
##    .sswk             28.155    0.411   68.487    0.000   27.349   28.960   28.155    4.337
##    .sspc    (.40.)   11.411    0.176   64.710    0.000   11.065   11.757   11.411    3.960
##    .ssar             20.813    0.446   46.669    0.000   19.939   21.687   20.813    3.017
##    .ssmk    (.42.)   15.693    0.412   38.069    0.000   14.885   16.501   15.693    2.453
##    .ssmc    (.43.)   17.465    0.280   62.339    0.000   16.916   18.014   17.465    3.715
##    .ssasi   (.44.)   17.977    0.255   70.540    0.000   17.477   18.476   17.977    3.816
##    .ssei             13.786    0.225   61.275    0.000   13.345   14.227   13.786    3.681
##    .ssno    (.46.)    0.293    0.048    6.150    0.000    0.199    0.386    0.293    0.337
##    .sscs              0.116    0.043    2.692    0.007    0.032    0.201    0.116    0.143
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.093    0.093
##    .math              1.000                               1.000    1.000    0.267    0.267
##    .speed             1.000                               1.000    1.000    0.483    0.483
##    .g                 1.000                               1.000    1.000    0.977    0.977
##    .ssgs              5.025    0.414   12.132    0.000    4.213    5.836    5.025    0.251
##    .sswk              7.113    0.934    7.612    0.000    5.281    8.944    7.113    0.169
##    .sspc              2.967    0.248   11.941    0.000    2.480    3.453    2.967    0.357
##    .ssar              5.801    0.924    6.281    0.000    3.990    7.611    5.801    0.122
##    .ssmk              9.020    0.899   10.028    0.000    7.257   10.783    9.020    0.220
##    .ssmc              9.156    0.692   13.238    0.000    7.801   10.512    9.156    0.414
##    .ssasi            10.204    0.925   11.036    0.000    8.392   12.017   10.204    0.460
##    .ssei              1.367    0.360    3.794    0.000    0.661    2.073    1.367    0.097
##    .ssno              0.194    0.033    5.931    0.000    0.130    0.258    0.194    0.257
##    .sscs              0.285    0.046    6.202    0.000    0.195    0.375    0.285    0.427
##    .electronic        1.000                               1.000    1.000    0.368    0.368
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.760    0.117    6.501    0.000    0.531    0.990    2.523    0.609
##     sswk    (.p2.)    1.804    0.279    6.463    0.000    1.257    2.351    5.984    0.922
##     sspc    (.p3.)    0.704    0.109    6.479    0.000    0.491    0.917    2.336    0.839
##   math =~                                                                                 
##     ssar    (.p4.)    3.342    0.173   19.316    0.000    3.003    3.681    6.523    0.943
##     ssmk    (.p5.)    2.920    0.150   19.530    0.000    2.627    3.213    5.698    0.879
##     ssmc    (.p6.)    0.724    0.089    8.140    0.000    0.549    0.898    1.412    0.340
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.983    0.085   11.570    0.000    0.816    1.149    1.112    0.269
##     ssasi   (.p8.)    2.100    0.148   14.183    0.000    1.810    2.390    2.376    0.677
##     ssmc    (.p9.)    1.514    0.128   11.811    0.000    1.263    1.765    1.713    0.412
##     ssei    (.10.)    2.158    0.125   17.232    0.000    1.913    2.404    2.442    0.776
##   speed =~                                                                                
##     ssno    (.11.)    0.520    0.024   21.580    0.000    0.473    0.567    0.753    0.871
##     sscs    (.12.)    0.430    0.022   19.414    0.000    0.386    0.473    0.622    0.726
##   g =~                                                                                    
##     verbal  (.13.)    3.089    0.523    5.912    0.000    2.065    4.113    0.953    0.953
##     math    (.14.)    1.637    0.114   14.399    0.000    1.414    1.859    0.859    0.859
##     elctrnc           1.001    0.076   13.188    0.000    0.852    1.149    0.906    0.906
##     speed   (.16.)    1.022    0.078   13.055    0.000    0.869    1.175    0.723    0.723
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.102    0.022    4.753    0.000    0.060    0.145    0.100    0.215
##     age2             -0.000    0.009   -0.019    0.985   -0.018    0.017   -0.000   -0.001
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   18.236    0.281   64.932    0.000   17.686   18.787   18.236    4.405
##    .sswk             26.182    0.498   52.567    0.000   25.206   27.159   26.182    4.035
##    .sspc    (.40.)   11.411    0.176   64.710    0.000   11.065   11.757   11.411    4.098
##    .ssar             19.440    0.511   38.050    0.000   18.439   20.442   19.440    2.810
##    .ssmk    (.42.)   15.693    0.412   38.069    0.000   14.885   16.501   15.693    2.420
##    .ssmc    (.43.)   17.465    0.280   62.339    0.000   16.916   18.014   17.465    4.203
##    .ssasi   (.44.)   17.977    0.255   70.540    0.000   17.477   18.476   17.977    5.120
##    .ssei             16.743    0.428   39.111    0.000   15.904   17.582   16.743    5.324
##    .ssno    (.46.)    0.293    0.048    6.150    0.000    0.199    0.386    0.293    0.338
##    .sscs              0.449    0.052    8.692    0.000    0.348    0.550    0.449    0.524
##    .verbal            1.449    0.319    4.539    0.000    0.824    2.075    0.437    0.437
##    .elctrnc          -2.798    0.250  -11.185    0.000   -3.288   -2.308   -2.474   -2.474
##    .speed             0.570    0.099    5.734    0.000    0.375    0.764    0.394    0.394
##    .g                -0.113    0.114   -0.993    0.321   -0.337    0.110   -0.111   -0.111
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.091    0.091
##    .math              1.000                               1.000    1.000    0.263    0.263
##    .speed             1.000                               1.000    1.000    0.477    0.477
##    .g                 1.000                               1.000    1.000    0.954    0.954
##    .ssgs              4.693    0.382   12.277    0.000    3.944    5.442    4.693    0.274
##    .sswk              6.295    0.863    7.298    0.000    4.604    7.985    6.295    0.150
##    .sspc              2.300    0.193   11.940    0.000    1.922    2.677    2.300    0.297
##    .ssar              5.327    0.934    5.704    0.000    3.497    7.158    5.327    0.111
##    .ssmk              9.579    0.958   10.000    0.000    7.702   11.457    9.579    0.228
##    .ssmc              8.576    0.576   14.888    0.000    7.447    9.705    8.576    0.497
##    .ssasi             6.683    0.540   12.366    0.000    5.624    7.743    6.683    0.542
##    .ssei              3.927    0.382   10.291    0.000    3.179    4.675    3.927    0.397
##    .ssno              0.181    0.037    4.937    0.000    0.109    0.252    0.181    0.242
##    .sscs              0.348    0.049    7.029    0.000    0.251    0.445    0.348    0.473
##    .electronic        0.230    0.067    3.453    0.001    0.099    0.360    0.180    0.180
sem.age2q<-sem(hof.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   547.948   112.000     0.000     0.943     0.086     0.069     0.631 47946.880 48234.471
Mc(sem.age2q)
## [1] 0.812697
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 130 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        81
##   Number of equality constraints                    23
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               547.948     460.110
##   Degrees of freedom                               112         112
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.191
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          333.443     279.991
##     1                                          214.505     180.119
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.770    0.115    6.687    0.000    0.544    0.995    2.508    0.559
##     sswk    (.p2.)    1.826    0.274    6.671    0.000    1.290    2.363    5.952    0.913
##     sspc    (.p3.)    0.713    0.107    6.692    0.000    0.504    0.922    2.323    0.803
##   math =~                                                                                 
##     ssar    (.p4.)    3.333    0.173   19.288    0.000    2.994    3.671    6.494    0.938
##     ssmk    (.p5.)    2.911    0.150   19.471    0.000    2.618    3.204    5.672    0.884
##     ssmc    (.p6.)    0.720    0.089    8.139    0.000    0.547    0.894    1.404    0.298
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.983    0.085   11.567    0.000    0.816    1.150    1.627    0.362
##     ssasi   (.p8.)    2.100    0.148   14.174    0.000    1.810    2.390    3.475    0.736
##     ssmc    (.p9.)    1.515    0.128   11.803    0.000    1.263    1.766    2.507    0.532
##     ssei    (.10.)    2.156    0.125   17.218    0.000    1.911    2.402    3.569    0.950
##   speed =~                                                                                
##     ssno    (.11.)    0.519    0.024   21.546    0.000    0.472    0.567    0.750    0.863
##     sscs    (.12.)    0.429    0.022   19.408    0.000    0.386    0.473    0.620    0.758
##   g =~                                                                                    
##     verbal  (.13.)    3.053    0.501    6.092    0.000    2.071    4.035    0.952    0.952
##     math    (.14.)    1.646    0.114   14.434    0.000    1.422    1.869    0.858    0.858
##     elctrnc           1.298    0.115   11.278    0.000    1.072    1.523    0.797    0.797
##     speed   (.16.)    1.026    0.079   13.043    0.000    0.872    1.180    0.722    0.722
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.076    0.018    4.176    0.000    0.040    0.112    0.075    0.166
##     age2       (b)   -0.008    0.008   -1.089    0.276   -0.024    0.007   -0.008   -0.041
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   18.122    0.237   76.305    0.000   17.656   18.587   18.122    4.037
##    .sswk             27.978    0.347   80.650    0.000   27.298   28.658   27.978    4.291
##    .sspc    (.40.)   11.342    0.155   73.226    0.000   11.038   11.645   11.342    3.921
##    .ssar             20.640    0.381   54.123    0.000   19.893   21.388   20.640    2.980
##    .ssmk    (.42.)   15.542    0.358   43.437    0.000   14.841   16.244   15.542    2.421
##    .ssmc    (.43.)   17.365    0.247   70.411    0.000   16.882   17.849   17.365    3.684
##    .ssasi   (.44.)   17.890    0.231   77.606    0.000   17.439   18.342   17.890    3.790
##    .ssei             13.698    0.194   70.546    0.000   13.317   14.078   13.698    3.646
##    .ssno    (.46.)    0.276    0.043    6.365    0.000    0.191    0.361    0.276    0.317
##    .sscs              0.103    0.041    2.522    0.012    0.023    0.182    0.103    0.125
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.094    0.094
##    .math              1.000                               1.000    1.000    0.263    0.263
##    .speed             1.000                               1.000    1.000    0.479    0.479
##    .g                 1.000                               1.000    1.000    0.968    0.968
##    .ssgs              5.025    0.413   12.155    0.000    4.214    5.835    5.025    0.249
##    .sswk              7.094    0.935    7.589    0.000    5.262    8.926    7.094    0.167
##    .sspc              2.968    0.248   11.958    0.000    2.482    3.455    2.968    0.355
##    .ssar              5.787    0.922    6.276    0.000    3.980    7.594    5.787    0.121
##    .ssmk              9.036    0.899   10.049    0.000    7.274   10.799    9.036    0.219
##    .ssmc              9.152    0.692   13.226    0.000    7.795   10.508    9.152    0.412
##    .ssasi            10.198    0.924   11.036    0.000    8.387   12.010   10.198    0.458
##    .ssei              1.373    0.361    3.805    0.000    0.666    2.081    1.373    0.097
##    .ssno              0.194    0.033    5.936    0.000    0.130    0.258    0.194    0.256
##    .sscs              0.285    0.046    6.205    0.000    0.195    0.375    0.285    0.426
##    .electronic        1.000                               1.000    1.000    0.365    0.365
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.770    0.115    6.687    0.000    0.544    0.995    2.508    0.608
##     sswk    (.p2.)    1.826    0.274    6.671    0.000    1.290    2.363    5.950    0.921
##     sspc    (.p3.)    0.713    0.107    6.692    0.000    0.504    0.922    2.323    0.838
##   math =~                                                                                 
##     ssar    (.p4.)    3.333    0.173   19.288    0.000    2.994    3.671    6.493    0.942
##     ssmk    (.p5.)    2.911    0.150   19.471    0.000    2.618    3.204    5.671    0.878
##     ssmc    (.p6.)    0.720    0.089    8.139    0.000    0.547    0.894    1.404    0.339
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.983    0.085   11.567    0.000    0.816    1.150    1.108    0.269
##     ssasi   (.p8.)    2.100    0.148   14.174    0.000    1.810    2.390    2.366    0.675
##     ssmc    (.p9.)    1.515    0.128   11.803    0.000    1.263    1.766    1.707    0.412
##     ssei    (.10.)    2.156    0.125   17.218    0.000    1.911    2.402    2.430    0.775
##   speed =~                                                                                
##     ssno    (.11.)    0.519    0.024   21.546    0.000    0.472    0.567    0.750    0.870
##     sscs    (.12.)    0.429    0.022   19.408    0.000    0.386    0.473    0.620    0.725
##   g =~                                                                                    
##     verbal  (.13.)    3.053    0.501    6.092    0.000    2.071    4.035    0.952    0.952
##     math    (.14.)    1.646    0.114   14.434    0.000    1.422    1.869    0.858    0.858
##     elctrnc           1.004    0.076   13.180    0.000    0.855    1.153    0.905    0.905
##     speed   (.16.)    1.026    0.079   13.043    0.000    0.872    1.180    0.722    0.722
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.076    0.018    4.176    0.000    0.040    0.112    0.075    0.162
##     age2       (b)   -0.008    0.008   -1.089    0.276   -0.024    0.007   -0.008   -0.042
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   18.122    0.237   76.305    0.000   17.656   18.587   18.122    4.395
##    .sswk             26.005    0.442   58.794    0.000   25.138   26.872   26.005    4.026
##    .sspc    (.40.)   11.342    0.155   73.226    0.000   11.038   11.645   11.342    4.090
##    .ssar             19.267    0.457   42.194    0.000   18.372   20.162   19.267    2.796
##    .ssmk    (.42.)   15.542    0.358   43.437    0.000   14.841   16.244   15.542    2.406
##    .ssmc    (.43.)   17.365    0.247   70.411    0.000   16.882   17.849   17.365    4.190
##    .ssasi   (.44.)   17.890    0.231   77.606    0.000   17.439   18.342   17.890    5.106
##    .ssei             16.648    0.417   39.923    0.000   15.831   17.465   16.648    5.307
##    .ssno    (.46.)    0.276    0.043    6.365    0.000    0.191    0.361    0.276    0.320
##    .sscs              0.435    0.049    8.877    0.000    0.339    0.531    0.435    0.508
##    .verbal            1.431    0.310    4.617    0.000    0.824    2.039    0.439    0.439
##    .elctrnc          -2.788    0.249  -11.206    0.000   -3.276   -2.301   -2.474   -2.474
##    .speed             0.570    0.099    5.732    0.000    0.375    0.765    0.395    0.395
##    .g                -0.050    0.090   -0.557    0.577   -0.227    0.126   -0.049   -0.049
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.094    0.094
##    .math              1.000                               1.000    1.000    0.263    0.263
##    .speed             1.000                               1.000    1.000    0.479    0.479
##    .g                 1.000                               1.000    1.000    0.969    0.969
##    .ssgs              4.699    0.383   12.275    0.000    3.948    5.449    4.699    0.276
##    .sswk              6.313    0.864    7.305    0.000    4.619    8.007    6.313    0.151
##    .sspc              2.294    0.192   11.935    0.000    1.918    2.671    2.294    0.298
##    .ssar              5.329    0.934    5.705    0.000    3.498    7.159    5.329    0.112
##    .ssmk              9.574    0.958    9.996    0.000    7.697   11.451    9.574    0.229
##    .ssmc              8.571    0.575   14.895    0.000    7.443    9.699    8.571    0.499
##    .ssasi             6.675    0.540   12.364    0.000    5.617    7.733    6.675    0.544
##    .ssei              3.935    0.381   10.318    0.000    3.188    4.683    3.935    0.400
##    .ssno              0.180    0.036    4.941    0.000    0.109    0.252    0.180    0.243
##    .sscs              0.348    0.049    7.042    0.000    0.251    0.445    0.348    0.475
##    .electronic        0.230    0.067    3.454    0.001    0.099    0.360    0.181    0.181
# BIFACTOR (model with verbal =~ gs + pc shows that gs loading is negative, even without cross loading on electronic)

bf.notworking<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
'

baseline<-cfa(bf.notworking, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   357.029    23.000     0.000     0.957     0.117     0.055 48909.569 49117.824
Mc(baseline)
## [1] 0.8530731
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 77 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        42
## 
##   Number of observations                          1052
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               357.029     297.203
##   Degrees of freedom                                23          23
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.201
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              0.301    0.402    0.748    0.455   -0.487    1.088    0.301    0.068
##     sswk              7.745    8.809    0.879    0.379   -9.520   25.009    7.745    1.193
##     sspc              0.333    0.424    0.785    0.432   -0.498    1.163    0.333    0.115
##   math =~                                                                                 
##     ssar              2.857    0.322    8.868    0.000    2.226    3.489    2.857    0.411
##     ssmk              2.430    0.265    9.162    0.000    1.910    2.950    2.430    0.377
##     ssmc              1.263    0.165    7.660    0.000    0.940    1.586    1.263    0.257
##   electronic =~                                                                           
##     ssgs              1.251    0.099   12.644    0.000    1.057    1.445    1.251    0.285
##     ssasi             3.766    0.144   26.230    0.000    3.485    4.048    3.766    0.734
##     ssmc              2.857    0.130   22.051    0.000    2.603    3.111    2.857    0.581
##     ssei              2.200    0.101   21.687    0.000    2.001    2.399    2.200    0.575
##   speed =~                                                                                
##     ssno              0.490    0.018   27.119    0.000    0.454    0.525    0.490    0.559
##     sscs              0.533    0.020   26.767    0.000    0.494    0.572    0.533    0.605
##   g =~                                                                                    
##     ssgs              3.541    0.134   26.449    0.000    3.279    3.804    3.541    0.807
##     ssar              5.809    0.172   33.720    0.000    5.472    6.147    5.809    0.835
##     sswk              5.321    0.247   21.570    0.000    4.837    5.804    5.321    0.820
##     sspc              2.172    0.117   18.615    0.000    1.944    2.401    2.172    0.752
##     ssno              0.560    0.032   17.742    0.000    0.498    0.621    0.560    0.639
##     sscs              0.430    0.035   12.290    0.000    0.361    0.498    0.430    0.488
##     ssasi             2.131    0.184   11.575    0.000    1.770    2.492    2.131    0.415
##     ssmk              5.158    0.148   34.742    0.000    4.867    5.449    5.158    0.801
##     ssmc              2.756    0.149   18.492    0.000    2.464    3.048    2.756    0.560
##     ssei              2.514    0.117   21.561    0.000    2.286    2.743    2.514    0.657
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.000                               0.000    0.000    0.000    0.000
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             17.025    0.145  117.394    0.000   16.741   17.309   17.025    3.879
##    .sswk             27.807    0.211  131.932    0.000   27.394   28.220   27.807    4.284
##    .sspc             11.650    0.094  123.594    0.000   11.465   11.835   11.650    4.034
##    .ssar             19.496    0.231   84.266    0.000   19.043   19.950   19.496    2.802
##    .ssmk             15.127    0.215   70.219    0.000   14.704   15.549   15.127    2.349
##    .ssmc             15.057    0.165   91.221    0.000   14.733   15.380   15.057    3.059
##    .ssasi            14.849    0.172   86.576    0.000   14.512   15.185   14.849    2.894
##    .ssei             11.999    0.126   95.165    0.000   11.752   12.246   11.999    3.134
##    .ssno              0.374    0.029   12.900    0.000    0.317    0.431    0.374    0.427
##    .sscs              0.346    0.029   11.791    0.000    0.288    0.403    0.346    0.393
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.072    0.337   15.051    0.000    4.411    5.732    5.072    0.263
##    .sswk            -46.159  137.201   -0.336    0.737 -315.067  222.750  -46.159   -1.096
##    .sspc              3.509    0.262   13.413    0.000    2.996    4.022    3.509    0.421
##    .ssar              6.511    1.117    5.832    0.000    4.323    8.699    6.511    0.134
##    .ssmk              8.957    0.927    9.666    0.000    7.141   10.774    8.957    0.216
##    .ssmc              6.868    0.598   11.479    0.000    5.695    8.041    6.868    0.284
##    .ssasi             7.593    0.702   10.813    0.000    6.217    8.969    7.593    0.288
##    .ssei              3.495    0.272   12.828    0.000    2.961    4.028    3.495    0.238
##    .ssno              0.215    0.021   10.436    0.000    0.175    0.256    0.215    0.280
##    .sscs              0.306    0.032    9.469    0.000    0.243    0.370    0.306    0.395
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
bf.model<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
'

bf.lv<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
'

bf.reduced<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
math~0*1
g~0*1
'

baseline<-cfa(bf.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= -1.702479e-07) is smaller than zero. This may 
##    be a symptom that the model is not identified.
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   432.106    26.000     0.000     0.947     0.122     0.057 48978.646 49172.025
Mc(baseline)
## [1] 0.8243173
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        39
## 
##   Number of observations                          1052
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               432.106     356.059
##   Degrees of freedom                                26          26
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.214
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar              3.656    0.251   14.567    0.000    3.164    4.148    3.656    0.525
##     ssmk              3.092    0.220   14.080    0.000    2.661    3.522    3.092    0.480
##     ssmc              1.185    0.126    9.414    0.000    0.938    1.431    1.185    0.243
##   electronic =~                                                                           
##     ssgs              1.350    0.097   13.892    0.000    1.159    1.540    1.350    0.305
##     ssasi             3.812    0.136   27.932    0.000    3.545    4.080    3.812    0.743
##     ssmc              2.814    0.125   22.461    0.000    2.568    3.060    2.814    0.577
##     ssei              2.216    0.092   24.162    0.000    2.036    2.396    2.216    0.579
##   speed =~                                                                                
##     ssno              0.443    0.011   39.363    0.000    0.421    0.465    0.443    0.506
##     sscs              0.611    0.027   22.336    0.000    0.558    0.665    0.611    0.694
##   g =~                                                                                    
##     ssgs              3.616    0.113   32.080    0.000    3.395    3.837    3.616    0.818
##     ssar              5.360    0.156   34.295    0.000    5.053    5.666    5.360    0.770
##     sswk              5.870    0.202   29.087    0.000    5.474    6.265    5.870    0.904
##     sspc              2.328    0.105   22.258    0.000    2.123    2.533    2.328    0.806
##     ssno              0.530    0.032   16.702    0.000    0.468    0.592    0.530    0.605
##     sscs              0.434    0.034   12.841    0.000    0.368    0.501    0.434    0.493
##     ssasi             2.088    0.175   11.951    0.000    1.745    2.430    2.088    0.407
##     ssmk              4.777    0.136   35.058    0.000    4.510    5.044    4.777    0.742
##     ssmc              2.676    0.141   18.989    0.000    2.400    2.952    2.676    0.549
##     ssei              2.506    0.104   24.181    0.000    2.303    2.709    2.506    0.655
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             19.496    0.231   84.266    0.000   19.043   19.950   19.496    2.802
##    .ssmk             15.127    0.215   70.219    0.000   14.704   15.549   15.127    2.349
##    .ssmc             15.057    0.165   91.221    0.000   14.733   15.380   15.057    3.087
##    .ssgs             17.025    0.145  117.394    0.000   16.741   17.309   17.025    3.850
##    .ssasi            14.849    0.172   86.576    0.000   14.512   15.185   14.849    2.894
##    .ssei             11.999    0.126   95.165    0.000   11.752   12.246   11.999    3.134
##    .ssno              0.374    0.029   12.900    0.000    0.317    0.431    0.374    0.427
##    .sscs              0.346    0.029   11.791    0.000    0.288    0.403    0.346    0.393
##    .sswk             27.807    0.211  131.932    0.000   27.394   28.220   27.807    4.284
##    .sspc             11.650    0.094  123.594    0.000   11.465   11.835   11.650    4.034
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.334    1.464    4.326    0.000    3.464    9.204    6.334    0.131
##    .ssmk              9.084    1.151    7.892    0.000    6.828   11.340    9.084    0.219
##    .ssmc              7.305    0.512   14.275    0.000    6.302    8.308    7.305    0.307
##    .ssgs              4.666    0.288   16.186    0.000    4.101    5.231    4.666    0.239
##    .ssasi             7.428    0.685   10.845    0.000    6.085    8.770    7.428    0.282
##    .ssei              3.466    0.268   12.943    0.000    2.941    3.991    3.466    0.236
##    .ssno              0.290    0.020   14.585    0.000    0.251    0.329    0.290    0.378
##    .sscs              0.213    0.037    5.795    0.000    0.141    0.284    0.213    0.274
##    .sswk              7.677    0.699   10.983    0.000    6.307    9.047    7.677    0.182
##    .sspc              2.918    0.176   16.592    0.000    2.573    3.263    2.918    0.350
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
configural<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   326.036    52.000     0.000     0.963     0.100     0.037 47937.106 48323.865
Mc(configural)
## [1] 0.8777714
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 42 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        78
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               326.036     274.630
##   Degrees of freedom                                52          52
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.187
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          199.242     167.828
##     1                                          126.794     106.803
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar              3.709    0.378    9.800    0.000    2.968    4.451    3.709    0.520
##     ssmk              3.250    0.329    9.884    0.000    2.606    3.895    3.250    0.489
##     ssmc              0.958    0.178    5.392    0.000    0.610    1.307    0.958    0.194
##   electronic =~                                                                           
##     ssgs              0.849    0.163    5.217    0.000    0.530    1.168    0.849    0.187
##     ssasi             2.939    0.208   14.153    0.000    2.532    3.346    2.939    0.620
##     ssmc              2.424    0.190   12.741    0.000    2.052    2.797    2.424    0.490
##     ssei              1.715    0.149   11.485    0.000    1.422    2.007    1.715    0.447
##   speed =~                                                                                
##     ssno              0.449    0.030   14.873    0.000    0.390    0.508    0.449    0.507
##     sscs              0.517    0.022   23.546    0.000    0.474    0.560    0.517    0.615
##   g =~                                                                                    
##     ssgs              3.861    0.166   23.257    0.000    3.535    4.186    3.861    0.851
##     ssar              5.566    0.215   25.845    0.000    5.144    5.988    5.566    0.781
##     sswk              6.099    0.290   21.052    0.000    5.531    6.666    6.099    0.908
##     sspc              2.599    0.144   18.031    0.000    2.317    2.882    2.599    0.836
##     ssno              0.553    0.045   12.414    0.000    0.465    0.640    0.553    0.625
##     sscs              0.480    0.042   11.290    0.000    0.396    0.563    0.480    0.571
##     ssasi             2.539    0.251   10.125    0.000    2.048    3.031    2.539    0.536
##     ssmk              5.008    0.195   25.720    0.000    4.627    5.390    5.008    0.753
##     ssmc              3.276    0.199   16.504    0.000    2.887    3.665    3.276    0.662
##     ssei              3.010    0.154   19.562    0.000    2.709    3.312    3.010    0.784
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.848
##    .ssmk             15.277    0.316   48.361    0.000   14.658   15.896   15.277    2.296
##    .ssmc             17.082    0.231   73.903    0.000   16.629   17.535   17.082    3.450
##    .ssgs             17.910    0.210   85.392    0.000   17.498   18.321   17.910    3.948
##    .ssasi            17.796    0.221   80.523    0.000   17.363   18.230   17.796    3.756
##    .ssei             13.530    0.177   76.269    0.000   13.182   13.877   13.530    3.524
##    .ssno              0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.275
##    .sscs              0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.091
##    .sswk             27.643    0.309   89.548    0.000   27.038   28.248   27.643    4.115
##    .sspc             11.207    0.144   77.836    0.000   10.925   11.490   11.207    3.603
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.114    2.384    2.564    0.010    1.441   10.786    6.114    0.120
##    .ssmk              8.611    1.914    4.499    0.000    4.859   12.362    8.611    0.195
##    .ssmc              6.982    0.784    8.907    0.000    5.445    8.518    6.982    0.285
##    .ssgs              4.953    0.420   11.797    0.000    4.130    5.776    4.953    0.241
##    .ssasi             7.368    1.048    7.029    0.000    5.314    9.423    7.368    0.328
##    .ssei              2.741    0.310    8.837    0.000    2.133    3.349    2.741    0.186
##    .ssno              0.276    0.028   10.002    0.000    0.222    0.330    0.276    0.352
##    .sscs              0.209    0.041    5.083    0.000    0.128    0.289    0.209    0.296
##    .sswk              7.925    0.912    8.685    0.000    6.136    9.713    7.925    0.176
##    .sspc              2.921    0.243   12.031    0.000    2.445    3.397    2.921    0.302
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar              3.396    0.325   10.459    0.000    2.759    4.032    3.396    0.509
##     ssmk              3.031    0.295   10.276    0.000    2.453    3.609    3.031    0.489
##     ssmc              1.277    0.178    7.172    0.000    0.928    1.626    1.277    0.322
##   electronic =~                                                                           
##     ssgs              0.878    0.299    2.934    0.003    0.291    1.464    0.878    0.214
##     ssasi             1.000    0.351    2.848    0.004    0.312    1.688    1.000    0.293
##     ssmc              1.032    0.425    2.425    0.015    0.198    1.866    1.032    0.260
##     ssei              0.979    0.323    3.032    0.002    0.346    1.612    0.979    0.318
##   speed =~                                                                                
##     ssno              0.511    0.040   12.631    0.000    0.432    0.590    0.511    0.604
##     sscs              0.471    0.085    5.547    0.000    0.305    0.637    0.471    0.567
##   g =~                                                                                    
##     ssgs              3.436    0.134   25.573    0.000    3.173    3.700    3.436    0.838
##     ssar              5.176    0.214   24.141    0.000    4.756    5.597    5.176    0.777
##     sswk              5.642    0.265   21.296    0.000    5.123    6.161    5.642    0.904
##     sspc              2.031    0.137   14.841    0.000    1.763    2.299    2.031    0.796
##     ssno              0.494    0.043   11.510    0.000    0.410    0.578    0.494    0.584
##     sscs              0.383    0.047    8.154    0.000    0.291    0.475    0.383    0.461
##     ssasi             1.947    0.153   12.700    0.000    1.646    2.247    1.947    0.571
##     ssmk              4.475    0.184   24.375    0.000    4.115    4.834    4.475    0.721
##     ssmc              2.263    0.148   15.248    0.000    1.972    2.554    2.263    0.570
##     ssei              2.105    0.109   19.331    0.000    1.891    2.318    2.105    0.683
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             18.639    0.312   59.821    0.000   18.028   19.250   18.639    2.796
##    .ssmk             14.968    0.291   51.396    0.000   14.397   15.539   14.968    2.413
##    .ssmc             12.925    0.187   68.955    0.000   12.557   13.292   12.925    3.254
##    .ssgs             16.094    0.190   84.654    0.000   15.721   16.467   16.094    3.927
##    .ssasi            11.745    0.159   73.710    0.000   11.433   12.058   11.745    3.447
##    .ssei             10.387    0.143   72.446    0.000   10.106   10.668   10.387    3.370
##    .ssno              0.511    0.039   13.006    0.000    0.434    0.588    0.511    0.604
##    .sscs              0.629    0.039   16.289    0.000    0.554    0.705    0.629    0.758
##    .sswk             27.980    0.285   98.025    0.000   27.421   28.540   27.980    4.485
##    .sspc             12.116    0.116  104.370    0.000   11.888   12.343   12.116    4.750
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.108    1.739    3.512    0.000    2.700    9.517    6.108    0.137
##    .ssmk              9.263    1.507    6.148    0.000    6.310   12.216    9.263    0.241
##    .ssmc              7.962    0.911    8.738    0.000    6.176    9.748    7.962    0.505
##    .ssgs              4.218    0.479    8.800    0.000    3.279    5.158    4.218    0.251
##    .ssasi             6.823    0.657   10.383    0.000    5.535    8.111    6.823    0.588
##    .ssei              4.115    0.591    6.960    0.000    2.956    5.274    4.115    0.433
##    .ssno              0.211    0.063    3.341    0.001    0.087    0.335    0.211    0.295
##    .sscs              0.322    0.076    4.250    0.000    0.173    0.470    0.322    0.466
##    .sswk              7.096    0.897    7.911    0.000    5.338    8.854    7.096    0.182
##    .sspc              2.380    0.195   12.213    0.000    1.998    2.762    2.380    0.366
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   365.050    67.000     0.000     0.960     0.092     0.052 47946.120 48258.502
Mc(metric)
## [1] 0.8678004
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 52 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    19
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               365.050     307.938
##   Degrees of freedom                                67          67
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.185
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          215.340     181.651
##     1                                          149.710     126.288
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.628    0.294   12.356    0.000    3.053    4.204    3.628    0.501
##     ssmk    (.p2.)    3.230    0.254   12.705    0.000    2.732    3.729    3.230    0.483
##     ssmc    (.p3.)    1.132    0.132    8.596    0.000    0.874    1.390    1.132    0.237
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.937    0.149    6.288    0.000    0.645    1.229    0.937    0.206
##     ssasi   (.p5.)    2.927    0.199   14.726    0.000    2.538    3.317    2.927    0.633
##     ssmc    (.p6.)    2.544    0.177   14.386    0.000    2.198    2.891    2.544    0.532
##     ssei    (.p7.)    1.776    0.143   12.412    0.000    1.496    2.057    1.776    0.486
##   speed =~                                                                                
##     ssno    (.p8.)    0.473    0.049    9.659    0.000    0.377    0.569    0.473    0.534
##     sscs    (.p9.)    0.488    0.029   17.067    0.000    0.432    0.544    0.488    0.587
##   g =~                                                                                    
##     ssgs    (.10.)    3.873    0.155   25.008    0.000    3.570    4.177    3.873    0.850
##     ssar    (.11.)    5.740    0.213   26.890    0.000    5.322    6.159    5.740    0.792
##     sswk    (.12.)    6.245    0.269   23.210    0.000    5.718    6.772    6.245    0.912
##     sspc    (.13.)    2.465    0.128   19.218    0.000    2.214    2.717    2.465    0.818
##     ssno    (.14.)    0.559    0.036   15.377    0.000    0.487    0.630    0.559    0.630
##     sscs    (.15.)    0.464    0.036   12.825    0.000    0.393    0.534    0.464    0.557
##     ssasi   (.16.)    2.291    0.173   13.260    0.000    1.952    2.629    2.291    0.495
##     ssmk    (.17.)    5.079    0.187   27.131    0.000    4.712    5.446    5.079    0.760
##     ssmc    (.18.)    2.901    0.170   17.077    0.000    2.568    3.234    2.901    0.606
##     ssei    (.19.)    2.733    0.143   19.163    0.000    2.453    3.012    2.733    0.747
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.802
##    .ssmk             15.277    0.316   48.361    0.000   14.658   15.896   15.277    2.285
##    .ssmc             17.082    0.231   73.903    0.000   16.629   17.535   17.082    3.569
##    .ssgs             17.910    0.210   85.392    0.000   17.498   18.321   17.910    3.932
##    .ssasi            17.796    0.221   80.523    0.000   17.363   18.230   17.796    3.847
##    .ssei             13.530    0.177   76.269    0.000   13.182   13.877   13.530    3.700
##    .ssno              0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.275
##    .sscs              0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.092
##    .sswk             27.643    0.309   89.548    0.000   27.038   28.248   27.643    4.038
##    .sspc             11.207    0.144   77.836    0.000   10.925   11.490   11.207    3.718
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.435    1.641    3.921    0.000    3.218    9.651    6.435    0.122
##    .ssmk              8.456    1.392    6.075    0.000    5.728   11.185    8.456    0.189
##    .ssmc              6.740    0.784    8.600    0.000    5.204    8.277    6.740    0.294
##    .ssgs              4.867    0.408   11.917    0.000    4.067    5.668    4.867    0.235
##    .ssasi             7.579    1.007    7.530    0.000    5.607    9.552    7.579    0.354
##    .ssei              2.750    0.314    8.758    0.000    2.135    3.366    2.750    0.206
##    .ssno              0.250    0.042    5.977    0.000    0.168    0.332    0.250    0.318
##    .sscs              0.239    0.048    4.946    0.000    0.144    0.334    0.239    0.345
##    .sswk              7.859    0.907    8.664    0.000    6.081    9.637    7.859    0.168
##    .sspc              3.007    0.246   12.215    0.000    2.525    3.490    3.007    0.331
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.628    0.294   12.356    0.000    3.053    4.204    3.429    0.524
##     ssmk    (.p2.)    3.230    0.254   12.705    0.000    2.732    3.729    3.053    0.495
##     ssmc    (.p3.)    1.132    0.132    8.596    0.000    0.874    1.390    1.070    0.262
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.937    0.149    6.288    0.000    0.645    1.229    0.399    0.099
##     ssasi   (.p5.)    2.927    0.199   14.726    0.000    2.538    3.317    1.245    0.363
##     ssmc    (.p6.)    2.544    0.177   14.386    0.000    2.198    2.891    1.082    0.265
##     ssei    (.p7.)    1.776    0.143   12.412    0.000    1.496    2.057    0.755    0.232
##   speed =~                                                                                
##     ssno    (.p8.)    0.473    0.049    9.603    0.000    0.377    0.570    0.485    0.575
##     sscs    (.p9.)    0.488    0.029   17.104    0.000    0.432    0.544    0.500    0.595
##   g =~                                                                                    
##     ssgs    (.10.)    3.873    0.155   25.008    0.000    3.570    4.177    3.374    0.840
##     ssar    (.11.)    5.740    0.213   26.890    0.000    5.322    6.159    5.000    0.764
##     sswk    (.12.)    6.245    0.269   23.210    0.000    5.718    6.772    5.439    0.892
##     sspc    (.13.)    2.465    0.128   19.218    0.000    2.214    2.717    2.147    0.812
##     ssno    (.14.)    0.559    0.036   15.377    0.000    0.487    0.630    0.487    0.576
##     sscs    (.15.)    0.464    0.036   12.825    0.000    0.393    0.534    0.404    0.480
##     ssasi   (.16.)    2.291    0.173   13.260    0.000    1.952    2.629    1.995    0.581
##     ssmk    (.17.)    5.079    0.187   27.131    0.000    4.712    5.446    4.424    0.717
##     ssmc    (.18.)    2.901    0.170   17.077    0.000    2.568    3.234    2.527    0.620
##     ssei    (.19.)    2.733    0.143   19.163    0.000    2.453    3.012    2.380    0.731
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             18.639    0.312   59.821    0.000   18.028   19.250   18.639    2.849
##    .ssmk             14.968    0.291   51.396    0.000   14.397   15.539   14.968    2.425
##    .ssmc             12.925    0.187   68.955    0.000   12.557   13.292   12.925    3.169
##    .ssgs             16.094    0.190   84.654    0.000   15.721   16.467   16.094    4.006
##    .ssasi            11.745    0.159   73.710    0.000   11.433   12.058   11.745    3.423
##    .ssei             10.387    0.143   72.446    0.000   10.106   10.668   10.387    3.191
##    .ssno              0.511    0.039   13.006    0.000    0.434    0.588    0.511    0.605
##    .sscs              0.629    0.039   16.289    0.000    0.554    0.705    0.629    0.748
##    .sswk             27.980    0.285   98.025    0.000   27.421   28.540   27.980    4.590
##    .sspc             12.116    0.116  104.370    0.000   11.888   12.343   12.116    4.579
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.042    1.431    4.221    0.000    3.237    8.848    6.042    0.141
##    .ssmk              9.219    1.283    7.183    0.000    6.703   11.734    9.219    0.242
##    .ssmc              7.932    0.599   13.252    0.000    6.759    9.105    7.932    0.477
##    .ssgs              4.602    0.388   11.875    0.000    3.842    5.361    4.602    0.285
##    .ssasi             6.243    0.523   11.943    0.000    5.219    7.268    6.243    0.530
##    .ssei              4.359    0.348   12.530    0.000    3.677    5.040    4.359    0.411
##    .ssno              0.241    0.037    6.484    0.000    0.168    0.313    0.241    0.338
##    .sscs              0.295    0.059    5.008    0.000    0.179    0.410    0.295    0.416
##    .sswk              7.574    0.866    8.741    0.000    5.876    9.272    7.574    0.204
##    .sspc              2.390    0.198   12.047    0.000    2.001    2.778    2.390    0.341
##     math              0.893    0.121    7.361    0.000    0.655    1.131    1.000    1.000
##     electronic        0.181    0.048    3.732    0.000    0.086    0.276    1.000    1.000
##     speed             1.051    0.153    6.866    0.000    0.751    1.351    1.000    1.000
##     g                 0.759    0.084    9.069    0.000    0.595    0.923    1.000    1.000
lavTestScore(metric, release = 1:19)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 39.188 19   0.004
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs    X2 df p.value
## 1   .p1. == .p54. 0.346  1   0.556
## 2   .p2. == .p55. 0.276  1   0.599
## 3   .p3. == .p56. 1.611  1   0.204
## 4   .p4. == .p57. 3.004  1   0.083
## 5   .p5. == .p58. 0.774  1   0.379
## 6   .p6. == .p59. 0.015  1   0.903
## 7   .p7. == .p60. 0.208  1   0.649
## 8   .p8. == .p61. 0.000  1   1.000
## 9   .p9. == .p62. 0.000  1   1.000
## 10 .p10. == .p63. 3.051  1   0.081
## 11 .p11. == .p64. 2.793  1   0.095
## 12 .p12. == .p65. 5.919  1   0.015
## 13 .p13. == .p66. 7.369  1   0.007
## 14 .p14. == .p67. 0.413  1   0.520
## 15 .p15. == .p68. 1.152  1   0.283
## 16 .p16. == .p69. 0.164  1   0.686
## 17 .p17. == .p70. 0.043  1   0.835
## 18 .p18. == .p71. 4.378  1   0.036
## 19 .p19. == .p72. 8.833  1   0.003
metric2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"), group.partial=c("g=~sspc", "g=~ssei"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   347.287    65.000     0.000     0.962     0.091     0.046 47932.357 48254.656
Mc(metric2)
## [1] 0.8743324
scalar<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   431.037    73.000     0.000     0.952     0.097     0.055 48000.107 48282.738
Mc(scalar)
## [1] 0.8433852
summary(scalar, standardized=T, ci=T) # +.178
## lavaan 0.6-18 ended normally after 128 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    29
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               431.037     369.651
##   Degrees of freedom                                73          73
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.166
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          248.252     212.898
##     1                                          182.785     156.754
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.296    0.341   12.582    0.000    3.627    4.966    4.296    0.592
##     ssmk    (.p2.)    2.601    0.255   10.207    0.000    2.101    3.100    2.601    0.389
##     ssmc    (.p3.)    0.858    0.150    5.734    0.000    0.565    1.151    0.858    0.183
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.130    0.083   13.670    0.000    0.968    1.292    1.130    0.246
##     ssasi   (.p5.)    3.123    0.155   20.118    0.000    2.819    3.428    3.123    0.665
##     ssmc    (.p6.)    2.136    0.130   16.389    0.000    1.881    2.392    2.136    0.455
##     ssei    (.p7.)    1.776    0.100   17.807    0.000    1.580    1.971    1.776    0.485
##   speed =~                                                                                
##     ssno    (.p8.)    0.292    0.038    7.718    0.000    0.218    0.366    0.292    0.329
##     sscs    (.p9.)    0.779    0.100    7.760    0.000    0.583    0.976    0.779    0.937
##   g =~                                                                                    
##     ssgs    (.10.)    3.859    0.150   25.809    0.000    3.566    4.152    3.859    0.841
##     ssar    (.11.)    5.771    0.215   26.865    0.000    5.350    6.192    5.771    0.795
##     sswk    (.12.)    6.195    0.265   23.418    0.000    5.677    6.714    6.195    0.907
##     sspc    (.13.)    2.495    0.133   18.760    0.000    2.234    2.755    2.495    0.819
##     ssno    (.14.)    0.562    0.036   15.428    0.000    0.490    0.633    0.562    0.634
##     sscs    (.15.)    0.466    0.036   12.867    0.000    0.395    0.537    0.466    0.561
##     ssasi   (.16.)    2.271    0.173   13.131    0.000    1.932    2.610    2.271    0.484
##     ssmk    (.17.)    5.143    0.190   27.134    0.000    4.771    5.514    5.143    0.769
##     ssmc    (.18.)    2.981    0.170   17.516    0.000    2.647    3.314    2.981    0.635
##     ssei    (.19.)    2.738    0.140   19.528    0.000    2.463    3.012    2.738    0.747
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   20.298    0.342   59.432    0.000   19.628   20.967   20.298    2.795
##    .ssmk    (.41.)   15.482    0.300   51.535    0.000   14.893   16.071   15.482    2.316
##    .ssmc    (.42.)   17.180    0.224   76.655    0.000   16.741   17.619   17.180    3.661
##    .ssgs    (.43.)   17.846    0.207   86.367    0.000   17.441   18.251   17.846    3.889
##    .ssasi   (.44.)   17.754    0.223   79.679    0.000   17.317   18.190   17.754    3.782
##    .ssei    (.45.)   13.540    0.176   77.050    0.000   13.196   13.884   13.540    3.697
##    .ssno    (.46.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.275
##    .sscs    (.47.)    0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.092
##    .sswk    (.48.)   27.335    0.316   86.613    0.000   26.716   27.953   27.335    4.001
##    .sspc    (.49.)   11.490    0.134   85.537    0.000   11.226   11.753   11.490    3.773
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              0.987    2.681    0.368    0.713   -4.268    6.243    0.987    0.019
##    .ssmk             11.468    1.344    8.533    0.000    8.834   14.102   11.468    0.257
##    .ssmc              7.834    0.685   11.441    0.000    6.492    9.176    7.834    0.356
##    .ssgs              4.892    0.405   12.087    0.000    4.099    5.686    4.892    0.232
##    .ssasi             7.120    0.935    7.611    0.000    5.287    8.954    7.120    0.323
##    .ssei              2.766    0.289    9.555    0.000    2.199    3.333    2.766    0.206
##    .ssno              0.385    0.033   11.834    0.000    0.322    0.449    0.385    0.490
##    .sscs             -0.134    0.151   -0.888    0.374   -0.429    0.161   -0.134   -0.193
##    .sswk              8.295    0.971    8.544    0.000    6.392   10.198    8.295    0.178
##    .sspc              3.049    0.258   11.818    0.000    2.544    3.555    3.049    0.329
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.296    0.341   12.582    0.000    3.627    4.966    4.044    0.619
##     ssmk    (.p2.)    2.601    0.255   10.207    0.000    2.101    3.100    2.448    0.397
##     ssmc    (.p3.)    0.858    0.150    5.734    0.000    0.565    1.151    0.808    0.197
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.130    0.083   13.670    0.000    0.968    1.292    0.473    0.118
##     ssasi   (.p5.)    3.123    0.155   20.118    0.000    2.819    3.428    1.308    0.382
##     ssmc    (.p6.)    2.136    0.130   16.389    0.000    1.881    2.392    0.895    0.219
##     ssei    (.p7.)    1.776    0.100   17.807    0.000    1.580    1.971    0.744    0.229
##   speed =~                                                                                
##     ssno    (.p8.)    0.292    0.038    7.718    0.000    0.218    0.366    0.301    0.357
##     sscs    (.p9.)    0.779    0.100    7.760    0.000    0.583    0.976    0.803    0.954
##   g =~                                                                                    
##     ssgs    (.10.)    3.859    0.150   25.809    0.000    3.566    4.152    3.352    0.837
##     ssar    (.11.)    5.771    0.215   26.865    0.000    5.350    6.192    5.013    0.768
##     sswk    (.12.)    6.195    0.265   23.418    0.000    5.677    6.714    5.382    0.885
##     sspc    (.13.)    2.495    0.133   18.760    0.000    2.234    2.755    2.167    0.810
##     ssno    (.14.)    0.562    0.036   15.428    0.000    0.490    0.633    0.488    0.578
##     sscs    (.15.)    0.466    0.036   12.867    0.000    0.395    0.537    0.405    0.481
##     ssasi   (.16.)    2.271    0.173   13.131    0.000    1.932    2.610    1.973    0.576
##     ssmk    (.17.)    5.143    0.190   27.134    0.000    4.771    5.514    4.467    0.725
##     ssmc    (.18.)    2.981    0.170   17.516    0.000    2.647    3.314    2.589    0.633
##     ssei    (.19.)    2.738    0.140   19.528    0.000    2.463    3.012    2.378    0.731
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   20.298    0.342   59.432    0.000   19.628   20.967   20.298    3.108
##    .ssmk    (.41.)   15.482    0.300   51.535    0.000   14.893   16.071   15.482    2.514
##    .ssmc    (.42.)   17.180    0.224   76.655    0.000   16.741   17.619   17.180    4.200
##    .ssgs    (.43.)   17.846    0.207   86.367    0.000   17.441   18.251   17.846    4.455
##    .ssasi   (.44.)   17.754    0.223   79.679    0.000   17.317   18.190   17.754    5.183
##    .ssei    (.45.)   13.540    0.176   77.050    0.000   13.196   13.884   13.540    4.163
##    .ssno    (.46.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.289
##    .sscs    (.47.)    0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.090
##    .sswk    (.48.)   27.335    0.316   86.613    0.000   26.716   27.953   27.335    4.497
##    .sspc    (.49.)   11.490    0.134   85.537    0.000   11.226   11.753   11.490    4.293
##     math             -0.590    0.089   -6.637    0.000   -0.764   -0.416   -0.627   -0.627
##     elctrnc          -2.024    0.129  -15.682    0.000   -2.276   -1.771   -4.831   -4.831
##     speed             0.617    0.110    5.627    0.000    0.402    0.832    0.599    0.599
##     g                 0.155    0.064    2.408    0.016    0.029    0.280    0.178    0.178
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.180    2.333    0.506    0.613   -3.393    5.752    1.180    0.028
##    .ssmk             11.978    1.138   10.527    0.000    9.748   14.208   11.978    0.316
##    .ssmc              8.577    0.589   14.552    0.000    7.422    9.732    8.577    0.513
##    .ssgs              4.585    0.389   11.789    0.000    3.823    5.348    4.585    0.286
##    .ssasi             6.128    0.529   11.579    0.000    5.090    7.165    6.128    0.522
##    .ssei              4.371    0.344   12.698    0.000    3.696    5.046    4.371    0.413
##    .ssno              0.384    0.040    9.569    0.000    0.305    0.462    0.384    0.538
##    .sscs             -0.100    0.171   -0.586    0.558   -0.436    0.235   -0.100   -0.141
##    .sswk              7.980    0.912    8.746    0.000    6.192    9.768    7.980    0.216
##    .sspc              2.466    0.209   11.786    0.000    2.056    2.877    2.466    0.344
##     math              0.886    0.121    7.304    0.000    0.648    1.124    1.000    1.000
##     electronic        0.175    0.048    3.658    0.000    0.081    0.269    1.000    1.000
##     speed             1.061    0.156    6.819    0.000    0.756    1.366    1.000    1.000
##     g                 0.755    0.083    9.095    0.000    0.592    0.917    1.000    1.000
lavTestScore(scalar, release = 20:29)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 64.634 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs     X2 df p.value
## 1  .p40. ==  .p93. 15.331  1   0.000
## 2  .p41. ==  .p94.  9.954  1   0.002
## 3  .p42. ==  .p95.  8.053  1   0.005
## 4  .p43. ==  .p96.  4.270  1   0.039
## 5  .p44. ==  .p97.  3.075  1   0.080
## 6  .p45. ==  .p98.  0.355  1   0.551
## 7  .p46. ==  .p99.  0.000  1   1.000
## 8  .p47. == .p100.  0.000  1   1.000
## 9  .p48. == .p101. 33.992  1   0.000
## 10 .p49. == .p102. 37.747  1   0.000
scalar2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssar~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   373.078    71.000     0.000     0.960     0.090     0.053 47946.148 48238.696
Mc(scalar2)
## [1] 0.8661391
summary(scalar2, standardized=T, ci=T) # +.053
## lavaan 0.6-18 ended normally after 132 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               373.078     318.183
##   Degrees of freedom                                71          71
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.173
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          220.104     187.718
##     1                                          152.974     130.465
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.639    0.305   11.915    0.000    3.040    4.237    3.639    0.502
##     ssmk    (.p2.)    3.221    0.257   12.528    0.000    2.717    3.725    3.221    0.482
##     ssmc    (.p3.)    1.076    0.128    8.409    0.000    0.825    1.326    1.076    0.228
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.011    0.084   12.001    0.000    0.846    1.176    1.011    0.221
##     ssasi   (.p5.)    3.173    0.151   21.016    0.000    2.877    3.469    3.173    0.675
##     ssmc    (.p6.)    2.258    0.130   17.319    0.000    2.002    2.513    2.258    0.479
##     ssei    (.p7.)    1.732    0.098   17.626    0.000    1.540    1.925    1.732    0.474
##   speed =~                                                                                
##     ssno    (.p8.)    0.323    0.033    9.704    0.000    0.258    0.389    0.323    0.365
##     sscs    (.p9.)    0.713    0.074    9.674    0.000    0.568    0.857    0.713    0.857
##   g =~                                                                                    
##     ssgs    (.10.)    3.871    0.150   25.752    0.000    3.576    4.165    3.871    0.847
##     ssar    (.11.)    5.743    0.214   26.883    0.000    5.324    6.162    5.743    0.792
##     sswk    (.12.)    6.247    0.269   23.209    0.000    5.720    6.775    6.247    0.912
##     sspc    (.13.)    2.469    0.129   19.203    0.000    2.217    2.722    2.469    0.819
##     ssno    (.14.)    0.559    0.036   15.378    0.000    0.488    0.630    0.559    0.630
##     sscs    (.15.)    0.464    0.036   12.834    0.000    0.393    0.535    0.464    0.558
##     ssasi   (.16.)    2.273    0.171   13.276    0.000    1.938    2.609    2.273    0.484
##     ssmk    (.17.)    5.083    0.187   27.241    0.000    4.718    5.449    5.083    0.760
##     ssmc    (.18.)    2.942    0.169   17.417    0.000    2.611    3.273    2.942    0.624
##     ssei    (.19.)    2.741    0.140   19.597    0.000    2.467    3.015    2.741    0.750
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.801
##    .ssmk    (.41.)   15.247    0.315   48.342    0.000   14.629   15.865   15.247    2.280
##    .ssmc    (.42.)   17.161    0.225   76.423    0.000   16.721   17.602   17.161    3.637
##    .ssgs    (.43.)   17.876    0.206   86.699    0.000   17.472   18.280   17.876    3.910
##    .ssasi   (.44.)   17.742    0.223   79.413    0.000   17.304   18.180   17.742    3.776
##    .ssei    (.45.)   13.542    0.175   77.256    0.000   13.199   13.886   13.542    3.707
##    .ssno    (.46.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.275
##    .sscs    (.47.)    0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.092
##    .sswk    (.48.)   27.667    0.309   89.626    0.000   27.062   28.272   27.667    4.039
##    .sspc             11.207    0.144   77.836    0.000   10.925   11.490   11.207    3.718
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.372    1.716    3.714    0.000    3.009    9.734    6.372    0.121
##    .ssmk              8.508    1.419    5.996    0.000    5.727   11.289    8.508    0.190
##    .ssmc              7.351    0.678   10.845    0.000    6.023    8.680    7.351    0.330
##    .ssgs              4.895    0.407   12.032    0.000    4.098    5.692    4.895    0.234
##    .ssasi             6.843    0.924    7.405    0.000    5.032    8.654    6.843    0.310
##    .ssei              2.829    0.286    9.889    0.000    2.268    3.389    2.829    0.212
##    .ssno              0.369    0.032   11.681    0.000    0.307    0.431    0.369    0.470
##    .sscs             -0.032    0.101   -0.317    0.751   -0.229    0.165   -0.032   -0.046
##    .sswk              7.882    0.910    8.664    0.000    6.099    9.665    7.882    0.168
##    .sspc              2.990    0.246   12.157    0.000    2.508    3.472    2.990    0.329
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.639    0.305   11.915    0.000    3.040    4.237    3.441    0.526
##     ssmk    (.p2.)    3.221    0.257   12.528    0.000    2.717    3.725    3.046    0.493
##     ssmc    (.p3.)    1.076    0.128    8.409    0.000    0.825    1.326    1.017    0.249
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.011    0.084   12.001    0.000    0.846    1.176    0.428    0.107
##     ssasi   (.p5.)    3.173    0.151   21.016    0.000    2.877    3.469    1.343    0.392
##     ssmc    (.p6.)    2.258    0.130   17.319    0.000    2.002    2.513    0.956    0.234
##     ssei    (.p7.)    1.732    0.098   17.626    0.000    1.540    1.925    0.733    0.225
##   speed =~                                                                                
##     ssno    (.p8.)    0.323    0.033    9.704    0.000    0.258    0.389    0.332    0.393
##     sscs    (.p9.)    0.713    0.074    9.674    0.000    0.568    0.857    0.731    0.869
##   g =~                                                                                    
##     ssgs    (.10.)    3.871    0.150   25.752    0.000    3.576    4.165    3.367    0.839
##     ssar    (.11.)    5.743    0.214   26.883    0.000    5.324    6.162    4.996    0.764
##     sswk    (.12.)    6.247    0.269   23.209    0.000    5.720    6.775    5.435    0.892
##     sspc    (.13.)    2.469    0.129   19.203    0.000    2.217    2.722    2.148    0.812
##     ssno    (.14.)    0.559    0.036   15.378    0.000    0.488    0.630    0.486    0.576
##     sscs    (.15.)    0.464    0.036   12.834    0.000    0.393    0.535    0.404    0.480
##     ssasi   (.16.)    2.273    0.171   13.276    0.000    1.938    2.609    1.978    0.577
##     ssmk    (.17.)    5.083    0.187   27.241    0.000    4.718    5.449    4.422    0.716
##     ssmc    (.18.)    2.942    0.169   17.417    0.000    2.611    3.273    2.559    0.627
##     ssei    (.19.)    2.741    0.140   19.597    0.000    2.467    3.015    2.384    0.732
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             18.914    0.403   46.903    0.000   18.124   19.704   18.914    2.893
##    .ssmk    (.41.)   15.247    0.315   48.342    0.000   14.629   15.865   15.247    2.470
##    .ssmc    (.42.)   17.161    0.225   76.423    0.000   16.721   17.602   17.161    4.202
##    .ssgs    (.43.)   17.876    0.206   86.699    0.000   17.472   18.280   17.876    4.452
##    .ssasi   (.44.)   17.742    0.223   79.413    0.000   17.304   18.180   17.742    5.175
##    .ssei    (.45.)   13.542    0.175   77.256    0.000   13.199   13.886   13.542    4.156
##    .ssno    (.46.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.289
##    .sscs    (.47.)    0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.090
##    .sswk    (.48.)   27.667    0.309   89.626    0.000   27.062   28.272   27.667    4.541
##    .sspc             12.001    0.149   80.568    0.000   11.709   12.293   12.001    4.536
##     math             -0.149    0.105   -1.417    0.156   -0.354    0.057   -0.157   -0.157
##     elctrnc          -1.907    0.119  -15.993    0.000   -2.141   -1.673   -4.506   -4.506
##     speed             0.746    0.111    6.741    0.000    0.529    0.963    0.727    0.727
##     g                 0.046    0.066    0.699    0.485   -0.084    0.176    0.053    0.053
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              5.962    1.498    3.981    0.000    3.026    8.897    5.962    0.139
##    .ssmk              9.266    1.321    7.014    0.000    6.677   11.856    9.266    0.243
##    .ssmc              8.185    0.575   14.225    0.000    7.058    9.313    8.185    0.491
##    .ssgs              4.602    0.387   11.880    0.000    3.843    5.361    4.602    0.285
##    .ssasi             6.040    0.523   11.541    0.000    5.014    7.065    6.040    0.514
##    .ssei              4.392    0.344   12.757    0.000    3.718    5.067    4.392    0.414
##    .ssno              0.366    0.039    9.416    0.000    0.290    0.442    0.366    0.514
##    .sscs              0.010    0.117    0.086    0.932   -0.220    0.240    0.010    0.014
##    .sswk              7.591    0.870    8.726    0.000    5.886    9.296    7.591    0.204
##    .sspc              2.387    0.198   12.027    0.000    1.998    2.776    2.387    0.341
##     math              0.894    0.122    7.308    0.000    0.654    1.134    1.000    1.000
##     electronic        0.179    0.048    3.754    0.000    0.086    0.273    1.000    1.000
##     speed             1.052    0.154    6.854    0.000    0.751    1.353    1.000    1.000
##     g                 0.757    0.083    9.113    0.000    0.594    0.919    1.000    1.000
lavTestScore(scalar2, release = 20:27)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test    X2 df p.value
## 1 score 8.424  8   0.393
## 
## $uni
## 
## univariate score tests:
## 
##     lhs op    rhs    X2 df p.value
## 1 .p41. ==  .p94. 5.350  1   0.021
## 2 .p42. ==  .p95. 5.350  1   0.021
## 3 .p43. ==  .p96. 1.112  1   0.292
## 4 .p44. ==  .p97. 4.764  1   0.029
## 5 .p45. ==  .p98. 0.438  1   0.508
## 6 .p46. ==  .p99. 0.000  1   1.000
## 7 .p47. == .p100. 0.000  1   1.000
## 8 .p48. == .p101. 0.831  1   0.362
strict<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1", "ssar~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   395.577    81.000     0.000     0.958     0.086     0.052 47948.647 48191.611
Mc(strict)
## [1] 0.8610041
summary(strict, standardized=T, ci=T) # +.051
## lavaan 0.6-18 ended normally after 70 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    37
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               395.577     330.908
##   Degrees of freedom                                81          81
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.195
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          232.977     194.890
##     1                                          162.600     136.018
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.630    0.313   11.605    0.000    3.017    4.243    3.630    0.501
##     ssmk    (.p2.)    3.217    0.245   13.128    0.000    2.737    3.698    3.217    0.479
##     ssmc    (.p3.)    1.068    0.127    8.432    0.000    0.820    1.317    1.068    0.224
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.005    0.084   11.982    0.000    0.840    1.169    1.005    0.220
##     ssasi   (.p5.)    3.188    0.148   21.589    0.000    2.898    3.477    3.188    0.686
##     ssmc    (.p6.)    2.238    0.125   17.958    0.000    1.993    2.482    2.238    0.470
##     ssei    (.p7.)    1.705    0.093   18.292    0.000    1.522    1.888    1.705    0.456
##   speed =~                                                                                
##     ssno    (.p8.)    0.314    0.029   10.659    0.000    0.257    0.372    0.314    0.355
##     sscs    (.p9.)    0.704    0.073    9.622    0.000    0.561    0.848    0.704    0.848
##   g =~                                                                                    
##     ssgs    (.10.)    3.874    0.150   25.857    0.000    3.580    4.167    3.874    0.850
##     ssar    (.11.)    5.754    0.214   26.945    0.000    5.335    6.172    5.754    0.794
##     sswk    (.12.)    6.243    0.269   23.213    0.000    5.716    6.770    6.243    0.912
##     sspc    (.13.)    2.489    0.130   19.176    0.000    2.234    2.743    2.489    0.835
##     ssno    (.14.)    0.560    0.036   15.400    0.000    0.489    0.632    0.560    0.633
##     sscs    (.15.)    0.464    0.036   12.832    0.000    0.394    0.535    0.464    0.559
##     ssasi   (.16.)    2.281    0.172   13.293    0.000    1.944    2.617    2.281    0.491
##     ssmk    (.17.)    5.093    0.187   27.275    0.000    4.727    5.459    5.093    0.758
##     ssmc    (.18.)    2.950    0.167   17.630    0.000    2.622    3.278    2.950    0.620
##     ssei    (.19.)    2.717    0.140   19.342    0.000    2.441    2.992    2.717    0.727
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.804
##    .ssmk    (.41.)   15.250    0.315   48.405    0.000   14.632   15.867   15.250    2.269
##    .ssmc    (.42.)   17.156    0.225   76.196    0.000   16.714   17.597   17.156    3.604
##    .ssgs    (.43.)   17.877    0.207   86.537    0.000   17.472   18.282   17.877    3.922
##    .ssasi   (.44.)   17.770    0.219   81.212    0.000   17.341   18.199   17.770    3.826
##    .ssei    (.45.)   13.529    0.175   77.089    0.000   13.185   13.873   13.529    3.620
##    .ssno    (.46.)    0.246    0.041    5.940    0.000    0.165    0.327    0.246    0.278
##    .sscs    (.47.)    0.076    0.040    1.908    0.056   -0.002    0.154    0.076    0.092
##    .sswk    (.48.)   27.672    0.309   89.439    0.000   27.065   28.278   27.672    4.045
##    .sspc             11.207    0.144   77.836    0.000   10.925   11.490   11.207    3.761
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.20.)    6.182    1.486    4.160    0.000    3.269    9.094    6.182    0.118
##    .ssmk    (.21.)    8.870    1.227    7.230    0.000    6.465   11.274    8.870    0.196
##    .ssmc    (.22.)    7.813    0.443   17.633    0.000    6.944    8.681    7.813    0.345
##    .ssgs    (.23.)    4.761    0.290   16.401    0.000    4.192    5.329    4.761    0.229
##    .ssasi   (.24.)    6.212    0.480   12.942    0.000    5.271    7.153    6.212    0.288
##    .ssei    (.25.)    3.677    0.230   16.007    0.000    3.227    4.128    3.677    0.263
##    .ssno    (.26.)    0.369    0.029   12.804    0.000    0.313    0.426    0.369    0.472
##    .sscs    (.27.)   -0.021    0.102   -0.210    0.834   -0.220    0.178   -0.021   -0.031
##    .sswk    (.28.)    7.834    0.637   12.303    0.000    6.586    9.082    7.834    0.167
##    .sspc    (.29.)    2.684    0.158   16.986    0.000    2.374    2.994    2.684    0.302
##     math              1.000                               1.000    1.000    1.000    1.000
##     elctrnc           1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.630    0.313   11.605    0.000    3.017    4.243    3.427    0.524
##     ssmk    (.p2.)    3.217    0.245   13.128    0.000    2.737    3.698    3.037    0.495
##     ssmc    (.p3.)    1.068    0.127    8.432    0.000    0.820    1.317    1.009    0.250
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.005    0.084   11.982    0.000    0.840    1.169    0.431    0.107
##     ssasi   (.p5.)    3.188    0.148   21.589    0.000    2.898    3.477    1.367    0.395
##     ssmc    (.p6.)    2.238    0.125   17.958    0.000    1.993    2.482    0.960    0.238
##     ssei    (.p7.)    1.705    0.093   18.292    0.000    1.522    1.888    0.731    0.234
##   speed =~                                                                                
##     ssno    (.p8.)    0.314    0.029   10.659    0.000    0.257    0.372    0.336    0.397
##     sscs    (.p9.)    0.704    0.073    9.622    0.000    0.561    0.848    0.754    0.895
##   g =~                                                                                    
##     ssgs    (.10.)    3.874    0.150   25.857    0.000    3.580    4.167    3.361    0.834
##     ssar    (.11.)    5.754    0.214   26.945    0.000    5.335    6.172    4.992    0.763
##     sswk    (.12.)    6.243    0.269   23.213    0.000    5.716    6.770    5.416    0.888
##     sspc    (.13.)    2.489    0.130   19.176    0.000    2.234    2.743    2.159    0.797
##     ssno    (.14.)    0.560    0.036   15.400    0.000    0.489    0.632    0.486    0.573
##     sscs    (.15.)    0.464    0.036   12.832    0.000    0.394    0.535    0.403    0.479
##     ssasi   (.16.)    2.281    0.172   13.293    0.000    1.944    2.617    1.979    0.571
##     ssmk    (.17.)    5.093    0.187   27.275    0.000    4.727    5.459    4.419    0.720
##     ssmc    (.18.)    2.950    0.167   17.630    0.000    2.622    3.278    2.559    0.634
##     ssei    (.19.)    2.717    0.140   19.342    0.000    2.441    2.992    2.357    0.754
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             18.924    0.402   47.074    0.000   18.136   19.712   18.924    2.891
##    .ssmk    (.41.)   15.250    0.315   48.405    0.000   14.632   15.867   15.250    2.486
##    .ssmc    (.42.)   17.156    0.225   76.196    0.000   16.714   17.597   17.156    4.249
##    .ssgs    (.43.)   17.877    0.207   86.537    0.000   17.472   18.282   17.877    4.436
##    .ssasi   (.44.)   17.770    0.219   81.212    0.000   17.341   18.199   17.770    5.130
##    .ssei    (.45.)   13.529    0.175   77.089    0.000   13.185   13.873   13.529    4.329
##    .ssno    (.46.)    0.246    0.041    5.940    0.000    0.165    0.327    0.246    0.290
##    .sscs    (.47.)    0.076    0.040    1.908    0.056   -0.002    0.154    0.076    0.090
##    .sswk    (.48.)   27.672    0.309   89.439    0.000   27.065   28.278   27.672    4.539
##    .sspc             12.005    0.150   79.771    0.000   11.710   12.300   12.005    4.429
##     math             -0.149    0.105   -1.422    0.155   -0.355    0.056   -0.158   -0.158
##     elctrnc          -1.913    0.119  -16.142    0.000   -2.145   -1.681   -4.461   -4.461
##     speed             0.756    0.114    6.647    0.000    0.533    0.979    0.707    0.707
##     g                 0.045    0.067    0.669    0.504   -0.086    0.175    0.051    0.051
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.20.)    6.182    1.486    4.160    0.000    3.269    9.094    6.182    0.144
##    .ssmk    (.21.)    8.870    1.227    7.230    0.000    6.465   11.274    8.870    0.236
##    .ssmc    (.22.)    7.813    0.443   17.633    0.000    6.944    8.681    7.813    0.479
##    .ssgs    (.23.)    4.761    0.290   16.401    0.000    4.192    5.329    4.761    0.293
##    .ssasi   (.24.)    6.212    0.480   12.942    0.000    5.271    7.153    6.212    0.518
##    .ssei    (.25.)    3.677    0.230   16.007    0.000    3.227    4.128    3.677    0.376
##    .ssno    (.26.)    0.369    0.029   12.804    0.000    0.313    0.426    0.369    0.514
##    .sscs    (.27.)   -0.021    0.102   -0.210    0.834   -0.220    0.178   -0.021   -0.030
##    .sswk    (.28.)    7.834    0.637   12.303    0.000    6.586    9.082    7.834    0.211
##    .sspc    (.29.)    2.684    0.158   16.986    0.000    2.374    2.994    2.684    0.365
##     math              0.891    0.116    7.701    0.000    0.664    1.118    1.000    1.000
##     elctrnc           0.184    0.047    3.928    0.000    0.092    0.276    1.000    1.000
##     speed             1.145    0.145    7.918    0.000    0.861    1.428    1.000    1.000
##     g                 0.753    0.083    9.083    0.000    0.590    0.915    1.000    1.000
latent<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("sspc~1", "ssar~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   471.793    75.000     0.000     0.947     0.100     0.126 48036.863 48309.577
Mc(latent)
## [1] 0.8279776
summary(latent, standardized=T, ci=T) # +.055 Std.all
## lavaan 0.6-18 ended normally after 131 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               471.793     404.258
##   Degrees of freedom                                75          75
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.167
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          254.955     218.459
##     1                                          216.838     185.799
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.589    0.266   13.499    0.000    3.068    4.110    3.589    0.518
##     ssmk    (.p2.)    3.163    0.229   13.836    0.000    2.715    3.611    3.163    0.493
##     ssmc    (.p3.)    1.016    0.125    8.152    0.000    0.772    1.260    1.016    0.228
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.783    0.065   12.114    0.000    0.656    0.909    0.783    0.180
##     ssasi   (.p5.)    2.399    0.124   19.324    0.000    2.155    2.642    2.399    0.557
##     ssmc    (.p6.)    1.705    0.109   15.699    0.000    1.492    1.917    1.705    0.383
##     ssei    (.p7.)    1.324    0.078   16.885    0.000    1.170    1.478    1.324    0.387
##   speed =~                                                                                
##     ssno    (.p8.)    0.327    0.031   10.532    0.000    0.266    0.388    0.327    0.376
##     sscs    (.p9.)    0.725    0.071   10.257    0.000    0.587    0.864    0.725    0.886
##   g =~                                                                                    
##     ssgs    (.10.)    3.666    0.107   34.295    0.000    3.456    3.875    3.666    0.843
##     ssar    (.11.)    5.365    0.152   35.316    0.000    5.067    5.662    5.365    0.775
##     sswk    (.12.)    5.887    0.197   29.812    0.000    5.500    6.274    5.887    0.903
##     sspc    (.13.)    2.318    0.101   22.863    0.000    2.119    2.516    2.318    0.799
##     ssno    (.14.)    0.523    0.031   16.821    0.000    0.462    0.584    0.523    0.601
##     sscs    (.15.)    0.436    0.031   13.871    0.000    0.375    0.498    0.436    0.533
##     ssasi   (.16.)    2.259    0.147   15.354    0.000    1.971    2.547    2.259    0.524
##     ssmk    (.17.)    4.743    0.135   35.167    0.000    4.479    5.008    4.743    0.739
##     ssmc    (.18.)    2.841    0.130   21.836    0.000    2.586    3.096    2.841    0.638
##     ssei    (.19.)    2.640    0.100   26.410    0.000    2.444    2.836    2.640    0.772
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.933
##    .ssmk    (.41.)   15.251    0.316   48.326    0.000   14.632   15.869   15.251    2.376
##    .ssmc    (.42.)   17.156    0.226   76.059    0.000   16.714   17.599   17.156    3.852
##    .ssgs    (.43.)   17.889    0.206   86.634    0.000   17.484   18.293   17.889    4.114
##    .ssasi   (.44.)   17.725    0.226   78.413    0.000   17.282   18.168   17.725    4.114
##    .ssei    (.45.)   13.551    0.175   77.268    0.000   13.207   13.894   13.551    3.964
##    .ssno    (.46.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.280
##    .sscs    (.47.)    0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.093
##    .sswk    (.48.)   27.650    0.309   89.478    0.000   27.044   28.255   27.650    4.241
##    .sspc             11.207    0.144   77.836    0.000   10.925   11.490   11.207    3.866
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.293    1.726    3.646    0.000    2.911    9.676    6.293    0.131
##    .ssmk              8.700    1.404    6.197    0.000    5.948   11.452    8.700    0.211
##    .ssmc              7.827    0.684   11.441    0.000    6.486    9.168    7.827    0.395
##    .ssgs              4.860    0.403   12.050    0.000    4.069    5.650    4.860    0.257
##    .ssasi             7.708    0.945    8.157    0.000    5.856    9.561    7.708    0.415
##    .ssei              2.962    0.292   10.133    0.000    2.389    3.535    2.962    0.253
##    .ssno              0.376    0.032   11.767    0.000    0.313    0.439    0.376    0.497
##    .sscs             -0.046    0.101   -0.453    0.650   -0.244    0.152   -0.046   -0.068
##    .sswk              7.854    0.874    8.985    0.000    6.141    9.567    7.854    0.185
##    .sspc              3.032    0.248   12.219    0.000    2.546    3.518    3.032    0.361
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.589    0.266   13.499    0.000    3.068    4.110    3.589    0.521
##     ssmk    (.p2.)    3.163    0.229   13.836    0.000    2.715    3.611    3.163    0.490
##     ssmc    (.p3.)    1.016    0.125    8.152    0.000    0.772    1.260    1.016    0.227
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.783    0.065   12.114    0.000    0.656    0.909    0.783    0.181
##     ssasi   (.p5.)    2.399    0.124   19.324    0.000    2.155    2.642    2.399    0.601
##     ssmc    (.p6.)    1.705    0.109   15.699    0.000    1.492    1.917    1.705    0.381
##     ssei    (.p7.)    1.324    0.078   16.885    0.000    1.170    1.478    1.324    0.366
##   speed =~                                                                                
##     ssno    (.p8.)    0.327    0.031   10.532    0.000    0.266    0.388    0.327    0.379
##     sscs    (.p9.)    0.725    0.071   10.257    0.000    0.587    0.864    0.725    0.849
##   g =~                                                                                    
##     ssgs    (.10.)    3.666    0.107   34.295    0.000    3.456    3.875    3.666    0.849
##     ssar    (.11.)    5.365    0.152   35.316    0.000    5.067    5.662    5.365    0.778
##     sswk    (.12.)    5.887    0.197   29.812    0.000    5.500    6.274    5.887    0.910
##     sspc    (.13.)    2.318    0.101   22.863    0.000    2.119    2.516    2.318    0.836
##     ssno    (.14.)    0.523    0.031   16.821    0.000    0.462    0.584    0.523    0.606
##     sscs    (.15.)    0.436    0.031   13.871    0.000    0.375    0.498    0.436    0.511
##     ssasi   (.16.)    2.259    0.147   15.354    0.000    1.971    2.547    2.259    0.566
##     ssmk    (.17.)    4.743    0.135   35.167    0.000    4.479    5.008    4.743    0.734
##     ssmc    (.18.)    2.841    0.130   21.836    0.000    2.586    3.096    2.841    0.636
##     ssei    (.19.)    2.640    0.100   26.410    0.000    2.444    2.836    2.640    0.729
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             18.927    0.406   46.642    0.000   18.132   19.723   18.927    2.746
##    .ssmk    (.41.)   15.251    0.316   48.326    0.000   14.632   15.869   15.251    2.361
##    .ssmc    (.42.)   17.156    0.226   76.059    0.000   16.714   17.599   17.156    3.838
##    .ssgs    (.43.)   17.889    0.206   86.634    0.000   17.484   18.293   17.889    4.141
##    .ssasi   (.44.)   17.725    0.226   78.413    0.000   17.282   18.168   17.725    4.440
##    .ssei    (.45.)   13.551    0.175   77.268    0.000   13.207   13.894   13.551    3.741
##    .ssno    (.46.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.283
##    .sscs    (.47.)    0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.089
##    .sswk    (.48.)   27.650    0.309   89.478    0.000   27.044   28.255   27.650    4.276
##    .sspc             11.988    0.148   80.901    0.000   11.698   12.279   11.988    4.324
##     math             -0.162    0.106   -1.531    0.126   -0.370    0.046   -0.162   -0.162
##     elctrnc          -2.524    0.160  -15.777    0.000   -2.838   -2.210   -2.524   -2.524
##     speed             0.730    0.105    6.955    0.000    0.524    0.935    0.730    0.730
##     g                 0.055    0.071    0.776    0.438   -0.084    0.194    0.055    0.055
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              5.861    1.645    3.562    0.000    2.636    9.085    5.861    0.123
##    .ssmk              9.225    1.428    6.461    0.000    6.427   12.024    9.225    0.221
##    .ssmc              7.974    0.594   13.431    0.000    6.811    9.138    7.974    0.399
##    .ssgs              4.611    0.382   12.068    0.000    3.862    5.360    4.611    0.247
##    .ssasi             5.082    0.533    9.531    0.000    4.037    6.127    5.082    0.319
##    .ssei              4.393    0.371   11.855    0.000    3.666    5.119    4.393    0.335
##    .ssno              0.364    0.038    9.468    0.000    0.289    0.439    0.364    0.489
##    .sscs              0.014    0.114    0.119    0.905   -0.209    0.236    0.014    0.019
##    .sswk              7.164    0.878    8.161    0.000    5.444    8.885    7.164    0.171
##    .sspc              2.316    0.193   12.009    0.000    1.938    2.694    2.316    0.301
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
latent2<-cfa(bf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssar~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   373.865    73.000     0.000     0.960     0.089     0.053 47942.935 48225.567
Mc(latent2)
## [1] 0.866639
summary(latent2, standardized=T, ci=T) # +.053 Std.all
## lavaan 0.6-18 ended normally after 131 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               373.865     320.596
##   Degrees of freedom                                73          73
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.166
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          220.631     189.195
##     1                                          153.235     131.401
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.535    0.255   13.842    0.000    3.035    4.036    3.535    0.490
##     ssmk    (.p2.)    3.137    0.224   14.019    0.000    2.698    3.575    3.137    0.472
##     ssmc    (.p3.)    1.054    0.123    8.547    0.000    0.812    1.296    1.054    0.224
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.012    0.084   12.032    0.000    0.847    1.177    1.012    0.221
##     ssasi   (.p5.)    3.176    0.151   20.975    0.000    2.879    3.472    3.176    0.676
##     ssmc    (.p6.)    2.259    0.131   17.300    0.000    2.003    2.515    2.259    0.479
##     ssei    (.p7.)    1.734    0.098   17.601    0.000    1.541    1.927    1.734    0.475
##   speed =~                                                                                
##     ssno    (.p8.)    0.327    0.031   10.633    0.000    0.267    0.388    0.327    0.368
##     sscs    (.p9.)    0.721    0.070   10.346    0.000    0.584    0.858    0.721    0.864
##   g =~                                                                                    
##     ssgs    (.10.)    3.870    0.150   25.731    0.000    3.576    4.165    3.870    0.847
##     ssar    (.11.)    5.743    0.212   27.100    0.000    5.327    6.158    5.743    0.797
##     sswk    (.12.)    6.247    0.269   23.205    0.000    5.720    6.775    6.247    0.911
##     sspc    (.13.)    2.470    0.128   19.226    0.000    2.218    2.722    2.470    0.819
##     ssno    (.14.)    0.559    0.036   15.434    0.000    0.488    0.630    0.559    0.629
##     sscs    (.15.)    0.465    0.036   12.860    0.000    0.394    0.535    0.465    0.557
##     ssasi   (.16.)    2.272    0.171   13.268    0.000    1.936    2.608    2.272    0.483
##     ssmk    (.17.)    5.082    0.185   27.416    0.000    4.718    5.445    5.082    0.765
##     ssmc    (.18.)    2.939    0.168   17.463    0.000    2.610    3.269    2.939    0.624
##     ssei    (.19.)    2.740    0.140   19.578    0.000    2.466    3.014    2.740    0.750
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             20.311    0.336   60.447    0.000   19.652   20.969   20.311    2.817
##    .ssmk    (.41.)   15.247    0.315   48.351    0.000   14.628   15.865   15.247    2.294
##    .ssmc    (.42.)   17.161    0.225   76.411    0.000   16.721   17.602   17.161    3.642
##    .ssgs    (.43.)   17.876    0.206   86.719    0.000   17.472   18.280   17.876    3.911
##    .ssasi   (.44.)   17.742    0.223   79.407    0.000   17.304   18.180   17.742    3.775
##    .ssei    (.45.)   13.543    0.175   77.256    0.000   13.199   13.886   13.543    3.707
##    .ssno    (.46.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.274
##    .sscs    (.47.)    0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.091
##    .sswk    (.48.)   27.667    0.309   89.621    0.000   27.062   28.272   27.667    4.035
##    .sspc             11.207    0.144   77.836    0.000   10.925   11.490   11.207    3.717
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              6.504    1.639    3.968    0.000    3.292    9.717    6.504    0.125
##    .ssmk              8.497    1.376    6.174    0.000    5.800   11.195    8.497    0.192
##    .ssmc              7.348    0.678   10.839    0.000    6.019    8.677    7.348    0.331
##    .ssgs              4.890    0.406   12.047    0.000    4.095    5.686    4.890    0.234
##    .ssasi             6.838    0.924    7.404    0.000    5.028    8.648    6.838    0.310
##    .ssei              2.831    0.287    9.877    0.000    2.269    3.393    2.831    0.212
##    .ssno              0.371    0.032   11.679    0.000    0.309    0.433    0.371    0.469
##    .sscs             -0.039    0.099   -0.397    0.691   -0.233    0.155   -0.039   -0.056
##    .sswk              7.980    0.899    8.877    0.000    6.218    9.742    7.980    0.170
##    .sspc              2.989    0.245   12.188    0.000    2.508    3.469    2.989    0.329
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.535    0.255   13.842    0.000    3.035    4.036    3.535    0.537
##     ssmk    (.p2.)    3.137    0.224   14.019    0.000    2.698    3.575    3.137    0.505
##     ssmc    (.p3.)    1.054    0.123    8.547    0.000    0.812    1.296    1.054    0.258
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.012    0.084   12.032    0.000    0.847    1.177    0.429    0.107
##     ssasi   (.p5.)    3.176    0.151   20.975    0.000    2.879    3.472    1.347    0.393
##     ssmc    (.p6.)    2.259    0.131   17.300    0.000    2.003    2.515    0.958    0.234
##     ssei    (.p7.)    1.734    0.098   17.601    0.000    1.541    1.927    0.735    0.226
##   speed =~                                                                                
##     ssno    (.p8.)    0.327    0.031   10.633    0.000    0.267    0.388    0.327    0.389
##     sscs    (.p9.)    0.721    0.070   10.346    0.000    0.584    0.858    0.721    0.860
##   g =~                                                                                    
##     ssgs    (.10.)    3.870    0.150   25.731    0.000    3.576    4.165    3.366    0.838
##     ssar    (.11.)    5.743    0.212   27.100    0.000    5.327    6.158    4.995    0.759
##     sswk    (.12.)    6.247    0.269   23.205    0.000    5.720    6.775    5.434    0.893
##     sspc    (.13.)    2.470    0.128   19.226    0.000    2.218    2.722    2.149    0.812
##     ssno    (.14.)    0.559    0.036   15.434    0.000    0.488    0.630    0.486    0.578
##     sscs    (.15.)    0.465    0.036   12.860    0.000    0.394    0.535    0.404    0.482
##     ssasi   (.16.)    2.272    0.171   13.268    0.000    1.936    2.608    1.976    0.576
##     ssmk    (.17.)    5.082    0.185   27.416    0.000    4.718    5.445    4.420    0.711
##     ssmc    (.18.)    2.939    0.168   17.463    0.000    2.610    3.269    2.557    0.625
##     ssei    (.19.)    2.740    0.140   19.578    0.000    2.466    3.014    2.383    0.732
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             18.912    0.403   46.936    0.000   18.123   19.702   18.912    2.873
##    .ssmk    (.41.)   15.247    0.315   48.351    0.000   14.628   15.865   15.247    2.453
##    .ssmc    (.42.)   17.161    0.225   76.411    0.000   16.721   17.602   17.161    4.194
##    .ssgs    (.43.)   17.876    0.206   86.719    0.000   17.472   18.280   17.876    4.452
##    .ssasi   (.44.)   17.742    0.223   79.407    0.000   17.304   18.180   17.742    5.175
##    .ssei    (.45.)   13.543    0.175   77.256    0.000   13.199   13.886   13.543    4.157
##    .ssno    (.46.)    0.244    0.041    5.880    0.000    0.162    0.325    0.244    0.290
##    .sscs    (.47.)    0.076    0.040    1.909    0.056   -0.002    0.154    0.076    0.091
##    .sswk    (.48.)   27.667    0.309   89.621    0.000   27.062   28.272   27.667    4.545
##    .sspc             12.001    0.149   80.550    0.000   11.709   12.293   12.001    4.537
##     math             -0.153    0.107   -1.430    0.153   -0.362    0.057   -0.153   -0.153
##     elctrnc          -1.905    0.119  -15.967    0.000   -2.139   -1.672   -4.493   -4.493
##     speed             0.737    0.105    7.011    0.000    0.531    0.944    0.737    0.737
##     g                 0.046    0.066    0.699    0.485   -0.084    0.176    0.053    0.053
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              5.874    1.550    3.790    0.000    2.836    8.911    5.874    0.136
##    .ssmk              9.254    1.362    6.793    0.000    6.584   11.924    9.254    0.240
##    .ssmc              8.176    0.575   14.228    0.000    7.050    9.302    8.176    0.488
##    .ssgs              4.608    0.388   11.891    0.000    3.849    5.368    4.608    0.286
##    .ssasi             6.035    0.523   11.541    0.000    5.010    7.060    6.035    0.513
##    .ssei              4.391    0.345   12.738    0.000    3.715    5.066    4.391    0.414
##    .ssno              0.365    0.038    9.486    0.000    0.289    0.440    0.365    0.515
##    .sscs              0.019    0.112    0.170    0.865   -0.200    0.238    0.019    0.027
##    .sswk              7.533    0.864    8.720    0.000    5.840    9.226    7.533    0.203
##    .sspc              2.382    0.198   12.023    0.000    1.993    2.770    2.382    0.340
##     electronic        0.180    0.048    3.774    0.000    0.086    0.273    1.000    1.000
##     g                 0.757    0.083    9.107    0.000    0.594    0.919    1.000    1.000
reduced<-cfa(bf.reduced, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssar~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   376.670    75.000     0.000     0.960     0.087     0.053 47941.740 48214.455
Mc(reduced)
## [1] 0.8663071
tests<-lavTestLRT(configural, metric, scalar2, latent2, reduced)
Td=tests[2:5,"Chisq diff"]
Td
## [1] 33.0764975  8.3990024  0.8375065  2.3604963
dfd=tests[2:5,"Df diff"]
dfd
## [1] 15  4  2  2
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-526 + 526 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.04791063 0.04576858        NaN 0.01852916
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02558663 0.07007865
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1]         NA 0.08949844
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]         NA 0.06691625
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1]         NA 0.09067041
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.995     0.992     0.473     0.200     0.007     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.922     0.908     0.505     0.347     0.108     0.018
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.342     0.328     0.118     0.073     0.022     0.004
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.693     0.674     0.334     0.236     0.094     0.027
tests<-lavTestLRT(configural, metric, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 33.076498  8.399002 92.255559
dfd=tests[2:4,"Df diff"]
dfd
## [1] 15  4  4
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-526 + 526 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04791063 0.04576858 0.20500355
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1]         NA 0.08949844
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.1698375 0.2422042
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.922     0.908     0.505     0.347     0.108     0.018
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 33.076498  8.399002 16.567297
dfd=tests[2:4,"Df diff"]
dfd
## [1] 15  4 10
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-526 + 526 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04791063 0.04576858 0.03536826
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02558663 0.07007865
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1]         NA 0.08949844
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]         NA 0.06450968
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.995     0.992     0.473     0.200     0.007     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.922     0.908     0.505     0.347     0.108     0.018
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.915     0.893     0.232     0.088     0.004     0.000
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1] 33.07650 69.50205
dfd=tests[2:3,"Df diff"]
dfd
## [1] 15  6
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-526 + 526 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04791063 0.14198373
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02558663 0.07007865
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1130598 0.1728060
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.995     0.992     0.473     0.200     0.007     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     1.000     0.991
bf.age<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ age 
'

bf.ageq<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ c(a,a)*age
'

bf.age2<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ age + age2 
'

bf.age2q<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ c(a,a)*age + c(b,b)*age2
'

sem.age<-sem(bf.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssar~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   477.725    91.000     0.000     0.949     0.090     0.055     0.566 47912.761 48205.309
Mc(sem.age)
## [1] 0.8319528
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 113 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               477.725     400.398
##   Degrees of freedom                                91          91
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.193
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          272.627     228.498
##     1                                          205.098     171.900
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.554    0.254   13.988    0.000    3.056    4.052    3.554    0.493
##     ssmk    (.p2.)    3.166    0.222   14.229    0.000    2.730    3.602    3.166    0.477
##     ssmc    (.p3.)    1.060    0.123    8.611    0.000    0.819    1.301    1.060    0.225
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.007    0.084   12.024    0.000    0.843    1.171    1.007    0.220
##     ssasi   (.p5.)    3.167    0.152   20.893    0.000    2.869    3.464    3.167    0.674
##     ssmc    (.p6.)    2.255    0.131   17.263    0.000    1.999    2.511    2.255    0.479
##     ssei    (.p7.)    1.727    0.098   17.562    0.000    1.534    1.920    1.727    0.473
##   speed =~                                                                                
##     ssno    (.p8.)    0.328    0.031   10.647    0.000    0.267    0.388    0.328    0.369
##     sscs    (.p9.)    0.722    0.070   10.365    0.000    0.585    0.858    0.722    0.865
##   g =~                                                                                    
##     ssgs    (.10.)    3.846    0.157   24.471    0.000    3.538    4.154    3.870    0.847
##     ssar    (.11.)    5.693    0.217   26.236    0.000    5.267    6.118    5.729    0.795
##     sswk    (.12.)    6.221    0.277   22.424    0.000    5.678    6.765    6.260    0.912
##     sspc    (.13.)    2.451    0.131   18.656    0.000    2.193    2.708    2.466    0.818
##     ssno    (.14.)    0.554    0.036   15.184    0.000    0.482    0.625    0.557    0.627
##     sscs    (.15.)    0.461    0.036   12.733    0.000    0.390    0.532    0.464    0.556
##     ssasi   (.16.)    2.260    0.172   13.123    0.000    1.922    2.598    2.274    0.484
##     ssmk    (.17.)    5.028    0.188   26.695    0.000    4.659    5.397    5.060    0.762
##     ssmc    (.18.)    2.918    0.171   17.071    0.000    2.583    3.252    2.936    0.623
##     ssei    (.19.)    2.727    0.142   19.256    0.000    2.449    3.005    2.744    0.751
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.051    0.025    2.072    0.038    0.003    0.099    0.051    0.112
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             20.380    0.340   59.910    0.000   19.714   21.047   20.380    2.828
##    .ssmk    (.40.)   15.307    0.320   47.824    0.000   14.680   15.935   15.307    2.305
##    .ssmc    (.41.)   17.198    0.227   75.872    0.000   16.754   17.643   17.198    3.652
##    .ssgs    (.42.)   17.922    0.211   84.898    0.000   17.508   18.336   17.922    3.920
##    .ssasi   (.43.)   17.770    0.223   79.808    0.000   17.333   18.206   17.770    3.784
##    .ssei    (.44.)   13.575    0.176   77.261    0.000   13.231   13.919   13.575    3.717
##    .ssno    (.45.)    0.250    0.042    6.007    0.000    0.169    0.332    0.250    0.282
##    .sscs    (.46.)    0.082    0.040    2.037    0.042    0.003    0.160    0.082    0.098
##    .sswk    (.47.)   27.744    0.314   88.354    0.000   27.128   28.359   27.744    4.044
##    .sspc             11.237    0.146   77.084    0.000   10.952   11.523   11.237    3.729
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              6.499    1.635    3.975    0.000    3.294    9.703    6.499    0.125
##    .ssmk              8.489    1.380    6.150    0.000    5.784   11.194    8.489    0.192
##    .ssmc              7.346    0.678   10.842    0.000    6.018    8.675    7.346    0.331
##    .ssgs              4.909    0.408   12.034    0.000    4.109    5.709    4.909    0.235
##    .ssasi             6.852    0.922    7.430    0.000    5.045    8.660    6.852    0.311
##    .ssei              2.823    0.285    9.896    0.000    2.264    3.382    2.823    0.212
##    .ssno              0.371    0.032   11.692    0.000    0.309    0.434    0.371    0.471
##    .sscs             -0.040    0.099   -0.404    0.686   -0.234    0.154   -0.040   -0.057
##    .sswk              7.885    0.894    8.822    0.000    6.133    9.636    7.885    0.167
##    .sspc              3.000    0.246   12.212    0.000    2.518    3.481    3.000    0.330
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.988    0.988
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.554    0.254   13.988    0.000    3.056    4.052    3.554    0.540
##     ssmk    (.p2.)    3.166    0.222   14.229    0.000    2.730    3.602    3.166    0.509
##     ssmc    (.p3.)    1.060    0.123    8.611    0.000    0.819    1.301    1.060    0.259
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.007    0.084   12.024    0.000    0.843    1.171    0.427    0.106
##     ssasi   (.p5.)    3.167    0.152   20.893    0.000    2.869    3.464    1.342    0.391
##     ssmc    (.p6.)    2.255    0.131   17.263    0.000    1.999    2.511    0.956    0.234
##     ssei    (.p7.)    1.727    0.098   17.562    0.000    1.534    1.920    0.732    0.225
##   speed =~                                                                                
##     ssno    (.p8.)    0.328    0.031   10.647    0.000    0.267    0.388    0.328    0.389
##     sscs    (.p9.)    0.722    0.070   10.365    0.000    0.585    0.858    0.722    0.861
##   g =~                                                                                    
##     ssgs    (.10.)    3.846    0.157   24.471    0.000    3.538    4.154    3.368    0.839
##     ssar    (.11.)    5.693    0.217   26.236    0.000    5.267    6.118    4.986    0.757
##     sswk    (.12.)    6.221    0.277   22.424    0.000    5.678    6.765    5.449    0.895
##     sspc    (.13.)    2.451    0.131   18.656    0.000    2.193    2.708    2.146    0.811
##     ssno    (.14.)    0.554    0.036   15.184    0.000    0.482    0.625    0.485    0.576
##     sscs    (.15.)    0.461    0.036   12.733    0.000    0.390    0.532    0.404    0.482
##     ssasi   (.16.)    2.260    0.172   13.123    0.000    1.922    2.598    1.979    0.577
##     ssmk    (.17.)    5.028    0.188   26.695    0.000    4.659    5.397    4.404    0.708
##     ssmc    (.18.)    2.918    0.171   17.071    0.000    2.583    3.252    2.555    0.624
##     ssei    (.19.)    2.727    0.142   19.256    0.000    2.449    3.005    2.388    0.733
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.098    0.019    5.127    0.000    0.060    0.135    0.112    0.241
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             18.978    0.407   46.643    0.000   18.181   19.776   18.978    2.882
##    .ssmk    (.40.)   15.307    0.320   47.824    0.000   14.680   15.935   15.307    2.461
##    .ssmc    (.41.)   17.198    0.227   75.872    0.000   16.754   17.643   17.198    4.203
##    .ssgs    (.42.)   17.922    0.211   84.898    0.000   17.508   18.336   17.922    4.463
##    .ssasi   (.43.)   17.770    0.223   79.808    0.000   17.333   18.206   17.770    5.180
##    .ssei    (.44.)   13.575    0.176   77.261    0.000   13.231   13.919   13.575    4.167
##    .ssno    (.45.)    0.250    0.042    6.007    0.000    0.169    0.332    0.250    0.298
##    .sscs    (.46.)    0.082    0.040    2.037    0.042    0.003    0.160    0.082    0.098
##    .sswk    (.47.)   27.744    0.314   88.354    0.000   27.128   28.359   27.744    4.560
##    .sspc             12.032    0.150   80.168    0.000   11.738   12.326   12.032    4.545
##     math             -0.150    0.106   -1.420    0.156   -0.357    0.057   -0.150   -0.150
##     elctrnc          -1.911    0.120  -15.908    0.000   -2.146   -1.675   -4.507   -4.507
##     speed             0.737    0.105    7.024    0.000    0.531    0.943    0.737    0.737
##    .g                 0.065    0.066    0.987    0.324   -0.064    0.195    0.074    0.074
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              5.866    1.546    3.795    0.000    2.837    8.896    5.866    0.135
##    .ssmk              9.272    1.369    6.773    0.000    6.589   11.956    9.272    0.240
##    .ssmc              8.176    0.574   14.244    0.000    7.051    9.301    8.176    0.488
##    .ssgs              4.596    0.384   11.976    0.000    3.844    5.348    4.596    0.285
##    .ssasi             6.049    0.524   11.553    0.000    5.023    7.075    6.049    0.514
##    .ssei              4.373    0.345   12.676    0.000    3.697    5.049    4.373    0.412
##    .ssno              0.366    0.039    9.478    0.000    0.290    0.442    0.366    0.516
##    .sscs              0.018    0.112    0.160    0.873   -0.202    0.237    0.018    0.025
##    .sswk              7.335    0.857    8.561    0.000    5.656    9.015    7.335    0.198
##    .sspc              2.402    0.200   12.027    0.000    2.010    2.793    2.402    0.343
##     electronic        0.180    0.048    3.729    0.000    0.085    0.274    1.000    1.000
##    .g                 0.723    0.084    8.563    0.000    0.557    0.888    0.942    0.942
sem.ageq<-sem(bf.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssar~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   480.695    92.000     0.000     0.949     0.090     0.053     0.567 47913.731 48201.321
Mc(sem.ageq)
## [1] 0.8311735
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 130 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               480.695     402.742
##   Degrees of freedom                                92          92
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.194
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          274.129     229.675
##     1                                          206.566     173.068
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.553    0.254   13.971    0.000    3.054    4.051    3.553    0.490
##     ssmk    (.p2.)    3.164    0.222   14.221    0.000    2.728    3.600    3.164    0.474
##     ssmc    (.p3.)    1.060    0.123    8.610    0.000    0.818    1.301    1.060    0.224
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.005    0.084   12.007    0.000    0.841    1.170    1.005    0.218
##     ssasi   (.p5.)    3.162    0.151   20.904    0.000    2.865    3.458    3.162    0.672
##     ssmc    (.p6.)    2.252    0.131   17.249    0.000    1.996    2.508    2.252    0.477
##     ssei    (.p7.)    1.725    0.098   17.574    0.000    1.532    1.917    1.725    0.470
##   speed =~                                                                                
##     ssno    (.p8.)    0.328    0.031   10.646    0.000    0.267    0.388    0.328    0.367
##     sscs    (.p9.)    0.721    0.070   10.365    0.000    0.585    0.858    0.721    0.862
##   g =~                                                                                    
##     ssgs    (.10.)    3.852    0.160   24.101    0.000    3.539    4.165    3.907    0.849
##     ssar    (.11.)    5.704    0.219   25.989    0.000    5.274    6.134    5.785    0.798
##     sswk    (.12.)    6.230    0.281   22.174    0.000    5.679    6.780    6.319    0.914
##     sspc    (.13.)    2.455    0.132   18.542    0.000    2.196    2.715    2.490    0.821
##     ssno    (.14.)    0.555    0.037   15.157    0.000    0.483    0.627    0.563    0.631
##     sscs    (.15.)    0.462    0.036   12.710    0.000    0.391    0.534    0.469    0.560
##     ssasi   (.16.)    2.268    0.173   13.103    0.000    1.929    2.607    2.300    0.489
##     ssmk    (.17.)    5.038    0.190   26.521    0.000    4.665    5.410    5.109    0.765
##     ssmc    (.18.)    2.924    0.172   16.963    0.000    2.586    3.262    2.966    0.628
##     ssei    (.19.)    2.733    0.143   19.113    0.000    2.453    3.014    2.772    0.755
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.077    0.016    4.899    0.000    0.046    0.107    0.076    0.167
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             20.416    0.337   60.558    0.000   19.755   21.077   20.416    2.816
##    .ssmk    (.40.)   15.339    0.319   48.045    0.000   14.713   15.964   15.339    2.296
##    .ssmc    (.41.)   17.217    0.224   76.725    0.000   16.777   17.657   17.217    3.643
##    .ssgs    (.42.)   17.946    0.208   86.190    0.000   17.538   18.354   17.946    3.898
##    .ssasi   (.43.)   17.784    0.220   80.755    0.000   17.352   18.215   17.784    3.779
##    .ssei    (.44.)   13.592    0.173   78.460    0.000   13.252   13.931   13.592    3.702
##    .ssno    (.45.)    0.254    0.041    6.134    0.000    0.173    0.335    0.254    0.285
##    .sscs    (.46.)    0.085    0.040    2.124    0.034    0.007    0.163    0.085    0.101
##    .sswk    (.47.)   27.783    0.309   89.963    0.000   27.177   28.388   27.783    4.019
##    .sspc             11.253    0.145   77.834    0.000   10.969   11.536   11.253    3.709
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              6.485    1.635    3.966    0.000    3.281    9.690    6.485    0.123
##    .ssmk              8.504    1.381    6.160    0.000    5.798   11.210    8.504    0.191
##    .ssmc              7.346    0.677   10.844    0.000    6.018    8.674    7.346    0.329
##    .ssgs              4.919    0.408   12.058    0.000    4.120    5.719    4.919    0.232
##    .ssasi             6.861    0.922    7.445    0.000    5.054    8.667    6.861    0.310
##    .ssei              2.820    0.285    9.901    0.000    2.262    3.378    2.820    0.209
##    .ssno              0.371    0.032   11.693    0.000    0.309    0.434    0.371    0.467
##    .sscs             -0.040    0.099   -0.402    0.687   -0.233    0.154   -0.040   -0.057
##    .sswk              7.875    0.892    8.828    0.000    6.127    9.624    7.875    0.165
##    .sspc              3.002    0.245   12.229    0.000    2.521    3.483    3.002    0.326
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.972    0.972
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.553    0.254   13.971    0.000    3.054    4.051    3.553    0.543
##     ssmk    (.p2.)    3.164    0.222   14.221    0.000    2.728    3.600    3.164    0.511
##     ssmc    (.p3.)    1.060    0.123    8.610    0.000    0.818    1.301    1.060    0.260
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.005    0.084   12.007    0.000    0.841    1.170    0.427    0.107
##     ssasi   (.p5.)    3.162    0.151   20.904    0.000    2.865    3.458    1.343    0.392
##     ssmc    (.p6.)    2.252    0.131   17.249    0.000    1.996    2.508    0.956    0.235
##     ssei    (.p7.)    1.725    0.098   17.574    0.000    1.532    1.917    0.732    0.226
##   speed =~                                                                                
##     ssno    (.p8.)    0.328    0.031   10.646    0.000    0.267    0.388    0.328    0.391
##     sscs    (.p9.)    0.721    0.070   10.365    0.000    0.585    0.858    0.721    0.863
##   g =~                                                                                    
##     ssgs    (.10.)    3.852    0.160   24.101    0.000    3.539    4.165    3.334    0.836
##     ssar    (.11.)    5.704    0.219   25.989    0.000    5.274    6.134    4.937    0.754
##     sswk    (.12.)    6.230    0.281   22.174    0.000    5.679    6.780    5.392    0.893
##     sspc    (.13.)    2.455    0.132   18.542    0.000    2.196    2.715    2.125    0.808
##     ssno    (.14.)    0.555    0.037   15.157    0.000    0.483    0.627    0.480    0.573
##     sscs    (.15.)    0.462    0.036   12.710    0.000    0.391    0.534    0.400    0.479
##     ssasi   (.16.)    2.268    0.173   13.103    0.000    1.929    2.607    1.963    0.574
##     ssmk    (.17.)    5.038    0.190   26.521    0.000    4.665    5.410    4.360    0.705
##     ssmc    (.18.)    2.924    0.172   16.963    0.000    2.586    3.262    2.531    0.621
##     ssei    (.19.)    2.733    0.143   19.113    0.000    2.453    3.014    2.366    0.730
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.077    0.016    4.899    0.000    0.046    0.107    0.089    0.191
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             19.013    0.407   46.728    0.000   18.216   19.811   19.013    2.904
##    .ssmk    (.40.)   15.339    0.319   48.045    0.000   14.713   15.964   15.339    2.479
##    .ssmc    (.41.)   17.217    0.224   76.725    0.000   16.777   17.657   17.217    4.223
##    .ssgs    (.42.)   17.946    0.208   86.190    0.000   17.538   18.354   17.946    4.501
##    .ssasi   (.43.)   17.784    0.220   80.755    0.000   17.352   18.215   17.784    5.199
##    .ssei    (.44.)   13.592    0.173   78.460    0.000   13.252   13.931   13.592    4.193
##    .ssno    (.45.)    0.254    0.041    6.134    0.000    0.173    0.335    0.254    0.303
##    .sscs    (.46.)    0.085    0.040    2.124    0.034    0.007    0.163    0.085    0.101
##    .sswk    (.47.)   27.783    0.309   89.963    0.000   27.177   28.388   27.783    4.601
##    .sspc             12.048    0.148   81.157    0.000   11.757   12.339   12.048    4.582
##     math             -0.150    0.106   -1.416    0.157   -0.357    0.058   -0.150   -0.150
##     elctrnc          -1.914    0.120  -15.907    0.000   -2.149   -1.678   -4.507   -4.507
##     speed             0.737    0.105    7.025    0.000    0.532    0.943    0.737    0.737
##    .g                 0.052    0.065    0.800    0.424   -0.076    0.180    0.060    0.060
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              5.870    1.546    3.797    0.000    2.840    8.900    5.870    0.137
##    .ssmk              9.265    1.368    6.773    0.000    6.584   11.946    9.265    0.242
##    .ssmc              8.176    0.574   14.241    0.000    7.050    9.301    8.176    0.492
##    .ssgs              4.600    0.385   11.961    0.000    3.847    5.354    4.600    0.289
##    .ssasi             6.046    0.523   11.552    0.000    5.020    7.072    6.046    0.517
##    .ssei              4.377    0.345   12.691    0.000    3.701    5.053    4.377    0.416
##    .ssno              0.366    0.039    9.482    0.000    0.290    0.441    0.366    0.520
##    .sscs              0.018    0.112    0.163    0.870   -0.201    0.238    0.018    0.026
##    .sswk              7.379    0.858    8.605    0.000    5.698    9.060    7.379    0.202
##    .sspc              2.397    0.199   12.029    0.000    2.006    2.787    2.397    0.347
##     electronic        0.180    0.048    3.734    0.000    0.086    0.275    1.000    1.000
##    .g                 0.722    0.085    8.524    0.000    0.556    0.888    0.964    0.964
sem.age2<-sem(bf.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssar~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   509.262   109.000     0.000     0.947     0.084     0.053     0.600 47914.194 48216.660
Mc(sem.age2)
## [1] 0.8266122
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 119 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               509.262     427.993
##   Degrees of freedom                               109         109
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.190
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          289.412     243.227
##     1                                          219.850     184.766
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.555    0.254   14.004    0.000    3.058    4.053    3.555    0.493
##     ssmk    (.p2.)    3.167    0.222   14.249    0.000    2.731    3.603    3.167    0.477
##     ssmc    (.p3.)    1.061    0.123    8.620    0.000    0.820    1.303    1.061    0.225
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.007    0.084   12.019    0.000    0.843    1.171    1.007    0.220
##     ssasi   (.p5.)    3.165    0.151   20.899    0.000    2.868    3.462    3.165    0.674
##     ssmc    (.p6.)    2.255    0.131   17.251    0.000    1.998    2.511    2.255    0.479
##     ssei    (.p7.)    1.726    0.098   17.573    0.000    1.534    1.919    1.726    0.473
##   speed =~                                                                                
##     ssno    (.p8.)    0.328    0.031   10.648    0.000    0.267    0.388    0.328    0.369
##     sscs    (.p9.)    0.722    0.070   10.366    0.000    0.585    0.858    0.722    0.865
##   g =~                                                                                    
##     ssgs    (.10.)    3.835    0.155   24.668    0.000    3.530    4.140    3.869    0.846
##     ssar    (.11.)    5.677    0.214   26.534    0.000    5.258    6.097    5.728    0.795
##     sswk    (.12.)    6.206    0.273   22.728    0.000    5.671    6.741    6.261    0.913
##     sspc    (.13.)    2.445    0.129   18.918    0.000    2.191    2.698    2.466    0.818
##     ssno    (.14.)    0.552    0.036   15.318    0.000    0.482    0.623    0.557    0.627
##     sscs    (.15.)    0.460    0.036   12.816    0.000    0.390    0.531    0.464    0.556
##     ssasi   (.16.)    2.255    0.171   13.220    0.000    1.921    2.589    2.275    0.484
##     ssmk    (.17.)    5.014    0.187   26.837    0.000    4.648    5.381    5.059    0.762
##     ssmc    (.18.)    2.909    0.169   17.190    0.000    2.577    3.241    2.935    0.623
##     ssei    (.19.)    2.721    0.140   19.454    0.000    2.447    2.995    2.745    0.752
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.045    0.025    1.771    0.077   -0.005    0.095    0.045    0.099
##     age2             -0.015    0.011   -1.320    0.187   -0.037    0.007   -0.015   -0.072
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             20.791    0.439   47.317    0.000   19.930   21.653   20.791    2.885
##    .ssmk    (.43.)   15.670    0.408   38.422    0.000   14.871   16.470   15.670    2.359
##    .ssmc    (.44.)   17.409    0.266   65.445    0.000   16.888   17.931   17.409    3.698
##    .ssgs    (.45.)   18.200    0.279   65.210    0.000   17.653   18.747   18.200    3.981
##    .ssasi   (.46.)   17.933    0.243   73.754    0.000   17.456   18.409   17.933    3.819
##    .ssei    (.47.)   13.772    0.211   65.188    0.000   13.358   14.186   13.772    3.771
##    .ssno    (.48.)    0.290    0.047    6.172    0.000    0.198    0.383    0.290    0.327
##    .sscs    (.49.)    0.115    0.043    2.672    0.008    0.031    0.199    0.115    0.138
##    .sswk    (.50.)   28.193    0.420   67.201    0.000   27.371   29.015   28.193    4.109
##    .sspc             11.414    0.181   63.114    0.000   11.060   11.769   11.414    3.788
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              6.500    1.634    3.978    0.000    3.298    9.702    6.500    0.125
##    .ssmk              8.489    1.380    6.153    0.000    5.785   11.193    8.489    0.192
##    .ssmc              7.345    0.678   10.836    0.000    6.016    8.673    7.345    0.331
##    .ssgs              4.920    0.410   12.011    0.000    4.117    5.723    4.920    0.235
##    .ssasi             6.856    0.922    7.434    0.000    5.048    8.664    6.856    0.311
##    .ssei              2.819    0.284    9.912    0.000    2.261    3.376    2.819    0.211
##    .ssno              0.372    0.032   11.697    0.000    0.309    0.434    0.372    0.471
##    .sscs             -0.040    0.099   -0.405    0.686   -0.234    0.154   -0.040   -0.057
##    .sswk              7.870    0.889    8.849    0.000    6.127    9.613    7.870    0.167
##    .sspc              2.998    0.246   12.185    0.000    2.516    3.480    2.998    0.330
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.982    0.982
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.555    0.254   14.004    0.000    3.058    4.053    3.555    0.540
##     ssmk    (.p2.)    3.167    0.222   14.249    0.000    2.731    3.603    3.167    0.509
##     ssmc    (.p3.)    1.061    0.123    8.620    0.000    0.820    1.303    1.061    0.259
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.007    0.084   12.019    0.000    0.843    1.171    0.427    0.106
##     ssasi   (.p5.)    3.165    0.151   20.899    0.000    2.868    3.462    1.343    0.391
##     ssmc    (.p6.)    2.255    0.131   17.251    0.000    1.998    2.511    0.956    0.234
##     ssei    (.p7.)    1.726    0.098   17.573    0.000    1.534    1.919    0.732    0.225
##   speed =~                                                                                
##     ssno    (.p8.)    0.328    0.031   10.648    0.000    0.267    0.388    0.328    0.389
##     sscs    (.p9.)    0.722    0.070   10.366    0.000    0.585    0.858    0.722    0.861
##   g =~                                                                                    
##     ssgs    (.10.)    3.835    0.155   24.668    0.000    3.530    4.140    3.367    0.839
##     ssar    (.11.)    5.677    0.214   26.534    0.000    5.258    6.097    4.985    0.757
##     sswk    (.12.)    6.206    0.273   22.728    0.000    5.671    6.741    5.449    0.896
##     sspc    (.13.)    2.445    0.129   18.918    0.000    2.191    2.698    2.146    0.811
##     ssno    (.14.)    0.552    0.036   15.318    0.000    0.482    0.623    0.485    0.576
##     sscs    (.15.)    0.460    0.036   12.816    0.000    0.390    0.531    0.404    0.482
##     ssasi   (.16.)    2.255    0.171   13.220    0.000    1.921    2.589    1.980    0.577
##     ssmk    (.17.)    5.014    0.187   26.837    0.000    4.648    5.381    4.403    0.708
##     ssmc    (.18.)    2.909    0.169   17.190    0.000    2.577    3.241    2.554    0.624
##     ssei    (.19.)    2.721    0.140   19.454    0.000    2.447    2.995    2.389    0.733
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.099    0.019    5.261    0.000    0.062    0.135    0.112    0.242
##     age2              0.001    0.008    0.089    0.929   -0.015    0.016    0.001    0.004
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             19.389    0.496   39.096    0.000   18.417   20.361   19.389    2.945
##    .ssmk    (.43.)   15.670    0.408   38.422    0.000   14.871   16.470   15.670    2.519
##    .ssmc    (.44.)   17.409    0.266   65.445    0.000   16.888   17.931   17.409    4.255
##    .ssgs    (.45.)   18.200    0.279   65.210    0.000   17.653   18.747   18.200    4.533
##    .ssasi   (.46.)   17.933    0.243   73.754    0.000   17.456   18.409   17.933    5.227
##    .ssei    (.47.)   13.772    0.211   65.188    0.000   13.358   14.186   13.772    4.226
##    .ssno    (.48.)    0.290    0.047    6.172    0.000    0.198    0.383    0.290    0.345
##    .sscs    (.49.)    0.115    0.043    2.672    0.008    0.031    0.199    0.115    0.137
##    .sswk    (.50.)   28.193    0.420   67.201    0.000   27.371   29.015   28.193    4.633
##    .sspc             12.209    0.186   65.693    0.000   11.845   12.573   12.209    4.612
##     math             -0.150    0.106   -1.419    0.156   -0.357    0.057   -0.150   -0.150
##     elctrnc          -1.912    0.120  -15.913    0.000   -2.147   -1.676   -4.506   -4.506
##     speed             0.737    0.105    7.025    0.000    0.531    0.942    0.737    0.737
##    .g                -0.010    0.091   -0.114    0.910   -0.188    0.167   -0.012   -0.012
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              5.866    1.544    3.799    0.000    2.840    8.893    5.866    0.135
##    .ssmk              9.272    1.368    6.778    0.000    6.591   11.953    9.272    0.240
##    .ssmc              8.175    0.574   14.244    0.000    7.050    9.299    8.175    0.488
##    .ssgs              4.596    0.384   11.969    0.000    3.844    5.349    4.596    0.285
##    .ssasi             6.049    0.523   11.555    0.000    5.023    7.075    6.049    0.514
##    .ssei              4.373    0.345   12.672    0.000    3.697    5.050    4.373    0.412
##    .ssno              0.366    0.039    9.477    0.000    0.290    0.442    0.366    0.516
##    .sscs              0.018    0.112    0.159    0.874   -0.202    0.237    0.018    0.025
##    .sswk              7.333    0.857    8.561    0.000    5.654    9.011    7.333    0.198
##    .sspc              2.402    0.200   12.024    0.000    2.010    2.793    2.402    0.343
##     electronic        0.180    0.048    3.729    0.000    0.085    0.275    1.000    1.000
##    .g                 0.726    0.084    8.631    0.000    0.561    0.891    0.942    0.942
sem.age2q<-sem(bf.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1", "ssar~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   513.716   111.000     0.000     0.947     0.083     0.052     0.600 47914.648 48207.197
Mc(sem.age2q)
## [1] 0.8256478
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 136 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
##   Number of equality constraints                    29
## 
##   Number of observations per group:                   
##     0                                              526
##     1                                              526
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               513.716     431.704
##   Degrees of freedom                               111         111
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.190
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          291.675     245.111
##     1                                          222.041     186.593
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.553    0.254   13.974    0.000    3.055    4.051    3.553    0.490
##     ssmk    (.p2.)    3.165    0.222   14.226    0.000    2.729    3.601    3.165    0.474
##     ssmc    (.p3.)    1.060    0.123    8.608    0.000    0.818    1.301    1.060    0.224
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.005    0.084   12.003    0.000    0.841    1.170    1.005    0.219
##     ssasi   (.p5.)    3.161    0.151   20.904    0.000    2.865    3.458    3.161    0.672
##     ssmc    (.p6.)    2.252    0.131   17.244    0.000    1.996    2.508    2.252    0.477
##     ssei    (.p7.)    1.724    0.098   17.578    0.000    1.532    1.916    1.724    0.470
##   speed =~                                                                                
##     ssno    (.p8.)    0.328    0.031   10.646    0.000    0.267    0.388    0.328    0.368
##     sscs    (.p9.)    0.721    0.070   10.366    0.000    0.585    0.858    0.721    0.862
##   g =~                                                                                    
##     ssgs    (.10.)    3.845    0.158   24.263    0.000    3.534    4.155    3.900    0.848
##     ssar    (.11.)    5.694    0.217   26.214    0.000    5.268    6.119    5.776    0.797
##     sswk    (.12.)    6.219    0.278   22.394    0.000    5.675    6.763    6.309    0.914
##     sspc    (.13.)    2.451    0.131   18.727    0.000    2.195    2.708    2.487    0.821
##     ssno    (.14.)    0.554    0.036   15.236    0.000    0.483    0.625    0.562    0.630
##     sscs    (.15.)    0.462    0.036   12.771    0.000    0.391    0.532    0.468    0.560
##     ssasi   (.16.)    2.265    0.172   13.186    0.000    1.928    2.601    2.298    0.488
##     ssmk    (.17.)    5.028    0.189   26.639    0.000    4.658    5.398    5.101    0.764
##     ssmc    (.18.)    2.919    0.171   17.070    0.000    2.584    3.254    2.962    0.627
##     ssei    (.19.)    2.729    0.142   19.267    0.000    2.451    3.006    2.769    0.755
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.074    0.016    4.571    0.000    0.042    0.105    0.073    0.161
##     age2       (b)   -0.006    0.007   -0.935    0.350   -0.020    0.007   -0.006   -0.031
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             20.591    0.376   54.709    0.000   19.853   21.329   20.591    2.842
##    .ssmk    (.43.)   15.493    0.354   43.799    0.000   14.800   16.186   15.493    2.322
##    .ssmc    (.44.)   17.307    0.240   72.173    0.000   16.837   17.777   17.307    3.664
##    .ssgs    (.45.)   18.064    0.235   76.798    0.000   17.603   18.525   18.064    3.928
##    .ssasi   (.46.)   17.853    0.228   78.166    0.000   17.406   18.301   17.853    3.795
##    .ssei    (.47.)   13.676    0.187   73.138    0.000   13.309   14.042   13.676    3.728
##    .ssno    (.48.)    0.271    0.043    6.265    0.000    0.186    0.356    0.271    0.304
##    .sscs    (.49.)    0.099    0.041    2.424    0.015    0.019    0.179    0.099    0.118
##    .sswk    (.50.)   27.974    0.351   79.625    0.000   27.285   28.662   27.974    4.051
##    .sspc             11.328    0.158   71.710    0.000   11.018   11.638   11.328    3.738
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              6.487    1.635    3.968    0.000    3.283    9.691    6.487    0.124
##    .ssmk              8.502    1.381    6.157    0.000    5.796   11.209    8.502    0.191
##    .ssmc              7.345    0.677   10.842    0.000    6.017    8.673    7.345    0.329
##    .ssgs              4.924    0.409   12.049    0.000    4.123    5.725    4.924    0.233
##    .ssasi             6.862    0.922    7.447    0.000    5.056    8.668    6.862    0.310
##    .ssei              2.818    0.284    9.906    0.000    2.261    3.376    2.818    0.209
##    .ssno              0.371    0.032   11.696    0.000    0.309    0.434    0.371    0.467
##    .sscs             -0.040    0.099   -0.403    0.687   -0.233    0.154   -0.040   -0.057
##    .sswk              7.868    0.890    8.838    0.000    6.123    9.613    7.868    0.165
##    .sspc              3.001    0.246   12.217    0.000    2.520    3.482    3.001    0.327
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.972    0.972
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.553    0.254   13.974    0.000    3.055    4.051    3.553    0.542
##     ssmk    (.p2.)    3.165    0.222   14.226    0.000    2.729    3.601    3.165    0.511
##     ssmc    (.p3.)    1.060    0.123    8.608    0.000    0.818    1.301    1.060    0.260
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.005    0.084   12.003    0.000    0.841    1.170    0.426    0.107
##     ssasi   (.p5.)    3.161    0.151   20.904    0.000    2.865    3.458    1.340    0.392
##     ssmc    (.p6.)    2.252    0.131   17.244    0.000    1.996    2.508    0.955    0.234
##     ssei    (.p7.)    1.724    0.098   17.578    0.000    1.532    1.916    0.731    0.225
##   speed =~                                                                                
##     ssno    (.p8.)    0.328    0.031   10.646    0.000    0.267    0.388    0.328    0.390
##     sscs    (.p9.)    0.721    0.070   10.366    0.000    0.585    0.858    0.721    0.863
##   g =~                                                                                    
##     ssgs    (.10.)    3.845    0.158   24.263    0.000    3.534    4.155    3.339    0.836
##     ssar    (.11.)    5.694    0.217   26.214    0.000    5.268    6.119    4.944    0.755
##     sswk    (.12.)    6.219    0.278   22.394    0.000    5.675    6.763    5.401    0.893
##     sspc    (.13.)    2.451    0.131   18.727    0.000    2.195    2.708    2.129    0.809
##     ssno    (.14.)    0.554    0.036   15.236    0.000    0.483    0.625    0.481    0.573
##     sscs    (.15.)    0.462    0.036   12.771    0.000    0.391    0.532    0.401    0.479
##     ssasi   (.16.)    2.265    0.172   13.186    0.000    1.928    2.601    1.967    0.575
##     ssmk    (.17.)    5.028    0.189   26.639    0.000    4.658    5.398    4.366    0.705
##     ssmc    (.18.)    2.919    0.171   17.070    0.000    2.584    3.254    2.535    0.622
##     ssei    (.19.)    2.729    0.142   19.267    0.000    2.451    3.006    2.370    0.730
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.074    0.016    4.571    0.000    0.042    0.105    0.085    0.183
##     age2       (b)   -0.006    0.007   -0.935    0.350   -0.020    0.007   -0.007   -0.037
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             19.188    0.443   43.308    0.000   18.320   20.056   19.188    2.928
##    .ssmk    (.43.)   15.493    0.354   43.799    0.000   14.800   16.186   15.493    2.502
##    .ssmc    (.44.)   17.307    0.240   72.173    0.000   16.837   17.777   17.307    4.243
##    .ssgs    (.45.)   18.064    0.235   76.798    0.000   17.603   18.525   18.064    4.526
##    .ssasi   (.46.)   17.853    0.228   78.166    0.000   17.406   18.301   17.853    5.217
##    .ssei    (.47.)   13.676    0.187   73.138    0.000   13.309   14.042   13.676    4.215
##    .ssno    (.48.)    0.271    0.043    6.265    0.000    0.186    0.356    0.271    0.323
##    .sscs    (.49.)    0.099    0.041    2.424    0.015    0.019    0.179    0.099    0.118
##    .sswk    (.50.)   27.974    0.351   79.625    0.000   27.285   28.662   27.974    4.627
##    .sspc             12.123    0.164   73.889    0.000   11.801   12.445   12.123    4.606
##     math             -0.150    0.106   -1.416    0.157   -0.357    0.058   -0.150   -0.150
##     elctrnc          -1.914    0.120  -15.908    0.000   -2.150   -1.678   -4.514   -4.514
##     speed             0.737    0.105    7.025    0.000    0.532    0.943    0.737    0.737
##    .g                 0.051    0.065    0.778    0.437   -0.077    0.178    0.058    0.058
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              5.868    1.546    3.796    0.000    2.839    8.898    5.868    0.137
##    .ssmk              9.267    1.368    6.772    0.000    6.584   11.949    9.267    0.242
##    .ssmc              8.176    0.574   14.242    0.000    7.051    9.301    8.176    0.491
##    .ssgs              4.604    0.385   11.956    0.000    3.849    5.359    4.604    0.289
##    .ssasi             6.047    0.523   11.553    0.000    5.021    7.073    6.047    0.516
##    .ssei              4.379    0.345   12.692    0.000    3.703    5.055    4.379    0.416
##    .ssno              0.366    0.039    9.486    0.000    0.290    0.441    0.366    0.519
##    .sscs              0.018    0.112    0.163    0.871   -0.201    0.237    0.018    0.026
##    .sswk              7.379    0.858    8.603    0.000    5.698    9.060    7.379    0.202
##    .sspc              2.396    0.199   12.015    0.000    2.005    2.787    2.396    0.346
##     electronic        0.180    0.048    3.728    0.000    0.085    0.274    1.000    1.000
##    .g                 0.726    0.085    8.584    0.000    0.560    0.891    0.962    0.962
# FULL SAMPLE

dgroup<- dplyr::select(d, id, starts_with("ss"), afqt, efa, educ2000, age, age2, sex, agesex, bhw, sweight, weight2000, cweight, asvabweight)
nrow(dgroup) # 2134
## [1] 2134
fit<-lm(efa ~ sex + rcs(age, 3) + sex*rcs(age, 3), data=dgroup)
summary(fit)
## 
## Call:
## lm(formula = efa ~ sex + rcs(age, 3) + sex * rcs(age, 3), data = dgroup)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -43.274 -12.212  -0.343  12.264  33.116 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          99.5352     1.3754  72.369   <2e-16 ***
## sex                  -0.6783     1.9623  -0.346    0.730    
## rcs(age, 3)age        0.7117     0.5861   1.214    0.225    
## rcs(age, 3)age'       0.4539     0.8200   0.554    0.580    
## sex:rcs(age, 3)age    0.9025     0.8380   1.077    0.282    
## sex:rcs(age, 3)age'  -1.2220     1.1710  -1.044    0.297    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.22 on 2128 degrees of freedom
## Multiple R-squared:  0.02776,    Adjusted R-squared:  0.02548 
## F-statistic: 12.15 on 5 and 2128 DF,  p-value: 1.245e-11
dgroup$pred1<-fitted(fit) 

original_age_min <- 14
original_age_max <- 22
mean_centered_min <- min(dgroup$age)
mean_centered_max <- max(dgroup$age)
original_age_mean <- (original_age_min + original_age_max) / 2
mean_centered_age_mean <- (mean_centered_min + mean_centered_max) / 2
age_difference <- original_age_mean - mean_centered_age_mean

xyplot(dgroup$pred1 ~ dgroup$age, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted IQ", xlab="age", key=list(text=list(c("Male", "Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2))

xyplot(dgroup$pred1 ~ dgroup$age, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted IQ", xlab="Age", key=list(text=list(c("Male", "Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2), scales=list(x=list(at=seq(mean_centered_min, mean_centered_max), labels=seq(original_age_min, original_age_max))))

describeBy(dgroup$pred1, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad   min    max range skew kurtosis   se
## X1    1 1067 99.71 2.11  98.97   99.56 2.33 96.69 104.92  8.24 0.53     -0.6 0.06
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean   sd median trimmed  mad  min    max range  skew kurtosis   se
## X1    1 1067 97.11 2.32     97   97.23 2.84 92.4 101.01  8.61 -0.44     -0.8 0.07
describeBy(dgroup$efa, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean    sd median trimmed   mad   min    max range  skew kurtosis   se
## X1    1 1067 99.71 16.73  99.84   99.77 21.42 54.86 131.19 76.34 -0.03    -1.11 0.51
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean    sd median trimmed   mad   min    max range skew kurtosis   se
## X1    1 1067 97.11 13.88  96.96   96.88 15.79 54.86 127.45 72.59 0.11    -0.87 0.42
describeBy(dgroup$afqt, dgroup$sex) 
## 
##  Descriptive statistics by group 
## INDICES: 0
##    vars    n mean    sd median trimmed   mad   min    max range skew kurtosis   se
## V1    1 1067 99.2 15.74   96.1   98.28 18.93 77.91 130.02 52.11 0.38    -1.16 0.48
## -------------------------------------------------------------------------- 
## INDICES: 1
##    vars    n  mean    sd median trimmed   mad   min    max range skew kurtosis   se
## V1    1 1067 99.12 14.77  96.71   98.19 17.46 77.91 130.02 52.11 0.43    -0.98 0.45
describeBy(dgroup$educ2000, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars   n  mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 838 13.04 2.4     12   12.92 1.48   4  20    16 0.64     0.86 0.08
## -------------------------------------------------------------------------- 
## group: 1
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 866 13.49 2.34     13   13.37 1.48   6  20    14  0.4     0.07 0.08
cor(dgroup$efa, dgroup$afqt, use="pairwise.complete.obs", method="pearson")
##           [,1]
## [1,] 0.9404975
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(age, sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 18 Ă— 5
## # Groups:   age [9]
##      age   sex  MEAN  MEAN_se       SD
##    <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1    -4     0  96.7 0        0       
##  2    -4     1  92.4 0        0       
##  3    -3     0  97.4 5.97e-16 5.98e-15
##  4    -3     1  94.0 5.83e-15 4.42e-14
##  5    -2     0  98.1 3.24e-16 3.42e-15
##  6    -2     1  95.6 0        0       
##  7    -1     0  99.0 8.57e-16 9.20e-15
##  8    -1     1  97.0 6.71e-16 7.06e-15
##  9     0     0 100.  8.52e-16 9.37e-15
## 10     0     1  98.1 0        0       
## 11     1     0 101.  3.57e-15 3.28e-14
## 12     1     1  98.9 0        0       
## 13     2     0 102.  1.55e-14 9.69e-14
## 14     2     1  99.6 0        0       
## 15     3     0 104.  0        0       
## 16     3     1 100.  9.71e-16 7.05e-15
## 17     4     0 105.  1.75e-15 6.73e-15
## 18     4     1 101.  3.09e-15 1.12e-14
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(age, sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 18 Ă— 5
## # Groups:   age [9]
##      age   sex  MEAN MEAN_se    SD
##    <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    -4     0 100.     1.94 15.1 
##  2    -4     1  97.7    1.83 12.9 
##  3    -3     0 105.     1.42 15.0 
##  4    -3     1  99.2    1.20 12.1 
##  5    -2     0 105.     1.53 16.9 
##  6    -2     1 102.     1.20 12.8 
##  7    -1     0 105.     1.24 14.8 
##  8    -1     1 102.     1.13 12.6 
##  9     0     0 106.     1.37 15.9 
## 10     0     1 104.     1.10 13.5 
## 11     1     0 107.     1.56 15.7 
## 12     1     1 103.     1.37 14.7 
## 13     2     0 110.     1.72 15.9 
## 14     2     1 104.     1.53 13.7 
## 15     3     0 109.     1.93 16.0 
## 16     3     1 105.     1.59 13.4 
## 17     4     0 105.     4.81 19.7 
## 18     4     1 113.     1.67  9.28
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(age, sex) %>% summarise(MEAN = survey_mean(afqt), SD = survey_sd(afqt))
## # A tibble: 18 Ă— 5
## # Groups:   age [9]
##      age   sex  MEAN MEAN_se    SD
##    <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    -4     0  104.    2.11  15.8
##  2    -4     1  104.    2.11  14.7
##  3    -3     0  106.    1.59  16.1
##  4    -3     1  105.    1.46  14.5
##  5    -2     0  106.    1.58  16.7
##  6    -2     1  105.    1.39  14.5
##  7    -1     0  104.    1.38  15.4
##  8    -1     1  103.    1.32  14.3
##  9     0     0  104.    1.43  15.7
## 10     0     1  106.    1.30  15.1
## 11     1     0  104.    1.65  15.8
## 12     1     1  104.    1.51  15.8
## 13     2     0  105.    1.80  15.6
## 14     2     1  103.    1.83  15.7
## 15     3     0  104.    2.03  15.7
## 16     3     1  104.    1.95  15.2
## 17     4     0  101.    4.42  17.3
## 18     4     1  115.    2.61  12.1
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0 100.   0.0892  2.26
## 2     1  97.2  0.0934  2.40
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  106.   0.558  15.9
## 2     1  103.   0.472  13.4
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(afqt), SD = survey_sd(afqt))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  105.   0.586  15.9
## 2     1  105.   0.548  15.0
dgroup %>% as_survey_design(ids = id, weights = weight2000) %>% group_by(sex) %>% summarise(MEAN = survey_mean(educ2000, na.rm = TRUE), SD = survey_sd(educ2000, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  13.5   0.107  2.51
## 2     1  13.9   0.100  2.42
# CORRELATED FACTOR MODEL

cf.model<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
'

cf.lv<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
verbal~~1*verbal
math~~1*math
speed~~1*speed
'

baseline<-cfa(cf.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##    588.264     27.000      0.000      0.970      0.099      0.031 100014.979 100230.278
Mc(baseline)
## [1] 0.8767208
configural<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   393.626    54.000     0.000     0.982     0.077     0.020 98110.280 98540.878
Mc(configural)
## [1] 0.9234743
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 56 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        76
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               393.626     265.158
##   Degrees of freedom                                54          54
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.484
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          277.111     186.670
##     1                                          116.515      78.488
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              3.173    0.306   10.383    0.000    2.574    3.771    3.173    0.583
##     sswk              7.780    0.184   42.197    0.000    7.418    8.141    7.780    0.941
##     sspc              3.132    0.087   36.061    0.000    2.962    3.302    3.132    0.873
##   math =~                                                                                 
##     ssar              7.318    0.139   52.742    0.000    7.046    7.590    7.318    0.954
##     ssmk              6.113    0.142   43.144    0.000    5.836    6.391    6.113    0.895
##     ssmc              1.125    0.220    5.118    0.000    0.694    1.556    1.125    0.202
##   electronic =~                                                                           
##     ssgs              1.912    0.305    6.264    0.000    1.314    2.510    1.912    0.351
##     ssasi             4.629    0.139   33.298    0.000    4.357    4.902    4.629    0.830
##     ssmc              3.849    0.211   18.230    0.000    3.435    4.263    3.849    0.692
##     ssei              4.176    0.089   46.791    0.000    4.001    4.351    4.176    0.940
##   speed =~                                                                                
##     ssno              0.855    0.028   31.066    0.000    0.801    0.909    0.855    0.888
##     sscs              0.724    0.031   23.418    0.000    0.663    0.784    0.724    0.803
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.846    0.015   57.597    0.000    0.818    0.875    0.846    0.846
##     electronic        0.883    0.013   67.131    0.000    0.857    0.908    0.883    0.883
##     speed             0.772    0.022   35.709    0.000    0.729    0.814    0.772    0.772
##   math ~~                                                                                 
##     electronic        0.759    0.021   36.211    0.000    0.718    0.800    0.759    0.759
##     speed             0.791    0.019   41.778    0.000    0.754    0.828    0.791    0.791
##   electronic ~~                                                                           
##     speed             0.633    0.029   21.752    0.000    0.576    0.690    0.633    0.633
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             16.396    0.190   86.372    0.000   16.024   16.768   16.396    3.013
##    .sswk             25.438    0.284   89.414    0.000   24.881   25.996   25.438    3.078
##    .sspc             10.375    0.126   82.229    0.000   10.127   10.622   10.375    2.892
##    .ssar             18.495    0.286   64.662    0.000   17.934   19.056   18.495    2.411
##    .ssmk             13.973    0.261   53.474    0.000   13.461   14.486   13.973    2.047
##    .ssmc             15.637    0.201   77.759    0.000   15.243   16.031   15.637    2.811
##    .ssasi            16.211    0.198   81.891    0.000   15.823   16.599   16.211    2.907
##    .ssei             12.364    0.157   78.687    0.000   12.056   12.672   12.364    2.783
##    .ssno              0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.061
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.092
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.190    0.343   15.145    0.000    4.518    5.862    5.190    0.175
##    .sswk              7.801    0.790    9.872    0.000    6.252    9.349    7.801    0.114
##    .sspc              3.060    0.202   15.115    0.000    2.663    3.457    3.060    0.238
##    .ssar              5.286    0.767    6.889    0.000    3.782    6.791    5.286    0.090
##    .ssmk              9.237    0.722   12.791    0.000    7.821   10.652    9.237    0.198
##    .ssmc              8.282    0.532   15.564    0.000    7.239    9.325    8.282    0.268
##    .ssasi             9.676    0.740   13.073    0.000    8.226   11.127    9.676    0.311
##    .ssei              2.305    0.271    8.520    0.000    1.775    2.835    2.305    0.117
##    .ssno              0.196    0.026    7.522    0.000    0.145    0.247    0.196    0.212
##    .sscs              0.289    0.037    7.775    0.000    0.216    0.362    0.289    0.355
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              0.915    0.667    1.371    0.170   -0.393    2.222    0.915    0.196
##     sswk              7.240    0.167   43.365    0.000    6.913    7.567    7.240    0.943
##     sspc              2.735    0.083   32.782    0.000    2.572    2.899    2.735    0.860
##   math =~                                                                                 
##     ssar              6.579    0.149   44.027    0.000    6.286    6.872    6.579    0.938
##     ssmk              5.599    0.138   40.616    0.000    5.329    5.869    5.599    0.879
##     ssmc              1.794    0.297    6.044    0.000    1.212    2.376    1.794    0.427
##   electronic =~                                                                           
##     ssgs              3.345    0.659    5.080    0.000    2.054    4.636    3.345    0.718
##     ssasi             2.671    0.117   22.867    0.000    2.442    2.900    2.671    0.715
##     ssmc              1.383    0.282    4.901    0.000    0.830    1.936    1.383    0.329
##     ssei              2.682    0.091   29.624    0.000    2.505    2.860    2.682    0.794
##   speed =~                                                                                
##     ssno              0.835    0.027   30.390    0.000    0.781    0.888    0.835    0.885
##     sscs              0.706    0.033   21.485    0.000    0.641    0.770    0.706    0.757
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.822    0.014   60.166    0.000    0.795    0.849    0.822    0.822
##     electronic        0.931    0.019   48.089    0.000    0.893    0.969    0.931    0.931
##     speed             0.748    0.025   29.466    0.000    0.698    0.797    0.748    0.748
##   math ~~                                                                                 
##     electronic        0.857    0.018   48.383    0.000    0.823    0.892    0.857    0.857
##     speed             0.741    0.021   35.662    0.000    0.700    0.782    0.741    0.741
##   electronic ~~                                                                           
##     speed             0.648    0.031   20.769    0.000    0.587    0.709    0.648    0.648
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             14.908    0.166   89.625    0.000   14.582   15.234   14.908    3.201
##    .sswk             25.835    0.262   98.598    0.000   25.322   26.349   25.835    3.365
##    .sspc             11.246    0.107  105.151    0.000   11.036   11.455   11.246    3.538
##    .ssar             16.999    0.262   64.966    0.000   16.486   17.512   16.999    2.424
##    .ssmk             13.732    0.240   57.183    0.000   13.262   14.203   13.732    2.157
##    .ssmc             11.961    0.157   76.345    0.000   11.654   12.268   11.961    2.846
##    .ssasi            10.841    0.136   79.844    0.000   10.575   11.107   10.841    2.902
##    .ssei              9.562    0.123   77.895    0.000    9.322    9.803    9.562    2.831
##    .ssno              0.328    0.034    9.769    0.000    0.262    0.394    0.328    0.347
##    .sscs              0.432    0.033   13.004    0.000    0.367    0.497    0.432    0.463
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              3.965    0.370   10.705    0.000    3.239    4.691    3.965    0.183
##    .sswk              6.516    0.801    8.134    0.000    4.946    8.086    6.516    0.111
##    .sspc              2.623    0.168   15.571    0.000    2.293    2.953    2.623    0.260
##    .ssar              5.909    0.749    7.889    0.000    4.441    7.378    5.909    0.120
##    .ssmk              9.186    0.722   12.714    0.000    7.769   10.602    9.186    0.227
##    .ssmc              8.282    0.474   17.460    0.000    7.353    9.212    8.282    0.469
##    .ssasi             6.821    0.453   15.065    0.000    5.934    7.708    6.821    0.489
##    .ssei              4.213    0.319   13.221    0.000    3.588    4.837    4.213    0.369
##    .ssno              0.193    0.031    6.173    0.000    0.132    0.255    0.193    0.217
##    .sscs              0.372    0.041    9.041    0.000    0.291    0.453    0.372    0.428
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
modificationIndices(configural, sort=T, maximum.number=30)
##            lhs op   rhs block group level     mi    epc sepc.lv sepc.all sepc.nox
## 101       math =~  sswk     1     1     1 78.950 -3.071  -3.071   -0.371   -0.371
## 156       ssmc ~~ ssasi     1     1     1 67.709  2.830   2.830    0.316    0.316
## 97      verbal =~  ssei     1     1     1 64.385  2.512   2.512    0.565    0.565
## 152       ssmk ~~ ssasi     1     1     1 51.909 -2.520  -2.520   -0.267   -0.267
## 102       math =~  sspc     1     1     1 38.993  0.926   0.926    0.258    0.258
## 115      speed =~  sspc     1     1     1 32.040  0.691   0.691    0.193    0.193
## 122       ssgs ~~  sspc     1     1     1 31.245 -0.921  -0.921   -0.231   -0.231
## 178       math =~  ssno     2     2     1 26.582  0.460   0.460    0.487    0.487
## 179       math =~  sscs     2     2     1 26.582 -0.389  -0.389   -0.417   -0.417
## 103       math =~ ssasi     1     1     1 24.568 -0.998  -0.998   -0.179   -0.179
## 172     verbal =~  sscs     2     2     1 24.263  0.357   0.357    0.383    0.383
## 171     verbal =~  ssno     2     2     1 24.263 -0.422  -0.422   -0.447   -0.447
## 157       ssmc ~~  ssei     1     1     1 24.101 -1.389  -1.389   -0.318   -0.318
## 96      verbal =~ ssasi     1     1     1 22.449 -1.656  -1.656   -0.297   -0.297
## 124       ssgs ~~  ssmk     1     1     1 21.950  1.227   1.227    0.177    0.177
## 133       sswk ~~  ssmc     1     1     1 19.278 -1.499  -1.499   -0.187   -0.187
## 120      speed =~  ssei     1     1     1 19.119  0.566   0.566    0.127    0.127
## 114      speed =~  sswk     1     1     1 18.882 -1.230  -1.230   -0.149   -0.149
## 135       sswk ~~  ssei     1     1     1 18.435  1.083   1.083    0.255    0.255
## 188      speed =~  sspc     2     2     1 18.310  0.486   0.486    0.153    0.153
## 217       sspc ~~  sscs     2     2     1 17.669  0.159   0.159    0.161    0.161
## 95      verbal =~  ssmc     1     1     1 17.369 -1.510  -1.510   -0.271   -0.271
## 187      speed =~  sswk     2     2     1 16.196 -1.202  -1.202   -0.157   -0.157
## 229       ssmc ~~ ssasi     2     2     1 15.688  1.021   1.021    0.136    0.136
## 107 electronic =~  sswk     1     1     1 15.579  1.976   1.976    0.239    0.239
## 108 electronic =~  sspc     1     1     1 15.579 -0.795  -0.795   -0.222   -0.222
## 100       math =~  ssgs     1     1     1 15.383  0.717   0.717    0.132    0.132
## 121       ssgs ~~  sswk     1     1     1 14.796  1.463   1.463    0.230    0.230
## 131       sswk ~~  ssar     1     1     1 13.261 -1.508  -1.508   -0.235   -0.235
## 158       ssmc ~~  ssno     1     1     1 12.040 -0.194  -0.194   -0.152   -0.152
metric<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   448.741    62.000     0.000     0.980     0.076     0.026 98149.396 98534.667
Mc(metric)
## [1] 0.9133312
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 59 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        80
##   Number of equality constraints                    12
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               448.741     305.642
##   Degrees of freedom                                62          62
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.468
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          284.896     194.045
##     1                                          163.846     111.597
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    3.032    0.213   14.233    0.000    2.614    3.449    3.032    0.550
##     sswk    (.p2.)    7.823    0.178   44.061    0.000    7.475    8.171    7.823    0.944
##     sspc    (.p3.)    3.059    0.079   38.754    0.000    2.904    3.214    3.059    0.867
##   math =~                                                                                 
##     ssar    (.p4.)    7.305    0.136   53.672    0.000    7.038    7.572    7.305    0.953
##     ssmk    (.p5.)    6.146    0.128   48.156    0.000    5.896    6.396    6.146    0.897
##     ssmc    (.p6.)    1.201    0.174    6.894    0.000    0.860    1.543    1.201    0.219
##   electronic =~                                                                           
##     ssgs    (.p7.)    2.145    0.239    8.987    0.000    1.677    2.612    2.145    0.389
##     ssasi   (.p8.)    4.531    0.132   34.291    0.000    4.272    4.790    4.531    0.822
##     ssmc    (.p9.)    3.659    0.193   18.943    0.000    3.281    4.038    3.659    0.668
##     ssei    (.10.)    4.211    0.087   48.280    0.000    4.040    4.382    4.211    0.943
##   speed =~                                                                                
##     ssno    (.11.)    0.856    0.026   32.707    0.000    0.805    0.907    0.856    0.889
##     sscs    (.12.)    0.722    0.027   26.577    0.000    0.669    0.775    0.722    0.802
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.845    0.015   57.772    0.000    0.816    0.874    0.845    0.845
##     electronic        0.881    0.013   66.532    0.000    0.855    0.907    0.881    0.881
##     speed             0.771    0.022   35.775    0.000    0.728    0.813    0.771    0.771
##   math ~~                                                                                 
##     electronic        0.760    0.021   37.014    0.000    0.720    0.801    0.760    0.760
##     speed             0.791    0.019   41.958    0.000    0.754    0.828    0.791    0.791
##   electronic ~~                                                                           
##     speed             0.633    0.029   22.023    0.000    0.577    0.689    0.633    0.633
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             16.396    0.190   86.372    0.000   16.024   16.768   16.396    2.973
##    .sswk             25.438    0.284   89.414    0.000   24.881   25.996   25.438    3.068
##    .sspc             10.375    0.126   82.229    0.000   10.127   10.622   10.375    2.940
##    .ssar             18.495    0.286   64.662    0.000   17.934   19.056   18.495    2.413
##    .ssmk             13.973    0.261   53.474    0.000   13.461   14.486   13.973    2.039
##    .ssmc             15.637    0.201   77.759    0.000   15.243   16.031   15.637    2.856
##    .ssasi            16.211    0.198   81.891    0.000   15.823   16.599   16.211    2.941
##    .ssei             12.364    0.157   78.687    0.000   12.056   12.672   12.364    2.768
##    .ssno              0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.061
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.093
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.177    0.334   15.488    0.000    4.522    5.833    5.177    0.170
##    .sswk              7.539    0.781    9.654    0.000    6.009    9.070    7.539    0.110
##    .sspc              3.093    0.203   15.250    0.000    2.695    3.490    3.093    0.248
##    .ssar              5.383    0.735    7.325    0.000    3.943    6.824    5.383    0.092
##    .ssmk              9.178    0.687   13.368    0.000    7.832   10.523    9.178    0.195
##    .ssmc              8.451    0.531   15.925    0.000    7.411    9.491    8.451    0.282
##    .ssasi             9.847    0.738   13.337    0.000    8.400   11.294    9.847    0.324
##    .ssei              2.219    0.264    8.411    0.000    1.702    2.737    2.219    0.111
##    .ssno              0.195    0.024    7.981    0.000    0.147    0.243    0.195    0.210
##    .sscs              0.289    0.035    8.199    0.000    0.220    0.359    0.289    0.357
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    3.032    0.213   14.233    0.000    2.614    3.449    2.779    0.607
##     sswk    (.p2.)    7.823    0.178   44.061    0.000    7.475    8.171    7.169    0.937
##     sspc    (.p3.)    3.059    0.079   38.754    0.000    2.904    3.214    2.803    0.866
##   math =~                                                                                 
##     ssar    (.p4.)    7.305    0.136   53.672    0.000    7.038    7.572    6.605    0.941
##     ssmk    (.p5.)    6.146    0.128   48.156    0.000    5.896    6.396    5.557    0.877
##     ssmc    (.p6.)    1.201    0.174    6.894    0.000    0.860    1.543    1.086    0.252
##   electronic =~                                                                           
##     ssgs    (.p7.)    2.145    0.239    8.987    0.000    1.677    2.612    1.340    0.293
##     ssasi   (.p8.)    4.531    0.132   34.291    0.000    4.272    4.790    2.832    0.745
##     ssmc    (.p9.)    3.659    0.193   18.943    0.000    3.281    4.038    2.287    0.530
##     ssei    (.10.)    4.211    0.087   48.280    0.000    4.040    4.382    2.632    0.794
##   speed =~                                                                                
##     ssno    (.11.)    0.856    0.026   32.707    0.000    0.805    0.907    0.837    0.887
##     sscs    (.12.)    0.722    0.027   26.577    0.000    0.669    0.775    0.706    0.755
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.689    0.038   18.086    0.000    0.614    0.763    0.831    0.831
##     electronic        0.522    0.030   17.290    0.000    0.463    0.581    0.911    0.911
##     speed             0.664    0.051   12.974    0.000    0.564    0.765    0.742    0.742
##   math ~~                                                                                 
##     electronic        0.479    0.029   16.725    0.000    0.423    0.535    0.847    0.847
##     speed             0.654    0.043   15.163    0.000    0.570    0.739    0.740    0.740
##   electronic ~~                                                                           
##     speed             0.387    0.032   12.224    0.000    0.325    0.449    0.634    0.634
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             14.908    0.166   89.625    0.000   14.582   15.234   14.908    3.258
##    .sswk             25.835    0.262   98.598    0.000   25.322   26.349   25.835    3.377
##    .sspc             11.246    0.107  105.151    0.000   11.036   11.455   11.246    3.475
##    .ssar             16.999    0.262   64.966    0.000   16.486   17.512   16.999    2.421
##    .ssmk             13.732    0.240   57.183    0.000   13.262   14.203   13.732    2.167
##    .ssmc             11.961    0.157   76.345    0.000   11.654   12.268   11.961    2.771
##    .ssasi            10.841    0.136   79.844    0.000   10.575   11.107   10.841    2.851
##    .ssei              9.562    0.123   77.895    0.000    9.322    9.803    9.562    2.883
##    .ssno              0.328    0.034    9.769    0.000    0.262    0.394    0.328    0.348
##    .sscs              0.432    0.033   13.004    0.000    0.367    0.497    0.432    0.462
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.630    0.301   15.393    0.000    4.040    5.219    4.630    0.221
##    .sswk              7.133    0.757    9.426    0.000    5.650    8.616    7.133    0.122
##    .sspc              2.616    0.165   15.870    0.000    2.293    2.939    2.616    0.250
##    .ssar              5.668    0.729    7.776    0.000    4.239    7.096    5.668    0.115
##    .ssmk              9.293    0.701   13.253    0.000    7.919   10.667    9.293    0.231
##    .ssmc              8.016    0.464   17.269    0.000    7.106    8.926    8.016    0.430
##    .ssasi             6.438    0.424   15.188    0.000    5.607    7.269    6.438    0.445
##    .ssei              4.074    0.296   13.747    0.000    3.493    4.655    4.074    0.370
##    .ssno              0.189    0.028    6.649    0.000    0.133    0.245    0.189    0.213
##    .sscs              0.375    0.038    9.781    0.000    0.300    0.451    0.375    0.430
##     verbal            0.840    0.053   15.802    0.000    0.736    0.944    1.000    1.000
##     math              0.818    0.045   18.172    0.000    0.729    0.906    1.000    1.000
##     electronic        0.391    0.028   13.954    0.000    0.336    0.446    1.000    1.000
##     speed             0.955    0.078   12.195    0.000    0.801    1.108    1.000    1.000
scalar<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   832.653    68.000     0.000     0.960     0.103     0.049 98521.307 98872.584
Mc(scalar)
## [1] 0.8359023
summary(scalar, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 120 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               832.653     569.629
##   Degrees of freedom                                68          68
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.462
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          464.581     317.826
##     1                                          368.072     251.803
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    3.047    0.123   24.694    0.000    2.805    3.289    3.047    0.552
##     sswk    (.p2.)    7.784    0.175   44.388    0.000    7.441    8.128    7.784    0.941
##     sspc    (.p3.)    3.072    0.081   37.705    0.000    2.912    3.231    3.072    0.865
##   math =~                                                                                 
##     ssar    (.p4.)    7.323    0.137   53.573    0.000    7.055    7.591    7.323    0.954
##     ssmk    (.p5.)    6.098    0.129   47.325    0.000    5.846    6.351    6.098    0.893
##     ssmc    (.p6.)    1.037    0.161    6.451    0.000    0.722    1.352    1.037    0.187
##   electronic =~                                                                           
##     ssgs    (.p7.)    2.141    0.131   16.313    0.000    1.884    2.399    2.141    0.388
##     ssasi   (.p8.)    4.965    0.115   43.232    0.000    4.740    5.191    4.965    0.844
##     ssmc    (.p9.)    3.917    0.168   23.260    0.000    3.587    4.247    3.917    0.707
##     ssei    (.10.)    3.999    0.091   44.034    0.000    3.821    4.177    3.999    0.923
##   speed =~                                                                                
##     ssno    (.11.)    0.829    0.028   30.109    0.000    0.775    0.883    0.829    0.870
##     sscs    (.12.)    0.749    0.026   28.398    0.000    0.697    0.800    0.749    0.814
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.846    0.015   58.136    0.000    0.817    0.874    0.846    0.846
##     electronic        0.883    0.014   64.792    0.000    0.856    0.910    0.883    0.883
##     speed             0.778    0.021   36.635    0.000    0.736    0.820    0.778    0.778
##   math ~~                                                                                 
##     electronic        0.764    0.020   37.253    0.000    0.723    0.804    0.764    0.764
##     speed             0.796    0.019   42.245    0.000    0.759    0.833    0.796    0.796
##   electronic ~~                                                                           
##     speed             0.639    0.029   22.089    0.000    0.583    0.696    0.639    0.639
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   16.397    0.188   87.263    0.000   16.029   16.765   16.397    2.969
##    .sswk    (.34.)   25.175    0.289   87.204    0.000   24.609   25.741   25.175    3.043
##    .sspc    (.35.)   10.643    0.117   91.033    0.000   10.414   10.873   10.643    2.997
##    .ssar    (.36.)   18.336    0.290   63.161    0.000   17.767   18.905   18.336    2.388
##    .ssmk    (.37.)   14.324    0.251   56.998    0.000   13.832   14.817   14.324    2.098
##    .ssmc    (.38.)   15.575    0.200   77.784    0.000   15.183   15.967   15.575    2.811
##    .ssasi   (.39.)   15.579    0.213   73.161    0.000   15.161   15.996   15.579    2.648
##    .ssei    (.40.)   12.605    0.150   83.964    0.000   12.311   12.899   12.605    2.908
##    .ssno    (.41.)    0.007    0.036    0.208    0.835   -0.062    0.077    0.007    0.008
##    .sscs    (.42.)   -0.009    0.033   -0.274    0.784   -0.073    0.055   -0.009   -0.010
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.103    0.332   15.360    0.000    4.452    5.754    5.103    0.167
##    .sswk              7.867    0.802    9.805    0.000    6.295    9.440    7.867    0.115
##    .sspc              3.177    0.215   14.809    0.000    2.757    3.597    3.177    0.252
##    .ssar              5.323    0.764    6.967    0.000    3.825    6.820    5.323    0.090
##    .ssmk              9.446    0.721   13.109    0.000    8.033   10.858    9.446    0.203
##    .ssmc              8.071    0.527   15.304    0.000    7.037    9.104    8.071    0.263
##    .ssasi             9.950    0.805   12.356    0.000    8.372   11.528    9.950    0.288
##    .ssei              2.793    0.270   10.328    0.000    2.263    3.323    2.793    0.149
##    .ssno              0.220    0.025    8.861    0.000    0.171    0.269    0.220    0.242
##    .sscs              0.286    0.037    7.640    0.000    0.213    0.360    0.286    0.338
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    3.047    0.123   24.694    0.000    2.805    3.289    2.796    0.612
##     sswk    (.p2.)    7.784    0.175   44.388    0.000    7.441    8.128    7.143    0.934
##     sspc    (.p3.)    3.072    0.081   37.705    0.000    2.912    3.231    2.819    0.865
##   math =~                                                                                 
##     ssar    (.p4.)    7.323    0.137   53.573    0.000    7.055    7.591    6.626    0.941
##     ssmk    (.p5.)    6.098    0.129   47.325    0.000    5.846    6.351    5.518    0.872
##     ssmc    (.p6.)    1.037    0.161    6.451    0.000    0.722    1.352    0.938    0.219
##   electronic =~                                                                           
##     ssgs    (.p7.)    2.141    0.131   16.313    0.000    1.884    2.399    1.302    0.285
##     ssasi   (.p8.)    4.965    0.115   43.232    0.000    4.740    5.191    3.018    0.759
##     ssmc    (.p9.)    3.917    0.168   23.260    0.000    3.587    4.247    2.381    0.555
##     ssei    (.10.)    3.999    0.091   44.034    0.000    3.821    4.177    2.431    0.751
##   speed =~                                                                                
##     ssno    (.11.)    0.829    0.028   30.109    0.000    0.775    0.883    0.810    0.866
##     sscs    (.12.)    0.749    0.026   28.398    0.000    0.697    0.800    0.731    0.766
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.691    0.038   18.061    0.000    0.616    0.766    0.833    0.833
##     electronic        0.512    0.029   17.642    0.000    0.455    0.569    0.919    0.919
##     speed             0.675    0.052   13.026    0.000    0.574    0.777    0.754    0.754
##   math ~~                                                                                 
##     electronic        0.472    0.028   17.003    0.000    0.417    0.526    0.858    0.858
##     speed             0.659    0.044   14.966    0.000    0.573    0.745    0.746    0.746
##   electronic ~~                                                                           
##     speed             0.385    0.031   12.267    0.000    0.324    0.447    0.649    0.649
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   16.397    0.188   87.263    0.000   16.029   16.765   16.397    3.591
##    .sswk    (.34.)   25.175    0.289   87.204    0.000   24.609   25.741   25.175    3.293
##    .sspc    (.35.)   10.643    0.117   91.033    0.000   10.414   10.873   10.643    3.265
##    .ssar    (.36.)   18.336    0.290   63.161    0.000   17.767   18.905   18.336    2.605
##    .ssmk    (.37.)   14.324    0.251   56.998    0.000   13.832   14.817   14.324    2.263
##    .ssmc    (.38.)   15.575    0.200   77.784    0.000   15.183   15.967   15.575    3.632
##    .ssasi   (.39.)   15.579    0.213   73.161    0.000   15.161   15.996   15.579    3.920
##    .ssei    (.40.)   12.605    0.150   83.964    0.000   12.311   12.899   12.605    3.896
##    .ssno    (.41.)    0.007    0.036    0.208    0.835   -0.062    0.077    0.007    0.008
##    .sscs    (.42.)   -0.009    0.033   -0.274    0.784   -0.073    0.055   -0.009   -0.009
##     verbal            0.118    0.048    2.456    0.014    0.024    0.213    0.129    0.129
##     math             -0.158    0.053   -2.998    0.003   -0.262   -0.055   -0.175   -0.175
##     elctrnc          -0.864    0.051  -17.025    0.000   -0.964   -0.765   -1.422   -1.422
##     speed             0.452    0.061    7.453    0.000    0.333    0.570    0.462    0.462
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.646    0.303   15.329    0.000    4.052    5.240    4.646    0.223
##    .sswk              7.428    0.769    9.663    0.000    5.921    8.934    7.428    0.127
##    .sspc              2.682    0.174   15.458    0.000    2.342    3.022    2.682    0.252
##    .ssar              5.634    0.749    7.519    0.000    4.166    7.103    5.634    0.114
##    .ssmk              9.601    0.712   13.485    0.000    8.206   10.997    9.601    0.240
##    .ssmc              8.010    0.466   17.200    0.000    7.097    8.922    8.010    0.435
##    .ssasi             6.684    0.462   14.478    0.000    5.779    7.588    6.684    0.423
##    .ssei              4.557    0.321   14.214    0.000    3.929    5.185    4.557    0.435
##    .ssno              0.219    0.029    7.594    0.000    0.163    0.276    0.219    0.250
##    .sscs              0.376    0.041    9.148    0.000    0.296    0.457    0.376    0.413
##     verbal            0.842    0.053   15.864    0.000    0.738    0.946    1.000    1.000
##     math              0.819    0.045   18.156    0.000    0.730    0.907    1.000    1.000
##     electronic        0.369    0.026   14.100    0.000    0.318    0.421    1.000    1.000
##     speed             0.954    0.081   11.808    0.000    0.796    1.112    1.000    1.000
lavTestScore(scalar, release = 13:22)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 371.935 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs      X2 df p.value
## 1  .p33. == .p79.   0.002  1   0.968
## 2  .p34. == .p80.  61.151  1   0.000
## 3  .p35. == .p81.  65.305  1   0.000
## 4  .p36. == .p82.  38.297  1   0.000
## 5  .p37. == .p83.  41.527  1   0.000
## 6  .p38. == .p84.   2.340  1   0.126
## 7  .p39. == .p85. 148.996  1   0.000
## 8  .p40. == .p86. 157.655  1   0.000
## 9  .p41. == .p87.  83.836  1   0.000
## 10 .p42. == .p88.  83.836  1   0.000
scalar2<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssei~1", "sscs~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   503.099    65.000     0.000     0.977     0.079     0.029 98197.753 98566.027
Mc(scalar2)
## [1] 0.9024017
summary(scalar2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 100 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
##   Number of equality constraints                    19
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               503.099     343.396
##   Degrees of freedom                                65          65
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.465
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          317.584     216.771
##     1                                          185.514     126.625
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    3.074    0.115   26.666    0.000    2.848    3.300    3.074    0.557
##     sswk    (.p2.)    7.822    0.177   44.091    0.000    7.474    8.169    7.822    0.943
##     sspc    (.p3.)    3.059    0.079   38.757    0.000    2.904    3.214    3.059    0.867
##   math =~                                                                                 
##     ssar    (.p4.)    7.322    0.136   53.725    0.000    7.055    7.589    7.322    0.953
##     ssmk    (.p5.)    6.110    0.129   47.519    0.000    5.858    6.362    6.110    0.894
##     ssmc    (.p6.)    1.474    0.152    9.691    0.000    1.176    1.772    1.474    0.274
##   electronic =~                                                                           
##     ssgs    (.p7.)    2.100    0.122   17.248    0.000    1.861    2.338    2.100    0.381
##     ssasi   (.p8.)    4.616    0.126   36.619    0.000    4.369    4.863    4.616    0.827
##     ssmc    (.p9.)    3.286    0.166   19.760    0.000    2.960    3.612    3.286    0.610
##     ssei    (.10.)    4.226    0.086   49.134    0.000    4.058    4.395    4.226    0.946
##   speed =~                                                                                
##     ssno    (.11.)    0.856    0.026   32.700    0.000    0.805    0.907    0.856    0.888
##     sscs    (.12.)    0.722    0.027   26.576    0.000    0.669    0.775    0.722    0.802
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.847    0.014   58.524    0.000    0.818    0.875    0.847    0.847
##     electronic        0.880    0.013   66.098    0.000    0.853    0.906    0.880    0.880
##     speed             0.771    0.022   35.820    0.000    0.729    0.813    0.771    0.771
##   math ~~                                                                                 
##     electronic        0.758    0.020   37.530    0.000    0.719    0.798    0.758    0.758
##     speed             0.792    0.019   41.934    0.000    0.755    0.829    0.792    0.792
##   electronic ~~                                                                           
##     speed             0.631    0.029   21.919    0.000    0.574    0.687    0.631    0.631
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   16.396    0.189   86.927    0.000   16.027   16.766   16.396    2.974
##    .sswk             25.438    0.284   89.414    0.000   24.881   25.996   25.438    3.068
##    .sspc    (.35.)   10.375    0.125   82.937    0.000   10.129   10.620   10.375    2.940
##    .ssar    (.36.)   18.317    0.291   63.022    0.000   17.747   18.886   18.317    2.383
##    .ssmk    (.37.)   14.309    0.251   56.901    0.000   13.816   14.802   14.309    2.093
##    .ssmc    (.38.)   15.763    0.196   80.490    0.000   15.380   16.147   15.763    2.925
##    .ssasi   (.39.)   16.108    0.198   81.329    0.000   15.720   16.497   16.108    2.885
##    .ssei             12.364    0.157   78.688    0.000   12.056   12.672   12.364    2.767
##    .ssno    (.41.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.061
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.093
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.192    0.335   15.498    0.000    4.535    5.848    5.192    0.171
##    .sswk              7.559    0.770    9.815    0.000    6.050    9.069    7.559    0.110
##    .sspc              3.095    0.202   15.303    0.000    2.699    3.492    3.095    0.249
##    .ssar              5.448    0.754    7.225    0.000    3.970    6.926    5.448    0.092
##    .ssmk              9.404    0.712   13.204    0.000    8.008   10.800    9.404    0.201
##    .ssmc              8.720    0.534   16.345    0.000    7.675    9.766    8.720    0.300
##    .ssasi             9.868    0.745   13.249    0.000    8.408   11.328    9.868    0.317
##    .ssei              2.110    0.253    8.329    0.000    1.614    2.607    2.110    0.106
##    .ssno              0.196    0.024    7.997    0.000    0.148    0.244    0.196    0.211
##    .sscs              0.289    0.035    8.192    0.000    0.220    0.358    0.289    0.357
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    3.074    0.115   26.666    0.000    2.848    3.300    2.816    0.615
##     sswk    (.p2.)    7.822    0.177   44.091    0.000    7.474    8.169    7.166    0.937
##     sspc    (.p3.)    3.059    0.079   38.757    0.000    2.904    3.214    2.802    0.866
##   math =~                                                                                 
##     ssar    (.p4.)    7.322    0.136   53.725    0.000    7.055    7.589    6.612    0.940
##     ssmk    (.p5.)    6.110    0.129   47.519    0.000    5.858    6.362    5.518    0.873
##     ssmc    (.p6.)    1.474    0.152    9.691    0.000    1.176    1.772    1.331    0.309
##   electronic =~                                                                           
##     ssgs    (.p7.)    2.100    0.122   17.248    0.000    1.861    2.338    1.306    0.285
##     ssasi   (.p8.)    4.616    0.126   36.619    0.000    4.369    4.863    2.870    0.750
##     ssmc    (.p9.)    3.286    0.166   19.760    0.000    2.960    3.612    2.043    0.474
##     ssei    (.10.)    4.226    0.086   49.134    0.000    4.058    4.395    2.628    0.794
##   speed =~                                                                                
##     ssno    (.11.)    0.856    0.026   32.700    0.000    0.805    0.907    0.836    0.887
##     sscs    (.12.)    0.722    0.027   26.576    0.000    0.669    0.775    0.706    0.755
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.689    0.038   18.073    0.000    0.614    0.763    0.832    0.832
##     electronic        0.519    0.029   17.609    0.000    0.461    0.577    0.911    0.911
##     speed             0.664    0.051   13.032    0.000    0.564    0.764    0.742    0.742
##   math ~~                                                                                 
##     electronic        0.473    0.028   17.186    0.000    0.419    0.527    0.842    0.842
##     speed             0.654    0.043   15.139    0.000    0.569    0.738    0.741    0.741
##   electronic ~~                                                                           
##     speed             0.384    0.031   12.265    0.000    0.322    0.445    0.631    0.631
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   16.396    0.189   86.927    0.000   16.027   16.766   16.396    3.582
##    .sswk             23.608    0.359   65.775    0.000   22.904   24.311   23.608    3.086
##    .sspc    (.35.)   10.375    0.125   82.937    0.000   10.129   10.620   10.375    3.206
##    .ssar    (.36.)   18.317    0.291   63.022    0.000   17.747   18.886   18.317    2.604
##    .ssmk    (.37.)   14.309    0.251   56.901    0.000   13.816   14.802   14.309    2.263
##    .ssmc    (.38.)   15.763    0.196   80.490    0.000   15.380   16.147   15.763    3.657
##    .ssasi   (.39.)   16.108    0.198   81.329    0.000   15.720   16.497   16.108    4.210
##    .ssei             14.320    0.244   58.789    0.000   13.843   14.798   14.320    4.327
##    .ssno    (.41.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.063
##    .sscs              0.205    0.040    5.121    0.000    0.127    0.284    0.205    0.219
##     verbal            0.285    0.052    5.500    0.000    0.183    0.386    0.311    0.311
##     math             -0.153    0.053   -2.892    0.004   -0.257   -0.049   -0.169   -0.169
##     elctrnc          -1.126    0.061  -18.322    0.000   -1.246   -1.005   -1.811   -1.811
##     speed             0.314    0.057    5.524    0.000    0.203    0.426    0.322    0.322
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.625    0.301   15.378    0.000    4.035    5.214    4.625    0.221
##    .sswk              7.172    0.741    9.672    0.000    5.718    8.625    7.172    0.123
##    .sspc              2.620    0.165   15.893    0.000    2.297    2.943    2.620    0.250
##    .ssar              5.743    0.740    7.757    0.000    4.292    7.194    5.743    0.116
##    .ssmk              9.526    0.708   13.462    0.000    8.139   10.913    9.526    0.238
##    .ssmc              8.055    0.464   17.366    0.000    7.146    8.964    8.055    0.433
##    .ssasi             6.402    0.425   15.049    0.000    5.568    7.236    6.402    0.437
##    .ssei              4.049    0.299   13.563    0.000    3.464    4.634    4.049    0.370
##    .ssno              0.189    0.028    6.659    0.000    0.134    0.245    0.189    0.213
##    .sscs              0.375    0.038    9.763    0.000    0.300    0.451    0.375    0.430
##     verbal            0.839    0.053   15.946    0.000    0.736    0.942    1.000    1.000
##     math              0.816    0.045   18.161    0.000    0.728    0.904    1.000    1.000
##     electronic        0.387    0.027   14.324    0.000    0.334    0.440    1.000    1.000
##     speed             0.955    0.078   12.191    0.000    0.801    1.108    1.000    1.000
strict<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sswk~1", "ssei~1", "sscs~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   592.684    75.000     0.000     0.973     0.080     0.036 98267.338 98578.954
Mc(strict) 
## [1] 0.885723
cf.cov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sswk~1", "ssei~1", "sscs~1"))
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   612.730    71.000     0.000     0.971     0.085     0.120 98295.385 98629.664
Mc(cf.cov)
## [1] 0.8807443
summary(cf.cov, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 100 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
##   Number of equality constraints                    25
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               612.730     421.253
##   Degrees of freedom                                71          71
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.455
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          381.839     262.515
##     1                                          230.892     158.738
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.869    0.107   26.752    0.000    2.659    3.080    2.869    0.569
##     sswk    (.p2.)    7.341    0.134   54.588    0.000    7.078    7.605    7.341    0.934
##     sspc    (.p3.)    2.880    0.062   46.162    0.000    2.758    3.002    2.880    0.856
##   math =~                                                                                 
##     ssar    (.p4.)    7.061    0.114   62.148    0.000    6.839    7.284    7.061    0.949
##     ssmk    (.p5.)    5.896    0.114   51.853    0.000    5.673    6.119    5.896    0.888
##     ssmc    (.p6.)    1.433    0.146    9.819    0.000    1.147    1.719    1.433    0.289
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.843    0.102   17.986    0.000    1.642    2.043    1.843    0.365
##     ssasi   (.p8.)    3.977    0.097   41.146    0.000    3.787    4.166    3.977    0.784
##     ssmc    (.p9.)    2.833    0.139   20.365    0.000    2.561    3.106    2.833    0.572
##     ssei    (.10.)    3.715    0.063   59.382    0.000    3.592    3.837    3.715    0.932
##   speed =~                                                                                
##     ssno    (.11.)    0.839    0.021   39.065    0.000    0.797    0.881    0.839    0.884
##     sscs    (.12.)    0.704    0.024   29.229    0.000    0.657    0.751    0.704    0.795
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.848    0.013   65.536    0.000    0.823    0.873    0.848    0.848
##     elctrnc (.28.)    0.815    0.017   47.251    0.000    0.781    0.849    0.815    0.815
##     speed   (.29.)    0.776    0.019   41.753    0.000    0.740    0.813    0.776    0.776
##   math ~~                                                                                 
##     elctrnc (.30.)    0.699    0.019   37.385    0.000    0.663    0.736    0.699    0.699
##     speed   (.31.)    0.768    0.018   43.566    0.000    0.734    0.803    0.768    0.768
##   electronic ~~                                                                           
##     speed   (.32.)    0.563    0.023   24.976    0.000    0.519    0.607    0.563    0.563
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   16.411    0.188   87.334    0.000   16.043   16.779   16.411    3.253
##    .sswk             25.438    0.284   89.414    0.000   24.881   25.996   25.438    3.235
##    .sspc    (.35.)   10.366    0.126   82.546    0.000   10.120   10.612   10.366    3.082
##    .ssar    (.36.)   18.316    0.291   63.040    0.000   17.746   18.885   18.316    2.462
##    .ssmk    (.37.)   14.308    0.251   56.895    0.000   13.815   14.801   14.308    2.154
##    .ssmc    (.38.)   15.760    0.196   80.269    0.000   15.375   16.144   15.760    3.182
##    .ssasi   (.39.)   16.099    0.199   81.028    0.000   15.710   16.488   16.099    3.175
##    .ssei             12.364    0.157   78.687    0.000   12.056   12.672   12.364    3.104
##    .ssno    (.41.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.062
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.094
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.209    0.335   15.551    0.000    4.552    5.865    5.209    0.205
##    .sswk              7.946    0.783   10.145    0.000    6.411    9.482    7.946    0.128
##    .sspc              3.018    0.197   15.306    0.000    2.632    3.405    3.018    0.267
##    .ssar              5.489    0.748    7.337    0.000    4.022    6.955    5.489    0.099
##    .ssmk              9.369    0.713   13.144    0.000    7.972   10.766    9.369    0.212
##    .ssmc              8.779    0.539   16.301    0.000    7.723    9.834    8.779    0.358
##    .ssasi             9.889    0.750   13.191    0.000    8.420   11.359    9.889    0.385
##    .ssei              2.070    0.273    7.578    0.000    1.535    2.606    2.070    0.130
##    .ssno              0.196    0.025    7.969    0.000    0.148    0.244    0.196    0.218
##    .sscs              0.289    0.035    8.205    0.000    0.220    0.358    0.289    0.368
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.869    0.107   26.752    0.000    2.659    3.080    2.986    0.604
##     sswk    (.p2.)    7.341    0.134   54.588    0.000    7.078    7.605    7.639    0.944
##     sspc    (.p3.)    2.880    0.062   46.162    0.000    2.758    3.002    2.997    0.879
##   math =~                                                                                 
##     ssar    (.p4.)    7.061    0.114   62.148    0.000    6.839    7.284    6.911    0.945
##     ssmk    (.p5.)    5.896    0.114   51.853    0.000    5.673    6.119    5.771    0.882
##     ssmc    (.p6.)    1.433    0.146    9.819    0.000    1.147    1.719    1.402    0.303
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.843    0.102   17.986    0.000    1.642    2.043    1.542    0.312
##     ssasi   (.p8.)    3.977    0.097   41.146    0.000    3.787    4.166    3.328    0.794
##     ssmc    (.p9.)    2.833    0.139   20.365    0.000    2.561    3.106    2.371    0.513
##     ssei    (.10.)    3.715    0.063   59.382    0.000    3.592    3.837    3.108    0.841
##   speed =~                                                                                
##     ssno    (.11.)    0.839    0.021   39.065    0.000    0.797    0.881    0.860    0.897
##     sscs    (.12.)    0.704    0.024   29.229    0.000    0.657    0.751    0.722    0.760
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.848    0.013   65.536    0.000    0.823    0.873    0.833    0.833
##     elctrnc (.28.)    0.815    0.017   47.251    0.000    0.781    0.849    0.936    0.936
##     speed   (.29.)    0.776    0.019   41.753    0.000    0.740    0.813    0.728    0.728
##   math ~~                                                                                 
##     elctrnc (.30.)    0.699    0.019   37.385    0.000    0.663    0.736    0.854    0.854
##     speed   (.31.)    0.768    0.018   43.566    0.000    0.734    0.803    0.766    0.766
##   electronic ~~                                                                           
##     speed   (.32.)    0.563    0.023   24.976    0.000    0.519    0.607    0.657    0.657
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   16.411    0.188   87.334    0.000   16.043   16.779   16.411    3.318
##    .sswk             23.573    0.359   65.600    0.000   22.869   24.278   23.573    2.912
##    .sspc    (.35.)   10.366    0.126   82.546    0.000   10.120   10.612   10.366    3.040
##    .ssar    (.36.)   18.316    0.291   63.040    0.000   17.746   18.885   18.316    2.504
##    .ssmk    (.37.)   14.308    0.251   56.895    0.000   13.815   14.801   14.308    2.186
##    .ssmc    (.38.)   15.760    0.196   80.269    0.000   15.375   16.144   15.760    3.407
##    .ssasi   (.39.)   16.099    0.199   81.028    0.000   15.710   16.488   16.099    3.842
##    .ssei             14.402    0.254   56.754    0.000   13.904   14.899   14.402    3.898
##    .ssno    (.41.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.061
##    .sscs              0.206    0.040    5.161    0.000    0.128    0.285    0.206    0.217
##     verbal            0.308    0.057    5.441    0.000    0.197    0.419    0.296    0.296
##     math             -0.158    0.055   -2.863    0.004   -0.267   -0.050   -0.162   -0.162
##     elctrnc          -1.303    0.070  -18.707    0.000   -1.439   -1.166   -1.557   -1.557
##     speed             0.321    0.059    5.454    0.000    0.205    0.436    0.313    0.313
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.557    0.299   15.240    0.000    3.971    5.143    4.557    0.186
##    .sswk              7.179    0.749    9.585    0.000    5.711    8.647    7.179    0.110
##    .sspc              2.647    0.166   15.908    0.000    2.321    2.973    2.647    0.228
##    .ssar              5.756    0.751    7.666    0.000    4.285    7.228    5.756    0.108
##    .ssmk              9.534    0.707   13.494    0.000    8.149   10.919    9.534    0.223
##    .ssmc              8.126    0.469   17.341    0.000    7.208    9.045    8.126    0.380
##    .ssasi             6.482    0.430   15.068    0.000    5.639    7.325    6.482    0.369
##    .ssei              3.987    0.297   13.405    0.000    3.404    4.570    3.987    0.292
##    .ssno              0.180    0.028    6.396    0.000    0.125    0.236    0.180    0.196
##    .sscs              0.381    0.038    9.978    0.000    0.307    0.456    0.381    0.423
##     verbal            1.083    0.028   38.263    0.000    1.027    1.138    1.000    1.000
##     math              0.958    0.026   36.529    0.000    0.907    1.009    1.000    1.000
##     electronic        0.700    0.030   23.736    0.000    0.642    0.758    1.000    1.000
##     speed             1.051    0.048   21.891    0.000    0.957    1.145    1.000    1.000
cf.vcov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("sswk~1", "ssei~1", "sscs~1"))
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   760.524    75.000     0.000     0.964     0.093     0.145 98435.178 98746.795
Mc(cf.vcov)
## [1] 0.851552
cf.cov2<-cfa(cf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sswk~1", "ssei~1", "sscs~1"))
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   630.869    74.000     0.000     0.971     0.084     0.119 98307.524 98624.806
Mc(cf.cov2)
## [1] 0.8776243
summary(cf.cov2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 108 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        81
##   Number of equality constraints                    25
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               630.869     434.667
##   Degrees of freedom                                74          74
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.451
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          397.736     274.039
##     1                                          233.133     160.628
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.931    0.108   27.097    0.000    2.719    3.143    2.931    0.578
##     sswk    (.p2.)    7.495    0.126   59.426    0.000    7.248    7.742    7.495    0.941
##     sspc    (.p3.)    2.942    0.061   48.382    0.000    2.823    3.062    2.942    0.861
##   math =~                                                                                 
##     ssar    (.p4.)    6.984    0.100   69.552    0.000    6.787    7.181    6.984    0.947
##     ssmk    (.p5.)    5.829    0.103   56.732    0.000    5.627    6.030    5.829    0.885
##     ssmc    (.p6.)    1.428    0.145    9.831    0.000    1.143    1.712    1.428    0.289
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.837    0.103   17.879    0.000    1.636    2.039    1.837    0.362
##     ssasi   (.p8.)    3.950    0.098   40.415    0.000    3.758    4.141    3.950    0.782
##     ssmc    (.p9.)    2.807    0.141   19.876    0.000    2.530    3.083    2.807    0.568
##     ssei    (.10.)    3.700    0.063   58.900    0.000    3.576    3.823    3.700    0.932
##   speed =~                                                                                
##     ssno    (.11.)    0.846    0.020   43.269    0.000    0.808    0.884    0.846    0.888
##     sscs    (.12.)    0.713    0.022   31.733    0.000    0.669    0.757    0.713    0.799
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.841    0.010   83.665    0.000    0.821    0.861    0.841    0.841
##     elctrnc (.28.)    0.797    0.017   48.004    0.000    0.764    0.829    0.797    0.797
##     speed   (.29.)    0.758    0.016   46.494    0.000    0.726    0.790    0.758    0.758
##   math ~~                                                                                 
##     elctrnc (.30.)    0.714    0.017   41.425    0.000    0.680    0.748    0.714    0.714
##     speed   (.31.)    0.768    0.014   54.115    0.000    0.740    0.796    0.768    0.768
##   electronic ~~                                                                           
##     speed   (.32.)    0.563    0.021   26.357    0.000    0.521    0.605    0.563    0.563
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   16.414    0.188   87.327    0.000   16.046   16.783   16.414    3.235
##    .sswk             25.438    0.284   89.414    0.000   24.881   25.996   25.438    3.192
##    .sspc    (.35.)   10.364    0.126   82.538    0.000   10.118   10.610   10.364    3.033
##    .ssar    (.36.)   18.311    0.291   62.964    0.000   17.741   18.881   18.311    2.482
##    .ssmk    (.37.)   14.310    0.251   56.906    0.000   13.817   14.802   14.310    2.173
##    .ssmc    (.38.)   15.756    0.196   80.257    0.000   15.371   16.140   15.756    3.189
##    .ssasi   (.39.)   16.099    0.199   81.001    0.000   15.710   16.489   16.099    3.188
##    .ssei             12.364    0.157   78.687    0.000   12.056   12.672   12.364    3.116
##    .ssno    (.41.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.062
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.093
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssgs              5.202    0.335   15.549    0.000    4.546    5.858    5.202    0.202
##    .sswk              7.325    0.749    9.782    0.000    5.857    8.793    7.325    0.115
##    .sspc              3.022    0.200   15.133    0.000    2.631    3.414    3.022    0.259
##    .ssar              5.630    0.714    7.886    0.000    4.231    7.030    5.630    0.103
##    .ssmk              9.397    0.704   13.340    0.000    8.016   10.778    9.397    0.217
##    .ssmc              8.769    0.545   16.085    0.000    7.700    9.837    8.769    0.359
##    .ssasi             9.909    0.749   13.229    0.000    8.441   11.377    9.909    0.388
##    .ssei              2.061    0.285    7.228    0.000    1.502    2.619    2.061    0.131
##    .ssno              0.191    0.024    7.954    0.000    0.144    0.238    0.191    0.211
##    .sscs              0.288    0.036    8.086    0.000    0.218    0.358    0.288    0.361
##     electronic        1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.931    0.108   27.097    0.000    2.719    3.143    2.931    0.597
##     sswk    (.p2.)    7.495    0.126   59.426    0.000    7.248    7.742    7.495    0.938
##     sspc    (.p3.)    2.942    0.061   48.382    0.000    2.823    3.062    2.942    0.875
##   math =~                                                                                 
##     ssar    (.p4.)    6.984    0.100   69.552    0.000    6.787    7.181    6.984    0.947
##     ssmk    (.p5.)    5.829    0.103   56.732    0.000    5.627    6.030    5.829    0.884
##     ssmc    (.p6.)    1.428    0.145    9.831    0.000    1.143    1.712    1.428    0.308
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.837    0.103   17.879    0.000    1.636    2.039    1.552    0.316
##     ssasi   (.p8.)    3.950    0.098   40.415    0.000    3.758    4.141    3.336    0.795
##     ssmc    (.p9.)    2.807    0.141   19.876    0.000    2.530    3.083    2.371    0.511
##     ssei    (.10.)    3.700    0.063   58.900    0.000    3.576    3.823    3.125    0.843
##   speed =~                                                                                
##     ssno    (.11.)    0.846    0.020   43.269    0.000    0.808    0.884    0.846    0.886
##     sscs    (.12.)    0.713    0.022   31.733    0.000    0.669    0.757    0.713    0.758
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.841    0.010   83.665    0.000    0.821    0.861    0.841    0.841
##     elctrnc (.28.)    0.797    0.017   48.004    0.000    0.764    0.829    0.944    0.944
##     speed   (.29.)    0.758    0.016   46.494    0.000    0.726    0.790    0.758    0.758
##   math ~~                                                                                 
##     elctrnc (.30.)    0.714    0.017   41.425    0.000    0.680    0.748    0.845    0.845
##     speed   (.31.)    0.768    0.014   54.115    0.000    0.740    0.796    0.768    0.768
##   electronic ~~                                                                           
##     speed   (.32.)    0.563    0.021   26.357    0.000    0.521    0.605    0.667    0.667
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   16.414    0.188   87.327    0.000   16.046   16.783   16.414    3.342
##    .sswk             23.566    0.359   65.628    0.000   22.862   24.269   23.566    2.948
##    .sspc    (.35.)   10.364    0.126   82.538    0.000   10.118   10.610   10.364    3.081
##    .ssar    (.36.)   18.311    0.291   62.964    0.000   17.741   18.881   18.311    2.484
##    .ssmk    (.37.)   14.310    0.251   56.906    0.000   13.817   14.802   14.310    2.169
##    .ssmc    (.38.)   15.756    0.196   80.257    0.000   15.371   16.140   15.756    3.394
##    .ssasi   (.39.)   16.099    0.199   81.001    0.000   15.710   16.489   16.099    3.835
##    .ssei             14.415    0.258   55.934    0.000   13.910   14.921   14.415    3.888
##    .ssno    (.41.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.062
##    .sscs              0.205    0.040    5.123    0.000    0.127    0.284    0.205    0.218
##     verbal            0.303    0.056    5.439    0.000    0.194    0.412    0.303    0.303
##     math             -0.161    0.056   -2.871    0.004   -0.270   -0.051   -0.161   -0.161
##     elctrnc          -1.312    0.071  -18.474    0.000   -1.451   -1.173   -1.553   -1.553
##     speed             0.318    0.058    5.471    0.000    0.204    0.432    0.318    0.318
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssgs              4.539    0.299   15.180    0.000    3.953    5.125    4.539    0.188
##    .sswk              7.724    0.745   10.374    0.000    6.264    9.183    7.724    0.121
##    .sspc              2.658    0.167   15.886    0.000    2.330    2.986    2.658    0.235
##    .ssar              5.570    0.731    7.619    0.000    4.137    7.003    5.570    0.102
##    .ssmk              9.539    0.718   13.294    0.000    8.133   10.945    9.539    0.219
##    .ssmc              8.172    0.470   17.380    0.000    7.250    9.093    8.172    0.379
##    .ssasi             6.496    0.430   15.121    0.000    5.654    7.338    6.496    0.369
##    .ssei              3.983    0.300   13.294    0.000    3.395    4.570    3.983    0.290
##    .ssno              0.195    0.026    7.447    0.000    0.144    0.246    0.195    0.214
##    .sscs              0.377    0.038   10.000    0.000    0.303    0.451    0.377    0.426
##     electronic        0.713    0.031   22.988    0.000    0.653    0.774    1.000    1.000
tests<-lavTestLRT(configural, metric, scalar2, cf.cov, cf.cov2)
Td=tests[2:5,"Chisq diff"]
Td
## [1] 40.58216 38.81275 81.78372 13.17603
dfd=tests[2:5,"Df diff"]
dfd
## [1] 8 3 6 3
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1067+ 1067 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06181108 0.10582288 0.10885133 0.05640921
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04373078 0.08128093
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.07768007 0.13666784
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.0885868 0.1303928
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1] 0.02772545 0.08909604
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.866     0.594     0.063     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.999     0.996     0.935     0.658
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.990     0.774
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.996     0.993     0.687     0.479     0.126     0.012
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 40.58216 38.81275 50.49976
dfd=tests[2:4,"Df diff"]
dfd
## [1]  8  3 10
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1067+ 1067 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06181108 0.10582288 0.06163787
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04373078 0.08128093
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.07768007 0.13666784
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.04537321 0.07900369
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.866     0.594     0.063     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.999     0.996     0.935     0.658
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.885     0.592     0.041     0.000
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]  40.58216 275.17904
dfd=tests[2:3,"Df diff"]
dfd
## [1] 8 6
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1067+ 1067 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06181108 0.20514758
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04373078 0.08128093
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1848146 0.2261304
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.866     0.594     0.063     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
# ONE FACTOR, just for checking if gap direction aligns with HOF

fmodel<-'
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
'

configural<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2442.129     70.000      0.000      0.874      0.178      0.054 100126.783 100466.729
Mc(configural)
## [1] 0.5734671
metric<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2642.482     79.000      0.000      0.864      0.174      0.084 100309.136 100598.089
Mc(metric)
## [1] 0.5483125
scalar<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   5404.556     88.000      0.000      0.719      0.238      0.140 103053.210 103291.172
Mc(scalar)
## [1] 0.2875776
summary(scalar, standardized=T, ci=T) # -0.239
## lavaan 0.6-18 ended normally after 100 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        62
##   Number of equality constraints                    20
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              5404.556    3647.096
##   Degrees of freedom                                88          88
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.482
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                         3213.430    2168.483
##     1                                         2191.126    1478.613
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g =~                                                                                    
##     ssgs    (.p1.)    4.932    0.113   43.724    0.000    4.711    5.153    4.932    0.901
##     ssar    (.p2.)    6.862    0.142   48.304    0.000    6.583    7.140    6.862    0.870
##     sswk    (.p3.)    7.629    0.180   42.425    0.000    7.277    7.982    7.629    0.903
##     sspc    (.p4.)    3.006    0.084   35.788    0.000    2.842    3.171    3.006    0.832
##     ssno    (.p5.)    0.682    0.027   25.519    0.000    0.630    0.734    0.682    0.692
##     sscs    (.p6.)    0.576    0.029   19.681    0.000    0.518    0.633    0.576    0.619
##     ssasi   (.p7.)    3.635    0.164   22.184    0.000    3.314    3.956    3.635    0.573
##     ssmk    (.p8.)    5.782    0.136   42.565    0.000    5.516    6.048    5.782    0.826
##     ssmc    (.p9.)    4.241    0.142   29.792    0.000    3.962    4.520    4.241    0.759
##     ssei    (.10.)    3.621    0.111   32.654    0.000    3.404    3.838    3.621    0.819
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.22.)   16.134    0.207   77.934    0.000   15.728   16.540   16.134    2.949
##    .ssar    (.23.)   18.431    0.289   63.726    0.000   17.864   18.998   18.431    2.337
##    .sswk    (.24.)   26.366    0.281   93.963    0.000   25.816   26.916   26.366    3.120
##    .sspc    (.25.)   11.117    0.118   94.393    0.000   10.886   11.348   11.117    3.077
##    .ssno    (.26.)    0.250    0.032    7.796    0.000    0.187    0.312    0.250    0.253
##    .sscs    (.27.)    0.179    0.035    5.064    0.000    0.109    0.248    0.179    0.192
##    .ssasi   (.28.)   12.742    0.298   42.752    0.000   12.158   13.326   12.742    2.008
##    .ssmk    (.29.)   14.442    0.255   56.695    0.000   13.943   14.941   14.442    2.064
##    .ssmc    (.30.)   14.099    0.248   56.867    0.000   13.613   14.585   14.099    2.522
##    .ssei    (.31.)   11.315    0.205   55.247    0.000   10.913   11.716   11.315    2.559
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.617    0.426   13.180    0.000    4.782    6.452    5.617    0.188
##    .ssar             15.090    1.009   14.960    0.000   13.113   17.067   15.090    0.243
##    .sswk             13.208    1.016   12.998    0.000   11.217   15.200   13.208    0.185
##    .sspc              4.012    0.272   14.729    0.000    3.478    4.546    4.012    0.307
##    .ssno              0.506    0.029   17.636    0.000    0.449    0.562    0.506    0.521
##    .sscs              0.532    0.045   11.946    0.000    0.445    0.619    0.532    0.616
##    .ssasi            27.062    2.433   11.121    0.000   22.293   31.832   27.062    0.672
##    .ssmk             15.525    0.970   16.009    0.000   13.624   17.426   15.525    0.317
##    .ssmc             13.268    0.943   14.077    0.000   11.420   15.115   13.268    0.425
##    .ssei              6.438    0.570   11.289    0.000    5.320    7.556    6.438    0.329
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g =~                                                                                    
##     ssgs    (.p1.)    4.932    0.113   43.724    0.000    4.711    5.153    4.138    0.882
##     ssar    (.p2.)    6.862    0.142   48.304    0.000    6.583    7.140    5.757    0.846
##     sswk    (.p3.)    7.629    0.180   42.425    0.000    7.277    7.982    6.401    0.867
##     sspc    (.p4.)    3.006    0.084   35.788    0.000    2.842    3.171    2.522    0.793
##     ssno    (.p5.)    0.682    0.027   25.519    0.000    0.630    0.734    0.572    0.614
##     sscs    (.p6.)    0.576    0.029   19.681    0.000    0.518    0.633    0.483    0.497
##     ssasi   (.p7.)    3.635    0.164   22.184    0.000    3.314    3.956    3.050    0.719
##     ssmk    (.p8.)    5.782    0.136   42.565    0.000    5.516    6.048    4.851    0.791
##     ssmc    (.p9.)    4.241    0.142   29.792    0.000    3.962    4.520    3.558    0.738
##     ssei    (.10.)    3.621    0.111   32.654    0.000    3.404    3.838    3.038    0.779
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.22.)   16.134    0.207   77.934    0.000   15.728   16.540   16.134    3.441
##    .ssar    (.23.)   18.431    0.289   63.726    0.000   17.864   18.998   18.431    2.709
##    .sswk    (.24.)   26.366    0.281   93.963    0.000   25.816   26.916   26.366    3.572
##    .sspc    (.25.)   11.117    0.118   94.393    0.000   10.886   11.348   11.117    3.494
##    .ssno    (.26.)    0.250    0.032    7.796    0.000    0.187    0.312    0.250    0.268
##    .sscs    (.27.)    0.179    0.035    5.064    0.000    0.109    0.248    0.179    0.184
##    .ssasi   (.28.)   12.742    0.298   42.752    0.000   12.158   13.326   12.742    3.003
##    .ssmk    (.29.)   14.442    0.255   56.695    0.000   13.943   14.941   14.442    2.353
##    .ssmc    (.30.)   14.099    0.248   56.867    0.000   13.613   14.585   14.099    2.925
##    .ssei    (.31.)   11.315    0.205   55.247    0.000   10.913   11.716   11.315    2.900
##     g                -0.200    0.057   -3.526    0.000   -0.312   -0.089   -0.239   -0.239
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.867    0.352   13.816    0.000    4.176    5.557    4.867    0.221
##    .ssar             13.157    0.818   16.075    0.000   11.553   14.761   13.157    0.284
##    .sswk             13.510    1.045   12.928    0.000   11.462   15.559   13.510    0.248
##    .sspc              3.759    0.275   13.682    0.000    3.220    4.297    3.759    0.371
##    .ssno              0.542    0.029   18.418    0.000    0.484    0.599    0.542    0.623
##    .sscs              0.713    0.050   14.238    0.000    0.615    0.811    0.713    0.753
##    .ssasi             8.704    0.784   11.102    0.000    7.167   10.241    8.704    0.483
##    .ssmk             14.126    0.790   17.888    0.000   12.578   15.674   14.126    0.375
##    .ssmc             10.581    0.740   14.298    0.000    9.131   12.032   10.581    0.455
##    .ssei              5.993    0.426   14.073    0.000    5.158    6.828    5.993    0.394
##     g                 0.704    0.041   17.352    0.000    0.624    0.783    1.000    1.000
# HIGH ORDER FACTOR 

hof.model<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
'

hof.lv<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal 
math~~1*math
speed~~1*speed
g~~1*g
'

hof.weak<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal 
math~~1*math
speed~~1*speed
g~~1*g
math~0*1
'

baseline<-cfa(hof.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##    864.295     29.000      0.000      0.956      0.116      0.048 100287.011 100490.978
Mc(baseline)
## [1] 0.8221743
configural<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   580.702    58.000     0.000     0.972     0.092     0.028 98289.356 98697.290
Mc(configural)
## [1] 0.8846817
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 103 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        72
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               580.702     387.013
##   Degrees of freedom                                58          58
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.500
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          379.776     253.104
##     1                                          200.926     133.909
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              0.587    0.174    3.369    0.001    0.245    0.928    3.057    0.562
##     sswk              1.488    0.455    3.274    0.001    0.597    2.379    7.756    0.938
##     sspc              0.604    0.183    3.307    0.001    0.246    0.962    3.147    0.877
##   math =~                                                                                 
##     ssar              3.544    0.185   19.151    0.000    3.181    3.907    7.324    0.955
##     ssmk              2.955    0.152   19.458    0.000    2.658    3.253    6.107    0.895
##     ssmc              0.532    0.117    4.533    0.000    0.302    0.761    1.098    0.197
##   electronic =~                                                                           
##     ssgs              0.966    0.131    7.396    0.000    0.710    1.222    2.045    0.376
##     ssasi             2.187    0.124   17.675    0.000    1.944    2.429    4.630    0.830
##     ssmc              1.829    0.126   14.513    0.000    1.582    2.076    3.873    0.696
##     ssei              1.972    0.100   19.771    0.000    1.777    2.168    4.176    0.940
##   speed =~                                                                                
##     ssno              0.506    0.025   20.141    0.000    0.457    0.555    0.842    0.875
##     sscs              0.442    0.024   18.362    0.000    0.394    0.489    0.735    0.815
##   g =~                                                                                    
##     verbal            5.114    1.613    3.171    0.002    1.953    8.275    0.981    0.981
##     math              1.809    0.117   15.401    0.000    1.578    2.039    0.875    0.875
##     electronic        1.866    0.126   14.841    0.000    1.620    2.113    0.881    0.881
##     speed             1.331    0.094   14.219    0.000    1.147    1.514    0.799    0.799
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             16.396    0.190   86.372    0.000   16.024   16.768   16.396    3.015
##    .sswk             25.438    0.284   89.414    0.000   24.881   25.996   25.438    3.078
##    .sspc             10.375    0.126   82.229    0.000   10.127   10.622   10.375    2.892
##    .ssar             18.495    0.286   64.662    0.000   17.934   19.056   18.495    2.411
##    .ssmk             13.973    0.261   53.474    0.000   13.461   14.486   13.973    2.047
##    .ssmc             15.637    0.201   77.759    0.000   15.243   16.031   15.637    2.808
##    .ssasi            16.211    0.198   81.891    0.000   15.823   16.599   16.211    2.907
##    .ssei             12.364    0.157   78.687    0.000   12.056   12.672   12.364    2.783
##    .ssno              0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.061
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.092
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.234    0.341   15.329    0.000    4.564    5.903    5.234    0.177
##    .sswk              8.170    0.813   10.051    0.000    6.577    9.763    8.170    0.120
##    .sspc              2.965    0.198   15.006    0.000    2.578    3.352    2.965    0.230
##    .ssar              5.200    0.814    6.388    0.000    3.605    6.795    5.200    0.088
##    .ssmk              9.308    0.739   12.594    0.000    7.860   10.757    9.308    0.200
##    .ssmc              8.232    0.542   15.174    0.000    7.169    9.295    8.232    0.266
##    .ssasi             9.665    0.741   13.035    0.000    8.212   11.119    9.665    0.311
##    .ssei              2.309    0.280    8.254    0.000    1.760    2.857    2.309    0.117
##    .ssno              0.218    0.027    8.143    0.000    0.165    0.270    0.218    0.235
##    .sscs              0.273    0.037    7.406    0.000    0.200    0.345    0.273    0.335
##    .verbal            1.000                               1.000    1.000    0.037    0.037
##    .math              1.000                               1.000    1.000    0.234    0.234
##    .electronic        1.000                               1.000    1.000    0.223    0.223
##    .speed             1.000                               1.000    1.000    0.361    0.361
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              0.626    0.135    4.631    0.000    0.361    0.891    2.039    0.438
##     sswk              2.222    0.262    8.474    0.000    1.708    2.736    7.235    0.942
##     sspc              0.840    0.098    8.597    0.000    0.649    1.032    2.736    0.861
##   math =~                                                                                 
##     ssar              3.031    0.166   18.293    0.000    2.706    3.356    6.578    0.938
##     ssmk              2.581    0.141   18.326    0.000    2.305    2.857    5.601    0.880
##     ssmc              0.824    0.144    5.719    0.000    0.541    1.106    1.787    0.425
##   electronic =~                                                                           
##     ssgs              0.779    0.125    6.231    0.000    0.534    1.024    2.228    0.479
##     ssasi             0.956    0.122    7.865    0.000    0.718    1.195    2.735    0.732
##     ssmc              0.498    0.121    4.101    0.000    0.260    0.736    1.425    0.339
##     ssei              0.956    0.122    7.834    0.000    0.717    1.195    2.735    0.810
##   speed =~                                                                                
##     ssno              0.524    0.026   20.131    0.000    0.473    0.575    0.823    0.872
##     sscs              0.456    0.023   19.937    0.000    0.411    0.501    0.716    0.767
##   g =~                                                                                    
##     verbal            3.098    0.397    7.810    0.000    2.321    3.876    0.952    0.952
##     math              1.926    0.134   14.426    0.000    1.664    2.188    0.888    0.888
##     electronic        2.680    0.362    7.401    0.000    1.970    3.390    0.937    0.937
##     speed             1.211    0.083   14.567    0.000    1.048    1.374    0.771    0.771
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             14.908    0.166   89.625    0.000   14.582   15.234   14.908    3.203
##    .sswk             25.835    0.262   98.598    0.000   25.322   26.349   25.835    3.365
##    .sspc             11.246    0.107  105.151    0.000   11.036   11.455   11.246    3.538
##    .ssar             16.999    0.262   64.966    0.000   16.486   17.512   16.999    2.424
##    .ssmk             13.732    0.240   57.183    0.000   13.262   14.203   13.732    2.157
##    .ssmc             11.961    0.157   76.345    0.000   11.654   12.268   11.961    2.847
##    .ssasi            10.841    0.136   79.844    0.000   10.575   11.107   10.841    2.902
##    .ssei              9.562    0.123   77.895    0.000    9.322    9.803    9.562    2.831
##    .ssno              0.328    0.034    9.769    0.000    0.262    0.394    0.328    0.347
##    .sscs              0.432    0.033   13.004    0.000    0.367    0.497    0.432    0.463
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.441    0.332   13.378    0.000    3.790    5.092    4.441    0.205
##    .sswk              6.586    0.807    8.157    0.000    5.004    8.169    6.586    0.112
##    .sspc              2.622    0.166   15.797    0.000    2.297    2.947    2.622    0.259
##    .ssar              5.921    0.755    7.845    0.000    4.442    7.400    5.921    0.120
##    .ssmk              9.162    0.735   12.474    0.000    7.723   10.602    9.162    0.226
##    .ssmc              8.194    0.465   17.619    0.000    7.282    9.105    8.194    0.464
##    .ssasi             6.472    0.438   14.764    0.000    5.613    7.331    6.472    0.464
##    .ssei              3.926    0.297   13.211    0.000    3.343    4.508    3.926    0.344
##    .ssno              0.213    0.034    6.330    0.000    0.147    0.279    0.213    0.239
##    .sscs              0.358    0.044    8.164    0.000    0.272    0.444    0.358    0.411
##    .verbal            1.000                               1.000    1.000    0.094    0.094
##    .math              1.000                               1.000    1.000    0.212    0.212
##    .electronic        1.000                               1.000    1.000    0.122    0.122
##    .speed             1.000                               1.000    1.000    0.406    0.406
##     g                 1.000                               1.000    1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   697.933    69.000     0.000     0.967     0.092     0.059 98384.587 98730.198
Mc(metric)
## [1] 0.8629235
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 90 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        77
##   Number of equality constraints                    16
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               697.933     475.579
##   Degrees of freedom                                69          69
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.468
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          435.771     296.939
##     1                                          262.162     178.640
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.576    0.170    3.377    0.001    0.242    0.910    3.001    0.562
##     sswk    (.p2.)    1.517    0.451    3.363    0.001    0.633    2.402    7.910    0.940
##     sspc    (.p3.)    0.598    0.177    3.381    0.001    0.251    0.945    3.118    0.876
##   math =~                                                                                 
##     ssar    (.p4.)    3.453    0.186   18.569    0.000    3.089    3.818    7.489    0.955
##     ssmk    (.p5.)    2.904    0.156   18.632    0.000    2.598    3.209    6.297    0.901
##     ssmc    (.p6.)    0.575    0.093    6.161    0.000    0.392    0.758    1.248    0.239
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.138    0.113   10.091    0.000    0.917    1.359    2.054    0.385
##     ssasi   (.p8.)    2.283    0.120   19.100    0.000    2.048    2.517    4.120    0.795
##     ssmc    (.p9.)    1.843    0.127   14.493    0.000    1.594    2.092    3.327    0.638
##     ssei    (.10.)    2.159    0.095   22.653    0.000    1.973    2.346    3.898    0.936
##   speed =~                                                                                
##     ssno    (.11.)    0.499    0.025   20.230    0.000    0.450    0.547    0.863    0.881
##     sscs    (.12.)    0.433    0.023   19.013    0.000    0.388    0.477    0.749    0.819
##   g =~                                                                                    
##     verbal  (.13.)    5.116    1.561    3.278    0.001    2.057    8.176    0.981    0.981
##     math    (.14.)    1.924    0.120   16.070    0.000    1.690    2.159    0.887    0.887
##     elctrnc (.15.)    1.503    0.100   15.055    0.000    1.307    1.698    0.833    0.833
##     speed   (.16.)    1.412    0.089   15.917    0.000    1.238    1.586    0.816    0.816
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             16.396    0.190   86.372    0.000   16.024   16.768   16.396    3.070
##    .sswk             25.438    0.284   89.414    0.000   24.881   25.996   25.438    3.022
##    .sspc             10.375    0.126   82.229    0.000   10.127   10.622   10.375    2.915
##    .ssar             18.495    0.286   64.662    0.000   17.934   19.056   18.495    2.359
##    .ssmk             13.973    0.261   53.474    0.000   13.461   14.486   13.973    1.999
##    .ssmc             15.637    0.201   77.759    0.000   15.243   16.031   15.637    2.997
##    .ssasi            16.211    0.198   81.891    0.000   15.823   16.599   16.211    3.129
##    .ssei             12.364    0.157   78.687    0.000   12.056   12.672   12.364    2.967
##    .ssno              0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.060
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.091
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.224    0.336   15.564    0.000    4.566    5.882    5.224    0.183
##    .sswk              8.289    0.827   10.020    0.000    6.668    9.911    8.289    0.117
##    .sspc              2.943    0.195   15.129    0.000    2.562    3.324    2.943    0.232
##    .ssar              5.383    0.759    7.092    0.000    3.895    6.870    5.383    0.088
##    .ssmk              9.185    0.698   13.153    0.000    7.817   10.554    9.185    0.188
##    .ssmc              8.465    0.551   15.355    0.000    7.385    9.546    8.465    0.311
##    .ssasi             9.868    0.745   13.240    0.000    8.408   11.329    9.868    0.368
##    .ssei              2.166    0.293    7.398    0.000    1.592    2.740    2.166    0.125
##    .ssno              0.215    0.025    8.649    0.000    0.166    0.264    0.215    0.224
##    .sscs              0.275    0.035    7.884    0.000    0.206    0.343    0.275    0.329
##    .verbal            1.000                               1.000    1.000    0.037    0.037
##    .math              1.000                               1.000    1.000    0.213    0.213
##    .electronic        1.000                               1.000    1.000    0.307    0.307
##    .speed             1.000                               1.000    1.000    0.334    0.334
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.576    0.170    3.377    0.001    0.242    0.910    2.649    0.575
##     sswk    (.p2.)    1.517    0.451    3.363    0.001    0.633    2.402    6.983    0.934
##     sspc    (.p3.)    0.598    0.177    3.381    0.001    0.251    0.945    2.752    0.862
##   math =~                                                                                 
##     ssar    (.p4.)    3.453    0.186   18.569    0.000    3.089    3.818    6.420    0.938
##     ssmk    (.p5.)    2.904    0.156   18.632    0.000    2.598    3.209    5.398    0.870
##     ssmc    (.p6.)    0.575    0.093    6.161    0.000    0.392    0.758    1.069    0.241
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.138    0.113   10.091    0.000    0.917    1.359    1.517    0.329
##     ssasi   (.p8.)    2.283    0.120   19.100    0.000    2.048    2.517    3.043    0.770
##     ssmc    (.p9.)    1.843    0.127   14.493    0.000    1.594    2.092    2.457    0.554
##     ssei    (.10.)    2.159    0.095   22.653    0.000    1.973    2.346    2.879    0.821
##   speed =~                                                                                
##     ssno    (.11.)    0.499    0.025   20.230    0.000    0.450    0.547    0.801    0.867
##     sscs    (.12.)    0.433    0.023   19.013    0.000    0.388    0.477    0.695    0.758
##   g =~                                                                                    
##     verbal  (.13.)    5.116    1.561    3.278    0.001    2.057    8.176    0.943    0.943
##     math    (.14.)    1.924    0.120   16.070    0.000    1.690    2.159    0.878    0.878
##     elctrnc (.15.)    1.503    0.100   15.055    0.000    1.307    1.698    0.956    0.956
##     speed   (.16.)    1.412    0.089   15.917    0.000    1.238    1.586    0.746    0.746
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             14.908    0.166   89.625    0.000   14.582   15.234   14.908    3.235
##    .sswk             25.835    0.262   98.598    0.000   25.322   26.349   25.835    3.455
##    .sspc             11.246    0.107  105.151    0.000   11.036   11.455   11.246    3.524
##    .ssar             16.999    0.262   64.966    0.000   16.486   17.512   16.999    2.484
##    .ssmk             13.732    0.240   57.183    0.000   13.262   14.203   13.732    2.214
##    .ssmc             11.961    0.157   76.345    0.000   11.654   12.268   11.961    2.697
##    .ssasi            10.841    0.136   79.844    0.000   10.575   11.107   10.841    2.743
##    .ssei              9.562    0.123   77.895    0.000    9.322    9.803    9.562    2.727
##    .ssno              0.328    0.034    9.769    0.000    0.262    0.394    0.328    0.355
##    .sscs              0.432    0.033   13.004    0.000    0.367    0.497    0.432    0.471
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.664    0.302   15.448    0.000    4.072    5.255    4.664    0.220
##    .sswk              7.151    0.770    9.282    0.000    5.641    8.661    7.151    0.128
##    .sspc              2.610    0.164   15.899    0.000    2.288    2.932    2.610    0.256
##    .ssar              5.616    0.740    7.585    0.000    4.165    7.067    5.616    0.120
##    .ssmk              9.338    0.712   13.112    0.000    7.942   10.733    9.338    0.243
##    .ssmc              8.076    0.469   17.230    0.000    7.158    8.995    8.076    0.411
##    .ssasi             6.363    0.430   14.798    0.000    5.520    7.206    6.363    0.407
##    .ssei              4.009    0.290   13.828    0.000    3.441    4.577    4.009    0.326
##    .ssno              0.212    0.030    7.042    0.000    0.153    0.271    0.212    0.248
##    .sscs              0.359    0.040    9.011    0.000    0.281    0.437    0.359    0.426
##    .verbal            2.330    1.359    1.715    0.086   -0.332    4.993    0.110    0.110
##    .math              0.789    0.108    7.340    0.000    0.579    1.000    0.228    0.228
##    .electronic        0.151    0.046    3.283    0.001    0.061    0.242    0.085    0.085
##    .speed             1.144    0.142    8.043    0.000    0.865    1.422    0.443    0.443
##     g                 0.720    0.045   16.119    0.000    0.633    0.808    1.000    1.000
lavTestScore(metric, release = 1:16)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 117.464 16       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p47.  0.948  1   0.330
## 2   .p2. == .p48. 10.826  1   0.001
## 3   .p3. == .p49.  2.300  1   0.129
## 4   .p4. == .p50.  3.038  1   0.081
## 5   .p5. == .p51.  2.307  1   0.129
## 6   .p6. == .p52.  9.161  1   0.002
## 7   .p7. == .p53.  2.814  1   0.093
## 8   .p8. == .p54. 19.180  1   0.000
## 9   .p9. == .p55. 22.567  1   0.000
## 10 .p10. == .p56.  5.768  1   0.016
## 11 .p11. == .p57.  1.857  1   0.173
## 12 .p12. == .p58.  0.566  1   0.452
## 13 .p13. == .p59. 10.877  1   0.001
## 14 .p14. == .p60.  9.241  1   0.002
## 15 .p15. == .p61. 78.620  1   0.000
## 16 .p16. == .p62.  4.630  1   0.031
metric2<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"), group.partial=c("g=~electronic"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   619.358    68.000     0.000     0.971     0.087     0.033 98308.013 98659.289
Mc(metric2)
## [1] 0.8787588
scalar<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 1.395560e-13) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   995.766    73.000     0.000     0.951     0.109     0.054 98674.421 98997.369
Mc(scalar)
## [1] 0.8054879
summary(scalar, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 127 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    25
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               995.766     671.281
##   Degrees of freedom                                73          73
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.483
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          565.336     381.113
##     1                                          430.430     290.168
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.643    0.154    4.165    0.000    0.341    0.946    3.055    0.555
##     sswk    (.p2.)    1.629    0.390    4.173    0.000    0.864    2.395    7.738    0.938
##     sspc    (.p3.)    0.646    0.153    4.209    0.000    0.345    0.946    3.066    0.867
##   math =~                                                                                 
##     ssar    (.p4.)    3.500    0.177   19.738    0.000    3.152    3.847    7.352    0.955
##     ssmk    (.p5.)    2.911    0.146   19.940    0.000    2.625    3.197    6.115    0.893
##     ssmc    (.p6.)    0.504    0.084    5.967    0.000    0.338    0.669    1.058    0.191
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.005    0.075   13.419    0.000    0.858    1.152    2.133    0.388
##     ssasi   (.p8.)    2.350    0.131   17.989    0.000    2.094    2.606    4.987    0.846
##     ssmc    (.p9.)    1.842    0.115   15.985    0.000    1.616    2.068    3.910    0.704
##     ssei    (.10.)    1.883    0.098   19.260    0.000    1.691    2.075    3.997    0.922
##   speed =~                                                                                
##     ssno    (.11.)    0.481    0.024   20.121    0.000    0.434    0.528    0.822    0.857
##     sscs    (.12.)    0.450    0.023   19.167    0.000    0.404    0.496    0.768    0.830
##   g =~                                                                                    
##     verbal  (.13.)    4.642    1.153    4.027    0.000    2.383    6.902    0.978    0.978
##     math    (.14.)    1.847    0.112   16.482    0.000    1.628    2.067    0.879    0.879
##     elctrnc           1.872    0.131   14.302    0.000    1.616    2.129    0.882    0.882
##     speed   (.16.)    1.385    0.087   15.969    0.000    1.215    1.555    0.811    0.811
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   16.392    0.188   87.339    0.000   16.024   16.759   16.392    2.979
##    .sswk    (.33.)   25.164    0.289   87.142    0.000   24.598   25.730   25.164    3.049
##    .sspc    (.34.)   10.637    0.117   90.643    0.000   10.407   10.867   10.637    3.009
##    .ssar    (.35.)   18.339    0.290   63.128    0.000   17.769   18.908   18.339    2.381
##    .ssmk    (.36.)   14.326    0.251   57.011    0.000   13.834   14.819   14.326    2.092
##    .ssmc    (.37.)   15.577    0.201   77.533    0.000   15.183   15.971   15.577    2.806
##    .ssasi   (.38.)   15.588    0.212   73.535    0.000   15.173   16.004   15.588    2.645
##    .ssei    (.39.)   12.607    0.150   84.215    0.000   12.314   12.901   12.607    2.909
##    .ssno    (.40.)    0.003    0.035    0.086    0.931   -0.066    0.072    0.003    0.003
##    .sscs    (.41.)   -0.018    0.033   -0.553    0.580   -0.082    0.046   -0.018   -0.019
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.145    0.334   15.404    0.000    4.491    5.800    5.145    0.170
##    .sswk              8.245    0.839    9.828    0.000    6.601    9.890    8.245    0.121
##    .sspc              3.100    0.210   14.761    0.000    2.689    3.512    3.100    0.248
##    .ssar              5.248    0.799    6.571    0.000    3.683    6.813    5.248    0.089
##    .ssmk              9.510    0.733   12.981    0.000    8.074   10.946    9.510    0.203
##    .ssmc              7.984    0.537   14.880    0.000    6.932    9.035    7.984    0.259
##    .ssasi             9.857    0.805   12.240    0.000    8.279   11.435    9.857    0.284
##    .ssei              2.809    0.282    9.967    0.000    2.257    3.361    2.809    0.150
##    .ssno              0.244    0.026    9.535    0.000    0.194    0.294    0.244    0.266
##    .sscs              0.266    0.037    7.233    0.000    0.194    0.338    0.266    0.311
##    .verbal            1.000                               1.000    1.000    0.044    0.044
##    .math              1.000                               1.000    1.000    0.227    0.227
##    .electronic        1.000                               1.000    1.000    0.222    0.222
##    .speed             1.000                               1.000    1.000    0.343    0.343
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.643    0.154    4.165    0.000    0.341    0.946    2.831    0.617
##     sswk    (.p2.)    1.629    0.390    4.173    0.000    0.864    2.395    7.172    0.934
##     sspc    (.p3.)    0.646    0.153    4.209    0.000    0.345    0.946    2.842    0.867
##   math =~                                                                                 
##     ssar    (.p4.)    3.500    0.177   19.738    0.000    3.152    3.847    6.607    0.942
##     ssmk    (.p5.)    2.911    0.146   19.940    0.000    2.625    3.197    5.496    0.871
##     ssmc    (.p6.)    0.504    0.084    5.967    0.000    0.338    0.669    0.951    0.222
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.005    0.075   13.419    0.000    0.858    1.152    1.294    0.282
##     ssasi   (.p8.)    2.350    0.131   17.989    0.000    2.094    2.606    3.024    0.765
##     ssmc    (.p9.)    1.842    0.115   15.985    0.000    1.616    2.068    2.371    0.554
##     ssei    (.10.)    1.883    0.098   19.260    0.000    1.691    2.075    2.424    0.750
##   speed =~                                                                                
##     ssno    (.11.)    0.481    0.024   20.121    0.000    0.434    0.528    0.784    0.846
##     sscs    (.12.)    0.450    0.023   19.167    0.000    0.404    0.496    0.733    0.776
##   g =~                                                                                    
##     verbal  (.13.)    4.642    1.153    4.027    0.000    2.383    6.902    0.956    0.956
##     math    (.14.)    1.847    0.112   16.482    0.000    1.628    2.067    0.887    0.887
##     elctrnc           1.342    0.090   14.896    0.000    1.166    1.519    0.945    0.945
##     speed   (.16.)    1.385    0.087   15.969    0.000    1.215    1.555    0.771    0.771
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   16.392    0.188   87.339    0.000   16.024   16.759   16.392    3.574
##    .sswk    (.33.)   25.164    0.289   87.142    0.000   24.598   25.730   25.164    3.279
##    .sspc    (.34.)   10.637    0.117   90.643    0.000   10.407   10.867   10.637    3.244
##    .ssar    (.35.)   18.339    0.290   63.128    0.000   17.769   18.908   18.339    2.614
##    .ssmk    (.36.)   14.326    0.251   57.011    0.000   13.834   14.819   14.326    2.270
##    .ssmc    (.37.)   15.577    0.201   77.533    0.000   15.183   15.971   15.577    3.639
##    .ssasi   (.38.)   15.588    0.212   73.535    0.000   15.173   16.004   15.588    3.945
##    .ssei    (.39.)   12.607    0.150   84.215    0.000   12.314   12.901   12.607    3.901
##    .ssno    (.40.)    0.003    0.035    0.086    0.931   -0.066    0.072    0.003    0.003
##    .sscs    (.41.)   -0.018    0.033   -0.553    0.580   -0.082    0.046   -0.018   -0.019
##    .verbal            0.839    0.075   11.215    0.000    0.693    0.986    0.191    0.191
##    .math             -0.227    0.091   -2.494    0.013   -0.405   -0.049   -0.120   -0.120
##    .elctrnc          -1.761    0.117  -15.058    0.000   -1.990   -1.532   -1.368   -1.368
##    .speed             0.877    0.100    8.779    0.000    0.681    1.073    0.538    0.538
##     g                -0.058    0.057   -1.010    0.312   -0.169    0.054   -0.063   -0.063
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.719    0.307   15.388    0.000    4.118    5.320    4.719    0.224
##    .sswk              7.470    0.776    9.628    0.000    5.950    8.991    7.470    0.127
##    .sspc              2.679    0.172   15.563    0.000    2.341    3.016    2.679    0.249
##    .ssar              5.577    0.755    7.386    0.000    4.097    7.057    5.577    0.113
##    .ssmk              9.609    0.725   13.245    0.000    8.187   11.031    9.609    0.241
##    .ssmc              8.017    0.467   17.173    0.000    7.102    8.931    8.017    0.437
##    .ssasi             6.464    0.459   14.096    0.000    5.565    7.363    6.464    0.414
##    .ssei              4.571    0.319   14.315    0.000    3.945    5.196    4.571    0.438
##    .ssno              0.245    0.030    8.029    0.000    0.185    0.304    0.245    0.285
##    .sscs              0.355    0.043    8.316    0.000    0.271    0.438    0.355    0.398
##    .verbal            1.655    0.806    2.054    0.040    0.076    3.233    0.085    0.085
##    .math              0.758    0.103    7.394    0.000    0.557    0.959    0.213    0.213
##    .electronic        0.176    0.052    3.389    0.001    0.074    0.277    0.106    0.106
##    .speed             1.079    0.138    7.812    0.000    0.808    1.349    0.406    0.406
##     g                 0.822    0.050   16.325    0.000    0.723    0.921    1.000    1.000
lavTestScore(scalar, release = 16:25) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 364.145 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs      X2 df p.value
## 1  .p32. == .p78.   0.036  1   0.850
## 2  .p33. == .p79.  59.558  1   0.000
## 3  .p34. == .p80.  65.444  1   0.000
## 4  .p35. == .p81.  38.236  1   0.000
## 5  .p36. == .p82.  41.463  1   0.000
## 6  .p37. == .p83.   2.262  1   0.133
## 7  .p38. == .p84. 146.664  1   0.000
## 8  .p39. == .p85. 158.496  1   0.000
## 9  .p40. == .p86.  77.533  1   0.000
## 10 .p41. == .p87.  77.533  1   0.000
scalar2<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "sspc~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 3.733194e-13) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   681.516    70.000     0.000     0.968     0.090     0.036 98366.170 98706.115
Mc(scalar2)
## [1] 0.8664539
summary(scalar2, standardized=T, ci=T) # g -0.093 Std.all
## lavaan 0.6-18 ended normally after 132 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               681.516     458.594
##   Degrees of freedom                                70          70
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.486
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          422.569     284.348
##     1                                          258.946     174.246
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.645    0.180    3.593    0.000    0.293    0.997    3.440    0.633
##     sswk    (.p2.)    1.459    0.410    3.558    0.000    0.655    2.263    7.778    0.939
##     sspc    (.p3.)    0.574    0.160    3.578    0.000    0.259    0.888    3.057    0.868
##   math =~                                                                                 
##     ssar    (.p4.)    3.529    0.174   20.293    0.000    3.188    3.870    7.352    0.953
##     ssmk    (.p5.)    2.942    0.145   20.350    0.000    2.659    3.226    6.130    0.894
##     ssmc    (.p6.)    0.717    0.082    8.713    0.000    0.556    0.879    1.495    0.276
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.786    0.068   11.571    0.000    0.653    0.919    1.649    0.303
##     ssasi   (.p8.)    2.223    0.118   18.806    0.000    1.992    2.455    4.667    0.830
##     ssmc    (.p9.)    1.573    0.106   14.821    0.000    1.365    1.781    3.302    0.609
##     ssei    (.10.)    2.021    0.098   20.591    0.000    1.829    2.214    4.243    0.949
##   speed =~                                                                                
##     ssno    (.11.)    0.508    0.024   21.116    0.000    0.461    0.555    0.852    0.877
##     sscs    (.12.)    0.443    0.022   19.796    0.000    0.399    0.486    0.743    0.818
##   g =~                                                                                    
##     verbal  (.13.)    5.235    1.516    3.452    0.001    2.263    8.208    0.982    0.982
##     math    (.14.)    1.828    0.108   16.881    0.000    1.616    2.040    0.877    0.877
##     elctrnc           1.846    0.121   15.310    0.000    1.609    2.082    0.879    0.879
##     speed   (.16.)    1.348    0.082   16.399    0.000    1.187    1.509    0.803    0.803
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   16.459    0.188   87.711    0.000   16.091   16.827   16.459    3.027
##    .sswk    (.33.)   25.395    0.285   89.250    0.000   24.837   25.953   25.395    3.066
##    .sspc             10.375    0.126   82.229    0.000   10.127   10.622   10.375    2.946
##    .ssar    (.35.)   18.320    0.291   63.004    0.000   17.750   18.890   18.320    2.375
##    .ssmk    (.36.)   14.312    0.251   56.912    0.000   13.820   14.805   14.312    2.087
##    .ssmc    (.37.)   15.740    0.197   79.986    0.000   15.355   16.126   15.740    2.901
##    .ssasi   (.38.)   16.085    0.199   81.005    0.000   15.696   16.475   16.085    2.860
##    .ssei             12.364    0.157   78.688    0.000   12.056   12.672   12.364    2.765
##    .ssno    (.40.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.061
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.092
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.220    0.341   15.298    0.000    4.551    5.888    5.220    0.177
##    .sswk              8.110    0.780   10.402    0.000    6.582    9.638    8.110    0.118
##    .sspc              3.053    0.199   15.308    0.000    2.662    3.444    3.053    0.246
##    .ssar              5.422    0.792    6.845    0.000    3.870    6.975    5.422    0.091
##    .ssmk              9.451    0.722   13.086    0.000    8.035   10.866    9.451    0.201
##    .ssmc              8.680    0.544   15.959    0.000    7.614    9.746    8.680    0.295
##    .ssasi             9.850    0.758   12.991    0.000    8.364   11.336    9.850    0.311
##    .ssei              1.991    0.265    7.519    0.000    1.472    2.510    1.991    0.100
##    .ssno              0.218    0.025    8.672    0.000    0.168    0.267    0.218    0.231
##    .sscs              0.273    0.035    7.820    0.000    0.204    0.341    0.273    0.331
##    .verbal            1.000                               1.000    1.000    0.035    0.035
##    .math              1.000                               1.000    1.000    0.230    0.230
##    .electronic        1.000                               1.000    1.000    0.227    0.227
##    .speed             1.000                               1.000    1.000    0.355    0.355
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.645    0.180    3.593    0.000    0.293    0.997    3.167    0.683
##     sswk    (.p2.)    1.459    0.410    3.558    0.000    0.655    2.263    7.160    0.934
##     sspc    (.p3.)    0.574    0.160    3.578    0.000    0.259    0.888    2.814    0.866
##   math =~                                                                                 
##     ssar    (.p4.)    3.529    0.174   20.293    0.000    3.188    3.870    6.588    0.940
##     ssmk    (.p5.)    2.942    0.145   20.350    0.000    2.659    3.226    5.493    0.872
##     ssmc    (.p6.)    0.717    0.082    8.713    0.000    0.556    0.879    1.339    0.312
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.786    0.068   11.571    0.000    0.653    0.919    1.015    0.219
##     ssasi   (.p8.)    2.223    0.118   18.806    0.000    1.992    2.455    2.872    0.755
##     ssmc    (.p9.)    1.573    0.106   14.821    0.000    1.365    1.781    2.032    0.473
##     ssei    (.10.)    2.021    0.098   20.591    0.000    1.829    2.214    2.611    0.792
##   speed =~                                                                                
##     ssno    (.11.)    0.508    0.024   21.116    0.000    0.461    0.555    0.810    0.868
##     sscs    (.12.)    0.443    0.022   19.796    0.000    0.399    0.486    0.707    0.764
##   g =~                                                                                    
##     verbal  (.13.)    5.235    1.516    3.452    0.001    2.263    8.208    0.962    0.962
##     math    (.14.)    1.828    0.108   16.881    0.000    1.616    2.040    0.883    0.883
##     elctrnc           1.340    0.084   15.889    0.000    1.175    1.505    0.935    0.935
##     speed   (.16.)    1.348    0.082   16.399    0.000    1.187    1.509    0.762    0.762
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   16.459    0.188   87.711    0.000   16.091   16.827   16.459    3.547
##    .sswk    (.33.)   25.395    0.285   89.250    0.000   24.837   25.953   25.395    3.313
##    .sspc             11.056    0.131   84.478    0.000   10.799   11.313   11.056    3.404
##    .ssar    (.35.)   18.320    0.291   63.004    0.000   17.750   18.890   18.320    2.615
##    .ssmk    (.36.)   14.312    0.251   56.912    0.000   13.820   14.805   14.312    2.271
##    .ssmc    (.37.)   15.740    0.197   79.986    0.000   15.355   16.126   15.740    3.662
##    .ssasi   (.38.)   16.085    0.199   81.005    0.000   15.696   16.475   16.085    4.227
##    .ssei             14.255    0.246   57.845    0.000   13.772   14.738   14.255    4.323
##    .ssno    (.40.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.063
##    .sscs              0.198    0.041    4.864    0.000    0.118    0.277    0.198    0.214
##    .verbal            0.768    0.071   10.785    0.000    0.628    0.907    0.156    0.156
##    .math             -0.167    0.092   -1.815    0.069   -0.347    0.013   -0.089   -0.089
##    .elctrnc          -2.209    0.152  -14.564    0.000   -2.507   -1.912   -1.710   -1.710
##    .speed             0.642    0.094    6.856    0.000    0.459    0.826    0.402    0.402
##     g                -0.083    0.057   -1.476    0.140   -0.194    0.027   -0.093   -0.093
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              4.686    0.307   15.252    0.000    4.084    5.288    4.686    0.218
##    .sswk              7.489    0.746   10.039    0.000    6.027    8.951    7.489    0.127
##    .sspc              2.629    0.164   16.023    0.000    2.308    2.951    2.629    0.249
##    .ssar              5.686    0.743    7.654    0.000    4.230    7.143    5.686    0.116
##    .ssmk              9.541    0.720   13.242    0.000    8.129   10.953    9.541    0.240
##    .ssmc              8.059    0.463   17.403    0.000    7.151    8.966    8.059    0.436
##    .ssasi             6.236    0.427   14.601    0.000    5.399    7.073    6.236    0.431
##    .ssei              4.052    0.297   13.648    0.000    3.470    4.634    4.052    0.373
##    .ssno              0.215    0.030    7.210    0.000    0.156    0.273    0.215    0.246
##    .sscs              0.357    0.040    8.991    0.000    0.279    0.434    0.357    0.417
##    .verbal            1.785    1.008    1.770    0.077   -0.192    3.761    0.074    0.074
##    .math              0.769    0.101    7.588    0.000    0.570    0.967    0.221    0.221
##    .electronic        0.209    0.055    3.805    0.000    0.101    0.317    0.125    0.125
##    .speed             1.070    0.130    8.204    0.000    0.815    1.326    0.420    0.420
##     g                 0.813    0.050   16.404    0.000    0.716    0.910    1.000    1.000
strict<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("g=~electronic", "sspc~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 7.984848e-13) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   771.478    80.000     0.000     0.963     0.090     0.042 98436.133 98719.420
Mc(strict)
## [1] 0.8503642
summary(strict, standardized=T, ci=T) # lv variances similar to scalar2, g -0.132 Std.all
## lavaan 0.6-18 ended normally after 116 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    32
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               771.478     506.021
##   Degrees of freedom                                80          80
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.525
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          470.949     308.901
##     1                                          300.529     197.121
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.708    0.166    4.268    0.000    0.383    1.034    3.419    0.631
##     sswk    (.p2.)    1.615    0.385    4.196    0.000    0.860    2.369    7.796    0.941
##     sspc    (.p3.)    0.636    0.151    4.226    0.000    0.341    0.931    3.072    0.877
##   math =~                                                                                 
##     ssar    (.p4.)    3.491    0.169   20.697    0.000    3.160    3.821    7.338    0.952
##     ssmk    (.p5.)    2.911    0.141   20.639    0.000    2.634    3.187    6.119    0.893
##     ssmc    (.p6.)    0.675    0.081    8.340    0.000    0.516    0.833    1.418    0.263
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.818    0.072   11.392    0.000    0.677    0.959    1.685    0.311
##     ssasi   (.p8.)    2.298    0.129   17.819    0.000    2.045    2.551    4.736    0.864
##     ssmc    (.p9.)    1.652    0.114   14.510    0.000    1.429    1.876    3.405    0.631
##     ssei    (.10.)    2.034    0.099   20.559    0.000    1.840    2.228    4.191    0.916
##   speed =~                                                                                
##     ssno    (.11.)    0.498    0.025   20.097    0.000    0.450    0.547    0.847    0.876
##     sscs    (.12.)    0.436    0.021   20.289    0.000    0.394    0.478    0.740    0.798
##   g =~                                                                                    
##     verbal  (.13.)    4.723    1.168    4.045    0.000    2.435    7.011    0.978    0.978
##     math    (.14.)    1.849    0.109   16.934    0.000    1.635    2.063    0.880    0.880
##     elctrnc           1.802    0.123   14.659    0.000    1.561    2.043    0.874    0.874
##     speed   (.16.)    1.374    0.085   16.075    0.000    1.206    1.541    0.808    0.808
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   16.459    0.188   87.625    0.000   16.090   16.827   16.459    3.039
##    .sswk    (.33.)   25.395    0.284   89.322    0.000   24.838   25.952   25.395    3.067
##    .sspc             10.375    0.126   82.229    0.000   10.127   10.622   10.375    2.961
##    .ssar    (.35.)   18.314    0.289   63.398    0.000   17.748   18.880   18.314    2.376
##    .ssmk    (.36.)   14.313    0.250   57.277    0.000   13.823   14.803   14.313    2.089
##    .ssmc    (.37.)   15.752    0.196   80.223    0.000   15.368   16.137   15.752    2.917
##    .ssasi   (.38.)   16.099    0.197   81.541    0.000   15.712   16.486   16.099    2.938
##    .ssei             12.364    0.157   78.687    0.000   12.056   12.672   12.364    2.704
##    .ssno    (.40.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.061
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.090
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.17.)    4.935    0.233   21.210    0.000    4.479    5.391    4.935    0.168
##    .sswk    (.18.)    7.807    0.551   14.180    0.000    6.728    8.886    7.807    0.114
##    .sspc    (.19.)    2.840    0.131   21.749    0.000    2.584    3.096    2.840    0.231
##    .ssar    (.20.)    5.550    0.571    9.713    0.000    4.430    6.669    5.550    0.093
##    .ssmk    (.21.)    9.487    0.540   17.569    0.000    8.429   10.545    9.487    0.202
##    .ssmc    (.22.)    8.128    0.358   22.699    0.000    7.426    8.829    8.128    0.279
##    .ssasi   (.23.)    7.597    0.433   17.538    0.000    6.748    8.446    7.597    0.253
##    .ssei    (.24.)    3.348    0.221   15.153    0.000    2.915    3.782    3.348    0.160
##    .ssno    (.25.)    0.218    0.021   10.280    0.000    0.176    0.259    0.218    0.233
##    .sscs    (.26.)    0.312    0.028   10.998    0.000    0.257    0.368    0.312    0.363
##    .verbal            1.000                               1.000    1.000    0.043    0.043
##    .math              1.000                               1.000    1.000    0.226    0.226
##    .elctrnc           1.000                               1.000    1.000    0.235    0.235
##    .speed             1.000                               1.000    1.000    0.346    0.346
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.708    0.166    4.268    0.000    0.383    1.034    3.128    0.671
##     sswk    (.p2.)    1.615    0.385    4.196    0.000    0.860    2.369    7.132    0.931
##     sspc    (.p3.)    0.636    0.151    4.226    0.000    0.341    0.931    2.810    0.858
##   math =~                                                                                 
##     ssar    (.p4.)    3.491    0.169   20.697    0.000    3.160    3.821    6.603    0.942
##     ssmk    (.p5.)    2.911    0.141   20.639    0.000    2.634    3.187    5.506    0.873
##     ssmc    (.p6.)    0.675    0.081    8.340    0.000    0.516    0.833    1.276    0.295
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.818    0.072   11.392    0.000    0.677    0.959    1.051    0.225
##     ssasi   (.p8.)    2.298    0.129   17.819    0.000    2.045    2.551    2.954    0.731
##     ssmc    (.p9.)    1.652    0.114   14.510    0.000    1.429    1.876    2.124    0.491
##     ssei    (.10.)    2.034    0.099   20.559    0.000    1.840    2.228    2.614    0.819
##   speed =~                                                                                
##     ssno    (.11.)    0.498    0.025   20.097    0.000    0.450    0.547    0.814    0.868
##     sscs    (.12.)    0.436    0.021   20.289    0.000    0.394    0.478    0.712    0.786
##   g =~                                                                                    
##     verbal  (.13.)    4.723    1.168    4.045    0.000    2.435    7.011    0.965    0.965
##     math    (.14.)    1.849    0.109   16.934    0.000    1.635    2.063    0.882    0.882
##     elctrnc           1.326    0.085   15.548    0.000    1.159    1.493    0.931    0.931
##     speed   (.16.)    1.374    0.085   16.075    0.000    1.206    1.541    0.759    0.759
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   16.459    0.188   87.625    0.000   16.090   16.827   16.459    3.531
##    .sswk    (.33.)   25.395    0.284   89.322    0.000   24.838   25.952   25.395    3.315
##    .sspc             11.054    0.131   84.193    0.000   10.797   11.311   11.054    3.374
##    .ssar    (.35.)   18.314    0.289   63.398    0.000   17.748   18.880   18.314    2.612
##    .ssmk    (.36.)   14.313    0.250   57.277    0.000   13.823   14.803   14.313    2.269
##    .ssmc    (.37.)   15.752    0.196   80.223    0.000   15.368   16.137   15.752    3.641
##    .ssasi   (.38.)   16.099    0.197   81.541    0.000   15.712   16.486   16.099    3.985
##    .ssei             14.110    0.237   59.454    0.000   13.645   14.576   14.110    4.423
##    .ssno    (.40.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.063
##    .sscs              0.197    0.041    4.831    0.000    0.117    0.277    0.197    0.218
##    .verbal            0.865    0.080   10.877    0.000    0.709    1.021    0.196    0.196
##    .math             -0.101    0.091   -1.111    0.266   -0.280    0.077   -0.054   -0.054
##    .elctrnc          -2.078    0.150  -13.812    0.000   -2.373   -1.783   -1.617   -1.617
##    .speed             0.704    0.095    7.407    0.000    0.518    0.890    0.431    0.431
##     g                -0.120    0.055   -2.170    0.030   -0.227   -0.012   -0.132   -0.132
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.17.)    4.935    0.233   21.210    0.000    4.479    5.391    4.935    0.227
##    .sswk    (.18.)    7.807    0.551   14.180    0.000    6.728    8.886    7.807    0.133
##    .sspc    (.19.)    2.840    0.131   21.749    0.000    2.584    3.096    2.840    0.265
##    .ssar    (.20.)    5.550    0.571    9.713    0.000    4.430    6.669    5.550    0.113
##    .ssmk    (.21.)    9.487    0.540   17.569    0.000    8.429   10.545    9.487    0.238
##    .ssmc    (.22.)    8.128    0.358   22.699    0.000    7.426    8.829    8.128    0.434
##    .ssasi   (.23.)    7.597    0.433   17.538    0.000    6.748    8.446    7.597    0.465
##    .ssei    (.24.)    3.348    0.221   15.153    0.000    2.915    3.782    3.348    0.329
##    .ssno    (.25.)    0.218    0.021   10.280    0.000    0.176    0.259    0.218    0.247
##    .sscs    (.26.)    0.312    0.028   10.998    0.000    0.257    0.368    0.312    0.381
##    .verbal            1.354    0.641    2.113    0.035    0.098    2.610    0.069    0.069
##    .math              0.796    0.096    8.295    0.000    0.608    0.984    0.222    0.222
##    .elctrnc           0.221    0.057    3.865    0.000    0.109    0.332    0.134    0.134
##    .speed             1.133    0.128    8.870    0.000    0.882    1.383    0.424    0.424
##     g                 0.814    0.050   16.398    0.000    0.717    0.911    1.000    1.000
latent<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("g=~electronic", "sspc~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 9.286555e-14) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   795.399    75.000     0.000     0.962     0.095     0.067 98470.054 98781.670
Mc(latent)
## [1] 0.8446187
latent2<-cfa(hof.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "sspc~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 4.531887e-14) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   696.995    74.000     0.000     0.967     0.089     0.065 98373.649 98690.931
Mc(latent2)
## [1] 0.8641255
summary(latent2, standardized=T, ci=T) # g -0.151 Std.all
## lavaan 0.6-18 ended normally after 109 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        78
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               696.995     473.788
##   Degrees of freedom                                74          74
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.471
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          430.468     292.614
##     1                                          266.527     181.174
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.756    0.107    7.048    0.000    0.546    0.966    3.305    0.628
##     sswk    (.p2.)    1.711    0.249    6.868    0.000    1.223    2.199    7.478    0.935
##     sspc    (.p3.)    0.673    0.097    6.917    0.000    0.482    0.863    2.940    0.860
##   math =~                                                                                 
##     ssar    (.p4.)    3.325    0.126   26.307    0.000    3.077    3.572    6.986    0.946
##     ssmk    (.p5.)    2.772    0.104   26.723    0.000    2.569    2.976    5.826    0.885
##     ssmc    (.p6.)    0.681    0.076    8.955    0.000    0.532    0.830    1.431    0.271
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.788    0.069   11.495    0.000    0.654    0.922    1.606    0.305
##     ssasi   (.p8.)    2.223    0.121   18.418    0.000    1.987    2.460    4.533    0.822
##     ssmc    (.p9.)    1.569    0.108   14.571    0.000    1.358    1.780    3.198    0.605
##     ssei    (.10.)    2.021    0.100   20.184    0.000    1.825    2.218    4.121    0.946
##   speed =~                                                                                
##     ssno    (.11.)    0.513    0.018   28.904    0.000    0.479    0.548    0.831    0.873
##     sscs    (.12.)    0.449    0.017   26.950    0.000    0.416    0.481    0.726    0.812
##   g =~                                                                                    
##     verbal  (.13.)    4.255    0.651    6.539    0.000    2.979    5.530    0.973    0.973
##     math    (.14.)    1.848    0.087   21.140    0.000    1.677    2.020    0.880    0.880
##     elctrnc           1.776    0.115   15.395    0.000    1.550    2.003    0.871    0.871
##     speed   (.16.)    1.273    0.062   20.509    0.000    1.151    1.395    0.786    0.786
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   16.461    0.187   87.841    0.000   16.094   16.829   16.461    3.127
##    .sswk    (.33.)   25.394    0.285   89.182    0.000   24.836   25.952   25.394    3.176
##    .sspc             10.375    0.126   82.229    0.000   10.127   10.622   10.375    3.034
##    .ssar    (.35.)   18.311    0.291   62.890    0.000   17.740   18.882   18.311    2.480
##    .ssmk    (.36.)   14.312    0.252   56.897    0.000   13.819   14.805   14.312    2.173
##    .ssmc    (.37.)   15.737    0.197   80.017    0.000   15.352   16.122   15.737    2.976
##    .ssasi   (.38.)   16.087    0.199   80.911    0.000   15.697   16.476   16.087    2.918
##    .ssei             12.364    0.157   78.687    0.000   12.056   12.672   12.364    2.839
##    .ssno    (.40.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.062
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.093
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.052    0.052
##    .math              1.000                               1.000    1.000    0.226    0.226
##    .speed             1.000                               1.000    1.000    0.382    0.382
##     g                 1.000                               1.000    1.000    1.000    1.000
##    .ssgs              5.211    0.341   15.298    0.000    4.544    5.879    5.211    0.188
##    .sswk              8.015    0.746   10.738    0.000    6.552    9.478    8.015    0.125
##    .sspc              3.052    0.199   15.319    0.000    2.662    3.443    3.052    0.261
##    .ssar              5.696    0.756    7.537    0.000    4.214    7.177    5.696    0.104
##    .ssmk              9.436    0.709   13.313    0.000    8.047   10.825    9.436    0.218
##    .ssmc              8.670    0.546   15.888    0.000    7.600    9.739    8.670    0.310
##    .ssasi             9.851    0.757   13.008    0.000    8.367   11.335    9.851    0.324
##    .ssei              1.994    0.269    7.419    0.000    1.467    2.521    1.994    0.105
##    .ssno              0.215    0.025    8.708    0.000    0.167    0.263    0.215    0.237
##    .sscs              0.272    0.035    7.770    0.000    0.203    0.341    0.272    0.340
##    .electronic        1.000                               1.000    1.000    0.241    0.241
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.756    0.107    7.048    0.000    0.546    0.966    3.305    0.688
##     sswk    (.p2.)    1.711    0.249    6.868    0.000    1.223    2.199    7.478    0.938
##     sspc    (.p3.)    0.673    0.097    6.917    0.000    0.482    0.863    2.940    0.876
##   math =~                                                                                 
##     ssar    (.p4.)    3.325    0.126   26.307    0.000    3.077    3.572    6.986    0.949
##     ssmk    (.p5.)    2.772    0.104   26.723    0.000    2.569    2.976    5.826    0.883
##     ssmc    (.p6.)    0.681    0.076    8.955    0.000    0.532    0.830    1.431    0.324
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.788    0.069   11.495    0.000    0.654    0.922    1.057    0.220
##     ssasi   (.p8.)    2.223    0.121   18.418    0.000    1.987    2.460    2.982    0.767
##     ssmc    (.p9.)    1.569    0.108   14.571    0.000    1.358    1.780    2.104    0.476
##     ssei    (.10.)    2.021    0.100   20.184    0.000    1.825    2.218    2.711    0.803
##   speed =~                                                                                
##     ssno    (.11.)    0.513    0.018   28.904    0.000    0.479    0.548    0.831    0.870
##     sscs    (.12.)    0.449    0.017   26.950    0.000    0.416    0.481    0.726    0.773
##   g =~                                                                                    
##     verbal  (.13.)    4.255    0.651    6.539    0.000    2.979    5.530    0.973    0.973
##     math    (.14.)    1.848    0.087   21.140    0.000    1.677    2.020    0.880    0.880
##     elctrnc           1.258    0.074   16.956    0.000    1.112    1.403    0.938    0.938
##     speed   (.16.)    1.273    0.062   20.509    0.000    1.151    1.395    0.786    0.786
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   16.461    0.187   87.841    0.000   16.094   16.829   16.461    3.425
##    .sswk    (.33.)   25.394    0.285   89.182    0.000   24.836   25.952   25.394    3.186
##    .sspc             11.055    0.131   84.443    0.000   10.798   11.311   11.055    3.293
##    .ssar    (.35.)   18.311    0.291   62.890    0.000   17.740   18.882   18.311    2.487
##    .ssmk    (.36.)   14.312    0.252   56.897    0.000   13.819   14.805   14.312    2.170
##    .ssmc    (.37.)   15.737    0.197   80.017    0.000   15.352   16.122   15.737    3.561
##    .ssasi   (.38.)   16.087    0.199   80.911    0.000   15.697   16.476   16.087    4.137
##    .ssei             14.256    0.248   57.595    0.000   13.771   14.741   14.256    4.224
##    .ssno    (.40.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.062
##    .sscs              0.197    0.041    4.841    0.000    0.117    0.277    0.197    0.210
##    .verbal            0.925    0.069   13.447    0.000    0.790    1.059    0.212    0.212
##    .math             -0.061    0.079   -0.774    0.439   -0.216    0.093   -0.029   -0.029
##    .elctrnc          -2.133    0.147  -14.485    0.000   -2.421   -1.844   -1.590   -1.590
##    .speed             0.716    0.080    8.913    0.000    0.558    0.873    0.442    0.442
##     g                -0.151    0.054   -2.784    0.005   -0.257   -0.045   -0.151   -0.151
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.052    0.052
##    .math              1.000                               1.000    1.000    0.226    0.226
##    .speed             1.000                               1.000    1.000    0.382    0.382
##     g                 1.000                               1.000    1.000    1.000    1.000
##    .ssgs              4.689    0.307   15.272    0.000    4.087    5.291    4.689    0.203
##    .sswk              7.586    0.725   10.459    0.000    6.164    9.007    7.586    0.119
##    .sspc              2.631    0.164   16.003    0.000    2.309    2.953    2.631    0.233
##    .ssar              5.407    0.738    7.331    0.000    3.961    6.853    5.407    0.100
##    .ssmk              9.567    0.741   12.912    0.000    8.115   11.019    9.567    0.220
##    .ssmc              8.082    0.463   17.449    0.000    7.175    8.990    8.082    0.414
##    .ssasi             6.228    0.426   14.628    0.000    5.394    7.063    6.228    0.412
##    .ssei              4.042    0.297   13.615    0.000    3.460    4.624    4.042    0.355
##    .ssno              0.222    0.028    7.895    0.000    0.167    0.277    0.222    0.243
##    .sscs              0.355    0.039    9.034    0.000    0.278    0.432    0.355    0.402
##    .electronic        0.218    0.055    3.927    0.000    0.109    0.326    0.121    0.121
weak<-cfa(hof.weak, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "sspc~1", "ssei~1", "sscs~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   696.995    75.000     0.000     0.967     0.088     0.065 98371.649 98683.266
Mc(weak)
## [1] 0.8643281
summary(weak, standardized=T, ci=T) # -0.184
## lavaan 0.6-18 ended normally after 113 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        77
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               696.995     480.191
##   Degrees of freedom                                75          75
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.451
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          430.468     296.568
##     1                                          266.527     183.623
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.756    0.107    7.048    0.000    0.546    0.966    3.305    0.628
##     sswk    (.p2.)    1.711    0.249    6.868    0.000    1.223    2.199    7.478    0.935
##     sspc    (.p3.)    0.673    0.097    6.917    0.000    0.482    0.863    2.940    0.860
##   math =~                                                                                 
##     ssar    (.p4.)    3.325    0.126   26.307    0.000    3.077    3.572    6.986    0.946
##     ssmk    (.p5.)    2.772    0.104   26.723    0.000    2.569    2.976    5.826    0.885
##     ssmc    (.p6.)    0.681    0.076    8.955    0.000    0.532    0.830    1.431    0.271
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.788    0.069   11.495    0.000    0.654    0.922    1.606    0.305
##     ssasi   (.p8.)    2.223    0.121   18.418    0.000    1.987    2.460    4.533    0.822
##     ssmc    (.p9.)    1.569    0.108   14.571    0.000    1.358    1.780    3.198    0.605
##     ssei    (.10.)    2.021    0.100   20.184    0.000    1.825    2.218    4.121    0.946
##   speed =~                                                                                
##     ssno    (.11.)    0.513    0.018   28.904    0.000    0.479    0.548    0.831    0.873
##     sscs    (.12.)    0.449    0.017   26.950    0.000    0.416    0.481    0.726    0.812
##   g =~                                                                                    
##     verbal  (.13.)    4.255    0.651    6.539    0.000    2.979    5.530    0.973    0.973
##     math    (.14.)    1.848    0.087   21.140    0.000    1.677    2.020    0.880    0.880
##     elctrnc           1.776    0.115   15.395    0.000    1.550    2.003    0.871    0.871
##     speed   (.16.)    1.273    0.062   20.509    0.000    1.151    1.395    0.786    0.786
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.33.)   16.461    0.187   87.841    0.000   16.094   16.829   16.461    3.127
##    .sswk    (.34.)   25.394    0.285   89.182    0.000   24.836   25.952   25.394    3.176
##    .sspc             10.375    0.126   82.229    0.000   10.127   10.622   10.375    3.034
##    .ssar    (.36.)   18.311    0.291   62.890    0.000   17.740   18.882   18.311    2.480
##    .ssmk    (.37.)   14.312    0.252   56.897    0.000   13.819   14.805   14.312    2.173
##    .ssmc    (.38.)   15.737    0.197   80.017    0.000   15.352   16.122   15.737    2.976
##    .ssasi   (.39.)   16.087    0.199   80.911    0.000   15.697   16.476   16.087    2.918
##    .ssei             12.364    0.157   78.687    0.000   12.056   12.672   12.364    2.839
##    .ssno    (.41.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.062
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.093
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.052    0.052
##    .math              1.000                               1.000    1.000    0.226    0.226
##    .speed             1.000                               1.000    1.000    0.382    0.382
##     g                 1.000                               1.000    1.000    1.000    1.000
##    .ssgs              5.211    0.341   15.298    0.000    4.544    5.879    5.211    0.188
##    .sswk              8.015    0.746   10.738    0.000    6.552    9.478    8.015    0.125
##    .sspc              3.052    0.199   15.319    0.000    2.662    3.443    3.052    0.261
##    .ssar              5.696    0.756    7.537    0.000    4.214    7.177    5.696    0.104
##    .ssmk              9.436    0.709   13.313    0.000    8.047   10.825    9.436    0.218
##    .ssmc              8.670    0.546   15.888    0.000    7.600    9.739    8.670    0.310
##    .ssasi             9.851    0.757   13.008    0.000    8.367   11.335    9.851    0.324
##    .ssei              1.994    0.269    7.419    0.000    1.467    2.521    1.994    0.105
##    .ssno              0.215    0.025    8.708    0.000    0.167    0.263    0.215    0.237
##    .sscs              0.272    0.035    7.770    0.000    0.203    0.341    0.272    0.340
##    .electronic        1.000                               1.000    1.000    0.241    0.241
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.756    0.107    7.048    0.000    0.546    0.966    3.305    0.688
##     sswk    (.p2.)    1.711    0.249    6.868    0.000    1.223    2.199    7.478    0.938
##     sspc    (.p3.)    0.673    0.097    6.917    0.000    0.482    0.863    2.940    0.876
##   math =~                                                                                 
##     ssar    (.p4.)    3.325    0.126   26.307    0.000    3.077    3.572    6.986    0.949
##     ssmk    (.p5.)    2.772    0.104   26.723    0.000    2.569    2.976    5.826    0.883
##     ssmc    (.p6.)    0.681    0.076    8.955    0.000    0.532    0.830    1.431    0.324
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.788    0.069   11.495    0.000    0.654    0.922    1.057    0.220
##     ssasi   (.p8.)    2.223    0.121   18.418    0.000    1.987    2.460    2.982    0.767
##     ssmc    (.p9.)    1.569    0.108   14.571    0.000    1.358    1.780    2.104    0.476
##     ssei    (.10.)    2.021    0.100   20.184    0.000    1.825    2.218    2.711    0.803
##   speed =~                                                                                
##     ssno    (.11.)    0.513    0.018   28.904    0.000    0.479    0.548    0.831    0.870
##     sscs    (.12.)    0.449    0.017   26.950    0.000    0.416    0.481    0.726    0.773
##   g =~                                                                                    
##     verbal  (.13.)    4.255    0.651    6.539    0.000    2.979    5.530    0.973    0.973
##     math    (.14.)    1.848    0.087   21.140    0.000    1.677    2.020    0.880    0.880
##     elctrnc           1.258    0.074   16.956    0.000    1.112    1.403    0.938    0.938
##     speed   (.16.)    1.273    0.062   20.509    0.000    1.151    1.395    0.786    0.786
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.33.)   16.461    0.187   87.841    0.000   16.094   16.829   16.461    3.425
##    .sswk    (.34.)   25.394    0.285   89.182    0.000   24.836   25.952   25.394    3.186
##    .sspc             11.055    0.131   84.443    0.000   10.798   11.311   11.055    3.293
##    .ssar    (.36.)   18.311    0.291   62.890    0.000   17.740   18.882   18.311    2.487
##    .ssmk    (.37.)   14.312    0.252   56.897    0.000   13.819   14.805   14.312    2.170
##    .ssmc    (.38.)   15.737    0.197   80.017    0.000   15.352   16.122   15.737    3.561
##    .ssasi   (.39.)   16.087    0.199   80.911    0.000   15.697   16.476   16.087    4.137
##    .ssei             14.256    0.248   57.595    0.000   13.771   14.741   14.256    4.224
##    .ssno    (.41.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.062
##    .sscs              0.197    0.041    4.841    0.000    0.117    0.277    0.197    0.210
##    .verbal            1.065    0.249    4.277    0.000    0.577    1.553    0.244    0.244
##    .elctrnc          -2.091    0.152  -13.733    0.000   -2.390   -1.793   -1.559   -1.559
##    .speed             0.758    0.080    9.440    0.000    0.600    0.915    0.468    0.468
##     g                -0.184    0.064   -2.877    0.004   -0.309   -0.059   -0.184   -0.184
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.052    0.052
##    .math              1.000                               1.000    1.000    0.226    0.226
##    .speed             1.000                               1.000    1.000    0.382    0.382
##     g                 1.000                               1.000    1.000    1.000    1.000
##    .ssgs              4.689    0.307   15.272    0.000    4.087    5.291    4.689    0.203
##    .sswk              7.586    0.725   10.459    0.000    6.164    9.007    7.586    0.119
##    .sspc              2.631    0.164   16.003    0.000    2.309    2.953    2.631    0.233
##    .ssar              5.407    0.738    7.331    0.000    3.961    6.853    5.407    0.100
##    .ssmk              9.567    0.741   12.912    0.000    8.115   11.019    9.567    0.220
##    .ssmc              8.082    0.463   17.449    0.000    7.174    8.990    8.082    0.414
##    .ssasi             6.228    0.426   14.628    0.000    5.394    7.063    6.228    0.412
##    .ssei              4.042    0.297   13.615    0.000    3.460    4.624    4.042    0.355
##    .ssno              0.222    0.028    7.895    0.000    0.167    0.277    0.222    0.243
##    .sscs              0.355    0.039    9.034    0.000    0.278    0.432    0.355    0.402
##    .electronic        0.218    0.055    3.927    0.000    0.109    0.326    0.121    0.121
lvstrict<-cfa(hof.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("g=~electronic", "sspc~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 1.672352e-13) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(lvstrict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   786.869    84.000     0.000     0.963     0.089     0.071 98443.524 98704.148
Mc(lvstrict)
## [1] 0.8480966
summary(lvstrict, standardized=T, ci=T) # -0.126
## lavaan 0.6-18 ended normally after 97 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        78
##   Number of equality constraints                    32
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               786.869     521.353
##   Degrees of freedom                                84          84
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.509
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          478.250     316.872
##     1                                          308.620     204.481
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.766    0.108    7.090    0.000    0.554    0.977    3.276    0.626
##     sswk    (.p2.)    1.748    0.253    6.895    0.000    1.251    2.244    7.478    0.937
##     sspc    (.p3.)    0.689    0.099    6.954    0.000    0.495    0.883    2.946    0.868
##   math =~                                                                                 
##     ssar    (.p4.)    3.312    0.127   26.127    0.000    3.064    3.561    6.988    0.948
##     ssmk    (.p5.)    2.762    0.104   26.518    0.000    2.558    2.966    5.827    0.884
##     ssmc    (.p6.)    0.644    0.075    8.572    0.000    0.497    0.791    1.358    0.258
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.820    0.072   11.399    0.000    0.679    0.961    1.642    0.313
##     ssasi   (.p8.)    2.298    0.131   17.594    0.000    2.042    2.554    4.600    0.858
##     ssmc    (.p9.)    1.649    0.115   14.387    0.000    1.425    1.874    3.301    0.627
##     ssei    (.10.)    2.034    0.100   20.291    0.000    1.837    2.230    4.070    0.912
##   speed =~                                                                                
##     ssno    (.11.)    0.513    0.018   28.919    0.000    0.478    0.548    0.832    0.872
##     sscs    (.12.)    0.449    0.017   27.035    0.000    0.416    0.481    0.727    0.793
##   g =~                                                                                    
##     verbal  (.13.)    4.160    0.635    6.555    0.000    2.916    5.404    0.972    0.972
##     math    (.14.)    1.857    0.088   21.009    0.000    1.684    2.031    0.881    0.881
##     elctrnc           1.734    0.117   14.825    0.000    1.504    1.963    0.866    0.866
##     speed   (.16.)    1.275    0.062   20.497    0.000    1.153    1.397    0.787    0.787
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   16.461    0.188   87.723    0.000   16.093   16.829   16.461    3.143
##    .sswk    (.33.)   25.393    0.284   89.284    0.000   24.836   25.951   25.393    3.181
##    .sspc             10.375    0.126   82.229    0.000   10.127   10.622   10.375    3.057
##    .ssar    (.35.)   18.314    0.289   63.348    0.000   17.748   18.881   18.314    2.484
##    .ssmk    (.36.)   14.313    0.250   57.247    0.000   13.823   14.803   14.313    2.172
##    .ssmc    (.37.)   15.750    0.196   80.241    0.000   15.365   16.135   15.750    2.992
##    .ssasi   (.38.)   16.099    0.198   81.490    0.000   15.712   16.486   16.099    3.003
##    .ssei             12.364    0.157   78.688    0.000   12.056   12.672   12.364    2.771
##    .ssno    (.40.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.062
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.091
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.055    0.055
##    .math              1.000                               1.000    1.000    0.225    0.225
##    .speed             1.000                               1.000    1.000    0.381    0.381
##     g                 1.000                               1.000    1.000    1.000    1.000
##    .ssgs    (.21.)    4.937    0.233   21.222    0.000    4.481    5.393    4.937    0.180
##    .sswk    (.22.)    7.808    0.551   14.184    0.000    6.729    8.887    7.808    0.123
##    .sspc    (.23.)    2.839    0.130   21.780    0.000    2.584    3.095    2.839    0.246
##    .ssar    (.24.)    5.547    0.574    9.662    0.000    4.421    6.672    5.547    0.102
##    .ssmk    (.25.)    9.492    0.541   17.550    0.000    8.432   10.552    9.492    0.218
##    .ssmc    (.26.)    8.130    0.358   22.724    0.000    7.429    8.832    8.130    0.293
##    .ssasi   (.27.)    7.594    0.433   17.548    0.000    6.745    8.442    7.594    0.264
##    .ssei    (.28.)    3.346    0.222   15.101    0.000    2.912    3.781    3.346    0.168
##    .ssno    (.29.)    0.217    0.021   10.296    0.000    0.176    0.259    0.217    0.239
##    .sscs    (.30.)    0.313    0.028   11.033    0.000    0.257    0.368    0.313    0.372
##    .elctrnc           1.000                               1.000    1.000    0.250    0.250
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.766    0.108    7.090    0.000    0.554    0.977    3.276    0.678
##     sswk    (.p2.)    1.748    0.253    6.895    0.000    1.251    2.244    7.478    0.937
##     sspc    (.p3.)    0.689    0.099    6.954    0.000    0.495    0.883    2.946    0.868
##   math =~                                                                                 
##     ssar    (.p4.)    3.312    0.127   26.127    0.000    3.064    3.561    6.988    0.948
##     ssmk    (.p5.)    2.762    0.104   26.518    0.000    2.558    2.966    5.827    0.884
##     ssmc    (.p6.)    0.644    0.075    8.572    0.000    0.497    0.791    1.358    0.306
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.820    0.072   11.399    0.000    0.679    0.961    1.095    0.226
##     ssasi   (.p8.)    2.298    0.131   17.594    0.000    2.042    2.554    3.068    0.744
##     ssmc    (.p9.)    1.649    0.115   14.387    0.000    1.425    1.874    2.202    0.496
##     ssei    (.10.)    2.034    0.100   20.291    0.000    1.837    2.230    2.715    0.829
##   speed =~                                                                                
##     ssno    (.11.)    0.513    0.018   28.919    0.000    0.478    0.548    0.832    0.872
##     sscs    (.12.)    0.449    0.017   27.035    0.000    0.416    0.481    0.727    0.793
##   g =~                                                                                    
##     verbal  (.13.)    4.160    0.635    6.555    0.000    2.916    5.404    0.972    0.972
##     math    (.14.)    1.857    0.088   21.009    0.000    1.684    2.031    0.881    0.881
##     elctrnc           1.247    0.075   16.726    0.000    1.101    1.393    0.934    0.934
##     speed   (.16.)    1.275    0.062   20.497    0.000    1.153    1.397    0.787    0.787
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   16.461    0.188   87.723    0.000   16.093   16.829   16.461    3.404
##    .sswk    (.33.)   25.393    0.284   89.284    0.000   24.836   25.951   25.393    3.181
##    .sspc             11.053    0.131   84.153    0.000   10.795   11.310   11.053    3.256
##    .ssar    (.35.)   18.314    0.289   63.348    0.000   17.748   18.881   18.314    2.484
##    .ssmk    (.36.)   14.313    0.250   57.247    0.000   13.823   14.803   14.313    2.172
##    .ssmc    (.37.)   15.750    0.196   80.241    0.000   15.365   16.135   15.750    3.545
##    .ssasi   (.38.)   16.099    0.198   81.490    0.000   15.712   16.486   16.099    3.904
##    .ssei             14.112    0.238   59.415    0.000   13.646   14.577   14.112    4.311
##    .ssno    (.40.)    0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.062
##    .sscs              0.197    0.041    4.851    0.000    0.117    0.277    0.197    0.215
##    .verbal            0.803    0.067   12.031    0.000    0.672    0.934    0.188    0.188
##    .math             -0.106    0.075   -1.407    0.159   -0.254    0.042   -0.050   -0.050
##    .elctrnc          -2.080    0.145  -14.317    0.000   -2.365   -1.795   -1.558   -1.558
##    .speed             0.684    0.078    8.740    0.000    0.531    0.838    0.422    0.422
##     g                -0.126    0.053   -2.358    0.018   -0.230   -0.021   -0.126   -0.126
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.055    0.055
##    .math              1.000                               1.000    1.000    0.225    0.225
##    .speed             1.000                               1.000    1.000    0.381    0.381
##     g                 1.000                               1.000    1.000    1.000    1.000
##    .ssgs    (.21.)    4.937    0.233   21.222    0.000    4.481    5.393    4.937    0.211
##    .sswk    (.22.)    7.808    0.551   14.184    0.000    6.729    8.887    7.808    0.123
##    .sspc    (.23.)    2.839    0.130   21.780    0.000    2.584    3.095    2.839    0.246
##    .ssar    (.24.)    5.547    0.574    9.662    0.000    4.421    6.672    5.547    0.102
##    .ssmk    (.25.)    9.492    0.541   17.550    0.000    8.432   10.552    9.492    0.218
##    .ssmc    (.26.)    8.130    0.358   22.724    0.000    7.429    8.832    8.130    0.412
##    .ssasi   (.27.)    7.594    0.433   17.548    0.000    6.745    8.442    7.594    0.447
##    .ssei    (.28.)    3.346    0.222   15.101    0.000    2.912    3.781    3.346    0.312
##    .ssno    (.29.)    0.217    0.021   10.296    0.000    0.176    0.259    0.217    0.239
##    .sscs    (.30.)    0.313    0.028   11.033    0.000    0.257    0.368    0.313    0.372
##    .elctrnc           0.227    0.058    3.939    0.000    0.114    0.340    0.128    0.128
tests<-lavTestLRT(configural, metric2, scalar2, latent2, weak)
## Warning: lavaan->lav_test_diff_SatorraBentler2001():  
##    scaling factor is negative
Td=tests[2:5,"Chisq diff"]
Td
## [1] 29.53607 31.78043 12.80516       NA
dfd=tests[2:5,"Df diff"]
dfd
## [1] 10  2  4  1
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1067+ 1067 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04280949 0.11818759 0.04544228         NA
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02543736 0.06108027
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.0841313 0.1559762
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.01899893 0.07442759
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1] NA NA
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.999     0.997     0.281     0.062     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.999     0.997     0.967     0.822
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.988     0.980     0.448     0.228     0.023     0.001
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##        NA        NA        NA        NA        NA        NA
tests<-lavTestLRT(configural, metric2, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 29.53607 31.78043 88.31230
dfd=tests[2:4,"Df diff"]
dfd
## [1] 10  2  5
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1067+ 1067 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04280949 0.11818759 0.12502330
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.0841313 0.1559762
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.1029061 0.1484995
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.999     0.997     0.967     0.822
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.999     0.968
tests<-lavTestLRT(configural, metric2, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 29.53607 31.78043 50.14412
dfd=tests[2:4,"Df diff"]
dfd
## [1] 10  2 10
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1067+ 1067 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04280949 0.11818759 0.06136664
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02543736 0.06108027
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.0841313 0.1559762
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.04509472 0.07874115
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.999     0.997     0.281     0.062     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.999     0.997     0.967     0.822
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.880     0.581     0.039     0.000
tests<-lavTestLRT(configural, metric2, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]  29.53607 230.31043
dfd=tests[2:3,"Df diff"]
dfd
## [1] 10  5
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1067+ 1067 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04280949 0.20560186
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02543736 0.06108027
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1833756 0.2286256
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.999     0.997     0.281     0.062     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric)
Td=tests[2,"Chisq diff"]
Td
## [1] 90.60087
dfd=tests[2,"Df diff"]
dfd
## [1] 11
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1067+ 1067 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.08239179
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.06715467 0.09847901
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.992     0.620     0.036
hof.age<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal 
math~~1*math
speed~~1*speed
g~~1*g
math~0*1
g ~ age 
'

hof.ageq<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal 
math~~1*math
speed~~1*speed
g~~1*g
math~0*1
g ~ c(a,a)*age 
'

hof.age2<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal 
math~~1*math
speed~~1*speed
g~~1*g
math~0*1
g ~ age + age2 
'

hof.age2q<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal 
math~~1*math
speed~~1*speed
g~~1*g
math~0*1
g ~ c(a,a)*age+c(b,b)*age2
'

sem.age<-sem(hof.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "sspc~1", "ssei~1", "sscs~1"))
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   840.405    93.000     0.000     0.961     0.087     0.066     0.447 98327.198 98650.146
Mc(sem.age)
## [1] 0.8392889
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 99 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        79
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               840.405     566.370
##   Degrees of freedom                                93          93
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.484
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          499.286     336.482
##     1                                          341.118     229.888
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.744    0.108    6.912    0.000    0.533    0.955    3.295    0.627
##     sswk    (.p2.)    1.684    0.250    6.729    0.000    1.194    2.175    7.456    0.935
##     sspc    (.p3.)    0.661    0.098    6.773    0.000    0.470    0.853    2.928    0.858
##   math =~                                                                                 
##     ssar    (.p4.)    3.352    0.126   26.656    0.000    3.105    3.598    6.971    0.947
##     ssmk    (.p5.)    2.792    0.103   27.039    0.000    2.589    2.994    5.806    0.884
##     ssmc    (.p6.)    0.688    0.076    8.999    0.000    0.538    0.837    1.430    0.271
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.782    0.068   11.494    0.000    0.648    0.915    1.599    0.304
##     ssasi   (.p8.)    2.210    0.120   18.402    0.000    1.975    2.446    4.520    0.821
##     ssmc    (.p9.)    1.558    0.107   14.576    0.000    1.349    1.768    3.187    0.604
##     ssei    (.10.)    2.011    0.100   20.136    0.000    1.815    2.207    4.112    0.946
##   speed =~                                                                                
##     ssno    (.11.)    0.514    0.018   28.934    0.000    0.479    0.549    0.828    0.872
##     sscs    (.12.)    0.450    0.017   27.020    0.000    0.417    0.482    0.725    0.812
##   g =~                                                                                    
##     verbal  (.13.)    4.275    0.665    6.432    0.000    2.972    5.578    0.974    0.974
##     math    (.14.)    1.808    0.086   21.123    0.000    1.640    1.976    0.877    0.877
##     elctrnc           1.769    0.115   15.421    0.000    1.544    1.993    0.872    0.872
##     speed   (.16.)    1.254    0.062   20.364    0.000    1.134    1.375    0.785    0.785
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.060    0.019    3.200    0.001    0.023    0.097    0.060    0.130
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   16.539    0.192   86.067    0.000   16.163   16.916   16.539    3.149
##    .sswk    (.36.)   25.519    0.291   87.743    0.000   24.949   26.089   25.519    3.200
##    .sspc             10.424    0.128   81.403    0.000   10.173   10.675   10.424    3.056
##    .ssar    (.38.)   18.418    0.296   62.227    0.000   17.838   18.998   18.418    2.501
##    .ssmk    (.39.)   14.400    0.256   56.308    0.000   13.899   14.902   14.400    2.191
##    .ssmc    (.40.)   15.806    0.200   79.046    0.000   15.414   16.198   15.806    2.995
##    .ssasi   (.41.)   16.155    0.200   80.750    0.000   15.763   16.547   16.155    2.936
##    .ssei             12.426    0.159   78.278    0.000   12.115   12.737   12.426    2.858
##    .ssno    (.43.)    0.070    0.035    1.977    0.048    0.001    0.140    0.070    0.074
##    .sscs             -0.074    0.034   -2.176    0.030   -0.140   -0.007   -0.074   -0.082
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.051    0.051
##    .math              1.000                               1.000    1.000    0.231    0.231
##    .speed             1.000                               1.000    1.000    0.385    0.385
##    .g                 1.000                               1.000    1.000    0.983    0.983
##    .ssgs              5.224    0.342   15.291    0.000    4.554    5.893    5.224    0.189
##    .sswk              7.989    0.745   10.722    0.000    6.529    9.450    7.989    0.126
##    .sspc              3.060    0.200   15.332    0.000    2.669    3.451    3.060    0.263
##    .ssar              5.637    0.757    7.450    0.000    4.154    7.120    5.637    0.104
##    .ssmk              9.469    0.711   13.318    0.000    8.075   10.862    9.469    0.219
##    .ssmc              8.683    0.545   15.917    0.000    7.613    9.752    8.683    0.312
##    .ssasi             9.854    0.758   12.995    0.000    8.368   11.340    9.854    0.325
##    .ssei              1.987    0.267    7.453    0.000    1.465    2.510    1.987    0.105
##    .ssno              0.216    0.025    8.734    0.000    0.167    0.264    0.216    0.239
##    .sscs              0.272    0.035    7.752    0.000    0.203    0.340    0.272    0.341
##    .electronic        1.000                               1.000    1.000    0.239    0.239
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.744    0.108    6.912    0.000    0.533    0.955    3.318    0.689
##     sswk    (.p2.)    1.684    0.250    6.729    0.000    1.194    2.175    7.509    0.939
##     sspc    (.p3.)    0.661    0.098    6.773    0.000    0.470    0.853    2.948    0.876
##   math =~                                                                                 
##     ssar    (.p4.)    3.352    0.126   26.656    0.000    3.105    3.598    7.011    0.950
##     ssmk    (.p5.)    2.792    0.103   27.039    0.000    2.589    2.994    5.840    0.883
##     ssmc    (.p6.)    0.688    0.076    8.999    0.000    0.538    0.837    1.438    0.325
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.782    0.068   11.494    0.000    0.648    0.915    1.057    0.219
##     ssasi   (.p8.)    2.210    0.120   18.402    0.000    1.975    2.446    2.989    0.767
##     ssmc    (.p9.)    1.558    0.107   14.576    0.000    1.349    1.768    2.107    0.476
##     ssei    (.10.)    2.011    0.100   20.136    0.000    1.815    2.207    2.719    0.804
##   speed =~                                                                                
##     ssno    (.11.)    0.514    0.018   28.934    0.000    0.479    0.549    0.832    0.870
##     sscs    (.12.)    0.450    0.017   27.020    0.000    0.417    0.482    0.728    0.775
##   g =~                                                                                    
##     verbal  (.13.)    4.275    0.665    6.432    0.000    2.972    5.578    0.975    0.975
##     math    (.14.)    1.808    0.086   21.123    0.000    1.640    1.976    0.878    0.878
##     elctrnc           1.248    0.074   16.914    0.000    1.104    1.393    0.938    0.938
##     speed   (.16.)    1.254    0.062   20.364    0.000    1.134    1.375    0.787    0.787
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.084    0.016    5.191    0.000    0.052    0.116    0.083    0.178
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   16.539    0.192   86.067    0.000   16.163   16.916   16.539    3.432
##    .sswk    (.36.)   25.519    0.291   87.743    0.000   24.949   26.089   25.519    3.193
##    .sspc             11.105    0.133   83.601    0.000   10.844   11.365   11.105    3.298
##    .ssar    (.38.)   18.418    0.296   62.227    0.000   17.838   18.998   18.418    2.495
##    .ssmk    (.39.)   14.400    0.256   56.308    0.000   13.899   14.902   14.400    2.178
##    .ssmc    (.40.)   15.806    0.200   79.046    0.000   15.414   16.198   15.806    3.571
##    .ssasi   (.41.)   16.155    0.200   80.750    0.000   15.763   16.547   16.155    4.147
##    .ssei             14.322    0.250   57.387    0.000   13.833   14.812   14.322    4.237
##    .ssno    (.43.)    0.070    0.035    1.977    0.048    0.001    0.140    0.070    0.073
##    .sscs              0.206    0.041    5.038    0.000    0.126    0.287    0.206    0.219
##    .verbal            1.086    0.255    4.260    0.000    0.586    1.586    0.244    0.244
##    .elctrnc          -2.112    0.154  -13.694    0.000   -2.414   -1.810   -1.562   -1.562
##    .speed             0.758    0.080    9.456    0.000    0.601    0.915    0.468    0.468
##    .g                -0.176    0.066   -2.688    0.007   -0.305   -0.048   -0.174   -0.174
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.050    0.050
##    .math              1.000                               1.000    1.000    0.229    0.229
##    .speed             1.000                               1.000    1.000    0.381    0.381
##    .g                 1.000                               1.000    1.000    0.968    0.968
##    .ssgs              4.682    0.306   15.303    0.000    4.082    5.282    4.682    0.202
##    .sswk              7.502    0.721   10.399    0.000    6.088    8.917    7.502    0.117
##    .sspc              2.643    0.165   16.013    0.000    2.320    2.967    2.643    0.233
##    .ssar              5.353    0.739    7.243    0.000    3.904    6.801    5.353    0.098
##    .ssmk              9.611    0.743   12.934    0.000    8.155   11.068    9.611    0.220
##    .ssmc              8.089    0.463   17.459    0.000    7.181    8.997    8.089    0.413
##    .ssasi             6.241    0.426   14.660    0.000    5.407    7.075    6.241    0.411
##    .ssei              4.031    0.297   13.566    0.000    3.448    4.613    4.031    0.353
##    .ssno              0.223    0.028    7.916    0.000    0.168    0.279    0.223    0.244
##    .sscs              0.354    0.039    8.994    0.000    0.277    0.431    0.354    0.400
##    .electronic        0.219    0.056    3.909    0.000    0.109    0.329    0.120    0.120
sem.ageq<-sem(hof.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "sspc~1", "ssei~1", "sscs~1"))
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   841.716    94.000     0.000     0.961     0.086     0.063     0.447 98326.509 98643.791
Mc(sem.ageq)
## [1] 0.8392277
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 107 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        79
##   Number of equality constraints                    23
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               841.716     567.621
##   Degrees of freedom                                94          94
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.483
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          499.940     337.140
##     1                                          341.776     230.480
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.749    0.107    7.013    0.000    0.539    0.958    3.306    0.628
##     sswk    (.p2.)    1.694    0.248    6.833    0.000    1.208    2.180    7.483    0.936
##     sspc    (.p3.)    0.665    0.097    6.880    0.000    0.476    0.855    2.938    0.859
##   math =~                                                                                 
##     ssar    (.p4.)    3.349    0.126   26.661    0.000    3.103    3.595    6.991    0.947
##     ssmk    (.p5.)    2.790    0.103   27.042    0.000    2.587    2.992    5.823    0.884
##     ssmc    (.p6.)    0.687    0.076    8.997    0.000    0.537    0.836    1.434    0.271
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.781    0.068   11.488    0.000    0.648    0.915    1.603    0.304
##     ssasi   (.p8.)    2.209    0.120   18.391    0.000    1.973    2.444    4.532    0.822
##     ssmc    (.p9.)    1.558    0.107   14.566    0.000    1.348    1.767    3.196    0.604
##     ssei    (.10.)    2.009    0.100   20.130    0.000    1.814    2.205    4.123    0.946
##   speed =~                                                                                
##     ssno    (.11.)    0.514    0.018   28.926    0.000    0.479    0.548    0.830    0.873
##     sscs    (.12.)    0.449    0.017   27.021    0.000    0.417    0.482    0.727    0.813
##   g =~                                                                                    
##     verbal  (.13.)    4.251    0.651    6.527    0.000    2.975    5.528    0.974    0.974
##     math    (.14.)    1.810    0.086   21.160    0.000    1.643    1.978    0.878    0.878
##     elctrnc           1.770    0.115   15.414    0.000    1.545    1.995    0.873    0.873
##     speed   (.16.)    1.255    0.062   20.378    0.000    1.135    1.376    0.786    0.786
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.072    0.013    5.655    0.000    0.047    0.096    0.071    0.154
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   16.554    0.189   87.364    0.000   16.183   16.926   16.554    3.143
##    .sswk    (.36.)   25.543    0.286   89.208    0.000   24.982   26.104   25.543    3.193
##    .sspc             10.433    0.127   82.214    0.000   10.184   10.682   10.433    3.051
##    .ssar    (.38.)   18.438    0.293   62.882    0.000   17.863   19.013   18.438    2.497
##    .ssmk    (.39.)   14.417    0.254   56.846    0.000   13.920   14.914   14.417    2.189
##    .ssmc    (.40.)   15.819    0.198   80.034    0.000   15.432   16.207   15.819    2.991
##    .ssasi   (.41.)   16.168    0.197   81.932    0.000   15.781   16.555   16.168    2.933
##    .ssei             12.437    0.156   79.507    0.000   12.131   12.744   12.437    2.854
##    .ssno    (.43.)    0.072    0.035    2.054    0.040    0.003    0.141    0.072    0.076
##    .sscs             -0.072    0.033   -2.141    0.032   -0.137   -0.006   -0.072   -0.080
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.051    0.051
##    .math              1.000                               1.000    1.000    0.229    0.229
##    .speed             1.000                               1.000    1.000    0.383    0.383
##    .g                 1.000                               1.000    1.000    0.976    0.976
##    .ssgs              5.226    0.342   15.293    0.000    4.556    5.895    5.226    0.188
##    .sswk              7.979    0.744   10.720    0.000    6.520    9.438    7.979    0.125
##    .sspc              3.061    0.200   15.333    0.000    2.669    3.452    3.061    0.262
##    .ssar              5.634    0.756    7.451    0.000    4.152    7.116    5.634    0.103
##    .ssmk              9.473    0.711   13.325    0.000    8.080   10.867    9.473    0.218
##    .ssmc              8.683    0.546   15.915    0.000    7.614    9.752    8.683    0.310
##    .ssasi             9.853    0.758   12.993    0.000    8.367   11.340    9.853    0.324
##    .ssei              1.988    0.267    7.456    0.000    1.465    2.510    1.988    0.105
##    .ssno              0.216    0.025    8.735    0.000    0.167    0.264    0.216    0.238
##    .sscs              0.272    0.035    7.752    0.000    0.203    0.340    0.272    0.340
##    .electronic        1.000                               1.000    1.000    0.237    0.237
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.749    0.107    7.013    0.000    0.539    0.958    3.305    0.688
##     sswk    (.p2.)    1.694    0.248    6.833    0.000    1.208    2.180    7.481    0.939
##     sspc    (.p3.)    0.665    0.097    6.880    0.000    0.476    0.855    2.937    0.875
##   math =~                                                                                 
##     ssar    (.p4.)    3.349    0.126   26.661    0.000    3.103    3.595    6.989    0.949
##     ssmk    (.p5.)    2.790    0.103   27.042    0.000    2.587    2.992    5.822    0.883
##     ssmc    (.p6.)    0.687    0.076    8.997    0.000    0.537    0.836    1.433    0.324
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.781    0.068   11.488    0.000    0.648    0.915    1.054    0.219
##     ssasi   (.p8.)    2.209    0.120   18.391    0.000    1.973    2.444    2.979    0.766
##     ssmc    (.p9.)    1.558    0.107   14.566    0.000    1.348    1.767    2.101    0.476
##     ssei    (.10.)    2.009    0.100   20.130    0.000    1.814    2.205    2.710    0.804
##   speed =~                                                                                
##     ssno    (.11.)    0.514    0.018   28.926    0.000    0.479    0.548    0.830    0.869
##     sscs    (.12.)    0.449    0.017   27.021    0.000    0.417    0.482    0.727    0.774
##   g =~                                                                                    
##     verbal  (.13.)    4.251    0.651    6.527    0.000    2.975    5.528    0.974    0.974
##     math    (.14.)    1.810    0.086   21.160    0.000    1.643    1.978    0.878    0.878
##     elctrnc           1.250    0.074   16.919    0.000    1.105    1.395    0.938    0.938
##     speed   (.16.)    1.255    0.062   20.378    0.000    1.135    1.376    0.786    0.786
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.072    0.013    5.655    0.000    0.047    0.096    0.071    0.152
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   16.554    0.189   87.364    0.000   16.183   16.926   16.554    3.446
##    .sswk    (.36.)   25.543    0.286   89.208    0.000   24.982   26.104   25.543    3.206
##    .sspc             11.114    0.131   84.767    0.000   10.857   11.371   11.114    3.311
##    .ssar    (.38.)   18.438    0.293   62.882    0.000   17.863   19.013   18.438    2.504
##    .ssmk    (.39.)   14.417    0.254   56.846    0.000   13.920   14.914   14.417    2.186
##    .ssmc    (.40.)   15.819    0.198   80.034    0.000   15.432   16.207   15.819    3.581
##    .ssasi   (.41.)   16.168    0.197   81.932    0.000   15.781   16.555   16.168    4.159
##    .ssei             14.334    0.249   57.652    0.000   13.846   14.821   14.334    4.249
##    .ssno    (.43.)    0.072    0.035    2.054    0.040    0.003    0.141    0.072    0.076
##    .sscs              0.208    0.041    5.111    0.000    0.128    0.288    0.208    0.222
##    .verbal            1.080    0.252    4.290    0.000    0.586    1.573    0.244    0.244
##    .elctrnc          -2.115    0.154  -13.702    0.000   -2.418   -1.813   -1.568   -1.568
##    .speed             0.758    0.080    9.457    0.000    0.601    0.915    0.469    0.469
##    .g                -0.184    0.065   -2.847    0.004   -0.310   -0.057   -0.181   -0.181
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.051    0.051
##    .math              1.000                               1.000    1.000    0.230    0.230
##    .speed             1.000                               1.000    1.000    0.383    0.383
##    .g                 1.000                               1.000    1.000    0.977    0.977
##    .ssgs              4.683    0.306   15.301    0.000    4.084    5.283    4.683    0.203
##    .sswk              7.509    0.722   10.404    0.000    6.094    8.923    7.509    0.118
##    .sspc              2.641    0.165   16.016    0.000    2.318    2.964    2.641    0.234
##    .ssar              5.355    0.739    7.245    0.000    3.906    6.803    5.355    0.099
##    .ssmk              9.608    0.743   12.928    0.000    8.151   11.065    9.608    0.221
##    .ssmc              8.088    0.463   17.456    0.000    7.180    8.996    8.088    0.414
##    .ssasi             6.239    0.426   14.655    0.000    5.405    7.074    6.239    0.413
##    .ssei              4.032    0.297   13.576    0.000    3.450    4.614    4.032    0.354
##    .ssno              0.223    0.028    7.914    0.000    0.168    0.278    0.223    0.245
##    .sscs              0.354    0.039    8.999    0.000    0.277    0.431    0.354    0.401
##    .electronic        0.219    0.056    3.907    0.000    0.109    0.329    0.120    0.120
sem.age2<-sem(hof.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "sspc~1", "ssei~1", "sscs~1"))
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   889.409   111.000     0.000     0.959     0.081     0.061     0.472 98329.553 98663.833
Mc(sem.age2)
## [1] 0.8332113
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 105 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        81
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               889.409     595.690
##   Degrees of freedom                               111         111
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.493
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          527.699     353.431
##     1                                          361.710     242.259
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.745    0.108    6.913    0.000    0.533    0.956    3.296    0.627
##     sswk    (.p2.)    1.685    0.250    6.733    0.000    1.195    2.176    7.459    0.935
##     sspc    (.p3.)    0.662    0.098    6.777    0.000    0.470    0.853    2.929    0.859
##   math =~                                                                                 
##     ssar    (.p4.)    3.352    0.126   26.663    0.000    3.106    3.599    6.972    0.947
##     ssmk    (.p5.)    2.792    0.103   27.051    0.000    2.590    2.995    5.808    0.884
##     ssmc    (.p6.)    0.688    0.076    8.999    0.000    0.538    0.838    1.431    0.271
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.781    0.068   11.489    0.000    0.648    0.915    1.599    0.304
##     ssasi   (.p8.)    2.209    0.120   18.395    0.000    1.974    2.445    4.521    0.821
##     ssmc    (.p9.)    1.558    0.107   14.567    0.000    1.348    1.767    3.187    0.604
##     ssei    (.10.)    2.010    0.100   20.135    0.000    1.815    2.206    4.113    0.946
##   speed =~                                                                                
##     ssno    (.11.)    0.514    0.018   28.944    0.000    0.479    0.549    0.829    0.872
##     sscs    (.12.)    0.450    0.017   27.030    0.000    0.417    0.482    0.725    0.812
##   g =~                                                                                    
##     verbal  (.13.)    4.272    0.664    6.434    0.000    2.970    5.573    0.974    0.974
##     math    (.14.)    1.807    0.085   21.137    0.000    1.639    1.974    0.877    0.877
##     elctrnc           1.769    0.115   15.437    0.000    1.544    1.993    0.872    0.872
##     speed   (.16.)    1.254    0.062   20.373    0.000    1.133    1.374    0.785    0.785
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.057    0.020    2.834    0.005    0.017    0.096    0.056    0.122
##     age2             -0.008    0.009   -0.950    0.342   -0.025    0.009   -0.008   -0.040
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   16.716    0.249   67.221    0.000   16.229   17.203   16.716    3.182
##    .sswk    (.39.)   25.798    0.380   67.956    0.000   25.054   26.542   25.798    3.234
##    .sspc             10.533    0.159   66.081    0.000   10.221   10.845   10.533    3.088
##    .ssar    (.41.)   18.652    0.367   50.838    0.000   17.933   19.371   18.652    2.532
##    .ssmk    (.42.)   14.596    0.315   46.408    0.000   13.979   15.212   14.596    2.221
##    .ssmc    (.43.)   15.961    0.246   64.968    0.000   15.479   16.442   15.961    3.023
##    .ssasi   (.44.)   16.307    0.243   67.135    0.000   15.830   16.783   16.307    2.963
##    .ssei             12.563    0.202   62.216    0.000   12.168   12.959   12.563    2.890
##    .ssno    (.46.)    0.095    0.041    2.336    0.019    0.015    0.175    0.095    0.100
##    .sscs             -0.052    0.037   -1.390    0.165   -0.125    0.021   -0.052   -0.058
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.051    0.051
##    .math              1.000                               1.000    1.000    0.231    0.231
##    .speed             1.000                               1.000    1.000    0.384    0.384
##    .g                 1.000                               1.000    1.000    0.982    0.982
##    .ssgs              5.228    0.342   15.275    0.000    4.557    5.898    5.228    0.189
##    .sswk              7.982    0.743   10.738    0.000    6.525    9.439    7.982    0.125
##    .sspc              3.060    0.200   15.319    0.000    2.668    3.451    3.060    0.263
##    .ssar              5.639    0.757    7.452    0.000    4.156    7.122    5.639    0.104
##    .ssmk              9.467    0.711   13.315    0.000    8.074   10.861    9.467    0.219
##    .ssmc              8.686    0.546   15.919    0.000    7.616    9.755    8.686    0.312
##    .ssasi             9.857    0.759   12.989    0.000    8.370   11.345    9.857    0.325
##    .ssei              1.984    0.266    7.455    0.000    1.463    2.506    1.984    0.105
##    .ssno              0.216    0.025    8.734    0.000    0.167    0.264    0.216    0.239
##    .sscs              0.272    0.035    7.749    0.000    0.203    0.340    0.272    0.340
##    .electronic        1.000                               1.000    1.000    0.239    0.239
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.745    0.108    6.913    0.000    0.533    0.956    3.317    0.688
##     sswk    (.p2.)    1.685    0.250    6.733    0.000    1.195    2.176    7.507    0.939
##     sspc    (.p3.)    0.662    0.098    6.777    0.000    0.470    0.853    2.948    0.876
##   math =~                                                                                 
##     ssar    (.p4.)    3.352    0.126   26.663    0.000    3.106    3.599    7.009    0.950
##     ssmk    (.p5.)    2.792    0.103   27.051    0.000    2.590    2.995    5.838    0.883
##     ssmc    (.p6.)    0.688    0.076    8.999    0.000    0.538    0.838    1.438    0.325
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.781    0.068   11.489    0.000    0.648    0.915    1.057    0.219
##     ssasi   (.p8.)    2.209    0.120   18.395    0.000    1.974    2.445    2.988    0.767
##     ssmc    (.p9.)    1.558    0.107   14.567    0.000    1.348    1.767    2.106    0.476
##     ssei    (.10.)    2.010    0.100   20.135    0.000    1.815    2.206    2.719    0.804
##   speed =~                                                                                
##     ssno    (.11.)    0.514    0.018   28.944    0.000    0.479    0.549    0.832    0.870
##     sscs    (.12.)    0.450    0.017   27.030    0.000    0.417    0.482    0.728    0.774
##   g =~                                                                                    
##     verbal  (.13.)    4.272    0.664    6.434    0.000    2.970    5.573    0.974    0.974
##     math    (.14.)    1.807    0.085   21.137    0.000    1.639    1.974    0.878    0.878
##     elctrnc           1.249    0.074   16.924    0.000    1.104    1.393    0.938    0.938
##     speed   (.16.)    1.254    0.062   20.373    0.000    1.133    1.374    0.787    0.787
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.083    0.017    5.007    0.000    0.050    0.115    0.081    0.175
##     age2             -0.002    0.007   -0.274    0.784   -0.016    0.012   -0.002   -0.010
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   16.716    0.249   67.221    0.000   16.229   17.203   16.716    3.470
##    .sswk    (.39.)   25.798    0.380   67.956    0.000   25.054   26.542   25.798    3.228
##    .sspc             11.214    0.164   68.488    0.000   10.893   11.535   11.214    3.331
##    .ssar    (.41.)   18.652    0.367   50.838    0.000   17.933   19.371   18.652    2.527
##    .ssmk    (.42.)   14.596    0.315   46.408    0.000   13.979   15.212   14.596    2.208
##    .ssmc    (.43.)   15.961    0.246   64.968    0.000   15.479   16.442   15.961    3.606
##    .ssasi   (.44.)   16.307    0.243   67.135    0.000   15.830   16.783   16.307    4.187
##    .ssei             14.461    0.279   51.823    0.000   13.914   15.008   14.461    4.279
##    .ssno    (.46.)    0.095    0.041    2.336    0.019    0.015    0.175    0.095    0.099
##    .sscs              0.228    0.045    5.117    0.000    0.141    0.316    0.228    0.243
##    .verbal            1.086    0.255    4.259    0.000    0.586    1.585    0.244    0.244
##    .elctrnc          -2.133    0.158  -13.537    0.000   -2.442   -1.825   -1.578   -1.578
##    .speed             0.758    0.080    9.457    0.000    0.601    0.915    0.468    0.468
##    .g                -0.206    0.081   -2.541    0.011   -0.365   -0.047   -0.203   -0.203
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.050    0.050
##    .math              1.000                               1.000    1.000    0.229    0.229
##    .speed             1.000                               1.000    1.000    0.381    0.381
##    .g                 1.000                               1.000    1.000    0.968    0.968
##    .ssgs              4.683    0.306   15.299    0.000    4.083    5.282    4.683    0.202
##    .sswk              7.501    0.721   10.397    0.000    6.087    8.915    7.501    0.117
##    .sspc              2.643    0.165   16.011    0.000    2.319    2.966    2.643    0.233
##    .ssar              5.351    0.739    7.241    0.000    3.903    6.799    5.351    0.098
##    .ssmk              9.612    0.743   12.933    0.000    8.156   11.069    9.612    0.220
##    .ssmc              8.089    0.463   17.455    0.000    7.181    8.997    8.089    0.413
##    .ssasi             6.241    0.426   14.654    0.000    5.406    7.075    6.241    0.411
##    .ssei              4.031    0.297   13.563    0.000    3.448    4.613    4.031    0.353
##    .ssno              0.223    0.028    7.916    0.000    0.168    0.279    0.223    0.244
##    .sscs              0.354    0.039    8.994    0.000    0.277    0.431    0.354    0.400
##    .electronic        0.219    0.056    3.908    0.000    0.109    0.329    0.120    0.120
sem.age2q<-sem(hof.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "sspc~1", "ssei~1", "sscs~1"))
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   891.076   113.000     0.000     0.959     0.080     0.059     0.471 98327.221 98650.169
Mc(sem.age2q)
## [1] 0.8332763
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 109 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        81
##   Number of equality constraints                    24
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               891.076     597.539
##   Degrees of freedom                               113         113
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.491
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          528.469     354.382
##     1                                          362.607     243.158
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.749    0.107    7.020    0.000    0.540    0.958    3.306    0.628
##     sswk    (.p2.)    1.695    0.248    6.842    0.000    1.210    2.181    7.483    0.936
##     sspc    (.p3.)    0.666    0.097    6.888    0.000    0.476    0.855    2.938    0.859
##   math =~                                                                                 
##     ssar    (.p4.)    3.350    0.126   26.662    0.000    3.103    3.596    6.991    0.947
##     ssmk    (.p5.)    2.790    0.103   27.046    0.000    2.588    2.992    5.823    0.884
##     ssmc    (.p6.)    0.687    0.076    8.996    0.000    0.537    0.836    1.433    0.271
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.781    0.068   11.487    0.000    0.648    0.914    1.603    0.304
##     ssasi   (.p8.)    2.208    0.120   18.388    0.000    1.973    2.443    4.532    0.822
##     ssmc    (.p9.)    1.557    0.107   14.561    0.000    1.347    1.767    3.196    0.604
##     ssei    (.10.)    2.009    0.100   20.128    0.000    1.813    2.204    4.123    0.946
##   speed =~                                                                                
##     ssno    (.11.)    0.514    0.018   28.934    0.000    0.479    0.548    0.830    0.873
##     sscs    (.12.)    0.450    0.017   27.024    0.000    0.417    0.482    0.727    0.813
##   g =~                                                                                    
##     verbal  (.13.)    4.247    0.650    6.535    0.000    2.973    5.521    0.974    0.974
##     math    (.14.)    1.809    0.086   21.158    0.000    1.642    1.977    0.878    0.878
##     elctrnc           1.770    0.115   15.425    0.000    1.545    1.995    0.873    0.873
##     speed   (.16.)    1.255    0.062   20.376    0.000    1.134    1.375    0.786    0.786
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.069    0.013    5.145    0.000    0.043    0.095    0.068    0.149
##     age2       (b)   -0.005    0.006   -0.933    0.351   -0.016    0.006   -0.005   -0.026
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   16.669    0.215   77.477    0.000   16.247   17.091   16.669    3.165
##    .sswk    (.39.)   25.724    0.327   78.780    0.000   25.084   26.363   25.724    3.216
##    .sspc             10.504    0.141   74.660    0.000   10.228   10.780   10.504    3.072
##    .ssar    (.41.)   18.590    0.326   56.988    0.000   17.951   19.229   18.590    2.518
##    .ssmk    (.42.)   14.544    0.280   52.034    0.000   13.996   15.092   14.544    2.208
##    .ssmc    (.43.)   15.920    0.218   72.926    0.000   15.492   16.347   15.920    3.010
##    .ssasi   (.44.)   16.266    0.217   74.910    0.000   15.841   16.692   16.266    2.951
##    .ssei             12.527    0.176   71.084    0.000   12.181   12.872   12.527    2.875
##    .ssno    (.46.)    0.088    0.037    2.370    0.018    0.015    0.161    0.088    0.093
##    .sscs             -0.058    0.035   -1.653    0.098   -0.126    0.011   -0.058   -0.064
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.051    0.051
##    .math              1.000                               1.000    1.000    0.230    0.230
##    .speed             1.000                               1.000    1.000    0.383    0.383
##    .g                 1.000                               1.000    1.000    0.976    0.976
##    .ssgs              5.228    0.342   15.285    0.000    4.558    5.899    5.228    0.188
##    .sswk              7.973    0.743   10.729    0.000    6.517    9.430    7.973    0.125
##    .sspc              3.060    0.200   15.324    0.000    2.669    3.452    3.060    0.262
##    .ssar              5.634    0.756    7.451    0.000    4.152    7.116    5.634    0.103
##    .ssmk              9.473    0.711   13.323    0.000    8.079   10.866    9.473    0.218
##    .ssmc              8.685    0.546   15.916    0.000    7.615    9.754    8.685    0.310
##    .ssasi             9.855    0.759   12.989    0.000    8.368   11.342    9.855    0.324
##    .ssei              1.986    0.266    7.458    0.000    1.464    2.508    1.986    0.105
##    .ssno              0.216    0.025    8.735    0.000    0.167    0.264    0.216    0.238
##    .sscs              0.272    0.035    7.750    0.000    0.203    0.340    0.272    0.340
##    .electronic        1.000                               1.000    1.000    0.237    0.237
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.749    0.107    7.020    0.000    0.540    0.958    3.306    0.688
##     sswk    (.p2.)    1.695    0.248    6.842    0.000    1.210    2.181    7.482    0.939
##     sspc    (.p3.)    0.666    0.097    6.888    0.000    0.476    0.855    2.938    0.875
##   math =~                                                                                 
##     ssar    (.p4.)    3.350    0.126   26.662    0.000    3.103    3.596    6.990    0.949
##     ssmk    (.p5.)    2.790    0.103   27.046    0.000    2.588    2.992    5.822    0.883
##     ssmc    (.p6.)    0.687    0.076    8.996    0.000    0.537    0.836    1.433    0.324
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.781    0.068   11.487    0.000    0.648    0.914    1.054    0.219
##     ssasi   (.p8.)    2.208    0.120   18.388    0.000    1.973    2.443    2.980    0.766
##     ssmc    (.p9.)    1.557    0.107   14.561    0.000    1.347    1.767    2.101    0.476
##     ssei    (.10.)    2.009    0.100   20.128    0.000    1.813    2.204    2.711    0.804
##   speed =~                                                                                
##     ssno    (.11.)    0.514    0.018   28.934    0.000    0.479    0.548    0.830    0.869
##     sscs    (.12.)    0.450    0.017   27.024    0.000    0.417    0.482    0.727    0.774
##   g =~                                                                                    
##     verbal  (.13.)    4.247    0.650    6.535    0.000    2.973    5.521    0.974    0.974
##     math    (.14.)    1.809    0.086   21.158    0.000    1.642    1.977    0.878    0.878
##     elctrnc           1.250    0.074   16.927    0.000    1.106    1.395    0.938    0.938
##     speed   (.16.)    1.255    0.062   20.376    0.000    1.134    1.375    0.786    0.786
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.069    0.013    5.145    0.000    0.043    0.095    0.068    0.146
##     age2       (b)   -0.005    0.006   -0.933    0.351   -0.016    0.006   -0.005   -0.026
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   16.669    0.215   77.477    0.000   16.247   17.091   16.669    3.469
##    .sswk    (.39.)   25.724    0.327   78.780    0.000   25.084   26.363   25.724    3.228
##    .sspc             11.185    0.146   76.501    0.000   10.898   11.471   11.185    3.331
##    .ssar    (.41.)   18.590    0.326   56.988    0.000   17.951   19.229   18.590    2.525
##    .ssmk    (.42.)   14.544    0.280   52.034    0.000   13.996   15.092   14.544    2.205
##    .ssmc    (.43.)   15.920    0.218   72.926    0.000   15.492   16.347   15.920    3.604
##    .ssasi   (.44.)   16.266    0.217   74.910    0.000   15.841   16.692   16.266    4.184
##    .ssei             14.423    0.259   55.641    0.000   13.915   14.931   14.423    4.275
##    .ssno    (.46.)    0.088    0.037    2.370    0.018    0.015    0.161    0.088    0.093
##    .sscs              0.222    0.042    5.280    0.000    0.140    0.305    0.222    0.237
##    .verbal            1.079    0.251    4.291    0.000    0.586    1.572    0.244    0.244
##    .elctrnc          -2.129    0.156  -13.650    0.000   -2.435   -1.823   -1.578   -1.578
##    .speed             0.758    0.080    9.458    0.000    0.601    0.915    0.469    0.469
##    .g                -0.184    0.065   -2.859    0.004   -0.311   -0.058   -0.182   -0.182
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.051    0.051
##    .math              1.000                               1.000    1.000    0.230    0.230
##    .speed             1.000                               1.000    1.000    0.383    0.383
##    .g                 1.000                               1.000    1.000    0.976    0.976
##    .ssgs              4.685    0.306   15.300    0.000    4.085    5.285    4.685    0.203
##    .sswk              7.507    0.722   10.402    0.000    6.093    8.922    7.507    0.118
##    .sspc              2.641    0.165   16.011    0.000    2.318    2.964    2.641    0.234
##    .ssar              5.351    0.739    7.242    0.000    3.903    6.799    5.351    0.099
##    .ssmk              9.611    0.743   12.928    0.000    8.154   11.068    9.611    0.221
##    .ssmc              8.087    0.463   17.458    0.000    7.179    8.995    8.087    0.414
##    .ssasi             6.238    0.426   14.654    0.000    5.403    7.072    6.238    0.413
##    .ssei              4.034    0.297   13.578    0.000    3.451    4.616    4.034    0.354
##    .ssno              0.223    0.028    7.919    0.000    0.168    0.278    0.223    0.245
##    .sscs              0.354    0.039    8.999    0.000    0.277    0.431    0.354    0.401
##    .electronic        0.219    0.056    3.905    0.000    0.109    0.329    0.120    0.120
# BIFACTOR 

bf.notworking<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
'

baseline<-cfa(bf.notworking, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= -1.310254e-05) is smaller than zero. This may 
##    be a symptom that the model is not identified.
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##    611.291     23.000      0.000      0.969      0.109      0.040 100046.007 100283.969
Mc(baseline)
## [1] 0.8711838
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 4370 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        42
## 
##   Number of observations                          2134
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               611.291     377.042
##   Degrees of freedom                                23          23
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.621
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate   Std.Err  z-value  P(>|z|) ci.lower  ci.upper    Std.lv   Std.all
##   verbal =~                                                                                   
##     ssgs               0.033    0.006    5.921    0.000     0.022     0.045     0.033    0.007
##     sswk              59.233    0.161  367.222    0.000    58.916    59.549    59.233    7.416
##     sspc               0.036    0.006    6.575    0.000     0.026     0.047     0.036    0.011
##   math =~                                                                                     
##     ssar               3.039    0.222   13.667    0.000     2.603     3.475     3.039    0.411
##     ssmk               2.552    0.187   13.671    0.000     2.187     2.918     2.552    0.386
##     ssmc               1.105    0.115    9.608    0.000     0.879     1.330     1.105    0.210
##   electronic =~                                                                               
##     ssgs               1.139    0.086   13.266    0.000     0.971     1.307     1.139    0.223
##     ssasi              3.585    0.126   28.417    0.000     3.338     3.832     3.585    0.655
##     ssmc               2.692    0.111   24.355    0.000     2.476     2.909     2.692    0.513
##     ssei               2.016    0.085   23.717    0.000     1.849     2.182     2.016    0.480
##   speed =~                                                                                    
##     ssno               0.804       NA                          NA        NA     0.804    0.835
##     sscs               0.332    0.019   17.618    0.000     0.295     0.369     0.332    0.349
##   g =~                                                                                        
##     ssgs               4.427    0.092   47.930    0.000     4.246     4.608     4.427    0.866
##     ssar               6.251    0.117   53.242    0.000     6.021     6.481     6.251    0.845
##     sswk               7.073    0.143   49.359    0.000     6.793     7.354     7.073    0.886
##     sspc               2.843    0.067   42.682    0.000     2.712     2.973     2.843    0.831
##     ssno               0.662    0.022   30.000    0.000     0.619     0.706     0.662    0.688
##     sscs               0.562    0.025   22.816    0.000     0.513     0.610     0.562    0.590
##     ssasi              3.155    0.127   24.893    0.000     2.906     3.403     3.155    0.577
##     ssmk               5.308    0.110   48.304    0.000     5.092     5.523     5.308    0.803
##     ssmc               3.498    0.109   32.017    0.000     3.284     3.713     3.498    0.666
##     ssei               3.148    0.081   38.745    0.000     2.989     3.307     3.148    0.749
## 
## Covariances:
##                    Estimate   Std.Err  z-value  P(>|z|) ci.lower  ci.upper    Std.lv   Std.all
##   verbal ~~                                                                                   
##     math               0.000                                0.000     0.000     0.000    0.000
##     electronic         0.000                                0.000     0.000     0.000    0.000
##     speed              0.000                                0.000     0.000     0.000    0.000
##     g                  0.000                                0.000     0.000     0.000    0.000
##   math ~~                                                                                     
##     electronic         0.000                                0.000     0.000     0.000    0.000
##     speed              0.000                                0.000     0.000     0.000    0.000
##     g                  0.000                                0.000     0.000     0.000    0.000
##   electronic ~~                                                                               
##     speed              0.000                                0.000     0.000     0.000    0.000
##     g                  0.000                                0.000     0.000     0.000    0.000
##   speed ~~                                                                                    
##     g                  0.000                                0.000     0.000     0.000    0.000
## 
## Intercepts:
##                    Estimate   Std.Err  z-value  P(>|z|) ci.lower  ci.upper    Std.lv   Std.all
##    .ssgs              15.671    0.129  121.787    0.000    15.419    15.923    15.671    3.067
##    .sswk              25.632    0.194  132.206    0.000    25.252    26.012    25.632    3.209
##    .sspc              10.799    0.084  128.729    0.000    10.635    10.964    10.799    3.156
##    .ssar              17.766    0.196   90.837    0.000    17.382    18.149    17.766    2.402
##    .ssmk              13.856    0.178   77.872    0.000    13.507    14.205    13.856    2.097
##    .ssmc              13.845    0.139   99.554    0.000    13.572    14.117    13.845    2.636
##    .ssasi             13.593    0.145   93.926    0.000    13.309    13.877    13.593    2.484
##    .ssei              10.998    0.108  101.610    0.000    10.786    11.210    10.998    2.618
##    .ssno               0.190    0.025    7.731    0.000     0.142     0.238     0.190    0.197
##    .sscs               0.168    0.025    6.818    0.000     0.120     0.216     0.168    0.176
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|) ci.lower  ci.upper    Std.lv   Std.all
##    .ssgs               5.211    0.282   18.502    0.000     4.659     5.763     5.211    0.200
##    .sswk           -3494.744   19.232 -181.719    0.000 -3532.437 -3457.050 -3494.744  -54.788
##    .sspc               3.629    0.187   19.359    0.000     3.261     3.996     3.629    0.310
##    .ssar               6.386    1.062    6.014    0.000     4.305     8.467     6.386    0.117
##    .ssmk               8.974    0.827   10.850    0.000     7.353    10.596     8.974    0.206
##    .ssmc               6.870    0.435   15.787    0.000     6.017     7.723     6.870    0.249
##    .ssasi              7.141    0.552   12.936    0.000     6.059     8.223     7.141    0.238
##    .ssei               3.670    0.214   17.141    0.000     3.250     4.090     3.670    0.208
##    .ssno              -0.157    0.017   -9.436    0.000    -0.190    -0.125    -0.157   -0.170
##    .sscs               0.481    0.026   18.853    0.000     0.431     0.531     0.481    0.531
##     verbal             1.000                                1.000     1.000     1.000    1.000
##     math               1.000                                1.000     1.000     1.000    1.000
##     electronic         1.000                                1.000     1.000     1.000    1.000
##     speed              1.000                                1.000     1.000     1.000    1.000
##     g                  1.000                                1.000     1.000     1.000    1.000
bf.model<-' 
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
'

bf.lv<-' 
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
'

baseline<-cfa(bf.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= -1.860489e-06) is smaller than zero. This may 
##    be a symptom that the model is not identified.
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##    713.177     26.000      0.000      0.964      0.111      0.042 100141.893 100362.857
Mc(baseline)
## [1] 0.851222
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        39
## 
##   Number of observations                          2134
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               713.177     456.111
##   Degrees of freedom                                26          26
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.564
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar              3.548    0.208   17.076    0.000    3.140    3.955    3.548    0.480
##     ssmk              2.945    0.179   16.443    0.000    2.594    3.296    2.945    0.446
##     ssmc              1.105    0.102   10.790    0.000    0.905    1.306    1.105    0.212
##   electronic =~                                                                           
##     ssgs              1.248    0.083   15.070    0.000    1.086    1.411    1.248    0.243
##     ssasi             3.618    0.120   30.194    0.000    3.383    3.853    3.618    0.661
##     ssmc              2.686    0.107   25.006    0.000    2.475    2.897    2.686    0.515
##     ssei              2.068    0.079   26.332    0.000    1.914    2.222    2.068    0.492
##   speed =~                                                                                
##     ssno              0.492    0.026   18.605    0.000    0.440    0.544    0.492    0.511
##     sscs              0.555    0.001  401.072    0.000    0.552    0.558    0.555    0.583
##   g =~                                                                                    
##     ssgs              4.461    0.086   52.130    0.000    4.294    4.629    4.461    0.870
##     ssar              5.983    0.116   51.364    0.000    5.754    6.211    5.983    0.809
##     sswk              7.446    0.128   58.189    0.000    7.195    7.697    7.446    0.932
##     sspc              2.939    0.063   46.909    0.000    2.816    3.062    2.939    0.859
##     ssno              0.647    0.022   29.663    0.000    0.604    0.690    0.647    0.672
##     sscs              0.565    0.024   24.045    0.000    0.519    0.611    0.565    0.594
##     ssasi             3.116    0.120   25.867    0.000    2.880    3.352    3.116    0.569
##     ssmk              5.096    0.108   47.155    0.000    4.884    5.308    5.096    0.771
##     ssmc              3.425    0.105   32.571    0.000    3.219    3.631    3.425    0.657
##     ssei              3.113    0.076   40.858    0.000    2.964    3.262    3.113    0.741
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             17.766    0.196   90.837    0.000   17.382   18.149   17.766    2.402
##    .ssmk             13.856    0.178   77.872    0.000   13.507   14.205   13.856    2.097
##    .ssmc             13.845    0.139   99.554    0.000   13.572   14.117   13.845    2.654
##    .ssgs             15.671    0.129  121.787    0.000   15.419   15.923   15.671    3.055
##    .ssasi            13.593    0.145   93.926    0.000   13.309   13.877   13.593    2.484
##    .ssei             10.998    0.108  101.610    0.000   10.786   11.210   10.998    2.618
##    .ssno              0.190    0.025    7.731    0.000    0.142    0.238    0.190    0.197
##    .sscs              0.168    0.025    6.818    0.000    0.120    0.216    0.168    0.176
##    .sswk             25.632    0.194  132.206    0.000   25.252   26.012   25.632    3.209
##    .sspc             10.799    0.084  128.729    0.000   10.635   10.964   10.799    3.156
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.318    1.232    5.127    0.000    3.903    8.734    6.318    0.116
##    .ssmk              9.019    0.922    9.779    0.000    7.212   10.827    9.019    0.207
##    .ssmc              7.042    0.409   17.237    0.000    6.241    7.843    7.042    0.259
##    .ssgs              4.845    0.232   20.894    0.000    4.390    5.299    4.845    0.184
##    .ssasi             7.147    0.539   13.258    0.000    6.091    8.204    7.147    0.239
##    .ssei              3.674    0.216   17.020    0.000    3.251    4.097    3.674    0.208
##    .ssno              0.266    0.023   11.719    0.000    0.222    0.311    0.266    0.287
##    .sscs              0.280    0.027   10.371    0.000    0.227    0.332    0.280    0.308
##    .sswk              8.342    0.557   14.984    0.000    7.251    9.434    8.342    0.131
##    .sspc              3.073    0.143   21.452    0.000    2.792    3.353    3.073    0.262
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
configural<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= -2.755071e-06) is smaller than zero. This may 
##    be a symptom that the model is not identified.
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   531.787    52.000     0.000     0.975     0.093     0.027 98252.442 98694.370
Mc(configural)
## [1] 0.8936262
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 39 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        78
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               531.787     350.466
##   Degrees of freedom                                52          52
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.517
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          314.519     207.279
##     1                                          217.268     143.187
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar              3.593    0.307   11.711    0.000    2.992    4.195    3.593    0.468
##     ssmk              3.108    0.262   11.864    0.000    2.595    3.622    3.108    0.455
##     ssmc              0.943    0.145    6.523    0.000    0.660    1.226    0.943    0.169
##   electronic =~                                                                           
##     ssgs              0.886    0.137    6.445    0.000    0.616    1.155    0.886    0.163
##     ssasi             2.929    0.177   16.509    0.000    2.582    3.277    2.929    0.525
##     ssmc              2.385    0.159   15.026    0.000    2.074    2.696    2.385    0.428
##     ssei              1.583    0.124   12.811    0.000    1.341    1.825    1.583    0.356
##   speed =~                                                                                
##     ssno              0.483    0.025   19.604    0.000    0.434    0.531    0.483    0.501
##     sscs              0.485    0.018   27.201    0.000    0.450    0.520    0.485    0.538
##   g =~                                                                                    
##     ssgs              4.861    0.124   39.219    0.000    4.618    5.104    4.861    0.893
##     ssar              6.313    0.157   40.211    0.000    6.006    6.621    6.313    0.823
##     sswk              7.727    0.185   41.744    0.000    7.364    8.089    7.727    0.935
##     sspc              3.133    0.087   36.175    0.000    2.964    3.303    3.133    0.873
##     ssno              0.664    0.030   21.797    0.000    0.605    0.724    0.664    0.690
##     sscs              0.579    0.031   18.970    0.000    0.519    0.639    0.579    0.642
##     ssasi             3.885    0.163   23.808    0.000    3.565    4.205    3.885    0.697
##     ssmk              5.310    0.154   34.489    0.000    5.009    5.612    5.310    0.778
##     ssmc              4.208    0.140   29.970    0.000    3.933    4.483    4.208    0.755
##     ssei              3.750    0.104   36.212    0.000    3.547    3.953    3.750    0.844
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             18.495    0.286   64.662    0.000   17.934   19.056   18.495    2.411
##    .ssmk             13.973    0.261   53.474    0.000   13.461   14.486   13.973    2.047
##    .ssmc             15.637    0.201   77.759    0.000   15.243   16.031   15.637    2.805
##    .ssgs             16.396    0.190   86.372    0.000   16.024   16.768   16.396    3.013
##    .ssasi            16.211    0.198   81.891    0.000   15.823   16.599   16.211    2.907
##    .ssei             12.364    0.157   78.687    0.000   12.056   12.672   12.364    2.783
##    .ssno              0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.061
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.092
##    .sswk             25.438    0.284   89.414    0.000   24.881   25.996   25.438    3.078
##    .sspc             10.375    0.126   82.229    0.000   10.127   10.622   10.375    2.892
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.069    1.899    3.196    0.001    2.347    9.791    6.069    0.103
##    .ssmk              8.748    1.482    5.903    0.000    5.843   11.653    8.748    0.188
##    .ssmc              6.789    0.626   10.848    0.000    5.563    8.016    6.789    0.219
##    .ssgs              5.202    0.344   15.124    0.000    4.528    5.876    5.202    0.176
##    .ssasi             7.430    0.842    8.825    0.000    5.780    9.080    7.430    0.239
##    .ssei              3.176    0.250   12.705    0.000    2.686    3.666    3.176    0.161
##    .ssno              0.252    0.023   10.976    0.000    0.207    0.297    0.252    0.272
##    .sscs              0.242    0.032    7.560    0.000    0.179    0.305    0.242    0.298
##    .sswk              8.623    0.743   11.607    0.000    7.167   10.079    8.623    0.126
##    .sspc              3.050    0.198   15.427    0.000    2.662    3.437    3.050    0.237
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar              3.302    0.275   12.021    0.000    2.764    3.841    3.302    0.471
##     ssmk              2.860    0.245   11.652    0.000    2.379    3.341    2.860    0.449
##     ssmc              1.165    0.146    7.993    0.000    0.879    1.451    1.165    0.278
##   electronic =~                                                                           
##     ssgs              0.730    0.248    2.944    0.003    0.244    1.215    0.730    0.157
##     ssasi             1.058    0.271    3.899    0.000    0.526    1.590    1.058    0.283
##     ssmc              1.113    0.335    3.322    0.001    0.456    1.769    1.113    0.266
##     ssei              0.920    0.277    3.323    0.001    0.377    1.462    0.920    0.272
##   speed =~                                                                                
##     ssno              0.509    0.051    9.918    0.000    0.408    0.610    0.509    0.540
##     sscs              0.483    0.009   53.796    0.000    0.465    0.501    0.483    0.518
##   g =~                                                                                    
##     ssgs              4.085    0.106   38.492    0.000    3.877    4.292    4.085    0.877
##     ssar              5.656    0.166   34.100    0.000    5.331    5.981    5.656    0.806
##     sswk              7.133    0.168   42.341    0.000    6.803    7.463    7.133    0.929
##     sspc              2.726    0.084   32.535    0.000    2.561    2.890    2.726    0.857
##     ssno              0.621    0.030   20.853    0.000    0.563    0.680    0.621    0.658
##     sscs              0.552    0.033   16.791    0.000    0.488    0.617    0.552    0.592
##     ssasi             2.539    0.112   22.649    0.000    2.319    2.758    2.539    0.680
##     ssmk              4.836    0.149   32.426    0.000    4.544    5.128    4.836    0.760
##     ssmc              2.745    0.117   23.431    0.000    2.516    2.975    2.745    0.656
##     ssei              2.535    0.086   29.585    0.000    2.367    2.703    2.535    0.751
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             16.999    0.262   64.966    0.000   16.486   17.512   16.999    2.424
##    .ssmk             13.732    0.240   57.183    0.000   13.262   14.203   13.732    2.157
##    .ssmc             11.961    0.157   76.345    0.000   11.654   12.268   11.961    2.856
##    .ssgs             14.908    0.166   89.625    0.000   14.582   15.234   14.908    3.201
##    .ssasi            10.841    0.136   79.844    0.000   10.575   11.107   10.841    2.902
##    .ssei              9.562    0.123   77.895    0.000    9.322    9.803    9.562    2.831
##    .ssno              0.328    0.034    9.769    0.000    0.262    0.394    0.328    0.347
##    .sscs              0.432    0.033   13.004    0.000    0.367    0.497    0.432    0.463
##    .sswk             25.835    0.262   98.598    0.000   25.322   26.349   25.835    3.365
##    .sspc             11.246    0.107  105.151    0.000   11.036   11.455   11.246    3.538
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.297    1.499    4.202    0.000    3.360    9.235    6.297    0.128
##    .ssmk              8.965    1.203    7.449    0.000    6.606   11.324    8.965    0.221
##    .ssmc              7.408    0.757    9.780    0.000    5.923    8.892    7.408    0.422
##    .ssgs              4.474    0.354   12.638    0.000    3.780    5.167    4.474    0.206
##    .ssasi             6.390    0.531   12.027    0.000    5.348    7.431    6.390    0.458
##    .ssei              4.133    0.472    8.754    0.000    3.208    5.059    4.133    0.362
##    .ssno              0.245    0.047    5.178    0.000    0.152    0.338    0.245    0.275
##    .sscs              0.332    0.044    7.505    0.000    0.245    0.418    0.332    0.381
##    .sswk              8.050    0.738   10.909    0.000    6.604    9.497    8.050    0.137
##    .sspc              2.676    0.168   15.916    0.000    2.346    3.005    2.676    0.265
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   635.554    67.000     0.000     0.970     0.089     0.061 98326.209 98683.151
Mc(metric)
## [1] 0.8752237
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 53 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    19
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               635.554     427.045
##   Degrees of freedom                                67          67
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.488
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          373.339     250.856
##     1                                          262.215     176.189
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.537    0.243   14.583    0.000    3.062    4.013    3.537    0.458
##     ssmk    (.p2.)    3.069    0.209   14.711    0.000    2.660    3.478    3.069    0.445
##     ssmc    (.p3.)    1.075    0.108    9.944    0.000    0.863    1.286    1.075    0.207
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.026    0.123    8.364    0.000    0.786    1.267    1.026    0.193
##     ssasi   (.p5.)    3.042    0.163   18.610    0.000    2.722    3.362    3.042    0.586
##     ssmc    (.p6.)    2.573    0.142   18.150    0.000    2.295    2.851    2.573    0.495
##     ssei    (.p7.)    1.739    0.117   14.919    0.000    1.511    1.968    1.739    0.423
##   speed =~                                                                                
##     ssno    (.p8.)    0.398    0.024   16.847    0.000    0.352    0.445    0.398    0.409
##     sscs    (.p9.)    0.578    0.018   32.342    0.000    0.543    0.613    0.578    0.633
##   g =~                                                                                    
##     ssgs    (.10.)    4.702    0.116   40.561    0.000    4.474    4.929    4.702    0.883
##     ssar    (.11.)    6.401    0.149   42.927    0.000    6.109    6.694    6.401    0.828
##     sswk    (.12.)    7.893    0.175   45.033    0.000    7.549    8.236    7.893    0.937
##     sspc    (.13.)    3.126    0.078   39.839    0.000    2.972    3.280    3.126    0.874
##     ssno    (.14.)    0.684    0.025   27.915    0.000    0.636    0.733    0.684    0.703
##     sscs    (.15.)    0.599    0.025   23.829    0.000    0.550    0.648    0.599    0.656
##     ssasi   (.16.)    3.182    0.126   25.212    0.000    2.935    3.430    3.182    0.613
##     ssmk    (.17.)    5.423    0.134   40.456    0.000    5.161    5.686    5.423    0.787
##     ssmc    (.18.)    3.548    0.126   28.260    0.000    3.302    3.794    3.548    0.683
##     ssei    (.19.)    3.272    0.101   32.320    0.000    3.073    3.470    3.272    0.796
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             18.495    0.286   64.662    0.000   17.934   19.056   18.495    2.393
##    .ssmk             13.973    0.261   53.474    0.000   13.461   14.486   13.973    2.027
##    .ssmc             15.637    0.201   77.759    0.000   15.243   16.031   15.637    3.010
##    .ssgs             16.396    0.190   86.372    0.000   16.024   16.768   16.396    3.080
##    .ssasi            16.211    0.198   81.891    0.000   15.823   16.599   16.211    3.121
##    .ssei             12.364    0.157   78.687    0.000   12.056   12.672   12.364    3.007
##    .ssno              0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.061
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.091
##    .sswk             25.438    0.284   89.414    0.000   24.881   25.996   25.438    3.021
##    .sspc             10.375    0.126   82.229    0.000   10.127   10.622   10.375    2.900
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.254    1.379    4.534    0.000    3.551    8.958    6.254    0.105
##    .ssmk              8.678    1.115    7.784    0.000    6.493   10.863    8.678    0.183
##    .ssmc              6.625    0.614   10.790    0.000    5.422    7.829    6.625    0.246
##    .ssgs              5.181    0.337   15.373    0.000    4.521    5.842    5.181    0.183
##    .ssasi             7.592    0.805    9.434    0.000    6.015    9.170    7.592    0.281
##    .ssei              3.178    0.255   12.442    0.000    2.677    3.679    3.178    0.188
##    .ssno              0.321    0.022   14.806    0.000    0.278    0.363    0.321    0.338
##    .sscs              0.141    0.033    4.293    0.000    0.077    0.206    0.141    0.169
##    .sswk              8.609    0.752   11.444    0.000    7.134   10.083    8.609    0.121
##    .sspc              3.023    0.195   15.508    0.000    2.641    3.405    3.023    0.236
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.537    0.243   14.583    0.000    3.062    4.013    3.303    0.475
##     ssmk    (.p2.)    3.069    0.209   14.711    0.000    2.660    3.478    2.866    0.455
##     ssmc    (.p3.)    1.075    0.108    9.944    0.000    0.863    1.286    1.004    0.229
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.026    0.123    8.364    0.000    0.786    1.267    0.427    0.092
##     ssasi   (.p5.)    3.042    0.163   18.610    0.000    2.722    3.362    1.267    0.325
##     ssmc    (.p6.)    2.573    0.142   18.150    0.000    2.295    2.851    1.072    0.244
##     ssei    (.p7.)    1.739    0.117   14.919    0.000    1.511    1.968    0.725    0.201
##   speed =~                                                                                
##     ssno    (.p8.)    0.398    0.024   16.844    0.000    0.352    0.445    0.416    0.447
##     sscs    (.p9.)    0.578    0.018   32.408    0.000    0.543    0.613    0.604    0.657
##   g =~                                                                                    
##     ssgs    (.10.)    4.702    0.116   40.561    0.000    4.474    4.929    4.105    0.883
##     ssar    (.11.)    6.401    0.149   42.927    0.000    6.109    6.694    5.589    0.804
##     sswk    (.12.)    7.893    0.175   45.033    0.000    7.549    8.236    6.891    0.919
##     sspc    (.13.)    3.126    0.078   39.839    0.000    2.972    3.280    2.730    0.856
##     ssno    (.14.)    0.684    0.025   27.915    0.000    0.636    0.733    0.598    0.642
##     sscs    (.15.)    0.599    0.025   23.829    0.000    0.550    0.648    0.523    0.569
##     ssasi   (.16.)    3.182    0.126   25.212    0.000    2.935    3.430    2.779    0.713
##     ssmk    (.17.)    5.423    0.134   40.456    0.000    5.161    5.686    4.735    0.752
##     ssmc    (.18.)    3.548    0.126   28.260    0.000    3.302    3.794    3.098    0.705
##     ssei    (.19.)    3.272    0.101   32.320    0.000    3.073    3.470    2.857    0.792
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             16.999    0.262   64.966    0.000   16.486   17.512   16.999    2.446
##    .ssmk             13.732    0.240   57.183    0.000   13.262   14.203   13.732    2.182
##    .ssmc             11.961    0.157   76.345    0.000   11.654   12.268   11.961    2.723
##    .ssgs             14.908    0.166   89.625    0.000   14.582   15.234   14.908    3.205
##    .ssasi            10.841    0.136   79.844    0.000   10.575   11.107   10.841    2.780
##    .ssei              9.562    0.123   77.895    0.000    9.322    9.803    9.562    2.650
##    .ssno              0.328    0.034    9.769    0.000    0.262    0.394    0.328    0.352
##    .sscs              0.432    0.033   13.004    0.000    0.367    0.497    0.432    0.470
##    .sswk             25.835    0.262   98.598    0.000   25.322   26.349   25.835    3.447
##    .sspc             11.246    0.107  105.151    0.000   11.036   11.455   11.246    3.526
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.167    1.183    5.212    0.000    3.848    8.487    6.167    0.128
##    .ssmk              8.982    0.996    9.021    0.000    7.030   10.934    8.982    0.227
##    .ssmc              7.539    0.480   15.693    0.000    6.597    8.480    7.539    0.391
##    .ssgs              4.598    0.306   15.026    0.000    3.999    5.198    4.598    0.213
##    .ssasi             5.880    0.417   14.108    0.000    5.063    6.697    5.880    0.387
##    .ssei              4.332    0.276   15.666    0.000    3.790    4.873    4.332    0.333
##    .ssno              0.336    0.025   13.669    0.000    0.288    0.384    0.336    0.388
##    .sscs              0.206    0.043    4.844    0.000    0.123    0.290    0.206    0.244
##    .sswk              8.697    0.724   12.006    0.000    7.277   10.116    8.697    0.155
##    .sspc              2.722    0.170   16.056    0.000    2.390    3.054    2.722    0.268
##     math              0.872    0.100    8.708    0.000    0.676    1.068    1.000    1.000
##     electronic        0.174    0.039    4.476    0.000    0.098    0.249    1.000    1.000
##     speed             1.092    0.129    8.480    0.000    0.839    1.344    1.000    1.000
##     g                 0.762    0.046   16.536    0.000    0.672    0.853    1.000    1.000
lavTestScore(metric, release = 1:19)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 102.079 19       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p54.  0.307  1   0.579
## 2   .p2. == .p55.  0.397  1   0.528
## 3   .p3. == .p56.  1.735  1   0.188
## 4   .p4. == .p57.  0.587  1   0.444
## 5   .p5. == .p58.  1.708  1   0.191
## 6   .p6. == .p59.  0.370  1   0.543
## 7   .p7. == .p60.  0.004  1   0.948
## 8   .p8. == .p61.  0.000  1   1.000
## 9   .p9. == .p62.  0.000  1   1.000
## 10 .p10. == .p63.  0.955  1   0.328
## 11 .p11. == .p64.  0.931  1   0.335
## 12 .p12. == .p65. 14.720  1   0.000
## 13 .p13. == .p66.  0.139  1   0.709
## 14 .p14. == .p67.  0.372  1   0.542
## 15 .p15. == .p68.  0.921  1   0.337
## 16 .p16. == .p69.  5.558  1   0.018
## 17 .p17. == .p70.  1.281  1   0.258
## 18 .p18. == .p71. 14.354  1   0.000
## 19 .p19. == .p72. 23.369  1   0.000
metric2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"), group.partial=c("g=~ssei", "g=~ssmc"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   587.893    65.000     0.000     0.972     0.087     0.045 98282.547 98650.821
Mc(metric2)
## [1] 0.884642
summary(metric2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 58 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    17
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               587.893     393.015
##   Degrees of freedom                                65          65
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.496
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          344.577     230.355
##     1                                          243.316     162.660
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.543    0.242   14.630    0.000    3.069    4.018    3.543    0.460
##     ssmk    (.p2.)    3.072    0.207   14.811    0.000    2.665    3.478    3.072    0.447
##     ssmc    (.p3.)    1.077    0.107   10.076    0.000    0.868    1.286    1.077    0.199
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.999    0.125    8.014    0.000    0.754    1.243    0.999    0.187
##     ssasi   (.p5.)    3.015    0.170   17.688    0.000    2.681    3.349    3.015    0.578
##     ssmc    (.p6.)    2.470    0.149   16.574    0.000    2.178    2.762    2.470    0.457
##     ssei    (.p7.)    1.652    0.120   13.813    0.000    1.418    1.887    1.652    0.384
##   speed =~                                                                                
##     ssno    (.p8.)    0.496    0.021   23.248    0.000    0.454    0.538    0.496    0.511
##     sscs    (.p9.)    0.466    0.022   21.653    0.000    0.424    0.508    0.466    0.511
##   g =~                                                                                    
##     ssgs    (.10.)    4.710    0.115   41.043    0.000    4.485    4.934    4.710    0.884
##     ssar    (.11.)    6.363    0.149   42.591    0.000    6.071    6.656    6.363    0.826
##     sswk    (.12.)    7.858    0.174   45.033    0.000    7.516    8.200    7.858    0.937
##     sspc    (.13.)    3.108    0.078   39.774    0.000    2.955    3.261    3.108    0.872
##     ssno    (.14.)    0.680    0.024   27.856    0.000    0.633    0.728    0.680    0.700
##     sscs    (.15.)    0.596    0.025   23.850    0.000    0.547    0.645    0.596    0.654
##     ssasi   (.16.)    3.252    0.126   25.771    0.000    3.005    3.499    3.252    0.623
##     ssmk    (.17.)    5.392    0.134   40.319    0.000    5.130    5.654    5.392    0.785
##     ssmc              3.914    0.143   27.405    0.000    3.634    4.194    3.914    0.724
##     ssei              3.551    0.106   33.351    0.000    3.342    3.760    3.551    0.826
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             18.495    0.286   64.662    0.000   17.934   19.056   18.495    2.401
##    .ssmk             13.973    0.261   53.474    0.000   13.461   14.486   13.973    2.034
##    .ssmc             15.637    0.201   77.759    0.000   15.243   16.031   15.637    2.891
##    .ssgs             16.396    0.190   86.372    0.000   16.024   16.768   16.396    3.078
##    .ssasi            16.211    0.198   81.891    0.000   15.823   16.599   16.211    3.106
##    .ssei             12.364    0.157   78.687    0.000   12.056   12.672   12.364    2.876
##    .ssno              0.059    0.035    1.682    0.093   -0.010    0.128    0.059    0.061
##    .sscs             -0.083    0.033   -2.497    0.013   -0.149   -0.018   -0.083   -0.091
##    .sswk             25.438    0.284   89.414    0.000   24.881   25.996   25.438    3.033
##    .sspc             10.375    0.126   82.229    0.000   10.127   10.622   10.375    2.911
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.266    1.369    4.579    0.000    3.584    8.949    6.266    0.106
##    .ssmk              8.691    1.099    7.906    0.000    6.536   10.845    8.691    0.184
##    .ssmc              6.682    0.609   10.981    0.000    5.490    7.875    6.682    0.228
##    .ssgs              5.208    0.337   15.472    0.000    4.548    5.867    5.208    0.183
##    .ssasi             7.573    0.837    9.054    0.000    5.934    9.213    7.573    0.278
##    .ssei              3.148    0.248   12.697    0.000    2.662    3.633    3.148    0.170
##    .ssno              0.235    0.022   10.520    0.000    0.191    0.279    0.235    0.249
##    .sscs              0.258    0.033    7.916    0.000    0.194    0.322    0.258    0.311
##    .sswk              8.585    0.744   11.539    0.000    7.127   10.044    8.585    0.122
##    .sspc              3.041    0.196   15.535    0.000    2.657    3.425    3.041    0.239
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.543    0.242   14.630    0.000    3.069    4.018    3.313    0.475
##     ssmk    (.p2.)    3.072    0.207   14.811    0.000    2.665    3.478    2.872    0.454
##     ssmc    (.p3.)    1.077    0.107   10.076    0.000    0.868    1.286    1.007    0.240
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.999    0.125    8.014    0.000    0.754    1.243    0.427    0.091
##     ssasi   (.p5.)    3.015    0.170   17.688    0.000    2.681    3.349    1.288    0.324
##     ssmc    (.p6.)    2.470    0.149   16.574    0.000    2.178    2.762    1.056    0.251
##     ssei    (.p7.)    1.652    0.120   13.813    0.000    1.418    1.887    0.706    0.207
##   speed =~                                                                                
##     ssno    (.p8.)    0.496    0.021   23.248    0.000    0.454    0.538    0.516    0.553
##     sscs    (.p9.)    0.466    0.022   21.654    0.000    0.424    0.508    0.485    0.527
##   g =~                                                                                    
##     ssgs    (.10.)    4.710    0.115   41.043    0.000    4.485    4.934    4.163    0.886
##     ssar    (.11.)    6.363    0.149   42.591    0.000    6.071    6.656    5.625    0.806
##     sswk    (.12.)    7.858    0.174   45.033    0.000    7.516    8.200    6.947    0.922
##     sspc    (.13.)    3.108    0.078   39.774    0.000    2.955    3.261    2.748    0.858
##     ssno    (.14.)    0.680    0.024   27.856    0.000    0.633    0.728    0.602    0.645
##     sscs    (.15.)    0.596    0.025   23.850    0.000    0.547    0.645    0.527    0.572
##     ssasi   (.16.)    3.252    0.126   25.771    0.000    3.005    3.499    2.875    0.723
##     ssmk    (.17.)    5.392    0.134   40.319    0.000    5.130    5.654    4.767    0.754
##     ssmc              3.200    0.135   23.657    0.000    2.935    3.465    2.829    0.673
##     ssei              2.940    0.113   26.017    0.000    2.718    3.161    2.599    0.763
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             16.999    0.262   64.966    0.000   16.486   17.512   16.999    2.434
##    .ssmk             13.732    0.240   57.183    0.000   13.262   14.203   13.732    2.172
##    .ssmc             11.961    0.157   76.345    0.000   11.654   12.268   11.961    2.847
##    .ssgs             14.908    0.166   89.625    0.000   14.582   15.234   14.908    3.172
##    .ssasi            10.841    0.136   79.844    0.000   10.575   11.107   10.841    2.728
##    .ssei              9.562    0.123   77.895    0.000    9.322    9.803    9.562    2.807
##    .ssno              0.328    0.034    9.769    0.000    0.262    0.394    0.328    0.351
##    .sscs              0.432    0.033   13.004    0.000    0.367    0.497    0.432    0.469
##    .sswk             25.835    0.262   98.598    0.000   25.322   26.349   25.835    3.427
##    .sspc             11.246    0.107  105.151    0.000   11.036   11.455   11.246    3.511
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.133    1.187    5.165    0.000    3.805    8.460    6.133    0.126
##    .ssmk              8.983    1.002    8.963    0.000    7.019   10.947    8.983    0.225
##    .ssmc              7.517    0.475   15.813    0.000    6.585    8.448    7.517    0.426
##    .ssgs              4.574    0.306   14.933    0.000    3.974    5.174    4.574    0.207
##    .ssasi             5.869    0.425   13.797    0.000    5.035    6.703    5.869    0.372
##    .ssei              4.351    0.274   15.884    0.000    3.814    4.888    4.351    0.375
##    .ssno              0.242    0.025    9.693    0.000    0.193    0.291    0.242    0.278
##    .sscs              0.335    0.037    9.072    0.000    0.262    0.407    0.335    0.395
##    .sswk              8.566    0.718   11.928    0.000    7.159    9.974    8.566    0.151
##    .sspc              2.709    0.168   16.078    0.000    2.379    3.039    2.709    0.264
##     math              0.874    0.100    8.745    0.000    0.678    1.070    1.000    1.000
##     electronic        0.183    0.040    4.540    0.000    0.104    0.261    1.000    1.000
##     speed             1.083    0.128    8.489    0.000    0.833    1.333    1.000    1.000
##     g                 0.782    0.047   16.612    0.000    0.689    0.874    1.000    1.000
lavTestScore(metric2, release = 1:17)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 55.664 17       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p54.  0.536  1   0.464
## 2   .p2. == .p55.  0.684  1   0.408
## 3   .p3. == .p56.  3.024  1   0.082
## 4   .p4. == .p57.  1.189  1   0.275
## 5   .p5. == .p58.  2.995  1   0.083
## 6   .p6. == .p59.  0.467  1   0.494
## 7   .p7. == .p60.  0.020  1   0.887
## 8   .p8. == .p61.  0.000  1   1.000
## 9   .p9. == .p62.  0.000  1   1.000
## 10 .p10. == .p63.  0.482  1   0.487
## 11 .p11. == .p64.  0.003  1   0.957
## 12 .p12. == .p65.  9.070  1   0.003
## 13 .p13. == .p66.  0.748  1   0.387
## 14 .p14. == .p67.  0.233  1   0.629
## 15 .p15. == .p68.  0.721  1   0.396
## 16 .p16. == .p69. 35.220  1   0.000
## 17 .p17. == .p70.  0.366  1   0.545
scalar<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "g=~ssmc"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   691.055    71.000     0.000     0.967     0.090     0.046 98373.709 98707.989
Mc(scalar)
## [1] 0.8647212
summary(scalar, standardized=T, ci=T) # +.134
## lavaan 0.6-18 ended normally after 164 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               691.055     470.366
##   Degrees of freedom                                71          71
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.469
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          397.886     270.821
##     1                                          293.169     199.545
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.197    0.283   14.832    0.000    3.642    4.751    4.197    0.545
##     ssmk    (.p2.)    2.490    0.210   11.864    0.000    2.079    2.902    2.490    0.363
##     ssmc    (.p3.)    0.839    0.122    6.869    0.000    0.600    1.079    0.839    0.157
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.104    0.074   14.953    0.000    0.960    1.249    1.104    0.207
##     ssasi   (.p5.)    3.135    0.137   22.941    0.000    2.867    3.403    3.135    0.597
##     ssmc    (.p6.)    2.097    0.112   18.662    0.000    1.877    2.317    2.097    0.392
##     ssei    (.p7.)    1.723    0.082   20.929    0.000    1.562    1.885    1.723    0.401
##   speed =~                                                                                
##     ssno    (.p8.)    0.309    0.031    9.814    0.000    0.247    0.370    0.309    0.318
##     sscs    (.p9.)    0.741    0.076    9.729    0.000    0.592    0.891    0.741    0.814
##   g =~                                                                                    
##     ssgs    (.10.)    4.695    0.112   42.083    0.000    4.476    4.913    4.695    0.880
##     ssar    (.11.)    6.374    0.149   42.635    0.000    6.081    6.667    6.374    0.827
##     sswk    (.12.)    7.817    0.173   45.269    0.000    7.478    8.155    7.817    0.934
##     sspc    (.13.)    3.125    0.080   38.869    0.000    2.967    3.282    3.125    0.872
##     ssno    (.14.)    0.682    0.024   27.887    0.000    0.634    0.730    0.682    0.702
##     sscs    (.15.)    0.597    0.025   23.866    0.000    0.548    0.646    0.597    0.656
##     ssasi   (.16.)    3.232    0.125   25.757    0.000    2.986    3.477    3.232    0.615
##     ssmk    (.17.)    5.427    0.134   40.499    0.000    5.165    5.690    5.427    0.791
##     ssmc              3.983    0.138   28.863    0.000    3.712    4.253    3.983    0.744
##     ssei              3.532    0.103   34.185    0.000    3.330    3.735    3.532    0.821
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.523    0.292   63.399    0.000   17.951   19.096   18.523    2.404
##    .ssmk    (.41.)   14.214    0.248   57.377    0.000   13.728   14.699   14.214    2.072
##    .ssmc    (.42.)   15.755    0.194   81.130    0.000   15.375   16.136   15.755    2.944
##    .ssgs    (.43.)   16.396    0.187   87.456    0.000   16.028   16.763   16.396    3.073
##    .ssasi   (.44.)   16.205    0.198   81.667    0.000   15.816   16.594   16.205    3.085
##    .ssei    (.45.)   12.377    0.156   79.383    0.000   12.071   12.682   12.377    2.877
##    .ssno    (.46.)    0.064    0.035    1.803    0.071   -0.006    0.133    0.064    0.065
##    .sscs    (.47.)   -0.079    0.033   -2.369    0.018   -0.145   -0.014   -0.079   -0.087
##    .sswk    (.48.)   25.204    0.290   86.808    0.000   24.635   25.773   25.204    3.011
##    .sspc    (.49.)   10.641    0.118   89.998    0.000   10.410   10.873   10.641    2.969
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.133    2.229    0.508    0.611   -3.237    5.502    1.133    0.019
##    .ssmk             11.411    1.054   10.828    0.000    9.345   13.476   11.411    0.242
##    .ssmc              7.683    0.541   14.200    0.000    6.622    8.743    7.683    0.268
##    .ssgs              5.201    0.335   15.533    0.000    4.545    5.857    5.201    0.183
##    .ssasi             7.326    0.745    9.830    0.000    5.865    8.786    7.326    0.265
##    .ssei              3.066    0.236   12.987    0.000    2.603    3.529    3.066    0.166
##    .ssno              0.384    0.028   13.932    0.000    0.330    0.438    0.384    0.407
##    .sscs             -0.077    0.108   -0.709    0.478   -0.288    0.135   -0.077   -0.092
##    .sswk              8.966    0.790   11.343    0.000    7.417   10.515    8.966    0.128
##    .sspc              3.081    0.204   15.105    0.000    2.681    3.481    3.081    0.240
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.197    0.283   14.832    0.000    3.642    4.751    3.918    0.561
##     ssmk    (.p2.)    2.490    0.210   11.864    0.000    2.079    2.902    2.325    0.368
##     ssmc    (.p3.)    0.839    0.122    6.869    0.000    0.600    1.079    0.784    0.187
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.104    0.074   14.953    0.000    0.960    1.249    0.462    0.099
##     ssasi   (.p5.)    3.135    0.137   22.941    0.000    2.867    3.403    1.313    0.331
##     ssmc    (.p6.)    2.097    0.112   18.662    0.000    1.877    2.317    0.878    0.209
##     ssei    (.p7.)    1.723    0.082   20.929    0.000    1.562    1.885    0.721    0.212
##   speed =~                                                                                
##     ssno    (.p8.)    0.309    0.031    9.814    0.000    0.247    0.370    0.322    0.346
##     sscs    (.p9.)    0.741    0.076    9.729    0.000    0.592    0.891    0.775    0.841
##   g =~                                                                                    
##     ssgs    (.10.)    4.695    0.112   42.083    0.000    4.476    4.913    4.154    0.885
##     ssar    (.11.)    6.374    0.149   42.635    0.000    6.081    6.667    5.639    0.808
##     sswk    (.12.)    7.817    0.173   45.269    0.000    7.478    8.155    6.916    0.918
##     sspc    (.13.)    3.125    0.080   38.869    0.000    2.967    3.282    2.764    0.856
##     ssno    (.14.)    0.682    0.024   27.887    0.000    0.634    0.730    0.603    0.646
##     sscs    (.15.)    0.597    0.025   23.866    0.000    0.548    0.646    0.529    0.574
##     ssasi   (.16.)    3.232    0.125   25.757    0.000    2.986    3.477    2.859    0.721
##     ssmk    (.17.)    5.427    0.134   40.499    0.000    5.165    5.690    4.802    0.760
##     ssmc              3.235    0.140   23.116    0.000    2.960    3.509    2.862    0.681
##     ssei              2.934    0.112   26.163    0.000    2.714    3.154    2.596    0.762
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.523    0.292   63.399    0.000   17.951   19.096   18.523    2.653
##    .ssmk    (.41.)   14.214    0.248   57.377    0.000   13.728   14.699   14.214    2.250
##    .ssmc    (.42.)   15.755    0.194   81.130    0.000   15.375   16.136   15.755    3.751
##    .ssgs    (.43.)   16.396    0.187   87.456    0.000   16.028   16.763   16.396    3.494
##    .ssasi   (.44.)   16.205    0.198   81.667    0.000   15.816   16.594   16.205    4.088
##    .ssei    (.45.)   12.377    0.156   79.383    0.000   12.071   12.682   12.377    3.635
##    .ssno    (.46.)    0.064    0.035    1.803    0.071   -0.006    0.133    0.064    0.068
##    .sscs    (.47.)   -0.079    0.033   -2.369    0.018   -0.145   -0.014   -0.079   -0.086
##    .sswk    (.48.)   25.204    0.290   86.808    0.000   24.635   25.773   25.204    3.347
##    .sspc    (.49.)   10.641    0.118   89.998    0.000   10.410   10.873   10.641    3.296
##     math             -0.538    0.070   -7.669    0.000   -0.676   -0.401   -0.577   -0.577
##     elctrnc          -1.826    0.095  -19.306    0.000   -2.011   -1.640   -4.361   -4.361
##     speed             0.594    0.086    6.882    0.000    0.425    0.763    0.568    0.568
##     g                 0.119    0.048    2.470    0.014    0.025    0.213    0.134    0.134
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.607    1.933    0.831    0.406   -2.182    5.395    1.607    0.033
##    .ssmk             11.427    0.885   12.912    0.000    9.692   13.162   11.427    0.286
##    .ssmc              8.068    0.474   17.004    0.000    7.138    8.998    8.068    0.457
##    .ssgs              4.558    0.307   14.868    0.000    3.957    5.159    4.558    0.207
##    .ssasi             5.819    0.426   13.645    0.000    4.983    6.654    5.819    0.370
##    .ssei              4.334    0.273   15.873    0.000    3.799    4.869    4.334    0.374
##    .ssno              0.403    0.033   12.055    0.000    0.338    0.469    0.403    0.463
##    .sscs             -0.030    0.125   -0.242    0.809   -0.276    0.215   -0.030   -0.036
##    .sswk              8.873    0.742   11.960    0.000    7.419   10.328    8.873    0.156
##    .sspc              2.780    0.177   15.726    0.000    2.433    3.126    2.780    0.267
##     math              0.872    0.099    8.773    0.000    0.677    1.067    1.000    1.000
##     electronic        0.175    0.040    4.374    0.000    0.097    0.254    1.000    1.000
##     speed             1.092    0.129    8.444    0.000    0.838    1.345    1.000    1.000
##     g                 0.783    0.047   16.666    0.000    0.691    0.875    1.000    1.000
lavTestScore(scalar, release = 18:27)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 99.812 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs     X2 df p.value
## 1  .p40. ==  .p93. 27.382  1   0.000
## 2  .p41. ==  .p94. 18.051  1   0.000
## 3  .p42. ==  .p95. 13.162  1   0.000
## 4  .p43. ==  .p96.  1.804  1   0.179
## 5  .p44. ==  .p97.  2.365  1   0.124
## 6  .p45. ==  .p98.  0.626  1   0.429
## 7  .p46. ==  .p99.  0.000  1   1.000
## 8  .p47. == .p100.  0.000  1   1.000
## 9  .p48. == .p101. 55.180  1   0.000
## 10 .p49. == .p102. 60.308  1   0.000
scalar2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "g=~ssmc", "sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   629.972    70.000     0.000     0.970     0.087     0.046 98314.626 98654.571
Mc(scalar2)
## [1] 0.8769864
summary(scalar2, standardized=T, ci=T) # +.059
## lavaan 0.6-18 ended normally after 158 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    26
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               629.972     428.988
##   Degrees of freedom                                70          70
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.469
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          366.514     249.583
##     1                                          263.458     179.405
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.161    0.312   13.353    0.000    3.551    4.772    4.161    0.540
##     ssmk    (.p2.)    2.533    0.240   10.533    0.000    2.062    3.004    2.533    0.369
##     ssmc    (.p3.)    0.867    0.135    6.408    0.000    0.602    1.132    0.867    0.162
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.012    0.075   13.453    0.000    0.865    1.159    1.012    0.190
##     ssasi   (.p5.)    3.168    0.137   23.205    0.000    2.900    3.435    3.168    0.602
##     ssmc    (.p6.)    2.120    0.112   18.857    0.000    1.900    2.340    2.120    0.396
##     ssei    (.p7.)    1.700    0.082   20.643    0.000    1.538    1.861    1.700    0.395
##   speed =~                                                                                
##     ssno    (.p8.)    0.332    0.028   11.642    0.000    0.276    0.387    0.332    0.341
##     sscs    (.p9.)    0.695    0.060   11.526    0.000    0.577    0.813    0.695    0.762
##   g =~                                                                                    
##     ssgs    (.10.)    4.706    0.112   42.002    0.000    4.486    4.925    4.706    0.883
##     ssar    (.11.)    6.365    0.149   42.622    0.000    6.073    6.658    6.365    0.826
##     sswk    (.12.)    7.849    0.174   45.057    0.000    7.507    8.190    7.849    0.936
##     sspc    (.13.)    3.109    0.078   39.728    0.000    2.955    3.262    3.109    0.873
##     ssno    (.14.)    0.681    0.024   27.867    0.000    0.633    0.728    0.681    0.700
##     sscs    (.15.)    0.597    0.025   23.862    0.000    0.548    0.646    0.597    0.655
##     ssasi   (.16.)    3.235    0.125   25.845    0.000    2.990    3.481    3.235    0.615
##     ssmk    (.17.)    5.413    0.135   40.098    0.000    5.149    5.678    5.413    0.790
##     ssmc              3.979    0.138   28.909    0.000    3.709    4.249    3.979    0.743
##     ssei              3.538    0.103   34.377    0.000    3.336    3.740    3.538    0.822
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.508    0.298   62.113    0.000   17.924   19.092   18.508    2.402
##    .ssmk    (.41.)   14.271    0.244   58.433    0.000   13.793   14.750   14.271    2.081
##    .ssmc    (.42.)   15.748    0.194   81.279    0.000   15.368   16.127   15.748    2.940
##    .ssgs    (.43.)   16.421    0.187   87.752    0.000   16.055   16.788   16.421    3.083
##    .ssasi   (.44.)   16.193    0.199   81.441    0.000   15.804   16.583   16.193    3.079
##    .ssei    (.45.)   12.374    0.156   79.518    0.000   12.069   12.678   12.374    2.876
##    .ssno    (.46.)    0.063    0.035    1.792    0.073   -0.006    0.132    0.063    0.065
##    .sscs    (.47.)   -0.080    0.033   -2.380    0.017   -0.145   -0.014   -0.080   -0.087
##    .sswk    (.48.)   25.458    0.287   88.569    0.000   24.895   26.021   25.458    3.036
##    .sspc             10.394    0.126   82.311    0.000   10.146   10.641   10.394    2.918
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.563    2.534    0.617    0.537   -3.403    6.529    1.563    0.026
##    .ssmk             11.291    1.176    9.599    0.000    8.986   13.597   11.291    0.240
##    .ssmc              7.610    0.549   13.862    0.000    6.534    8.686    7.610    0.265
##    .ssgs              5.205    0.335   15.515    0.000    4.548    5.863    5.205    0.183
##    .ssasi             7.152    0.748    9.562    0.000    5.686    8.618    7.152    0.259
##    .ssei              3.097    0.235   13.155    0.000    2.636    3.559    3.097    0.167
##    .ssno              0.371    0.027   13.897    0.000    0.319    0.423    0.371    0.393
##    .sscs             -0.008    0.080   -0.105    0.917   -0.165    0.148   -0.008   -0.010
##    .sswk              8.709    0.753   11.568    0.000    7.234   10.185    8.709    0.124
##    .sspc              3.025    0.196   15.440    0.000    2.641    3.409    3.025    0.238
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.161    0.312   13.353    0.000    3.551    4.772    3.885    0.556
##     ssmk    (.p2.)    2.533    0.240   10.533    0.000    2.062    3.004    2.365    0.375
##     ssmc    (.p3.)    0.867    0.135    6.408    0.000    0.602    1.132    0.810    0.193
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.012    0.075   13.453    0.000    0.865    1.159    0.426    0.091
##     ssasi   (.p5.)    3.168    0.137   23.205    0.000    2.900    3.435    1.334    0.336
##     ssmc    (.p6.)    2.120    0.112   18.857    0.000    1.900    2.340    0.893    0.213
##     ssei    (.p7.)    1.700    0.082   20.643    0.000    1.538    1.861    0.716    0.210
##   speed =~                                                                                
##     ssno    (.p8.)    0.332    0.028   11.642    0.000    0.276    0.387    0.346    0.370
##     sscs    (.p9.)    0.695    0.060   11.526    0.000    0.577    0.813    0.724    0.786
##   g =~                                                                                    
##     ssgs    (.10.)    4.706    0.112   42.002    0.000    4.486    4.925    4.163    0.886
##     ssar    (.11.)    6.365    0.149   42.622    0.000    6.073    6.658    5.631    0.806
##     sswk    (.12.)    7.849    0.174   45.057    0.000    7.507    8.190    6.943    0.921
##     sspc    (.13.)    3.109    0.078   39.728    0.000    2.955    3.262    2.750    0.858
##     ssno    (.14.)    0.681    0.024   27.867    0.000    0.633    0.728    0.602    0.645
##     sscs    (.15.)    0.597    0.025   23.862    0.000    0.548    0.646    0.528    0.573
##     ssasi   (.16.)    3.235    0.125   25.845    0.000    2.990    3.481    2.862    0.721
##     ssmk    (.17.)    5.413    0.135   40.098    0.000    5.149    5.678    4.789    0.759
##     ssmc              3.223    0.139   23.213    0.000    2.951    3.495    2.851    0.679
##     ssei              2.937    0.112   26.199    0.000    2.717    3.156    2.598    0.763
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.508    0.298   62.113    0.000   17.924   19.092   18.508    2.650
##    .ssmk    (.41.)   14.271    0.244   58.433    0.000   13.793   14.750   14.271    2.260
##    .ssmc    (.42.)   15.748    0.194   81.279    0.000   15.368   16.127   15.748    3.753
##    .ssgs    (.43.)   16.421    0.187   87.752    0.000   16.055   16.788   16.421    3.494
##    .ssasi   (.44.)   16.193    0.199   81.441    0.000   15.804   16.583   16.193    4.082
##    .ssei    (.45.)   12.374    0.156   79.518    0.000   12.069   12.678   12.374    3.632
##    .ssno    (.46.)    0.063    0.035    1.792    0.073   -0.006    0.132    0.063    0.068
##    .sscs    (.47.)   -0.080    0.033   -2.380    0.017   -0.145   -0.014   -0.080   -0.086
##    .sswk    (.48.)   25.458    0.287   88.569    0.000   24.895   26.021   25.458    3.377
##    .sspc             11.085    0.134   82.900    0.000   10.822   11.347   11.085    3.458
##     math             -0.434    0.071   -6.083    0.000   -0.573   -0.294   -0.464   -0.464
##     elctrnc          -1.733    0.091  -19.053    0.000   -1.911   -1.554   -4.114   -4.114
##     speed             0.692    0.088    7.883    0.000    0.520    0.864    0.664    0.664
##     g                 0.052    0.049    1.053    0.292   -0.045    0.148    0.059    0.059
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.966    2.204    0.892    0.372   -2.354    6.287    1.966    0.040
##    .ssmk             11.334    0.986   11.494    0.000    9.401   13.266   11.334    0.284
##    .ssmc              8.026    0.478   16.801    0.000    7.089    8.962    8.026    0.456
##    .ssgs              4.577    0.306   14.937    0.000    3.976    5.177    4.577    0.207
##    .ssasi             5.764    0.427   13.490    0.000    4.927    6.602    5.764    0.366
##    .ssei              4.346    0.273   15.928    0.000    3.811    4.881    4.346    0.374
##    .ssno              0.389    0.032   11.981    0.000    0.325    0.452    0.389    0.446
##    .sscs              0.046    0.094    0.482    0.630   -0.140    0.231    0.046    0.054
##    .sswk              8.631    0.720   11.996    0.000    7.221   10.042    8.631    0.152
##    .sspc              2.711    0.168   16.093    0.000    2.381    3.041    2.711    0.264
##     math              0.872    0.099    8.826    0.000    0.678    1.065    1.000    1.000
##     electronic        0.177    0.040    4.407    0.000    0.099    0.256    1.000    1.000
##     speed             1.086    0.128    8.469    0.000    0.835    1.337    1.000    1.000
##     g                 0.783    0.047   16.700    0.000    0.691    0.874    1.000    1.000
lavTestScore(scalar2, release = 18:26)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 40.856  9       0
## 
## $uni
## 
## univariate score tests:
## 
##     lhs op    rhs     X2 df p.value
## 1 .p40. ==  .p93. 33.702  1   0.000
## 2 .p41. ==  .p94. 25.036  1   0.000
## 3 .p42. ==  .p95. 10.909  1   0.001
## 4 .p43. ==  .p96.  0.024  1   0.878
## 5 .p44. ==  .p97.  4.207  1   0.040
## 6 .p45. ==  .p98.  0.680  1   0.410
## 7 .p46. ==  .p99.  0.000  1   1.000
## 8 .p47. == .p100.  0.000  1   1.000
## 9 .p48. == .p101.  1.924  1   0.165
strict<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("g=~ssei", "g=~ssmc", "sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   661.697    80.000     0.000     0.969     0.083     0.046 98326.351 98609.639
Mc(strict)
## [1] 0.8725315
summary(strict, standardized=T, ci=T) # +.061
## lavaan 0.6-18 ended normally after 116 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    36
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               661.697     443.579
##   Degrees of freedom                                80          80
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.492
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          383.844     257.316
##     1                                          277.853     186.263
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.102    0.270   15.170    0.000    3.572    4.632    4.102    0.532
##     ssmk    (.p2.)    2.536    0.244   10.406    0.000    2.058    3.013    2.536    0.370
##     ssmc    (.p3.)    0.871    0.135    6.442    0.000    0.606    1.136    0.871    0.162
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.013    0.076   13.419    0.000    0.865    1.161    1.013    0.191
##     ssasi   (.p5.)    3.233    0.132   24.507    0.000    2.975    3.492    3.233    0.620
##     ssmc    (.p6.)    2.125    0.107   19.859    0.000    1.915    2.335    2.125    0.395
##     ssei    (.p7.)    1.692    0.078   21.678    0.000    1.539    1.845    1.692    0.388
##   speed =~                                                                                
##     ssno    (.p8.)    0.318    0.026   12.201    0.000    0.267    0.369    0.318    0.326
##     sscs    (.p9.)    0.691    0.062   11.112    0.000    0.569    0.813    0.691    0.758
##   g =~                                                                                    
##     ssgs    (.10.)    4.710    0.111   42.294    0.000    4.492    4.928    4.710    0.888
##     ssar    (.11.)    6.374    0.149   42.882    0.000    6.082    6.665    6.374    0.826
##     sswk    (.12.)    7.850    0.174   45.108    0.000    7.509    8.191    7.850    0.936
##     sspc    (.13.)    3.113    0.078   39.805    0.000    2.960    3.266    3.113    0.878
##     ssno    (.14.)    0.681    0.024   27.846    0.000    0.633    0.729    0.681    0.699
##     sscs    (.15.)    0.597    0.025   23.844    0.000    0.548    0.646    0.597    0.655
##     ssasi   (.16.)    3.253    0.125   26.018    0.000    3.008    3.498    3.253    0.624
##     ssmk    (.17.)    5.422    0.135   40.192    0.000    5.158    5.687    5.422    0.791
##     ssmc              3.977    0.137   29.059    0.000    3.708    4.245    3.977    0.739
##     ssei              3.521    0.102   34.479    0.000    3.320    3.721    3.521    0.806
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.475    0.298   62.072    0.000   17.891   19.058   18.475    2.395
##    .ssmk    (.41.)   14.257    0.244   58.383    0.000   13.778   14.735   14.257    2.079
##    .ssmc    (.42.)   15.723    0.195   80.726    0.000   15.342   16.105   15.723    2.924
##    .ssgs    (.43.)   16.398    0.188   87.376    0.000   16.030   16.766   16.398    3.093
##    .ssasi   (.44.)   16.211    0.197   82.177    0.000   15.824   16.598   16.211    3.110
##    .ssei    (.45.)   12.338    0.156   78.912    0.000   12.031   12.644   12.338    2.825
##    .ssno    (.46.)    0.065    0.035    1.830    0.067   -0.005    0.135    0.065    0.067
##    .sscs    (.47.)   -0.082    0.034   -2.436    0.015   -0.148   -0.016   -0.082   -0.090
##    .sswk    (.48.)   25.434    0.289   88.094    0.000   24.868   26.000   25.434    3.032
##    .sspc             10.382    0.127   81.974    0.000   10.134   10.630   10.382    2.929
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.20.)    2.052    2.168    0.947    0.344   -2.197    6.301    2.052    0.034
##    .ssmk    (.21.)   11.199    0.954   11.741    0.000    9.330   13.069   11.199    0.238
##    .ssmc    (.22.)    7.835    0.374   20.928    0.000    7.101    8.568    7.835    0.271
##    .ssgs    (.23.)    4.905    0.232   21.108    0.000    4.450    5.361    4.905    0.174
##    .ssasi   (.24.)    6.127    0.392   15.615    0.000    5.358    6.896    6.127    0.226
##    .ssei    (.25.)    3.811    0.186   20.432    0.000    3.445    4.176    3.811    0.200
##    .ssno    (.26.)    0.384    0.025   15.461    0.000    0.336    0.433    0.384    0.405
##    .sscs    (.27.)   -0.004    0.088   -0.043    0.966   -0.176    0.168   -0.004   -0.005
##    .sswk    (.28.)    8.730    0.527   16.559    0.000    7.697    9.764    8.730    0.124
##    .sspc    (.29.)    2.872    0.130   22.026    0.000    2.616    3.128    2.872    0.229
##     math              1.000                               1.000    1.000    1.000    1.000
##     elctrnc           1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.102    0.270   15.170    0.000    3.572    4.632    3.867    0.554
##     ssmk    (.p2.)    2.536    0.244   10.406    0.000    2.058    3.013    2.390    0.379
##     ssmc    (.p3.)    0.871    0.135    6.442    0.000    0.606    1.136    0.821    0.197
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.013    0.076   13.419    0.000    0.865    1.161    0.417    0.088
##     ssasi   (.p5.)    3.233    0.132   24.507    0.000    2.975    3.492    1.331    0.331
##     ssmc    (.p6.)    2.125    0.107   19.859    0.000    1.915    2.335    0.875    0.210
##     ssei    (.p7.)    1.692    0.078   21.678    0.000    1.539    1.845    0.697    0.209
##   speed =~                                                                                
##     ssno    (.p8.)    0.318    0.026   12.201    0.000    0.267    0.369    0.348    0.374
##     sscs    (.p9.)    0.691    0.062   11.112    0.000    0.569    0.813    0.758    0.823
##   g =~                                                                                    
##     ssgs    (.10.)    4.710    0.111   42.294    0.000    4.492    4.928    4.159    0.879
##     ssar    (.11.)    6.374    0.149   42.882    0.000    6.082    6.665    5.628    0.807
##     sswk    (.12.)    7.850    0.174   45.108    0.000    7.509    8.191    6.931    0.920
##     sspc    (.13.)    3.113    0.078   39.805    0.000    2.960    3.266    2.749    0.851
##     ssno    (.14.)    0.681    0.024   27.846    0.000    0.633    0.729    0.601    0.646
##     sscs    (.15.)    0.597    0.025   23.844    0.000    0.548    0.646    0.527    0.572
##     ssasi   (.16.)    3.253    0.125   26.018    0.000    3.008    3.498    2.872    0.715
##     ssmk    (.17.)    5.422    0.135   40.192    0.000    5.158    5.687    4.787    0.759
##     ssmc              3.230    0.139   23.250    0.000    2.958    3.503    2.852    0.684
##     ssei              2.961    0.113   26.293    0.000    2.741    3.182    2.615    0.784
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.475    0.298   62.072    0.000   17.891   19.058   18.475    2.648
##    .ssmk    (.41.)   14.257    0.244   58.383    0.000   13.778   14.735   14.257    2.259
##    .ssmc    (.42.)   15.723    0.195   80.726    0.000   15.342   16.105   15.723    3.768
##    .ssgs    (.43.)   16.398    0.188   87.376    0.000   16.030   16.766   16.398    3.467
##    .ssasi   (.44.)   16.211    0.197   82.177    0.000   15.824   16.598   16.211    4.034
##    .ssei    (.45.)   12.338    0.156   78.912    0.000   12.031   12.644   12.338    3.698
##    .ssno    (.46.)    0.065    0.035    1.830    0.067   -0.005    0.135    0.065    0.070
##    .sscs    (.47.)   -0.082    0.034   -2.436    0.015   -0.148   -0.016   -0.082   -0.089
##    .sswk    (.48.)   25.434    0.289   88.094    0.000   24.868   26.000   25.434    3.376
##    .sspc             11.077    0.135   82.055    0.000   10.813   11.342   11.077    3.431
##     math             -0.435    0.073   -5.953    0.000   -0.578   -0.292   -0.461   -0.461
##     elctrnc          -1.713    0.087  -19.608    0.000   -1.884   -1.542   -4.160   -4.160
##     speed             0.697    0.095    7.354    0.000    0.511    0.883    0.635    0.635
##     g                 0.054    0.049    1.093    0.274   -0.043    0.151    0.061    0.061
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.20.)    2.052    2.168    0.947    0.344   -2.197    6.301    2.052    0.042
##    .ssmk    (.21.)   11.199    0.954   11.741    0.000    9.330   13.069   11.199    0.281
##    .ssmc    (.22.)    7.835    0.374   20.928    0.000    7.101    8.568    7.835    0.450
##    .ssgs    (.23.)    4.905    0.232   21.108    0.000    4.450    5.361    4.905    0.219
##    .ssasi   (.24.)    6.127    0.392   15.615    0.000    5.358    6.896    6.127    0.379
##    .ssei    (.25.)    3.811    0.186   20.432    0.000    3.445    4.176    3.811    0.342
##    .ssno    (.26.)    0.384    0.025   15.461    0.000    0.336    0.433    0.384    0.443
##    .sscs    (.27.)   -0.004    0.088   -0.043    0.966   -0.176    0.168   -0.004   -0.004
##    .sswk    (.28.)    8.730    0.527   16.559    0.000    7.697    9.764    8.730    0.154
##    .sspc    (.29.)    2.872    0.130   22.026    0.000    2.616    3.128    2.872    0.275
##     math              0.889    0.084   10.619    0.000    0.725    1.053    1.000    1.000
##     elctrnc           0.170    0.038    4.460    0.000    0.095    0.244    1.000    1.000
##     speed             1.204    0.120   10.015    0.000    0.969    1.440    1.000    1.000
##     g                 0.780    0.046   16.793    0.000    0.689    0.871    1.000    1.000
latent<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("g=~ssei", "g=~ssmc", "sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   811.267    74.000     0.000     0.961     0.097     0.115 98487.922 98805.204
Mc(latent)
## [1] 0.8412856
summary(latent, standardized=T, ci=T) # +.056 Std.all
## lavaan 0.6-18 ended normally after 139 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    26
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               811.267     556.163
##   Degrees of freedom                                74          74
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.459
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          434.160     297.638
##     1                                          377.107     258.525
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.126    0.295   13.980    0.000    3.548    4.704    4.126    0.560
##     ssmk    (.p2.)    2.450    0.216   11.325    0.000    2.026    2.874    2.450    0.372
##     ssmc    (.p3.)    0.798    0.131    6.114    0.000    0.542    1.054    0.798    0.155
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.753    0.056   13.375    0.000    0.643    0.863    0.753    0.148
##     ssasi   (.p5.)    2.313    0.110   20.938    0.000    2.097    2.530    2.313    0.474
##     ssmc    (.p6.)    1.556    0.093   16.694    0.000    1.373    1.739    1.556    0.302
##     ssei    (.p7.)    1.266    0.067   19.019    0.000    1.136    1.397    1.266    0.308
##   speed =~                                                                                
##     ssno    (.p8.)    0.338    0.027   12.499    0.000    0.285    0.391    0.338    0.355
##     sscs    (.p9.)    0.711    0.058   12.344    0.000    0.598    0.824    0.711    0.795
##   g =~                                                                                    
##     ssgs    (.10.)    4.499    0.082   55.132    0.000    4.339    4.659    4.499    0.883
##     ssar    (.11.)    5.996    0.114   52.595    0.000    5.772    6.219    5.996    0.814
##     sswk    (.12.)    7.440    0.126   58.830    0.000    7.192    7.688    7.440    0.929
##     sspc    (.13.)    2.938    0.061   48.353    0.000    2.819    3.057    2.938    0.858
##     ssno    (.14.)    0.642    0.021   30.048    0.000    0.600    0.684    0.642    0.675
##     sscs    (.15.)    0.565    0.022   25.436    0.000    0.521    0.608    0.565    0.631
##     ssasi   (.16.)    3.188    0.103   30.987    0.000    2.986    3.389    3.188    0.652
##     ssmk    (.17.)    5.094    0.108   47.344    0.000    4.883    5.305    5.094    0.773
##     ssmc              3.930    0.114   34.370    0.000    3.706    4.154    3.930    0.763
##     ssei              3.475    0.083   41.959    0.000    3.313    3.638    3.475    0.846
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.527    0.295   62.742    0.000   17.948   19.105   18.527    2.514
##    .ssmk    (.41.)   14.272    0.244   58.414    0.000   13.793   14.751   14.272    2.166
##    .ssmc    (.42.)   15.748    0.195   80.737    0.000   15.366   16.131   15.748    3.056
##    .ssgs    (.43.)   16.438    0.188   87.582    0.000   16.070   16.805   16.438    3.225
##    .ssasi   (.44.)   16.178    0.200   80.815    0.000   15.785   16.570   16.178    3.311
##    .ssei    (.45.)   12.397    0.155   79.762    0.000   12.093   12.702   12.397    3.020
##    .ssno    (.46.)    0.064    0.035    1.835    0.067   -0.004    0.133    0.064    0.068
##    .sscs    (.47.)   -0.078    0.033   -2.349    0.019   -0.144   -0.013   -0.078   -0.088
##    .sswk    (.48.)   25.461    0.287   88.755    0.000   24.898   26.023   25.461    3.179
##    .sspc             10.400    0.126   82.526    0.000   10.153   10.647   10.400    3.036
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.317    2.541    0.519    0.604   -3.662    6.297    1.317    0.024
##    .ssmk             11.466    1.126   10.183    0.000    9.259   13.673   11.466    0.264
##    .ssmc              8.055    0.549   14.665    0.000    6.978    9.131    8.055    0.303
##    .ssgs              5.175    0.334   15.470    0.000    4.519    5.830    5.175    0.199
##    .ssasi             8.354    0.780   10.711    0.000    6.825    9.882    8.354    0.350
##    .ssei              3.175    0.235   13.536    0.000    2.715    3.635    3.175    0.188
##    .ssno              0.378    0.027   13.923    0.000    0.325    0.432    0.378    0.418
##    .sscs             -0.024    0.080   -0.303    0.762   -0.182    0.133   -0.024   -0.030
##    .sswk              8.801    0.724   12.153    0.000    7.382   10.221    8.801    0.137
##    .sspc              3.104    0.199   15.614    0.000    2.715    3.494    3.104    0.264
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.126    0.295   13.980    0.000    3.548    4.704    4.126    0.561
##     ssmk    (.p2.)    2.450    0.216   11.325    0.000    2.026    2.874    2.450    0.371
##     ssmc    (.p3.)    0.798    0.131    6.114    0.000    0.542    1.054    0.798    0.176
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.753    0.056   13.375    0.000    0.643    0.863    0.753    0.149
##     ssasi   (.p5.)    2.313    0.110   20.938    0.000    2.097    2.530    2.313    0.511
##     ssmc    (.p6.)    1.556    0.093   16.694    0.000    1.373    1.739    1.556    0.343
##     ssei    (.p7.)    1.266    0.067   19.019    0.000    1.136    1.397    1.266    0.340
##   speed =~                                                                                
##     ssno    (.p8.)    0.338    0.027   12.499    0.000    0.285    0.391    0.338    0.354
##     sscs    (.p9.)    0.711    0.058   12.344    0.000    0.598    0.824    0.711    0.758
##   g =~                                                                                    
##     ssgs    (.10.)    4.499    0.082   55.132    0.000    4.339    4.659    4.499    0.892
##     ssar    (.11.)    5.996    0.114   52.595    0.000    5.772    6.219    5.996    0.816
##     sswk    (.12.)    7.440    0.126   58.830    0.000    7.192    7.688    7.440    0.934
##     sspc    (.13.)    2.938    0.061   48.353    0.000    2.819    3.057    2.938    0.876
##     ssno    (.14.)    0.642    0.021   30.048    0.000    0.600    0.684    0.642    0.672
##     sscs    (.15.)    0.565    0.022   25.436    0.000    0.521    0.608    0.565    0.602
##     ssasi   (.16.)    3.188    0.103   30.987    0.000    2.986    3.389    3.188    0.705
##     ssmk    (.17.)    5.094    0.108   47.344    0.000    4.883    5.305    5.094    0.771
##     ssmc              3.109    0.120   26.013    0.000    2.874    3.343    3.109    0.686
##     ssei              2.827    0.091   31.237    0.000    2.650    3.005    2.827    0.759
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.527    0.295   62.742    0.000   17.948   19.105   18.527    2.521
##    .ssmk    (.41.)   14.272    0.244   58.414    0.000   13.793   14.751   14.272    2.161
##    .ssmc    (.42.)   15.748    0.195   80.737    0.000   15.366   16.131   15.748    3.474
##    .ssgs    (.43.)   16.438    0.188   87.582    0.000   16.070   16.805   16.438    3.259
##    .ssasi   (.44.)   16.178    0.200   80.815    0.000   15.785   16.570   16.178    3.576
##    .ssei    (.45.)   12.397    0.155   79.762    0.000   12.093   12.702   12.397    3.326
##    .ssno    (.46.)    0.064    0.035    1.835    0.067   -0.004    0.133    0.064    0.067
##    .sscs    (.47.)   -0.078    0.033   -2.349    0.019   -0.144   -0.013   -0.078   -0.084
##    .sswk    (.48.)   25.461    0.287   88.755    0.000   24.898   26.023   25.461    3.197
##    .sspc             11.082    0.133   83.509    0.000   10.822   11.342   11.082    3.302
##     math             -0.447    0.067   -6.688    0.000   -0.578   -0.316   -0.447   -0.447
##     elctrnc          -2.367    0.132  -17.986    0.000   -2.625   -2.109   -2.367   -2.367
##     speed             0.673    0.082    8.230    0.000    0.513    0.834    0.673    0.673
##     g                 0.056    0.052    1.069    0.285   -0.046    0.158    0.056    0.056
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.038    2.495    0.416    0.677   -3.852    5.929    1.038    0.019
##    .ssmk             11.663    1.069   10.911    0.000    9.568   13.758   11.663    0.267
##    .ssmc              7.830    0.491   15.942    0.000    6.868    8.793    7.830    0.381
##    .ssgs              4.628    0.306   15.130    0.000    4.029    5.228    4.628    0.182
##    .ssasi             4.954    0.443   11.185    0.000    4.086    5.822    4.954    0.242
##    .ssei              4.293    0.290   14.816    0.000    3.725    4.861    4.293    0.309
##    .ssno              0.386    0.032   12.103    0.000    0.323    0.448    0.386    0.423
##    .sscs              0.055    0.091    0.605    0.545   -0.123    0.233    0.055    0.062
##    .sswk              8.084    0.715   11.306    0.000    6.683    9.486    8.084    0.127
##    .sspc              2.627    0.164   16.016    0.000    2.306    2.949    2.627    0.233
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
latent2<-cfa(bf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "g=~ssmc", "sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr       aic       bic 
##   632.692    72.000     0.000     0.970     0.085     0.046 98313.346 98641.960
Mc(latent2)
## [1] 0.8768384
summary(latent2, standardized=T, ci=T) # +.058 Std.all
## lavaan 0.6-18 ended normally after 140 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
##   Number of equality constraints                    26
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               632.692     432.332
##   Degrees of freedom                                72          72
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.463
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          368.218     251.612
##     1                                          264.473     180.720
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.017    0.278   14.433    0.000    3.471    4.562    4.017    0.524
##     ssmk    (.p2.)    2.454    0.217   11.325    0.000    2.029    2.879    2.454    0.360
##     ssmc    (.p3.)    0.845    0.130    6.518    0.000    0.591    1.100    0.845    0.158
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.013    0.075   13.480    0.000    0.866    1.160    1.013    0.190
##     ssasi   (.p5.)    3.171    0.137   23.173    0.000    2.903    3.440    3.171    0.603
##     ssmc    (.p6.)    2.121    0.113   18.846    0.000    1.900    2.341    2.121    0.396
##     ssei    (.p7.)    1.701    0.082   20.622    0.000    1.539    1.863    1.701    0.395
##   speed =~                                                                                
##     ssno    (.p8.)    0.338    0.027   12.571    0.000    0.285    0.391    0.338    0.346
##     sscs    (.p9.)    0.708    0.057   12.398    0.000    0.596    0.820    0.708    0.773
##   g =~                                                                                    
##     ssgs    (.10.)    4.705    0.112   41.952    0.000    4.485    4.925    4.705    0.883
##     ssar    (.11.)    6.364    0.149   42.846    0.000    6.073    6.655    6.364    0.831
##     sswk    (.12.)    7.849    0.174   45.051    0.000    7.507    8.190    7.849    0.935
##     sspc    (.13.)    3.110    0.078   39.792    0.000    2.957    3.263    3.110    0.873
##     ssno    (.14.)    0.681    0.024   27.936    0.000    0.633    0.729    0.681    0.698
##     sscs    (.15.)    0.597    0.025   23.932    0.000    0.549    0.646    0.597    0.652
##     ssasi   (.16.)    3.234    0.125   25.816    0.000    2.988    3.479    3.234    0.615
##     ssmk    (.17.)    5.413    0.134   40.262    0.000    5.149    5.676    5.413    0.794
##     ssmc              3.979    0.137   28.950    0.000    3.710    4.248    3.979    0.744
##     ssei              3.537    0.103   34.325    0.000    3.335    3.739    3.537    0.822
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.500    0.299   61.885    0.000   17.914   19.086   18.500    2.415
##    .ssmk    (.41.)   14.269    0.244   58.386    0.000   13.790   14.748   14.269    2.094
##    .ssmc    (.42.)   15.748    0.194   81.271    0.000   15.368   16.128   15.748    2.943
##    .ssgs    (.43.)   16.422    0.187   87.761    0.000   16.055   16.788   16.422    3.083
##    .ssasi   (.44.)   16.194    0.199   81.445    0.000   15.804   16.583   16.194    3.080
##    .ssei    (.45.)   12.373    0.156   79.513    0.000   12.068   12.678   12.373    2.876
##    .ssno    (.46.)    0.063    0.035    1.792    0.073   -0.006    0.132    0.063    0.065
##    .sscs    (.47.)   -0.080    0.033   -2.379    0.017   -0.145   -0.014   -0.080   -0.087
##    .sswk    (.48.)   25.458    0.287   88.555    0.000   24.895   26.022   25.458    3.034
##    .sspc             10.394    0.126   82.307    0.000   10.146   10.641   10.394    2.917
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              2.047    2.364    0.866    0.387   -2.587    6.681    2.047    0.035
##    .ssmk             11.135    1.128    9.876    0.000    8.925   13.345   11.135    0.240
##    .ssmc              7.587    0.547   13.875    0.000    6.516    8.659    7.587    0.265
##    .ssgs              5.201    0.335   15.525    0.000    4.545    5.858    5.201    0.183
##    .ssasi             7.136    0.747    9.555    0.000    5.673    8.600    7.136    0.258
##    .ssei              3.100    0.236   13.138    0.000    2.638    3.562    3.100    0.168
##    .ssno              0.374    0.027   13.835    0.000    0.321    0.427    0.374    0.393
##    .sscs             -0.019    0.079   -0.245    0.806   -0.175    0.136   -0.019   -0.023
##    .sswk              8.828    0.748   11.800    0.000    7.361   10.294    8.828    0.125
##    .sspc              3.023    0.195   15.479    0.000    2.640    3.405    3.023    0.238
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.017    0.278   14.433    0.000    3.471    4.562    4.017    0.571
##     ssmk    (.p2.)    2.454    0.217   11.325    0.000    2.029    2.879    2.454    0.386
##     ssmc    (.p3.)    0.845    0.130    6.518    0.000    0.591    1.100    0.845    0.201
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.013    0.075   13.480    0.000    0.866    1.160    0.428    0.091
##     ssasi   (.p5.)    3.171    0.137   23.173    0.000    2.903    3.440    1.340    0.338
##     ssmc    (.p6.)    2.121    0.113   18.846    0.000    1.900    2.341    0.896    0.213
##     ssei    (.p7.)    1.701    0.082   20.622    0.000    1.539    1.863    0.719    0.211
##   speed =~                                                                                
##     ssno    (.p8.)    0.338    0.027   12.571    0.000    0.285    0.391    0.338    0.364
##     sscs    (.p9.)    0.708    0.057   12.398    0.000    0.596    0.820    0.708    0.772
##   g =~                                                                                    
##     ssgs    (.10.)    4.705    0.112   41.952    0.000    4.485    4.925    4.162    0.885
##     ssar    (.11.)    6.364    0.149   42.846    0.000    6.073    6.655    5.630    0.801
##     sswk    (.12.)    7.849    0.174   45.051    0.000    7.507    8.190    6.943    0.922
##     sspc    (.13.)    3.110    0.078   39.792    0.000    2.957    3.263    2.751    0.858
##     ssno    (.14.)    0.681    0.024   27.936    0.000    0.633    0.729    0.603    0.648
##     sscs    (.15.)    0.597    0.025   23.932    0.000    0.549    0.646    0.529    0.577
##     ssasi   (.16.)    3.234    0.125   25.816    0.000    2.988    3.479    2.861    0.721
##     ssmk    (.17.)    5.413    0.134   40.262    0.000    5.149    5.676    4.788    0.753
##     ssmc              3.219    0.139   23.225    0.000    2.947    3.490    2.847    0.677
##     ssei              2.936    0.112   26.177    0.000    2.716    3.156    2.597    0.762
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.500    0.299   61.885    0.000   17.914   19.086   18.500    2.631
##    .ssmk    (.41.)   14.269    0.244   58.386    0.000   13.790   14.748   14.269    2.245
##    .ssmc    (.42.)   15.748    0.194   81.271    0.000   15.368   16.128   15.748    3.747
##    .ssgs    (.43.)   16.422    0.187   87.761    0.000   16.055   16.788   16.422    3.494
##    .ssasi   (.44.)   16.194    0.199   81.445    0.000   15.804   16.583   16.194    4.082
##    .ssei    (.45.)   12.373    0.156   79.513    0.000   12.068   12.678   12.373    3.632
##    .ssno    (.46.)    0.063    0.035    1.792    0.073   -0.006    0.132    0.063    0.068
##    .sscs    (.47.)   -0.080    0.033   -2.379    0.017   -0.145   -0.014   -0.080   -0.087
##    .sswk    (.48.)   25.458    0.287   88.555    0.000   24.895   26.022   25.458    3.379
##    .sspc             11.085    0.134   82.867    0.000   10.823   11.347   11.085    3.459
##     math             -0.449    0.070   -6.408    0.000   -0.586   -0.311   -0.449   -0.449
##     elctrnc          -1.731    0.091  -19.033    0.000   -1.909   -1.552   -4.096   -4.096
##     speed             0.679    0.082    8.255    0.000    0.518    0.840    0.679    0.679
##     g                 0.052    0.049    1.051    0.293   -0.045    0.148    0.058    0.058
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.608    2.304    0.698    0.485   -2.907    6.123    1.608    0.033
##    .ssmk             11.458    1.037   11.050    0.000    9.425   13.490   11.458    0.284
##    .ssmc              8.038    0.481   16.725    0.000    7.096    8.980    8.038    0.455
##    .ssgs              4.587    0.307   14.966    0.000    3.987    5.188    4.587    0.208
##    .ssasi             5.756    0.427   13.475    0.000    4.918    6.593    5.756    0.366
##    .ssei              4.347    0.273   15.916    0.000    3.812    4.883    4.347    0.374
##    .ssno              0.386    0.032   12.117    0.000    0.324    0.449    0.386    0.447
##    .sscs              0.060    0.090    0.664    0.507   -0.116    0.236    0.060    0.071
##    .sswk              8.552    0.714   11.980    0.000    7.153    9.951    8.552    0.151
##    .sspc              2.702    0.168   16.084    0.000    2.373    3.031    2.702    0.263
##     electronic        0.179    0.040    4.442    0.000    0.100    0.257    1.000    1.000
##     g                 0.783    0.047   16.694    0.000    0.691    0.874    1.000    1.000
tests<-lavTestLRT(configural, metric2, scalar2, latent2)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 39.797396 37.807121  2.114885
dfd=tests[2:4,"Df diff"]
dfd
## [1] 13  5  2
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1067+ 1067 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04397400 0.07845497 0.00734070
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02879291 0.05988172
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.05623577 0.10268384
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]         NA 0.06161349
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     0.999     0.286     0.049     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.981     0.917     0.489     0.073
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.653     0.614     0.127     0.058     0.007     0.000
tests<-lavTestLRT(configural, metric2, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1]  39.79740  37.80712 140.88244
dfd=tests[2:4,"Df diff"]
dfd
## [1] 13  5  4
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1067+ 1067 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04397400 0.07845497 0.17916999
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.05623577 0.10268384
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.1544436 0.2050877
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.981     0.917     0.489     0.073
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric2, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 39.79740 37.80712 19.17827
dfd=tests[2:4,"Df diff"]
dfd
## [1] 13  5 10
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1067+ 1067 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04397400 0.07845497 0.02934281
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02879291 0.05988172
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.05623577 0.10268384
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.006721022 0.049020983
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     0.999     0.286     0.049     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.981     0.917     0.489     0.073
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.962     0.933     0.041     0.004     0.000     0.000
tests<-lavTestLRT(configural, metric2, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1] 39.79740 87.40567
dfd=tests[2:3,"Df diff"]
dfd
## [1] 13  6
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1067+ 1067 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.0439740 0.1128166
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02879291 0.05988172
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.09255516 0.13431386
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     0.999     0.286     0.049     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.996     0.856
tests<-lavTestLRT(configural, metric)
Td=tests[2,"Chisq diff"]
Td
## [1] 74.79517
dfd=tests[2,"Df diff"]
dfd
## [1] 15
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-1067+ 1067 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06115174
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04775237 0.07527233
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.917     0.578     0.013     0.000
bf.age<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ age 
'

bf.ageq<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ c(a,a)*age 
'

bf.age2<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ age + age2 
'

bf.age2q<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ c(a,a)*age+c(b,b)*age2
'

sem.age<-sem(bf.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "g=~ssmc", "sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   773.573    90.000     0.000     0.964     0.084     0.047     0.419 98266.366 98606.311
Mc(sem.age)
## [1] 0.8519416
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 112 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    26
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               773.573     517.809
##   Degrees of freedom                                90          90
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.494
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          438.322     293.401
##     1                                          335.250     224.408
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.021    0.278   14.488    0.000    3.477    4.565    4.021    0.525
##     ssmk    (.p2.)    2.470    0.217   11.366    0.000    2.044    2.896    2.470    0.362
##     ssmc    (.p3.)    0.851    0.130    6.545    0.000    0.596    1.105    0.851    0.159
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.009    0.075   13.458    0.000    0.862    1.156    1.009    0.189
##     ssasi   (.p5.)    3.160    0.137   23.073    0.000    2.892    3.428    3.160    0.601
##     ssmc    (.p6.)    2.119    0.112   18.847    0.000    1.899    2.340    2.119    0.396
##     ssei    (.p7.)    1.698    0.082   20.661    0.000    1.537    1.859    1.698    0.395
##   speed =~                                                                                
##     ssno    (.p8.)    0.338    0.027   12.581    0.000    0.286    0.391    0.338    0.347
##     sscs    (.p9.)    0.708    0.057   12.416    0.000    0.596    0.820    0.708    0.773
##   g =~                                                                                    
##     ssgs    (.10.)    4.674    0.115   40.489    0.000    4.448    4.900    4.706    0.883
##     ssar    (.11.)    6.316    0.151   41.882    0.000    6.020    6.612    6.359    0.830
##     sswk    (.12.)    7.803    0.180   43.360    0.000    7.450    8.155    7.856    0.936
##     sspc    (.13.)    3.087    0.080   38.419    0.000    2.930    3.245    3.108    0.873
##     ssno    (.14.)    0.676    0.025   27.578    0.000    0.628    0.724    0.680    0.698
##     sscs    (.15.)    0.593    0.025   23.766    0.000    0.544    0.642    0.597    0.652
##     ssasi   (.16.)    3.214    0.126   25.555    0.000    2.968    3.461    3.236    0.616
##     ssmk    (.17.)    5.368    0.136   39.460    0.000    5.101    5.634    5.404    0.793
##     ssmc              3.952    0.138   28.674    0.000    3.682    4.223    3.979    0.744
##     ssei              3.516    0.103   34.022    0.000    3.313    3.718    3.540    0.823
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.053    0.018    2.990    0.003    0.018    0.088    0.053    0.116
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.39.)   18.595    0.303   61.298    0.000   18.000   19.189   18.595    2.428
##    .ssmk    (.40.)   14.353    0.248   57.783    0.000   13.867   14.840   14.353    2.106
##    .ssmc    (.41.)   15.809    0.196   80.466    0.000   15.423   16.194   15.809    2.954
##    .ssgs    (.42.)   16.493    0.192   86.070    0.000   16.117   16.868   16.493    3.096
##    .ssasi   (.43.)   16.243    0.199   81.616    0.000   15.853   16.633   16.243    3.091
##    .ssei    (.44.)   12.426    0.157   79.225    0.000   12.118   12.733   12.426    2.889
##    .ssno    (.45.)    0.073    0.036    2.063    0.039    0.004    0.143    0.073    0.075
##    .sscs    (.46.)   -0.071    0.034   -2.086    0.037   -0.137   -0.004   -0.071   -0.077
##    .sswk    (.47.)   25.578    0.293   87.228    0.000   25.003   26.153   25.578    3.046
##    .sspc             10.441    0.128   81.479    0.000   10.190   10.692   10.441    2.931
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              2.071    2.361    0.877    0.380   -2.557    6.700    2.071    0.035
##    .ssmk             11.135    1.135    9.814    0.000    8.911   13.359   11.135    0.240
##    .ssmc              7.582    0.547   13.850    0.000    6.509    8.655    7.582    0.265
##    .ssgs              5.212    0.336   15.521    0.000    4.554    5.870    5.212    0.184
##    .ssasi             7.164    0.746    9.598    0.000    5.701    8.626    7.164    0.259
##    .ssei              3.092    0.235   13.143    0.000    2.631    3.553    3.092    0.167
##    .ssno              0.374    0.027   13.840    0.000    0.321    0.427    0.374    0.393
##    .sscs             -0.020    0.079   -0.247    0.805   -0.175    0.136   -0.020   -0.023
##    .sswk              8.779    0.745   11.786    0.000    7.319   10.239    8.779    0.125
##    .sspc              3.028    0.195   15.494    0.000    2.645    3.411    3.028    0.239
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.987    0.987
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.021    0.278   14.488    0.000    3.477    4.565    4.021    0.572
##     ssmk    (.p2.)    2.470    0.217   11.366    0.000    2.044    2.896    2.470    0.388
##     ssmc    (.p3.)    0.851    0.130    6.545    0.000    0.596    1.105    0.851    0.202
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.009    0.075   13.458    0.000    0.862    1.156    0.427    0.091
##     ssasi   (.p5.)    3.160    0.137   23.073    0.000    2.892    3.428    1.339    0.337
##     ssmc    (.p6.)    2.119    0.112   18.847    0.000    1.899    2.340    0.898    0.214
##     ssei    (.p7.)    1.698    0.082   20.661    0.000    1.537    1.859    0.719    0.211
##   speed =~                                                                                
##     ssno    (.p8.)    0.338    0.027   12.581    0.000    0.286    0.391    0.338    0.364
##     sscs    (.p9.)    0.708    0.057   12.416    0.000    0.596    0.820    0.708    0.773
##   g =~                                                                                    
##     ssgs    (.10.)    4.674    0.115   40.489    0.000    4.448    4.900    4.163    0.886
##     ssar    (.11.)    6.316    0.151   41.882    0.000    6.020    6.612    5.626    0.800
##     sswk    (.12.)    7.803    0.180   43.360    0.000    7.450    8.155    6.950    0.923
##     sspc    (.13.)    3.087    0.080   38.419    0.000    2.930    3.245    2.750    0.858
##     ssno    (.14.)    0.676    0.025   27.578    0.000    0.628    0.724    0.602    0.648
##     sscs    (.15.)    0.593    0.025   23.766    0.000    0.544    0.642    0.529    0.577
##     ssasi   (.16.)    3.214    0.126   25.555    0.000    2.968    3.461    2.863    0.721
##     ssmk    (.17.)    5.368    0.136   39.460    0.000    5.101    5.634    4.781    0.752
##     ssmc              3.193    0.139   22.996    0.000    2.921    3.465    2.844    0.677
##     ssei              2.919    0.113   25.848    0.000    2.698    3.140    2.600    0.763
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.080    0.015    5.471    0.000    0.051    0.108    0.089    0.193
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.39.)   18.595    0.303   61.298    0.000   18.000   19.189   18.595    2.644
##    .ssmk    (.40.)   14.353    0.248   57.783    0.000   13.867   14.840   14.353    2.257
##    .ssmc    (.41.)   15.809    0.196   80.466    0.000   15.423   16.194   15.809    3.762
##    .ssgs    (.42.)   16.493    0.192   86.070    0.000   16.117   16.868   16.493    3.509
##    .ssasi   (.43.)   16.243    0.199   81.616    0.000   15.853   16.633   16.243    4.092
##    .ssei    (.44.)   12.426    0.157   79.225    0.000   12.118   12.733   12.426    3.646
##    .ssno    (.45.)    0.073    0.036    2.063    0.039    0.004    0.143    0.073    0.079
##    .sscs    (.46.)   -0.071    0.034   -2.086    0.037   -0.137   -0.004   -0.071   -0.077
##    .sswk    (.47.)   25.578    0.293   87.228    0.000   25.003   26.153   25.578    3.396
##    .sspc             11.133    0.135   82.181    0.000   10.867   11.398   11.133    3.473
##     math             -0.447    0.070   -6.372    0.000   -0.584   -0.309   -0.447   -0.447
##     elctrnc          -1.737    0.092  -18.959    0.000   -1.916   -1.557   -4.100   -4.100
##     speed             0.679    0.082    8.266    0.000    0.518    0.840    0.679    0.679
##    .g                 0.063    0.050    1.267    0.205   -0.034    0.160    0.071    0.071
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.637    2.300    0.712    0.477   -2.871    6.145    1.637    0.033
##    .ssmk             11.471    1.045   10.978    0.000    9.423   13.518   11.471    0.284
##    .ssmc              8.035    0.481   16.717    0.000    7.093    8.977    8.035    0.455
##    .ssgs              4.576    0.305   15.019    0.000    3.979    5.173    4.576    0.207
##    .ssasi             5.768    0.428   13.492    0.000    4.930    6.606    5.768    0.366
##    .ssei              4.337    0.273   15.868    0.000    3.801    4.872    4.337    0.373
##    .ssno              0.387    0.032   12.109    0.000    0.325    0.450    0.387    0.448
##    .sscs              0.059    0.090    0.659    0.510   -0.117    0.235    0.059    0.070
##    .sswk              8.433    0.711   11.857    0.000    7.039    9.827    8.433    0.149
##    .sspc              2.715    0.169   16.074    0.000    2.384    3.046    2.715    0.264
##     electronic        0.179    0.041    4.425    0.000    0.100    0.259    1.000    1.000
##    .g                 0.764    0.048   15.908    0.000    0.670    0.858    0.963    0.963
sem.ageq<-sem(bf.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "g=~ssmc", "sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   775.430    91.000     0.000     0.964     0.084     0.045     0.419 98266.223 98600.503
Mc(sem.ageq)
## [1] 0.8517703
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 143 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    27
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               775.430     519.441
##   Degrees of freedom                                91          91
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.493
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          439.205     294.213
##     1                                          336.225     225.229
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.020    0.278   14.484    0.000    3.476    4.564    4.020    0.523
##     ssmk    (.p2.)    2.469    0.217   11.365    0.000    2.043    2.895    2.469    0.361
##     ssmc    (.p3.)    0.851    0.130    6.546    0.000    0.596    1.106    0.851    0.159
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.007    0.075   13.446    0.000    0.861    1.154    1.007    0.188
##     ssasi   (.p5.)    3.157    0.137   23.084    0.000    2.889    3.425    3.157    0.600
##     ssmc    (.p6.)    2.119    0.112   18.848    0.000    1.899    2.339    2.119    0.395
##     ssei    (.p7.)    1.698    0.082   20.674    0.000    1.537    1.859    1.698    0.393
##   speed =~                                                                                
##     ssno    (.p8.)    0.338    0.027   12.581    0.000    0.285    0.391    0.338    0.346
##     sscs    (.p9.)    0.708    0.057   12.417    0.000    0.596    0.820    0.708    0.772
##   g =~                                                                                    
##     ssgs    (.10.)    4.677    0.116   40.173    0.000    4.448    4.905    4.727    0.884
##     ssar    (.11.)    6.320    0.152   41.658    0.000    6.023    6.617    6.389    0.831
##     sswk    (.12.)    7.806    0.181   43.022    0.000    7.451    8.162    7.891    0.936
##     sspc    (.13.)    3.089    0.081   38.204    0.000    2.931    3.247    3.123    0.873
##     ssno    (.14.)    0.676    0.025   27.532    0.000    0.628    0.724    0.684    0.699
##     sscs    (.15.)    0.594    0.025   23.740    0.000    0.545    0.643    0.600    0.654
##     ssasi   (.16.)    3.218    0.126   25.537    0.000    2.971    3.465    3.253    0.618
##     ssmk    (.17.)    5.371    0.137   39.328    0.000    5.103    5.638    5.429    0.794
##     ssmc              3.955    0.138   28.625    0.000    3.684    4.226    3.998    0.745
##     ssei              3.518    0.104   33.947    0.000    3.315    3.721    3.556    0.824
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.068    0.012    5.859    0.000    0.045    0.090    0.067    0.146
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.39.)   18.621    0.300   62.072    0.000   18.033   19.209   18.621    2.423
##    .ssmk    (.40.)   14.375    0.246   58.371    0.000   13.893   14.858   14.375    2.103
##    .ssmc    (.41.)   15.825    0.194   81.542    0.000   15.444   16.205   15.825    2.950
##    .ssgs    (.42.)   16.512    0.189   87.532    0.000   16.142   16.882   16.512    3.089
##    .ssasi   (.43.)   16.256    0.196   82.730    0.000   15.871   16.641   16.256    3.088
##    .ssei    (.44.)   12.440    0.154   80.563    0.000   12.137   12.743   12.440    2.883
##    .ssno    (.45.)    0.076    0.035    2.161    0.031    0.007    0.145    0.076    0.078
##    .sscs    (.46.)   -0.068    0.034   -2.033    0.042   -0.134   -0.002   -0.068   -0.074
##    .sswk    (.47.)   25.610    0.288   88.829    0.000   25.045   26.175   25.610    3.038
##    .sspc             10.453    0.127   82.442    0.000   10.205   10.702   10.453    2.924
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              2.067    2.361    0.875    0.381   -2.561    6.695    2.067    0.035
##    .ssmk             11.140    1.134    9.819    0.000    8.916   13.363   11.140    0.238
##    .ssmc              7.582    0.548   13.845    0.000    6.508    8.655    7.582    0.263
##    .ssgs              5.215    0.336   15.526    0.000    4.557    5.874    5.215    0.182
##    .ssasi             7.171    0.746    9.615    0.000    5.709    8.633    7.171    0.259
##    .ssei              3.090    0.235   13.146    0.000    2.629    3.550    3.090    0.166
##    .ssno              0.374    0.027   13.842    0.000    0.321    0.427    0.374    0.391
##    .sscs             -0.020    0.079   -0.246    0.806   -0.175    0.136   -0.020   -0.023
##    .sswk              8.777    0.744   11.792    0.000    7.318   10.235    8.777    0.124
##    .sspc              3.029    0.195   15.499    0.000    2.646    3.412    3.029    0.237
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.979    0.979
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.020    0.278   14.484    0.000    3.476    4.564    4.020    0.573
##     ssmk    (.p2.)    2.469    0.217   11.365    0.000    2.043    2.895    2.469    0.389
##     ssmc    (.p3.)    0.851    0.130    6.546    0.000    0.596    1.106    0.851    0.203
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.007    0.075   13.446    0.000    0.861    1.154    0.427    0.091
##     ssasi   (.p5.)    3.157    0.137   23.084    0.000    2.889    3.425    1.338    0.338
##     ssmc    (.p6.)    2.119    0.112   18.848    0.000    1.899    2.339    0.898    0.214
##     ssei    (.p7.)    1.698    0.082   20.674    0.000    1.537    1.859    0.719    0.212
##   speed =~                                                                                
##     ssno    (.p8.)    0.338    0.027   12.581    0.000    0.285    0.391    0.338    0.365
##     sscs    (.p9.)    0.708    0.057   12.417    0.000    0.596    0.820    0.708    0.774
##   g =~                                                                                    
##     ssgs    (.10.)    4.677    0.116   40.173    0.000    4.448    4.905    4.143    0.885
##     ssar    (.11.)    6.320    0.152   41.658    0.000    6.023    6.617    5.599    0.799
##     sswk    (.12.)    7.806    0.181   43.022    0.000    7.451    8.162    6.916    0.922
##     sspc    (.13.)    3.089    0.081   38.204    0.000    2.931    3.247    2.737    0.857
##     ssno    (.14.)    0.676    0.025   27.532    0.000    0.628    0.724    0.599    0.646
##     sscs    (.15.)    0.594    0.025   23.740    0.000    0.545    0.643    0.526    0.575
##     ssasi   (.16.)    3.218    0.126   25.537    0.000    2.971    3.465    2.851    0.720
##     ssmk    (.17.)    5.371    0.137   39.328    0.000    5.103    5.638    4.758    0.750
##     ssmc              3.195    0.139   22.950    0.000    2.922    3.468    2.831    0.675
##     ssei              2.921    0.114   25.713    0.000    2.699    3.144    2.588    0.761
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.068    0.012    5.859    0.000    0.045    0.090    0.076    0.164
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.39.)   18.621    0.300   62.072    0.000   18.033   19.209   18.621    2.656
##    .ssmk    (.40.)   14.375    0.246   58.371    0.000   13.893   14.858   14.375    2.267
##    .ssmc    (.41.)   15.825    0.194   81.542    0.000   15.444   16.205   15.825    3.775
##    .ssgs    (.42.)   16.512    0.189   87.532    0.000   16.142   16.882   16.512    3.526
##    .ssasi   (.43.)   16.256    0.196   82.730    0.000   15.871   16.641   16.256    4.105
##    .ssei    (.44.)   12.440    0.154   80.563    0.000   12.137   12.743   12.440    3.660
##    .ssno    (.45.)    0.076    0.035    2.161    0.031    0.007    0.145    0.076    0.082
##    .sscs    (.46.)   -0.068    0.034   -2.033    0.042   -0.134   -0.002   -0.068   -0.074
##    .sswk    (.47.)   25.610    0.288   88.829    0.000   25.045   26.175   25.610    3.414
##    .sspc             11.146    0.134   83.361    0.000   10.884   11.408   11.146    3.490
##     math             -0.447    0.070   -6.372    0.000   -0.584   -0.309   -0.447   -0.447
##     elctrnc          -1.739    0.092  -18.979    0.000   -1.918   -1.559   -4.103   -4.103
##     speed             0.679    0.082    8.267    0.000    0.518    0.840    0.679    0.679
##    .g                 0.055    0.049    1.127    0.260   -0.041    0.150    0.062    0.062
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.639    2.300    0.713    0.476   -2.869    6.147    1.639    0.033
##    .ssmk             11.467    1.045   10.976    0.000    9.419   13.514   11.467    0.285
##    .ssmc              8.034    0.481   16.714    0.000    7.092    8.976    8.034    0.457
##    .ssgs              4.578    0.305   15.012    0.000    3.980    5.175    4.578    0.209
##    .ssasi             5.769    0.427   13.495    0.000    4.931    6.606    5.769    0.368
##    .ssei              4.338    0.273   15.873    0.000    3.802    4.873    4.338    0.375
##    .ssno              0.387    0.032   12.112    0.000    0.324    0.450    0.387    0.450
##    .sscs              0.059    0.090    0.661    0.509   -0.117    0.235    0.059    0.071
##    .sswk              8.452    0.711   11.892    0.000    7.059    9.845    8.452    0.150
##    .sspc              2.713    0.169   16.076    0.000    2.382    3.043    2.713    0.266
##     electronic        0.180    0.041    4.425    0.000    0.100    0.259    1.000    1.000
##    .g                 0.764    0.048   15.866    0.000    0.669    0.858    0.973    0.973
sem.age2<-sem(bf.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "g=~ssmc", "sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   822.052   108.000     0.000     0.963     0.079     0.044     0.443 98268.197 98619.473
Mc(sem.age2)
## [1] 0.8458764
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 103 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
##   Number of equality constraints                    26
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               822.052     547.072
##   Degrees of freedom                               108         108
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.503
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          466.174     310.237
##     1                                          355.878     236.835
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.018    0.276   14.552    0.000    3.477    4.560    4.018    0.524
##     ssmk    (.p2.)    2.472    0.217   11.410    0.000    2.048    2.897    2.472    0.363
##     ssmc    (.p3.)    0.854    0.130    6.577    0.000    0.599    1.108    0.854    0.159
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.006    0.075   13.448    0.000    0.860    1.153    1.006    0.189
##     ssasi   (.p5.)    3.149    0.138   22.899    0.000    2.879    3.418    3.149    0.599
##     ssmc    (.p6.)    2.126    0.113   18.893    0.000    1.905    2.347    2.126    0.397
##     ssei    (.p7.)    1.704    0.082   20.809    0.000    1.543    1.864    1.704    0.396
##   speed =~                                                                                
##     ssno    (.p8.)    0.338    0.027   12.580    0.000    0.286    0.391    0.338    0.347
##     sscs    (.p9.)    0.708    0.057   12.414    0.000    0.596    0.820    0.708    0.773
##   g =~                                                                                    
##     ssgs    (.10.)    4.671    0.115   40.633    0.000    4.445    4.896    4.707    0.883
##     ssar    (.11.)    6.311    0.150   42.128    0.000    6.017    6.604    6.360    0.830
##     sswk    (.12.)    7.797    0.178   43.698    0.000    7.447    8.147    7.858    0.936
##     sspc    (.13.)    3.085    0.080   38.794    0.000    2.929    3.241    3.109    0.873
##     ssno    (.14.)    0.675    0.024   27.667    0.000    0.628    0.723    0.681    0.698
##     sscs    (.15.)    0.593    0.025   23.806    0.000    0.544    0.642    0.598    0.652
##     ssasi   (.16.)    3.213    0.125   25.624    0.000    2.967    3.459    3.238    0.616
##     ssmk    (.17.)    5.363    0.135   39.594    0.000    5.098    5.629    5.405    0.793
##     ssmc              3.953    0.137   28.828    0.000    3.684    4.221    3.983    0.744
##     ssei              3.513    0.102   34.348    0.000    3.312    3.713    3.540    0.823
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.049    0.019    2.606    0.009    0.012    0.086    0.049    0.107
##     age2             -0.009    0.008   -1.165    0.244   -0.025    0.006   -0.009   -0.046
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.42.)   18.873    0.369   51.185    0.000   18.150   19.595   18.873    2.463
##    .ssmk    (.43.)   14.590    0.308   47.373    0.000   13.987   15.194   14.590    2.141
##    .ssmc    (.44.)   15.980    0.234   68.264    0.000   15.522   16.439   15.980    2.984
##    .ssgs    (.45.)   16.700    0.245   68.266    0.000   16.221   17.180   16.700    3.135
##    .ssasi   (.46.)   16.387    0.224   73.027    0.000   15.947   16.827   16.387    3.119
##    .ssei    (.47.)   12.579    0.191   65.870    0.000   12.205   12.953   12.579    2.923
##    .ssno    (.48.)    0.103    0.041    2.537    0.011    0.023    0.183    0.103    0.106
##    .sscs    (.49.)   -0.044    0.037   -1.195    0.232   -0.117    0.028   -0.044   -0.049
##    .sswk    (.50.)   25.921    0.383   67.764    0.000   25.171   26.671   25.921    3.087
##    .sspc             10.577    0.160   66.111    0.000   10.263   10.890   10.577    2.969
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              2.098    2.348    0.894    0.372   -2.504    6.699    2.098    0.036
##    .ssmk             11.126    1.132    9.828    0.000    8.907   13.344   11.126    0.239
##    .ssmc              7.569    0.548   13.805    0.000    6.494    8.643    7.569    0.264
##    .ssgs              5.216    0.336   15.507    0.000    4.557    5.875    5.216    0.184
##    .ssasi             7.206    0.748    9.628    0.000    5.739    8.673    7.206    0.261
##    .ssei              3.081    0.235   13.128    0.000    2.621    3.541    3.081    0.166
##    .ssno              0.374    0.027   13.842    0.000    0.321    0.427    0.374    0.393
##    .sscs             -0.020    0.079   -0.248    0.804   -0.175    0.136   -0.020   -0.023
##    .sswk              8.770    0.743   11.805    0.000    7.314   10.227    8.770    0.124
##    .sspc              3.027    0.196   15.475    0.000    2.644    3.411    3.027    0.238
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.985    0.985
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.018    0.276   14.552    0.000    3.477    4.560    4.018    0.571
##     ssmk    (.p2.)    2.472    0.217   11.410    0.000    2.048    2.897    2.472    0.389
##     ssmc    (.p3.)    0.854    0.130    6.577    0.000    0.599    1.108    0.854    0.203
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.006    0.075   13.448    0.000    0.860    1.153    0.427    0.091
##     ssasi   (.p5.)    3.149    0.138   22.899    0.000    2.879    3.418    1.334    0.336
##     ssmc    (.p6.)    2.126    0.113   18.893    0.000    1.905    2.347    0.901    0.215
##     ssei    (.p7.)    1.704    0.082   20.809    0.000    1.543    1.864    0.722    0.212
##   speed =~                                                                                
##     ssno    (.p8.)    0.338    0.027   12.580    0.000    0.286    0.391    0.338    0.364
##     sscs    (.p9.)    0.708    0.057   12.414    0.000    0.596    0.820    0.708    0.773
##   g =~                                                                                    
##     ssgs    (.10.)    4.671    0.115   40.633    0.000    4.445    4.896    4.163    0.886
##     ssar    (.11.)    6.311    0.150   42.128    0.000    6.017    6.604    5.625    0.800
##     sswk    (.12.)    7.797    0.178   43.698    0.000    7.447    8.147    6.950    0.923
##     sspc    (.13.)    3.085    0.080   38.794    0.000    2.929    3.241    2.750    0.858
##     ssno    (.14.)    0.675    0.024   27.667    0.000    0.628    0.723    0.602    0.648
##     sscs    (.15.)    0.593    0.025   23.806    0.000    0.544    0.642    0.528    0.577
##     ssasi   (.16.)    3.213    0.125   25.624    0.000    2.967    3.459    2.864    0.721
##     ssmk    (.17.)    5.363    0.135   39.594    0.000    5.098    5.629    4.780    0.752
##     ssmc              3.185    0.138   23.111    0.000    2.915    3.455    2.839    0.676
##     ssei              2.918    0.113   25.932    0.000    2.697    3.139    2.601    0.763
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.079    0.015    5.323    0.000    0.050    0.108    0.089    0.191
##     age2             -0.001    0.007   -0.193    0.847   -0.014    0.012   -0.001   -0.007
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.42.)   18.873    0.369   51.185    0.000   18.150   19.595   18.873    2.684
##    .ssmk    (.43.)   14.590    0.308   47.373    0.000   13.987   15.194   14.590    2.295
##    .ssmc    (.44.)   15.980    0.234   68.264    0.000   15.522   16.439   15.980    3.806
##    .ssgs    (.45.)   16.700    0.245   68.266    0.000   16.221   17.180   16.700    3.553
##    .ssasi   (.46.)   16.387    0.224   73.027    0.000   15.947   16.827   16.387    4.128
##    .ssei    (.47.)   12.579    0.191   65.870    0.000   12.205   12.953   12.579    3.690
##    .ssno    (.48.)    0.103    0.041    2.537    0.011    0.023    0.183    0.103    0.111
##    .sscs    (.49.)   -0.044    0.037   -1.195    0.232   -0.117    0.028   -0.044   -0.049
##    .sswk    (.50.)   25.921    0.383   67.764    0.000   25.171   26.671   25.921    3.441
##    .sspc             11.269    0.167   67.624    0.000   10.942   11.595   11.269    3.515
##     math             -0.447    0.070   -6.367    0.000   -0.585   -0.310   -0.447   -0.447
##     elctrnc          -1.744    0.092  -18.885    0.000   -1.925   -1.563   -4.116   -4.116
##     speed             0.679    0.082    8.266    0.000    0.518    0.840    0.679    0.679
##    .g                 0.025    0.066    0.374    0.708   -0.105    0.154    0.028    0.028
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.663    2.286    0.727    0.467   -2.818    6.143    1.663    0.034
##    .ssmk             11.461    1.043   10.991    0.000    9.417   13.505   11.461    0.284
##    .ssmc              8.028    0.481   16.701    0.000    7.086    8.970    8.028    0.455
##    .ssgs              4.576    0.305   15.015    0.000    3.979    5.174    4.576    0.207
##    .ssasi             5.778    0.427   13.522    0.000    4.941    6.616    5.778    0.367
##    .ssei              4.334    0.273   15.849    0.000    3.798    4.870    4.334    0.373
##    .ssno              0.387    0.032   12.110    0.000    0.325    0.450    0.387    0.448
##    .sscs              0.059    0.090    0.657    0.511   -0.117    0.235    0.059    0.070
##    .sswk              8.432    0.711   11.855    0.000    7.038    9.826    8.432    0.149
##    .sspc              2.714    0.169   16.070    0.000    2.383    3.045    2.714    0.264
##     electronic        0.180    0.041    4.426    0.000    0.100    0.259    1.000    1.000
##    .g                 0.765    0.048   15.965    0.000    0.671    0.859    0.963    0.963
sem.age2q<-sem(bf.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("g=~ssei", "g=~ssmc", "sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##     chisq        df    pvalue       cfi     rmsea      srmr      ecvi       aic       bic 
##   824.683   110.000     0.000     0.963     0.078     0.043     0.443 98266.828 98606.773
Mc(sem.age2q)
## [1] 0.8457513
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 155 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     0                                             1067
##     1                                             1067
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               824.683     549.699
##   Degrees of freedom                               110         110
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.500
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     0                                          467.376     311.533
##     1                                          357.306     238.165
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.019    0.277   14.515    0.000    3.477    4.562    4.019    0.523
##     ssmk    (.p2.)    2.471    0.217   11.385    0.000    2.045    2.896    2.471    0.362
##     ssmc    (.p3.)    0.852    0.130    6.557    0.000    0.597    1.107    0.852    0.159
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.006    0.075   13.442    0.000    0.860    1.153    1.006    0.188
##     ssasi   (.p5.)    3.151    0.137   22.984    0.000    2.882    3.419    3.151    0.599
##     ssmc    (.p6.)    2.122    0.112   18.882    0.000    1.902    2.343    2.122    0.396
##     ssei    (.p7.)    1.701    0.082   20.743    0.000    1.540    1.861    1.701    0.394
##   speed =~                                                                                
##     ssno    (.p8.)    0.338    0.027   12.579    0.000    0.285    0.391    0.338    0.346
##     sscs    (.p9.)    0.708    0.057   12.415    0.000    0.596    0.820    0.708    0.772
##   g =~                                                                                    
##     ssgs    (.10.)    4.673    0.116   40.316    0.000    4.446    4.900    4.725    0.884
##     ssar    (.11.)    6.315    0.151   41.876    0.000    6.020    6.611    6.385    0.831
##     sswk    (.12.)    7.801    0.180   43.322    0.000    7.448    8.154    7.887    0.936
##     sspc    (.13.)    3.087    0.080   38.530    0.000    2.930    3.244    3.121    0.873
##     ssno    (.14.)    0.676    0.024   27.603    0.000    0.628    0.724    0.683    0.699
##     sscs    (.15.)    0.593    0.025   23.782    0.000    0.544    0.642    0.600    0.654
##     ssasi   (.16.)    3.216    0.126   25.615    0.000    2.970    3.462    3.252    0.618
##     ssmk    (.17.)    5.367    0.136   39.443    0.000    5.100    5.633    5.426    0.794
##     ssmc              3.954    0.138   28.745    0.000    3.685    4.224    3.998    0.745
##     ssei              3.516    0.103   34.188    0.000    3.314    3.717    3.554    0.824
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.065    0.012    5.352    0.000    0.041    0.089    0.064    0.141
##     age2       (b)   -0.005    0.005   -0.988    0.323   -0.015    0.005   -0.005   -0.025
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.42.)   18.772    0.328   57.189    0.000   18.128   19.415   18.772    2.444
##    .ssmk    (.43.)   14.504    0.272   53.260    0.000   13.970   15.038   14.504    2.123
##    .ssmc    (.44.)   15.918    0.211   75.490    0.000   15.505   16.331   15.918    2.967
##    .ssgs    (.45.)   16.624    0.213   78.232    0.000   16.208   17.041   16.624    3.111
##    .ssasi   (.46.)   16.334    0.208   78.532    0.000   15.927   16.742   16.334    3.104
##    .ssei    (.47.)   12.523    0.170   73.871    0.000   12.191   12.855   12.523    2.903
##    .ssno    (.48.)    0.092    0.037    2.468    0.014    0.019    0.166    0.092    0.094
##    .sscs    (.49.)   -0.054    0.035   -1.545    0.122   -0.122    0.014   -0.054   -0.059
##    .sswk    (.50.)   25.796    0.329   78.367    0.000   25.151   26.441   25.796    3.062
##    .sspc             10.527    0.141   74.732    0.000   10.251   10.803   10.527    2.946
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              2.080    2.355    0.883    0.377   -2.535    6.695    2.080    0.035
##    .ssmk             11.135    1.133    9.825    0.000    8.914   13.356   11.135    0.239
##    .ssmc              7.574    0.548   13.821    0.000    6.500    8.648    7.574    0.263
##    .ssgs              5.217    0.336   15.519    0.000    4.558    5.876    5.217    0.183
##    .ssasi             7.194    0.747    9.632    0.000    5.730    8.658    7.194    0.260
##    .ssei              3.084    0.235   13.133    0.000    2.624    3.544    3.084    0.166
##    .ssno              0.374    0.027   13.843    0.000    0.321    0.427    0.374    0.391
##    .sscs             -0.020    0.079   -0.247    0.805   -0.175    0.136   -0.020   -0.023
##    .sswk              8.772    0.743   11.801    0.000    7.315   10.229    8.772    0.124
##    .sspc              3.028    0.196   15.488    0.000    2.645    3.412    3.028    0.237
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.978    0.978
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.019    0.277   14.515    0.000    3.477    4.562    4.019    0.573
##     ssmk    (.p2.)    2.471    0.217   11.385    0.000    2.045    2.896    2.471    0.390
##     ssmc    (.p3.)    0.852    0.130    6.557    0.000    0.597    1.107    0.852    0.203
##   electronic =~                                                                           
##     ssgs    (.p4.)    1.006    0.075   13.442    0.000    0.860    1.153    0.426    0.091
##     ssasi   (.p5.)    3.151    0.137   22.984    0.000    2.882    3.419    1.335    0.337
##     ssmc    (.p6.)    2.122    0.112   18.882    0.000    1.902    2.343    0.899    0.215
##     ssei    (.p7.)    1.701    0.082   20.743    0.000    1.540    1.861    0.721    0.212
##   speed =~                                                                                
##     ssno    (.p8.)    0.338    0.027   12.579    0.000    0.285    0.391    0.338    0.364
##     sscs    (.p9.)    0.708    0.057   12.415    0.000    0.596    0.820    0.708    0.774
##   g =~                                                                                    
##     ssgs    (.10.)    4.673    0.116   40.316    0.000    4.446    4.900    4.146    0.885
##     ssar    (.11.)    6.315    0.151   41.876    0.000    6.020    6.611    5.603    0.799
##     sswk    (.12.)    7.801    0.180   43.322    0.000    7.448    8.154    6.921    0.922
##     sspc    (.13.)    3.087    0.080   38.530    0.000    2.930    3.244    2.739    0.857
##     ssno    (.14.)    0.676    0.024   27.603    0.000    0.628    0.724    0.600    0.646
##     sscs    (.15.)    0.593    0.025   23.782    0.000    0.544    0.642    0.526    0.575
##     ssasi   (.16.)    3.216    0.126   25.615    0.000    2.970    3.462    2.853    0.720
##     ssmk    (.17.)    5.367    0.136   39.443    0.000    5.100    5.633    4.761    0.751
##     ssmc              3.190    0.138   23.051    0.000    2.919    3.461    2.830    0.675
##     ssei              2.920    0.113   25.794    0.000    2.698    3.142    2.590    0.762
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.065    0.012    5.352    0.000    0.041    0.089    0.073    0.158
##     age2       (b)   -0.005    0.005   -0.988    0.323   -0.015    0.005   -0.006   -0.029
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.42.)   18.772    0.328   57.189    0.000   18.128   19.415   18.772    2.676
##    .ssmk    (.43.)   14.504    0.272   53.260    0.000   13.970   15.038   14.504    2.287
##    .ssmc    (.44.)   15.918    0.211   75.490    0.000   15.505   16.331   15.918    3.797
##    .ssgs    (.45.)   16.624    0.213   78.232    0.000   16.208   17.041   16.624    3.548
##    .ssasi   (.46.)   16.334    0.208   78.532    0.000   15.927   16.742   16.334    4.123
##    .ssei    (.47.)   12.523    0.170   73.871    0.000   12.191   12.855   12.523    3.682
##    .ssno    (.48.)    0.092    0.037    2.468    0.014    0.019    0.166    0.092    0.100
##    .sscs    (.49.)   -0.054    0.035   -1.545    0.122   -0.122    0.014   -0.054   -0.059
##    .sswk    (.50.)   25.796    0.329   78.367    0.000   25.151   26.441   25.796    3.437
##    .sspc             11.219    0.149   75.201    0.000   10.927   11.512   11.219    3.511
##     math             -0.447    0.070   -6.370    0.000   -0.585   -0.310   -0.447   -0.447
##     elctrnc          -1.743    0.092  -18.954    0.000   -1.923   -1.563   -4.114   -4.114
##     speed             0.679    0.082    8.266    0.000    0.518    0.840    0.679    0.679
##    .g                 0.054    0.049    1.119    0.263   -0.041    0.150    0.061    0.061
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.650    2.293    0.720    0.472   -2.845    6.145    1.650    0.034
##    .ssmk             11.464    1.044   10.980    0.000    9.417   13.510   11.464    0.285
##    .ssmc              8.031    0.481   16.696    0.000    7.088    8.973    8.031    0.457
##    .ssgs              4.579    0.305   15.009    0.000    3.981    5.177    4.579    0.209
##    .ssasi             5.774    0.427   13.524    0.000    4.937    6.610    5.774    0.368
##    .ssei              4.337    0.273   15.868    0.000    3.801    4.873    4.337    0.375
##    .ssno              0.387    0.032   12.116    0.000    0.324    0.450    0.387    0.450
##    .sscs              0.059    0.090    0.659    0.510   -0.117    0.235    0.059    0.071
##    .sswk              8.451    0.711   11.889    0.000    7.058    9.844    8.451    0.150
##    .sspc              2.712    0.169   16.068    0.000    2.381    3.043    2.712    0.266
##     electronic        0.179    0.041    4.424    0.000    0.100    0.259    1.000    1.000
##    .g                 0.765    0.048   15.926    0.000    0.671    0.859    0.972    0.972
# MGCFA USING FULL DATA NOT JUST SIBLING

# WHITE RESPONDENTS

dw<- filter(dk, bhw==3)
nrow(dw)
## [1] 6161
dgroup<- dplyr::select(dw, id, starts_with("ss"), afqt, efa, educ2000, age, sex, agesex, age2, agesex2, age14:age22, sweight, weight2000, cweight, asvabweight)

fit<-lm(efa ~ sex + rcs(age, 3) + sex*rcs(age, 3), data=dgroup)
summary(fit)
## 
## Call:
## lm(formula = efa ~ sex + rcs(age, 3) + sex * rcs(age, 3), data = dgroup)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -48.604  -7.950   1.668   9.515  28.890 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         109.0842     0.5802 188.024  < 2e-16 ***
## sex                  -3.8929     0.8215  -4.739 2.20e-06 ***
## rcs(age, 3)age        2.0341     0.2473   8.224 2.38e-16 ***
## rcs(age, 3)age'      -0.3847     0.3183  -1.209    0.227    
## sex:rcs(age, 3)age   -0.5654     0.3556  -1.590    0.112    
## sex:rcs(age, 3)age'   0.1191     0.4573   0.260    0.795    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.75 on 6155 degrees of freedom
## Multiple R-squared:  0.09098,    Adjusted R-squared:  0.09024 
## F-statistic: 123.2 on 5 and 6155 DF,  p-value: < 2.2e-16
dgroup$pred1<-fitted(fit) 

original_age_min <- 14
original_age_max <- 22
mean_centered_min <- min(dgroup$age)
mean_centered_max <- max(dgroup$age)
original_age_mean <- (original_age_min + original_age_max) / 2
mean_centered_age_mean <- (mean_centered_min + mean_centered_max) / 2
age_difference <- original_age_mean - mean_centered_age_mean

xyplot(dgroup$pred1 ~ dgroup$age, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted IQ", xlab="age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2))

xyplot(dgroup$pred1 ~ dgroup$age, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted IQ", xlab="Age", key=list(text=list(c("White Male", "White Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2), scales=list(x=list(at=seq(mean_centered_min, mean_centered_max), labels=seq(original_age_min, original_age_max))))

describeBy(dgroup$pred1, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n   mean   sd median trimmed  mad    min    max range  skew kurtosis   se
## X1    1 3094 108.39 4.18  108.8  108.56 5.62 100.95 114.91 13.97 -0.27    -1.15 0.08
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean   sd median trimmed  mad   min    max range  skew kurtosis   se
## X1    1 3067 104.8 2.93 104.99  104.94 3.46 99.32 109.47 10.16 -0.33    -1.06 0.05
describeBy(dgroup$efa, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n   mean    sd median trimmed   mad   min    max range  skew kurtosis   se
## X1    1 3094 108.39 14.33 110.82  109.58 14.33 66.31 133.69 67.38 -0.66    -0.28 0.26
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean    sd median trimmed   mad   min    max range  skew kurtosis   se
## X1    1 3067 104.8 12.07    106  105.43 12.75 62.97 130.66 67.68 -0.43    -0.35 0.22
describeBy(dgroup$afqt, dgroup$sex) 
## 
##  Descriptive statistics by group 
## INDICES: 0
##    vars    n  mean    sd median trimmed   mad   min    max range  skew kurtosis   se
## V1    1 3094 105.7 14.84 106.36     106 18.91 77.91 130.02 52.11 -0.13    -1.16 0.27
## -------------------------------------------------------------------------- 
## INDICES: 1
##    vars    n   mean    sd median trimmed   mad   min    max range  skew kurtosis   se
## V1    1 3067 105.87 13.85 106.24  106.13 16.81 78.04 130.02 51.98 -0.12    -1.03 0.25
describeBy(dgroup$educ2000, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1696 13.57 2.59     12   13.42 1.48   7  20    13 0.49     -0.1 0.06
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1744 13.76 2.44     13   13.57 1.48   6  20    14 0.45    -0.22 0.06
cor(dgroup$efa, dgroup$afqt, use="pairwise.complete.obs", method="pearson")
##           [,1]
## [1,] 0.9063014
# Lynn's developmental theory of sex difference is supported here

dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(age, sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 18 Ă— 5
## # Groups:   age [9]
##      age   sex  MEAN  MEAN_se       SD
##    <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1    -4     0 101.  6.63e-16 8.56e-15
##  2    -4     1  99.3 0        0       
##  3    -3     0 103.  1.19e-16 2.32e-15
##  4    -3     1 101.  0        0       
##  5    -2     0 105.  6.37e-17 1.13e-15
##  6    -2     1 102.  1.38e-14 2.13e-13
##  7    -1     0 107.  0        0       
##  8    -1     1 104.  4.89e-16 8.66e-15
##  9     0     0 109.  9.89e-15 1.45e-13
## 10     0     1 105.  0        0       
## 11     1     0 110.  3.75e-15 5.12e-14
## 12     1     1 106.  1.75e-16 2.92e-15
## 13     2     0 112.  1.86e-16 3.07e-15
## 14     2     1 107.  1.30e-13 1.72e-12
## 15     3     0 113.  1.62e-16 2.50e-15
## 16     3     1 108.  6.67e-16 1.08e-14
## 17     4     0 115.  0        0       
## 18     4     1 109.  8.82e-16 6.58e-15
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(age, sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 18 Ă— 5
## # Groups:   age [9]
##      age   sex  MEAN MEAN_se    SD
##    <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    -4     0  102.   0.919 13.6 
##  2    -4     1  103.   0.833 11.2 
##  3    -3     0  106.   0.766 13.7 
##  4    -3     1  103.   0.698 11.7 
##  5    -2     0  108.   0.764 13.5 
##  6    -2     1  103.   0.675 11.4 
##  7    -1     0  110.   0.759 12.9 
##  8    -1     1  106.   0.663 11.5 
##  9     0     0  111.   0.753 12.8 
## 10     0     1  106.   0.652 10.9 
## 11     1     0  111.   0.790 13.4 
## 12     1     1  106.   0.728 12.3 
## 13     2     0  114.   0.726 11.7 
## 14     2     1  107.   0.747 11.7 
## 15     3     0  114.   0.783 12.5 
## 16     3     1  108.   0.691 11.5 
## 17     4     0  112.   1.58  13.1 
## 18     4     1  110.   1.29   8.99
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(age, sex) %>% summarise(MEAN = survey_mean(afqt), SD = survey_sd(afqt))
## # A tibble: 18 Ă— 5
## # Groups:   age [9]
##      age   sex  MEAN MEAN_se    SD
##    <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    -4     0  106.   1.03   15.1
##  2    -4     1  110.   1.02   13.6
##  3    -3     0  107.   0.863  15.2
##  4    -3     1  108.   0.828  13.9
##  5    -2     0  108.   0.836  14.7
##  6    -2     1  107.   0.809  13.7
##  7    -1     0  108.   0.883  14.6
##  8    -1     1  107.   0.790  13.9
##  9     0     0  107.   0.861  14.3
## 10     0     1  108.   0.806  13.4
## 11     1     0  107.   0.880  14.5
## 12     1     1  107.   0.845  14.3
## 13     2     0  108.   0.861  13.8
## 14     2     1  105.   0.905  14.1
## 15     3     0  108.   0.911  14.3
## 16     3     1  107.   0.852  13.9
## 17     4     0  107.   1.85   15.3
## 18     4     1  108.   1.69   11.9
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  108.  0.0909  4.19
## 2     1  104.  0.0665  2.99
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  110.   0.282  13.5
## 2     1  106.   0.250  11.7
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(afqt), SD = survey_sd(afqt))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  107.   0.310  14.6
## 2     1  107.   0.298  13.8
dgroup %>% as_survey_design(ids = id, weights = weight2000) %>% group_by(sex) %>% summarise(MEAN = survey_mean(educ2000, na.rm = TRUE), SD = survey_sd(educ2000, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  13.6  0.0648  2.60
## 2     1  13.8  0.0606  2.46
# CORRELATED FACTOR MODEL

cf.model<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
'

cf.lv<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
verbal~~1*verbal
math~~1*math
speed~~1*speed
'

cf.reduced<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
'

baseline<-cfa(cf.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1805.040     27.000      0.000      0.961      0.103      0.040 286861.627 287117.215
Mc(baseline)
## [1] 0.8656095
configural<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1103.587     54.000      0.000      0.976      0.079      0.024 281137.771 281648.947
Mc(configural)
## [1] 0.9183343
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        76
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1103.587     743.522
##   Degrees of freedom                                54          54
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.484
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          339.719     228.880
##     0                                          763.868     514.642
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              1.686    0.198    8.507    0.000    1.298    2.075    1.686    0.405
##     sswk              5.855    0.127   46.151    0.000    5.607    6.104    5.855    0.915
##     sspc              2.239    0.064   35.077    0.000    2.113    2.364    2.239    0.810
##   math =~                                                                                 
##     ssar              6.281    0.087   72.055    0.000    6.111    6.452    6.281    0.931
##     ssmk              5.194    0.079   65.998    0.000    5.040    5.349    5.194    0.866
##     ssmc              1.577    0.125   12.575    0.000    1.331    1.823    1.577    0.380
##   electronic =~                                                                           
##     ssgs              1.963    0.203    9.657    0.000    1.564    2.361    1.963    0.472
##     ssasi             2.309    0.071   32.473    0.000    2.170    2.448    2.309    0.669
##     ssmc              1.628    0.131   12.425    0.000    1.371    1.885    1.628    0.392
##     ssei              2.672    0.061   43.961    0.000    2.553    2.792    2.672    0.801
##   speed =~                                                                                
##     ssno              0.739    0.016   45.380    0.000    0.707    0.771    0.739    0.890
##     sscs              0.608    0.020   31.136    0.000    0.570    0.647    0.608    0.716
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.798    0.010   80.678    0.000    0.779    0.817    0.798    0.798
##     electronic        0.841    0.013   64.234    0.000    0.815    0.866    0.841    0.841
##     speed             0.636    0.021   30.429    0.000    0.595    0.677    0.636    0.636
##   math ~~                                                                                 
##     electronic        0.757    0.017   45.420    0.000    0.724    0.790    0.757    0.757
##     speed             0.690    0.015   45.932    0.000    0.660    0.719    0.690    0.690
##   electronic ~~                                                                           
##     speed             0.490    0.024   20.321    0.000    0.443    0.537    0.490    0.490
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             15.782    0.090  175.509    0.000   15.606   15.959   15.782    3.793
##    .sswk             27.503    0.136  202.254    0.000   27.237   27.770   27.503    4.296
##    .sspc             11.863    0.059  201.639    0.000   11.748   11.978   11.863    4.290
##    .ssar             18.133    0.146  124.361    0.000   17.847   18.418   18.133    2.688
##    .ssmk             14.248    0.130  109.820    0.000   13.994   14.503   14.248    2.375
##    .ssmc             12.747    0.090  141.504    0.000   12.570   12.923   12.747    3.072
##    .ssasi            11.812    0.074  158.855    0.000   11.666   11.957   11.812    3.421
##    .ssei             10.402    0.072  144.049    0.000   10.261   10.544   10.402    3.117
##    .ssno              0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.571
##    .sscs              0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.653
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.056    0.220   22.997    0.000    4.625    5.487    5.056    0.292
##    .sswk              6.704    0.510   13.139    0.000    5.704    7.704    6.704    0.164
##    .sspc              2.635    0.118   22.409    0.000    2.405    2.866    2.635    0.345
##    .ssar              6.039    0.504   11.978    0.000    5.050    7.027    6.039    0.133
##    .ssmk              9.000    0.398   22.598    0.000    8.219    9.780    9.000    0.250
##    .ssmc              8.189    0.282   29.035    0.000    7.636    8.741    8.189    0.476
##    .ssasi             6.592    0.246   26.819    0.000    6.110    7.074    6.592    0.553
##    .ssei              3.996    0.203   19.717    0.000    3.599    4.393    3.996    0.359
##    .ssno              0.143    0.016    8.716    0.000    0.111    0.175    0.143    0.208
##    .sscs              0.351    0.019   18.259    0.000    0.314    0.389    0.351    0.487
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              2.871    0.143   20.047    0.000    2.590    3.152    2.871    0.622
##     sswk              6.272    0.128   48.901    0.000    6.020    6.523    6.272    0.914
##     sspc              2.727    0.059   46.467    0.000    2.612    2.842    2.727    0.845
##   math =~                                                                                 
##     ssar              6.582    0.089   74.027    0.000    6.408    6.756    6.582    0.929
##     ssmk              5.721    0.078   73.378    0.000    5.568    5.874    5.721    0.883
##     ssmc              0.967    0.116    8.325    0.000    0.739    1.195    0.967    0.196
##   electronic =~                                                                           
##     ssgs              1.330    0.144    9.265    0.000    1.048    1.611    1.330    0.288
##     ssasi             3.667    0.093   39.268    0.000    3.484    3.850    3.667    0.765
##     ssmc              3.292    0.123   26.751    0.000    3.051    3.533    3.292    0.669
##     ssei              3.494    0.060   58.108    0.000    3.376    3.612    3.494    0.910
##   speed =~                                                                                
##     ssno              0.781    0.016   50.402    0.000    0.751    0.812    0.781    0.874
##     sscs              0.697    0.017   40.971    0.000    0.664    0.730    0.697    0.786
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.843    0.009   91.927    0.000    0.825    0.861    0.843    0.843
##     electronic        0.815    0.012   66.697    0.000    0.791    0.838    0.815    0.815
##     speed             0.730    0.015   48.596    0.000    0.700    0.759    0.730    0.730
##   math ~~                                                                                 
##     electronic        0.699    0.015   47.386    0.000    0.670    0.728    0.699    0.699
##     speed             0.798    0.012   66.516    0.000    0.775    0.822    0.798    0.798
##   electronic ~~                                                                           
##     speed             0.539    0.022   24.977    0.000    0.496    0.581    0.539    0.539
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             17.613    0.097  181.519    0.000   17.422   17.803   17.613    3.815
##    .sswk             27.329    0.142  191.949    0.000   27.050   27.608   27.329    3.984
##    .sspc             11.086    0.068  163.704    0.000   10.953   11.219   11.086    3.434
##    .ssar             20.009    0.151  132.770    0.000   19.714   20.305   20.009    2.823
##    .ssmk             14.749    0.139  105.881    0.000   14.476   15.022   14.749    2.275
##    .ssmc             16.924    0.104  162.135    0.000   16.719   17.128   16.924    3.438
##    .ssasi            17.810    0.102  175.227    0.000   17.610   18.009   17.810    3.713
##    .ssei             13.561    0.080  169.041    0.000   13.404   13.718   13.561    3.533
##    .ssno              0.253    0.019   13.436    0.000    0.216    0.290    0.253    0.283
##    .sscs              0.112    0.019    5.896    0.000    0.075    0.149    0.112    0.126
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.088    0.195   26.153    0.000    4.707    5.470    5.088    0.239
##    .sswk              7.718    0.531   14.546    0.000    6.678    8.758    7.718    0.164
##    .sspc              2.988    0.131   22.825    0.000    2.732    3.245    2.988    0.287
##    .ssar              6.926    0.480   14.421    0.000    5.985    7.867    6.926    0.138
##    .ssmk              9.289    0.419   22.146    0.000    8.467   10.111    9.289    0.221
##    .ssmc              8.003    0.325   24.608    0.000    7.365    8.640    8.003    0.330
##    .ssasi             9.562    0.392   24.413    0.000    8.795   10.330    9.562    0.416
##    .ssei              2.524    0.184   13.684    0.000    2.162    2.885    2.524    0.171
##    .ssno              0.188    0.014   13.286    0.000    0.160    0.216    0.188    0.235
##    .sscs              0.300    0.018   16.692    0.000    0.265    0.335    0.300    0.382
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
modificationIndices(configural, sort=T, maximum.number=30)
##            lhs op   rhs block group level      mi     epc sepc.lv sepc.all sepc.nox
## 229       ssmc ~~ ssasi     2     2     1 236.768   3.212   3.212    0.367    0.367
## 170     verbal =~  ssei     2     2     1 233.692   2.310   2.310    0.602    0.602
## 225       ssmk ~~ ssasi     2     2     1 195.106  -2.939  -2.939   -0.312   -0.312
## 174       math =~  sswk     2     2     1 138.857  -2.468  -2.468   -0.360   -0.360
## 176       math =~ ssasi     2     2     1 134.552  -1.288  -1.288   -0.269   -0.269
## 230       ssmc ~~  ssei     2     2     1 105.535  -1.939  -1.939   -0.431   -0.431
## 169     verbal =~ ssasi     2     2     1 100.876  -1.606  -1.606   -0.335   -0.335
## 177       math =~  ssei     2     2     1  88.256   0.966   0.966    0.252    0.252
## 197       ssgs ~~  ssmk     2     2     1  87.436   1.480   1.480    0.215    0.215
## 193      speed =~  ssei     2     2     1  79.641   0.665   0.665    0.173    0.173
## 101       math =~  sswk     1     1     1  74.771  -1.883  -1.883   -0.294   -0.294
## 188      speed =~  sspc     2     2     1  73.944   0.585   0.585    0.181    0.181
## 156       ssmc ~~ ssasi     1     1     1  69.481   1.313   1.313    0.179    0.179
## 124       ssgs ~~  ssmk     1     1     1  57.416   1.196   1.196    0.177    0.177
## 195       ssgs ~~  sspc     2     2     1  56.766  -0.736  -0.736   -0.189   -0.189
## 175       math =~  sspc     2     2     1  55.358   0.703   0.703    0.218    0.218
## 168     verbal =~  ssmc     2     2     1  51.155  -1.368  -1.368   -0.278   -0.278
## 192      speed =~ ssasi     2     2     1  46.761  -0.608  -0.608   -0.127   -0.127
## 182 electronic =~  ssar     2     2     1  46.485   1.042   1.042    0.147    0.147
## 183 electronic =~  ssmk     2     2     1  46.484  -0.906  -0.906   -0.140   -0.140
## 152       ssmk ~~ ssasi     1     1     1  45.605  -1.159  -1.159   -0.150   -0.150
## 99      verbal =~  sscs     1     1     1  42.571   0.204   0.204    0.240    0.240
## 98      verbal =~  ssno     1     1     1  42.571  -0.248  -0.248   -0.299   -0.299
## 218       ssar ~~  ssmk     2     2     1  42.274 -11.739 -11.739   -1.464   -1.464
## 122       ssgs ~~  sspc     1     1     1  41.616  -0.608  -0.608   -0.166   -0.166
## 187      speed =~  sswk     2     2     1  40.798  -0.939  -0.939   -0.137   -0.137
## 219       ssar ~~  ssmc     2     2     1  39.186   1.361   1.361    0.183    0.183
## 115      speed =~  sspc     1     1     1  39.162   0.347   0.347    0.125    0.125
## 102       math =~  sspc     1     1     1  38.720   0.531   0.531    0.192    0.192
## 208       sswk ~~  ssei     2     2     1  38.707   0.914   0.914    0.207    0.207
metric<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1249.911     62.000      0.000      0.973      0.079      0.031 281268.096 281725.463
Mc(metric)
## [1] 0.9080813
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 64 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        80
##   Number of equality constraints                    12
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1249.911     846.555
##   Degrees of freedom                                62          62
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.476
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          440.312     298.220
##     0                                          809.599     548.335
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.401    0.104   22.982    0.000    2.196    2.606    2.401    0.584
##     sswk    (.p2.)    5.688    0.126   45.089    0.000    5.440    5.935    5.688    0.900
##     sspc    (.p3.)    2.339    0.056   42.026    0.000    2.230    2.448    2.339    0.823
##   math =~                                                                                 
##     ssar    (.p4.)    6.228    0.084   74.460    0.000    6.064    6.392    6.228    0.928
##     ssmk    (.p5.)    5.281    0.071   74.684    0.000    5.142    5.419    5.281    0.872
##     ssmc    (.p6.)    1.139    0.084   13.509    0.000    0.974    1.305    1.139    0.272
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.126    0.094   11.915    0.000    0.941    1.311    1.126    0.274
##     ssasi   (.p8.)    2.500    0.056   44.463    0.000    2.390    2.611    2.500    0.705
##     ssmc    (.p9.)    2.151    0.080   26.885    0.000    1.994    2.308    2.151    0.513
##     ssei    (.10.)    2.555    0.056   45.581    0.000    2.445    2.665    2.555    0.781
##   speed =~                                                                                
##     ssno    (.11.)    0.725    0.015   46.951    0.000    0.695    0.755    0.725    0.878
##     sscs    (.12.)    0.627    0.015   41.278    0.000    0.598    0.657    0.627    0.731
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.810    0.009   86.834    0.000    0.791    0.828    0.810    0.810
##     electronic        0.845    0.012   69.286    0.000    0.821    0.869    0.845    0.845
##     speed             0.644    0.020   32.889    0.000    0.606    0.683    0.644    0.644
##   math ~~                                                                                 
##     electronic        0.753    0.015   49.362    0.000    0.723    0.783    0.753    0.753
##     speed             0.695    0.015   47.349    0.000    0.666    0.724    0.695    0.695
##   electronic ~~                                                                           
##     speed             0.496    0.023   21.585    0.000    0.451    0.541    0.496    0.496
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             15.782    0.090  175.509    0.000   15.606   15.959   15.782    3.836
##    .sswk             27.503    0.136  202.254    0.000   27.237   27.770   27.503    4.351
##    .sspc             11.863    0.059  201.639    0.000   11.748   11.978   11.863    4.174
##    .ssar             18.133    0.146  124.361    0.000   17.847   18.418   18.133    2.702
##    .ssmk             14.248    0.130  109.820    0.000   13.994   14.503   14.248    2.352
##    .ssmc             12.747    0.090  141.504    0.000   12.570   12.923   12.747    3.043
##    .ssasi            11.812    0.074  158.855    0.000   11.666   11.957   11.812    3.332
##    .ssei             10.402    0.072  144.049    0.000   10.261   10.544   10.402    3.181
##    .ssno              0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.574
##    .sscs              0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.647
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.328    0.201   26.538    0.000    4.935    5.722    5.328    0.315
##    .sswk              7.603    0.481   15.806    0.000    6.660    8.546    7.603    0.190
##    .sspc              2.608    0.118   22.176    0.000    2.378    2.839    2.608    0.323
##    .ssar              6.247    0.485   12.890    0.000    5.297    7.196    6.247    0.139
##    .ssmk              8.805    0.381   23.108    0.000    8.058    9.552    8.805    0.240
##    .ssmc              7.933    0.279   28.444    0.000    7.386    8.480    7.933    0.452
##    .ssasi             6.314    0.237   26.604    0.000    5.849    6.779    6.314    0.502
##    .ssei              4.164    0.182   22.892    0.000    3.807    4.520    4.164    0.389
##    .ssno              0.157    0.014   11.367    0.000    0.130    0.184    0.157    0.230
##    .sscs              0.342    0.018   19.066    0.000    0.307    0.377    0.342    0.465
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.401    0.104   22.982    0.000    2.196    2.606    2.694    0.579
##     sswk    (.p2.)    5.688    0.126   45.089    0.000    5.440    5.935    6.382    0.921
##     sspc    (.p3.)    2.339    0.056   42.026    0.000    2.230    2.448    2.625    0.833
##   math =~                                                                                 
##     ssar    (.p4.)    6.228    0.084   74.460    0.000    6.064    6.392    6.641    0.933
##     ssmk    (.p5.)    5.281    0.071   74.684    0.000    5.142    5.419    5.631    0.876
##     ssmc    (.p6.)    1.139    0.084   13.509    0.000    0.974    1.305    1.215    0.249
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.126    0.094   11.915    0.000    0.941    1.311    1.569    0.337
##     ssasi   (.p8.)    2.500    0.056   44.463    0.000    2.390    2.611    3.485    0.742
##     ssmc    (.p9.)    2.151    0.080   26.885    0.000    1.994    2.308    2.998    0.613
##     ssei    (.10.)    2.555    0.056   45.581    0.000    2.445    2.665    3.561    0.920
##   speed =~                                                                                
##     ssno    (.11.)    0.725    0.015   46.951    0.000    0.695    0.755    0.791    0.881
##     sscs    (.12.)    0.627    0.015   41.278    0.000    0.598    0.657    0.684    0.778
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              1.003    0.042   24.102    0.000    0.922    1.085    0.839    0.839
##     electronic        1.266    0.065   19.607    0.000    1.140    1.393    0.810    0.810
##     speed             0.888    0.049   17.963    0.000    0.791    0.985    0.726    0.726
##   math ~~                                                                                 
##     electronic        1.039    0.045   23.151    0.000    0.951    1.127    0.699    0.699
##     speed             0.924    0.038   24.272    0.000    0.849    0.998    0.795    0.795
##   electronic ~~                                                                           
##     speed             0.814    0.052   15.774    0.000    0.713    0.915    0.536    0.536
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             17.613    0.097  181.519    0.000   17.422   17.803   17.613    3.783
##    .sswk             27.329    0.142  191.949    0.000   27.050   27.608   27.329    3.944
##    .sspc             11.086    0.068  163.704    0.000   10.953   11.219   11.086    3.517
##    .ssar             20.009    0.151  132.770    0.000   19.714   20.305   20.009    2.810
##    .ssmk             14.749    0.139  105.881    0.000   14.476   15.022   14.749    2.296
##    .ssmc             16.924    0.104  162.135    0.000   16.719   17.128   16.924    3.463
##    .ssasi            17.810    0.102  175.227    0.000   17.610   18.009   17.810    3.793
##    .ssei             13.561    0.080  169.041    0.000   13.404   13.718   13.561    3.505
##    .ssno              0.253    0.019   13.436    0.000    0.216    0.290    0.253    0.282
##    .sscs              0.112    0.019    5.896    0.000    0.075    0.149    0.112    0.127
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.113    0.194   26.337    0.000    4.733    5.494    5.113    0.236
##    .sswk              7.287    0.519   14.036    0.000    6.270    8.305    7.287    0.152
##    .sspc              3.048    0.133   22.992    0.000    2.788    3.308    3.048    0.307
##    .ssar              6.612    0.453   14.589    0.000    5.723    7.500    6.612    0.130
##    .ssmk              9.568    0.399   24.006    0.000    8.787   10.350    9.568    0.232
##    .ssmc              8.331    0.316   26.397    0.000    7.712    8.950    8.331    0.349
##    .ssasi             9.899    0.387   25.549    0.000    9.139   10.658    9.899    0.449
##    .ssei              2.287    0.178   12.873    0.000    1.939    2.636    2.287    0.153
##    .ssno              0.180    0.013   13.390    0.000    0.154    0.207    0.180    0.224
##    .sscs              0.306    0.017   17.645    0.000    0.272    0.340    0.306    0.395
##     verbal            1.259    0.070   18.075    0.000    1.122    1.396    1.000    1.000
##     math              1.137    0.038   29.563    0.000    1.062    1.213    1.000    1.000
##     electronic        1.942    0.100   19.360    0.000    1.746    2.139    1.000    1.000
##     speed             1.189    0.062   19.108    0.000    1.067    1.311    1.000    1.000
lavTestScore(metric, release = 1:12)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 140.566 12       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p47.  1.553  1   0.213
## 2   .p2. == .p48. 17.542  1   0.000
## 3   .p3. == .p49. 30.588  1   0.000
## 4   .p4. == .p50.  5.041  1   0.025
## 5   .p5. == .p51.  6.071  1   0.014
## 6   .p6. == .p52.  0.509  1   0.475
## 7   .p7. == .p53. 14.449  1   0.000
## 8   .p8. == .p54. 23.424  1   0.000
## 9   .p9. == .p55.  7.444  1   0.006
## 10 .p10. == .p56. 20.225  1   0.000
## 11 .p11. == .p57.  5.014  1   0.025
## 12 .p12. == .p58.  5.014  1   0.025
scalar<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2461.668     68.000      0.000      0.946      0.107      0.063 282467.852 282884.864
Mc(scalar)
## [1] 0.8234181
summary(scalar, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 100 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2461.668    1667.207
##   Degrees of freedom                                68          68
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.477
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1095.851     742.184
##     0                                         1365.817     925.023
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.332    0.074   31.509    0.000    2.187    2.477    2.332    0.570
##     sswk    (.p2.)    5.672    0.128   44.217    0.000    5.420    5.923    5.672    0.897
##     sspc    (.p3.)    2.356    0.054   43.586    0.000    2.250    2.462    2.356    0.822
##   math =~                                                                                 
##     ssar    (.p4.)    6.265    0.083   75.319    0.000    6.102    6.428    6.265    0.930
##     ssmk    (.p5.)    5.228    0.071   73.196    0.000    5.088    5.368    5.228    0.866
##     ssmc    (.p6.)    1.026    0.072   14.262    0.000    0.885    1.167    1.026    0.247
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.163    0.046   25.257    0.000    1.072    1.253    1.163    0.284
##     ssasi   (.p8.)    2.796    0.056   50.056    0.000    2.686    2.905    2.796    0.741
##     ssmc    (.p9.)    2.209    0.064   34.264    0.000    2.082    2.335    2.209    0.532
##     ssei    (.10.)    2.187    0.052   41.720    0.000    2.084    2.290    2.187    0.697
##   speed =~                                                                                
##     ssno    (.11.)    0.702    0.016   43.815    0.000    0.670    0.733    0.702    0.855
##     sscs    (.12.)    0.649    0.015   42.799    0.000    0.619    0.678    0.649    0.744
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.810    0.009   86.404    0.000    0.792    0.829    0.810    0.810
##     electronic        0.848    0.013   65.615    0.000    0.822    0.873    0.848    0.848
##     speed             0.655    0.019   33.889    0.000    0.617    0.692    0.655    0.655
##   math ~~                                                                                 
##     electronic        0.763    0.015   49.460    0.000    0.733    0.794    0.763    0.763
##     speed             0.701    0.015   47.576    0.000    0.672    0.730    0.701    0.701
##   electronic ~~                                                                           
##     speed             0.512    0.023   22.199    0.000    0.467    0.557    0.512    0.512
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   15.808    0.089  178.332    0.000   15.634   15.982   15.808    3.863
##    .sswk    (.34.)   27.769    0.133  208.451    0.000   27.508   28.031   27.769    4.392
##    .sspc    (.35.)   11.632    0.059  197.163    0.000   11.516   11.747   11.632    4.058
##    .ssar    (.36.)   18.332    0.145  126.360    0.000   18.047   18.616   18.332    2.721
##    .ssmk    (.37.)   13.892    0.125  111.154    0.000   13.647   14.137   13.892    2.300
##    .ssmc    (.38.)   12.754    0.087  147.038    0.000   12.584   12.924   12.754    3.075
##    .ssasi   (.39.)   12.235    0.080  153.177    0.000   12.078   12.392   12.235    3.244
##    .ssei    (.40.)    9.957    0.067  149.065    0.000    9.827   10.088    9.957    3.174
##    .ssno    (.41.)    0.516    0.017   29.749    0.000    0.482    0.550    0.516    0.628
##    .sscs    (.42.)    0.469    0.019   25.065    0.000    0.433    0.506    0.469    0.538
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.359    0.202   26.502    0.000    4.963    5.755    5.359    0.320
##    .sswk              7.805    0.495   15.775    0.000    6.836    8.775    7.805    0.195
##    .sspc              2.664    0.121   22.094    0.000    2.428    2.900    2.664    0.324
##    .ssar              6.155    0.499   12.328    0.000    5.176    7.133    6.155    0.136
##    .ssmk              9.138    0.388   23.546    0.000    8.377    9.899    9.138    0.251
##    .ssmc              7.814    0.276   28.294    0.000    7.272    8.355    7.814    0.454
##    .ssasi             6.408    0.271   23.671    0.000    5.878    6.939    6.408    0.450
##    .ssei              5.060    0.193   26.191    0.000    4.682    5.439    5.060    0.514
##    .ssno              0.182    0.014   13.213    0.000    0.155    0.209    0.182    0.269
##    .sscs              0.339    0.019   17.860    0.000    0.302    0.377    0.339    0.447
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.332    0.074   31.509    0.000    2.187    2.477    2.609    0.557
##     sswk    (.p2.)    5.672    0.128   44.217    0.000    5.420    5.923    6.346    0.918
##     sspc    (.p3.)    2.356    0.054   43.586    0.000    2.250    2.462    2.636    0.831
##   math =~                                                                                 
##     ssar    (.p4.)    6.265    0.083   75.319    0.000    6.102    6.428    6.668    0.933
##     ssmk    (.p5.)    5.228    0.071   73.196    0.000    5.088    5.368    5.564    0.870
##     ssmc    (.p6.)    1.026    0.072   14.262    0.000    0.885    1.167    1.092    0.222
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.163    0.046   25.257    0.000    1.072    1.253    1.704    0.364
##     ssasi   (.p8.)    2.796    0.056   50.056    0.000    2.686    2.905    4.097    0.798
##     ssmc    (.p9.)    2.209    0.064   34.264    0.000    2.082    2.335    3.236    0.657
##     ssei    (.10.)    2.187    0.052   41.720    0.000    2.084    2.290    3.205    0.870
##   speed =~                                                                                
##     ssno    (.11.)    0.702    0.016   43.815    0.000    0.670    0.733    0.768    0.864
##     sscs    (.12.)    0.649    0.015   42.799    0.000    0.619    0.678    0.710    0.790
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.999    0.041   24.080    0.000    0.918    1.080    0.839    0.839
##     electronic        1.321    0.067   19.616    0.000    1.189    1.453    0.806    0.806
##     speed             0.898    0.050   17.799    0.000    0.799    0.997    0.734    0.734
##   math ~~                                                                                 
##     electronic        1.091    0.048   22.822    0.000    0.997    1.184    0.699    0.699
##     speed             0.932    0.039   24.059    0.000    0.856    1.008    0.800    0.800
##   electronic ~~                                                                           
##     speed             0.859    0.056   15.371    0.000    0.750    0.969    0.536    0.536
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   15.808    0.089  178.332    0.000   15.634   15.982   15.808    3.376
##    .sswk    (.34.)   27.769    0.133  208.451    0.000   27.508   28.031   27.769    4.017
##    .sspc    (.35.)   11.632    0.059  197.163    0.000   11.516   11.747   11.632    3.667
##    .ssar    (.36.)   18.332    0.145  126.360    0.000   18.047   18.616   18.332    2.566
##    .ssmk    (.37.)   13.892    0.125  111.154    0.000   13.647   14.137   13.892    2.173
##    .ssmc    (.38.)   12.754    0.087  147.038    0.000   12.584   12.924   12.754    2.587
##    .ssasi   (.39.)   12.235    0.080  153.177    0.000   12.078   12.392   12.235    2.382
##    .ssei    (.40.)    9.957    0.067  149.065    0.000    9.827   10.088    9.957    2.703
##    .ssno    (.41.)    0.516    0.017   29.749    0.000    0.482    0.550    0.516    0.580
##    .sscs    (.42.)    0.469    0.019   25.065    0.000    0.433    0.506    0.469    0.523
##     verbal           -0.121    0.035   -3.413    0.001   -0.191   -0.052   -0.108   -0.108
##     math              0.235    0.034    6.974    0.000    0.169    0.301    0.221    0.221
##     elctrnc           1.775    0.062   28.708    0.000    1.654    1.897    1.212    1.212
##     speed            -0.439    0.040  -10.924    0.000   -0.518   -0.360   -0.401   -0.401
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.046    0.195   25.839    0.000    4.664    5.429    5.046    0.230
##    .sswk              7.513    0.530   14.173    0.000    6.474    8.551    7.513    0.157
##    .sspc              3.113    0.139   22.319    0.000    2.840    3.386    3.113    0.309
##    .ssar              6.570    0.473   13.884    0.000    5.643    7.498    6.570    0.129
##    .ssmk              9.908    0.417   23.739    0.000    9.090   10.726    9.908    0.242
##    .ssmc              7.690    0.301   25.560    0.000    7.100    8.279    7.690    0.316
##    .ssasi             9.603    0.436   22.028    0.000    8.749   10.457    9.603    0.364
##    .ssei              3.304    0.182   18.173    0.000    2.948    3.660    3.304    0.243
##    .ssno              0.201    0.014   14.669    0.000    0.174    0.228    0.201    0.254
##    .sscs              0.302    0.018   16.578    0.000    0.266    0.338    0.302    0.375
##     verbal            1.252    0.070   17.946    0.000    1.115    1.389    1.000    1.000
##     math              1.133    0.038   29.429    0.000    1.057    1.208    1.000    1.000
##     electronic        2.147    0.110   19.458    0.000    1.931    2.364    1.000    1.000
##     speed             1.197    0.064   18.585    0.000    1.071    1.323    1.000    1.000
lavTestScore(scalar, release = 13:22) # ssasi also has large misfit, similar to ssei but it barely changes fit indices after freeing ssei, also, if ssar is not further released at the end, RMSEAD indicates huge misfit
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test       X2 df p.value
## 1 score 1159.178 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs      X2 df p.value
## 1  .p33. == .p79.   3.693  1   0.055
## 2  .p34. == .p80. 158.154  1   0.000
## 3  .p35. == .p81. 186.081  1   0.000
## 4  .p36. == .p82. 125.254  1   0.000
## 5  .p37. == .p83. 127.631  1   0.000
## 6  .p38. == .p84.   0.122  1   0.727
## 7  .p39. == .p85. 545.788  1   0.000
## 8  .p40. == .p86. 558.462  1   0.000
## 9  .p41. == .p87. 195.043  1   0.000
## 10 .p42. == .p88. 195.043  1   0.000
scalar2<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1")) # no and cs biased but one needs to be constrained
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1291.424     64.000      0.000      0.972      0.079      0.033 281305.608 281749.524
Mc(scalar2)
## [1] 0.9051736
strict<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1512.562     74.000      0.000      0.968      0.079      0.043 281506.746 281883.402
Mc(strict) 
## [1] 0.889793
cf.cov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1407.608     70.000      0.000      0.970      0.079      0.093 281409.792 281813.352
Mc(cf.cov)
## [1] 0.8971142
summary(cf.cov, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 97 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
##   Number of equality constraints                    24
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1407.608     953.022
##   Degrees of freedom                                70          70
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.477
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          487.797     330.263
##     0                                          919.811     622.758
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.563    0.060   42.965    0.000    2.446    2.680    2.563    0.587
##     sswk    (.p2.)    6.084    0.100   60.789    0.000    5.888    6.281    6.084    0.911
##     sspc    (.p3.)    2.504    0.048   52.565    0.000    2.411    2.597    2.504    0.839
##   math =~                                                                                 
##     ssar    (.p4.)    6.475    0.068   95.594    0.000    6.342    6.607    6.475    0.932
##     ssmk    (.p5.)    5.496    0.060   91.454    0.000    5.378    5.613    5.496    0.880
##     ssmc    (.p6.)    1.468    0.069   21.409    0.000    1.334    1.603    1.468    0.337
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.250    0.046   27.266    0.000    1.160    1.340    1.250    0.286
##     ssasi   (.p8.)    2.794    0.059   47.248    0.000    2.678    2.910    2.794    0.743
##     ssmc    (.p9.)    2.039    0.061   33.250    0.000    1.919    2.159    2.039    0.468
##     ssei    (.10.)    2.845    0.053   53.624    0.000    2.741    2.949    2.845    0.817
##   speed =~                                                                                
##     ssno    (.11.)    0.770    0.013   58.705    0.000    0.744    0.795    0.770    0.890
##     sscs    (.12.)    0.666    0.014   46.601    0.000    0.638    0.694    0.666    0.751
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.817    0.008   98.918    0.000    0.801    0.833    0.817    0.817
##     elctrnc (.28.)    0.878    0.010   91.117    0.000    0.859    0.897    0.878    0.878
##     speed   (.29.)    0.678    0.013   51.136    0.000    0.652    0.704    0.678    0.678
##   math ~~                                                                                 
##     elctrnc (.30.)    0.765    0.011   66.831    0.000    0.743    0.788    0.765    0.765
##     speed   (.31.)    0.736    0.011   67.572    0.000    0.715    0.757    0.736    0.736
##   electronic ~~                                                                           
##     speed   (.32.)    0.549    0.017   32.685    0.000    0.516    0.581    0.549    0.549
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   15.785    0.089  177.305    0.000   15.611   15.960   15.785    3.618
##    .sswk             27.503    0.136  202.254    0.000   27.237   27.770   27.503    4.118
##    .sspc    (.35.)   11.862    0.059  202.751    0.000   11.747   11.977   11.862    3.976
##    .ssar             18.133    0.146  124.361    0.000   17.847   18.418   18.133    2.611
##    .ssmk    (.37.)   14.278    0.130  110.059    0.000   14.024   14.533   14.278    2.287
##    .ssmc    (.38.)   12.643    0.088  144.281    0.000   12.472   12.815   12.643    2.903
##    .ssasi   (.39.)   11.869    0.075  159.199    0.000   11.723   12.016   11.869    3.156
##    .ssei             10.402    0.072  144.049    0.000   10.261   10.544   10.402    2.988
##    .ssno    (.41.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.548
##    .sscs              0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.625
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.285    0.200   26.399    0.000    4.892    5.677    5.285    0.278
##    .sswk              7.593    0.473   16.062    0.000    6.666    8.519    7.593    0.170
##    .sspc              2.631    0.118   22.385    0.000    2.400    2.861    2.631    0.296
##    .ssar              6.317    0.481   13.137    0.000    5.374    7.259    6.317    0.131
##    .ssmk              8.778    0.380   23.072    0.000    8.032    9.523    8.778    0.225
##    .ssmc              8.073    0.276   29.209    0.000    7.532    8.615    8.073    0.426
##    .ssasi             6.335    0.239   26.506    0.000    5.867    6.804    6.335    0.448
##    .ssei              4.024    0.180   22.352    0.000    3.671    4.377    4.024    0.332
##    .ssno              0.156    0.014   11.537    0.000    0.130    0.183    0.156    0.209
##    .sscs              0.343    0.018   19.181    0.000    0.308    0.378    0.343    0.436
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.563    0.060   42.965    0.000    2.446    2.680    2.535    0.577
##     sswk    (.p2.)    6.084    0.100   60.789    0.000    5.888    6.281    6.017    0.911
##     sspc    (.p3.)    2.504    0.048   52.565    0.000    2.411    2.597    2.476    0.818
##   math =~                                                                                 
##     ssar    (.p4.)    6.475    0.068   95.594    0.000    6.342    6.607    6.397    0.927
##     ssmk    (.p5.)    5.496    0.060   91.454    0.000    5.378    5.613    5.430    0.869
##     ssmc    (.p6.)    1.468    0.069   21.409    0.000    1.334    1.603    1.450    0.316
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.250    0.046   27.266    0.000    1.160    1.340    1.465    0.333
##     ssasi   (.p8.)    2.794    0.059   47.248    0.000    2.678    2.910    3.274    0.720
##     ssmc    (.p9.)    2.039    0.061   33.250    0.000    1.919    2.159    2.389    0.520
##     ssei    (.10.)    2.845    0.053   53.624    0.000    2.741    2.949    3.334    0.918
##   speed =~                                                                                
##     ssno    (.11.)    0.770    0.013   58.705    0.000    0.744    0.795    0.750    0.870
##     sscs    (.12.)    0.666    0.014   46.601    0.000    0.638    0.694    0.650    0.762
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.817    0.008   98.918    0.000    0.801    0.833    0.836    0.836
##     elctrnc (.28.)    0.878    0.010   91.117    0.000    0.859    0.897    0.757    0.757
##     speed   (.29.)    0.678    0.013   51.136    0.000    0.652    0.704    0.703    0.703
##   math ~~                                                                                 
##     elctrnc (.30.)    0.765    0.011   66.831    0.000    0.743    0.788    0.661    0.661
##     speed   (.31.)    0.736    0.011   67.572    0.000    0.715    0.757    0.764    0.764
##   electronic ~~                                                                           
##     speed   (.32.)    0.549    0.017   32.685    0.000    0.516    0.581    0.480    0.480
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   15.785    0.089  177.305    0.000   15.611   15.960   15.785    3.591
##    .sswk             29.211    0.177  164.673    0.000   28.863   29.558   29.211    4.424
##    .sspc    (.35.)   11.862    0.059  202.751    0.000   11.747   11.977   11.862    3.920
##    .ssar             19.492    0.180  108.257    0.000   19.139   19.845   19.492    2.826
##    .ssmk    (.37.)   14.278    0.130  110.059    0.000   14.024   14.533   14.278    2.284
##    .ssmc    (.38.)   12.643    0.088  144.281    0.000   12.472   12.815   12.643    2.752
##    .ssasi   (.39.)   11.869    0.075  159.199    0.000   11.723   12.016   11.869    2.608
##    .ssei              7.603    0.171   44.474    0.000    7.267    7.938    7.603    2.092
##    .ssno    (.41.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.550
##    .sscs              0.303    0.022   14.010    0.000    0.261    0.346    0.303    0.355
##     verbal           -0.309    0.036   -8.556    0.000   -0.380   -0.238   -0.313   -0.313
##     math              0.080    0.035    2.309    0.021    0.012    0.148    0.081    0.081
##     elctrnc           2.095    0.070   29.879    0.000    1.957    2.232    1.787    1.787
##     speed            -0.287    0.034   -8.384    0.000   -0.354   -0.220   -0.295   -0.295
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.135    0.195   26.357    0.000    4.753    5.517    5.135    0.266
##    .sswk              7.388    0.512   14.429    0.000    6.384    8.392    7.388    0.169
##    .sspc              3.026    0.130   23.198    0.000    2.770    3.282    3.026    0.330
##    .ssar              6.668    0.446   14.941    0.000    5.793    7.543    6.668    0.140
##    .ssmk              9.592    0.394   24.355    0.000    8.820   10.364    9.592    0.245
##    .ssmc              8.713    0.308   28.323    0.000    8.110    9.316    8.713    0.413
##    .ssasi             9.985    0.393   25.427    0.000    9.215   10.755    9.985    0.482
##    .ssei              2.088    0.177   11.824    0.000    1.742    2.434    2.088    0.158
##    .ssno              0.181    0.014   13.296    0.000    0.154    0.207    0.181    0.243
##    .sscs              0.306    0.017   17.580    0.000    0.272    0.340    0.306    0.420
##     verbal            0.978    0.020   48.556    0.000    0.939    1.017    1.000    1.000
##     math              0.976    0.017   58.416    0.000    0.943    1.009    1.000    1.000
##     electronic        1.373    0.043   32.081    0.000    1.289    1.457    1.000    1.000
##     speed             0.951    0.029   32.665    0.000    0.894    1.008    1.000    1.000
cf.vcov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1602.843     74.000      0.000      0.966      0.082      0.106 281597.027 281973.683
Mc(cf.vcov)
## [1] 0.8832965
cf.cov2<-cfa(cf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1417.225     73.000      0.000      0.970      0.077      0.092 281413.409 281796.791
Mc(cf.cov2)
## [1] 0.8966326
summary(cf.cov2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 97 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        81
##   Number of equality constraints                    24
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1417.225     961.720
##   Degrees of freedom                                73          73
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.474
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          489.927     332.461
##     0                                          927.298     629.259
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.548    0.057   44.963    0.000    2.437    2.659    2.548    0.585
##     sswk    (.p2.)    6.047    0.090   67.053    0.000    5.870    6.223    6.047    0.908
##     sspc    (.p3.)    2.489    0.044   56.815    0.000    2.403    2.575    2.489    0.838
##   math =~                                                                                 
##     ssar    (.p4.)    6.439    0.062  103.330    0.000    6.316    6.561    6.439    0.930
##     ssmk    (.p5.)    5.464    0.056   98.406    0.000    5.355    5.573    5.464    0.879
##     ssmc    (.p6.)    1.460    0.068   21.568    0.000    1.327    1.593    1.460    0.335
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.251    0.046   27.274    0.000    1.161    1.341    1.251    0.287
##     ssasi   (.p8.)    2.796    0.059   47.128    0.000    2.680    2.912    2.796    0.743
##     ssmc    (.p9.)    2.041    0.062   33.174    0.000    1.920    2.161    2.041    0.469
##     ssei    (.10.)    2.851    0.053   53.650    0.000    2.747    2.955    2.851    0.818
##   speed =~                                                                                
##     ssno    (.11.)    0.759    0.011   67.448    0.000    0.737    0.781    0.759    0.883
##     sscs    (.12.)    0.657    0.013   51.258    0.000    0.632    0.682    0.657    0.746
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.827    0.007  124.118    0.000    0.814    0.840    0.827    0.827
##     elctrnc (.28.)    0.880    0.009   93.674    0.000    0.862    0.899    0.880    0.880
##     speed   (.29.)    0.690    0.012   56.051    0.000    0.666    0.714    0.690    0.690
##   math ~~                                                                                 
##     elctrnc (.30.)    0.769    0.011   69.824    0.000    0.747    0.790    0.769    0.769
##     speed   (.31.)    0.749    0.010   78.310    0.000    0.730    0.767    0.749    0.749
##   electronic ~~                                                                           
##     speed   (.32.)    0.555    0.017   33.418    0.000    0.522    0.587    0.555    0.555
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   15.785    0.089  177.193    0.000   15.610   15.959   15.785    3.626
##    .sswk             27.503    0.136  202.254    0.000   27.237   27.770   27.503    4.131
##    .sspc    (.35.)   11.862    0.058  202.852    0.000   11.747   11.977   11.862    3.992
##    .ssar             18.133    0.146  124.361    0.000   17.847   18.418   18.133    2.620
##    .ssmk    (.37.)   14.278    0.130  110.038    0.000   14.024   14.533   14.278    2.297
##    .ssmc    (.38.)   12.643    0.088  144.450    0.000   12.472   12.815   12.643    2.904
##    .ssasi   (.39.)   11.870    0.075  159.094    0.000   11.723   12.016   11.870    3.154
##    .ssei             10.402    0.072  144.049    0.000   10.261   10.544   10.402    2.985
##    .ssno    (.41.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.551
##    .sscs              0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.630
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssgs              5.278    0.200   26.385    0.000    4.885    5.670    5.278    0.279
##    .sswk              7.762    0.459   16.923    0.000    6.863    8.661    7.762    0.175
##    .sspc              2.635    0.117   22.449    0.000    2.405    2.865    2.635    0.298
##    .ssar              6.454    0.468   13.790    0.000    5.536    7.371    6.454    0.135
##    .ssmk              8.779    0.376   23.338    0.000    8.042    9.516    8.779    0.227
##    .ssmc              8.083    0.277   29.221    0.000    7.541    8.625    8.083    0.426
##    .ssasi             6.345    0.239   26.549    0.000    5.877    6.814    6.345    0.448
##    .ssei              4.022    0.180   22.345    0.000    3.669    4.375    4.022    0.331
##    .ssno              0.163    0.013   12.756    0.000    0.138    0.188    0.163    0.220
##    .sscs              0.343    0.018   19.363    0.000    0.308    0.378    0.343    0.443
##     electronic        1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.548    0.057   44.963    0.000    2.437    2.659    2.548    0.579
##     sswk    (.p2.)    6.047    0.090   67.053    0.000    5.870    6.223    6.047    0.914
##     sspc    (.p3.)    2.489    0.044   56.815    0.000    2.403    2.575    2.489    0.820
##   math =~                                                                                 
##     ssar    (.p4.)    6.439    0.062  103.330    0.000    6.316    6.561    6.439    0.930
##     ssmk    (.p5.)    5.464    0.056   98.406    0.000    5.355    5.573    5.464    0.870
##     ssmc    (.p6.)    1.460    0.068   21.568    0.000    1.327    1.593    1.460    0.318
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.251    0.046   27.274    0.000    1.161    1.341    1.461    0.332
##     ssasi   (.p8.)    2.796    0.059   47.128    0.000    2.680    2.912    3.266    0.719
##     ssmc    (.p9.)    2.041    0.062   33.174    0.000    1.920    2.161    2.383    0.519
##     ssei    (.10.)    2.851    0.053   53.650    0.000    2.747    2.955    3.329    0.918
##   speed =~                                                                                
##     ssno    (.11.)    0.759    0.011   67.448    0.000    0.737    0.781    0.759    0.876
##     sscs    (.12.)    0.657    0.013   51.258    0.000    0.632    0.682    0.657    0.765
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.827    0.007  124.118    0.000    0.814    0.840    0.827    0.827
##     elctrnc (.28.)    0.880    0.009   93.674    0.000    0.862    0.899    0.754    0.754
##     speed   (.29.)    0.690    0.012   56.051    0.000    0.666    0.714    0.690    0.690
##   math ~~                                                                                 
##     elctrnc (.30.)    0.769    0.011   69.824    0.000    0.747    0.790    0.658    0.658
##     speed   (.31.)    0.749    0.010   78.310    0.000    0.730    0.767    0.749    0.749
##   electronic ~~                                                                           
##     speed   (.32.)    0.555    0.017   33.418    0.000    0.522    0.587    0.475    0.475
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   15.785    0.089  177.193    0.000   15.610   15.959   15.785    3.586
##    .sswk             29.211    0.177  164.666    0.000   28.863   29.558   29.211    4.415
##    .sspc    (.35.)   11.862    0.058  202.852    0.000   11.747   11.977   11.862    3.906
##    .ssar             19.492    0.180  108.180    0.000   19.139   19.845   19.492    2.816
##    .ssmk    (.37.)   14.278    0.130  110.038    0.000   14.024   14.533   14.278    2.273
##    .ssmc    (.38.)   12.643    0.088  144.450    0.000   12.472   12.815   12.643    2.752
##    .ssasi   (.39.)   11.870    0.075  159.094    0.000   11.723   12.016   11.870    2.612
##    .ssei              7.595    0.172   44.165    0.000    7.258    7.932    7.595    2.093
##    .ssno    (.41.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.547
##    .sscs              0.303    0.022   14.012    0.000    0.261    0.345    0.303    0.353
##     verbal           -0.311    0.036   -8.663    0.000   -0.382   -0.241   -0.311   -0.311
##     math              0.080    0.035    2.308    0.021    0.012    0.149    0.080    0.080
##     elctrnc           2.093    0.070   29.872    0.000    1.955    2.230    1.792    1.792
##     speed            -0.291    0.035   -8.425    0.000   -0.359   -0.223   -0.291   -0.291
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssgs              5.140    0.195   26.383    0.000    4.758    5.522    5.140    0.265
##    .sswk              7.213    0.490   14.713    0.000    6.252    8.174    7.213    0.165
##    .sspc              3.027    0.130   23.197    0.000    2.771    3.282    3.027    0.328
##    .ssar              6.472    0.437   14.813    0.000    5.616    7.329    6.472    0.135
##    .ssmk              9.621    0.399   24.117    0.000    8.839   10.403    9.621    0.244
##    .ssmc              8.714    0.308   28.301    0.000    8.110    9.317    8.714    0.413
##    .ssasi             9.992    0.393   25.440    0.000    9.222   10.761    9.992    0.484
##    .ssei              2.078    0.177   11.746    0.000    1.731    2.425    2.078    0.158
##    .ssno              0.175    0.013   13.169    0.000    0.149    0.201    0.175    0.233
##    .sscs              0.305    0.018   17.347    0.000    0.271    0.340    0.305    0.415
##     electronic        1.364    0.042   32.228    0.000    1.281    1.447    1.000    1.000
reduced<-cfa(cf.reduced, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1424.863     74.000      0.000      0.970      0.077      0.092 281419.047 281795.703
Mc(reduced)
## [1] 0.8961496
summary(reduced, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 91 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        80
##   Number of equality constraints                    24
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1424.863     967.240
##   Degrees of freedom                                74          74
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.473
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          494.782     335.873
##     0                                          930.080     631.367
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.550    0.057   45.062    0.000    2.439    2.661    2.550    0.586
##     sswk    (.p2.)    6.049    0.090   67.094    0.000    5.872    6.225    6.049    0.908
##     sspc    (.p3.)    2.490    0.044   56.811    0.000    2.404    2.576    2.490    0.838
##   math =~                                                                                 
##     ssar    (.p4.)    6.442    0.062  103.681    0.000    6.320    6.564    6.442    0.930
##     ssmk    (.p5.)    5.467    0.056   98.262    0.000    5.358    5.576    5.467    0.879
##     ssmc    (.p6.)    1.456    0.067   21.572    0.000    1.324    1.588    1.456    0.334
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.250    0.046   27.285    0.000    1.161    1.340    1.250    0.287
##     ssasi   (.p8.)    2.795    0.059   47.114    0.000    2.679    2.912    2.795    0.743
##     ssmc    (.p9.)    2.048    0.061   33.491    0.000    1.929    2.168    2.048    0.470
##     ssei    (.10.)    2.851    0.053   53.692    0.000    2.747    2.955    2.851    0.818
##   speed =~                                                                                
##     ssno    (.11.)    0.759    0.011   67.430    0.000    0.737    0.781    0.759    0.883
##     sscs    (.12.)    0.657    0.013   51.248    0.000    0.632    0.682    0.657    0.747
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.28.)    0.827    0.007  124.185    0.000    0.814    0.840    0.827    0.827
##     elctrnc (.29.)    0.880    0.009   93.758    0.000    0.862    0.899    0.880    0.880
##     speed   (.30.)    0.690    0.012   56.100    0.000    0.666    0.715    0.690    0.690
##   math ~~                                                                                 
##     elctrnc (.31.)    0.769    0.011   69.808    0.000    0.747    0.790    0.769    0.769
##     speed   (.32.)    0.749    0.010   78.367    0.000    0.730    0.768    0.749    0.749
##   electronic ~~                                                                           
##     speed   (.33.)    0.555    0.017   33.445    0.000    0.523    0.588    0.555    0.555
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.34.)   15.881    0.080  197.461    0.000   15.723   16.039   15.881    3.647
##    .sswk             27.660    0.123  224.766    0.000   27.419   27.902   27.660    4.154
##    .sspc    (.36.)   11.927    0.053  224.215    0.000   11.823   12.031   11.927    4.013
##    .ssar             18.335    0.122  150.384    0.000   18.096   18.574   18.335    2.648
##    .ssmk    (.38.)   14.500    0.095  152.000    0.000   14.313   14.687   14.500    2.331
##    .ssmc    (.39.)   12.742    0.080  160.180    0.000   12.586   12.898   12.742    2.925
##    .ssasi   (.40.)   11.936    0.073  163.677    0.000   11.793   12.079   11.936    3.172
##    .ssei             10.471    0.068  154.251    0.000   10.338   10.604   10.471    3.004
##    .ssno    (.42.)    0.492    0.017   29.765    0.000    0.459    0.524    0.492    0.572
##    .sscs              0.570    0.018   32.357    0.000    0.536    0.605    0.570    0.648
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssgs              5.278    0.200   26.386    0.000    4.886    5.670    5.278    0.278
##    .sswk              7.763    0.459   16.923    0.000    6.864    8.662    7.763    0.175
##    .sspc              2.635    0.117   22.448    0.000    2.405    2.865    2.635    0.298
##    .ssar              6.449    0.468   13.777    0.000    5.532    7.367    6.449    0.135
##    .ssmk              8.789    0.377   23.325    0.000    8.050    9.527    8.789    0.227
##    .ssmc              8.080    0.277   29.200    0.000    7.538    8.623    8.080    0.426
##    .ssasi             6.345    0.239   26.558    0.000    5.877    6.814    6.345    0.448
##    .ssei              4.023    0.180   22.355    0.000    3.671    4.376    4.023    0.331
##    .ssno              0.163    0.013   12.755    0.000    0.138    0.188    0.163    0.220
##    .sscs              0.343    0.018   19.363    0.000    0.308    0.378    0.343    0.443
##     electronic        1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.550    0.057   45.062    0.000    2.439    2.661    2.550    0.579
##     sswk    (.p2.)    6.049    0.090   67.094    0.000    5.872    6.225    6.049    0.914
##     sspc    (.p3.)    2.490    0.044   56.811    0.000    2.404    2.576    2.490    0.820
##   math =~                                                                                 
##     ssar    (.p4.)    6.442    0.062  103.681    0.000    6.320    6.564    6.442    0.930
##     ssmk    (.p5.)    5.467    0.056   98.262    0.000    5.358    5.576    5.467    0.870
##     ssmc    (.p6.)    1.456    0.067   21.572    0.000    1.324    1.588    1.456    0.317
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.250    0.046   27.285    0.000    1.161    1.340    1.460    0.332
##     ssasi   (.p8.)    2.795    0.059   47.114    0.000    2.679    2.912    3.264    0.718
##     ssmc    (.p9.)    2.048    0.061   33.491    0.000    1.929    2.168    2.392    0.520
##     ssei    (.10.)    2.851    0.053   53.692    0.000    2.747    2.955    3.330    0.918
##   speed =~                                                                                
##     ssno    (.11.)    0.759    0.011   67.430    0.000    0.737    0.781    0.759    0.876
##     sscs    (.12.)    0.657    0.013   51.248    0.000    0.632    0.682    0.657    0.765
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.28.)    0.827    0.007  124.185    0.000    0.814    0.840    0.827    0.827
##     elctrnc (.29.)    0.880    0.009   93.758    0.000    0.862    0.899    0.754    0.754
##     speed   (.30.)    0.690    0.012   56.100    0.000    0.666    0.715    0.690    0.690
##   math ~~                                                                                 
##     elctrnc (.31.)    0.769    0.011   69.808    0.000    0.747    0.790    0.658    0.658
##     speed   (.32.)    0.749    0.010   78.367    0.000    0.730    0.768    0.749    0.749
##   electronic ~~                                                                           
##     speed   (.33.)    0.555    0.017   33.445    0.000    0.523    0.588    0.475    0.475
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.34.)   15.881    0.080  197.461    0.000   15.723   16.039   15.881    3.607
##    .sswk             29.369    0.163  179.704    0.000   29.048   29.689   29.369    4.438
##    .sspc    (.36.)   11.927    0.053  224.215    0.000   11.823   12.031   11.927    3.927
##    .ssar             19.814    0.121  163.633    0.000   19.577   20.052   19.814    2.861
##    .ssmk    (.38.)   14.500    0.095  152.000    0.000   14.313   14.687   14.500    2.306
##    .ssmc    (.39.)   12.742    0.080  160.180    0.000   12.586   12.898   12.742    2.772
##    .ssasi   (.40.)   11.936    0.073  163.677    0.000   11.793   12.079   11.936    2.627
##    .ssei              7.657    0.172   44.564    0.000    7.320    7.994    7.657    2.110
##    .ssno    (.42.)    0.492    0.017   29.765    0.000    0.459    0.524    0.492    0.568
##    .sscs              0.319    0.021   15.104    0.000    0.277    0.360    0.319    0.371
##     verbal           -0.362    0.028  -12.849    0.000   -0.417   -0.307   -0.362   -0.362
##     elctrnc           2.047    0.067   30.376    0.000    1.915    2.179    1.753    1.753
##     speed            -0.337    0.028  -11.953    0.000   -0.393   -0.282   -0.337   -0.337
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssgs              5.139    0.195   26.382    0.000    4.758    5.521    5.139    0.265
##    .sswk              7.213    0.490   14.715    0.000    6.253    8.174    7.213    0.165
##    .sspc              3.027    0.130   23.199    0.000    2.771    3.282    3.027    0.328
##    .ssar              6.468    0.437   14.792    0.000    5.611    7.325    6.468    0.135
##    .ssmk              9.631    0.399   24.112    0.000    8.848   10.413    9.631    0.244
##    .ssmc              8.703    0.308   28.255    0.000    8.100    9.307    8.703    0.412
##    .ssasi             9.990    0.393   25.441    0.000    9.220   10.759    9.990    0.484
##    .ssei              2.082    0.177   11.777    0.000    1.735    2.428    2.082    0.158
##    .ssno              0.175    0.013   13.167    0.000    0.149    0.201    0.175    0.233
##    .sscs              0.305    0.018   17.348    0.000    0.271    0.340    0.305    0.414
##     electronic        1.364    0.042   32.250    0.000    1.281    1.447    1.000    1.000
tests<-lavTestLRT(configural, metric, scalar2, cf.cov, cf.cov2, reduced)
Td=tests[2:6,"Chisq diff"]
Td
## [1] 102.769438  26.558642  79.920185   6.892478   5.320494
dfd=tests[2:6,"Df diff"]
dfd
## [1] 8 2 6 3 1
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3067+ 3094 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06202247 0.06314618 0.06325077 0.02052638 0.03745645
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.05164505 0.07298988
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.04317702 0.08553378
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.05133509 0.07594577
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1]         NA 0.04115955
RMSEA.CI(T=Td[5],df=dfd[5],N=N,G=2)
## [1] 0.01164570 0.07120059
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.971     0.641     0.003     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.868     0.634     0.113     0.003
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.966     0.688     0.014     0.000
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.925     0.849     0.007     0.000     0.000     0.000
round(pvals(T=Td[5],df=dfd[5],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.979     0.958     0.320     0.153     0.016     0.001
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 102.76944  26.55864 129.94358
dfd=tests[2:4,"Df diff"]
dfd
## [1]  8  2 10
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3067+ 3094 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06202247 0.06314618 0.06240917
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.05164505 0.07298988
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.04317702 0.08553378
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.05309445 0.07219053
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.971     0.641     0.003     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.868     0.634     0.113     0.003
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.985     0.677     0.001     0.000
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1] 102.7694 820.3741
dfd=tests[2:3,"Df diff"]
dfd
## [1] 8 6
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3067+ 3094 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.06202247 0.20994050
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.05164505 0.07298988
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1979331 0.2221698
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.971     0.641     0.003     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
# ONE FACTOR, just for checking if gap direction aligns with HOF

fmodel<-'
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
'

configural<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   6909.756     70.000      0.000      0.846      0.178      0.065 286911.940 287315.500
Mc(configural)
## [1] 0.5739718
metric<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   7056.036     79.000      0.000      0.843      0.169      0.073 287040.220 287383.246
Mc(metric)
## [1] 0.5676116
scalar<-cfa(fmodel, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##  15754.561     88.000      0.000      0.647      0.240      0.158 295720.746 296003.237
Mc(scalar)
## [1] 0.2803724
summary(scalar, standardized=T, ci=T) # -0.299 Std.all
## lavaan 0.6-18 ended normally after 73 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        62
##   Number of equality constraints                    20
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                                Standard      Scaled
##   Test Statistic                              15754.561   10551.530
##   Degrees of freedom                                 88          88
##   P-value (Chi-square)                            0.000       0.000
##   Scaling correction factor                                   1.493
##     Yuan-Bentler correction (Mplus variant)                        
##   Test statistic for each group:
##     1                                         6283.739    4208.499
##     0                                         9470.822    6343.030
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g =~                                                                                    
##     ssgs    (.p1.)    3.449    0.061   56.428    0.000    3.329    3.569    3.449    0.817
##     ssar    (.p2.)    5.430    0.090   60.591    0.000    5.255    5.606    5.430    0.834
##     sswk    (.p3.)    5.048    0.105   48.086    0.000    4.843    5.254    5.048    0.808
##     sspc    (.p4.)    2.077    0.050   41.192    0.000    1.978    2.176    2.077    0.734
##     ssno    (.p5.)    0.483    0.014   34.391    0.000    0.455    0.510    0.483    0.573
##     sscs    (.p6.)    0.419    0.015   28.261    0.000    0.390    0.448    0.419    0.467
##     ssasi   (.p7.)    2.489    0.077   32.531    0.000    2.339    2.639    2.489    0.629
##     ssmk    (.p8.)    4.588    0.080   57.504    0.000    4.431    4.744    4.588    0.784
##     ssmc    (.p9.)    3.255    0.064   50.470    0.000    3.129    3.381    3.255    0.706
##     ssei    (.10.)    2.659    0.052   51.150    0.000    2.558    2.761    2.659    0.712
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.22.)   16.110    0.093  172.680    0.000   15.927   16.293   16.110    3.817
##    .ssar    (.23.)   18.127    0.148  122.669    0.000   17.837   18.416   18.127    2.784
##    .sswk    (.24.)   26.493    0.153  172.750    0.000   26.192   26.794   26.493    4.238
##    .sspc    (.25.)   11.148    0.073  153.535    0.000   11.006   11.291   11.148    3.937
##    .ssno    (.26.)    0.275    0.017   16.062    0.000    0.242    0.309    0.275    0.327
##    .sscs    (.27.)    0.237    0.019   12.376    0.000    0.199    0.274    0.237    0.264
##    .ssasi   (.28.)   13.087    0.121  108.347    0.000   12.851   13.324   13.087    3.306
##    .ssmk    (.29.)   13.711    0.127  108.148    0.000   13.462   13.959   13.711    2.344
##    .ssmc    (.30.)   14.100    0.107  132.075    0.000   13.891   14.310   14.100    3.059
##    .ssei    (.31.)   11.536    0.085  135.420    0.000   11.369   11.703   11.536    3.089
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.913    0.237   24.997    0.000    5.450    6.377    5.913    0.332
##    .ssar             12.908    0.530   24.377    0.000   11.870   13.946   12.908    0.304
##    .sswk             13.590    0.593   22.924    0.000   12.428   14.752   13.590    0.348
##    .sspc              3.703    0.164   22.564    0.000    3.381    4.025    3.703    0.462
##    .ssno              0.476    0.015   32.421    0.000    0.448    0.505    0.476    0.672
##    .sscs              0.630    0.024   26.061    0.000    0.582    0.677    0.630    0.782
##    .ssasi             9.478    0.468   20.243    0.000    8.560   10.396    9.478    0.605
##    .ssmk             13.178    0.455   28.962    0.000   12.286   14.070   13.178    0.385
##    .ssmc             10.654    0.453   23.517    0.000    9.766   11.542   10.654    0.501
##    .ssei              6.870    0.284   24.203    0.000    6.314    7.426    6.870    0.493
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g =~                                                                                    
##     ssgs    (.p1.)    3.449    0.061   56.428    0.000    3.329    3.569    4.013    0.860
##     ssar    (.p2.)    5.430    0.090   60.591    0.000    5.255    5.606    6.317    0.865
##     sswk    (.p3.)    5.048    0.105   48.086    0.000    4.843    5.254    5.873    0.854
##     sspc    (.p4.)    2.077    0.050   41.192    0.000    1.978    2.176    2.416    0.762
##     ssno    (.p5.)    0.483    0.014   34.391    0.000    0.455    0.510    0.561    0.632
##     sscs    (.p6.)    0.419    0.015   28.261    0.000    0.390    0.448    0.487    0.546
##     ssasi   (.p7.)    2.489    0.077   32.531    0.000    2.339    2.639    2.896    0.469
##     ssmk    (.p8.)    4.588    0.080   57.504    0.000    4.431    4.744    5.337    0.817
##     ssmc    (.p9.)    3.255    0.064   50.470    0.000    3.129    3.381    3.787    0.713
##     ssei    (.10.)    2.659    0.052   51.150    0.000    2.558    2.761    3.094    0.762
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.22.)   16.110    0.093  172.680    0.000   15.927   16.293   16.110    3.452
##    .ssar    (.23.)   18.127    0.148  122.669    0.000   17.837   18.416   18.127    2.482
##    .sswk    (.24.)   26.493    0.153  172.750    0.000   26.192   26.794   26.493    3.850
##    .sspc    (.25.)   11.148    0.073  153.535    0.000   11.006   11.291   11.148    3.515
##    .ssno    (.26.)    0.275    0.017   16.062    0.000    0.242    0.309    0.275    0.310
##    .sscs    (.27.)    0.237    0.019   12.376    0.000    0.199    0.274    0.237    0.266
##    .ssasi   (.28.)   13.087    0.121  108.347    0.000   12.851   13.324   13.087    2.119
##    .ssmk    (.29.)   13.711    0.127  108.148    0.000   13.462   13.959   13.711    2.099
##    .ssmc    (.30.)   14.100    0.107  132.075    0.000   13.891   14.310   14.100    2.657
##    .ssei    (.31.)   11.536    0.085  135.420    0.000   11.369   11.703   11.536    2.840
##     g                 0.348    0.041    8.420    0.000    0.267    0.429    0.299    0.299
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.676    0.236   24.102    0.000    5.214    6.138    5.676    0.261
##    .ssar             13.421    0.561   23.922    0.000   12.322   14.521   13.421    0.252
##    .sswk             12.850    0.573   22.434    0.000   11.728   13.973   12.850    0.271
##    .sspc              4.222    0.194   21.727    0.000    3.841    4.603    4.222    0.420
##    .ssno              0.474    0.015   30.593    0.000    0.444    0.504    0.474    0.601
##    .sscs              0.558    0.024   23.446    0.000    0.511    0.604    0.558    0.701
##    .ssasi            29.759    1.456   20.446    0.000   26.906   32.612   29.759    0.780
##    .ssmk             14.185    0.527   26.934    0.000   13.152   15.217   14.185    0.332
##    .ssmc             13.828    0.576   24.022    0.000   12.700   14.956   13.828    0.491
##    .ssei              6.930    0.337   20.589    0.000    6.270    7.589    6.930    0.420
##     g                 1.353    0.056   24.111    0.000    1.243    1.463    1.000    1.000
# HIGH ORDER FACTOR, FREEING SSAR FITS TINY BIT BETTER THAN SSMK BUT CAUSES NONPOSITIVE MATRIX BECAUSE THERE IS NO LATENT INTERCEPT TO FIX

hof.model<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
'

hof.lv<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
speed~~1*speed
'

hof.weak<-' # only used if ssmk is free instead of ssar
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
'

baseline<-cfa(hof.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2506.851     29.000      0.000      0.946      0.118      0.058 287559.438 287801.574
Mc(baseline)
## [1] 0.8178108
configural<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1639.317     58.000      0.000      0.964      0.094      0.034 281665.501 282149.773
Mc(configural)
## [1] 0.8795423
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 89 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        72
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1639.317    1098.194
##   Degrees of freedom                                58          58
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.493
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          547.664     366.885
##     0                                         1091.653     731.308
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              0.695    0.071    9.836    0.000    0.556    0.833    1.864    0.449
##     sswk              2.177    0.155   14.037    0.000    1.873    2.481    5.841    0.912
##     sspc              0.838    0.059   14.083    0.000    0.721    0.954    2.248    0.813
##   math =~                                                                                 
##     ssar              2.987    0.118   25.417    0.000    2.757    3.218    6.289    0.932
##     ssmk              2.463    0.097   25.379    0.000    2.273    2.654    5.186    0.865
##     ssmc              0.757    0.071   10.727    0.000    0.619    0.896    1.595    0.384
##   electronic =~                                                                           
##     ssgs              0.927    0.075   12.342    0.000    0.780    1.074    1.801    0.434
##     ssasi             1.205    0.062   19.492    0.000    1.083    1.326    2.341    0.678
##     ssmc              0.835    0.080   10.493    0.000    0.679    0.991    1.623    0.391
##     ssei              1.382    0.065   21.421    0.000    1.255    1.508    2.685    0.804
##   speed =~                                                                                
##     ssno              0.511    0.016   32.766    0.000    0.480    0.541    0.719    0.866
##     sscs              0.445    0.015   30.628    0.000    0.416    0.473    0.626    0.736
##   g =~                                                                                    
##     verbal            2.490    0.199   12.517    0.000    2.100    2.880    0.928    0.928
##     math              1.853    0.091   20.251    0.000    1.673    2.032    0.880    0.880
##     electronic        1.666    0.093   17.883    0.000    1.483    1.849    0.857    0.857
##     speed             0.990    0.048   20.430    0.000    0.895    1.085    0.704    0.704
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             15.782    0.090  175.509    0.000   15.606   15.959   15.782    3.799
##    .sswk             27.503    0.136  202.254    0.000   27.237   27.770   27.503    4.296
##    .sspc             11.863    0.059  201.639    0.000   11.748   11.978   11.863    4.290
##    .ssar             18.133    0.146  124.361    0.000   17.847   18.418   18.133    2.688
##    .ssmk             14.248    0.130  109.820    0.000   13.994   14.503   14.248    2.375
##    .ssmc             12.747    0.090  141.504    0.000   12.570   12.923   12.747    3.071
##    .ssasi            11.812    0.074  158.855    0.000   11.666   11.957   11.812    3.421
##    .ssei             10.402    0.072  144.049    0.000   10.261   10.544   10.402    3.117
##    .ssno              0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.571
##    .sscs              0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.653
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.195    0.212   24.493    0.000    4.779    5.610    5.195    0.301
##    .sswk              6.875    0.508   13.535    0.000    5.879    7.871    6.875    0.168
##    .sspc              2.595    0.116   22.353    0.000    2.367    2.822    2.595    0.339
##    .ssar              5.941    0.500   11.877    0.000    4.961    6.922    5.941    0.131
##    .ssmk              9.084    0.405   22.424    0.000    8.290    9.878    9.084    0.252
##    .ssmc              8.148    0.283   28.802    0.000    7.594    8.702    8.148    0.473
##    .ssasi             6.445    0.246   26.208    0.000    5.963    6.927    6.445    0.541
##    .ssei              3.929    0.196   20.097    0.000    3.546    4.313    3.929    0.353
##    .ssno              0.173    0.017   10.340    0.000    0.140    0.206    0.173    0.251
##    .sscs              0.330    0.020   16.471    0.000    0.291    0.369    0.330    0.458
##    .verbal            1.000                               1.000    1.000    0.139    0.139
##    .math              1.000                               1.000    1.000    0.226    0.226
##    .electronic        1.000                               1.000    1.000    0.265    0.265
##    .speed             1.000                               1.000    1.000    0.505    0.505
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              0.852    0.077   11.073    0.000    0.701    1.003    2.698    0.586
##     sswk              1.975    0.179   11.038    0.000    1.624    2.325    6.250    0.911
##     sspc              0.868    0.077   11.214    0.000    0.717    1.020    2.748    0.851
##   math =~                                                                                 
##     ssar              2.828    0.137   20.693    0.000    2.560    3.096    6.602    0.931
##     ssmk              2.442    0.113   21.561    0.000    2.220    2.664    5.700    0.879
##     ssmc              0.395    0.058    6.835    0.000    0.282    0.509    0.923    0.187
##   electronic =~                                                                           
##     ssgs              0.921    0.075   12.332    0.000    0.775    1.068    1.546    0.336
##     ssasi             2.188    0.081   26.919    0.000    2.029    2.348    3.673    0.766
##     ssmc              1.987    0.093   21.325    0.000    1.804    2.169    3.335    0.676
##     ssei              2.076    0.060   34.467    0.000    1.958    2.194    3.484    0.908
##   speed =~                                                                                
##     ssno              0.469    0.016   30.009    0.000    0.439    0.500    0.773    0.865
##     sscs              0.428    0.015   29.151    0.000    0.399    0.457    0.705    0.795
##   g =~                                                                                    
##     verbal            3.003    0.303    9.903    0.000    2.409    3.598    0.949    0.949
##     math              2.109    0.118   17.882    0.000    1.878    2.341    0.904    0.904
##     electronic        1.348    0.065   20.736    0.000    1.221    1.475    0.803    0.803
##     speed             1.308    0.063   20.853    0.000    1.185    1.431    0.794    0.794
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             17.613    0.097  181.519    0.000   17.422   17.803   17.613    3.827
##    .sswk             27.329    0.142  191.949    0.000   27.050   27.608   27.329    3.984
##    .sspc             11.086    0.068  163.704    0.000   10.953   11.219   11.086    3.434
##    .ssar             20.009    0.151  132.770    0.000   19.714   20.305   20.009    2.823
##    .ssmk             14.749    0.139  105.881    0.000   14.476   15.022   14.749    2.275
##    .ssmc             16.924    0.104  162.135    0.000   16.719   17.128   16.924    3.433
##    .ssasi            17.810    0.102  175.227    0.000   17.610   18.009   17.810    3.713
##    .ssei             13.561    0.080  169.041    0.000   13.404   13.718   13.561    3.533
##    .ssno              0.253    0.019   13.436    0.000    0.216    0.290    0.253    0.283
##    .sscs              0.112    0.019    5.896    0.000    0.075    0.149    0.112    0.126
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.156    0.195   26.431    0.000    4.773    5.538    5.156    0.243
##    .sswk              7.987    0.552   14.459    0.000    6.905    9.070    7.987    0.170
##    .sspc              2.870    0.126   22.795    0.000    2.624    3.117    2.870    0.275
##    .ssar              6.664    0.494   13.495    0.000    5.696    7.632    6.664    0.133
##    .ssmk              9.522    0.430   22.139    0.000    8.679   10.365    9.522    0.227
##    .ssmc              7.866    0.335   23.458    0.000    7.208    8.523    7.866    0.324
##    .ssasi             9.522    0.392   24.286    0.000    8.753   10.290    9.522    0.414
##    .ssei              2.594    0.195   13.329    0.000    2.213    2.976    2.594    0.176
##    .ssno              0.201    0.014   13.980    0.000    0.173    0.229    0.201    0.252
##    .sscs              0.289    0.018   15.716    0.000    0.253    0.325    0.289    0.368
##    .verbal            1.000                               1.000    1.000    0.100    0.100
##    .math              1.000                               1.000    1.000    0.184    0.184
##    .electronic        1.000                               1.000    1.000    0.355    0.355
##    .speed             1.000                               1.000    1.000    0.369    0.369
##     g                 1.000                               1.000    1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1805.808     69.000      0.000      0.961      0.090      0.044 281809.992 282220.278
Mc(metric)
## [1] 0.8685113
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 88 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        77
##   Number of equality constraints                    16
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1805.808    1219.645
##   Degrees of freedom                                69          69
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.481
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          650.734     439.507
##     0                                         1155.074     780.139
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.827    0.059   14.016    0.000    0.712    0.943    2.285    0.554
##     sswk    (.p2.)    2.034    0.140   14.487    0.000    1.759    2.309    5.620    0.897
##     sspc    (.p3.)    0.845    0.058   14.609    0.000    0.732    0.958    2.335    0.825
##   math =~                                                                                 
##     ssar    (.p4.)    3.005    0.103   29.272    0.000    2.804    3.206    6.108    0.926
##     ssmk    (.p5.)    2.541    0.085   29.791    0.000    2.374    2.708    5.165    0.866
##     ssmc    (.p6.)    0.541    0.049   11.119    0.000    0.446    0.636    1.099    0.260
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.613    0.048   12.731    0.000    0.518    0.707    1.278    0.310
##     ssasi   (.p8.)    1.239    0.060   20.689    0.000    1.122    1.357    2.584    0.719
##     ssmc    (.p9.)    1.072    0.058   18.478    0.000    0.959    1.186    2.236    0.529
##     ssei    (.10.)    1.270    0.061   20.783    0.000    1.151    1.390    2.649    0.792
##   speed =~                                                                                
##     ssno    (.11.)    0.502    0.014   36.679    0.000    0.475    0.529    0.724    0.862
##     sscs    (.12.)    0.450    0.013   35.417    0.000    0.425    0.475    0.649    0.752
##   g =~                                                                                    
##     verbal  (.13.)    2.575    0.182   14.118    0.000    2.218    2.933    0.932    0.932
##     math    (.14.)    1.770    0.078   22.748    0.000    1.617    1.922    0.871    0.871
##     elctrnc (.15.)    1.830    0.096   19.119    0.000    1.642    2.017    0.878    0.878
##     speed   (.16.)    1.038    0.039   26.321    0.000    0.961    1.116    0.720    0.720
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             15.782    0.090  175.509    0.000   15.606   15.959   15.782    3.824
##    .sswk             27.503    0.136  202.254    0.000   27.237   27.770   27.503    4.392
##    .sspc             11.863    0.059  201.639    0.000   11.748   11.978   11.863    4.194
##    .ssar             18.133    0.146  124.361    0.000   17.847   18.418   18.133    2.749
##    .ssmk             14.248    0.130  109.820    0.000   13.994   14.503   14.248    2.390
##    .ssmc             12.747    0.090  141.504    0.000   12.570   12.923   12.747    3.016
##    .ssasi            11.812    0.074  158.855    0.000   11.666   11.957   11.812    3.285
##    .ssei             10.402    0.072  144.049    0.000   10.261   10.544   10.402    3.108
##    .ssno              0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.564
##    .sscs              0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.643
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.401    0.201   26.843    0.000    5.007    5.796    5.401    0.317
##    .sswk              7.627    0.483   15.805    0.000    6.681    8.573    7.627    0.195
##    .sspc              2.552    0.116   22.050    0.000    2.326    2.779    2.552    0.319
##    .ssar              6.188    0.481   12.851    0.000    5.244    7.131    6.188    0.142
##    .ssmk              8.864    0.386   22.945    0.000    8.107    9.621    8.864    0.249
##    .ssmc              7.897    0.279   28.259    0.000    7.349    8.445    7.897    0.442
##    .ssasi             6.248    0.239   26.088    0.000    5.778    6.717    6.248    0.483
##    .ssei              4.182    0.184   22.706    0.000    3.821    4.543    4.182    0.373
##    .ssno              0.182    0.014   12.950    0.000    0.154    0.209    0.182    0.258
##    .sscs              0.323    0.018   17.628    0.000    0.287    0.359    0.323    0.434
##    .verbal            1.000                               1.000    1.000    0.131    0.131
##    .math              1.000                               1.000    1.000    0.242    0.242
##    .electronic        1.000                               1.000    1.000    0.230    0.230
##    .speed             1.000                               1.000    1.000    0.481    0.481
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.827    0.059   14.016    0.000    0.712    0.943    2.607    0.567
##     sswk    (.p2.)    2.034    0.140   14.487    0.000    1.759    2.309    6.410    0.918
##     sspc    (.p3.)    0.845    0.058   14.609    0.000    0.732    0.958    2.663    0.841
##   math =~                                                                                 
##     ssar    (.p4.)    3.005    0.103   29.272    0.000    2.804    3.206    6.752    0.936
##     ssmk    (.p5.)    2.541    0.085   29.791    0.000    2.374    2.708    5.710    0.878
##     ssmc    (.p6.)    0.541    0.049   11.119    0.000    0.446    0.636    1.215    0.252
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.613    0.048   12.731    0.000    0.518    0.707    1.667    0.363
##     ssasi   (.p8.)    1.239    0.060   20.689    0.000    1.122    1.357    3.371    0.731
##     ssmc    (.p9.)    1.072    0.058   18.478    0.000    0.959    1.186    2.918    0.605
##     ssei    (.10.)    1.270    0.061   20.783    0.000    1.151    1.390    3.456    0.916
##   speed =~                                                                                
##     ssno    (.11.)    0.502    0.014   36.679    0.000    0.475    0.529    0.766    0.866
##     sscs    (.12.)    0.450    0.013   35.417    0.000    0.425    0.475    0.687    0.785
##   g =~                                                                                    
##     verbal  (.13.)    2.575    0.182   14.118    0.000    2.218    2.933    0.945    0.945
##     math    (.14.)    1.770    0.078   22.748    0.000    1.617    1.922    0.911    0.911
##     elctrnc (.15.)    1.830    0.096   19.119    0.000    1.642    2.017    0.778    0.778
##     speed   (.16.)    1.038    0.039   26.321    0.000    0.961    1.116    0.787    0.787
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             17.613    0.097  181.519    0.000   17.422   17.803   17.613    3.833
##    .sswk             27.329    0.142  191.949    0.000   27.050   27.608   27.329    3.912
##    .sspc             11.086    0.068  163.704    0.000   10.953   11.219   11.086    3.501
##    .ssar             20.009    0.151  132.770    0.000   19.714   20.305   20.009    2.773
##    .ssmk             14.749    0.139  105.881    0.000   14.476   15.022   14.749    2.268
##    .ssmc             16.924    0.104  162.135    0.000   16.719   17.128   16.924    3.508
##    .ssasi            17.810    0.102  175.227    0.000   17.610   18.009   17.810    3.864
##    .ssei             13.561    0.080  169.041    0.000   13.404   13.718   13.561    3.593
##    .ssno              0.253    0.019   13.436    0.000    0.216    0.290    0.253    0.286
##    .sscs              0.112    0.019    5.896    0.000    0.075    0.149    0.112    0.128
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.146    0.194   26.543    0.000    4.766    5.526    5.146    0.244
##    .sswk              7.708    0.545   14.144    0.000    6.640    8.776    7.708    0.158
##    .sspc              2.936    0.128   22.904    0.000    2.685    3.187    2.936    0.293
##    .ssar              6.480    0.462   14.040    0.000    5.575    7.384    6.480    0.124
##    .ssmk              9.706    0.404   23.995    0.000    8.913   10.498    9.706    0.229
##    .ssmc              8.257    0.325   25.377    0.000    7.619    8.894    8.257    0.355
##    .ssasi             9.880    0.391   25.280    0.000    9.114   10.646    9.880    0.465
##    .ssei              2.301    0.189   12.192    0.000    1.931    2.671    2.301    0.162
##    .ssno              0.196    0.014   14.373    0.000    0.169    0.223    0.196    0.250
##    .sscs              0.293    0.018   16.640    0.000    0.259    0.328    0.293    0.383
##    .verbal            1.054    0.195    5.416    0.000    0.672    1.435    0.106    0.106
##    .math              0.858    0.084   10.190    0.000    0.693    1.024    0.170    0.170
##    .electronic        2.920    0.314    9.293    0.000    2.304    3.536    0.395    0.395
##    .speed             0.885    0.067   13.258    0.000    0.755    1.016    0.380    0.380
##     g                 1.338    0.061   21.771    0.000    1.218    1.459    1.000    1.000
lavTestScore(metric, release = 1:16)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 168.381 16       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p47.  0.674  1   0.412
## 2   .p2. == .p48. 28.684  1   0.000
## 3   .p3. == .p49. 25.089  1   0.000
## 4   .p4. == .p50. 16.358  1   0.000
## 5   .p5. == .p51.  1.116  1   0.291
## 6   .p6. == .p52.  0.040  1   0.841
## 7   .p7. == .p53.  8.785  1   0.003
## 8   .p8. == .p54. 34.973  1   0.000
## 9   .p9. == .p55. 11.735  1   0.001
## 10 .p10. == .p56.  1.374  1   0.241
## 11 .p11. == .p57.  0.576  1   0.448
## 12 .p12. == .p58.  3.780  1   0.052
## 13 .p13. == .p59.  4.071  1   0.044
## 14 .p14. == .p60. 15.311  1   0.000
## 15 .p15. == .p61. 25.519  1   0.000
## 16 .p16. == .p62.  6.773  1   0.009
scalar<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 1.401279e-14) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2989.310     74.000      0.000      0.934      0.113      0.071 282983.494 283360.150
Mc(scalar)
## [1] 0.7892815
summary(scalar, standardized=T, ci=T) # g -.309 Std.all
## lavaan 0.6-18 ended normally after 130 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    26
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2989.310    1996.428
##   Degrees of freedom                                74          74
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.497
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1289.951     861.502
##     0                                         1699.359    1134.927
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.850    0.059   14.318    0.000    0.734    0.967    2.299    0.559
##     sswk    (.p2.)    2.063    0.138   14.971    0.000    1.793    2.333    5.577    0.893
##     sspc    (.p3.)    0.866    0.057   15.311    0.000    0.755    0.977    2.342    0.823
##   math =~                                                                                 
##     ssar    (.p4.)    2.993    0.105   28.512    0.000    2.788    3.199    6.139    0.928
##     ssmk    (.p5.)    2.492    0.085   29.207    0.000    2.325    2.659    5.110    0.860
##     ssmc    (.p6.)    0.482    0.040   12.124    0.000    0.404    0.560    0.989    0.235
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.575    0.035   16.273    0.000    0.506    0.644    1.237    0.301
##     ssasi   (.p8.)    1.357    0.072   18.943    0.000    1.216    1.497    2.920    0.757
##     ssmc    (.p9.)    1.077    0.058   18.468    0.000    0.963    1.191    2.318    0.552
##     ssei    (.10.)    1.054    0.055   19.138    0.000    0.946    1.162    2.269    0.710
##   speed =~                                                                                
##     ssno    (.11.)    0.479    0.013   36.315    0.000    0.453    0.505    0.699    0.839
##     sscs    (.12.)    0.461    0.013   34.171    0.000    0.434    0.487    0.672    0.766
##   g =~                                                                                    
##     verbal  (.13.)    2.512    0.172   14.596    0.000    2.175    2.849    0.929    0.929
##     math    (.14.)    1.791    0.080   22.332    0.000    1.633    1.948    0.873    0.873
##     elctrnc (.15.)    1.906    0.112   17.052    0.000    1.687    2.125    0.885    0.885
##     speed   (.16.)    1.063    0.041   26.205    0.000    0.983    1.142    0.728    0.728
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   15.791    0.088  179.478    0.000   15.619   15.964   15.791    3.837
##    .sswk    (.33.)   27.783    0.133  208.796    0.000   27.522   28.044   27.783    4.449
##    .sspc    (.34.)   11.639    0.059  196.737    0.000   11.523   11.755   11.639    4.090
##    .ssar    (.35.)   18.330    0.145  126.138    0.000   18.045   18.615   18.330    2.771
##    .ssmk    (.36.)   13.892    0.125  111.148    0.000   13.647   14.137   13.892    2.338
##    .ssmc    (.37.)   12.737    0.087  146.312    0.000   12.566   12.907   12.737    3.032
##    .ssasi   (.38.)   12.233    0.080  153.532    0.000   12.077   12.390   12.233    3.171
##    .ssei    (.39.)    9.973    0.067  149.579    0.000    9.842   10.103    9.973    3.121
##    .ssno    (.40.)    0.521    0.017   30.375    0.000    0.487    0.554    0.521    0.624
##    .sscs    (.41.)    0.480    0.019   25.198    0.000    0.443    0.517    0.480    0.547
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.441    0.202   26.885    0.000    5.044    5.838    5.441    0.321
##    .sswk              7.905    0.503   15.710    0.000    6.919    8.891    7.905    0.203
##    .sspc              2.614    0.119   21.926    0.000    2.380    2.847    2.614    0.323
##    .ssar              6.079    0.497   12.229    0.000    5.105    7.054    6.079    0.139
##    .ssmk              9.205    0.393   23.411    0.000    8.434    9.975    9.205    0.261
##    .ssmc              7.749    0.275   28.133    0.000    7.209    8.288    7.749    0.439
##    .ssasi             6.358    0.274   23.163    0.000    5.820    6.895    6.358    0.427
##    .ssei              5.061    0.194   26.139    0.000    4.682    5.441    5.061    0.496
##    .ssno              0.206    0.014   14.785    0.000    0.179    0.234    0.206    0.297
##    .sscs              0.318    0.019   16.302    0.000    0.279    0.356    0.318    0.413
##    .verbal            1.000                               1.000    1.000    0.137    0.137
##    .math              1.000                               1.000    1.000    0.238    0.238
##    .electronic        1.000                               1.000    1.000    0.216    0.216
##    .speed             1.000                               1.000    1.000    0.470    0.470
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.850    0.059   14.318    0.000    0.734    0.967    2.633    0.573
##     sswk    (.p2.)    2.063    0.138   14.971    0.000    1.793    2.333    6.387    0.915
##     sspc    (.p3.)    0.866    0.057   15.311    0.000    0.755    0.977    2.682    0.840
##   math =~                                                                                 
##     ssar    (.p4.)    2.993    0.105   28.512    0.000    2.788    3.199    6.781    0.936
##     ssmk    (.p5.)    2.492    0.085   29.207    0.000    2.325    2.659    5.645    0.872
##     ssmc    (.p6.)    0.482    0.040   12.124    0.000    0.404    0.560    1.092    0.227
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.575    0.035   16.273    0.000    0.506    0.644    1.672    0.364
##     ssasi   (.p8.)    1.357    0.072   18.943    0.000    1.216    1.497    3.946    0.792
##     ssmc    (.p9.)    1.077    0.058   18.468    0.000    0.963    1.191    3.133    0.650
##     ssei    (.10.)    1.054    0.055   19.138    0.000    0.946    1.162    3.066    0.854
##   speed =~                                                                                
##     ssno    (.11.)    0.479    0.013   36.315    0.000    0.453    0.505    0.741    0.845
##     sscs    (.12.)    0.461    0.013   34.171    0.000    0.434    0.487    0.712    0.800
##   g =~                                                                                    
##     verbal  (.13.)    2.512    0.172   14.596    0.000    2.175    2.849    0.941    0.941
##     math    (.14.)    1.791    0.080   22.332    0.000    1.633    1.948    0.916    0.916
##     elctrnc (.15.)    1.906    0.112   17.052    0.000    1.687    2.125    0.760    0.760
##     speed   (.16.)    1.063    0.041   26.205    0.000    0.983    1.142    0.797    0.797
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   15.791    0.088  179.478    0.000   15.619   15.964   15.791    3.437
##    .sswk    (.33.)   27.783    0.133  208.796    0.000   27.522   28.044   27.783    3.978
##    .sspc    (.34.)   11.639    0.059  196.737    0.000   11.523   11.755   11.639    3.646
##    .ssar    (.35.)   18.330    0.145  126.138    0.000   18.045   18.615   18.330    2.531
##    .ssmk    (.36.)   13.892    0.125  111.148    0.000   13.647   14.137   13.892    2.147
##    .ssmc    (.37.)   12.737    0.087  146.312    0.000   12.566   12.907   12.737    2.643
##    .ssasi   (.38.)   12.233    0.080  153.532    0.000   12.077   12.390   12.233    2.456
##    .ssei    (.39.)    9.973    0.067  149.579    0.000    9.842   10.103    9.973    2.777
##    .ssno    (.40.)    0.521    0.017   30.375    0.000    0.487    0.554    0.521    0.594
##    .sscs    (.41.)    0.480    0.019   25.198    0.000    0.443    0.517    0.480    0.539
##    .verbal           -1.251    0.081  -15.409    0.000   -1.410   -1.092   -0.404   -0.404
##    .math             -0.147    0.059   -2.493    0.013   -0.263   -0.032   -0.065   -0.065
##    .elctrnc           2.993    0.131   22.774    0.000    2.735    3.250    1.029    1.029
##    .speed            -1.039    0.053  -19.444    0.000   -1.144   -0.934   -0.672   -0.672
##     g                 0.358    0.043    8.356    0.000    0.274    0.442    0.309    0.309
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.086    0.195   26.108    0.000    4.704    5.468    5.086    0.241
##    .sswk              7.976    0.569   14.015    0.000    6.861    9.091    7.976    0.164
##    .sspc              3.000    0.135   22.292    0.000    2.736    3.264    3.000    0.294
##    .ssar              6.464    0.481   13.444    0.000    5.522    7.406    6.464    0.123
##    .ssmk             10.009    0.422   23.742    0.000    9.183   10.836   10.009    0.239
##    .ssmc              7.453    0.301   24.777    0.000    6.863    8.042    7.453    0.321
##    .ssasi             9.246    0.438   21.119    0.000    8.388   10.104    9.246    0.373
##    .ssei              3.495    0.195   17.925    0.000    3.113    3.877    3.495    0.271
##    .ssno              0.220    0.014   15.854    0.000    0.193    0.247    0.220    0.286
##    .sscs              0.285    0.018   15.504    0.000    0.249    0.322    0.285    0.360
##    .verbal            1.104    0.198    5.581    0.000    0.717    1.492    0.115    0.115
##    .math              0.821    0.086    9.579    0.000    0.653    0.989    0.160    0.160
##    .electronic        3.578    0.409    8.738    0.000    2.775    4.380    0.423    0.423
##    .speed             0.872    0.068   12.738    0.000    0.738    1.006    0.365    0.365
##     g                 1.345    0.062   21.666    0.000    1.223    1.466    1.000    1.000
lavTestScore(scalar, release = 17:26) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test     X2 df p.value
## 1 score 1133.9 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs      X2 df p.value
## 1  .p32. == .p78.   0.337  1   0.561
## 2  .p33. == .p79. 164.705  1   0.000
## 3  .p34. == .p80. 180.852  1   0.000
## 4  .p35. == .p81. 126.476  1   0.000
## 5  .p36. == .p82. 125.939  1   0.000
## 6  .p37. == .p83.   0.252  1   0.615
## 7  .p38. == .p84. 556.591  1   0.000
## 8  .p39. == .p85. 534.948  1   0.000
## 9  .p40. == .p86. 178.853  1   0.000
## 10 .p41. == .p87. 178.853  1   0.000
scalar2<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 5.299926e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1874.522     70.000      0.000      0.959      0.091      0.046 281876.706 282280.266
Mc(scalar2)
## [1] 0.8637508
summary(scalar2, standardized=T, ci=T) # -.342 if ssmk is free and -.297 if ssar is free 
## lavaan 0.6-18 ended normally after 155 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1874.522    1249.041
##   Degrees of freedom                                70          70
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.501
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          655.180     436.563
##     0                                         1219.342     812.478
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.828    0.060   13.867    0.000    0.711    0.945    2.350    0.570
##     sswk    (.p2.)    1.975    0.141   13.997    0.000    1.699    2.252    5.608    0.897
##     sspc    (.p3.)    0.820    0.058   14.129    0.000    0.707    0.934    2.330    0.824
##   math =~                                                                                 
##     ssar    (.p4.)    3.031    0.100   30.312    0.000    2.835    3.227    6.112    0.926
##     ssmk    (.p5.)    2.562    0.083   30.750    0.000    2.399    2.725    5.167    0.866
##     ssmc    (.p6.)    0.707    0.042   16.640    0.000    0.623    0.790    1.425    0.341
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.595    0.033   18.020    0.000    0.530    0.659    1.211    0.293
##     ssasi   (.p8.)    1.308    0.061   21.513    0.000    1.189    1.427    2.664    0.731
##     ssmc    (.p9.)    0.910    0.048   19.002    0.000    0.816    1.004    1.853    0.443
##     ssei    (.10.)    1.312    0.061   21.635    0.000    1.193    1.431    2.672    0.798
##   speed =~                                                                                
##     ssno    (.11.)    0.503    0.014   36.679    0.000    0.476    0.529    0.723    0.861
##     sscs    (.12.)    0.451    0.013   35.445    0.000    0.426    0.476    0.649    0.752
##   g =~                                                                                    
##     verbal  (.13.)    2.658    0.195   13.603    0.000    2.275    3.040    0.936    0.936
##     math    (.14.)    1.751    0.075   23.505    0.000    1.605    1.897    0.868    0.868
##     elctrnc (.15.)    1.774    0.090   19.754    0.000    1.598    1.950    0.871    0.871
##     speed   (.16.)    1.035    0.039   26.312    0.000    0.958    1.113    0.719    0.719
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   15.775    0.089  178.033    0.000   15.601   15.949   15.775    3.823
##    .sswk             27.503    0.136  202.254    0.000   27.237   27.770   27.503    4.397
##    .sspc    (.34.)   11.867    0.058  203.085    0.000   11.752   11.981   11.867    4.199
##    .ssar    (.35.)   18.158    0.146  124.591    0.000   17.872   18.443   18.158    2.750
##    .ssmk             14.248    0.130  109.820    0.000   13.994   14.503   14.248    2.389
##    .ssmc    (.37.)   12.609    0.087  144.592    0.000   12.438   12.780   12.609    3.014
##    .ssasi   (.38.)   11.890    0.075  158.747    0.000   11.743   12.036   11.890    3.262
##    .ssei             10.402    0.072  144.049    0.000   10.261   10.544   10.402    3.106
##    .ssno    (.40.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.564
##    .sscs              0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.643
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.400    0.201   26.897    0.000    5.007    5.794    5.400    0.317
##    .sswk              7.679    0.479   16.025    0.000    6.740    8.619    7.679    0.196
##    .sspc              2.559    0.116   22.141    0.000    2.333    2.786    2.559    0.320
##    .ssar              6.227    0.471   13.214    0.000    5.304    7.151    6.227    0.143
##    .ssmk              8.872    0.384   23.104    0.000    8.120    9.625    8.872    0.249
##    .ssmc              8.042    0.275   29.251    0.000    7.503    8.580    8.042    0.459
##    .ssasi             6.187    0.243   25.510    0.000    5.711    6.662    6.187    0.466
##    .ssei              4.076    0.185   22.074    0.000    3.714    4.437    4.076    0.363
##    .ssno              0.182    0.014   12.969    0.000    0.155    0.210    0.182    0.258
##    .sscs              0.323    0.018   17.611    0.000    0.287    0.359    0.323    0.434
##    .verbal            1.000                               1.000    1.000    0.124    0.124
##    .math              1.000                               1.000    1.000    0.246    0.246
##    .electronic        1.000                               1.000    1.000    0.241    0.241
##    .speed             1.000                               1.000    1.000    0.483    0.483
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.828    0.060   13.867    0.000    0.711    0.945    2.687    0.585
##     sswk    (.p2.)    1.975    0.141   13.997    0.000    1.699    2.252    6.412    0.917
##     sspc    (.p3.)    0.820    0.058   14.129    0.000    0.707    0.934    2.664    0.841
##   math =~                                                                                 
##     ssar    (.p4.)    3.031    0.100   30.312    0.000    2.835    3.227    6.746    0.935
##     ssmk    (.p5.)    2.562    0.083   30.750    0.000    2.399    2.725    5.703    0.877
##     ssmc    (.p6.)    0.707    0.042   16.640    0.000    0.623    0.790    1.573    0.332
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.595    0.033   18.020    0.000    0.530    0.659    1.581    0.344
##     ssasi   (.p8.)    1.308    0.061   21.513    0.000    1.189    1.427    3.477    0.740
##     ssmc    (.p9.)    0.910    0.048   19.002    0.000    0.816    1.004    2.419    0.511
##     ssei    (.10.)    1.312    0.061   21.635    0.000    1.193    1.431    3.488    0.926
##   speed =~                                                                                
##     ssno    (.11.)    0.503    0.014   36.679    0.000    0.476    0.529    0.767    0.866
##     sscs    (.12.)    0.451    0.013   35.445    0.000    0.426    0.476    0.688    0.786
##   g =~                                                                                    
##     verbal  (.13.)    2.658    0.195   13.603    0.000    2.275    3.040    0.948    0.948
##     math    (.14.)    1.751    0.075   23.505    0.000    1.605    1.897    0.911    0.911
##     elctrnc (.15.)    1.774    0.090   19.754    0.000    1.598    1.950    0.773    0.773
##     speed   (.16.)    1.035    0.039   26.312    0.000    0.958    1.113    0.786    0.786
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   15.775    0.089  178.033    0.000   15.601   15.949   15.775    3.434
##    .sswk             29.218    0.175  167.166    0.000   28.876   29.561   29.218    4.179
##    .sspc    (.34.)   11.867    0.058  203.085    0.000   11.752   11.981   11.867    3.746
##    .ssar    (.35.)   18.158    0.146  124.591    0.000   17.872   18.443   18.158    2.516
##    .ssmk             13.205    0.148   89.461    0.000   12.916   13.495   13.205    2.031
##    .ssmc    (.37.)   12.609    0.087  144.592    0.000   12.438   12.780   12.609    2.661
##    .ssasi   (.38.)   11.890    0.075  158.747    0.000   11.743   12.036   11.890    2.531
##    .ssei              7.744    0.171   45.275    0.000    7.409    8.079    7.744    2.055
##    .ssno    (.40.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.535
##    .sscs              0.310    0.022   13.985    0.000    0.267    0.354    0.310    0.354
##    .verbal           -2.008    0.110  -18.298    0.000   -2.223   -1.793   -0.619   -0.619
##    .math             -0.091    0.070   -1.292    0.196   -0.228    0.047   -0.041   -0.041
##    .elctrnc           3.731    0.165   22.623    0.000    3.407    4.054    1.404    1.404
##    .speed            -0.850    0.056  -15.120    0.000   -0.960   -0.739   -0.557   -0.557
##     g                 0.396    0.049    8.101    0.000    0.300    0.492    0.342    0.342
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.162    0.194   26.556    0.000    4.781    5.543    5.162    0.245
##    .sswk              7.759    0.540   14.381    0.000    6.702    8.817    7.759    0.159
##    .sspc              2.941    0.127   23.158    0.000    2.693    3.190    2.941    0.293
##    .ssar              6.558    0.455   14.427    0.000    5.667    7.449    6.558    0.126
##    .ssmk              9.753    0.401   24.337    0.000    8.967   10.538    9.753    0.231
##    .ssmc              8.760    0.313   27.952    0.000    8.146    9.374    8.760    0.390
##    .ssasi             9.978    0.399   24.982    0.000    9.195   10.761    9.978    0.452
##    .ssei              2.028    0.185   10.980    0.000    1.666    2.390    2.028    0.143
##    .ssno              0.196    0.014   14.384    0.000    0.169    0.223    0.196    0.250
##    .sscs              0.293    0.018   16.624    0.000    0.259    0.328    0.293    0.383
##    .verbal            1.069    0.204    5.230    0.000    0.669    1.470    0.101    0.101
##    .math              0.841    0.082   10.250    0.000    0.680    1.002    0.170    0.170
##    .electronic        2.847    0.296    9.626    0.000    2.268    3.427    0.403    0.403
##    .speed             0.888    0.067   13.291    0.000    0.757    1.019    0.382    0.382
##     g                 1.341    0.062   21.775    0.000    1.220    1.462    1.000    1.000
strict<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 7.112534e-14) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2087.094     80.000      0.000      0.955      0.090      0.054 282069.279 282405.578
Mc(strict) 
## [1] 0.8496647
summary(strict, standardized=T, ci=T) # -.302 if ssmk is free and -.245 if ssar is free
## lavaan 0.6-18 ended normally after 114 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    32
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2087.094    1367.411
##   Degrees of freedom                                80          80
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.526
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          772.558     506.160
##     0                                         1314.536     861.251
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.806    0.059   13.596    0.000    0.690    0.922    2.323    0.565
##     sswk    (.p2.)    1.943    0.142   13.715    0.000    1.665    2.220    5.599    0.895
##     sspc    (.p3.)    0.810    0.058   13.935    0.000    0.696    0.924    2.335    0.816
##   math =~                                                                                 
##     ssar    (.p4.)    3.006    0.100   30.192    0.000    2.811    3.202    6.119    0.924
##     ssmk    (.p5.)    2.542    0.083   30.570    0.000    2.379    2.705    5.174    0.861
##     ssmc    (.p6.)    0.667    0.041   16.123    0.000    0.586    0.748    1.357    0.322
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.623    0.033   19.004    0.000    0.559    0.688    1.250    0.304
##     ssasi   (.p8.)    1.377    0.060   23.055    0.000    1.260    1.494    2.762    0.706
##     ssmc    (.p9.)    0.972    0.046   21.016    0.000    0.881    1.063    1.949    0.462
##     ssei    (.10.)    1.313    0.062   21.268    0.000    1.192    1.434    2.634    0.819
##   speed =~                                                                                
##     ssno    (.11.)    0.502    0.013   39.603    0.000    0.477    0.527    0.725    0.857
##     sscs    (.12.)    0.450    0.012   36.418    0.000    0.426    0.475    0.650    0.761
##   g =~                                                                                    
##     verbal  (.13.)    2.703    0.203   13.327    0.000    2.306    3.101    0.938    0.938
##     math    (.14.)    1.773    0.077   23.167    0.000    1.623    1.923    0.871    0.871
##     elctrnc (.15.)    1.739    0.086   20.168    0.000    1.570    1.908    0.867    0.867
##     speed   (.16.)    1.040    0.038   27.115    0.000    0.965    1.116    0.721    0.721
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   15.777    0.088  178.419    0.000   15.604   15.951   15.777    3.835
##    .sswk             27.503    0.136  202.254    0.000   27.237   27.770   27.503    4.398
##    .sspc    (.34.)   11.866    0.059  202.571    0.000   11.751   11.981   11.866    4.145
##    .ssar    (.35.)   18.160    0.146  124.515    0.000   17.874   18.446   18.160    2.744
##    .ssmk             14.248    0.130  109.820    0.000   13.994   14.503   14.248    2.372
##    .ssmc    (.37.)   12.589    0.087  145.397    0.000   12.419   12.758   12.589    2.984
##    .ssasi   (.38.)   11.920    0.075  158.619    0.000   11.773   12.067   11.920    3.046
##    .ssei             10.402    0.072  144.049    0.000   10.261   10.544   10.402    3.235
##    .ssno    (.40.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.561
##    .sscs              0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.649
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.17.)    5.239    0.142   37.009    0.000    4.962    5.517    5.239    0.310
##    .sswk    (.18.)    7.750    0.379   20.471    0.000    7.008    8.492    7.750    0.198
##    .sspc    (.19.)    2.744    0.085   32.258    0.000    2.577    2.911    2.744    0.335
##    .ssar    (.20.)    6.366    0.347   18.369    0.000    5.687    7.045    6.366    0.145
##    .ssmk    (.21.)    9.318    0.294   31.718    0.000    8.742    9.894    9.318    0.258
##    .ssmc    (.22.)    8.160    0.210   38.798    0.000    7.747    8.572    8.160    0.459
##    .ssasi   (.23.)    7.684    0.240   31.970    0.000    7.213    8.155    7.684    0.502
##    .ssei    (.24.)    3.401    0.147   23.163    0.000    3.114    3.689    3.401    0.329
##    .ssno    (.25.)    0.189    0.011   17.492    0.000    0.168    0.211    0.189    0.265
##    .sscs    (.26.)    0.308    0.014   22.681    0.000    0.281    0.334    0.308    0.421
##    .verbal            1.000                               1.000    1.000    0.120    0.120
##    .math              1.000                               1.000    1.000    0.241    0.241
##    .elctrnc           1.000                               1.000    1.000    0.249    0.249
##    .speed             1.000                               1.000    1.000    0.480    0.480
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.806    0.059   13.596    0.000    0.690    0.922    2.662    0.577
##     sswk    (.p2.)    1.943    0.142   13.715    0.000    1.665    2.220    6.416    0.917
##     sspc    (.p3.)    0.810    0.058   13.935    0.000    0.696    0.924    2.675    0.850
##   math =~                                                                                 
##     ssar    (.p4.)    3.006    0.100   30.192    0.000    2.811    3.202    6.744    0.937
##     ssmk    (.p5.)    2.542    0.083   30.570    0.000    2.379    2.705    5.702    0.882
##     ssmc    (.p6.)    0.667    0.041   16.123    0.000    0.586    0.748    1.496    0.318
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.623    0.033   19.004    0.000    0.559    0.688    1.630    0.353
##     ssasi   (.p8.)    1.377    0.060   23.055    0.000    1.260    1.494    3.601    0.792
##     ssmc    (.p9.)    0.972    0.046   21.016    0.000    0.881    1.063    2.542    0.540
##     ssei    (.10.)    1.313    0.062   21.268    0.000    1.192    1.434    3.435    0.881
##   speed =~                                                                                
##     ssno    (.11.)    0.502    0.013   39.603    0.000    0.477    0.527    0.766    0.869
##     sscs    (.12.)    0.450    0.012   36.418    0.000    0.426    0.475    0.687    0.778
##   g =~                                                                                    
##     verbal  (.13.)    2.703    0.203   13.327    0.000    2.306    3.101    0.944    0.944
##     math    (.14.)    1.773    0.077   23.167    0.000    1.623    1.923    0.911    0.911
##     elctrnc (.15.)    1.739    0.086   20.168    0.000    1.570    1.908    0.767    0.767
##     speed   (.16.)    1.040    0.038   27.115    0.000    0.965    1.116    0.787    0.787
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   15.777    0.088  178.419    0.000   15.604   15.951   15.777    3.421
##    .sswk             29.205    0.173  168.746    0.000   28.866   29.544   29.205    4.176
##    .sspc    (.34.)   11.866    0.059  202.571    0.000   11.751   11.981   11.866    3.771
##    .ssar    (.35.)   18.160    0.146  124.515    0.000   17.874   18.446   18.160    2.522
##    .ssmk             13.208    0.148   89.500    0.000   12.919   13.497   13.208    2.042
##    .ssmc    (.37.)   12.589    0.087  145.397    0.000   12.419   12.758   12.589    2.674
##    .ssasi   (.38.)   11.920    0.075  158.619    0.000   11.773   12.067   11.920    2.623
##    .ssei              8.043    0.156   51.572    0.000    7.737    8.349    8.043    2.063
##    .ssno    (.40.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.538
##    .sscs              0.310    0.022   14.009    0.000    0.267    0.353    0.310    0.351
##    .verbal           -1.908    0.103  -18.441    0.000   -2.111   -1.705   -0.578   -0.578
##    .math             -0.012    0.067   -0.176    0.860   -0.142    0.119   -0.005   -0.005
##    .elctrnc           3.595    0.150   23.992    0.000    3.301    3.889    1.375    1.375
##    .speed            -0.803    0.054  -14.794    0.000   -0.909   -0.696   -0.527   -0.527
##     g                 0.349    0.048    7.303    0.000    0.255    0.442    0.302    0.302
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.17.)    5.239    0.142   37.009    0.000    4.962    5.517    5.239    0.246
##    .sswk    (.18.)    7.750    0.379   20.471    0.000    7.008    8.492    7.750    0.158
##    .sspc    (.19.)    2.744    0.085   32.258    0.000    2.577    2.911    2.744    0.277
##    .ssar    (.20.)    6.366    0.347   18.369    0.000    5.687    7.045    6.366    0.123
##    .ssmk    (.21.)    9.318    0.294   31.718    0.000    8.742    9.894    9.318    0.223
##    .ssmc    (.22.)    8.160    0.210   38.798    0.000    7.747    8.572    8.160    0.368
##    .ssasi   (.23.)    7.684    0.240   31.970    0.000    7.213    8.155    7.684    0.372
##    .ssei    (.24.)    3.401    0.147   23.163    0.000    3.114    3.689    3.401    0.224
##    .ssno    (.25.)    0.189    0.011   17.492    0.000    0.168    0.211    0.189    0.244
##    .sscs    (.26.)    0.308    0.014   22.681    0.000    0.281    0.334    0.308    0.395
##    .verbal            1.186    0.211    5.612    0.000    0.772    1.600    0.109    0.109
##    .math              0.852    0.078   10.909    0.000    0.699    1.005    0.169    0.169
##    .elctrnc           2.818    0.306    9.196    0.000    2.217    3.419    0.412    0.412
##    .speed             0.884    0.060   14.790    0.000    0.767    1.001    0.380    0.380
##     g                 1.330    0.061   21.820    0.000    1.211    1.450    1.000    1.000
latent<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 4.109730e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2128.520     75.000      0.000      0.954      0.094      0.109 282120.704 282490.634
Mc(latent)
## [1] 0.8464689
summary(latent, standardized=T, ci=T) # -.180 if ssmk is free and -.118 if ssar is free 
## lavaan 0.6-18 ended normally after 119 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        77
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2128.520    1424.065
##   Degrees of freedom                                75          75
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.495
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          798.277     534.079
##     0                                         1330.243     889.986
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.824    0.051   16.032    0.000    0.723    0.925    2.533    0.576
##     sswk    (.p2.)    1.964    0.121   16.197    0.000    1.726    2.202    6.037    0.908
##     sspc    (.p3.)    0.813    0.049   16.467    0.000    0.717    0.910    2.500    0.844
##   math =~                                                                                 
##     ssar    (.p4.)    2.942    0.088   33.539    0.000    2.770    3.114    6.452    0.932
##     ssmk    (.p5.)    2.484    0.072   34.278    0.000    2.342    2.626    5.447    0.878
##     ssmc    (.p6.)    0.704    0.039   18.290    0.000    0.629    0.780    1.544    0.348
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.829    0.032   25.762    0.000    0.766    0.892    1.423    0.324
##     ssasi   (.p8.)    1.801    0.051   35.109    0.000    1.700    1.901    3.092    0.783
##     ssmc    (.p9.)    1.245    0.049   25.214    0.000    1.148    1.342    2.138    0.481
##     ssei    (.10.)    1.853    0.043   43.113    0.000    1.768    1.937    3.181    0.855
##   speed =~                                                                                
##     ssno    (.11.)    0.490    0.011   45.238    0.000    0.469    0.512    0.746    0.868
##     sscs    (.12.)    0.439    0.010   43.184    0.000    0.419    0.459    0.668    0.761
##   g =~                                                                                    
##     verbal  (.13.)    2.907    0.199   14.628    0.000    2.517    3.296    0.946    0.946
##     math    (.14.)    1.952    0.070   27.886    0.000    1.815    2.089    0.890    0.890
##     elctrnc (.15.)    1.396    0.048   29.329    0.000    1.303    1.489    0.813    0.813
##     speed   (.16.)    1.146    0.039   29.680    0.000    1.070    1.221    0.753    0.753
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   15.765    0.089  177.697    0.000   15.592   15.939   15.765    3.584
##    .sswk             27.503    0.136  202.254    0.000   27.237   27.770   27.503    4.139
##    .sspc    (.34.)   11.871    0.058  203.274    0.000   11.757   11.986   11.871    4.005
##    .ssar    (.35.)   18.157    0.146  124.576    0.000   17.871   18.442   18.157    2.624
##    .ssmk             14.248    0.130  109.820    0.000   13.994   14.503   14.248    2.296
##    .ssmc    (.37.)   12.617    0.087  144.847    0.000   12.447   12.788   12.617    2.841
##    .ssasi   (.38.)   11.888    0.075  158.559    0.000   11.741   12.035   11.888    3.009
##    .ssei             10.402    0.072  144.049    0.000   10.261   10.544   10.402    2.795
##    .ssno    (.40.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.552
##    .sscs              0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.632
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.362    0.200   26.773    0.000    4.969    5.754    5.362    0.277
##    .sswk              7.715    0.466   16.557    0.000    6.801    8.628    7.715    0.175
##    .sspc              2.533    0.114   22.144    0.000    2.308    2.757    2.533    0.288
##    .ssar              6.253    0.462   13.550    0.000    5.349    7.158    6.253    0.131
##    .ssmk              8.839    0.383   23.076    0.000    8.088    9.589    8.839    0.229
##    .ssmc              7.989    0.277   28.805    0.000    7.446    8.533    7.989    0.405
##    .ssasi             6.049    0.247   24.491    0.000    5.565    6.533    6.049    0.388
##    .ssei              3.727    0.192   19.383    0.000    3.351    4.104    3.727    0.269
##    .ssno              0.182    0.013   13.677    0.000    0.156    0.208    0.182    0.247
##    .sscs              0.325    0.018   17.858    0.000    0.289    0.360    0.325    0.421
##    .verbal            1.000                               1.000    1.000    0.106    0.106
##    .math              1.000                               1.000    1.000    0.208    0.208
##    .electronic        1.000                               1.000    1.000    0.339    0.339
##    .speed             1.000                               1.000    1.000    0.432    0.432
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.824    0.051   16.032    0.000    0.723    0.925    2.533    0.579
##     sswk    (.p2.)    1.964    0.121   16.197    0.000    1.726    2.202    6.037    0.910
##     sspc    (.p3.)    0.813    0.049   16.467    0.000    0.717    0.910    2.500    0.823
##   math =~                                                                                 
##     ssar    (.p4.)    2.942    0.088   33.539    0.000    2.770    3.114    6.452    0.931
##     ssmk    (.p5.)    2.484    0.072   34.278    0.000    2.342    2.626    5.447    0.866
##     ssmc    (.p6.)    0.704    0.039   18.290    0.000    0.629    0.780    1.544    0.340
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.829    0.032   25.762    0.000    0.766    0.892    1.423    0.325
##     ssasi   (.p8.)    1.801    0.051   35.109    0.000    1.700    1.901    3.092    0.695
##     ssmc    (.p9.)    1.245    0.049   25.214    0.000    1.148    1.342    2.138    0.470
##     ssei    (.10.)    1.853    0.043   43.113    0.000    1.768    1.937    3.181    0.905
##   speed =~                                                                                
##     ssno    (.11.)    0.490    0.011   45.238    0.000    0.469    0.512    0.746    0.860
##     sscs    (.12.)    0.439    0.010   43.184    0.000    0.419    0.459    0.668    0.777
##   g =~                                                                                    
##     verbal  (.13.)    2.907    0.199   14.628    0.000    2.517    3.296    0.946    0.946
##     math    (.14.)    1.952    0.070   27.886    0.000    1.815    2.089    0.890    0.890
##     elctrnc (.15.)    1.396    0.048   29.329    0.000    1.303    1.489    0.813    0.813
##     speed   (.16.)    1.146    0.039   29.680    0.000    1.070    1.221    0.753    0.753
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   15.765    0.089  177.697    0.000   15.592   15.939   15.765    3.605
##    .sswk             29.247    0.176  166.056    0.000   28.902   29.593   29.247    4.410
##    .sspc    (.34.)   11.871    0.058  203.274    0.000   11.757   11.986   11.871    3.905
##    .ssar    (.35.)   18.157    0.146  124.576    0.000   17.871   18.442   18.157    2.619
##    .ssmk             13.206    0.147   89.553    0.000   12.917   13.495   13.206    2.100
##    .ssmc    (.37.)   12.617    0.087  144.847    0.000   12.447   12.788   12.617    2.776
##    .ssasi   (.38.)   11.888    0.075  158.559    0.000   11.741   12.035   11.888    2.673
##    .ssei              7.597    0.171   44.326    0.000    7.261    7.933    7.597    2.160
##    .ssno    (.40.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.547
##    .sscs              0.310    0.022   13.980    0.000    0.266    0.353    0.310    0.360
##    .verbal           -1.501    0.068  -22.086    0.000   -1.634   -1.368   -0.488   -0.488
##    .math              0.269    0.049    5.488    0.000    0.173    0.366    0.123    0.123
##    .elctrnc           2.967    0.106   27.956    0.000    2.759    3.175    1.728    1.728
##    .speed            -0.657    0.047  -13.987    0.000   -0.750   -0.565   -0.432   -0.432
##     g                 0.180    0.036    5.004    0.000    0.110    0.251    0.180    0.180
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.143    0.194   26.564    0.000    4.764    5.523    5.143    0.269
##    .sswk              7.530    0.499   15.105    0.000    6.553    8.508    7.530    0.171
##    .sspc              2.988    0.129   23.150    0.000    2.735    3.241    2.988    0.323
##    .ssar              6.439    0.442   14.562    0.000    5.572    7.305    6.439    0.134
##    .ssmk              9.879    0.403   24.502    0.000    9.088   10.669    9.879    0.250
##    .ssmc              8.926    0.305   29.226    0.000    8.328    9.525    8.926    0.432
##    .ssasi            10.221    0.389   26.283    0.000    9.459   10.983   10.221    0.517
##    .ssei              2.246    0.171   13.151    0.000    1.911    2.581    2.246    0.182
##    .ssno              0.195    0.013   14.579    0.000    0.169    0.221    0.195    0.260
##    .sscs              0.292    0.018   16.461    0.000    0.258    0.327    0.292    0.396
##    .verbal            1.000                               1.000    1.000    0.106    0.106
##    .math              1.000                               1.000    1.000    0.208    0.208
##    .electronic        1.000                               1.000    1.000    0.339    0.339
##    .speed             1.000                               1.000    1.000    0.432    0.432
##     g                 1.000                               1.000    1.000    1.000    1.000
latent2<-cfa(hof.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 2.319702e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1881.387     73.000      0.000      0.959      0.090      0.047 281877.572 282260.953
Mc(latent2)
## [1] 0.8634799
summary(latent2, standardized=T, ci=T) # -.334 if ssmk is free and -.292 if ssar is free 
## lavaan 0.6-18 ended normally after 136 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        79
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1881.387    1257.115
##   Degrees of freedom                                73          73
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.497
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          657.970     439.646
##     0                                         1223.417     817.469
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.831    0.050   16.708    0.000    0.734    0.929    2.356    0.570
##     sswk    (.p2.)    1.984    0.118   16.850    0.000    1.753    2.215    5.623    0.897
##     sspc    (.p3.)    0.824    0.048   17.151    0.000    0.730    0.918    2.335    0.825
##   math =~                                                                                 
##     ssar    (.p4.)    2.928    0.086   33.909    0.000    2.759    3.097    6.061    0.923
##     ssmk    (.p5.)    2.476    0.071   34.711    0.000    2.336    2.615    5.125    0.865
##     ssmc    (.p6.)    0.682    0.039   17.408    0.000    0.605    0.758    1.411    0.337
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.598    0.033   18.134    0.000    0.533    0.662    1.213    0.293
##     ssasi   (.p8.)    1.315    0.061   21.727    0.000    1.197    1.434    2.670    0.732
##     ssmc    (.p9.)    0.916    0.048   19.181    0.000    0.822    1.009    1.859    0.445
##     ssei    (.10.)    1.320    0.060   21.864    0.000    1.202    1.439    2.680    0.799
##   speed =~                                                                                
##     ssno    (.11.)    0.489    0.011   45.188    0.000    0.468    0.510    0.713    0.856
##     sscs    (.12.)    0.439    0.010   43.382    0.000    0.419    0.458    0.640    0.747
##   g =~                                                                                    
##     verbal  (.13.)    2.652    0.171   15.508    0.000    2.317    2.987    0.936    0.936
##     math    (.14.)    1.813    0.072   25.121    0.000    1.671    1.954    0.876    0.876
##     elctrnc (.15.)    1.766    0.088   19.967    0.000    1.593    1.939    0.870    0.870
##     speed   (.16.)    1.062    0.038   27.673    0.000    0.986    1.137    0.728    0.728
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   15.776    0.089  177.974    0.000   15.602   15.949   15.776    3.818
##    .sswk             27.503    0.136  202.254    0.000   27.237   27.770   27.503    4.386
##    .sspc    (.34.)   11.866    0.058  203.103    0.000   11.752   11.981   11.866    4.193
##    .ssar    (.35.)   18.158    0.146  124.579    0.000   17.873   18.444   18.158    2.766
##    .ssmk             14.248    0.130  109.820    0.000   13.994   14.503   14.248    2.404
##    .ssmc    (.37.)   12.607    0.087  144.690    0.000   12.437   12.778   12.607    3.015
##    .ssasi   (.38.)   11.890    0.075  158.665    0.000   11.743   12.037   11.890    3.258
##    .ssei             10.402    0.072  144.049    0.000   10.261   10.544   10.402    3.101
##    .ssno    (.40.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.568
##    .sscs              0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.648
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.124    0.124
##    .math              1.000                               1.000    1.000    0.233    0.233
##    .speed             1.000                               1.000    1.000    0.470    0.470
##    .ssgs              5.402    0.201   26.911    0.000    5.009    5.796    5.402    0.316
##    .sswk              7.708    0.464   16.623    0.000    6.799    8.616    7.708    0.196
##    .sspc              2.558    0.115   22.174    0.000    2.332    2.784    2.558    0.319
##    .ssar              6.363    0.459   13.852    0.000    5.463    7.263    6.363    0.148
##    .ssmk              8.869    0.380   23.343    0.000    8.124    9.613    8.869    0.252
##    .ssmc              8.040    0.275   29.238    0.000    7.501    8.579    8.040    0.460
##    .ssasi             6.190    0.243   25.525    0.000    5.715    6.666    6.190    0.465
##    .ssei              4.076    0.185   22.074    0.000    3.714    4.438    4.076    0.362
##    .ssno              0.186    0.013   13.982    0.000    0.160    0.212    0.186    0.268
##    .sscs              0.324    0.018   17.812    0.000    0.288    0.359    0.324    0.442
##    .electronic        1.000                               1.000    1.000    0.243    0.243
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.831    0.050   16.708    0.000    0.734    0.929    2.682    0.584
##     sswk    (.p2.)    1.984    0.118   16.850    0.000    1.753    2.215    6.401    0.918
##     sspc    (.p3.)    0.824    0.048   17.151    0.000    0.730    0.918    2.658    0.840
##   math =~                                                                                 
##     ssar    (.p4.)    2.928    0.086   33.909    0.000    2.759    3.097    6.801    0.937
##     ssmk    (.p5.)    2.476    0.071   34.711    0.000    2.336    2.615    5.750    0.879
##     ssmc    (.p6.)    0.682    0.039   17.408    0.000    0.605    0.758    1.583    0.334
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.598    0.033   18.134    0.000    0.533    0.662    1.576    0.343
##     ssasi   (.p8.)    1.315    0.061   21.727    0.000    1.197    1.434    3.469    0.739
##     ssmc    (.p9.)    0.916    0.048   19.181    0.000    0.822    1.009    2.415    0.510
##     ssei    (.10.)    1.320    0.060   21.864    0.000    1.202    1.439    3.482    0.926
##   speed =~                                                                                
##     ssno    (.11.)    0.489    0.011   45.188    0.000    0.468    0.510    0.775    0.870
##     sscs    (.12.)    0.439    0.010   43.382    0.000    0.419    0.458    0.695    0.789
##   g =~                                                                                    
##     verbal  (.13.)    2.652    0.171   15.508    0.000    2.317    2.987    0.951    0.951
##     math    (.14.)    1.813    0.072   25.121    0.000    1.671    1.954    0.903    0.903
##     elctrnc (.15.)    1.766    0.088   19.967    0.000    1.593    1.939    0.775    0.775
##     speed   (.16.)    1.062    0.038   27.673    0.000    0.986    1.137    0.775    0.775
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   15.776    0.089  177.974    0.000   15.602   15.949   15.776    3.437
##    .sswk             29.217    0.175  166.841    0.000   28.874   29.560   29.217    4.189
##    .sspc    (.34.)   11.866    0.058  203.103    0.000   11.752   11.981   11.866    3.750
##    .ssar    (.35.)   18.158    0.146  124.579    0.000   17.873   18.444   18.158    2.503
##    .ssmk             13.205    0.148   89.463    0.000   12.916   13.495   13.205    2.018
##    .ssmc    (.37.)   12.607    0.087  144.690    0.000   12.437   12.778   12.607    2.661
##    .ssasi   (.38.)   11.890    0.075  158.665    0.000   11.743   12.037   11.890    2.534
##    .ssei              7.741    0.171   45.207    0.000    7.405    8.077    7.741    2.058
##    .ssno    (.40.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.532
##    .sscs              0.310    0.022   13.985    0.000    0.267    0.353    0.310    0.352
##    .verbal           -1.976    0.102  -19.460    0.000   -2.175   -1.777   -0.612   -0.612
##    .math             -0.076    0.066   -1.165    0.244   -0.205    0.052   -0.033   -0.033
##    .elctrnc           3.726    0.164   22.746    0.000    3.405    4.047    1.413    1.413
##    .speed            -0.862    0.055  -15.802    0.000   -0.969   -0.755   -0.544   -0.544
##     g                 0.386    0.043    8.926    0.000    0.301    0.471    0.334    0.334
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.096    0.096
##    .math              1.000                               1.000    1.000    0.185    0.185
##    .speed             1.000                               1.000    1.000    0.399    0.399
##    .ssgs              5.166    0.194   26.588    0.000    4.785    5.546    5.166    0.245
##    .sswk              7.686    0.514   14.948    0.000    6.678    8.694    7.686    0.158
##    .sspc              2.948    0.127   23.146    0.000    2.698    3.198    2.948    0.294
##    .ssar              6.389    0.447   14.302    0.000    5.514    7.265    6.389    0.121
##    .ssmk              9.764    0.406   24.023    0.000    8.967   10.561    9.764    0.228
##    .ssmc              8.765    0.313   28.010    0.000    8.152    9.379    8.765    0.390
##    .ssasi             9.980    0.399   25.005    0.000    9.198   10.763    9.980    0.453
##    .ssei              2.026    0.184   11.015    0.000    1.665    2.386    2.026    0.143
##    .ssno              0.192    0.013   14.370    0.000    0.166    0.218    0.192    0.243
##    .sscs              0.293    0.018   16.429    0.000    0.258    0.327    0.293    0.377
##    .electronic        2.782    0.286    9.723    0.000    2.221    3.343    0.400    0.400
##     g                 1.338    0.062   21.522    0.000    1.216    1.460    1.000    1.000
weak<-cfa(hof.weak, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1881.387     74.000      0.000      0.959      0.089      0.047 281875.572 282252.227
Mc(weak)
## [1] 0.86355
summary(weak, standardized=T, ci=T) # -.298 
## lavaan 0.6-18 ended normally after 138 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        78
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1881.387    1274.335
##   Degrees of freedom                                74          74
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.476
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          657.970     445.668
##     0                                         1223.417     828.667
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.831    0.050   16.708    0.000    0.734    0.929    2.356    0.570
##     sswk    (.p2.)    1.984    0.118   16.851    0.000    1.753    2.215    5.623    0.897
##     sspc    (.p3.)    0.824    0.048   17.151    0.000    0.730    0.918    2.335    0.825
##   math =~                                                                                 
##     ssar    (.p4.)    2.928    0.086   33.909    0.000    2.759    3.097    6.061    0.923
##     ssmk    (.p5.)    2.476    0.071   34.712    0.000    2.336    2.615    5.125    0.865
##     ssmc    (.p6.)    0.682    0.039   17.408    0.000    0.605    0.758    1.411    0.337
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.598    0.033   18.134    0.000    0.533    0.662    1.213    0.293
##     ssasi   (.p8.)    1.315    0.061   21.727    0.000    1.197    1.434    2.670    0.732
##     ssmc    (.p9.)    0.916    0.048   19.181    0.000    0.822    1.009    1.859    0.445
##     ssei    (.10.)    1.320    0.060   21.864    0.000    1.202    1.439    2.680    0.799
##   speed =~                                                                                
##     ssno    (.11.)    0.489    0.011   45.188    0.000    0.468    0.510    0.713    0.856
##     sscs    (.12.)    0.439    0.010   43.382    0.000    0.419    0.458    0.640    0.747
##   g =~                                                                                    
##     verbal  (.13.)    2.652    0.171   15.508    0.000    2.317    2.987    0.936    0.936
##     math    (.14.)    1.813    0.072   25.121    0.000    1.671    1.954    0.876    0.876
##     elctrnc (.15.)    1.766    0.088   19.967    0.000    1.593    1.939    0.870    0.870
##     speed   (.16.)    1.062    0.038   27.673    0.000    0.986    1.137    0.728    0.728
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.33.)   15.776    0.089  177.974    0.000   15.602   15.949   15.776    3.818
##    .sswk             27.503    0.136  202.254    0.000   27.237   27.770   27.503    4.386
##    .sspc    (.35.)   11.866    0.058  203.103    0.000   11.752   11.981   11.866    4.193
##    .ssar    (.36.)   18.158    0.146  124.579    0.000   17.873   18.444   18.158    2.766
##    .ssmk             14.248    0.130  109.820    0.000   13.994   14.503   14.248    2.404
##    .ssmc    (.38.)   12.607    0.087  144.690    0.000   12.437   12.778   12.607    3.015
##    .ssasi   (.39.)   11.890    0.075  158.665    0.000   11.743   12.037   11.890    3.258
##    .ssei             10.402    0.072  144.049    0.000   10.261   10.544   10.402    3.101
##    .ssno    (.41.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.568
##    .sscs              0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.648
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.124    0.124
##    .math              1.000                               1.000    1.000    0.233    0.233
##    .speed             1.000                               1.000    1.000    0.470    0.470
##    .ssgs              5.402    0.201   26.911    0.000    5.009    5.796    5.402    0.316
##    .sswk              7.708    0.464   16.623    0.000    6.799    8.616    7.708    0.196
##    .sspc              2.558    0.115   22.174    0.000    2.332    2.784    2.558    0.319
##    .ssar              6.363    0.459   13.852    0.000    5.463    7.263    6.363    0.148
##    .ssmk              8.869    0.380   23.343    0.000    8.124    9.613    8.869    0.252
##    .ssmc              8.040    0.275   29.238    0.000    7.501    8.579    8.040    0.460
##    .ssasi             6.190    0.243   25.525    0.000    5.715    6.666    6.190    0.465
##    .ssei              4.076    0.185   22.074    0.000    3.714    4.438    4.076    0.362
##    .ssno              0.186    0.013   13.982    0.000    0.160    0.212    0.186    0.268
##    .sscs              0.324    0.018   17.812    0.000    0.288    0.359    0.324    0.442
##    .electronic        1.000                               1.000    1.000    0.243    0.243
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.831    0.050   16.708    0.000    0.734    0.929    2.682    0.584
##     sswk    (.p2.)    1.984    0.118   16.851    0.000    1.753    2.215    6.401    0.918
##     sspc    (.p3.)    0.824    0.048   17.151    0.000    0.730    0.918    2.658    0.840
##   math =~                                                                                 
##     ssar    (.p4.)    2.928    0.086   33.909    0.000    2.759    3.097    6.801    0.937
##     ssmk    (.p5.)    2.476    0.071   34.712    0.000    2.336    2.615    5.750    0.879
##     ssmc    (.p6.)    0.682    0.039   17.408    0.000    0.605    0.758    1.583    0.334
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.598    0.033   18.134    0.000    0.533    0.662    1.576    0.343
##     ssasi   (.p8.)    1.315    0.061   21.727    0.000    1.197    1.434    3.469    0.739
##     ssmc    (.p9.)    0.916    0.048   19.181    0.000    0.822    1.009    2.415    0.510
##     ssei    (.10.)    1.320    0.060   21.864    0.000    1.202    1.439    3.482    0.926
##   speed =~                                                                                
##     ssno    (.11.)    0.489    0.011   45.188    0.000    0.468    0.510    0.775    0.870
##     sscs    (.12.)    0.439    0.010   43.382    0.000    0.419    0.458    0.695    0.789
##   g =~                                                                                    
##     verbal  (.13.)    2.652    0.171   15.508    0.000    2.317    2.987    0.951    0.951
##     math    (.14.)    1.813    0.072   25.121    0.000    1.671    1.954    0.903    0.903
##     elctrnc (.15.)    1.766    0.088   19.967    0.000    1.593    1.939    0.775    0.775
##     speed   (.16.)    1.062    0.038   27.673    0.000    0.986    1.137    0.775    0.775
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.33.)   15.776    0.089  177.974    0.000   15.602   15.949   15.776    3.437
##    .sswk             29.217    0.175  166.841    0.000   28.874   29.560   29.217    4.189
##    .sspc    (.35.)   11.866    0.058  203.103    0.000   11.752   11.981   11.866    3.750
##    .ssar    (.36.)   18.158    0.146  124.579    0.000   17.873   18.444   18.158    2.503
##    .ssmk             13.205    0.148   89.463    0.000   12.916   13.495   13.205    2.018
##    .ssmc    (.38.)   12.607    0.087  144.690    0.000   12.437   12.778   12.607    2.661
##    .ssasi   (.39.)   11.890    0.075  158.665    0.000   11.743   12.037   11.890    2.534
##    .ssei              7.741    0.171   45.207    0.000    7.405    8.077    7.741    2.058
##    .ssno    (.41.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.532
##    .sscs              0.310    0.022   13.985    0.000    0.267    0.353    0.310    0.352
##    .verbal           -1.864    0.147  -12.678    0.000   -2.152   -1.576   -0.578   -0.578
##    .elctrnc           3.800    0.200   19.012    0.000    3.408    4.192    1.441    1.441
##    .speed            -0.817    0.047  -17.220    0.000   -0.910   -0.724   -0.516   -0.516
##     g                 0.344    0.039    8.719    0.000    0.267    0.421    0.298    0.298
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.096    0.096
##    .math              1.000                               1.000    1.000    0.185    0.185
##    .speed             1.000                               1.000    1.000    0.399    0.399
##    .ssgs              5.166    0.194   26.588    0.000    4.785    5.546    5.166    0.245
##    .sswk              7.686    0.514   14.948    0.000    6.678    8.694    7.686    0.158
##    .sspc              2.948    0.127   23.146    0.000    2.698    3.198    2.948    0.294
##    .ssar              6.389    0.447   14.302    0.000    5.514    7.265    6.389    0.121
##    .ssmk              9.764    0.406   24.023    0.000    8.967   10.561    9.764    0.228
##    .ssmc              8.765    0.313   28.010    0.000    8.152    9.379    8.765    0.390
##    .ssasi             9.980    0.399   25.005    0.000    9.198   10.763    9.980    0.453
##    .ssei              2.026    0.184   11.015    0.000    1.665    2.386    2.026    0.143
##    .ssno              0.192    0.013   14.370    0.000    0.166    0.218    0.192    0.243
##    .sscs              0.293    0.018   16.429    0.000    0.258    0.327    0.293    0.377
##    .electronic        2.782    0.286    9.723    0.000    2.221    3.343    0.400    0.400
##     g                 1.338    0.062   21.522    0.000    1.216    1.460    1.000    1.000
standardizedSolution(weak) # get the correct SEs for standardized solution
##           lhs op        rhs group label est.std    se       z pvalue ci.lower ci.upper
## 1      verbal =~       ssgs     1  .p1.   0.570 0.011  50.979      0    0.548    0.592
## 2      verbal =~       sswk     1  .p2.   0.897 0.007 132.083      0    0.883    0.910
## 3      verbal =~       sspc     1  .p3.   0.825 0.007 110.601      0    0.810    0.840
## 4        math =~       ssar     1  .p4.   0.923 0.006 159.775      0    0.912    0.935
## 5        math =~       ssmk     1  .p5.   0.865 0.006 135.627      0    0.852    0.877
## 6        math =~       ssmc     1  .p6.   0.337 0.016  21.472      0    0.307    0.368
## 7  electronic =~       ssgs     1  .p7.   0.293 0.010  29.416      0    0.274    0.313
## 8  electronic =~      ssasi     1  .p8.   0.732 0.010  70.115      0    0.711    0.752
## 9  electronic =~       ssmc     1  .p9.   0.445 0.014  30.682      0    0.416    0.473
## 10 electronic =~       ssei     1 .p10.   0.799 0.010  79.128      0    0.779    0.818
## 11      speed =~       ssno     1 .p11.   0.856 0.010  81.704      0    0.835    0.876
## 12      speed =~       sscs     1 .p12.   0.747 0.013  59.673      0    0.723    0.772
## 13          g =~     verbal     1 .p13.   0.936 0.008 124.584      0    0.921    0.950
## 14          g =~       math     1 .p14.   0.876 0.008 107.649      0    0.860    0.892
## 15          g =~ electronic     1 .p15.   0.870 0.011  82.243      0    0.849    0.891
## 16          g =~      speed     1 .p16.   0.728 0.012  58.858      0    0.704    0.752
## 17     verbal ~~     verbal     1         0.124 0.014   8.857      0    0.097    0.152
## 18       math ~~       math     1         0.233 0.014  16.384      0    0.205    0.261
## 19      speed ~~      speed     1         0.470 0.018  26.114      0    0.435    0.505
## 20       math ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 21       ssgs ~~       ssgs     1         0.316 0.012  26.942      0    0.293    0.339
## 22       sswk ~~       sswk     1         0.196 0.012  16.100      0    0.172    0.220
## 23       sspc ~~       sspc     1         0.319 0.012  25.957      0    0.295    0.344
## 24       ssar ~~       ssar     1         0.148 0.011  13.835      0    0.127    0.169
## 25       ssmk ~~       ssmk     1         0.252 0.011  22.900      0    0.231    0.274
## 26       ssmc ~~       ssmc     1         0.460 0.013  35.702      0    0.435    0.485
## 27      ssasi ~~      ssasi     1         0.465 0.015  30.448      0    0.435    0.495
## 28       ssei ~~       ssei     1         0.362 0.016  22.459      0    0.331    0.394
## 29       ssno ~~       ssno     1         0.268 0.018  14.952      0    0.233    0.303
## 30       sscs ~~       sscs     1         0.442 0.019  23.602      0    0.405    0.478
## 31 electronic ~~ electronic     1         0.243 0.018  13.184      0    0.207    0.279
## 32          g ~~          g     1         1.000 0.000      NA     NA    1.000    1.000
## 33       ssgs ~1                1 .p33.   3.818 0.056  67.642      0    3.707    3.928
## 34       sswk ~1                1         4.386 0.081  54.482      0    4.228    4.544
## 35       sspc ~1                1 .p35.   4.193 0.085  49.622      0    4.027    4.359
## 36       ssar ~1                1 .p36.   2.766 0.040  69.194      0    2.687    2.844
## 37       ssmk ~1                1         2.404 0.033  72.365      0    2.339    2.469
## 38       ssmc ~1                1 .p38.   3.015 0.042  72.171      0    2.933    3.097
## 39      ssasi ~1                1 .p39.   3.258 0.047  68.614      0    3.165    3.351
## 40       ssei ~1                1         3.101 0.045  68.621      0    3.012    3.189
## 41       ssno ~1                1 .p41.   0.568 0.025  23.032      0    0.520    0.617
## 42       sscs ~1                1         0.648 0.026  25.076      0    0.597    0.698
## 43     verbal ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 44 electronic ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 45      speed ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 46          g ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 47     verbal =~       ssgs     2  .p1.   0.584 0.010  56.315      0    0.564    0.605
## 48     verbal =~       sswk     2  .p2.   0.918 0.006 160.107      0    0.906    0.929
## 49     verbal =~       sspc     2  .p3.   0.840 0.008 111.188      0    0.825    0.855
## 50       math =~       ssar     2  .p4.   0.937 0.005 203.818      0    0.928    0.946
## 51       math =~       ssmk     2  .p5.   0.879 0.006 158.005      0    0.868    0.890
## 52       math =~       ssmc     2  .p6.   0.334 0.016  21.530      0    0.304    0.365
## 53 electronic =~       ssgs     2  .p7.   0.343 0.011  30.650      0    0.321    0.365
## 54 electronic =~      ssasi     2  .p8.   0.739 0.011  64.980      0    0.717    0.762
## 55 electronic =~       ssmc     2  .p9.   0.510 0.017  29.481      0    0.476    0.544
## 56 electronic =~       ssei     2 .p10.   0.926 0.007 135.672      0    0.912    0.939
## 57      speed =~       ssno     2 .p11.   0.870 0.009  92.506      0    0.852    0.889
## 58      speed =~       sscs     2 .p12.   0.789 0.013  63.090      0    0.764    0.814
## 59          g =~     verbal     2 .p13.   0.951 0.006 153.916      0    0.939    0.963
## 60          g =~       math     2 .p14.   0.903 0.006 153.488      0    0.891    0.914
## 61          g =~ electronic     2 .p15.   0.775 0.013  60.897      0    0.750    0.800
## 62          g =~      speed     2 .p16.   0.775 0.011  71.701      0    0.754    0.797
## 63     verbal ~~     verbal     2         0.096 0.012   8.178      0    0.073    0.119
## 64       math ~~       math     2         0.185 0.011  17.460      0    0.165    0.206
## 65      speed ~~      speed     2         0.399 0.017  23.777      0    0.366    0.432
## 66       math ~1                2         0.000 0.000      NA     NA    0.000    0.000
## 67       ssgs ~~       ssgs     2         0.245 0.010  25.060      0    0.226    0.264
## 68       sswk ~~       sswk     2         0.158 0.011  15.018      0    0.137    0.179
## 69       sspc ~~       sspc     2         0.294 0.013  23.203      0    0.270    0.319
## 70       ssar ~~       ssar     2         0.121 0.009  14.076      0    0.104    0.138
## 71       ssmk ~~       ssmk     2         0.228 0.010  23.329      0    0.209    0.247
## 72       ssmc ~~       ssmc     2         0.390 0.014  28.205      0    0.363    0.417
## 73      ssasi ~~      ssasi     2         0.453 0.017  26.944      0    0.420    0.486
## 74       ssei ~~       ssei     2         0.143 0.013  11.335      0    0.118    0.168
## 75       ssno ~~       ssno     2         0.243 0.016  14.808      0    0.210    0.275
## 76       sscs ~~       sscs     2         0.377 0.020  19.126      0    0.339    0.416
## 77 electronic ~~ electronic     2         0.400 0.020  20.300      0    0.361    0.439
## 78          g ~~          g     2         1.000 0.000      NA     NA    1.000    1.000
## 79       ssgs ~1                2 .p33.   3.437 0.049  70.706      0    3.342    3.532
## 80       sswk ~1                2         4.189 0.071  58.720      0    4.049    4.328
## 81       sspc ~1                2 .p35.   3.750 0.062  60.056      0    3.628    3.873
## 82       ssar ~1                2 .p36.   2.503 0.032  78.792      0    2.440    2.565
## 83       ssmk ~1                2         2.018 0.028  72.320      0    1.963    2.072
## 84       ssmc ~1                2 .p38.   2.661 0.035  76.649      0    2.593    2.729
## 85      ssasi ~1                2 .p39.   2.534 0.034  74.053      0    2.467    2.601
## 86       ssei ~1                2         2.058 0.053  38.766      0    1.954    2.162
## 87       ssno ~1                2 .p41.   0.532 0.021  24.769      0    0.490    0.575
## 88       sscs ~1                2         0.352 0.026  13.446      0    0.301    0.403
## 89     verbal ~1                2        -0.578 0.027 -21.740      0   -0.630   -0.526
## 90 electronic ~1                2         1.441 0.054  26.679      0    1.335    1.547
##  [ reached 'max' / getOption("max.print") -- omitted 2 rows ]
tests<-lavTestLRT(configural, metric, scalar2, latent2, weak)
Td=tests[2:5,"Chisq diff"]
Td
## [1]  1.175285e+02  2.375682e+01  4.907002e+00 -1.617550e-05
dfd=tests[2:5,"Df diff"]
dfd
## [1] 11  1  3  1
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3067+ 3094 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.05607851 0.08596382 0.01436729        NaN
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04716406 0.06545511
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.05818692 0.11746334
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]        NA 0.0363566
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1] NA NA
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.872     0.255     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.982     0.939     0.668     0.250
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.821     0.708     0.002     0.000     0.000     0.000
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         0         0         0         0         0         0
tests<-lavTestLRT(configural, metric, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 117.52851  23.75682 180.21631
dfd=tests[2:4,"Df diff"]
dfd
## [1] 11  1  5
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3067+ 3094 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05607851 0.08596382 0.10667488
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.05818692 0.11746334
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.09363226 0.12029312
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.982     0.939     0.668     0.250
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     1.000     0.805
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 117.52851  23.75682 124.66844
dfd=tests[2:4,"Df diff"]
dfd
## [1] 11  1 10
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3067+ 3094 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05607851 0.08596382 0.06102136
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04716406 0.06545511
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.05818692 0.11746334
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.05170305 0.07081529
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.872     0.255     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.982     0.939     0.668     0.250
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.974     0.587     0.001     0.000
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1] 117.5285 684.8267
dfd=tests[2:3,"Df diff"]
dfd
## [1] 11  5
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3067+ 3094 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05607851 0.21012319
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04716406 0.06545511
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1969855 0.2235338
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.872     0.255     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
hof.age<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
g ~age
'

hof.ageq<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
g ~c(a,a)*age
'

hof.age2<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
g ~age + age2
'

hof.age2q<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
g ~c(a,a)*age + c(b,b)*age2
'

sem.age<-sem(hof.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   2599.370     92.000      0.000      0.945      0.094      0.052      0.441 281593.141 281983.249
Mc(sem.age)
## [1] 0.8158537
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 140 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        80
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2599.370    1746.704
##   Degrees of freedom                                92          92
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.488
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1050.250     705.739
##     0                                         1549.119    1040.965
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.808    0.049   16.530    0.000    0.712    0.904    2.351    0.569
##     sswk    (.p2.)    1.934    0.117   16.594    0.000    1.705    2.162    5.627    0.898
##     sspc    (.p3.)    0.800    0.047   16.870    0.000    0.707    0.893    2.329    0.823
##   math =~                                                                                 
##     ssar    (.p4.)    3.028    0.083   36.702    0.000    2.867    3.190    6.078    0.925
##     ssmk    (.p5.)    2.549    0.068   37.590    0.000    2.417    2.682    5.117    0.863
##     ssmc    (.p6.)    0.705    0.039   17.922    0.000    0.628    0.782    1.414    0.338
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.582    0.033   17.810    0.000    0.518    0.646    1.208    0.292
##     ssasi   (.p8.)    1.286    0.061   21.170    0.000    1.167    1.405    2.669    0.731
##     ssmc    (.p9.)    0.894    0.048   18.809    0.000    0.801    0.987    1.856    0.444
##     ssei    (.10.)    1.293    0.061   21.285    0.000    1.174    1.412    2.684    0.800
##   speed =~                                                                                
##     ssno    (.11.)    0.490    0.011   45.466    0.000    0.469    0.511    0.712    0.853
##     sscs    (.12.)    0.442    0.010   43.623    0.000    0.422    0.462    0.641    0.749
##   g =~                                                                                    
##     verbal  (.13.)    2.683    0.172   15.576    0.000    2.345    3.021    0.939    0.939
##     math    (.14.)    1.708    0.067   25.660    0.000    1.578    1.839    0.867    0.867
##     elctrnc (.15.)    1.786    0.091   19.725    0.000    1.608    1.963    0.876    0.876
##     speed   (.16.)    1.033    0.038   26.980    0.000    0.958    1.108    0.725    0.725
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.084    0.010    8.007    0.000    0.063    0.104    0.082    0.191
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   15.837    0.088  179.279    0.000   15.664   16.010   15.837    3.832
##    .sswk             27.598    0.133  206.939    0.000   27.337   27.860   27.598    4.405
##    .sspc    (.37.)   11.905    0.058  204.882    0.000   11.791   12.019   11.905    4.209
##    .ssar    (.38.)   18.252    0.147  124.305    0.000   17.965   18.540   18.252    2.779
##    .ssmk             14.328    0.132  108.316    0.000   14.069   14.588   14.328    2.416
##    .ssmc    (.40.)   12.659    0.087  145.188    0.000   12.488   12.830   12.659    3.026
##    .ssasi   (.41.)   11.930    0.074  160.988    0.000   11.785   12.076   11.930    3.268
##    .ssei             10.445    0.071  147.381    0.000   10.306   10.584   10.445    3.113
##    .ssno    (.43.)    0.483    0.018   27.053    0.000    0.448    0.518    0.483    0.579
##    .sscs              0.563    0.018   30.993    0.000    0.527    0.599    0.563    0.658
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.118    0.118
##    .math              1.000                               1.000    1.000    0.248    0.248
##    .speed             1.000                               1.000    1.000    0.475    0.475
##    .ssgs              5.414    0.201   26.986    0.000    5.021    5.807    5.414    0.317
##    .sswk              7.579    0.461   16.455    0.000    6.677    8.482    7.579    0.193
##    .sspc              2.576    0.116   22.229    0.000    2.349    2.803    2.576    0.322
##    .ssar              6.199    0.460   13.465    0.000    5.297    7.101    6.199    0.144
##    .ssmk              8.979    0.385   23.335    0.000    8.225    9.734    8.979    0.255
##    .ssmc              8.063    0.275   29.305    0.000    7.524    8.603    8.063    0.461
##    .ssasi             6.198    0.242   25.631    0.000    5.725    6.672    6.198    0.465
##    .ssei              4.054    0.183   22.157    0.000    3.696    4.413    4.054    0.360
##    .ssno              0.189    0.013   14.135    0.000    0.163    0.215    0.189    0.272
##    .sscs              0.321    0.018   17.629    0.000    0.285    0.357    0.321    0.439
##    .electronic        1.000                               1.000    1.000    0.232    0.232
##    .g                 1.000                               1.000    1.000    0.964    0.964
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.808    0.049   16.530    0.000    0.712    0.904    2.682    0.584
##     sswk    (.p2.)    1.934    0.117   16.594    0.000    1.705    2.162    6.418    0.919
##     sspc    (.p3.)    0.800    0.047   16.870    0.000    0.707    0.893    2.656    0.839
##   math =~                                                                                 
##     ssar    (.p4.)    3.028    0.083   36.702    0.000    2.867    3.190    6.812    0.939
##     ssmk    (.p5.)    2.549    0.068   37.590    0.000    2.417    2.682    5.735    0.877
##     ssmc    (.p6.)    0.705    0.039   17.922    0.000    0.628    0.782    1.585    0.335
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.582    0.033   17.810    0.000    0.518    0.646    1.568    0.341
##     ssasi   (.p8.)    1.286    0.061   21.170    0.000    1.167    1.405    3.462    0.739
##     ssmc    (.p9.)    0.894    0.048   18.809    0.000    0.801    0.987    2.408    0.508
##     ssei    (.10.)    1.293    0.061   21.285    0.000    1.174    1.412    3.482    0.926
##   speed =~                                                                                
##     ssno    (.11.)    0.490    0.011   45.466    0.000    0.469    0.511    0.773    0.868
##     sscs    (.12.)    0.442    0.010   43.623    0.000    0.422    0.462    0.696    0.791
##   g =~                                                                                    
##     verbal  (.13.)    2.683    0.172   15.576    0.000    2.345    3.021    0.954    0.954
##     math    (.14.)    1.708    0.067   25.660    0.000    1.578    1.839    0.896    0.896
##     elctrnc (.15.)    1.786    0.091   19.725    0.000    1.608    1.963    0.782    0.782
##     speed   (.16.)    1.033    0.038   26.980    0.000    0.958    1.108    0.773    0.773
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.127    0.011   11.128    0.000    0.105    0.150    0.108    0.255
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   15.837    0.088  179.279    0.000   15.664   16.010   15.837    3.447
##    .sswk             29.313    0.175  167.252    0.000   28.969   29.656   29.313    4.199
##    .sspc    (.37.)   11.905    0.058  204.882    0.000   11.791   12.019   11.905    3.760
##    .ssar    (.38.)   18.252    0.147  124.305    0.000   17.965   18.540   18.252    2.517
##    .ssmk             13.290    0.148   89.888    0.000   13.001   13.580   13.290    2.032
##    .ssmc    (.40.)   12.659    0.087  145.188    0.000   12.488   12.830   12.659    2.672
##    .ssasi   (.41.)   11.930    0.074  160.988    0.000   11.785   12.076   11.930    2.545
##    .ssei              7.768    0.170   45.661    0.000    7.434    8.101    7.768    2.065
##    .ssno    (.43.)    0.483    0.018   27.053    0.000    0.448    0.518    0.483    0.543
##    .sscs              0.319    0.022   14.291    0.000    0.276    0.363    0.319    0.363
##    .verbal           -1.925    0.152  -12.676    0.000   -2.222   -1.627   -0.580   -0.580
##    .elctrnc           3.882    0.209   18.616    0.000    3.473    4.291    1.442    1.442
##    .speed            -0.816    0.047  -17.242    0.000   -0.909   -0.723   -0.518   -0.518
##    .g                 0.362    0.040    9.004    0.000    0.283    0.441    0.307    0.307
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.091    0.091
##    .math              1.000                               1.000    1.000    0.198    0.198
##    .speed             1.000                               1.000    1.000    0.402    0.402
##    .ssgs              5.194    0.195   26.601    0.000    4.811    5.576    5.194    0.246
##    .sswk              7.533    0.510   14.769    0.000    6.534    8.533    7.533    0.155
##    .sspc              2.969    0.128   23.179    0.000    2.717    3.220    2.969    0.296
##    .ssar              6.200    0.448   13.833    0.000    5.321    7.078    6.200    0.118
##    .ssmk              9.910    0.410   24.179    0.000    9.106   10.713    9.910    0.232
##    .ssmc              8.780    0.312   28.163    0.000    8.169    9.391    8.780    0.391
##    .ssasi             9.982    0.398   25.100    0.000    9.203   10.762    9.982    0.454
##    .ssei              2.020    0.181   11.149    0.000    1.665    2.375    2.020    0.143
##    .ssno              0.195    0.013   14.556    0.000    0.169    0.221    0.195    0.246
##    .sscs              0.291    0.018   16.282    0.000    0.256    0.326    0.291    0.375
##    .electronic        2.813    0.297    9.474    0.000    2.231    3.395    0.388    0.388
##    .g                 1.301    0.065   20.169    0.000    1.175    1.428    0.935    0.935
sem.ageq<-sem(hof.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   2611.674     93.000      0.000      0.944      0.094      0.057      0.442 281603.445 281986.827
Mc(sem.ageq)
## [1] 0.8151054
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 135 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        80
##   Number of equality constraints                    23
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2611.674    1755.501
##   Degrees of freedom                                93          93
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.488
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1055.282     709.334
##     0                                         1556.392    1046.167
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.804    0.049   16.369    0.000    0.707    0.900    2.374    0.571
##     sswk    (.p2.)    1.923    0.117   16.425    0.000    1.694    2.153    5.680    0.900
##     sspc    (.p3.)    0.796    0.048   16.696    0.000    0.702    0.889    2.350    0.826
##   math =~                                                                                 
##     ssar    (.p4.)    3.034    0.082   36.884    0.000    2.873    3.196    6.127    0.927
##     ssmk    (.p5.)    2.554    0.068   37.752    0.000    2.422    2.687    5.158    0.864
##     ssmc    (.p6.)    0.706    0.039   17.942    0.000    0.629    0.783    1.426    0.339
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.580    0.033   17.792    0.000    0.516    0.644    1.217    0.292
##     ssasi   (.p8.)    1.282    0.061   21.127    0.000    1.163    1.401    2.688    0.734
##     ssmc    (.p9.)    0.891    0.047   18.775    0.000    0.798    0.984    1.869    0.445
##     ssei    (.10.)    1.289    0.061   21.233    0.000    1.170    1.408    2.704    0.802
##   speed =~                                                                                
##     ssno    (.11.)    0.490    0.011   45.484    0.000    0.469    0.512    0.716    0.854
##     sscs    (.12.)    0.442    0.010   43.639    0.000    0.422    0.462    0.645    0.751
##   g =~                                                                                    
##     verbal  (.13.)    2.702    0.175   15.422    0.000    2.359    3.046    0.941    0.941
##     math    (.14.)    1.706    0.066   25.721    0.000    1.576    1.836    0.869    0.869
##     elctrnc (.15.)    1.792    0.091   19.669    0.000    1.614    1.971    0.879    0.879
##     speed   (.16.)    1.033    0.038   26.930    0.000    0.958    1.109    0.728    0.728
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.104    0.008   13.012    0.000    0.088    0.119    0.101    0.234
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   15.851    0.088  179.610    0.000   15.678   16.024   15.851    3.810
##    .sswk             27.621    0.133  208.244    0.000   27.361   27.881   27.621    4.377
##    .sspc    (.37.)   11.914    0.058  205.298    0.000   11.800   12.028   11.914    4.185
##    .ssar    (.38.)   18.275    0.147  124.465    0.000   17.987   18.563   18.275    2.763
##    .ssmk             14.347    0.133  107.802    0.000   14.086   14.608   14.347    2.405
##    .ssmc    (.40.)   12.671    0.087  145.385    0.000   12.501   12.842   12.671    3.015
##    .ssasi   (.41.)   11.940    0.074  161.699    0.000   11.795   12.085   11.940    3.259
##    .ssei             10.455    0.070  148.333    0.000   10.317   10.593   10.455    3.102
##    .ssno    (.43.)    0.485    0.018   27.199    0.000    0.450    0.520    0.485    0.579
##    .sscs              0.565    0.018   31.215    0.000    0.530    0.600    0.565    0.658
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.115    0.115
##    .math              1.000                               1.000    1.000    0.245    0.245
##    .speed             1.000                               1.000    1.000    0.470    0.470
##    .ssgs              5.416    0.201   26.991    0.000    5.023    5.809    5.416    0.313
##    .sswk              7.560    0.459   16.455    0.000    6.659    8.460    7.560    0.190
##    .sspc              2.580    0.116   22.247    0.000    2.352    2.807    2.580    0.318
##    .ssar              6.185    0.460   13.437    0.000    5.283    7.088    6.185    0.141
##    .ssmk              8.997    0.385   23.347    0.000    8.242    9.753    8.997    0.253
##    .ssmc              8.068    0.275   29.310    0.000    7.528    8.607    8.068    0.457
##    .ssasi             6.200    0.242   25.650    0.000    5.726    6.673    6.200    0.462
##    .ssei              4.051    0.183   22.173    0.000    3.693    4.409    4.051    0.357
##    .ssno              0.190    0.013   14.154    0.000    0.163    0.216    0.190    0.270
##    .sscs              0.321    0.018   17.609    0.000    0.285    0.357    0.321    0.435
##    .electronic        1.000                               1.000    1.000    0.227    0.227
##    .g                 1.000                               1.000    1.000    0.945    0.945
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.804    0.049   16.369    0.000    0.707    0.900    2.658    0.582
##     sswk    (.p2.)    1.923    0.117   16.425    0.000    1.694    2.153    6.362    0.918
##     sspc    (.p3.)    0.796    0.048   16.696    0.000    0.702    0.889    2.632    0.837
##   math =~                                                                                 
##     ssar    (.p4.)    3.034    0.082   36.884    0.000    2.873    3.196    6.759    0.938
##     ssmk    (.p5.)    2.554    0.068   37.752    0.000    2.422    2.687    5.689    0.875
##     ssmc    (.p6.)    0.706    0.039   17.942    0.000    0.629    0.783    1.573    0.334
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.580    0.033   17.792    0.000    0.516    0.644    1.558    0.341
##     ssasi   (.p8.)    1.282    0.061   21.127    0.000    1.163    1.401    3.443    0.737
##     ssmc    (.p9.)    0.891    0.047   18.775    0.000    0.798    0.984    2.394    0.508
##     ssei    (.10.)    1.289    0.061   21.233    0.000    1.170    1.408    3.463    0.925
##   speed =~                                                                                
##     ssno    (.11.)    0.490    0.011   45.484    0.000    0.469    0.512    0.768    0.867
##     sscs    (.12.)    0.442    0.010   43.639    0.000    0.422    0.462    0.692    0.789
##   g =~                                                                                    
##     verbal  (.13.)    2.702    0.175   15.422    0.000    2.359    3.046    0.953    0.953
##     math    (.14.)    1.706    0.066   25.721    0.000    1.576    1.836    0.894    0.894
##     elctrnc (.15.)    1.792    0.091   19.669    0.000    1.614    1.971    0.779    0.779
##     speed   (.16.)    1.033    0.038   26.930    0.000    0.958    1.109    0.770    0.770
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.104    0.008   13.012    0.000    0.088    0.119    0.089    0.210
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   15.851    0.088  179.610    0.000   15.678   16.024   15.851    3.473
##    .sswk             29.335    0.175  167.354    0.000   28.992   29.679   29.335    4.233
##    .sspc    (.37.)   11.914    0.058  205.298    0.000   11.800   12.028   11.914    3.787
##    .ssar    (.38.)   18.275    0.147  124.465    0.000   17.987   18.563   18.275    2.537
##    .ssmk             13.309    0.148   90.015    0.000   13.020   13.599   13.309    2.047
##    .ssmc    (.40.)   12.671    0.087  145.385    0.000   12.501   12.842   12.671    2.688
##    .ssasi   (.41.)   11.940    0.074  161.699    0.000   11.795   12.085   11.940    2.555
##    .ssei              7.776    0.170   45.695    0.000    7.443    8.110    7.776    2.078
##    .ssno    (.43.)    0.485    0.018   27.199    0.000    0.450    0.520    0.485    0.548
##    .sscs              0.321    0.022   14.377    0.000    0.278    0.365    0.321    0.366
##    .verbal           -1.936    0.154  -12.576    0.000   -2.238   -1.634   -0.585   -0.585
##    .elctrnc           3.895    0.210   18.585    0.000    3.484    4.305    1.450    1.450
##    .speed            -0.816    0.047  -17.241    0.000   -0.908   -0.723   -0.521   -0.521
##    .g                 0.353    0.040    8.795    0.000    0.274    0.431    0.302    0.302
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.091    0.091
##    .math              1.000                               1.000    1.000    0.202    0.202
##    .speed             1.000                               1.000    1.000    0.408    0.408
##    .ssgs              5.190    0.195   26.606    0.000    4.808    5.573    5.190    0.249
##    .sswk              7.552    0.510   14.808    0.000    6.553    8.552    7.552    0.157
##    .sspc              2.967    0.128   23.173    0.000    2.716    3.218    2.967    0.300
##    .ssar              6.206    0.449   13.826    0.000    5.326    7.086    6.206    0.120
##    .ssmk              9.894    0.410   24.124    0.000    9.090   10.698    9.894    0.234
##    .ssmc              8.781    0.312   28.159    0.000    8.170    9.393    8.781    0.395
##    .ssasi             9.986    0.398   25.099    0.000    9.206   10.765    9.986    0.457
##    .ssei              2.017    0.181   11.119    0.000    1.662    2.373    2.017    0.144
##    .ssno              0.195    0.013   14.543    0.000    0.168    0.221    0.195    0.248
##    .sscs              0.291    0.018   16.287    0.000    0.256    0.326    0.291    0.377
##    .electronic        2.841    0.300    9.466    0.000    2.253    3.430    0.394    0.394
##    .g                 1.301    0.065   20.132    0.000    1.175    1.428    0.956    0.956
sem.age2<-sem(hof.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   2656.806    110.000      0.000      0.944      0.087      0.050      0.451 281585.133 281988.693
Mc(sem.age2)
## [1] 0.8132463
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 148 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2656.806    1790.121
##   Degrees of freedom                               110         110
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.484
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1068.667     720.054
##     0                                         1588.139    1070.067
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.808    0.049   16.560    0.000    0.712    0.904    2.351    0.569
##     sswk    (.p2.)    1.934    0.116   16.627    0.000    1.706    2.162    5.627    0.898
##     sspc    (.p3.)    0.800    0.047   16.905    0.000    0.708    0.893    2.329    0.823
##   math =~                                                                                 
##     ssar    (.p4.)    3.030    0.082   36.746    0.000    2.868    3.191    6.078    0.925
##     ssmk    (.p5.)    2.551    0.068   37.650    0.000    2.418    2.684    5.117    0.863
##     ssmc    (.p6.)    0.705    0.039   17.920    0.000    0.628    0.782    1.414    0.338
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.582    0.033   17.807    0.000    0.518    0.646    1.209    0.292
##     ssasi   (.p8.)    1.286    0.061   21.164    0.000    1.167    1.405    2.670    0.731
##     ssmc    (.p9.)    0.894    0.048   18.805    0.000    0.801    0.987    1.857    0.444
##     ssei    (.10.)    1.293    0.061   21.279    0.000    1.174    1.412    2.685    0.800
##   speed =~                                                                                
##     ssno    (.11.)    0.490    0.011   45.472    0.000    0.469    0.511    0.712    0.853
##     sscs    (.12.)    0.442    0.010   43.634    0.000    0.422    0.462    0.641    0.749
##   g =~                                                                                    
##     verbal  (.13.)    2.682    0.172   15.605    0.000    2.345    3.019    0.939    0.939
##     math    (.14.)    1.707    0.066   25.681    0.000    1.577    1.837    0.867    0.867
##     elctrnc (.15.)    1.787    0.091   19.723    0.000    1.609    1.964    0.876    0.876
##     speed   (.16.)    1.033    0.038   26.990    0.000    0.958    1.108    0.725    0.725
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.084    0.011    7.900    0.000    0.063    0.104    0.082    0.190
##     age2             -0.001    0.004   -0.150    0.881   -0.009    0.008   -0.001   -0.003
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   15.849    0.116  137.062    0.000   15.622   16.075   15.849    3.835
##    .sswk             27.617    0.183  151.308    0.000   27.259   27.975   27.617    4.408
##    .sspc    (.40.)   11.912    0.077  154.621    0.000   11.761   12.063   11.912    4.212
##    .ssar    (.41.)   18.271    0.191   95.459    0.000   17.896   18.646   18.271    2.782
##    .ssmk             14.344    0.167   85.706    0.000   14.016   14.672   14.344    2.419
##    .ssmc    (.43.)   12.669    0.111  114.359    0.000   12.452   12.886   12.669    3.029
##    .ssasi   (.44.)   11.939    0.093  128.630    0.000   11.757   12.120   11.939    3.270
##    .ssei             10.453    0.091  115.434    0.000   10.276   10.631   10.453    3.115
##    .ssno    (.46.)    0.485    0.022   22.501    0.000    0.443    0.527    0.485    0.582
##    .sscs              0.565    0.021   26.412    0.000    0.523    0.607    0.565    0.660
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.118    0.118
##    .math              1.000                               1.000    1.000    0.249    0.249
##    .speed             1.000                               1.000    1.000    0.474    0.474
##    .ssgs              5.414    0.201   26.991    0.000    5.021    5.807    5.414    0.317
##    .sswk              7.577    0.461   16.451    0.000    6.674    8.480    7.577    0.193
##    .sspc              2.576    0.116   22.229    0.000    2.349    2.803    2.576    0.322
##    .ssar              6.198    0.460   13.462    0.000    5.295    7.100    6.198    0.144
##    .ssmk              8.979    0.385   23.331    0.000    8.225    9.734    8.979    0.255
##    .ssmc              8.063    0.275   29.307    0.000    7.524    8.603    8.063    0.461
##    .ssasi             6.198    0.242   25.628    0.000    5.724    6.673    6.198    0.465
##    .ssei              4.054    0.183   22.160    0.000    3.696    4.413    4.054    0.360
##    .ssno              0.189    0.013   14.136    0.000    0.163    0.216    0.189    0.272
##    .sscs              0.321    0.018   17.624    0.000    0.285    0.357    0.321    0.439
##    .electronic        1.000                               1.000    1.000    0.232    0.232
##    .g                 1.000                               1.000    1.000    0.964    0.964
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.808    0.049   16.560    0.000    0.712    0.904    2.682    0.584
##     sswk    (.p2.)    1.934    0.116   16.627    0.000    1.706    2.162    6.418    0.920
##     sspc    (.p3.)    0.800    0.047   16.905    0.000    0.708    0.893    2.656    0.839
##   math =~                                                                                 
##     ssar    (.p4.)    3.030    0.082   36.746    0.000    2.868    3.191    6.812    0.939
##     ssmk    (.p5.)    2.551    0.068   37.650    0.000    2.418    2.684    5.735    0.877
##     ssmc    (.p6.)    0.705    0.039   17.920    0.000    0.628    0.782    1.585    0.335
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.582    0.033   17.807    0.000    0.518    0.646    1.567    0.341
##     ssasi   (.p8.)    1.286    0.061   21.164    0.000    1.167    1.405    3.462    0.739
##     ssmc    (.p9.)    0.894    0.048   18.805    0.000    0.801    0.987    2.408    0.508
##     ssei    (.10.)    1.293    0.061   21.279    0.000    1.174    1.412    3.481    0.926
##   speed =~                                                                                
##     ssno    (.11.)    0.490    0.011   45.472    0.000    0.469    0.511    0.773    0.868
##     sscs    (.12.)    0.442    0.010   43.634    0.000    0.422    0.462    0.696    0.791
##   g =~                                                                                    
##     verbal  (.13.)    2.682    0.172   15.605    0.000    2.345    3.019    0.954    0.954
##     math    (.14.)    1.707    0.066   25.681    0.000    1.577    1.837    0.896    0.896
##     elctrnc (.15.)    1.787    0.091   19.723    0.000    1.609    1.964    0.783    0.783
##     speed   (.16.)    1.033    0.038   26.990    0.000    0.958    1.108    0.773    0.773
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.121    0.012   10.400    0.000    0.098    0.143    0.102    0.242
##     age2             -0.015    0.005   -2.826    0.005   -0.025   -0.004   -0.012   -0.064
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   15.849    0.116  137.062    0.000   15.622   16.075   15.849    3.449
##    .sswk             29.331    0.214  137.356    0.000   28.913   29.750   29.331    4.202
##    .sspc    (.40.)   11.912    0.077  154.621    0.000   11.761   12.063   11.912    3.763
##    .ssar    (.41.)   18.271    0.191   95.459    0.000   17.896   18.646   18.271    2.519
##    .ssmk             13.306    0.180   73.748    0.000   12.952   13.660   13.306    2.034
##    .ssmc    (.43.)   12.669    0.111  114.359    0.000   12.452   12.886   12.669    2.674
##    .ssasi   (.44.)   11.939    0.093  128.630    0.000   11.757   12.120   11.939    2.547
##    .ssei              7.776    0.178   43.638    0.000    7.427    8.125    7.776    2.068
##    .ssno    (.46.)    0.485    0.022   22.501    0.000    0.443    0.527    0.485    0.545
##    .sscs              0.321    0.025   12.860    0.000    0.272    0.370    0.321    0.364
##    .verbal           -1.924    0.152  -12.695    0.000   -2.221   -1.627   -0.580   -0.580
##    .elctrnc           3.882    0.209   18.612    0.000    3.474    4.291    1.442    1.442
##    .speed            -0.816    0.047  -17.243    0.000   -0.909   -0.723   -0.518   -0.518
##    .g                 0.440    0.054    8.073    0.000    0.333    0.547    0.373    0.373
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.091    0.091
##    .math              1.000                               1.000    1.000    0.198    0.198
##    .speed             1.000                               1.000    1.000    0.402    0.402
##    .ssgs              5.195    0.195   26.594    0.000    4.812    5.577    5.195    0.246
##    .sswk              7.528    0.509   14.794    0.000    6.530    8.525    7.528    0.154
##    .sspc              2.969    0.128   23.173    0.000    2.718    3.220    2.969    0.296
##    .ssar              6.205    0.448   13.840    0.000    5.327    7.084    6.205    0.118
##    .ssmk              9.906    0.410   24.179    0.000    9.103   10.710    9.906    0.231
##    .ssmc              8.780    0.312   28.167    0.000    8.169    9.391    8.780    0.391
##    .ssasi             9.980    0.398   25.102    0.000    9.201   10.760    9.980    0.454
##    .ssei              2.021    0.181   11.161    0.000    1.666    2.376    2.021    0.143
##    .ssno              0.195    0.013   14.561    0.000    0.169    0.221    0.195    0.246
##    .sscs              0.291    0.018   16.282    0.000    0.256    0.326    0.291    0.375
##    .electronic        2.810    0.297    9.469    0.000    2.229    3.392    0.387    0.387
##    .g                 1.296    0.064   20.222    0.000    1.170    1.422    0.931    0.931
sem.age2q<-sem(hof.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   2675.112    112.000      0.000      0.944      0.086      0.055      0.453 281599.439 281989.547
Mc(sem.age2q)
## [1] 0.8121706
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 140 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    24
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2675.112    1804.027
##   Degrees of freedom                               112         112
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.483
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1076.378     725.882
##     0                                         1598.734    1078.145
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.803    0.049   16.385    0.000    0.707    0.900    2.376    0.571
##     sswk    (.p2.)    1.923    0.117   16.441    0.000    1.694    2.152    5.686    0.900
##     sspc    (.p3.)    0.796    0.048   16.714    0.000    0.702    0.889    2.353    0.826
##   math =~                                                                                 
##     ssar    (.p4.)    3.036    0.082   36.934    0.000    2.875    3.197    6.133    0.927
##     ssmk    (.p5.)    2.556    0.068   37.812    0.000    2.423    2.688    5.162    0.865
##     ssmc    (.p6.)    0.707    0.039   17.950    0.000    0.629    0.784    1.427    0.339
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.580    0.033   17.782    0.000    0.516    0.644    1.218    0.293
##     ssasi   (.p8.)    1.281    0.061   21.111    0.000    1.162    1.400    2.690    0.734
##     ssmc    (.p9.)    0.891    0.047   18.767    0.000    0.798    0.984    1.871    0.445
##     ssei    (.10.)    1.289    0.061   21.216    0.000    1.170    1.408    2.706    0.802
##   speed =~                                                                                
##     ssno    (.11.)    0.490    0.011   45.482    0.000    0.469    0.511    0.716    0.854
##     sscs    (.12.)    0.442    0.010   43.643    0.000    0.422    0.462    0.645    0.752
##   g =~                                                                                    
##     verbal  (.13.)    2.704    0.175   15.435    0.000    2.361    3.047    0.941    0.941
##     math    (.14.)    1.705    0.066   25.747    0.000    1.576    1.835    0.869    0.869
##     elctrnc (.15.)    1.794    0.091   19.652    0.000    1.615    1.973    0.879    0.879
##     speed   (.16.)    1.034    0.038   26.927    0.000    0.959    1.109    0.729    0.729
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.100    0.008   12.455    0.000    0.085    0.116    0.098    0.226
##     age2       (b)   -0.007    0.003   -2.069    0.039   -0.014   -0.000   -0.007   -0.035
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   15.972    0.104  152.900    0.000   15.767   16.177   15.972    3.837
##    .sswk             27.816    0.161  172.578    0.000   27.501   28.132   27.816    4.404
##    .sspc    (.40.)   11.995    0.069  174.763    0.000   11.860   12.129   11.995    4.211
##    .ssar    (.41.)   18.469    0.173  106.704    0.000   18.130   18.809   18.469    2.791
##    .ssmk             14.511    0.153   94.605    0.000   14.210   14.812   14.511    2.430
##    .ssmc    (.43.)   12.777    0.101  126.429    0.000   12.579   12.975   12.777    3.038
##    .ssasi   (.44.)   12.027    0.085  141.252    0.000   11.860   12.193   12.027    3.281
##    .ssei             10.542    0.082  127.973    0.000   10.380   10.703   10.542    3.126
##    .ssno    (.46.)    0.504    0.020   25.377    0.000    0.466    0.543    0.504    0.602
##    .sscs              0.582    0.020   29.233    0.000    0.543    0.621    0.582    0.678
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.114    0.114
##    .math              1.000                               1.000    1.000    0.245    0.245
##    .speed             1.000                               1.000    1.000    0.469    0.469
##    .ssgs              5.417    0.201   26.989    0.000    5.024    5.810    5.417    0.313
##    .sswk              7.557    0.460   16.446    0.000    6.656    8.458    7.557    0.189
##    .sspc              2.580    0.116   22.253    0.000    2.353    2.807    2.580    0.318
##    .ssar              6.183    0.460   13.438    0.000    5.281    7.085    6.183    0.141
##    .ssmk              8.999    0.386   23.341    0.000    8.244    9.755    8.999    0.252
##    .ssmc              8.067    0.275   29.311    0.000    7.528    8.606    8.067    0.456
##    .ssasi             6.199    0.242   25.652    0.000    5.725    6.672    6.199    0.461
##    .ssei              4.052    0.183   22.184    0.000    3.694    4.410    4.052    0.356
##    .ssno              0.190    0.013   14.163    0.000    0.163    0.216    0.190    0.270
##    .sscs              0.321    0.018   17.603    0.000    0.285    0.357    0.321    0.435
##    .electronic        1.000                               1.000    1.000    0.227    0.227
##    .g                 1.000                               1.000    1.000    0.944    0.944
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.803    0.049   16.385    0.000    0.707    0.900    2.656    0.582
##     sswk    (.p2.)    1.923    0.117   16.441    0.000    1.694    2.152    6.356    0.918
##     sspc    (.p3.)    0.796    0.048   16.714    0.000    0.702    0.889    2.630    0.837
##   math =~                                                                                 
##     ssar    (.p4.)    3.036    0.082   36.934    0.000    2.875    3.197    6.753    0.938
##     ssmk    (.p5.)    2.556    0.068   37.812    0.000    2.423    2.688    5.685    0.875
##     ssmc    (.p6.)    0.707    0.039   17.950    0.000    0.629    0.784    1.572    0.334
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.580    0.033   17.782    0.000    0.516    0.644    1.557    0.341
##     ssasi   (.p8.)    1.281    0.061   21.111    0.000    1.162    1.400    3.440    0.737
##     ssmc    (.p9.)    0.891    0.047   18.767    0.000    0.798    0.984    2.393    0.508
##     ssei    (.10.)    1.289    0.061   21.216    0.000    1.170    1.408    3.460    0.925
##   speed =~                                                                                
##     ssno    (.11.)    0.490    0.011   45.482    0.000    0.469    0.511    0.768    0.867
##     sscs    (.12.)    0.442    0.010   43.643    0.000    0.422    0.462    0.692    0.789
##   g =~                                                                                    
##     verbal  (.13.)    2.704    0.175   15.435    0.000    2.361    3.047    0.953    0.953
##     math    (.14.)    1.705    0.066   25.747    0.000    1.576    1.835    0.893    0.893
##     elctrnc (.15.)    1.794    0.091   19.652    0.000    1.615    1.973    0.778    0.778
##     speed   (.16.)    1.034    0.038   26.927    0.000    0.959    1.109    0.769    0.769
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.100    0.008   12.455    0.000    0.085    0.116    0.086    0.203
##     age2       (b)   -0.007    0.003   -2.069    0.039   -0.014   -0.000   -0.006   -0.031
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   15.972    0.104  152.900    0.000   15.767   16.177   15.972    3.502
##    .sswk             29.531    0.197  149.843    0.000   29.144   29.917   29.531    4.265
##    .sspc    (.40.)   11.995    0.069  174.763    0.000   11.860   12.129   11.995    3.815
##    .ssar    (.41.)   18.469    0.173  106.704    0.000   18.130   18.809   18.469    2.566
##    .ssmk             13.473    0.167   80.860    0.000   13.147   13.800   13.473    2.074
##    .ssmc    (.43.)   12.777    0.101  126.429    0.000   12.579   12.975   12.777    2.711
##    .ssasi   (.44.)   12.027    0.085  141.252    0.000   11.860   12.193   12.027    2.575
##    .ssei              7.863    0.175   44.842    0.000    7.520    8.207    7.863    2.102
##    .ssno    (.46.)    0.504    0.020   25.377    0.000    0.466    0.543    0.504    0.570
##    .sscs              0.339    0.024   14.244    0.000    0.292    0.385    0.339    0.386
##    .verbal           -1.936    0.154  -12.587    0.000   -2.238   -1.635   -0.586   -0.586
##    .elctrnc           3.896    0.210   18.573    0.000    3.485    4.307    1.451    1.451
##    .speed            -0.816    0.047  -17.243    0.000   -0.909   -0.723   -0.521   -0.521
##    .g                 0.354    0.040    8.829    0.000    0.275    0.433    0.304    0.304
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.092    0.092
##    .math              1.000                               1.000    1.000    0.202    0.202
##    .speed             1.000                               1.000    1.000    0.408    0.408
##    .ssgs              5.191    0.195   26.603    0.000    4.808    5.573    5.191    0.250
##    .sswk              7.549    0.509   14.818    0.000    6.550    8.547    7.549    0.157
##    .sspc              2.967    0.128   23.169    0.000    2.716    3.218    2.967    0.300
##    .ssar              6.207    0.449   13.825    0.000    5.327    7.087    6.207    0.120
##    .ssmk              9.893    0.410   24.123    0.000    9.089   10.697    9.893    0.234
##    .ssmc              8.781    0.312   28.161    0.000    8.170    9.392    8.781    0.395
##    .ssasi             9.984    0.398   25.099    0.000    9.205   10.764    9.984    0.458
##    .ssei              2.018    0.181   11.126    0.000    1.662    2.373    2.018    0.144
##    .ssno              0.195    0.013   14.550    0.000    0.169    0.221    0.195    0.248
##    .sscs              0.291    0.018   16.286    0.000    0.256    0.326    0.291    0.378
##    .electronic        2.842    0.300    9.458    0.000    2.253    3.431    0.394    0.394
##    .g                 1.296    0.064   20.168    0.000    1.170    1.422    0.955    0.955
# BIFACTOR (a model with verbal =~ gs + pc and without gs cross loading was fitted, but loadings on verbal were zero or negative)

bf.notworking<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
'

baseline<-cfa(bf.notworking, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1579.247     23.000      0.000      0.966      0.105      0.046 286643.835 286926.326
Mc(baseline)
## [1] 0.8813338
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 41 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        42
## 
##   Number of observations                          6161
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1579.247    1034.260
##   Degrees of freedom                                23          23
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.527
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              0.524    0.113    4.649    0.000    0.303    0.745    0.524    0.117
##     sswk              4.752    0.752    6.319    0.000    3.278    6.226    4.752    0.716
##     sspc              0.560    0.113    4.965    0.000    0.339    0.781    0.560    0.184
##   math =~                                                                                 
##     ssar              2.646    0.146   18.121    0.000    2.360    2.932    2.646    0.379
##     ssmk              1.983    0.118   16.748    0.000    1.751    2.215    1.983    0.317
##     ssmc              1.238    0.082   15.045    0.000    1.076    1.399    1.238    0.248
##   electronic =~                                                                           
##     ssgs              1.229    0.048   25.644    0.000    1.135    1.323    1.229    0.275
##     ssasi             3.850    0.062   62.192    0.000    3.728    3.971    3.850    0.747
##     ssmc              2.823    0.059   48.095    0.000    2.708    2.938    2.823    0.567
##     ssei              2.156    0.047   45.868    0.000    2.064    2.249    2.156    0.548
##   speed =~                                                                                
##     ssno              0.462    0.014   32.260    0.000    0.433    0.490    0.462    0.530
##     sscs              0.535    0.003  166.250    0.000    0.528    0.541    0.535    0.597
##   g =~                                                                                    
##     ssgs              3.552    0.061   57.997    0.000    3.432    3.672    3.552    0.795
##     ssar              5.914    0.073   80.945    0.000    5.771    6.058    5.914    0.847
##     sswk              5.438    0.104   52.187    0.000    5.233    5.642    5.438    0.819
##     sspc              2.313    0.049   47.679    0.000    2.218    2.408    2.313    0.762
##     ssno              0.567    0.013   43.447    0.000    0.541    0.592    0.567    0.651
##     sscs              0.486    0.014   34.062    0.000    0.458    0.514    0.486    0.543
##     ssasi             2.259    0.081   27.919    0.000    2.100    2.417    2.259    0.438
##     ssmk              5.090    0.064   79.688    0.000    4.965    5.216    5.090    0.814
##     ssmc              2.975    0.068   43.711    0.000    2.842    3.109    2.975    0.597
##     ssei              2.619    0.054   48.707    0.000    2.514    2.724    2.619    0.666
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.000                               0.000    0.000    0.000    0.000
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             16.715    0.068  246.365    0.000   16.582   16.848   16.715    3.743
##    .sswk             27.415    0.099  278.206    0.000   27.221   27.608   27.415    4.129
##    .sspc             11.467    0.045  252.947    0.000   11.378   11.556   11.467    3.778
##    .ssar             19.089    0.106  180.011    0.000   18.881   19.297   19.089    2.733
##    .ssmk             14.504    0.095  151.975    0.000   14.317   14.691   14.504    2.319
##    .ssmc             14.875    0.076  194.568    0.000   14.725   15.025   14.875    2.985
##    .ssasi            14.868    0.079  189.000    0.000   14.713   15.022   14.868    2.885
##    .ssei             12.012    0.060  201.824    0.000   11.895   12.128   12.012    3.055
##    .ssno              0.361    0.013   27.622    0.000    0.336    0.387    0.361    0.415
##    .sscs              0.329    0.014   24.174    0.000    0.302    0.356    0.329    0.367
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.543    0.159   34.946    0.000    5.232    5.854    5.543    0.278
##    .sswk             -8.060    7.293   -1.105    0.269  -22.354    6.234   -8.060   -0.183
##    .sspc              3.548    0.118   29.961    0.000    3.316    3.780    3.548    0.385
##    .ssar              6.818    0.535   12.752    0.000    5.770    7.866    6.818    0.140
##    .ssmk              9.276    0.363   25.529    0.000    8.564    9.988    9.276    0.237
##    .ssmc              6.471    0.263   24.595    0.000    5.956    6.987    6.471    0.261
##    .ssasi             6.642    0.306   21.705    0.000    6.042    7.242    6.642    0.250
##    .ssei              3.953    0.127   31.059    0.000    3.704    4.202    3.953    0.256
##    .ssno              0.223    0.011   21.062    0.000    0.202    0.243    0.223    0.294
##    .sscs              0.281    0.013   21.553    0.000    0.255    0.306    0.281    0.350
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
bf.model<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
'

bf.lv<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
'

baseline<-cfa(bf.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= -9.198506e-06) is smaller than zero. This may 
##    be a symptom that the model is not identified.
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1976.198     26.000      0.000      0.957      0.110      0.048 287034.785 287297.099
Mc(baseline)
## [1] 0.8535977
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 30 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        39
## 
##   Number of observations                          6161
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1976.198    1267.501
##   Degrees of freedom                                26          26
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.559
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar              3.461    0.119   29.094    0.000    3.228    3.695    3.461    0.496
##     ssmk              2.645    0.099   26.835    0.000    2.452    2.838    2.645    0.423
##     ssmc              1.189    0.061   19.598    0.000    1.070    1.307    1.189    0.240
##   electronic =~                                                                           
##     ssgs              1.284    0.047   27.205    0.000    1.191    1.376    1.284    0.286
##     ssasi             3.888    0.060   65.020    0.000    3.770    4.005    3.888    0.754
##     ssmc              2.797    0.056   49.546    0.000    2.687    2.908    2.797    0.566
##     ssei              2.167    0.044   49.290    0.000    2.081    2.254    2.167    0.551
##   speed =~                                                                                
##     ssno              0.431    0.011   39.690    0.000    0.410    0.453    0.431    0.496
##     sscs              0.608    0.005  112.262    0.000    0.597    0.618    0.608    0.678
##   g =~                                                                                    
##     ssgs              3.657    0.055   67.014    0.000    3.550    3.764    3.657    0.814
##     ssar              5.510    0.071   77.859    0.000    5.371    5.649    5.510    0.789
##     sswk              5.948    0.092   64.681    0.000    5.768    6.128    5.948    0.896
##     sspc              2.476    0.045   55.615    0.000    2.389    2.564    2.476    0.816
##     ssno              0.542    0.013   41.175    0.000    0.516    0.568    0.542    0.623
##     sscs              0.480    0.014   34.071    0.000    0.453    0.508    0.480    0.536
##     ssasi             2.230    0.077   28.780    0.000    2.078    2.382    2.230    0.433
##     ssmk              4.754    0.062   76.691    0.000    4.633    4.876    4.754    0.760
##     ssmc              2.893    0.065   44.292    0.000    2.765    3.021    2.893    0.585
##     ssei              2.603    0.050   52.085    0.000    2.505    2.701    2.603    0.662
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             19.089    0.106  180.011    0.000   18.881   19.297   19.089    2.733
##    .ssmk             14.504    0.095  151.975    0.000   14.317   14.691   14.504    2.319
##    .ssmc             14.875    0.076  194.568    0.000   14.725   15.025   14.875    3.010
##    .ssgs             16.715    0.068  246.365    0.000   16.582   16.848   16.715    3.720
##    .ssasi            14.868    0.079  189.000    0.000   14.713   15.022   14.868    2.885
##    .ssei             12.012    0.060  201.824    0.000   11.895   12.128   12.012    3.055
##    .ssno              0.361    0.013   27.622    0.000    0.336    0.387    0.361    0.415
##    .sscs              0.329    0.014   24.174    0.000    0.302    0.356    0.329    0.367
##    .sswk             27.415    0.099  278.206    0.000   27.221   27.608   27.415    4.129
##    .sspc             11.467    0.045  252.947    0.000   11.378   11.556   11.467    3.778
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.455    0.673    9.592    0.000    5.136    7.774    6.455    0.132
##    .ssmk              9.520    0.448   21.228    0.000    8.641   10.399    9.520    0.243
##    .ssmc              6.823    0.228   29.959    0.000    6.377    7.270    6.823    0.279
##    .ssgs              5.168    0.144   35.982    0.000    4.887    5.450    5.168    0.256
##    .ssasi             6.479    0.303   21.355    0.000    5.884    7.074    6.479    0.244
##    .ssei              3.987    0.125   31.801    0.000    3.741    4.233    3.987    0.258
##    .ssno              0.277    0.010   28.651    0.000    0.258    0.296    0.277    0.366
##    .sscs              0.203    0.012   17.124    0.000    0.180    0.226    0.203    0.253
##    .sswk              8.709    0.368   23.690    0.000    7.988    9.429    8.709    0.198
##    .sspc              3.080    0.095   32.593    0.000    2.895    3.265    3.080    0.334
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
configural<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1460.414     52.000      0.000      0.968      0.094      0.033 281498.599 282023.226
Mc(configural)
## [1] 0.8919731
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 39 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        78
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1460.414     935.653
##   Degrees of freedom                                52          52
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.561
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          567.753     363.745
##     0                                          892.662     571.907
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar              3.393    0.157   21.626    0.000    3.085    3.700    3.393    0.503
##     ssmk              2.781    0.139   20.071    0.000    2.510    3.053    2.781    0.464
##     ssmc              1.225    0.083   14.703    0.000    1.062    1.388    1.225    0.296
##   electronic =~                                                                           
##     ssgs              0.800    0.097    8.250    0.000    0.610    0.991    0.800    0.192
##     ssasi             1.556    0.107   14.539    0.000    1.346    1.765    1.556    0.450
##     ssmc              1.396    0.113   12.393    0.000    1.175    1.617    1.396    0.337
##     ssei              1.059    0.095   11.177    0.000    0.873    1.244    1.059    0.317
##   speed =~                                                                                
##     ssno              0.516    0.017   30.609    0.000    0.483    0.549    0.516    0.622
##     sscs              0.470    0.008   62.351    0.000    0.455    0.485    0.470    0.554
##   g =~                                                                                    
##     ssgs              3.382    0.073   46.509    0.000    3.239    3.524    3.382    0.813
##     ssar              5.277    0.097   54.462    0.000    5.087    5.467    5.277    0.782
##     sswk              5.724    0.127   45.101    0.000    5.475    5.972    5.724    0.894
##     sspc              2.229    0.064   34.980    0.000    2.104    2.354    2.229    0.806
##     ssno              0.484    0.019   25.515    0.000    0.446    0.521    0.484    0.583
##     sscs              0.428    0.020   21.336    0.000    0.389    0.467    0.428    0.504
##     ssasi             1.947    0.070   27.839    0.000    1.810    2.084    1.947    0.564
##     ssmk              4.381    0.085   51.610    0.000    4.215    4.548    4.381    0.730
##     ssmc              2.559    0.074   34.611    0.000    2.414    2.704    2.559    0.618
##     ssei              2.338    0.058   40.319    0.000    2.224    2.451    2.338    0.700
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             18.133    0.146  124.361    0.000   17.847   18.418   18.133    2.688
##    .ssmk             14.248    0.130  109.820    0.000   13.994   14.503   14.248    2.375
##    .ssmc             12.747    0.090  141.504    0.000   12.570   12.923   12.747    3.078
##    .ssgs             15.782    0.090  175.509    0.000   15.606   15.959   15.782    3.793
##    .ssasi            11.812    0.074  158.855    0.000   11.666   11.957   11.812    3.421
##    .ssei             10.402    0.072  144.049    0.000   10.261   10.544   10.402    3.117
##    .ssno              0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.571
##    .sscs              0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.653
##    .sswk             27.503    0.136  202.254    0.000   27.237   27.770   27.503    4.296
##    .sspc             11.863    0.059  201.639    0.000   11.748   11.978   11.863    4.290
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.137    0.853    7.193    0.000    4.465    7.809    6.137    0.135
##    .ssmk              9.047    0.653   13.846    0.000    7.767   10.328    9.047    0.251
##    .ssmc              7.150    0.346   20.660    0.000    6.472    7.829    7.150    0.417
##    .ssgs              5.240    0.214   24.492    0.000    4.821    5.660    5.240    0.303
##    .ssasi             5.713    0.309   18.485    0.000    5.108    6.319    5.713    0.479
##    .ssei              4.553    0.199   22.889    0.000    4.163    4.942    4.553    0.409
##    .ssno              0.189    0.015   12.536    0.000    0.159    0.219    0.189    0.274
##    .sscs              0.317    0.017   18.233    0.000    0.283    0.352    0.317    0.440
##    .sswk              8.229    0.475   17.326    0.000    7.298    9.160    8.229    0.201
##    .sspc              2.677    0.114   23.416    0.000    2.453    2.902    2.677    0.350
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar              3.378    0.184   18.360    0.000    3.018    3.739    3.378    0.477
##     ssmk              2.627    0.150   17.474    0.000    2.333    2.922    2.627    0.405
##     ssmc              0.956    0.088   10.919    0.000    0.784    1.127    0.956    0.194
##   electronic =~                                                                           
##     ssgs              0.793    0.076   10.425    0.000    0.644    0.943    0.793    0.172
##     ssasi             2.976    0.094   31.621    0.000    2.791    3.160    2.976    0.620
##     ssmc              2.432    0.090   27.048    0.000    2.255    2.608    2.432    0.493
##     ssei              1.627    0.070   23.153    0.000    1.489    1.765    1.627    0.424
##   speed =~                                                                                
##     ssno              0.434    0.017   24.934    0.000    0.400    0.468    0.434    0.485
##     sscs              0.525    0.007   80.461    0.000    0.512    0.538    0.525    0.592
##   g =~                                                                                    
##     ssgs              3.944    0.077   51.543    0.000    3.794    4.094    3.944    0.854
##     ssar              5.718    0.098   58.381    0.000    5.526    5.910    5.718    0.807
##     sswk              6.186    0.129   47.969    0.000    5.933    6.439    6.186    0.902
##     sspc              2.726    0.059   46.547    0.000    2.611    2.840    2.726    0.844
##     ssno              0.590    0.018   33.379    0.000    0.555    0.624    0.590    0.660
##     sscs              0.537    0.018   29.708    0.000    0.502    0.573    0.537    0.606
##     ssasi             2.674    0.111   24.058    0.000    2.456    2.892    2.674    0.557
##     ssmk              5.020    0.087   57.381    0.000    4.849    5.192    5.020    0.774
##     ssmc              3.326    0.091   36.577    0.000    3.147    3.504    3.326    0.674
##     ssei              2.934    0.070   41.816    0.000    2.797    3.072    2.934    0.764
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             20.009    0.151  132.770    0.000   19.714   20.305   20.009    2.823
##    .ssmk             14.749    0.139  105.881    0.000   14.476   15.022   14.749    2.275
##    .ssmc             16.924    0.104  162.135    0.000   16.719   17.128   16.924    3.428
##    .ssgs             17.613    0.097  181.519    0.000   17.422   17.803   17.613    3.815
##    .ssasi            17.810    0.102  175.227    0.000   17.610   18.009   17.810    3.713
##    .ssei             13.561    0.080  169.041    0.000   13.404   13.718   13.561    3.533
##    .ssno              0.253    0.019   13.436    0.000    0.216    0.290    0.253    0.283
##    .sscs              0.112    0.019    5.896    0.000    0.075    0.149    0.112    0.126
##    .sswk             27.329    0.142  191.949    0.000   27.050   27.608   27.329    3.984
##    .sspc             11.086    0.068  163.704    0.000   10.953   11.219   11.086    3.434
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.142    1.076    5.707    0.000    4.033    8.251    6.142    0.122
##    .ssmk              9.912    0.711   13.938    0.000    8.518   11.306    9.912    0.236
##    .ssmc              6.484    0.347   18.700    0.000    5.804    7.163    6.484    0.266
##    .ssgs              5.131    0.197   26.098    0.000    4.746    5.516    5.131    0.241
##    .ssasi             7.005    0.435   16.122    0.000    6.153    7.857    7.005    0.304
##    .ssei              3.475    0.159   21.897    0.000    3.164    3.786    3.475    0.236
##    .ssno              0.262    0.013   20.157    0.000    0.237    0.288    0.262    0.329
##    .sscs              0.221    0.016   13.468    0.000    0.189    0.253    0.221    0.282
##    .sswk              8.788    0.494   17.779    0.000    7.819    9.757    8.788    0.187
##    .sspc              2.996    0.127   23.627    0.000    2.747    3.244    2.996    0.287
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1560.097     67.000      0.000      0.966      0.085      0.041 281568.282 281992.019
Mc(metric)
## [1] 0.885863
summary(metric, standardized=T, ci=T)
## lavaan 0.6-18 ended normally after 64 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    19
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1560.097    1031.141
##   Degrees of freedom                                67          67
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.513
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          625.800     413.620
##     0                                          934.297     617.521
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.424    0.129   26.608    0.000    3.171    3.676    3.424    0.517
##     ssmk    (.p2.)    2.769    0.113   24.486    0.000    2.548    2.991    2.769    0.462
##     ssmc    (.p3.)    1.113    0.066   16.844    0.000    0.984    1.243    1.113    0.265
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.499    0.043   11.546    0.000    0.414    0.584    0.499    0.120
##     ssasi   (.p5.)    1.664    0.072   23.213    0.000    1.524    1.805    1.664    0.471
##     ssmc    (.p6.)    1.385    0.065   21.199    0.000    1.257    1.513    1.385    0.329
##     ssei    (.p7.)    0.931    0.047   19.786    0.000    0.839    1.023    0.931    0.275
##   speed =~                                                                                
##     ssno    (.p8.)    0.421    0.013   32.435    0.000    0.396    0.447    0.421    0.501
##     sscs    (.p9.)    0.576    0.021   27.361    0.000    0.535    0.617    0.576    0.668
##   g =~                                                                                    
##     ssgs    (.10.)    3.403    0.064   52.873    0.000    3.277    3.529    3.403    0.820
##     ssar    (.11.)    5.114    0.094   54.414    0.000    4.930    5.298    5.114    0.772
##     sswk    (.12.)    5.522    0.112   49.418    0.000    5.303    5.741    5.522    0.882
##     sspc    (.13.)    2.307    0.051   45.139    0.000    2.207    2.407    2.307    0.816
##     ssno    (.14.)    0.502    0.014   36.557    0.000    0.475    0.529    0.502    0.596
##     sscs    (.15.)    0.452    0.014   32.795    0.000    0.425    0.479    0.452    0.525
##     ssasi   (.16.)    2.100    0.059   35.796    0.000    1.985    2.215    2.100    0.594
##     ssmk    (.17.)    4.384    0.083   52.819    0.000    4.221    4.547    4.384    0.731
##     ssmc    (.18.)    2.711    0.058   46.453    0.000    2.596    2.825    2.711    0.644
##     ssei    (.19.)    2.440    0.048   51.307    0.000    2.347    2.533    2.440    0.720
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             18.133    0.146  124.361    0.000   17.847   18.418   18.133    2.736
##    .ssmk             14.248    0.130  109.820    0.000   13.994   14.503   14.248    2.376
##    .ssmc             12.747    0.090  141.504    0.000   12.570   12.923   12.747    3.028
##    .ssgs             15.782    0.090  175.509    0.000   15.606   15.959   15.782    3.804
##    .ssasi            11.812    0.074  158.855    0.000   11.666   11.957   11.812    3.343
##    .ssei             10.402    0.072  144.049    0.000   10.261   10.544   10.402    3.068
##    .ssno              0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.563
##    .sscs              0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.644
##    .sswk             27.503    0.136  202.254    0.000   27.237   27.770   27.503    4.392
##    .sspc             11.863    0.059  201.639    0.000   11.748   11.978   11.863    4.194
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.052    0.734    8.248    0.000    4.613    7.490    6.052    0.138
##    .ssmk              9.060    0.561   16.156    0.000    7.961   10.159    9.060    0.252
##    .ssmc              7.211    0.285   25.293    0.000    6.652    7.769    7.211    0.407
##    .ssgs              5.381    0.204   26.439    0.000    4.982    5.780    5.381    0.313
##    .ssasi             5.304    0.253   20.976    0.000    4.809    5.800    5.304    0.425
##    .ssei              4.674    0.169   27.638    0.000    4.343    5.006    4.674    0.407
##    .ssno              0.278    0.013   20.962    0.000    0.252    0.304    0.278    0.393
##    .sscs              0.206    0.025    8.209    0.000    0.157    0.256    0.206    0.278
##    .sswk              8.726    0.452   19.293    0.000    7.839    9.612    8.726    0.223
##    .sspc              2.676    0.115   23.272    0.000    2.451    2.902    2.676    0.335
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.424    0.129   26.608    0.000    3.171    3.676    3.279    0.456
##     ssmk    (.p2.)    2.769    0.113   24.486    0.000    2.548    2.991    2.652    0.409
##     ssmc    (.p3.)    1.113    0.066   16.844    0.000    0.984    1.243    1.066    0.221
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.499    0.043   11.546    0.000    0.414    0.584    0.894    0.195
##     ssasi   (.p5.)    1.664    0.072   23.213    0.000    1.524    1.805    2.982    0.638
##     ssmc    (.p6.)    1.385    0.065   21.199    0.000    1.257    1.513    2.481    0.514
##     ssei    (.p7.)    0.931    0.047   19.786    0.000    0.839    1.023    1.668    0.445
##   speed =~                                                                                
##     ssno    (.p8.)    0.421    0.013   32.190    0.000    0.396    0.447    0.409    0.462
##     sscs    (.p9.)    0.576    0.021   27.430    0.000    0.535    0.617    0.559    0.638
##   g =~                                                                                    
##     ssgs    (.10.)    3.403    0.064   52.873    0.000    3.277    3.529    3.902    0.849
##     ssar    (.11.)    5.114    0.094   54.414    0.000    4.930    5.298    5.864    0.815
##     sswk    (.12.)    5.522    0.112   49.418    0.000    5.303    5.741    6.331    0.907
##     sspc    (.13.)    2.307    0.051   45.139    0.000    2.207    2.407    2.645    0.835
##     ssno    (.14.)    0.502    0.014   36.557    0.000    0.475    0.529    0.575    0.651
##     sscs    (.15.)    0.452    0.014   32.795    0.000    0.425    0.479    0.518    0.592
##     ssasi   (.16.)    2.100    0.059   35.796    0.000    1.985    2.215    2.408    0.516
##     ssmk    (.17.)    4.384    0.083   52.819    0.000    4.221    4.547    5.027    0.776
##     ssmc    (.18.)    2.711    0.058   46.453    0.000    2.596    2.825    3.108    0.644
##     ssei    (.19.)    2.440    0.048   51.307    0.000    2.347    2.533    2.798    0.746
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             20.009    0.151  132.770    0.000   19.714   20.305   20.009    2.781
##    .ssmk             14.749    0.139  105.881    0.000   14.476   15.022   14.749    2.277
##    .ssmc             16.924    0.104  162.135    0.000   16.719   17.128   16.924    3.505
##    .ssgs             17.613    0.097  181.519    0.000   17.422   17.803   17.613    3.832
##    .ssasi            17.810    0.102  175.227    0.000   17.610   18.009   17.810    3.814
##    .ssei             13.561    0.080  169.041    0.000   13.404   13.718   13.561    3.616
##    .ssno              0.253    0.019   13.436    0.000    0.216    0.290    0.253    0.286
##    .sscs              0.112    0.019    5.896    0.000    0.075    0.149    0.112    0.128
##    .sswk             27.329    0.142  191.949    0.000   27.050   27.608   27.329    3.914
##    .sspc             11.086    0.068  163.704    0.000   10.953   11.219   11.086    3.499
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.646    0.733    9.062    0.000    5.209    8.083    6.646    0.128
##    .ssmk              9.675    0.536   18.045    0.000    8.625   10.726    9.675    0.230
##    .ssmc              6.358    0.334   19.037    0.000    5.704    7.013    6.358    0.273
##    .ssgs              5.102    0.194   26.274    0.000    4.721    5.483    5.102    0.241
##    .ssasi             7.120    0.419   17.009    0.000    6.299    7.940    7.120    0.326
##    .ssei              3.454    0.157   21.936    0.000    3.145    3.763    3.454    0.246
##    .ssno              0.283    0.014   20.856    0.000    0.257    0.310    0.283    0.363
##    .sscs              0.186    0.018   10.466    0.000    0.151    0.221    0.186    0.243
##    .sswk              8.664    0.484   17.892    0.000    7.715    9.613    8.664    0.178
##    .sspc              3.039    0.129   23.636    0.000    2.787    3.291    3.039    0.303
##     math              0.917    0.065   14.205    0.000    0.791    1.044    1.000    1.000
##     electronic        3.211    0.289   11.122    0.000    2.645    3.776    1.000    1.000
##     speed             0.941    0.065   14.402    0.000    0.813    1.069    1.000    1.000
##     g                 1.315    0.063   20.928    0.000    1.192    1.438    1.000    1.000
lavTestScore(metric, release = 1:19)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 102.567 19       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p54.  1.446  1   0.229
## 2   .p2. == .p55.  0.178  1   0.673
## 3   .p3. == .p56.  2.885  1   0.089
## 4   .p4. == .p57. 11.964  1   0.001
## 5   .p5. == .p58.  2.145  1   0.143
## 6   .p6. == .p59.  0.862  1   0.353
## 7   .p7. == .p60.  0.026  1   0.872
## 8   .p8. == .p61.  0.000  1   1.000
## 9   .p9. == .p62.  0.000  1   1.000
## 10 .p10. == .p63.  0.658  1   0.417
## 11 .p11. == .p64. 14.995  1   0.000
## 12 .p12. == .p65. 27.751  1   0.000
## 13 .p13. == .p66. 16.802  1   0.000
## 14 .p14. == .p67.  1.079  1   0.299
## 15 .p15. == .p68.  2.419  1   0.120
## 16 .p16. == .p69.  5.947  1   0.015
## 17 .p17. == .p70.  2.265  1   0.132
## 18 .p18. == .p71.  5.348  1   0.021
## 19 .p19. == .p72.  2.021  1   0.155
scalar<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1845.784     73.000      0.000      0.960      0.089      0.043 281841.968 282225.350
Mc(scalar)
## [1] 0.8659788
summary(scalar, standardized=T, ci=T) # +.119
## lavaan 0.6-18 ended normally after 113 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    29
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1845.784    1242.730
##   Degrees of freedom                                73          73
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.485
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          761.901     512.973
##     0                                         1083.883     729.757
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.039    0.145   27.838    0.000    3.755    4.324    4.039    0.610
##     ssmk    (.p2.)    2.217    0.101   22.011    0.000    2.019    2.414    2.217    0.371
##     ssmc    (.p3.)    0.841    0.067   12.473    0.000    0.709    0.973    0.841    0.200
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.602    0.031   19.733    0.000    0.542    0.662    0.602    0.145
##     ssasi   (.p5.)    1.733    0.071   24.560    0.000    1.595    1.872    1.733    0.491
##     ssmc    (.p6.)    1.173    0.051   23.193    0.000    1.074    1.272    1.173    0.279
##     ssei    (.p7.)    0.965    0.041   23.386    0.000    0.884    1.046    0.965    0.285
##   speed =~                                                                                
##     ssno    (.p8.)    0.310    0.020   15.466    0.000    0.271    0.350    0.310    0.369
##     sscs    (.p9.)    0.776    0.052   14.940    0.000    0.675    0.878    0.776    0.901
##   g =~                                                                                    
##     ssgs    (.10.)    3.383    0.065   52.043    0.000    3.255    3.510    3.383    0.816
##     ssar    (.11.)    5.129    0.094   54.651    0.000    4.945    5.313    5.129    0.775
##     sswk    (.12.)    5.483    0.114   48.196    0.000    5.260    5.706    5.483    0.876
##     sspc    (.13.)    2.322    0.050   46.792    0.000    2.225    2.419    2.322    0.815
##     ssno    (.14.)    0.504    0.014   36.976    0.000    0.477    0.531    0.504    0.599
##     sscs    (.15.)    0.454    0.014   33.043    0.000    0.427    0.481    0.454    0.527
##     ssasi   (.16.)    2.077    0.059   35.331    0.000    1.962    2.192    2.077    0.588
##     ssmk    (.17.)    4.419    0.082   53.669    0.000    4.258    4.581    4.419    0.739
##     ssmc    (.18.)    2.757    0.058   47.259    0.000    2.643    2.871    2.757    0.657
##     ssei    (.19.)    2.428    0.048   50.779    0.000    2.334    2.521    2.428    0.716
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.145    0.147  123.402    0.000   17.856   18.433   18.145    2.740
##    .ssmk    (.41.)   14.102    0.125  112.761    0.000   13.857   14.347   14.102    2.359
##    .ssmc    (.42.)   12.643    0.088  143.220    0.000   12.469   12.816   12.643    3.013
##    .ssgs    (.43.)   15.847    0.088  179.651    0.000   15.674   16.020   15.847    3.825
##    .ssasi   (.44.)   11.830    0.074  159.687    0.000   11.685   11.975   11.830    3.350
##    .ssei    (.45.)   10.412    0.071  146.053    0.000   10.272   10.552   10.412    3.073
##    .ssno    (.46.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.563
##    .sscs    (.47.)    0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.643
##    .sswk    (.48.)   27.797    0.131  212.415    0.000   27.540   28.053   27.797    4.444
##    .sspc    (.49.)   11.642    0.059  197.588    0.000   11.527   11.758   11.642    4.085
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.218    1.082    1.126    0.260   -0.902    3.338    1.218    0.028
##    .ssmk             11.284    0.468   24.115    0.000   10.367   12.201   11.284    0.316
##    .ssmc              7.921    0.277   28.632    0.000    7.378    8.463    7.921    0.450
##    .ssgs              5.361    0.204   26.307    0.000    4.962    5.761    5.361    0.312
##    .ssasi             5.153    0.250   20.604    0.000    4.663    5.643    5.153    0.413
##    .ssei              4.656    0.167   27.805    0.000    4.328    4.985    4.656    0.406
##    .ssno              0.357    0.017   20.631    0.000    0.323    0.391    0.357    0.505
##    .sscs             -0.066    0.082   -0.808    0.419   -0.226    0.094   -0.066   -0.089
##    .sswk              9.070    0.473   19.167    0.000    8.143    9.998    9.070    0.232
##    .sspc              2.732    0.118   23.212    0.000    2.502    2.963    2.732    0.336
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.039    0.145   27.838    0.000    3.755    4.324    3.905    0.542
##     ssmk    (.p2.)    2.217    0.101   22.011    0.000    2.019    2.414    2.143    0.331
##     ssmc    (.p3.)    0.841    0.067   12.473    0.000    0.709    0.973    0.813    0.171
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.602    0.031   19.733    0.000    0.542    0.662    1.078    0.233
##     ssasi   (.p5.)    1.733    0.071   24.560    0.000    1.595    1.872    3.102    0.659
##     ssmc    (.p6.)    1.173    0.051   23.193    0.000    1.074    1.272    2.099    0.443
##     ssei    (.p7.)    0.965    0.041   23.386    0.000    0.884    1.046    1.727    0.459
##   speed =~                                                                                
##     ssno    (.p8.)    0.310    0.020   15.466    0.000    0.271    0.350    0.300    0.339
##     sscs    (.p9.)    0.776    0.052   14.940    0.000    0.675    0.878    0.751    0.857
##   g =~                                                                                    
##     ssgs    (.10.)    3.383    0.065   52.043    0.000    3.255    3.510    3.881    0.840
##     ssar    (.11.)    5.129    0.094   54.651    0.000    4.945    5.313    5.884    0.817
##     sswk    (.12.)    5.483    0.114   48.196    0.000    5.260    5.706    6.290    0.903
##     sspc    (.13.)    2.322    0.050   46.792    0.000    2.225    2.419    2.664    0.835
##     ssno    (.14.)    0.504    0.014   36.976    0.000    0.477    0.531    0.578    0.654
##     sscs    (.15.)    0.454    0.014   33.043    0.000    0.427    0.481    0.521    0.595
##     ssasi   (.16.)    2.077    0.059   35.331    0.000    1.962    2.192    2.383    0.506
##     ssmk    (.17.)    4.419    0.082   53.669    0.000    4.258    4.581    5.070    0.782
##     ssmc    (.18.)    2.757    0.058   47.259    0.000    2.643    2.871    3.163    0.667
##     ssei    (.19.)    2.428    0.048   50.779    0.000    2.334    2.521    2.785    0.741
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.145    0.147  123.402    0.000   17.856   18.433   18.145    2.518
##    .ssmk    (.41.)   14.102    0.125  112.761    0.000   13.857   14.347   14.102    2.176
##    .ssmc    (.42.)   12.643    0.088  143.220    0.000   12.469   12.816   12.643    2.666
##    .ssgs    (.43.)   15.847    0.088  179.651    0.000   15.674   16.020   15.847    3.429
##    .ssasi   (.44.)   11.830    0.074  159.687    0.000   11.685   11.975   11.830    2.514
##    .ssei    (.45.)   10.412    0.071  146.053    0.000   10.272   10.552   10.412    2.769
##    .ssno    (.46.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.536
##    .sscs    (.47.)    0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.633
##    .sswk    (.48.)   27.797    0.131  212.415    0.000   27.540   28.053   27.797    3.989
##    .sspc    (.49.)   11.642    0.059  197.588    0.000   11.527   11.758   11.642    3.651
##     math              0.630    0.039   16.287    0.000    0.554    0.706    0.652    0.652
##     elctrnc           3.600    0.158   22.822    0.000    3.291    3.909    2.012    2.012
##     speed            -0.491    0.046  -10.559    0.000   -0.582   -0.399   -0.507   -0.507
##     g                -0.136    0.036   -3.789    0.000   -0.207   -0.066   -0.119   -0.119
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              2.036    1.084    1.879    0.060   -0.088    4.161    2.036    0.039
##    .ssmk             11.711    0.497   23.580    0.000   10.737   12.684   11.711    0.279
##    .ssmc              7.418    0.288   25.713    0.000    6.853    7.984    7.418    0.330
##    .ssgs              5.131    0.196   26.134    0.000    4.746    5.516    5.131    0.240
##    .ssasi             6.837    0.384   17.804    0.000    6.084    7.589    6.837    0.309
##    .ssei              3.397    0.154   22.063    0.000    3.095    3.698    3.397    0.240
##    .ssno              0.357    0.015   23.468    0.000    0.327    0.387    0.357    0.457
##    .sscs             -0.068    0.070   -0.971    0.332   -0.206    0.069   -0.068   -0.089
##    .sswk              9.002    0.513   17.557    0.000    7.997   10.007    9.002    0.185
##    .sspc              3.074    0.134   22.923    0.000    2.811    3.337    3.074    0.302
##     math              0.935    0.066   14.158    0.000    0.805    1.064    1.000    1.000
##     electronic        3.203    0.295   10.842    0.000    2.624    3.781    1.000    1.000
##     speed             0.934    0.065   14.291    0.000    0.806    1.063    1.000    1.000
##     g                 1.316    0.063   20.997    0.000    1.193    1.439    1.000    1.000
lavTestScore(scalar, release = 20:29)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 273.985 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs      X2 df p.value
## 1  .p40. ==  .p93.  57.422  1   0.000
## 2  .p41. ==  .p94.  29.128  1   0.000
## 3  .p42. ==  .p95.  46.240  1   0.000
## 4  .p43. ==  .p96.  19.589  1   0.000
## 5  .p44. ==  .p97.   6.167  1   0.013
## 6  .p45. ==  .p98.   0.552  1   0.457
## 7  .p46. ==  .p99.   0.000  1   1.000
## 8  .p47. == .p100.   0.000  1   1.000
## 9  .p48. == .p101. 139.584  1   0.000
## 10 .p49. == .p102. 169.131  1   0.000
scalar2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1675.496     72.000      0.000      0.964      0.085      0.042 281673.680 282063.788
Mc(scalar2)
## [1] 0.8779603
summary(scalar2, standardized=T, ci=T) # +.034
## lavaan 0.6-18 ended normally after 113 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1675.496    1127.904
##   Degrees of freedom                                72          72
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.485
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          681.280     458.622
##     0                                          994.216     669.283
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.062    0.165   24.545    0.000    3.737    4.386    4.062    0.613
##     ssmk    (.p2.)    2.217    0.116   19.154    0.000    1.991    2.444    2.217    0.371
##     ssmc    (.p3.)    0.852    0.075   11.387    0.000    0.705    0.999    0.852    0.203
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.552    0.030   18.689    0.000    0.494    0.610    0.552    0.133
##     ssasi   (.p5.)    1.757    0.071   24.643    0.000    1.617    1.897    1.757    0.497
##     ssmc    (.p6.)    1.181    0.051   23.275    0.000    1.081    1.280    1.181    0.281
##     ssei    (.p7.)    0.946    0.041   23.344    0.000    0.867    1.026    0.946    0.279
##   speed =~                                                                                
##     ssno    (.p8.)    0.338    0.017   19.689    0.000    0.305    0.372    0.338    0.402
##     sscs    (.p9.)    0.714    0.038   18.671    0.000    0.639    0.789    0.714    0.829
##   g =~                                                                                    
##     ssgs    (.10.)    3.394    0.065   52.498    0.000    3.267    3.520    3.394    0.818
##     ssar    (.11.)    5.121    0.094   54.665    0.000    4.937    5.304    5.121    0.773
##     sswk    (.12.)    5.511    0.112   49.349    0.000    5.293    5.730    5.511    0.880
##     sspc    (.13.)    2.309    0.051   45.407    0.000    2.210    2.409    2.309    0.816
##     ssno    (.14.)    0.503    0.014   36.871    0.000    0.476    0.529    0.503    0.597
##     sscs    (.15.)    0.453    0.014   32.970    0.000    0.426    0.480    0.453    0.526
##     ssasi   (.16.)    2.082    0.059   35.487    0.000    1.967    2.197    2.082    0.589
##     ssmk    (.17.)    4.406    0.082   53.986    0.000    4.246    4.566    4.406    0.738
##     ssmc    (.18.)    2.753    0.058   47.126    0.000    2.639    2.868    2.753    0.656
##     ssei    (.19.)    2.433    0.048   51.008    0.000    2.340    2.527    2.433    0.718
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.147    0.149  122.013    0.000   17.856   18.439   18.147    2.741
##    .ssmk    (.41.)   14.029    0.123  113.672    0.000   13.787   14.271   14.029    2.349
##    .ssmc    (.42.)   12.648    0.088  143.823    0.000   12.475   12.820   12.648    3.014
##    .ssgs    (.43.)   15.820    0.088  179.222    0.000   15.647   15.993   15.820    3.815
##    .ssasi   (.44.)   11.839    0.074  159.554    0.000   11.694   11.984   11.839    3.350
##    .ssei    (.45.)   10.409    0.071  146.319    0.000   10.270   10.549   10.409    3.070
##    .ssno    (.46.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.563
##    .sscs    (.47.)    0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.644
##    .sswk    (.48.)   27.525    0.135  204.005    0.000   27.260   27.789   27.525    4.395
##    .sspc             11.863    0.059  201.639    0.000   11.748   11.978   11.863    4.193
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.131    1.288    0.878    0.380   -1.393    3.656    1.131    0.026
##    .ssmk             11.352    0.513   22.137    0.000   10.347   12.357   11.352    0.318
##    .ssmc              7.914    0.280   28.278    0.000    7.365    8.462    7.914    0.449
##    .ssgs              5.376    0.203   26.446    0.000    4.977    5.774    5.376    0.313
##    .ssasi             5.065    0.253   20.038    0.000    4.570    5.561    5.065    0.406
##    .ssei              4.680    0.167   27.956    0.000    4.352    5.008    4.680    0.407
##    .ssno              0.340    0.016   20.797    0.000    0.308    0.372    0.340    0.481
##    .sscs              0.027    0.056    0.479    0.632   -0.083    0.137    0.027    0.036
##    .sswk              8.840    0.457   19.337    0.000    7.944    9.736    8.840    0.225
##    .sspc              2.672    0.115   23.276    0.000    2.447    2.897    2.672    0.334
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.062    0.165   24.545    0.000    3.737    4.386    3.931    0.546
##     ssmk    (.p2.)    2.217    0.116   19.154    0.000    1.991    2.444    2.146    0.331
##     ssmc    (.p3.)    0.852    0.075   11.387    0.000    0.705    0.999    0.825    0.174
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.552    0.030   18.689    0.000    0.494    0.610    0.988    0.214
##     ssasi   (.p5.)    1.757    0.071   24.643    0.000    1.617    1.897    3.146    0.667
##     ssmc    (.p6.)    1.181    0.051   23.275    0.000    1.081    1.280    2.115    0.446
##     ssei    (.p7.)    0.946    0.041   23.344    0.000    0.867    1.026    1.695    0.451
##   speed =~                                                                                
##     ssno    (.p8.)    0.338    0.017   19.689    0.000    0.305    0.372    0.328    0.371
##     sscs    (.p9.)    0.714    0.038   18.671    0.000    0.639    0.789    0.692    0.791
##   g =~                                                                                    
##     ssgs    (.10.)    3.394    0.065   52.498    0.000    3.267    3.520    3.893    0.844
##     ssar    (.11.)    5.121    0.094   54.665    0.000    4.937    5.304    5.874    0.815
##     sswk    (.12.)    5.511    0.112   49.349    0.000    5.293    5.730    6.322    0.906
##     sspc    (.13.)    2.309    0.051   45.407    0.000    2.210    2.409    2.649    0.836
##     ssno    (.14.)    0.503    0.014   36.871    0.000    0.476    0.529    0.576    0.652
##     sscs    (.15.)    0.453    0.014   32.970    0.000    0.426    0.480    0.520    0.593
##     ssasi   (.16.)    2.082    0.059   35.487    0.000    1.967    2.197    2.388    0.507
##     ssmk    (.17.)    4.406    0.082   53.986    0.000    4.246    4.566    5.054    0.781
##     ssmc    (.18.)    2.753    0.058   47.126    0.000    2.639    2.868    3.158    0.666
##     ssei    (.19.)    2.433    0.048   51.008    0.000    2.340    2.527    2.791    0.743
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.147    0.149  122.013    0.000   17.856   18.439   18.147    2.518
##    .ssmk    (.41.)   14.029    0.123  113.672    0.000   13.787   14.271   14.029    2.166
##    .ssmc    (.42.)   12.648    0.088  143.823    0.000   12.475   12.820   12.648    2.666
##    .ssgs    (.43.)   15.820    0.088  179.222    0.000   15.647   15.993   15.820    3.432
##    .ssasi   (.44.)   11.839    0.074  159.554    0.000   11.694   11.984   11.839    2.511
##    .ssei    (.45.)   10.409    0.071  146.319    0.000   10.270   10.549   10.409    2.772
##    .ssno    (.46.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.536
##    .sscs    (.47.)    0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.633
##    .sswk    (.48.)   27.525    0.135  204.005    0.000   27.260   27.789   27.525    3.943
##    .sspc             11.177    0.071  157.324    0.000   11.037   11.316   11.177    3.528
##     math              0.502    0.038   13.184    0.000    0.427    0.576    0.518    0.518
##     elctrnc           3.425    0.151   22.726    0.000    3.130    3.721    1.913    1.913
##     speed            -0.595    0.047  -12.747    0.000   -0.686   -0.503   -0.614   -0.614
##     g                -0.039    0.036   -1.098    0.272   -0.109    0.031   -0.034   -0.034
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.969    1.282    1.535    0.125   -0.544    4.483    1.969    0.038
##    .ssmk             11.781    0.534   22.042    0.000   10.733   12.828   11.781    0.281
##    .ssmc              7.384    0.291   25.400    0.000    6.814    7.953    7.384    0.328
##    .ssgs              5.119    0.195   26.290    0.000    4.738    5.501    5.119    0.241
##    .ssasi             6.619    0.386   17.150    0.000    5.863    7.376    6.619    0.298
##    .ssei              3.442    0.154   22.329    0.000    3.140    3.744    3.442    0.244
##    .ssno              0.341    0.015   23.486    0.000    0.313    0.370    0.341    0.437
##    .sscs              0.018    0.047    0.376    0.707   -0.074    0.109    0.018    0.023
##    .sswk              8.767    0.494   17.733    0.000    7.798    9.736    8.767    0.180
##    .sspc              3.017    0.128   23.555    0.000    2.766    3.268    3.017    0.301
##     math              0.937    0.065   14.318    0.000    0.809    1.065    1.000    1.000
##     electronic        3.208    0.294   10.921    0.000    2.632    3.783    1.000    1.000
##     speed             0.939    0.065   14.353    0.000    0.811    1.067    1.000    1.000
##     g                 1.316    0.063   21.041    0.000    1.193    1.438    1.000    1.000
lavTestScore(scalar2, release = 20:28)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 110.241  9       0
## 
## $uni
## 
## univariate score tests:
## 
##     lhs op    rhs     X2 df p.value
## 1 .p40. ==  .p93. 80.130  1   0.000
## 2 .p41. ==  .p94. 51.423  1   0.000
## 3 .p42. ==  .p95. 38.192  1   0.000
## 4 .p43. ==  .p96.  6.279  1   0.012
## 5 .p44. ==  .p97. 13.394  1   0.000
## 6 .p45. ==  .p98.  0.272  1   0.602
## 7 .p46. ==  .p99.  0.000  1   1.000
## 8 .p47. == .p100.  0.000  1   1.000
## 9 .p48. == .p101.  2.504  1   0.114
strict<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1750.323     82.000      0.000      0.962      0.081      0.042 281728.507 282051.355
Mc(strict)
## [1] 0.8733527
summary(strict, standardized=T, ci=T) # +.030
## lavaan 0.6-18 ended normally after 99 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    38
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1750.323    1163.192
##   Degrees of freedom                                82          82
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.505
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          714.983     475.148
##     0                                         1035.340     688.044
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.985    0.154   25.932    0.000    3.684    4.286    3.985    0.602
##     ssmk    (.p2.)    2.204    0.117   18.819    0.000    1.975    2.434    2.204    0.368
##     ssmc    (.p3.)    0.851    0.075   11.291    0.000    0.703    0.998    0.851    0.204
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.535    0.028   18.805    0.000    0.479    0.591    0.535    0.129
##     ssasi   (.p5.)    1.734    0.069   25.161    0.000    1.598    1.869    1.734    0.482
##     ssmc    (.p6.)    1.147    0.049   23.287    0.000    1.051    1.244    1.147    0.276
##     ssei    (.p7.)    0.915    0.039   23.293    0.000    0.838    0.992    0.915    0.278
##   speed =~                                                                                
##     ssno    (.p8.)    0.341    0.018   19.353    0.000    0.306    0.376    0.341    0.405
##     sscs    (.p9.)    0.718    0.033   21.492    0.000    0.652    0.783    0.718    0.832
##   g =~                                                                                    
##     ssgs    (.10.)    3.397    0.065   52.511    0.000    3.270    3.524    3.397    0.822
##     ssar    (.11.)    5.119    0.094   54.626    0.000    4.936    5.303    5.119    0.773
##     sswk    (.12.)    5.508    0.112   49.269    0.000    5.289    5.728    5.508    0.880
##     sspc    (.13.)    2.314    0.050   46.139    0.000    2.215    2.412    2.314    0.808
##     ssno    (.14.)    0.502    0.014   36.911    0.000    0.476    0.529    0.502    0.597
##     sscs    (.15.)    0.453    0.014   32.967    0.000    0.426    0.480    0.453    0.525
##     ssasi   (.16.)    2.087    0.059   35.584    0.000    1.972    2.202    2.087    0.581
##     ssmk    (.17.)    4.410    0.082   53.868    0.000    4.250    4.571    4.410    0.737
##     ssmc    (.18.)    2.754    0.058   47.238    0.000    2.640    2.869    2.754    0.662
##     ssei    (.19.)    2.432    0.047   51.323    0.000    2.339    2.525    2.432    0.737
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.157    0.149  121.716    0.000   17.864   18.449   18.157    2.741
##    .ssmk    (.41.)   14.016    0.124  113.470    0.000   13.774   14.258   14.016    2.343
##    .ssmc    (.42.)   12.665    0.088  144.403    0.000   12.493   12.837   12.665    3.044
##    .ssgs    (.43.)   15.824    0.088  179.323    0.000   15.651   15.997   15.824    3.830
##    .ssasi   (.44.)   11.820    0.074  159.076    0.000   11.675   11.966   11.820    3.289
##    .ssei    (.45.)   10.426    0.071  147.337    0.000   10.288   10.565   10.426    3.161
##    .ssno    (.46.)    0.474    0.018   26.736    0.000    0.439    0.508    0.474    0.562
##    .sscs    (.47.)    0.555    0.018   30.306    0.000    0.519    0.590    0.555    0.643
##    .sswk    (.48.)   27.513    0.135  203.386    0.000   27.247   27.778   27.513    4.394
##    .sspc             11.863    0.059  201.639    0.000   11.748   11.978   11.863    4.143
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.20.)    1.796    1.213    1.480    0.139   -0.583    4.174    1.796    0.041
##    .ssmk    (.21.)   11.491    0.455   25.232    0.000   10.598   12.383   11.491    0.321
##    .ssmc    (.22.)    7.684    0.207   37.128    0.000    7.278    8.089    7.684    0.444
##    .ssgs    (.23.)    5.249    0.143   36.619    0.000    4.968    5.530    5.249    0.307
##    .ssasi   (.24.)    5.559    0.225   24.699    0.000    5.118    6.000    5.559    0.430
##    .ssei    (.25.)    4.123    0.116   35.422    0.000    3.895    4.351    4.123    0.379
##    .ssno    (.26.)    0.341    0.013   26.441    0.000    0.316    0.366    0.341    0.480
##    .sscs    (.27.)    0.023    0.046    0.500    0.617   -0.068    0.114    0.023    0.031
##    .sswk    (.28.)    8.854    0.349   25.379    0.000    8.171    9.538    8.854    0.226
##    .sspc    (.29.)    2.848    0.085   33.339    0.000    2.680    3.015    2.848    0.347
##     math              1.000                               1.000    1.000    1.000    1.000
##     elctrnc           1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.985    0.154   25.932    0.000    3.684    4.286    3.948    0.548
##     ssmk    (.p2.)    2.204    0.117   18.819    0.000    1.975    2.434    2.184    0.338
##     ssmc    (.p3.)    0.851    0.075   11.291    0.000    0.703    0.998    0.843    0.176
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.535    0.028   18.805    0.000    0.479    0.591    0.991    0.214
##     ssasi   (.p5.)    1.734    0.069   25.161    0.000    1.598    1.869    3.210    0.691
##     ssmc    (.p6.)    1.147    0.049   23.287    0.000    1.051    1.244    2.124    0.444
##     ssei    (.p7.)    0.915    0.039   23.293    0.000    0.838    0.992    1.695    0.441
##   speed =~                                                                                
##     ssno    (.p8.)    0.341    0.018   19.353    0.000    0.306    0.376    0.327    0.370
##     sscs    (.p9.)    0.718    0.033   21.492    0.000    0.652    0.783    0.688    0.786
##   g =~                                                                                    
##     ssgs    (.10.)    3.397    0.065   52.511    0.000    3.270    3.524    3.896    0.842
##     ssar    (.11.)    5.119    0.094   54.626    0.000    4.936    5.303    5.872    0.815
##     sswk    (.12.)    5.508    0.112   49.269    0.000    5.289    5.728    6.318    0.905
##     sspc    (.13.)    2.314    0.050   46.139    0.000    2.215    2.412    2.654    0.844
##     ssno    (.14.)    0.502    0.014   36.911    0.000    0.476    0.529    0.576    0.653
##     sscs    (.15.)    0.453    0.014   32.967    0.000    0.426    0.480    0.520    0.594
##     ssasi   (.16.)    2.087    0.059   35.584    0.000    1.972    2.202    2.394    0.515
##     ssmk    (.17.)    4.410    0.082   53.868    0.000    4.250    4.571    5.059    0.782
##     ssmc    (.18.)    2.754    0.058   47.238    0.000    2.640    2.869    3.160    0.660
##     ssei    (.19.)    2.432    0.047   51.323    0.000    2.339    2.525    2.790    0.726
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.157    0.149  121.716    0.000   17.864   18.449   18.157    2.521
##    .ssmk    (.41.)   14.016    0.124  113.470    0.000   13.774   14.258   14.016    2.167
##    .ssmc    (.42.)   12.665    0.088  144.403    0.000   12.493   12.837   12.665    2.647
##    .ssgs    (.43.)   15.824    0.088  179.323    0.000   15.651   15.997   15.824    3.420
##    .ssasi   (.44.)   11.820    0.074  159.076    0.000   11.675   11.966   11.820    2.544
##    .ssei    (.45.)   10.426    0.071  147.337    0.000   10.288   10.565   10.426    2.712
##    .ssno    (.46.)    0.474    0.018   26.736    0.000    0.439    0.508    0.474    0.536
##    .sscs    (.47.)    0.555    0.018   30.306    0.000    0.519    0.590    0.555    0.634
##    .sswk    (.48.)   27.513    0.135  203.386    0.000   27.247   27.778   27.513    3.939
##    .sspc             11.167    0.071  156.257    0.000   11.027   11.307   11.167    3.551
##     math              0.504    0.039   13.000    0.000    0.428    0.580    0.509    0.509
##     elctrnc           3.492    0.151   23.131    0.000    3.196    3.788    1.886    1.886
##     speed            -0.595    0.047  -12.777    0.000   -0.686   -0.504   -0.621   -0.621
##     g                -0.035    0.036   -0.978    0.328   -0.105    0.035   -0.030   -0.030
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.20.)    1.796    1.213    1.480    0.139   -0.583    4.174    1.796    0.035
##    .ssmk    (.21.)   11.491    0.455   25.232    0.000   10.598   12.383   11.491    0.275
##    .ssmc    (.22.)    7.684    0.207   37.128    0.000    7.278    8.089    7.684    0.336
##    .ssgs    (.23.)    5.249    0.143   36.619    0.000    4.968    5.530    5.249    0.245
##    .ssasi   (.24.)    5.559    0.225   24.699    0.000    5.118    6.000    5.559    0.257
##    .ssei    (.25.)    4.123    0.116   35.422    0.000    3.895    4.351    4.123    0.279
##    .ssno    (.26.)    0.341    0.013   26.441    0.000    0.316    0.366    0.341    0.437
##    .sscs    (.27.)    0.023    0.046    0.500    0.617   -0.068    0.114    0.023    0.030
##    .sswk    (.28.)    8.854    0.349   25.379    0.000    8.171    9.538    8.854    0.182
##    .sspc    (.29.)    2.848    0.085   33.339    0.000    2.680    3.015    2.848    0.288
##     math              0.982    0.054   18.195    0.000    0.876    1.087    1.000    1.000
##     elctrnc           3.430    0.298   11.495    0.000    2.845    4.014    1.000    1.000
##     speed             0.918    0.051   18.098    0.000    0.818    1.017    1.000    1.000
##     g                 1.316    0.063   20.987    0.000    1.193    1.439    1.000    1.000
latent<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("sspc~1"))
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2029.670     76.000      0.000      0.956      0.091      0.109 282019.855 282383.058
Mc(latent)
## [1] 0.8533571
summary(latent, standardized=T, ci=T) # +.041
## lavaan 0.6-18 ended normally after 83 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2029.670    1373.108
##   Degrees of freedom                                76          76
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.478
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          887.675     600.528
##     0                                         1141.996     772.580
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.069    0.158   25.713    0.000    3.759    4.379    4.069    0.588
##     ssmk    (.p2.)    2.178    0.108   20.234    0.000    1.967    2.389    2.178    0.351
##     ssmc    (.p3.)    0.814    0.071   11.503    0.000    0.675    0.952    0.814    0.180
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.799    0.032   25.345    0.000    0.737    0.861    0.799    0.181
##     ssasi   (.p5.)    2.488    0.056   44.125    0.000    2.378    2.599    2.488    0.626
##     ssmc    (.p6.)    1.676    0.048   34.622    0.000    1.581    1.771    1.676    0.371
##     ssei    (.p7.)    1.360    0.036   37.573    0.000    1.289    1.431    1.360    0.368
##   speed =~                                                                                
##     ssno    (.p8.)    0.333    0.017   20.011    0.000    0.300    0.365    0.333    0.387
##     sscs    (.p9.)    0.708    0.036   19.864    0.000    0.638    0.777    0.708    0.807
##   g =~                                                                                    
##     ssgs    (.10.)    3.677    0.053   69.976    0.000    3.574    3.780    3.677    0.832
##     ssar    (.11.)    5.509    0.069   80.131    0.000    5.375    5.644    5.509    0.797
##     sswk    (.12.)    5.953    0.091   65.594    0.000    5.775    6.131    5.953    0.896
##     sspc    (.13.)    2.486    0.044   56.823    0.000    2.400    2.572    2.486    0.838
##     ssno    (.14.)    0.540    0.013   41.785    0.000    0.514    0.565    0.540    0.628
##     sscs    (.15.)    0.487    0.013   36.244    0.000    0.460    0.513    0.487    0.555
##     ssasi   (.16.)    2.306    0.065   35.222    0.000    2.178    2.435    2.306    0.580
##     ssmk    (.17.)    4.731    0.061   77.123    0.000    4.611    4.851    4.731    0.762
##     ssmc    (.18.)    3.020    0.060   50.292    0.000    2.902    3.138    3.020    0.668
##     ssei    (.19.)    2.666    0.046   57.639    0.000    2.575    2.756    2.666    0.722
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.143    0.148  122.578    0.000   17.853   18.433   18.143    2.624
##    .ssmk    (.41.)   14.042    0.124  113.448    0.000   13.800   14.285   14.042    2.262
##    .ssmc    (.42.)   12.662    0.088  143.355    0.000   12.489   12.835   12.662    2.800
##    .ssgs    (.43.)   15.809    0.088  178.852    0.000   15.636   15.982   15.809    3.575
##    .ssasi   (.44.)   11.842    0.074  159.064    0.000   11.696   11.987   11.842    2.980
##    .ssei    (.45.)   10.391    0.072  145.328    0.000   10.251   10.532   10.391    2.814
##    .ssno    (.46.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.551
##    .sscs    (.47.)    0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.632
##    .sswk    (.48.)   27.539    0.135  204.425    0.000   27.275   27.803   27.539    4.147
##    .sspc             11.863    0.059  201.639    0.000   11.748   11.978   11.863    3.998
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              0.903    1.291    0.699    0.484   -1.627    3.434    0.903    0.019
##    .ssmk             11.399    0.508   22.442    0.000   10.404   12.395   11.399    0.296
##    .ssmc              7.852    0.287   27.394    0.000    7.290    8.414    7.852    0.384
##    .ssgs              5.397    0.204   26.492    0.000    4.998    5.796    5.397    0.276
##    .ssasi             4.281    0.254   16.842    0.000    3.783    4.779    4.281    0.271
##    .ssei              4.682    0.173   27.094    0.000    4.343    5.021    4.682    0.343
##    .ssno              0.338    0.016   21.051    0.000    0.306    0.369    0.338    0.456
##    .sscs              0.032    0.054    0.587    0.557   -0.074    0.138    0.032    0.041
##    .sswk              8.661    0.462   18.735    0.000    7.755    9.567    8.661    0.196
##    .sspc              2.623    0.113   23.123    0.000    2.401    2.845    2.623    0.298
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.069    0.158   25.713    0.000    3.759    4.379    4.069    0.587
##     ssmk    (.p2.)    2.178    0.108   20.234    0.000    1.967    2.389    2.178    0.348
##     ssmc    (.p3.)    0.814    0.071   11.503    0.000    0.675    0.952    0.814    0.180
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.799    0.032   25.345    0.000    0.737    0.861    0.799    0.182
##     ssasi   (.p5.)    2.488    0.056   44.125    0.000    2.378    2.599    2.488    0.570
##     ssmc    (.p6.)    1.676    0.048   34.622    0.000    1.581    1.771    1.676    0.372
##     ssei    (.p7.)    1.360    0.036   37.573    0.000    1.289    1.431    1.360    0.385
##   speed =~                                                                                
##     ssno    (.p8.)    0.333    0.017   20.011    0.000    0.300    0.365    0.333    0.384
##     sscs    (.p9.)    0.708    0.036   19.864    0.000    0.638    0.777    0.708    0.822
##   g =~                                                                                    
##     ssgs    (.10.)    3.677    0.053   69.976    0.000    3.574    3.780    3.677    0.838
##     ssar    (.11.)    5.509    0.069   80.131    0.000    5.375    5.644    5.509    0.794
##     sswk    (.12.)    5.953    0.091   65.594    0.000    5.775    6.131    5.953    0.897
##     sspc    (.13.)    2.486    0.044   56.823    0.000    2.400    2.572    2.486    0.818
##     ssno    (.14.)    0.540    0.013   41.785    0.000    0.514    0.565    0.540    0.623
##     sscs    (.15.)    0.487    0.013   36.244    0.000    0.460    0.513    0.487    0.566
##     ssasi   (.16.)    2.306    0.065   35.222    0.000    2.178    2.435    2.306    0.529
##     ssmk    (.17.)    4.731    0.061   77.123    0.000    4.611    4.851    4.731    0.755
##     ssmc    (.18.)    3.020    0.060   50.292    0.000    2.902    3.138    3.020    0.669
##     ssei    (.19.)    2.666    0.046   57.639    0.000    2.575    2.756    2.666    0.755
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.143    0.148  122.578    0.000   17.853   18.433   18.143    2.616
##    .ssmk    (.41.)   14.042    0.124  113.448    0.000   13.800   14.285   14.042    2.242
##    .ssmc    (.42.)   12.662    0.088  143.355    0.000   12.489   12.835   12.662    2.807
##    .ssgs    (.43.)   15.809    0.088  178.852    0.000   15.636   15.982   15.809    3.603
##    .ssasi   (.44.)   11.842    0.074  159.064    0.000   11.696   11.987   11.842    2.715
##    .ssei    (.45.)   10.391    0.072  145.328    0.000   10.251   10.532   10.391    2.945
##    .ssno    (.46.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.547
##    .sscs    (.47.)    0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.645
##    .sswk    (.48.)   27.539    0.135  204.425    0.000   27.275   27.803   27.539    4.150
##    .sspc             11.188    0.071  158.360    0.000   11.050   11.327   11.188    3.680
##     math              0.511    0.039   13.154    0.000    0.435    0.587    0.511    0.511
##     elctrnc           2.417    0.071   34.010    0.000    2.277    2.556    2.417    2.417
##     speed            -0.597    0.046  -12.856    0.000   -0.689   -0.506   -0.597   -0.597
##     g                -0.041    0.033   -1.257    0.209   -0.105    0.023   -0.041   -0.041
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.186    1.318    0.900    0.368   -1.396    3.769    1.186    0.025
##    .ssmk             12.117    0.537   22.554    0.000   11.064   13.170   12.117    0.309
##    .ssmc              7.758    0.293   26.488    0.000    7.184    8.332    7.758    0.381
##    .ssgs              5.089    0.194   26.204    0.000    4.709    5.470    5.089    0.264
##    .ssasi             7.515    0.387   19.399    0.000    6.756    8.274    7.515    0.395
##    .ssei              3.498    0.154   22.668    0.000    3.195    3.800    3.498    0.281
##    .ssno              0.347    0.015   23.245    0.000    0.318    0.377    0.347    0.464
##    .sscs              0.003    0.048    0.057    0.955   -0.092    0.098    0.003    0.004
##    .sswk              8.597    0.465   18.505    0.000    7.687    9.508    8.597    0.195
##    .sspc              3.062    0.130   23.521    0.000    2.807    3.317    3.062    0.331
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
latent2<-cfa(bf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1677.559     74.000      0.000      0.964      0.084      0.042 281671.743 282048.399
Mc(latent2)
## [1] 0.8779558
summary(latent2, standardized=T, ci=T) # +.034
## lavaan 0.6-18 ended normally after 104 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1677.559    1133.573
##   Degrees of freedom                                74          74
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.480
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          682.504     461.187
##     0                                          995.055     672.386
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.006    0.155   25.883    0.000    3.703    4.310    4.006    0.607
##     ssmk    (.p2.)    2.181    0.109   20.034    0.000    1.968    2.395    2.181    0.366
##     ssmc    (.p3.)    0.835    0.071   11.734    0.000    0.696    0.974    0.835    0.199
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.552    0.030   18.692    0.000    0.494    0.610    0.552    0.133
##     ssasi   (.p5.)    1.758    0.071   24.671    0.000    1.618    1.897    1.758    0.497
##     ssmc    (.p6.)    1.182    0.051   23.309    0.000    1.082    1.281    1.182    0.282
##     ssei    (.p7.)    0.947    0.041   23.365    0.000    0.867    1.026    0.947    0.279
##   speed =~                                                                                
##     ssno    (.p8.)    0.333    0.016   20.238    0.000    0.301    0.365    0.333    0.398
##     sscs    (.p9.)    0.703    0.035   20.066    0.000    0.635    0.772    0.703    0.820
##   g =~                                                                                    
##     ssgs    (.10.)    3.394    0.065   52.534    0.000    3.268    3.521    3.394    0.818
##     ssar    (.11.)    5.121    0.093   54.897    0.000    4.938    5.304    5.121    0.776
##     sswk    (.12.)    5.513    0.112   49.427    0.000    5.294    5.731    5.513    0.880
##     sspc    (.13.)    2.309    0.051   45.429    0.000    2.210    2.409    2.309    0.816
##     ssno    (.14.)    0.502    0.014   36.869    0.000    0.475    0.529    0.502    0.600
##     sscs    (.15.)    0.452    0.014   32.969    0.000    0.426    0.479    0.452    0.527
##     ssasi   (.16.)    2.083    0.059   35.522    0.000    1.968    2.198    2.083    0.589
##     ssmk    (.17.)    4.407    0.081   54.212    0.000    4.248    4.566    4.407    0.740
##     ssmc    (.18.)    2.755    0.058   47.235    0.000    2.640    2.869    2.755    0.657
##     ssei    (.19.)    2.434    0.048   51.060    0.000    2.340    2.527    2.434    0.718
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.149    0.149  122.080    0.000   17.858   18.441   18.149    2.750
##    .ssmk    (.41.)   14.031    0.124  113.564    0.000   13.789   14.273   14.031    2.356
##    .ssmc    (.42.)   12.648    0.088  143.788    0.000   12.476   12.821   12.648    3.016
##    .ssgs    (.43.)   15.821    0.088  179.203    0.000   15.648   15.994   15.821    3.814
##    .ssasi   (.44.)   11.839    0.074  159.561    0.000   11.693   11.984   11.839    3.350
##    .ssei    (.45.)   10.409    0.071  146.344    0.000   10.270   10.549   10.409    3.069
##    .ssno    (.46.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.566
##    .sscs    (.47.)    0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.647
##    .sswk    (.48.)   27.525    0.135  203.997    0.000   27.260   27.789   27.525    4.392
##    .sspc             11.863    0.059  201.639    0.000   11.748   11.978   11.863    4.192
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.289    1.248    1.033    0.302   -1.158    3.735    1.289    0.030
##    .ssmk             11.301    0.503   22.480    0.000   10.316   12.286   11.301    0.319
##    .ssmc              7.905    0.279   28.303    0.000    7.358    8.453    7.905    0.450
##    .ssgs              5.380    0.203   26.454    0.000    4.982    5.779    5.380    0.313
##    .ssasi             5.064    0.253   20.043    0.000    4.569    5.559    5.064    0.405
##    .ssei              4.683    0.167   27.959    0.000    4.354    5.011    4.683    0.407
##    .ssno              0.338    0.016   21.185    0.000    0.307    0.369    0.338    0.482
##    .sscs              0.036    0.053    0.684    0.494   -0.068    0.140    0.036    0.049
##    .sswk              8.883    0.457   19.442    0.000    7.987    9.778    8.883    0.226
##    .sspc              2.675    0.115   23.332    0.000    2.450    2.899    2.675    0.334
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.006    0.155   25.883    0.000    3.703    4.310    4.006    0.554
##     ssmk    (.p2.)    2.181    0.109   20.034    0.000    1.968    2.395    2.181    0.336
##     ssmc    (.p3.)    0.835    0.071   11.734    0.000    0.696    0.974    0.835    0.176
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.552    0.030   18.692    0.000    0.494    0.610    0.987    0.214
##     ssasi   (.p5.)    1.758    0.071   24.671    0.000    1.618    1.897    3.143    0.667
##     ssmc    (.p6.)    1.182    0.051   23.309    0.000    1.082    1.281    2.113    0.445
##     ssei    (.p7.)    0.947    0.041   23.365    0.000    0.867    1.026    1.693    0.451
##   speed =~                                                                                
##     ssno    (.p8.)    0.333    0.016   20.238    0.000    0.301    0.365    0.333    0.376
##     sscs    (.p9.)    0.703    0.035   20.066    0.000    0.635    0.772    0.703    0.800
##   g =~                                                                                    
##     ssgs    (.10.)    3.394    0.065   52.534    0.000    3.268    3.521    3.893    0.845
##     ssar    (.11.)    5.121    0.093   54.897    0.000    4.938    5.304    5.873    0.813
##     sswk    (.12.)    5.513    0.112   49.427    0.000    5.294    5.731    6.323    0.906
##     sspc    (.13.)    2.309    0.051   45.429    0.000    2.210    2.409    2.649    0.836
##     ssno    (.14.)    0.502    0.014   36.869    0.000    0.475    0.529    0.576    0.649
##     sscs    (.15.)    0.452    0.014   32.969    0.000    0.426    0.479    0.519    0.590
##     ssasi   (.16.)    2.083    0.059   35.522    0.000    1.968    2.198    2.389    0.507
##     ssmk    (.17.)    4.407    0.081   54.212    0.000    4.248    4.566    5.054    0.778
##     ssmc    (.18.)    2.755    0.058   47.235    0.000    2.640    2.869    3.159    0.665
##     ssei    (.19.)    2.434    0.048   51.060    0.000    2.340    2.527    2.791    0.743
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   18.149    0.149  122.080    0.000   17.858   18.441   18.149    2.511
##    .ssmk    (.41.)   14.031    0.124  113.564    0.000   13.789   14.273   14.031    2.161
##    .ssmc    (.42.)   12.648    0.088  143.788    0.000   12.476   12.821   12.648    2.664
##    .ssgs    (.43.)   15.821    0.088  179.203    0.000   15.648   15.994   15.821    3.433
##    .ssasi   (.44.)   11.839    0.074  159.561    0.000   11.693   11.984   11.839    2.512
##    .ssei    (.45.)   10.409    0.071  146.344    0.000   10.270   10.549   10.409    2.772
##    .ssno    (.46.)    0.474    0.018   26.603    0.000    0.439    0.509    0.474    0.534
##    .sscs    (.47.)    0.555    0.018   30.291    0.000    0.519    0.591    0.555    0.631
##    .sswk    (.48.)   27.525    0.135  203.997    0.000   27.260   27.789   27.525    3.946
##    .sspc             11.176    0.071  157.355    0.000   11.037   11.316   11.176    3.529
##     math              0.509    0.039   12.948    0.000    0.432    0.586    0.509    0.509
##     elctrnc           3.424    0.150   22.756    0.000    3.129    3.719    1.915    1.915
##     speed            -0.604    0.047  -12.962    0.000   -0.696   -0.513   -0.604   -0.604
##     g                -0.039    0.036   -1.097    0.273   -0.109    0.031   -0.034   -0.034
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.686    1.283    1.314    0.189   -0.828    4.201    1.686    0.032
##    .ssmk             11.867    0.543   21.862    0.000   10.803   12.931   11.867    0.281
##    .ssmc              7.396    0.291   25.434    0.000    6.826    7.966    7.396    0.328
##    .ssgs              5.114    0.194   26.309    0.000    4.733    5.495    5.114    0.241
##    .ssasi             6.629    0.386   17.177    0.000    5.873    7.386    6.629    0.298
##    .ssei              3.440    0.154   22.339    0.000    3.138    3.742    3.440    0.244
##    .ssno              0.344    0.015   23.124    0.000    0.315    0.373    0.344    0.437
##    .sscs              0.008    0.047    0.174    0.862   -0.085    0.101    0.008    0.011
##    .sswk              8.689    0.482   18.027    0.000    7.744    9.634    8.689    0.179
##    .sspc              3.016    0.128   23.549    0.000    2.765    3.267    3.016    0.301
##     electronic        3.197    0.293   10.923    0.000    2.624    3.771    1.000    1.000
##     g                 1.315    0.062   21.057    0.000    1.193    1.438    1.000    1.000
standardizedSolution(latent2) # get the correct SEs for standardized solution
##           lhs op        rhs group label est.std    se       z pvalue ci.lower ci.upper
## 1        math =~       ssar     1  .p1.   0.607 0.024  25.078  0.000    0.560    0.654
## 2        math =~       ssmk     1  .p2.   0.366 0.018  20.112  0.000    0.330    0.402
## 3        math =~       ssmc     1  .p3.   0.199 0.017  11.776  0.000    0.166    0.232
## 4  electronic =~       ssgs     1  .p4.   0.133 0.007  17.973  0.000    0.119    0.148
## 5  electronic =~      ssasi     1  .p5.   0.497 0.019  26.569  0.000    0.461    0.534
## 6  electronic =~       ssmc     1  .p6.   0.282 0.012  23.485  0.000    0.258    0.305
## 7  electronic =~       ssei     1  .p7.   0.279 0.012  23.469  0.000    0.256    0.302
## 8       speed =~       ssno     1  .p8.   0.398 0.020  19.589  0.000    0.358    0.438
## 9       speed =~       sscs     1  .p9.   0.820 0.043  19.048  0.000    0.736    0.904
## 10          g =~       ssgs     1 .p10.   0.818 0.008 107.254  0.000    0.803    0.833
## 11          g =~       ssar     1 .p11.   0.776 0.008  92.993  0.000    0.760    0.792
## 12          g =~       sswk     1 .p12.   0.880 0.007 126.779  0.000    0.866    0.893
## 13          g =~       sspc     1 .p13.   0.816 0.008 107.084  0.000    0.801    0.831
## 14          g =~       ssno     1 .p14.   0.600 0.013  47.931  0.000    0.575    0.624
## 15          g =~       sscs     1 .p15.   0.527 0.014  38.559  0.000    0.501    0.554
## 16          g =~      ssasi     1 .p16.   0.589 0.013  45.981  0.000    0.564    0.614
## 17          g =~       ssmk     1 .p17.   0.740 0.009  84.249  0.000    0.723    0.757
## 18          g =~       ssmc     1 .p18.   0.657 0.010  65.878  0.000    0.637    0.676
## 19          g =~       ssei     1 .p19.   0.718 0.009  79.052  0.000    0.700    0.735
## 20       math ~~       math     1         1.000 0.000      NA     NA    1.000    1.000
## 21      speed ~~      speed     1         1.000 0.000      NA     NA    1.000    1.000
## 22       ssar ~~       ssar     1         0.030 0.029   1.035  0.301   -0.026    0.086
## 23       ssmk ~~       ssmk     1         0.319 0.014  22.002  0.000    0.290    0.347
## 24       ssmc ~~       ssmc     1         0.450 0.013  34.420  0.000    0.424    0.475
## 25       ssgs ~~       ssgs     1         0.313 0.012  25.894  0.000    0.289    0.336
## 26      ssasi ~~      ssasi     1         0.405 0.019  21.707  0.000    0.369    0.442
## 27       ssei ~~       ssei     1         0.407 0.012  32.608  0.000    0.383    0.432
## 28       ssno ~~       ssno     1         0.482 0.020  24.126  0.000    0.443    0.521
## 29       sscs ~~       sscs     1         0.049 0.072   0.688  0.491   -0.091    0.189
## 30       sswk ~~       sswk     1         0.226 0.012  18.528  0.000    0.202    0.250
## 31       sspc ~~       sspc     1         0.334 0.012  26.851  0.000    0.310    0.358
## 32 electronic ~~ electronic     1         1.000 0.000      NA     NA    1.000    1.000
## 33          g ~~          g     1         1.000 0.000      NA     NA    1.000    1.000
## 34       math ~~ electronic     1         0.000 0.000      NA     NA    0.000    0.000
## 35       math ~~      speed     1         0.000 0.000      NA     NA    0.000    0.000
## 36       math ~~          g     1         0.000 0.000      NA     NA    0.000    0.000
## 37 electronic ~~      speed     1         0.000 0.000      NA     NA    0.000    0.000
## 38 electronic ~~          g     1         0.000 0.000      NA     NA    0.000    0.000
## 39      speed ~~          g     1         0.000 0.000      NA     NA    0.000    0.000
## 40       ssar ~1                1 .p40.   2.750 0.039  69.628  0.000    2.672    2.827
## 41       ssmk ~1                1 .p41.   2.356 0.033  71.410  0.000    2.291    2.420
## 42       ssmc ~1                1 .p42.   3.016 0.041  72.778  0.000    2.935    3.097
## 43       ssgs ~1                1 .p43.   3.814 0.059  64.743  0.000    3.699    3.929
## 44      ssasi ~1                1 .p44.   3.350 0.050  66.393  0.000    3.251    3.449
## 45       ssei ~1                1 .p45.   3.069 0.044  69.380  0.000    2.982    3.156
## 46       ssno ~1                1 .p46.   0.566 0.025  22.990  0.000    0.518    0.614
## 47       sscs ~1                1 .p47.   0.647 0.026  25.047  0.000    0.596    0.697
## 48       sswk ~1                1 .p48.   4.392 0.084  52.104  0.000    4.227    4.557
## 49       sspc ~1                1         4.192 0.088  47.615  0.000    4.020    4.365
## 50       math ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 51 electronic ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 52      speed ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 53          g ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 54       math =~       ssar     2  .p1.   0.554 0.022  24.731  0.000    0.510    0.598
## 55       math =~       ssmk     2  .p2.   0.336 0.017  19.964  0.000    0.303    0.369
## 56       math =~       ssmc     2  .p3.   0.176 0.015  11.689  0.000    0.146    0.205
## 57 electronic =~       ssgs     2  .p4.   0.214 0.009  24.100  0.000    0.197    0.232
## 58 electronic =~      ssasi     2  .p5.   0.667 0.014  46.090  0.000    0.638    0.695
## 59 electronic =~       ssmc     2  .p6.   0.445 0.014  32.837  0.000    0.419    0.472
## 60 electronic =~       ssei     2  .p7.   0.451 0.013  35.321  0.000    0.426    0.476
## 61      speed =~       ssno     2  .p8.   0.376 0.019  19.895  0.000    0.339    0.413
## 62      speed =~       sscs     2  .p9.   0.800 0.039  20.357  0.000    0.723    0.877
## 63          g =~       ssgs     2 .p10.   0.845 0.006 135.035  0.000    0.832    0.857
## 64          g =~       ssar     2 .p11.   0.813 0.007 114.819  0.000    0.799    0.827
## 65          g =~       sswk     2 .p12.   0.906 0.006 162.227  0.000    0.895    0.917
## 66          g =~       sspc     2 .p13.   0.836 0.008 109.154  0.000    0.821    0.851
## 67          g =~       ssno     2 .p14.   0.649 0.012  53.269  0.000    0.625    0.673
## 68          g =~       sscs     2 .p15.   0.590 0.014  41.380  0.000    0.563    0.618
## 69          g =~      ssasi     2 .p16.   0.507 0.014  35.630  0.000    0.479    0.535
## 70          g =~       ssmk     2 .p17.   0.778 0.008 103.067  0.000    0.764    0.793
## 71          g =~       ssmc     2 .p18.   0.665 0.011  59.161  0.000    0.643    0.687
## 72          g =~       ssei     2 .p19.   0.743 0.010  75.744  0.000    0.724    0.763
## 73       math ~~       math     2         1.000 0.000      NA     NA    1.000    1.000
## 74      speed ~~      speed     2         1.000 0.000      NA     NA    1.000    1.000
## 75       ssar ~~       ssar     2         0.032 0.024   1.319  0.187   -0.016    0.080
## 76       ssmk ~~       ssmk     2         0.281 0.013  21.162  0.000    0.255    0.307
## 77       ssmc ~~       ssmc     2         0.328 0.013  25.967  0.000    0.303    0.353
## 78       ssgs ~~       ssgs     2         0.241 0.010  24.666  0.000    0.222    0.260
## 79      ssasi ~~      ssasi     2         0.298 0.016  18.956  0.000    0.268    0.329
## 80       ssei ~~       ssei     2         0.244 0.011  22.784  0.000    0.223    0.265
## 81       ssno ~~       ssno     2         0.437 0.018  23.983  0.000    0.402    0.473
## 82       sscs ~~       sscs     2         0.011 0.061   0.174  0.862   -0.109    0.131
## 83       sswk ~~       sswk     2         0.179 0.010  17.631  0.000    0.159    0.198
## 84       sspc ~~       sspc     2         0.301 0.013  23.467  0.000    0.276    0.326
## 85 electronic ~~ electronic     2         1.000 0.000      NA     NA    1.000    1.000
## 86          g ~~          g     2         1.000 0.000      NA     NA    1.000    1.000
## 87       math ~~ electronic     2         0.000 0.000      NA     NA    0.000    0.000
## 88       math ~~      speed     2         0.000 0.000      NA     NA    0.000    0.000
## 89       math ~~          g     2         0.000 0.000      NA     NA    0.000    0.000
## 90 electronic ~~      speed     2         0.000 0.000      NA     NA    0.000    0.000
##  [ reached 'max' / getOption("max.print") -- omitted 16 rows ]
tests<-lavTestLRT(configural, metric, scalar2, latent2)
Td=tests[2:4,"Chisq diff"]
Td
## [1]  74.001954 103.294892   1.614444
dfd=tests[2:4,"Df diff"]
dfd
## [1] 15  5  2
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3067+ 3094 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
## Warning in sqrt((ld) * G/(N - G)): NaNs produced
RMSEAD
## [1] 0.03573942 0.07989882        NaN
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02785454 0.04406043
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.06688974 0.09366983
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]         NA 0.03350834
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.002     0.000     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.994     0.515     0.008
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.554     0.453     0.002     0.000     0.000     0.000
tests<-lavTestLRT(configural, metric, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1]  74.00195 103.29489 263.11388
dfd=tests[2:4,"Df diff"]
dfd
## [1] 15  5  4
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3067+ 3094 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.03573942 0.07989882 0.14503581
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.06688974 0.09366983
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.1304381 0.1601622
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.994     0.515     0.008
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1]  74.00195 103.29489  45.53035
dfd=tests[2:4,"Df diff"]
dfd
## [1] 15  5 10
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3067+ 3094 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.03573942 0.07989882 0.03396719
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02785454 0.04406043
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.06688974 0.09366983
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.02433174 0.04427008
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.002     0.000     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.994     0.515     0.008
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.005     0.000     0.000     0.000
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1]  74.00195 242.97927
dfd=tests[2:3,"Df diff"]
dfd
## [1] 15  6
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-3067+ 3094 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.03573942 0.11325032
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.02785454 0.04406043
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1013107 0.1256380
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.002     0.000     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     1.000     0.966
bf.age<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ age 
'

bf.ageq<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ c(b,b)*age 
'

bf.age2<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ age + age2 
'

bf.age2q<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ c(b,b)*age+c(c,c)*age2
'

sem.age<-sem(bf.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   2398.566     92.000      0.000      0.949      0.090      0.049      0.408 281392.337 281782.445
Mc(sem.age)
## [1] 0.8292602
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 115 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2398.566    1609.937
##   Degrees of freedom                                92          92
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.490
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1065.100     714.903
##     0                                         1333.466     895.033
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.027    0.155   26.033    0.000    3.724    4.331    4.027    0.610
##     ssmk    (.p2.)    2.217    0.110   20.108    0.000    2.001    2.433    2.217    0.372
##     ssmc    (.p3.)    0.841    0.072   11.759    0.000    0.701    0.981    0.841    0.201
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.544    0.029   18.490    0.000    0.487    0.602    0.544    0.131
##     ssasi   (.p5.)    1.742    0.072   24.345    0.000    1.602    1.883    1.742    0.492
##     ssmc    (.p6.)    1.173    0.051   23.008    0.000    1.074    1.273    1.173    0.280
##     ssei    (.p7.)    0.938    0.041   23.102    0.000    0.858    1.017    0.938    0.276
##   speed =~                                                                                
##     ssno    (.p8.)    0.334    0.016   20.298    0.000    0.302    0.366    0.334    0.399
##     sscs    (.p9.)    0.703    0.035   20.137    0.000    0.635    0.772    0.703    0.820
##   g =~                                                                                    
##     ssgs    (.10.)    3.328    0.066   50.097    0.000    3.198    3.458    3.394    0.818
##     ssar    (.11.)    5.011    0.097   51.457    0.000    4.820    5.202    5.110    0.774
##     sswk    (.12.)    5.418    0.114   47.674    0.000    5.195    5.641    5.525    0.882
##     sspc    (.13.)    2.262    0.052   43.330    0.000    2.160    2.364    2.307    0.815
##     ssno    (.14.)    0.491    0.014   35.410    0.000    0.464    0.518    0.501    0.598
##     sscs    (.15.)    0.444    0.014   32.325    0.000    0.417    0.471    0.453    0.528
##     ssasi   (.16.)    2.057    0.058   35.592    0.000    1.944    2.170    2.098    0.593
##     ssmk    (.17.)    4.298    0.085   50.298    0.000    4.131    4.466    4.383    0.736
##     ssmc    (.18.)    2.703    0.059   45.941    0.000    2.587    2.818    2.756    0.657
##     ssei    (.19.)    2.395    0.048   50.408    0.000    2.302    2.488    2.443    0.720
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.086    0.010    8.420    0.000    0.066    0.106    0.085    0.196
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.39.)   18.244    0.150  121.916    0.000   17.951   18.538   18.244    2.763
##    .ssmk    (.40.)   14.105    0.125  112.603    0.000   13.860   14.351   14.105    2.367
##    .ssmc    (.41.)   12.695    0.088  144.027    0.000   12.523   12.868   12.695    3.026
##    .ssgs    (.42.)   15.887    0.088  181.018    0.000   15.715   16.059   15.887    3.830
##    .ssasi   (.43.)   11.878    0.073  161.897    0.000   11.734   12.022   11.878    3.357
##    .ssei    (.44.)   10.456    0.070  149.679    0.000   10.319   10.593   10.456    3.082
##    .ssno    (.45.)    0.483    0.018   27.065    0.000    0.448    0.518    0.483    0.577
##    .sscs    (.46.)    0.563    0.018   31.011    0.000    0.527    0.599    0.563    0.656
##    .sswk    (.47.)   27.623    0.133  208.316    0.000   27.363   27.883   27.623    4.410
##    .sspc             11.906    0.059  203.287    0.000   11.791   12.021   11.906    4.207
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.264    1.256    1.006    0.314   -1.198    3.727    1.264    0.029
##    .ssmk             11.370    0.513   22.179    0.000   10.365   12.375   11.370    0.320
##    .ssmc              7.916    0.280   28.285    0.000    7.367    8.464    7.916    0.450
##    .ssgs              5.393    0.203   26.546    0.000    4.995    5.791    5.393    0.313
##    .ssasi             5.080    0.253   20.110    0.000    4.585    5.575    5.080    0.406
##    .ssei              4.663    0.167   27.955    0.000    4.336    4.990    4.663    0.405
##    .ssno              0.339    0.016   21.201    0.000    0.308    0.371    0.339    0.484
##    .sscs              0.036    0.053    0.680    0.497   -0.068    0.139    0.036    0.049
##    .sswk              8.711    0.454   19.198    0.000    7.822    9.601    8.711    0.222
##    .sspc              2.686    0.115   23.328    0.000    2.461    2.912    2.686    0.335
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.962    0.962
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.027    0.155   26.033    0.000    3.724    4.331    4.027    0.557
##     ssmk    (.p2.)    2.217    0.110   20.108    0.000    2.001    2.433    2.217    0.342
##     ssmc    (.p3.)    0.841    0.072   11.759    0.000    0.701    0.981    0.841    0.177
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.544    0.029   18.490    0.000    0.487    0.602    0.973    0.211
##     ssasi   (.p5.)    1.742    0.072   24.345    0.000    1.602    1.883    3.115    0.662
##     ssmc    (.p6.)    1.173    0.051   23.008    0.000    1.074    1.273    2.098    0.442
##     ssei    (.p7.)    0.938    0.041   23.102    0.000    0.858    1.017    1.676    0.447
##   speed =~                                                                                
##     ssno    (.p8.)    0.334    0.016   20.298    0.000    0.302    0.366    0.334    0.377
##     sscs    (.p9.)    0.703    0.035   20.137    0.000    0.635    0.772    0.703    0.800
##   g =~                                                                                    
##     ssgs    (.10.)    3.328    0.066   50.097    0.000    3.198    3.458    3.893    0.845
##     ssar    (.11.)    5.011    0.097   51.457    0.000    4.820    5.202    5.861    0.811
##     sswk    (.12.)    5.418    0.114   47.674    0.000    5.195    5.641    6.337    0.908
##     sspc    (.13.)    2.262    0.052   43.330    0.000    2.160    2.364    2.646    0.835
##     ssno    (.14.)    0.491    0.014   35.410    0.000    0.464    0.518    0.574    0.648
##     sscs    (.15.)    0.444    0.014   32.325    0.000    0.417    0.471    0.519    0.591
##     ssasi   (.16.)    2.057    0.058   35.592    0.000    1.944    2.170    2.406    0.511
##     ssmk    (.17.)    4.298    0.085   50.298    0.000    4.131    4.466    5.027    0.774
##     ssmc    (.18.)    2.703    0.059   45.941    0.000    2.587    2.818    3.161    0.666
##     ssei    (.19.)    2.395    0.048   50.408    0.000    2.302    2.488    2.801    0.746
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.120    0.011   10.696    0.000    0.098    0.142    0.103    0.242
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.39.)   18.244    0.150  121.916    0.000   17.951   18.538   18.244    2.525
##    .ssmk    (.40.)   14.105    0.125  112.603    0.000   13.860   14.351   14.105    2.173
##    .ssmc    (.41.)   12.695    0.088  144.027    0.000   12.523   12.868   12.695    2.676
##    .ssgs    (.42.)   15.887    0.088  181.018    0.000   15.715   16.059   15.887    3.447
##    .ssasi   (.43.)   11.878    0.073  161.897    0.000   11.734   12.022   11.878    2.523
##    .ssei    (.44.)   10.456    0.070  149.679    0.000   10.319   10.593   10.456    2.786
##    .ssno    (.45.)    0.483    0.018   27.065    0.000    0.448    0.518    0.483    0.545
##    .sscs    (.46.)    0.563    0.018   31.011    0.000    0.527    0.599    0.563    0.641
##    .sswk    (.47.)   27.623    0.133  208.316    0.000   27.363   27.883   27.623    3.958
##    .sspc             11.216    0.070  159.752    0.000   11.078   11.354   11.216    3.541
##     math              0.504    0.039   12.904    0.000    0.428    0.581    0.504    0.504
##     elctrnc           3.452    0.153   22.498    0.000    3.152    3.753    1.931    1.931
##     speed            -0.605    0.047  -12.994    0.000   -0.697   -0.514   -0.605   -0.605
##    .g                -0.032    0.036   -0.888    0.374   -0.102    0.038   -0.027   -0.027
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.637    1.292    1.267    0.205   -0.895    4.170    1.637    0.031
##    .ssmk             11.950    0.552   21.665    0.000   10.869   13.031   11.950    0.284
##    .ssmc              7.401    0.291   25.411    0.000    6.830    7.972    7.401    0.329
##    .ssgs              5.146    0.195   26.326    0.000    4.763    5.529    5.146    0.242
##    .ssasi             6.672    0.386   17.296    0.000    5.916    7.428    6.672    0.301
##    .ssei              3.431    0.153   22.364    0.000    3.130    3.732    3.431    0.244
##    .ssno              0.345    0.015   23.165    0.000    0.316    0.374    0.345    0.438
##    .sscs              0.008    0.047    0.174    0.862   -0.084    0.101    0.008    0.011
##    .sswk              8.544    0.478   17.886    0.000    7.608    9.480    8.544    0.175
##    .sspc              3.032    0.129   23.578    0.000    2.780    3.284    3.032    0.302
##     electronic        3.197    0.296   10.782    0.000    2.616    3.778    1.000    1.000
##    .g                 1.288    0.065   19.865    0.000    1.161    1.415    0.941    0.941
sem.ageq<-sem(bf.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   2406.297     93.000      0.000      0.949      0.090      0.053      0.409 281398.069 281781.450
Mc(sem.ageq)
## [1] 0.8288073
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 100 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    29
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2406.297    1615.517
##   Degrees of freedom                                93          93
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.489
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1068.172     717.139
##     0                                         1338.126     898.378
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.027    0.154   26.074    0.000    3.725    4.330    4.027    0.607
##     ssmk    (.p2.)    2.219    0.110   20.136    0.000    2.003    2.435    2.219    0.371
##     ssmc    (.p3.)    0.842    0.072   11.779    0.000    0.702    0.983    0.842    0.200
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.544    0.029   18.488    0.000    0.486    0.602    0.544    0.130
##     ssasi   (.p5.)    1.741    0.072   24.315    0.000    1.600    1.881    1.741    0.491
##     ssmc    (.p6.)    1.172    0.051   22.978    0.000    1.072    1.272    1.172    0.278
##     ssei    (.p7.)    0.937    0.041   23.080    0.000    0.857    1.016    0.937    0.275
##   speed =~                                                                                
##     ssno    (.p8.)    0.334    0.016   20.299    0.000    0.302    0.366    0.334    0.397
##     sscs    (.p9.)    0.703    0.035   20.136    0.000    0.635    0.772    0.703    0.818
##   g =~                                                                                    
##     ssgs    (.10.)    3.330    0.067   49.931    0.000    3.200    3.461    3.422    0.820
##     ssar    (.11.)    5.013    0.098   51.206    0.000    4.822    5.205    5.151    0.776
##     sswk    (.12.)    5.423    0.114   47.524    0.000    5.199    5.647    5.572    0.884
##     sspc    (.13.)    2.263    0.052   43.189    0.000    2.161    2.366    2.326    0.817
##     ssno    (.14.)    0.491    0.014   35.318    0.000    0.464    0.519    0.505    0.601
##     sscs    (.15.)    0.444    0.014   32.256    0.000    0.417    0.471    0.456    0.531
##     ssasi   (.16.)    2.057    0.058   35.519    0.000    1.944    2.171    2.113    0.596
##     ssmk    (.17.)    4.300    0.086   50.096    0.000    4.132    4.469    4.418    0.738
##     ssmc    (.18.)    2.703    0.059   45.807    0.000    2.587    2.819    2.777    0.660
##     ssei    (.19.)    2.396    0.048   50.264    0.000    2.303    2.490    2.462    0.723
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (b)    0.102    0.008   13.071    0.000    0.086    0.117    0.099    0.230
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.39.)   18.262    0.150  122.138    0.000   17.968   18.555   18.262    2.752
##    .ssmk    (.40.)   14.119    0.126  112.289    0.000   13.873   14.365   14.119    2.359
##    .ssmc    (.41.)   12.705    0.088  144.116    0.000   12.532   12.877   12.705    3.019
##    .ssgs    (.42.)   15.898    0.088  181.334    0.000   15.726   16.069   15.898    3.811
##    .ssasi   (.43.)   11.885    0.073  162.498    0.000   11.741   12.028   11.885    3.351
##    .ssei    (.44.)   10.464    0.070  150.485    0.000   10.328   10.600   10.464    3.072
##    .ssno    (.45.)    0.485    0.018   27.183    0.000    0.450    0.520    0.485    0.577
##    .sscs    (.46.)    0.565    0.018   31.186    0.000    0.529    0.600    0.565    0.657
##    .sswk    (.47.)   27.642    0.132  209.225    0.000   27.383   27.901   27.642    4.386
##    .sspc             11.914    0.059  203.575    0.000   11.799   12.028   11.914    4.187
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.269    1.255    1.012    0.312   -1.189    3.728    1.269    0.029
##    .ssmk             11.378    0.513   22.167    0.000   10.372   12.385   11.378    0.318
##    .ssmc              7.917    0.280   28.282    0.000    7.369    8.466    7.917    0.447
##    .ssgs              5.394    0.203   26.552    0.000    4.996    5.792    5.394    0.310
##    .ssasi             5.082    0.253   20.122    0.000    4.587    5.577    5.082    0.404
##    .ssei              4.660    0.167   27.963    0.000    4.333    4.986    4.660    0.402
##    .ssno              0.339    0.016   21.201    0.000    0.308    0.371    0.339    0.481
##    .sscs              0.036    0.053    0.676    0.499   -0.068    0.139    0.036    0.048
##    .sswk              8.683    0.452   19.207    0.000    7.797    9.569    8.683    0.219
##    .sspc              2.689    0.115   23.330    0.000    2.463    2.915    2.689    0.332
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.947    0.947
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.027    0.154   26.074    0.000    3.725    4.330    4.027    0.560
##     ssmk    (.p2.)    2.219    0.110   20.136    0.000    2.003    2.435    2.219    0.344
##     ssmc    (.p3.)    0.842    0.072   11.779    0.000    0.702    0.983    0.842    0.178
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.544    0.029   18.488    0.000    0.486    0.602    0.975    0.213
##     ssasi   (.p5.)    1.741    0.072   24.315    0.000    1.600    1.881    3.119    0.664
##     ssmc    (.p6.)    1.172    0.051   22.978    0.000    1.072    1.272    2.101    0.444
##     ssei    (.p7.)    0.937    0.041   23.080    0.000    0.857    1.016    1.678    0.449
##   speed =~                                                                                
##     ssno    (.p8.)    0.334    0.016   20.299    0.000    0.302    0.366    0.334    0.378
##     sscs    (.p9.)    0.703    0.035   20.136    0.000    0.635    0.772    0.703    0.802
##   g =~                                                                                    
##     ssgs    (.10.)    3.330    0.067   49.931    0.000    3.200    3.461    3.863    0.843
##     ssar    (.11.)    5.013    0.098   51.206    0.000    4.822    5.205    5.815    0.809
##     sswk    (.12.)    5.423    0.114   47.524    0.000    5.199    5.647    6.290    0.907
##     sspc    (.13.)    2.263    0.052   43.189    0.000    2.161    2.366    2.625    0.833
##     ssno    (.14.)    0.491    0.014   35.318    0.000    0.464    0.519    0.570    0.645
##     sscs    (.15.)    0.444    0.014   32.256    0.000    0.417    0.471    0.515    0.588
##     ssasi   (.16.)    2.057    0.058   35.519    0.000    1.944    2.171    2.386    0.508
##     ssmk    (.17.)    4.300    0.086   50.096    0.000    4.132    4.469    4.988    0.772
##     ssmc    (.18.)    2.703    0.059   45.807    0.000    2.587    2.819    3.135    0.663
##     ssei    (.19.)    2.396    0.048   50.264    0.000    2.303    2.490    2.780    0.744
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (b)    0.102    0.008   13.071    0.000    0.086    0.117    0.088    0.207
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.39.)   18.262    0.150  122.138    0.000   17.968   18.555   18.262    2.540
##    .ssmk    (.40.)   14.119    0.126  112.289    0.000   13.873   14.365   14.119    2.185
##    .ssmc    (.41.)   12.705    0.088  144.116    0.000   12.532   12.877   12.705    2.687
##    .ssgs    (.42.)   15.898    0.088  181.334    0.000   15.726   16.069   15.898    3.468
##    .ssasi   (.43.)   11.885    0.073  162.498    0.000   11.741   12.028   11.885    2.529
##    .ssei    (.44.)   10.464    0.070  150.485    0.000   10.328   10.600   10.464    2.799
##    .ssno    (.45.)    0.485    0.018   27.183    0.000    0.450    0.520    0.485    0.549
##    .sscs    (.46.)    0.565    0.018   31.186    0.000    0.529    0.600    0.565    0.644
##    .sswk    (.47.)   27.642    0.132  209.225    0.000   27.383   27.901   27.642    3.985
##    .sspc             11.224    0.070  160.363    0.000   11.087   11.361   11.224    3.563
##     math              0.504    0.039   12.903    0.000    0.428    0.581    0.504    0.504
##     elctrnc           3.456    0.154   22.473    0.000    3.154    3.757    1.928    1.928
##     speed            -0.605    0.047  -12.992    0.000   -0.696   -0.514   -0.605   -0.605
##    .g                -0.039    0.036   -1.097    0.273   -0.109    0.031   -0.034   -0.034
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.657    1.290    1.285    0.199   -0.871    4.185    1.657    0.032
##    .ssmk             11.937    0.552   21.642    0.000   10.856   13.018   11.937    0.286
##    .ssmc              7.399    0.291   25.408    0.000    6.829    7.970    7.399    0.331
##    .ssgs              5.141    0.195   26.337    0.000    4.759    5.524    5.141    0.245
##    .ssasi             6.665    0.386   17.277    0.000    5.909    7.421    6.665    0.302
##    .ssei              3.432    0.154   22.360    0.000    3.132    3.733    3.432    0.246
##    .ssno              0.345    0.015   23.161    0.000    0.316    0.374    0.345    0.441
##    .sscs              0.008    0.047    0.174    0.862   -0.084    0.101    0.008    0.011
##    .sswk              8.550    0.478   17.885    0.000    7.613    9.487    8.550    0.178
##    .sspc              3.031    0.129   23.570    0.000    2.779    3.283    3.031    0.305
##     electronic        3.212    0.298   10.785    0.000    2.628    3.796    1.000    1.000
##    .g                 1.288    0.065   19.844    0.000    1.160    1.415    0.957    0.957
sem.age2<-sem(bf.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   2457.193    110.000      0.000      0.948      0.083      0.047      0.418 281385.520 281789.080
Mc(sem.age2)
## [1] 0.8265301
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 133 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2457.193    1654.234
##   Degrees of freedom                               110         110
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.485
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1083.511     729.443
##     0                                         1373.682     924.791
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.028    0.155   26.035    0.000    3.725    4.331    4.028    0.610
##     ssmk    (.p2.)    2.217    0.110   20.107    0.000    2.001    2.433    2.217    0.372
##     ssmc    (.p3.)    0.841    0.072   11.761    0.000    0.701    0.982    0.841    0.201
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.544    0.029   18.483    0.000    0.486    0.602    0.544    0.131
##     ssasi   (.p5.)    1.742    0.072   24.340    0.000    1.602    1.882    1.742    0.492
##     ssmc    (.p6.)    1.174    0.051   23.004    0.000    1.074    1.274    1.174    0.280
##     ssei    (.p7.)    0.937    0.041   23.098    0.000    0.858    1.017    0.937    0.276
##   speed =~                                                                                
##     ssno    (.p8.)    0.334    0.016   20.299    0.000    0.302    0.366    0.334    0.399
##     sscs    (.p9.)    0.703    0.035   20.139    0.000    0.635    0.772    0.703    0.820
##   g =~                                                                                    
##     ssgs    (.10.)    3.328    0.066   50.093    0.000    3.198    3.458    3.394    0.818
##     ssar    (.11.)    5.010    0.097   51.449    0.000    4.819    5.201    5.110    0.774
##     sswk    (.12.)    5.418    0.114   47.673    0.000    5.195    5.641    5.525    0.882
##     sspc    (.13.)    2.262    0.052   43.324    0.000    2.159    2.364    2.307    0.815
##     ssno    (.14.)    0.491    0.014   35.410    0.000    0.464    0.518    0.501    0.598
##     sscs    (.15.)    0.444    0.014   32.328    0.000    0.417    0.471    0.453    0.528
##     ssasi   (.16.)    2.058    0.058   35.598    0.000    1.945    2.171    2.099    0.593
##     ssmk    (.17.)    4.298    0.085   50.286    0.000    4.130    4.465    4.383    0.736
##     ssmc    (.18.)    2.703    0.059   45.940    0.000    2.587    2.818    2.756    0.657
##     ssei    (.19.)    2.395    0.048   50.412    0.000    2.302    2.489    2.443    0.720
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.086    0.010    8.334    0.000    0.066    0.106    0.084    0.196
##     age2             -0.000    0.004   -0.090    0.928   -0.009    0.008   -0.000   -0.002
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.42.)   18.255    0.190   95.964    0.000   17.882   18.628   18.255    2.765
##    .ssmk    (.43.)   14.114    0.160   88.416    0.000   13.801   14.427   14.114    2.369
##    .ssmc    (.44.)   12.701    0.110  115.797    0.000   12.486   12.916   12.701    3.028
##    .ssgs    (.45.)   15.894    0.116  136.636    0.000   15.666   16.122   15.894    3.831
##    .ssasi   (.46.)   11.882    0.089  133.858    0.000   11.708   12.056   11.882    3.358
##    .ssei    (.47.)   10.461    0.090  115.820    0.000   10.284   10.638   10.461    3.084
##    .ssno    (.48.)    0.484    0.021   22.761    0.000    0.443    0.526    0.484    0.578
##    .sscs    (.49.)    0.564    0.021   26.657    0.000    0.522    0.605    0.564    0.658
##    .sswk    (.50.)   27.635    0.184  150.119    0.000   27.274   27.996   27.635    4.412
##    .sspc             11.911    0.079  151.224    0.000   11.756   12.065   11.911    4.209
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.264    1.257    1.006    0.315   -1.199    3.727    1.264    0.029
##    .ssmk             11.370    0.513   22.175    0.000   10.365   12.375   11.370    0.320
##    .ssmc              7.916    0.280   28.284    0.000    7.367    8.464    7.916    0.450
##    .ssgs              5.393    0.203   26.551    0.000    4.995    5.791    5.393    0.313
##    .ssasi             5.081    0.253   20.112    0.000    4.585    5.576    5.081    0.406
##    .ssei              4.663    0.167   27.955    0.000    4.336    4.990    4.663    0.405
##    .ssno              0.339    0.016   21.202    0.000    0.308    0.371    0.339    0.484
##    .sscs              0.036    0.053    0.681    0.496   -0.068    0.139    0.036    0.049
##    .sswk              8.711    0.454   19.197    0.000    7.821    9.600    8.711    0.222
##    .sspc              2.686    0.115   23.329    0.000    2.461    2.912    2.686    0.336
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.962    0.962
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.028    0.155   26.035    0.000    3.725    4.331    4.028    0.557
##     ssmk    (.p2.)    2.217    0.110   20.107    0.000    2.001    2.433    2.217    0.342
##     ssmc    (.p3.)    0.841    0.072   11.761    0.000    0.701    0.982    0.841    0.177
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.544    0.029   18.483    0.000    0.486    0.602    0.972    0.211
##     ssasi   (.p5.)    1.742    0.072   24.340    0.000    1.602    1.882    3.113    0.661
##     ssmc    (.p6.)    1.174    0.051   23.004    0.000    1.074    1.274    2.097    0.442
##     ssei    (.p7.)    0.937    0.041   23.098    0.000    0.858    1.017    1.675    0.446
##   speed =~                                                                                
##     ssno    (.p8.)    0.334    0.016   20.299    0.000    0.302    0.366    0.334    0.377
##     sscs    (.p9.)    0.703    0.035   20.139    0.000    0.635    0.772    0.703    0.800
##   g =~                                                                                    
##     ssgs    (.10.)    3.328    0.066   50.093    0.000    3.198    3.458    3.893    0.845
##     ssar    (.11.)    5.010    0.097   51.449    0.000    4.819    5.201    5.860    0.811
##     sswk    (.12.)    5.418    0.114   47.673    0.000    5.195    5.641    6.337    0.908
##     sspc    (.13.)    2.262    0.052   43.324    0.000    2.159    2.364    2.646    0.835
##     ssno    (.14.)    0.491    0.014   35.410    0.000    0.464    0.518    0.575    0.648
##     sscs    (.15.)    0.444    0.014   32.328    0.000    0.417    0.471    0.519    0.591
##     ssasi   (.16.)    2.058    0.058   35.598    0.000    1.945    2.171    2.407    0.511
##     ssmk    (.17.)    4.298    0.085   50.286    0.000    4.130    4.465    5.027    0.774
##     ssmc    (.18.)    2.703    0.059   45.940    0.000    2.587    2.818    3.161    0.666
##     ssei    (.19.)    2.395    0.048   50.412    0.000    2.302    2.489    2.802    0.746
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.114    0.011   10.000    0.000    0.092    0.136    0.097    0.230
##     age2             -0.014    0.005   -2.671    0.008   -0.024   -0.004   -0.012   -0.060
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.42.)   18.255    0.190   95.964    0.000   17.882   18.628   18.255    2.527
##    .ssmk    (.43.)   14.114    0.160   88.416    0.000   13.801   14.427   14.114    2.174
##    .ssmc    (.44.)   12.701    0.110  115.797    0.000   12.486   12.916   12.701    2.678
##    .ssgs    (.45.)   15.894    0.116  136.636    0.000   15.666   16.122   15.894    3.448
##    .ssasi   (.46.)   11.882    0.089  133.858    0.000   11.708   12.056   11.882    2.524
##    .ssei    (.47.)   10.461    0.090  115.820    0.000   10.284   10.638   10.461    2.787
##    .ssno    (.48.)    0.484    0.021   22.761    0.000    0.443    0.526    0.484    0.546
##    .sscs    (.49.)    0.564    0.021   26.657    0.000    0.522    0.605    0.564    0.642
##    .sswk    (.50.)   27.635    0.184  150.119    0.000   27.274   27.996   27.635    3.960
##    .sspc             11.221    0.088  127.489    0.000   11.048   11.393   11.221    3.543
##     math              0.504    0.039   12.902    0.000    0.428    0.581    0.504    0.504
##     elctrnc           3.452    0.153   22.495    0.000    3.152    3.753    1.932    1.932
##     speed            -0.605    0.047  -12.995    0.000   -0.697   -0.514   -0.605   -0.605
##    .g                 0.042    0.050    0.842    0.400   -0.055    0.139    0.036    0.036
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.639    1.292    1.268    0.205   -0.894    4.172    1.639    0.031
##    .ssmk             11.949    0.552   21.663    0.000   10.868   13.030   11.949    0.284
##    .ssmc              7.401    0.291   25.408    0.000    6.830    7.972    7.401    0.329
##    .ssgs              5.148    0.196   26.319    0.000    4.764    5.531    5.148    0.242
##    .ssasi             6.676    0.386   17.305    0.000    5.920    7.432    6.676    0.301
##    .ssei              3.431    0.153   22.364    0.000    3.130    3.732    3.431    0.244
##    .ssno              0.345    0.015   23.169    0.000    0.316    0.374    0.345    0.438
##    .sscs              0.008    0.047    0.175    0.861   -0.084    0.101    0.008    0.011
##    .sswk              8.541    0.476   17.931    0.000    7.608    9.475    8.541    0.175
##    .sspc              3.033    0.129   23.572    0.000    2.781    3.285    3.033    0.302
##     electronic        3.194    0.296   10.778    0.000    2.613    3.774    1.000    1.000
##    .g                 1.283    0.064   19.924    0.000    1.157    1.409    0.938    0.938
sem.age2q<-sem(bf.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   2470.480    112.000      0.000      0.948      0.083      0.052      0.420 281394.807 281784.915
Mc(sem.age2q)
## [1] 0.8257733
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 108 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             3067
##     0                                             3094
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2470.480    1664.450
##   Degrees of freedom                               112         112
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.484
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1089.084     733.755
##     0                                         1381.396     930.695
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.028    0.154   26.075    0.000    3.725    4.331    4.028    0.607
##     ssmk    (.p2.)    2.220    0.110   20.137    0.000    2.004    2.436    2.220    0.371
##     ssmc    (.p3.)    0.842    0.072   11.779    0.000    0.702    0.983    0.842    0.200
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.544    0.029   18.479    0.000    0.486    0.601    0.544    0.130
##     ssasi   (.p5.)    1.740    0.072   24.304    0.000    1.600    1.880    1.740    0.490
##     ssmc    (.p6.)    1.172    0.051   22.971    0.000    1.072    1.272    1.172    0.278
##     ssei    (.p7.)    0.936    0.041   23.069    0.000    0.857    1.016    0.936    0.275
##   speed =~                                                                                
##     ssno    (.p8.)    0.334    0.016   20.298    0.000    0.302    0.366    0.334    0.397
##     sscs    (.p9.)    0.703    0.035   20.138    0.000    0.635    0.772    0.703    0.818
##   g =~                                                                                    
##     ssgs    (.10.)    3.332    0.067   49.912    0.000    3.201    3.463    3.425    0.821
##     ssar    (.11.)    5.015    0.098   51.210    0.000    4.823    5.207    5.156    0.777
##     sswk    (.12.)    5.426    0.114   47.491    0.000    5.202    5.649    5.577    0.884
##     sspc    (.13.)    2.264    0.052   43.143    0.000    2.162    2.367    2.328    0.818
##     ssno    (.14.)    0.492    0.014   35.304    0.000    0.464    0.519    0.505    0.601
##     sscs    (.15.)    0.445    0.014   32.251    0.000    0.418    0.472    0.457    0.531
##     ssasi   (.16.)    2.058    0.058   35.491    0.000    1.945    2.172    2.116    0.596
##     ssmk    (.17.)    4.302    0.086   50.086    0.000    4.134    4.470    4.422    0.738
##     ssmc    (.18.)    2.704    0.059   45.760    0.000    2.589    2.820    2.780    0.660
##     ssei    (.19.)    2.398    0.048   50.230    0.000    2.304    2.491    2.465    0.723
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (b)    0.099    0.008   12.531    0.000    0.083    0.114    0.096    0.223
##     age2       (c)   -0.007    0.003   -1.932    0.053   -0.013    0.000   -0.006   -0.032
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.42.)   18.435    0.173  106.395    0.000   18.095   18.775   18.435    2.777
##    .ssmk    (.43.)   14.268    0.146   97.739    0.000   13.982   14.554   14.268    2.382
##    .ssmc    (.44.)   12.798    0.101  126.893    0.000   12.600   12.996   12.798    3.039
##    .ssgs    (.45.)   16.013    0.105  153.062    0.000   15.808   16.218   16.013    3.836
##    .ssasi   (.46.)   11.956    0.082  145.277    0.000   11.795   12.117   11.956    3.370
##    .ssei    (.47.)   10.547    0.082  128.659    0.000   10.386   10.708   10.547    3.095
##    .ssno    (.48.)    0.502    0.020   25.457    0.000    0.463    0.541    0.502    0.597
##    .sscs    (.49.)    0.580    0.020   29.313    0.000    0.541    0.619    0.580    0.674
##    .sswk    (.50.)   27.830    0.162  172.062    0.000   27.513   28.147   27.830    4.412
##    .sspc             11.992    0.070  171.677    0.000   11.855   12.129   11.992    4.212
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.268    1.255    1.010    0.312   -1.192    3.727    1.268    0.029
##    .ssmk             11.380    0.514   22.158    0.000   10.374   12.387   11.380    0.317
##    .ssmc              7.917    0.280   28.282    0.000    7.369    8.466    7.917    0.447
##    .ssgs              5.395    0.203   26.550    0.000    4.997    5.793    5.395    0.310
##    .ssasi             5.082    0.253   20.124    0.000    4.587    5.577    5.082    0.404
##    .ssei              4.660    0.167   27.970    0.000    4.334    4.987    4.660    0.401
##    .ssno              0.339    0.016   21.204    0.000    0.308    0.371    0.339    0.481
##    .sscs              0.036    0.053    0.676    0.499   -0.068    0.139    0.036    0.048
##    .sswk              8.681    0.452   19.194    0.000    7.794    9.567    8.681    0.218
##    .sspc              2.689    0.115   23.336    0.000    2.463    2.915    2.689    0.332
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.946    0.946
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.028    0.154   26.075    0.000    3.725    4.331    4.028    0.561
##     ssmk    (.p2.)    2.220    0.110   20.137    0.000    2.004    2.436    2.220    0.344
##     ssmc    (.p3.)    0.842    0.072   11.779    0.000    0.702    0.983    0.842    0.178
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.544    0.029   18.479    0.000    0.486    0.601    0.974    0.213
##     ssasi   (.p5.)    1.740    0.072   24.304    0.000    1.600    1.880    3.118    0.664
##     ssmc    (.p6.)    1.172    0.051   22.971    0.000    1.072    1.272    2.100    0.444
##     ssei    (.p7.)    0.936    0.041   23.069    0.000    0.857    1.016    1.678    0.449
##   speed =~                                                                                
##     ssno    (.p8.)    0.334    0.016   20.298    0.000    0.302    0.366    0.334    0.378
##     sscs    (.p9.)    0.703    0.035   20.138    0.000    0.635    0.772    0.703    0.803
##   g =~                                                                                    
##     ssgs    (.10.)    3.332    0.067   49.912    0.000    3.201    3.463    3.859    0.842
##     ssar    (.11.)    5.015    0.098   51.210    0.000    4.823    5.207    5.809    0.809
##     sswk    (.12.)    5.426    0.114   47.491    0.000    5.202    5.649    6.284    0.907
##     sspc    (.13.)    2.264    0.052   43.143    0.000    2.162    2.367    2.623    0.833
##     ssno    (.14.)    0.492    0.014   35.304    0.000    0.464    0.519    0.569    0.645
##     sscs    (.15.)    0.445    0.014   32.251    0.000    0.418    0.472    0.515    0.588
##     ssasi   (.16.)    2.058    0.058   35.491    0.000    1.945    2.172    2.384    0.507
##     ssmk    (.17.)    4.302    0.086   50.086    0.000    4.134    4.470    4.983    0.772
##     ssmc    (.18.)    2.704    0.059   45.760    0.000    2.589    2.820    3.133    0.663
##     ssei    (.19.)    2.398    0.048   50.230    0.000    2.304    2.491    2.777    0.743
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (b)    0.099    0.008   12.531    0.000    0.083    0.114    0.085    0.201
##     age2       (c)   -0.007    0.003   -1.932    0.053   -0.013    0.000   -0.006   -0.029
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.42.)   18.435    0.173  106.395    0.000   18.095   18.775   18.435    2.566
##    .ssmk    (.43.)   14.268    0.146   97.739    0.000   13.982   14.554   14.268    2.210
##    .ssmc    (.44.)   12.798    0.101  126.893    0.000   12.600   12.996   12.798    2.708
##    .ssgs    (.45.)   16.013    0.105  153.062    0.000   15.808   16.218   16.013    3.496
##    .ssasi   (.46.)   11.956    0.082  145.277    0.000   11.795   12.117   11.956    2.545
##    .ssei    (.47.)   10.547    0.082  128.659    0.000   10.386   10.708   10.547    2.823
##    .ssno    (.48.)    0.502    0.020   25.457    0.000    0.463    0.541    0.502    0.568
##    .sscs    (.49.)    0.580    0.020   29.313    0.000    0.541    0.619    0.580    0.662
##    .sswk    (.50.)   27.830    0.162  172.062    0.000   27.513   28.147   27.830    4.015
##    .sspc             11.302    0.079  142.221    0.000   11.146   11.458   11.302    3.590
##     math              0.504    0.039   12.903    0.000    0.428    0.581    0.504    0.504
##     elctrnc           3.457    0.154   22.463    0.000    3.155    3.759    1.929    1.929
##     speed            -0.605    0.047  -12.993    0.000   -0.697   -0.514   -0.605   -0.605
##    .g                -0.038    0.036   -1.059    0.290   -0.107    0.032   -0.032   -0.032
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.657    1.290    1.284    0.199   -0.872    4.185    1.657    0.032
##    .ssmk             11.937    0.552   21.639    0.000   10.856   13.018   11.937    0.286
##    .ssmc              7.399    0.291   25.407    0.000    6.829    7.970    7.399    0.331
##    .ssgs              5.142    0.195   26.333    0.000    4.759    5.525    5.142    0.245
##    .ssasi             6.667    0.386   17.281    0.000    5.911    7.423    6.667    0.302
##    .ssei              3.432    0.154   22.360    0.000    3.131    3.733    3.432    0.246
##    .ssno              0.345    0.015   23.164    0.000    0.316    0.374    0.345    0.442
##    .sscs              0.008    0.047    0.175    0.861   -0.084    0.101    0.008    0.011
##    .sswk              8.548    0.477   17.905    0.000    7.612    9.484    8.548    0.178
##    .sspc              3.031    0.129   23.566    0.000    2.779    3.283    3.031    0.306
##     electronic        3.212    0.298   10.780    0.000    2.628    3.796    1.000    1.000
##    .g                 1.283    0.065   19.886    0.000    1.156    1.409    0.956    0.956
# CROSS VALIDATION

set.seed(123) # For reproducibility, set seed if needed
split_indices <- sample(1:nrow(dgroup), size = nrow(dgroup) / 2)
dhalf1 <- dgroup[split_indices, ]
dhalf2 <- dgroup[-split_indices, ]

# WHITE GROUP

# CORRELATED FACTOR MODEL

cf.model<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
'

cf.lv<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
verbal~~1*verbal
math~~1*math
speed~~1*speed
'

cf.reduced<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
'

baseline<-cfa(cf.model, data=dhalf1, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    964.047     27.000      0.000      0.959      0.859      0.106      0.041 143249.669 143478.911
configural<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    635.801     54.000      0.000      0.974      0.910      0.084      0.025 140361.694 140820.178
metric<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    730.910     62.000      0.000      0.970      0.897      0.084      0.035 140440.803 140851.026
scalar<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1413.127     68.000      0.000      0.939      0.804      0.113      0.070 141111.021 141485.047
scalar2<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1")) # no and cs biased but one needs to be constrained
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    766.730     64.000      0.000      0.968      0.892      0.084      0.037 140472.623 140870.780
strict<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    890.976     74.000      0.000      0.963      0.876      0.085      0.048 140576.869 140914.700
cf.cov<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    825.330     70.000      0.000      0.966      0.885      0.084      0.087 140519.223 140881.184
cf.vcov<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    904.895     74.000      0.000      0.963      0.874      0.085      0.099 140590.788 140928.618
cf.cov2<-cfa(cf.lv, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    834.511     73.000      0.000      0.966      0.884      0.082      0.086 140522.404 140866.267
reduced<-cfa(cf.reduced, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    840.646     74.000      0.000      0.965      0.883      0.082      0.087 140526.539 140864.369
baseline<-cfa(cf.model, data=dhalf2, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    892.601     27.000      0.000      0.962      0.869      0.102      0.040 143621.485 143850.740
configural<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    568.580     54.000      0.000      0.977      0.920      0.079      0.026 140801.011 141259.519
metric<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    638.658     62.000      0.000      0.974      0.911      0.078      0.032 140855.088 141265.333
scalar<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1193.114     68.000      0.000      0.950      0.833      0.104      0.059 141397.544 141771.591
scalar2<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1")) # no and cs biased but one needs to be constrained
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    655.979     64.000      0.000      0.973      0.908      0.077      0.033 140868.409 141266.588
strict<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    762.840     74.000      0.000      0.969      0.894      0.078      0.041 140955.270 141293.118
cf.cov<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    723.787     70.000      0.000      0.971      0.899      0.078      0.101 140924.218 141286.198
cf.vcov<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    845.460     74.000      0.000      0.965      0.882      0.082      0.115 141037.891 141375.739
cf.cov2<-cfa(cf.lv, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    726.816     73.000      0.000      0.971      0.899      0.076      0.100 140921.246 141265.128
reduced<-cfa(cf.reduced, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("sswk~1", "ssar~1", "ssei~1", "sscs~1"))
fitMeasures(reduced, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    728.817     74.000      0.000      0.971      0.899      0.076      0.100 140921.247 141259.096
# HIGH ORDER FACTOR

hof.model<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed
'

hof.lv<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed
verbal~~1*verbal
math~~1*math
speed~~1*speed
'

hof.weak<-' # only used if ssmk is free instead of ssar
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
'

baseline<-cfa(hof.model, data=dhalf1, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1264.006     29.000      0.000      0.946      0.818      0.118      0.057 143545.628 143762.804
configural<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    846.130     58.000      0.000      0.964      0.880      0.094      0.032 140564.024 140998.377
metric<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    958.784     69.000      0.000      0.960      0.866      0.092      0.048 140654.677 141022.671
scalar<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 4.373134e-14) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1635.661     74.000      0.000      0.930      0.776      0.117      0.078 141321.554 141659.385
scalar2<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 2.476674e-14) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1012.280     70.000      0.000      0.958      0.858      0.093      0.050 140706.173 141068.134
strict<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 1.322183e-13) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1131.116     80.000      0.000      0.953      0.843      0.092      0.060 140805.009 141106.643
latent<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 4.436381e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1112.555     75.000      0.000      0.953      0.845      0.095      0.101 140796.448 141128.245
latent2<-cfa(hof.lv, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 4.938745e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1019.537     73.000      0.000      0.957      0.858      0.092      0.051 140707.431 141051.294
weak<-cfa(hof.weak, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1019.537     74.000      0.000      0.957      0.858      0.091      0.051 140705.431 141043.261
baseline<-cfa(hof.model, data=dhalf2, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1296.360     29.000      0.000      0.945      0.814      0.119      0.060 144021.244 144238.433
configural<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    905.737     58.000      0.000      0.962      0.871      0.097      0.038 141130.167 141564.544
metric<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    981.720     69.000      0.000      0.959      0.862      0.093      0.045 141184.151 141552.164
scalar<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 2.846783e-14) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1514.387     74.000      0.000      0.935      0.792      0.112      0.067 141706.817 142044.666
scalar2<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 1.592286e-14) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1007.462     70.000      0.000      0.958      0.859      0.093      0.047 141207.892 141569.873
strict<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 1.730658e-13) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1110.119     80.000      0.000      0.954      0.846      0.091      0.053 141290.549 141592.200
latent<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 7.656910e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1169.274     75.000      0.000      0.951      0.837      0.097      0.119 141359.704 141691.519
latent2<-cfa(hof.lv, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 4.550519e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1011.214     73.000      0.000      0.958      0.859      0.091      0.047 141205.644 141549.526
weak<-cfa(hof.weak, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("sswk~1", "ssmk~1", "ssei~1", "sscs~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1011.214     74.000      0.000      0.958      0.859      0.091      0.047 141203.644 141541.493
# BIFACTOR 

bf.model<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei
'

bf.lv<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei
math~~1*math
speed~~1*speed
'

baseline<-cfa(bf.model, data=dhalf1, meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    986.871     26.000      0.000      0.958      0.856      0.110      0.046 143274.492 143509.767
configural<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= -1.693102e-06) is smaller than zero. This may 
##    be a symptom that the model is not identified.
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    768.612     52.000      0.000      0.968      0.890      0.095      0.030 140498.505 140969.054
metric<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    851.931     67.000      0.000      0.965      0.880      0.087      0.045 140551.824 140931.883
scalar<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    961.121     73.000      0.000      0.960      0.866      0.089      0.046 140649.014 140992.877
scalar2<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    898.929     72.000      0.000      0.963      0.874      0.086      0.045 140588.822 140938.718
strict<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    944.931     82.000      0.000      0.961      0.869      0.083      0.046 140614.825 140904.393
latent<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1037.052     76.000      0.000      0.957      0.856      0.091      0.100 140718.946 141044.711
latent2<-cfa(bf.lv, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    901.705     74.000      0.000      0.963      0.874      0.085      0.046 140587.599 140925.429
baseline<-cfa(bf.model, data=dhalf2, meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= -1.904191e-06) is smaller than zero. This may 
##    be a symptom that the model is not identified.
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1036.229     26.000      0.000      0.956      0.849      0.112      0.050 143767.113 144002.400
configural<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    795.842     52.000      0.000      0.967      0.886      0.096      0.037 141032.273 141502.847
metric<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    838.039     67.000      0.000      0.965      0.882      0.086      0.043 141044.470 141424.549
scalar<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1023.337     73.000      0.000      0.957      0.857      0.092      0.045 141217.768 141561.649
scalar2<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    911.659     72.000      0.000      0.962      0.873      0.087      0.043 141108.089 141458.004
strict<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    951.183     82.000      0.000      0.961      0.868      0.083      0.044 141127.613 141417.197
latent<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("sspc~1"))
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1133.348     76.000      0.000      0.953      0.842      0.095      0.120 141321.778 141647.560
latent2<-cfa(bf.lv, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    912.116     74.000      0.000      0.962      0.873      0.086      0.043 141104.546 141442.395
# ALL RACE RESPONDENTS

dgroup<- dplyr::select(dk, id, starts_with("ss"), afqt, efa, educ2000, age, age2, sex, agesex, agesex2, age14:age22, sweight, weight2000, cweight, asvabweight)
nrow(dgroup)
## [1] 10918
fit<-lm(efa ~ sex + rcs(age, 3) + sex*rcs(age, 3), data=dgroup)
summary(fit)
## 
## Call:
## lm(formula = efa ~ sex + rcs(age, 3) + sex * rcs(age, 3), data = dgroup)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -49.657 -11.349   0.808  11.795  35.347 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         101.17412    0.50603 199.939  < 2e-16 ***
## sex                  -3.21041    0.71719  -4.476 7.67e-06 ***
## rcs(age, 3)age        1.54991    0.21622   7.168 8.10e-13 ***
## rcs(age, 3)age'       0.19418    0.28131   0.690   0.4901    
## sex:rcs(age, 3)age   -0.51893    0.30999  -1.674   0.0942 .  
## sex:rcs(age, 3)age'   0.07937    0.40328   0.197   0.8440    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.95 on 10912 degrees of freedom
## Multiple R-squared:  0.05827,    Adjusted R-squared:  0.05784 
## F-statistic:   135 on 5 and 10912 DF,  p-value: < 2.2e-16
dgroup$pred1<-fitted(fit) 

original_age_min <- 14
original_age_max <- 22
mean_centered_min <- min(dgroup$age)
mean_centered_max <- max(dgroup$age)
original_age_mean <- (original_age_min + original_age_max) / 2
mean_centered_age_mean <- (mean_centered_min + mean_centered_max) / 2
age_difference <- original_age_mean - mean_centered_age_mean

xyplot(dgroup$pred1 ~ dgroup$age, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted IQ", xlab="age", key=list(text=list(c("Male", "Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2))

xyplot(dgroup$pred1 ~ dgroup$age, data=dgroup, groups=sex, pch=19, type=c("p"), col=c('red', 'blue'), grid=TRUE, ylab="Predicted IQ", xlab="Age", key=list(text=list(c("Male", "Female")), points=list(pch=c(19,19), col=c("red", "blue")), columns=2), scales=list(x=list(at=seq(mean_centered_min, mean_centered_max), labels=seq(original_age_min, original_age_max))))

describeBy(dgroup$pred1, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n   mean   sd median trimmed  mad   min    max range skew kurtosis   se
## X1    1 5469 101.19 3.94 101.32  101.15 5.25 94.97 108.54 13.56  0.1    -1.15 0.05
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean   sd median trimmed  mad   min    max range skew kurtosis   se
## X1    1 5449 98.26 2.79  98.17   98.23 3.35 93.84 103.73  9.89 0.13    -1.12 0.04
describeBy(dgroup$efa, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n   mean    sd median trimmed   mad   min    max range  skew kurtosis   se
## X1    1 5469 101.19 16.46 102.26  101.51 20.13 54.86 133.69 78.84 -0.16    -0.99 0.22
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean   sd median trimmed   mad   min    max range  skew kurtosis   se
## X1    1 5449 98.26 14.1   98.5   98.37 16.45 54.86 130.66  75.8 -0.09    -0.75 0.19
describeBy(dgroup$afqt, dgroup$sex) 
## 
##  Descriptive statistics by group 
## INDICES: 0
##    vars    n  mean    sd median trimmed   mad   min    max range skew kurtosis   se
## V1    1 5469 99.84 15.36  97.51   99.07 19.15 77.91 130.02 52.11 0.33    -1.13 0.21
## -------------------------------------------------------------------------- 
## INDICES: 1
##    vars    n  mean    sd median trimmed   mad   min    max range skew kurtosis  se
## V1    1 5449 99.77 14.69   97.9   99.07 18.14 77.91 130.02 52.11 0.32    -1.07 0.2
describeBy(dgroup$educ2000, dgroup$sex) 
## 
##  Descriptive statistics by group 
## group: 0
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 3482 13.06 2.49     12   12.95 1.48   1  20    19 0.47     0.96 0.04
## -------------------------------------------------------------------------- 
## group: 1
##    vars    n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 3678 13.31 2.46     12   13.22 1.48   0  20    20 0.16     1.09 0.04
cor(dgroup$efa, dgroup$afqt, use="pairwise.complete.obs", method="pearson")
##           [,1]
## [1,] 0.9255344
# Lynn's developmental theory is supported here too

dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(age, sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 18 Ă— 5
## # Groups:   age [9]
##      age   sex  MEAN  MEAN_se       SD
##    <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1    -4     0  95.0 1.26e-16 1.96e-15
##  2    -4     1  93.8 0        0       
##  3    -3     0  96.5 4.50e-16 9.70e-15
##  4    -3     1  94.9 6.00e-18 2.92e-16
##  5    -2     0  98.1 4.45e-16 9.70e-15
##  6    -2     1  95.9 2.14e-14 3.73e-13
##  7    -1     0  99.7 4.54e-16 9.34e-15
##  8    -1     1  97.0 7.87e-17 1.58e-15
##  9     0     0 101.  2.71e-15 4.52e-14
## 10     0     1  98.2 4.11e-16 8.70e-15
## 11     1     0 103.  1.04e-15 1.59e-14
## 12     1     1  99.5 0        0       
## 13     2     0 105.  0        0       
## 14     2     1 101.  6.94e-15 1.04e-13
## 15     3     0 107.  9.66e-17 2.26e-15
## 16     3     1 102.  0        0       
## 17     4     0 109.  1.26e-16 1.95e-15
## 18     4     1 104.  0        0
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(age, sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 18 Ă— 5
## # Groups:   age [9]
##      age   sex  MEAN MEAN_se    SD
##    <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    -4     0  98.7   0.797  14.6
##  2    -4     1  99.3   0.755  12.9
##  3    -3     0 102.    0.672  15.2
##  4    -3     1  99.1   0.606  13.0
##  5    -2     0 104.    0.681  15.5
##  6    -2     1 100.    0.585  12.6
##  7    -1     0 106.    0.677  14.9
##  8    -1     1 102.    0.583  12.9
##  9     0     0 106.    0.695  15.7
## 10     0     1 102.    0.601  13.6
## 11     1     0 107.    0.721  15.4
## 12     1     1 103.    0.650  14.1
## 13     2     0 111.    0.695  14.8
## 14     2     1 104.    0.655  13.4
## 15     3     0 110.    0.737  15.4
## 16     3     1 105.    0.639  13.8
## 17     4     0 109.    1.48   15.5
## 18     4     1 106.    1.21   11.9
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(age, sex) %>% summarise(MEAN = survey_mean(afqt), SD = survey_sd(afqt))
## # A tibble: 18 Ă— 5
## # Groups:   age [9]
##      age   sex  MEAN MEAN_se    SD
##    <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    -4     0  103.   0.873  15.5
##  2    -4     1  106.   0.885  14.8
##  3    -3     0  104.   0.727  15.8
##  4    -3     1  104.   0.706  14.9
##  5    -2     0  104.   0.712  15.6
##  6    -2     1  104.   0.687  14.5
##  7    -1     0  104.   0.748  15.6
##  8    -1     1  104.   0.679  14.8
##  9     0     0  103.   0.731  15.4
## 10     0     1  104.   0.691  14.7
## 11     1     0  105.   0.761  15.3
## 12     1     1  103.   0.728  15.2
## 13     2     0  106.   0.762  15.0
## 14     2     1  102.   0.761  14.8
## 15     3     0  105.   0.795  15.6
## 16     3     1  103.   0.738  15.0
## 17     4     0  104.   1.63   16.0
## 18     4     1  104.   1.47   13.5
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(pred1), SD = survey_sd(pred1))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0 101.   0.0712  3.97
## 2     1  98.1  0.0514  2.83
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(efa), SD = survey_sd(efa))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  106.   0.256  15.6
## 2     1  102.   0.222  13.4
dgroup %>% as_survey_design(ids = id, weights = sweight) %>% group_by(sex) %>% summarise(MEAN = survey_mean(afqt), SD = survey_sd(afqt))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  104.   0.267  15.5
## 2     1  104.   0.255  14.8
dgroup %>% as_survey_design(ids = id, weights = weight2000) %>% group_by(sex) %>% summarise(MEAN = survey_mean(educ2000, na.rm = TRUE), SD = survey_sd(educ2000, na.rm = TRUE))
## # A tibble: 2 Ă— 4
##     sex  MEAN MEAN_se    SD
##   <dbl> <dbl>   <dbl> <dbl>
## 1     0  13.4  0.0523  2.55
## 2     1  13.6  0.0489  2.46
# CORRELATED FACTOR MODEL

cf.model<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
'

cf.lv<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
verbal~~1*verbal
math~~1*math
speed~~1*speed
'

baseline<-cfa(cf.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2635.698     27.000      0.000      0.973      0.094      0.029 512193.874 512471.204
Mc(baseline)
## [1] 0.8873829
configural<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1759.374     54.000      0.000      0.982      0.076      0.019 503353.883 503908.543
Mc(configural)
## [1] 0.924866
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 50 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        76
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1759.374    1032.860
##   Degrees of freedom                                54          54
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.703
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          563.494     330.806
##     0                                         1195.880     702.054
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              1.972    0.176   11.184    0.000    1.626    2.317    1.972    0.424
##     sswk              7.148    0.085   84.205    0.000    6.982    7.314    7.148    0.936
##     sspc              2.808    0.041   67.870    0.000    2.727    2.889    2.808    0.856
##   math =~                                                                                 
##     ssar              6.530    0.073   89.278    0.000    6.386    6.673    6.530    0.933
##     ssmk              5.379    0.067   80.061    0.000    5.248    5.511    5.379    0.877
##     ssmc              1.581    0.119   13.302    0.000    1.348    1.814    1.581    0.367
##   electronic =~                                                                           
##     ssgs              2.218    0.182   12.201    0.000    1.862    2.575    2.218    0.477
##     ssasi             2.781    0.056   49.967    0.000    2.672    2.890    2.781    0.740
##     ssmc              1.861    0.119   15.601    0.000    1.627    2.095    1.861    0.432
##     ssei              2.963    0.047   63.284    0.000    2.871    3.054    2.963    0.828
##   speed =~                                                                                
##     ssno              0.823    0.012   66.863    0.000    0.799    0.847    0.823    0.887
##     sscs              0.729    0.015   49.876    0.000    0.701    0.758    0.729    0.776
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.825    0.007  125.488    0.000    0.812    0.838    0.825    0.825
##     electronic        0.882    0.008  107.789    0.000    0.866    0.898    0.882    0.882
##     speed             0.743    0.011   64.940    0.000    0.721    0.766    0.743    0.743
##   math ~~                                                                                 
##     electronic        0.813    0.011   75.543    0.000    0.792    0.834    0.813    0.813
##     speed             0.739    0.010   73.894    0.000    0.719    0.758    0.739    0.739
##   electronic ~~                                                                           
##     speed             0.619    0.015   42.304    0.000    0.590    0.648    0.619    0.619
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             14.716    0.078  188.083    0.000   14.563   14.869   14.716    3.165
##    .sswk             25.615    0.123  208.263    0.000   25.374   25.856   25.615    3.352
##    .sspc             11.115    0.053  210.841    0.000   11.011   11.218   11.115    3.390
##    .ssar             16.646    0.123  135.820    0.000   16.405   16.886   16.646    2.379
##    .ssmk             13.157    0.108  122.070    0.000   12.946   13.369   13.157    2.146
##    .ssmc             11.841    0.076  156.606    0.000   11.693   11.989   11.841    2.749
##    .ssasi            10.952    0.064  171.593    0.000   10.827   11.077   10.952    2.913
##    .ssei              9.613    0.062  156.264    0.000    9.492    9.733    9.613    2.685
##    .ssno              0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.326
##    .sscs              0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.404
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.102    0.177   28.846    0.000    4.755    5.449    5.102    0.236
##    .sswk              7.286    0.420   17.344    0.000    6.462    8.109    7.286    0.125
##    .sspc              2.869    0.097   29.480    0.000    2.678    3.059    2.869    0.267
##    .ssar              6.306    0.391   16.109    0.000    5.539    7.073    6.306    0.129
##    .ssmk              8.653    0.312   27.746    0.000    8.042    9.265    8.653    0.230
##    .ssmc              7.801    0.224   34.823    0.000    7.361    8.240    7.801    0.421
##    .ssasi             6.396    0.201   31.843    0.000    6.003    6.790    6.396    0.453
##    .ssei              4.037    0.155   26.036    0.000    3.733    4.341    4.037    0.315
##    .ssno              0.184    0.013   14.628    0.000    0.159    0.209    0.184    0.214
##    .sscs              0.351    0.016   22.310    0.000    0.320    0.382    0.351    0.398
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              3.207    0.140   22.967    0.000    2.933    3.480    3.207    0.606
##     sswk              7.597    0.088   86.426    0.000    7.424    7.769    7.597    0.937
##     sspc              3.130    0.039   79.897    0.000    3.054    3.207    3.130    0.870
##   math =~                                                                                 
##     ssar              7.104    0.067  105.342    0.000    6.972    7.236    7.104    0.943
##     ssmk              5.822    0.067   86.966    0.000    5.691    5.953    5.822    0.884
##     ssmc              1.049    0.108    9.740    0.000    0.838    1.260    1.049    0.191
##   electronic =~                                                                           
##     ssgs              1.703    0.140   12.125    0.000    1.428    1.979    1.703    0.322
##     ssasi             4.658    0.065   71.175    0.000    4.530    4.787    4.658    0.834
##     ssmc              3.852    0.107   35.945    0.000    3.642    4.062    3.852    0.702
##     ssei              4.035    0.043   93.663    0.000    3.951    4.120    4.035    0.923
##   speed =~                                                                                
##     ssno              0.857    0.012   71.334    0.000    0.833    0.880    0.857    0.886
##     sscs              0.765    0.013   57.562    0.000    0.739    0.791    0.765    0.816
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.859    0.006  134.463    0.000    0.847    0.872    0.859    0.859
##     electronic        0.868    0.007  124.500    0.000    0.854    0.882    0.868    0.868
##     speed             0.787    0.009   83.883    0.000    0.769    0.805    0.787    0.787
##   math ~~                                                                                 
##     electronic        0.770    0.010   79.992    0.000    0.751    0.788    0.770    0.770
##     speed             0.821    0.008   97.306    0.000    0.804    0.837    0.821    0.821
##   electronic ~~                                                                           
##     speed             0.649    0.013   48.482    0.000    0.622    0.675    0.649    0.649
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             16.358    0.087  188.331    0.000   16.188   16.528   16.358    3.093
##    .sswk             25.460    0.130  195.905    0.000   25.205   25.715   25.460    3.139
##    .sspc             10.389    0.059  175.230    0.000   10.273   10.505   10.389    2.887
##    .ssar             18.393    0.130  141.785    0.000   18.139   18.647   18.393    2.440
##    .ssmk             13.626    0.116  116.977    0.000   13.397   13.854   13.626    2.068
##    .ssmc             15.617    0.092  169.826    0.000   15.437   15.797   15.617    2.846
##    .ssasi            16.348    0.092  177.720    0.000   16.168   16.528   16.348    2.926
##    .ssei             12.524    0.072  174.554    0.000   12.384   12.665   12.524    2.865
##    .ssno              0.084    0.016    5.181    0.000    0.052    0.116    0.084    0.087
##    .sscs             -0.042    0.016   -2.602    0.009   -0.073   -0.010   -0.042   -0.045
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.310    0.161   33.030    0.000    4.995    5.625    5.310    0.190
##    .sswk              8.075    0.454   17.803    0.000    7.186    8.964    8.075    0.123
##    .sspc              3.154    0.110   28.726    0.000    2.939    3.369    3.154    0.243
##    .ssar              6.341    0.384   16.494    0.000    5.587    7.094    6.341    0.112
##    .ssmk              9.519    0.327   29.068    0.000    8.877   10.161    9.519    0.219
##    .ssmc              7.950    0.252   31.534    0.000    7.456    8.444    7.950    0.264
##    .ssasi             9.526    0.329   28.970    0.000    8.881   10.170    9.526    0.305
##    .ssei              2.830    0.141   20.039    0.000    2.553    3.107    2.830    0.148
##    .ssno              0.201    0.011   17.688    0.000    0.179    0.224    0.201    0.215
##    .sscs              0.294    0.014   20.362    0.000    0.265    0.322    0.294    0.334
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
modificationIndices(configural, sort=T, maximum.number=30)
##            lhs op   rhs block group level      mi     epc sepc.lv sepc.all sepc.nox
## 229       ssmc ~~ ssasi     2     2     1 361.744   3.027   3.027    0.348    0.348
## 225       ssmk ~~ ssasi     2     2     1 318.368  -2.844  -2.844   -0.299   -0.299
## 170     verbal =~  ssei     2     2     1 304.828   2.239   2.239    0.512    0.512
## 174       math =~  sswk     2     2     1 248.124  -2.693  -2.693   -0.332   -0.332
## 176       math =~ ssasi     2     2     1 162.891  -1.255  -1.255   -0.225   -0.225
## 197       ssgs ~~  ssmk     2     2     1 133.553   1.385   1.385    0.195    0.195
## 230       ssmc ~~  ssei     2     2     1 122.624  -1.452  -1.452   -0.306   -0.306
## 188      speed =~  sspc     2     2     1 106.277   0.602   0.602    0.167    0.167
## 168     verbal =~  ssmc     2     2     1 101.243  -1.567  -1.567   -0.286   -0.286
## 175       math =~  sspc     2     2     1  99.863   0.743   0.743    0.206    0.206
## 169     verbal =~ ssasi     2     2     1  93.221  -1.446  -1.446   -0.259   -0.259
## 152       ssmk ~~ ssasi     1     1     1  90.732  -1.205  -1.205   -0.162   -0.162
## 156       ssmc ~~ ssasi     1     1     1  89.041   1.089   1.089    0.154    0.154
## 101       math =~  sswk     1     1     1  88.102  -1.628  -1.628   -0.213   -0.213
## 177       math =~  ssei     2     2     1  87.685   0.775   0.775    0.177    0.177
## 182 electronic =~  ssar     2     2     1  86.268   1.351   1.351    0.179    0.179
## 183 electronic =~  ssmk     2     2     1  86.266  -1.107  -1.107   -0.168   -0.168
## 98      verbal =~  ssno     1     1     1  85.948  -0.369  -0.369   -0.397   -0.397
## 99      verbal =~  sscs     1     1     1  85.948   0.327   0.327    0.348    0.348
## 124       ssgs ~~  ssmk     1     1     1  83.594   1.070   1.070    0.161    0.161
## 115      speed =~  sspc     1     1     1  83.440   0.480   0.480    0.146    0.146
## 195       ssgs ~~  sspc     2     2     1  76.727  -0.667  -0.667   -0.163   -0.163
## 193      speed =~  ssei     2     2     1  74.282   0.525   0.525    0.120    0.120
## 122       ssgs ~~  sspc     1     1     1  64.890  -0.598  -0.598   -0.156   -0.156
## 121       ssgs ~~  sswk     1     1     1  63.015   1.387   1.387    0.228    0.228
## 95      verbal =~  ssmc     1     1     1  61.869  -1.116  -1.116   -0.259   -0.259
## 180 electronic =~  sswk     2     2     1  61.415   1.641   1.641    0.202    0.202
## 181 electronic =~  sspc     2     2     1  61.411  -0.676  -0.676   -0.188   -0.188
## 218       ssar ~~  ssmk     2     2     1  60.969 -10.929 -10.929   -1.407   -1.407
## 173       math =~  ssgs     2     2     1  60.935   0.700   0.700    0.132    0.132
metric<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   1983.273     62.000      0.000      0.980      0.075      0.026 503561.781 504058.056
Mc(metric)
## [1] 0.9157659
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 67 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        80
##   Number of equality constraints                    12
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1983.273    1181.060
##   Degrees of freedom                                62          62
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.679
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          728.861     434.044
##     0                                         1254.412     747.015
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.755    0.091   30.434    0.000    2.578    2.933    2.755    0.598
##     sswk    (.p2.)    7.075    0.084   84.277    0.000    6.911    7.240    7.075    0.930
##     sspc    (.p3.)    2.854    0.037   77.639    0.000    2.782    2.926    2.854    0.860
##   math =~                                                                                 
##     ssar    (.p4.)    6.541    0.070   92.830    0.000    6.403    6.679    6.541    0.935
##     ssmk    (.p5.)    5.367    0.061   87.329    0.000    5.247    5.488    5.367    0.876
##     ssmc    (.p6.)    1.134    0.076   14.990    0.000    0.985    1.282    1.134    0.259
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.339    0.079   16.893    0.000    1.184    1.495    1.339    0.291
##     ssasi   (.p8.)    3.003    0.045   66.205    0.000    2.914    3.091    3.003    0.772
##     ssmc    (.p9.)    2.425    0.068   35.739    0.000    2.292    2.558    2.425    0.554
##     ssei    (.10.)    2.784    0.044   63.605    0.000    2.698    2.870    2.784    0.804
##   speed =~                                                                                
##     ssno    (.11.)    0.822    0.012   70.547    0.000    0.799    0.845    0.822    0.886
##     sscs    (.12.)    0.731    0.012   60.642    0.000    0.708    0.755    0.731    0.777
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.830    0.006  128.642    0.000    0.817    0.843    0.830    0.830
##     electronic        0.881    0.007  119.122    0.000    0.866    0.895    0.881    0.881
##     speed             0.743    0.011   66.929    0.000    0.721    0.765    0.743    0.743
##   math ~~                                                                                 
##     electronic        0.810    0.010   78.960    0.000    0.790    0.830    0.810    0.810
##     speed             0.738    0.010   73.742    0.000    0.719    0.758    0.738    0.738
##   electronic ~~                                                                           
##     speed             0.620    0.014   43.289    0.000    0.591    0.648    0.620    0.620
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             14.716    0.078  188.083    0.000   14.563   14.869   14.716    3.193
##    .sswk             25.615    0.123  208.263    0.000   25.374   25.856   25.615    3.366
##    .sspc             11.115    0.053  210.841    0.000   11.011   11.218   11.115    3.350
##    .ssar             16.646    0.123  135.820    0.000   16.405   16.886   16.646    2.379
##    .ssmk             13.157    0.108  122.070    0.000   12.946   13.369   13.157    2.149
##    .ssmc             11.841    0.076  156.606    0.000   11.693   11.989   11.841    2.704
##    .ssasi            10.952    0.064  171.593    0.000   10.827   11.077   10.952    2.816
##    .ssei              9.613    0.062  156.264    0.000    9.492    9.733    9.613    2.776
##    .ssno              0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.326
##    .sscs              0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.404
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.351    0.162   33.112    0.000    5.034    5.667    5.351    0.252
##    .sswk              7.835    0.399   19.626    0.000    7.052    8.617    7.835    0.135
##    .sspc              2.866    0.096   29.742    0.000    2.677    3.055    2.866    0.260
##    .ssar              6.170    0.380   16.251    0.000    5.426    6.914    6.170    0.126
##    .ssmk              8.691    0.302   28.787    0.000    8.099    9.282    8.691    0.232
##    .ssmc              7.562    0.221   34.143    0.000    7.128    7.996    7.562    0.394
##    .ssasi             6.108    0.195   31.390    0.000    5.726    6.489    6.108    0.404
##    .ssei              4.244    0.143   29.603    0.000    3.963    4.525    4.244    0.354
##    .ssno              0.185    0.011   16.272    0.000    0.163    0.207    0.185    0.215
##    .sscs              0.351    0.015   23.876    0.000    0.322    0.379    0.351    0.396
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.755    0.091   30.434    0.000    2.578    2.933    2.977    0.559
##     sswk    (.p2.)    7.075    0.084   84.277    0.000    6.911    7.240    7.646    0.939
##     sspc    (.p3.)    2.854    0.037   77.639    0.000    2.782    2.926    3.084    0.866
##   math =~                                                                                 
##     ssar    (.p4.)    6.541    0.070   92.830    0.000    6.403    6.679    7.103    0.942
##     ssmk    (.p5.)    5.367    0.061   87.329    0.000    5.247    5.488    5.829    0.884
##     ssmc    (.p6.)    1.134    0.076   14.990    0.000    0.985    1.282    1.231    0.227
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.339    0.079   16.893    0.000    1.184    1.495    1.982    0.372
##     ssasi   (.p8.)    3.003    0.045   66.205    0.000    2.914    3.091    4.444    0.816
##     ssmc    (.p9.)    2.425    0.068   35.739    0.000    2.292    2.558    3.589    0.661
##     ssei    (.10.)    2.784    0.044   63.605    0.000    2.698    2.870    4.120    0.931
##   speed =~                                                                                
##     ssno    (.11.)    0.822    0.012   70.547    0.000    0.799    0.845    0.858    0.886
##     sscs    (.12.)    0.731    0.012   60.642    0.000    0.708    0.755    0.763    0.815
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              1.006    0.027   37.610    0.000    0.954    1.059    0.857    0.857
##     electronic        1.385    0.042   32.891    0.000    1.302    1.468    0.866    0.866
##     speed             0.887    0.030   29.867    0.000    0.829    0.946    0.787    0.787
##   math ~~                                                                                 
##     electronic        1.239    0.037   33.359    0.000    1.166    1.312    0.771    0.771
##     speed             0.930    0.027   34.031    0.000    0.877    0.984    0.821    0.821
##   electronic ~~                                                                           
##     speed             1.002    0.038   26.697    0.000    0.928    1.075    0.648    0.648
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             16.358    0.087  188.331    0.000   16.188   16.528   16.358    3.072
##    .sswk             25.460    0.130  195.905    0.000   25.205   25.715   25.460    3.128
##    .sspc             10.389    0.059  175.230    0.000   10.273   10.505   10.389    2.918
##    .ssar             18.393    0.130  141.785    0.000   18.139   18.647   18.393    2.441
##    .ssmk             13.626    0.116  116.977    0.000   13.397   13.854   13.626    2.066
##    .ssmc             15.617    0.092  169.826    0.000   15.437   15.797   15.617    2.878
##    .ssasi            16.348    0.092  177.720    0.000   16.168   16.528   16.348    3.002
##    .ssei             12.524    0.072  174.554    0.000   12.384   12.665   12.524    2.829
##    .ssno              0.084    0.016    5.181    0.000    0.052    0.116    0.084    0.087
##    .sscs             -0.042    0.016   -2.602    0.009   -0.073   -0.010   -0.042   -0.045
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.329    0.161   33.130    0.000    5.014    5.644    5.329    0.188
##    .sswk              7.795    0.435   17.927    0.000    6.943    8.648    7.795    0.118
##    .sspc              3.166    0.109   28.988    0.000    2.952    3.380    3.166    0.250
##    .ssar              6.346    0.369   17.216    0.000    5.624    7.069    6.346    0.112
##    .ssmk              9.539    0.315   30.298    0.000    8.922   10.156    9.539    0.219
##    .ssmc              8.234    0.249   33.024    0.000    7.746    8.723    8.234    0.280
##    .ssasi             9.914    0.327   30.332    0.000    9.274   10.555    9.914    0.334
##    .ssei              2.630    0.136   19.341    0.000    2.364    2.897    2.630    0.134
##    .ssno              0.201    0.011   18.603    0.000    0.179    0.222    0.201    0.214
##    .sscs              0.294    0.014   21.265    0.000    0.267    0.321    0.294    0.336
##     verbal            1.168    0.036   32.450    0.000    1.097    1.238    1.000    1.000
##     math              1.179    0.032   36.431    0.000    1.116    1.243    1.000    1.000
##     electronic        2.191    0.078   28.203    0.000    2.038    2.343    1.000    1.000
##     speed             1.090    0.040   27.227    0.000    1.011    1.168    1.000    1.000
scalar<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   3571.682     68.000      0.000      0.963      0.097      0.046 505138.190 505590.677
Mc(scalar)
## [1] 0.8517441
summary(scalar, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 122 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3571.682    2136.281
##   Degrees of freedom                                68          68
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.672
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1632.797     976.602
##     0                                         1938.885    1159.679
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.731    0.062   44.023    0.000    2.609    2.853    2.731    0.595
##     sswk    (.p2.)    7.064    0.084   83.657    0.000    6.899    7.230    7.064    0.928
##     sspc    (.p3.)    2.865    0.036   80.085    0.000    2.795    2.935    2.865    0.859
##   math =~                                                                                 
##     ssar    (.p4.)    6.569    0.070   94.435    0.000    6.432    6.705    6.569    0.936
##     ssmk    (.p5.)    5.326    0.063   84.949    0.000    5.203    5.449    5.326    0.872
##     ssmc    (.p6.)    1.013    0.067   15.114    0.000    0.882    1.145    1.013    0.233
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.336    0.044   30.243    0.000    1.250    1.423    1.336    0.291
##     ssasi   (.p8.)    3.185    0.046   69.891    0.000    3.095    3.274    3.185    0.786
##     ssmc    (.p9.)    2.494    0.058   42.700    0.000    2.380    2.609    2.494    0.574
##     ssei    (.10.)    2.552    0.043   59.799    0.000    2.469    2.636    2.552    0.758
##   speed =~                                                                                
##     ssno    (.11.)    0.806    0.012   67.536    0.000    0.782    0.829    0.806    0.873
##     sscs    (.12.)    0.748    0.012   62.016    0.000    0.724    0.771    0.748    0.784
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.831    0.007  127.511    0.000    0.818    0.844    0.831    0.831
##     electronic        0.886    0.008  116.397    0.000    0.871    0.900    0.886    0.886
##     speed             0.749    0.011   68.437    0.000    0.728    0.771    0.749    0.749
##   math ~~                                                                                 
##     electronic        0.817    0.010   79.815    0.000    0.797    0.837    0.817    0.817
##     speed             0.742    0.010   73.700    0.000    0.722    0.762    0.742    0.742
##   electronic ~~                                                                           
##     speed             0.631    0.014   44.273    0.000    0.603    0.659    0.631    0.631
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   14.728    0.077  191.749    0.000   14.577   14.878   14.728    3.208
##    .sswk    (.34.)   25.859    0.121  214.291    0.000   25.623   26.096   25.859    3.398
##    .sspc    (.35.)   10.889    0.053  207.319    0.000   10.786   10.992   10.889    3.263
##    .ssar    (.36.)   16.819    0.122  138.333    0.000   16.581   17.058   16.819    2.397
##    .ssmk    (.37.)   12.834    0.104  123.850    0.000   12.631   13.037   12.834    2.101
##    .ssmc    (.38.)   11.881    0.072  164.808    0.000   11.739   12.022   11.881    2.733
##    .ssasi   (.39.)   11.331    0.066  172.095    0.000   11.202   11.460   11.331    2.798
##    .ssei    (.40.)    9.218    0.056  163.326    0.000    9.107    9.328    9.218    2.737
##    .ssno    (.41.)    0.344    0.015   23.001    0.000    0.315    0.373    0.344    0.373
##    .sscs    (.42.)    0.302    0.016   19.046    0.000    0.271    0.334    0.302    0.317
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.366    0.162   33.075    0.000    5.048    5.684    5.366    0.255
##    .sswk              8.025    0.406   19.775    0.000    7.229    8.820    8.025    0.139
##    .sspc              2.928    0.099   29.606    0.000    2.734    3.122    2.928    0.263
##    .ssar              6.105    0.390   15.652    0.000    5.340    6.869    6.105    0.124
##    .ssmk              8.954    0.307   29.212    0.000    8.354    9.555    8.954    0.240
##    .ssmc              7.511    0.221   33.953    0.000    7.078    7.945    7.511    0.398
##    .ssasi             6.260    0.213   29.356    0.000    5.842    6.678    6.260    0.382
##    .ssei              4.831    0.155   31.098    0.000    4.526    5.135    4.831    0.426
##    .ssno              0.203    0.011   17.842    0.000    0.180    0.225    0.203    0.238
##    .sscs              0.350    0.015   22.843    0.000    0.320    0.380    0.350    0.385
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.731    0.062   44.023    0.000    2.609    2.853    2.945    0.551
##     sswk    (.p2.)    7.064    0.084   83.657    0.000    6.899    7.230    7.618    0.937
##     sspc    (.p3.)    2.865    0.036   80.085    0.000    2.795    2.935    3.089    0.864
##   math =~                                                                                 
##     ssar    (.p4.)    6.569    0.070   94.435    0.000    6.432    6.705    7.123    0.943
##     ssmk    (.p5.)    5.326    0.063   84.949    0.000    5.203    5.449    5.776    0.879
##     ssmc    (.p6.)    1.013    0.067   15.114    0.000    0.882    1.145    1.099    0.200
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.336    0.044   30.243    0.000    1.250    1.423    2.041    0.382
##     ssasi   (.p8.)    3.185    0.046   69.891    0.000    3.095    3.274    4.864    0.841
##     ssmc    (.p9.)    2.494    0.058   42.700    0.000    2.380    2.609    3.810    0.695
##     ssei    (.10.)    2.552    0.043   59.799    0.000    2.469    2.636    3.899    0.909
##   speed =~                                                                                
##     ssno    (.11.)    0.806    0.012   67.536    0.000    0.782    0.829    0.841    0.875
##     sscs    (.12.)    0.748    0.012   62.016    0.000    0.724    0.771    0.781    0.822
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              1.003    0.026   37.915    0.000    0.951    1.055    0.858    0.858
##     electronic        1.427    0.043   33.407    0.000    1.344    1.511    0.867    0.867
##     speed             0.890    0.030   29.756    0.000    0.832    0.949    0.791    0.791
##   math ~~                                                                                 
##     electronic        1.280    0.038   33.457    0.000    1.205    1.355    0.773    0.773
##     speed             0.932    0.028   33.806    0.000    0.878    0.986    0.823    0.823
##   electronic ~~                                                                           
##     speed             1.041    0.039   26.673    0.000    0.964    1.117    0.653    0.653
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   14.728    0.077  191.749    0.000   14.577   14.878   14.728    2.757
##    .sswk    (.34.)   25.859    0.121  214.291    0.000   25.623   26.096   25.859    3.182
##    .sspc    (.35.)   10.889    0.053  207.319    0.000   10.786   10.992   10.889    3.046
##    .ssar    (.36.)   16.819    0.122  138.333    0.000   16.581   17.058   16.819    2.227
##    .ssmk    (.37.)   12.834    0.104  123.850    0.000   12.631   13.037   12.834    1.954
##    .ssmc    (.38.)   11.881    0.072  164.808    0.000   11.739   12.022   11.881    2.167
##    .ssasi   (.39.)   11.331    0.066  172.095    0.000   11.202   11.460   11.331    1.960
##    .ssei    (.40.)    9.218    0.056  163.326    0.000    9.107    9.328    9.218    2.148
##    .ssno    (.41.)    0.344    0.015   23.001    0.000    0.315    0.373    0.344    0.358
##    .sscs    (.42.)    0.302    0.016   19.046    0.000    0.271    0.334    0.302    0.318
##     verbal           -0.090    0.025   -3.544    0.000   -0.140   -0.040   -0.083   -0.083
##     math              0.213    0.028    7.670    0.000    0.159    0.268    0.197    0.197
##     elctrnc           1.395    0.044   31.938    0.000    1.310    1.481    0.913    0.913
##     speed            -0.376    0.029  -13.187    0.000   -0.432   -0.320   -0.360   -0.360
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.280    0.161   32.730    0.000    4.963    5.596    5.280    0.185
##    .sswk              8.002    0.441   18.151    0.000    7.138    8.866    8.002    0.121
##    .sspc              3.235    0.115   28.203    0.000    3.011    3.460    3.235    0.253
##    .ssar              6.300    0.382   16.496    0.000    5.552    7.049    6.300    0.110
##    .ssmk              9.797    0.328   29.851    0.000    9.154   10.440    9.797    0.227
##    .ssmc              7.856    0.243   32.354    0.000    7.380    8.332    7.856    0.261
##    .ssasi             9.771    0.353   27.672    0.000    9.079   10.463    9.771    0.292
##    .ssei              3.210    0.139   23.163    0.000    2.938    3.481    3.210    0.174
##    .ssno              0.216    0.011   19.499    0.000    0.194    0.237    0.216    0.234
##    .sscs              0.293    0.014   20.273    0.000    0.265    0.321    0.293    0.325
##     verbal            1.163    0.036   32.518    0.000    1.093    1.233    1.000    1.000
##     math              1.176    0.032   36.408    0.000    1.113    1.239    1.000    1.000
##     electronic        2.333    0.082   28.436    0.000    2.172    2.494    1.000    1.000
##     speed             1.090    0.041   26.702    0.000    1.010    1.170    1.000    1.000
lavTestScore(scalar, release = 13:22)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test       X2 df p.value
## 1 score 1540.604 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs      X2 df p.value
## 1  .p33. == .p79.   1.179  1   0.278
## 2  .p34. == .p80. 241.868  1   0.000
## 3  .p35. == .p81. 273.270  1   0.000
## 4  .p36. == .p82. 175.673  1   0.000
## 5  .p37. == .p83. 187.883  1   0.000
## 6  .p38. == .p84.   5.275  1   0.022
## 7  .p39. == .p85. 657.006  1   0.000
## 8  .p40. == .p86. 708.709  1   0.000
## 9  .p41. == .p87. 275.574  1   0.000
## 10 .p42. == .p88. 275.574  1   0.000
scalar2<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2234.798     65.000      0.000      0.977      0.078      0.029 503807.306 504281.687
Mc(scalar2)
## [1] 0.9054013
strict<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2596.755     75.000      0.000      0.973      0.078      0.037 504149.263 504550.662
Mc(strict) 
## [1] 0.8909235
cf.cov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2624.889     71.000      0.000      0.973      0.081      0.108 504185.397 504615.989
Mc(cf.cov)
## [1] 0.8896133
summary(cf.cov, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 107 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
##   Number of equality constraints                    25
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2624.889    1580.929
##   Degrees of freedom                                71          71
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.660
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          975.842     587.734
##     0                                         1649.047     993.195
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.891    0.054   53.943    0.000    2.786    2.996    2.891    0.588
##     sswk    (.p2.)    7.452    0.066  113.648    0.000    7.324    7.581    7.452    0.936
##     sspc    (.p3.)    3.012    0.030   99.988    0.000    2.953    3.071    3.012    0.871
##   math =~                                                                                 
##     ssar    (.p4.)    6.863    0.054  126.780    0.000    6.757    6.969    6.863    0.940
##     ssmk    (.p5.)    5.577    0.052  107.306    0.000    5.475    5.679    5.577    0.882
##     ssmc    (.p6.)    1.458    0.067   21.742    0.000    1.327    1.590    1.458    0.313
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.542    0.046   33.763    0.000    1.452    1.631    1.542    0.314
##     ssasi   (.p8.)    3.439    0.047   73.285    0.000    3.347    3.531    3.439    0.810
##     ssmc    (.p9.)    2.454    0.059   41.918    0.000    2.339    2.569    2.454    0.526
##     ssei    (.10.)    3.210    0.042   76.844    0.000    3.128    3.292    3.210    0.846
##   speed =~                                                                                
##     ssno    (.11.)    0.854    0.010   87.144    0.000    0.835    0.873    0.854    0.895
##     sscs    (.12.)    0.759    0.011   70.821    0.000    0.738    0.780    0.759    0.788
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.832    0.006  141.549    0.000    0.821    0.844    0.832    0.832
##     elctrnc (.28.)    0.909    0.006  161.303    0.000    0.898    0.920    0.909    0.909
##     speed   (.29.)    0.743    0.009   84.940    0.000    0.726    0.760    0.743    0.743
##   math ~~                                                                                 
##     elctrnc (.30.)    0.827    0.008  110.046    0.000    0.812    0.841    0.827    0.827
##     speed   (.31.)    0.770    0.008  100.853    0.000    0.755    0.785    0.770    0.770
##   electronic ~~                                                                           
##     speed   (.32.)    0.656    0.010   62.811    0.000    0.636    0.677    0.656    0.656
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   14.715    0.077  190.839    0.000   14.564   14.866   14.715    2.995
##    .sswk             25.615    0.123  208.263    0.000   25.374   25.856   25.615    3.218
##    .sspc    (.35.)   11.115    0.053  211.417    0.000   11.012   11.218   11.115    3.213
##    .ssar    (.36.)   16.840    0.122  138.553    0.000   16.602   17.078   16.840    2.306
##    .ssmk    (.37.)   12.850    0.104  123.882    0.000   12.646   13.053   12.850    2.031
##    .ssmc    (.38.)   11.726    0.072  161.763    0.000   11.584   11.868   11.726    2.514
##    .ssasi   (.39.)   11.019    0.064  173.429    0.000   10.894   11.143   11.019    2.596
##    .ssei              9.613    0.062  156.264    0.000    9.492    9.733    9.613    2.533
##    .ssno    (.41.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.317
##    .sscs              0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.394
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.300    0.161   32.890    0.000    4.984    5.616    5.300    0.220
##    .sswk              7.816    0.395   19.777    0.000    7.041    8.590    7.816    0.123
##    .sspc              2.892    0.097   29.733    0.000    2.702    3.083    2.892    0.242
##    .ssar              6.224    0.388   16.027    0.000    5.463    6.985    6.224    0.117
##    .ssmk              8.907    0.305   29.163    0.000    8.308    9.505    8.907    0.223
##    .ssmc              7.685    0.221   34.732    0.000    7.251    8.118    7.685    0.353
##    .ssasi             6.187    0.198   31.303    0.000    5.800    6.575    6.187    0.343
##    .ssei              4.092    0.141   28.965    0.000    3.815    4.369    4.092    0.284
##    .ssno              0.182    0.011   16.202    0.000    0.160    0.204    0.182    0.200
##    .sscs              0.353    0.015   24.102    0.000    0.324    0.382    0.353    0.380
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.891    0.054   53.943    0.000    2.786    2.996    2.815    0.568
##     sswk    (.p2.)    7.452    0.066  113.648    0.000    7.324    7.581    7.256    0.931
##     sspc    (.p3.)    3.012    0.030   99.988    0.000    2.953    3.071    2.933    0.857
##   math =~                                                                                 
##     ssar    (.p4.)    6.863    0.054  126.780    0.000    6.757    6.969    6.834    0.937
##     ssmk    (.p5.)    5.577    0.052  107.306    0.000    5.475    5.679    5.553    0.872
##     ssmc    (.p6.)    1.458    0.067   21.742    0.000    1.327    1.590    1.452    0.293
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.542    0.046   33.763    0.000    1.452    1.631    1.781    0.359
##     ssasi   (.p8.)    3.439    0.047   73.285    0.000    3.347    3.531    3.974    0.782
##     ssmc    (.p9.)    2.454    0.059   41.918    0.000    2.339    2.569    2.835    0.571
##     ssei    (.10.)    3.210    0.042   76.844    0.000    3.128    3.292    3.709    0.921
##   speed =~                                                                                
##     ssno    (.11.)    0.854    0.010   87.144    0.000    0.835    0.873    0.829    0.879
##     sscs    (.12.)    0.759    0.011   70.821    0.000    0.738    0.780    0.737    0.806
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.832    0.006  141.549    0.000    0.821    0.844    0.858    0.858
##     elctrnc (.28.)    0.909    0.006  161.303    0.000    0.898    0.920    0.808    0.808
##     speed   (.29.)    0.743    0.009   84.940    0.000    0.726    0.760    0.786    0.786
##   math ~~                                                                                 
##     elctrnc (.30.)    0.827    0.008  110.046    0.000    0.812    0.841    0.718    0.718
##     speed   (.31.)    0.770    0.008  100.853    0.000    0.755    0.785    0.797    0.797
##   electronic ~~                                                                           
##     speed   (.32.)    0.656    0.010   62.811    0.000    0.636    0.677    0.585    0.585
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   14.715    0.077  190.839    0.000   14.564   14.866   14.715    2.969
##    .sswk             27.258    0.157  173.823    0.000   26.951   27.565   27.258    3.498
##    .sspc    (.35.)   11.115    0.053  211.417    0.000   11.012   11.218   11.115    3.248
##    .ssar    (.36.)   16.840    0.122  138.553    0.000   16.602   17.078   16.840    2.310
##    .ssmk    (.37.)   12.850    0.104  123.882    0.000   12.646   13.053   12.850    2.017
##    .ssmc    (.38.)   11.726    0.072  161.763    0.000   11.584   11.868   11.726    2.362
##    .ssasi   (.39.)   11.019    0.064  173.429    0.000   10.894   11.143   11.019    2.169
##    .ssei              7.648    0.102   74.990    0.000    7.448    7.848    7.648    1.899
##    .ssno    (.41.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.321
##    .sscs              0.152    0.019    8.207    0.000    0.116    0.189    0.152    0.166
##     verbal           -0.241    0.026   -9.169    0.000   -0.293   -0.190   -0.248   -0.248
##     math              0.198    0.026    7.579    0.000    0.147    0.249    0.199    0.199
##     elctrnc           1.519    0.041   36.969    0.000    1.439    1.600    1.315    1.315
##     speed            -0.256    0.026   -9.643    0.000   -0.307   -0.204   -0.263   -0.263
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.352    0.161   33.146    0.000    5.036    5.669    5.352    0.218
##    .sswk              8.063    0.434   18.596    0.000    7.213    8.913    8.063    0.133
##    .sspc              3.111    0.106   29.220    0.000    2.903    3.320    3.111    0.266
##    .ssar              6.438    0.376   17.105    0.000    5.701    7.176    6.438    0.121
##    .ssmk              9.750    0.324   30.111    0.000    9.115   10.384    9.750    0.240
##    .ssmc              8.577    0.248   34.628    0.000    8.092    9.063    8.577    0.348
##    .ssasi            10.022    0.332   30.145    0.000    9.370   10.674   10.022    0.388
##    .ssei              2.457    0.140   17.578    0.000    2.183    2.730    2.457    0.152
##    .ssno              0.201    0.011   18.638    0.000    0.180    0.222    0.201    0.227
##    .sscs              0.294    0.014   21.207    0.000    0.267    0.321    0.294    0.351
##     verbal            0.948    0.012   80.591    0.000    0.925    0.971    1.000    1.000
##     math              0.992    0.013   77.137    0.000    0.966    1.017    1.000    1.000
##     electronic        1.335    0.028   48.269    0.000    1.281    1.389    1.000    1.000
##     speed             0.942    0.019   48.442    0.000    0.904    0.981    1.000    1.000
cf.vcov<-cfa(cf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   3084.987     75.000      0.000      0.968      0.086      0.126 504637.495 505038.894
Mc(cf.vcov)
## [1] 0.8712226
cf.cov2<-cfa(cf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2674.279     74.000      0.000      0.972      0.080      0.107 504228.787 504637.485
Mc(cf.cov2)
## [1] 0.8877251
summary(cf.cov2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 107 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        81
##   Number of equality constraints                    25
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2674.279    1614.431
##   Degrees of freedom                                74          74
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.656
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          986.682     595.649
##     0                                         1687.597    1018.783
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.858    0.052   54.617    0.000    2.756    2.961    2.858    0.584
##     sswk    (.p2.)    7.356    0.061  119.814    0.000    7.236    7.477    7.356    0.931
##     sspc    (.p3.)    2.977    0.029  104.407    0.000    2.921    3.032    2.977    0.868
##   math =~                                                                                 
##     ssar    (.p4.)    6.851    0.049  140.454    0.000    6.756    6.947    6.851    0.939
##     ssmk    (.p5.)    5.564    0.049  114.396    0.000    5.468    5.659    5.564    0.881
##     ssmc    (.p6.)    1.461    0.067   21.908    0.000    1.330    1.592    1.461    0.313
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.547    0.046   33.824    0.000    1.457    1.636    1.547    0.316
##     ssasi   (.p8.)    3.446    0.047   72.608    0.000    3.353    3.539    3.446    0.810
##     ssmc    (.p9.)    2.457    0.059   41.636    0.000    2.341    2.572    2.457    0.526
##     ssei    (.10.)    3.225    0.042   76.129    0.000    3.142    3.308    3.225    0.847
##   speed =~                                                                                
##     ssno    (.11.)    0.840    0.009   97.494    0.000    0.823    0.857    0.840    0.886
##     sscs    (.12.)    0.747    0.010   76.310    0.000    0.728    0.767    0.747    0.783
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.847    0.005  185.222    0.000    0.838    0.856    0.847    0.847
##     elctrnc (.28.)    0.915    0.006  166.338    0.000    0.904    0.926    0.915    0.915
##     speed   (.29.)    0.767    0.007  105.637    0.000    0.753    0.782    0.767    0.767
##   math ~~                                                                                 
##     elctrnc (.30.)    0.827    0.007  114.940    0.000    0.813    0.841    0.827    0.827
##     speed   (.31.)    0.783    0.007  119.303    0.000    0.770    0.796    0.783    0.783
##   electronic ~~                                                                           
##     speed   (.32.)    0.666    0.010   66.127    0.000    0.646    0.686    0.666    0.666
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   14.714    0.077  190.746    0.000   14.563   14.865   14.714    3.007
##    .sswk             25.615    0.123  208.263    0.000   25.374   25.856   25.615    3.243
##    .sspc    (.35.)   11.116    0.053  211.504    0.000   11.013   11.219   11.116    3.242
##    .ssar    (.36.)   16.843    0.122  138.440    0.000   16.605   17.082   16.843    2.308
##    .ssmk    (.37.)   12.850    0.104  123.949    0.000   12.647   13.053   12.850    2.036
##    .ssmc    (.38.)   11.727    0.072  161.854    0.000   11.585   11.869   11.727    2.511
##    .ssasi   (.39.)   11.019    0.064  173.348    0.000   10.894   11.143   11.019    2.591
##    .ssei              9.613    0.062  156.264    0.000    9.492    9.733    9.613    2.526
##    .ssno    (.41.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.319
##    .sscs              0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.398
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssgs              5.288    0.161   32.770    0.000    4.972    5.604    5.288    0.221
##    .sswk              8.280    0.389   21.291    0.000    7.518    9.042    8.280    0.133
##    .sspc              2.898    0.097   29.983    0.000    2.709    3.088    2.898    0.246
##    .ssar              6.335    0.374   16.931    0.000    5.601    7.068    6.335    0.119
##    .ssmk              8.893    0.303   29.352    0.000    8.299    9.487    8.893    0.223
##    .ssmc              7.711    0.222   34.774    0.000    7.276    8.145    7.711    0.353
##    .ssasi             6.205    0.198   31.392    0.000    5.817    6.592    6.205    0.343
##    .ssei              4.084    0.141   28.931    0.000    3.807    4.361    4.084    0.282
##    .ssno              0.192    0.011   18.191    0.000    0.172    0.213    0.192    0.214
##    .sscs              0.353    0.014   24.451    0.000    0.325    0.381    0.353    0.387
##     electronic        1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    2.858    0.052   54.617    0.000    2.756    2.961    2.858    0.574
##     sswk    (.p2.)    7.356    0.061  119.814    0.000    7.236    7.477    7.356    0.936
##     sspc    (.p3.)    2.977    0.029  104.407    0.000    2.921    3.032    2.977    0.860
##   math =~                                                                                 
##     ssar    (.p4.)    6.851    0.049  140.454    0.000    6.756    6.947    6.851    0.939
##     ssmk    (.p5.)    5.564    0.049  114.396    0.000    5.468    5.659    5.564    0.871
##     ssmc    (.p6.)    1.461    0.067   21.908    0.000    1.330    1.592    1.461    0.295
##   electronic =~                                                                           
##     ssgs    (.p7.)    1.547    0.046   33.824    0.000    1.457    1.636    1.774    0.357
##     ssasi   (.p8.)    3.446    0.047   72.608    0.000    3.353    3.539    3.953    0.780
##     ssmc    (.p9.)    2.457    0.059   41.636    0.000    2.341    2.572    2.818    0.568
##     ssei    (.10.)    3.225    0.042   76.129    0.000    3.142    3.308    3.699    0.921
##   speed =~                                                                                
##     ssno    (.11.)    0.840    0.009   97.494    0.000    0.823    0.857    0.840    0.885
##     sscs    (.12.)    0.747    0.010   76.310    0.000    0.728    0.767    0.747    0.810
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math    (.27.)    0.847    0.005  185.222    0.000    0.838    0.856    0.847    0.847
##     elctrnc (.28.)    0.915    0.006  166.338    0.000    0.904    0.926    0.798    0.798
##     speed   (.29.)    0.767    0.007  105.637    0.000    0.753    0.782    0.767    0.767
##   math ~~                                                                                 
##     elctrnc (.30.)    0.827    0.007  114.940    0.000    0.813    0.841    0.721    0.721
##     speed   (.31.)    0.783    0.007  119.303    0.000    0.770    0.796    0.783    0.783
##   electronic ~~                                                                           
##     speed   (.32.)    0.666    0.010   66.127    0.000    0.646    0.686    0.581    0.581
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.33.)   14.714    0.077  190.746    0.000   14.563   14.865   14.714    2.957
##    .sswk             27.259    0.157  174.061    0.000   26.952   27.566   27.259    3.469
##    .sspc    (.35.)   11.116    0.053  211.504    0.000   11.013   11.219   11.116    3.213
##    .ssar    (.36.)   16.843    0.122  138.440    0.000   16.605   17.082   16.843    2.310
##    .ssmk    (.37.)   12.850    0.104  123.949    0.000   12.647   13.053   12.850    2.013
##    .ssmc    (.38.)   11.727    0.072  161.854    0.000   11.585   11.869   11.727    2.365
##    .ssasi   (.39.)   11.019    0.064  173.348    0.000   10.894   11.143   11.019    2.175
##    .ssei              7.636    0.103   74.146    0.000    7.434    7.838    7.636    1.902
##    .ssno    (.41.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.319
##    .sscs              0.152    0.019    8.214    0.000    0.116    0.189    0.152    0.165
##     verbal           -0.245    0.027   -9.210    0.000   -0.297   -0.192   -0.245   -0.245
##     math              0.199    0.026    7.599    0.000    0.147    0.250    0.199    0.199
##     elctrnc           1.516    0.041   36.956    0.000    1.436    1.596    1.322    1.322
##     speed            -0.260    0.027   -9.660    0.000   -0.312   -0.207   -0.260   -0.260
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssgs              5.354    0.161   33.245    0.000    5.039    5.670    5.354    0.216
##    .sswk              7.625    0.417   18.266    0.000    6.807    8.444    7.625    0.124
##    .sspc              3.111    0.107   29.160    0.000    2.902    3.320    3.111    0.260
##    .ssar              6.250    0.362   17.279    0.000    5.541    6.959    6.250    0.118
##    .ssmk              9.811    0.327   29.975    0.000    9.169   10.452    9.811    0.241
##    .ssmc              8.572    0.249   34.458    0.000    8.084    9.060    8.572    0.349
##    .ssasi            10.043    0.333   30.124    0.000    9.389   10.696   10.043    0.391
##    .ssei              2.442    0.141   17.294    0.000    2.165    2.718    2.442    0.151
##    .ssno              0.194    0.011   18.333    0.000    0.174    0.215    0.194    0.216
##    .sscs              0.292    0.014   20.827    0.000    0.265    0.320    0.292    0.344
##     electronic        1.316    0.027   47.967    0.000    1.262    1.369    1.000    1.000
tests<-lavTestLRT(configural, metric, scalar2, cf.cov, cf.cov2)
Td=tests[2:5,"Chisq diff"]
Td
## [1] 147.68130 153.15758 264.60588  31.55765
dfd=tests[2:5,"Df diff"]
dfd
## [1] 8 3 6 3
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-5449+ 5469 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05655974 0.09576267 0.08886419 0.04176225
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04877831 0.06471820
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.08317531 0.10896878
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.07989524 0.09816115
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1] 0.02934314 0.05551311
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.918     0.252     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.980     0.309
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.948     0.024
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.172     0.013     0.000     0.000
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 147.6813 153.1576 187.9920
dfd=tests[2:4,"Df diff"]
dfd
## [1]  8  3 10
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-5449+ 5469 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05655974 0.09576267 0.05710623
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04877831 0.06471820
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.08317531 0.10896878
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.05012584 0.06438424
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.918     0.252     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.980     0.309
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.953     0.264     0.000     0.000
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1] 147.6813 995.0450
dfd=tests[2:3,"Df diff"]
dfd
## [1] 8 6
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-5449+ 5469 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05655974 0.17378634
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04877831 0.06471820
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1647653 0.1829662
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.918     0.252     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
# HIGH ORDER FACTOR

hof.model<-'
verbal =~ ssgs + sswk + sspc 
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
'

hof.lv<-'
verbal =~ ssgs + sswk + sspc 
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
speed~~1*speed
'

hof.weak<-'
verbal =~ ssgs + sswk + sspc 
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
'

baseline<-cfa(hof.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   3823.462     29.000      0.000      0.960      0.109      0.044 513377.638 513640.372
Mc(baseline)
## [1] 0.840476
configural<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2545.486     58.000      0.000      0.974      0.089      0.026 504131.994 504657.462
Mc(configural)
## [1] 0.8923229
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 95 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        72
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2545.486    1483.765
##   Degrees of freedom                                58          58
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.716
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          860.240     501.434
##     0                                         1685.247     982.331
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              0.688    0.055   12.465    0.000    0.580    0.796    2.240    0.482
##     sswk              2.192    0.130   16.898    0.000    1.937    2.446    7.138    0.934
##     sspc              0.863    0.050   17.153    0.000    0.764    0.962    2.811    0.857
##   math =~                                                                                 
##     ssar              3.039    0.082   37.013    0.000    2.878    3.199    6.533    0.934
##     ssmk              2.501    0.068   36.922    0.000    2.368    2.634    5.378    0.877
##     ssmc              0.754    0.060   12.622    0.000    0.637    0.871    1.621    0.376
##   electronic =~                                                                           
##     ssgs              0.846    0.061   13.927    0.000    0.727    0.965    1.953    0.420
##     ssasi             1.219    0.051   23.699    0.000    1.118    1.320    2.815    0.749
##     ssmc              0.795    0.061   12.985    0.000    0.675    0.916    1.837    0.427
##     ssei              1.289    0.052   24.944    0.000    1.187    1.390    2.975    0.831
##   speed =~                                                                                
##     ssno              0.510    0.012   43.688    0.000    0.487    0.533    0.809    0.872
##     sscs              0.467    0.011   41.531    0.000    0.445    0.489    0.742    0.789
##   g =~                                                                                    
##     verbal            3.100    0.198   15.655    0.000    2.712    3.488    0.952    0.952
##     math              1.903    0.063   30.176    0.000    1.780    2.027    0.885    0.885
##     electronic        2.081    0.093   22.377    0.000    1.899    2.264    0.901    0.901
##     speed             1.233    0.041   30.377    0.000    1.154    1.313    0.777    0.777
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             14.716    0.078  188.083    0.000   14.563   14.869   14.716    3.167
##    .sswk             25.615    0.123  208.263    0.000   25.374   25.856   25.615    3.352
##    .sspc             11.115    0.053  210.841    0.000   11.011   11.218   11.115    3.390
##    .ssar             16.646    0.123  135.820    0.000   16.405   16.886   16.646    2.379
##    .ssmk             13.157    0.108  122.070    0.000   12.946   13.369   13.157    2.146
##    .ssmc             11.841    0.076  156.606    0.000   11.693   11.989   11.841    2.750
##    .ssasi            10.952    0.064  171.593    0.000   10.827   11.077   10.952    2.913
##    .ssei              9.613    0.062  156.264    0.000    9.492    9.733    9.613    2.685
##    .ssno              0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.326
##    .sscs              0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.404
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.252    0.170   30.968    0.000    4.920    5.585    5.252    0.243
##    .sswk              7.426    0.421   17.642    0.000    6.601    8.251    7.426    0.127
##    .sspc              2.852    0.096   29.716    0.000    2.664    3.041    2.852    0.265
##    .ssar              6.260    0.389   16.112    0.000    5.499    7.022    6.260    0.128
##    .ssmk              8.672    0.316   27.444    0.000    8.053    9.291    8.672    0.231
##    .ssmc              7.784    0.224   34.764    0.000    7.345    8.223    7.784    0.420
##    .ssasi             6.209    0.200   31.118    0.000    5.818    6.600    6.209    0.439
##    .ssei              3.962    0.149   26.521    0.000    3.669    4.255    3.962    0.309
##    .ssno              0.206    0.013   16.101    0.000    0.181    0.231    0.206    0.239
##    .sscs              0.333    0.016   20.679    0.000    0.302    0.365    0.333    0.377
##    .verbal            1.000                               1.000    1.000    0.094    0.094
##    .math              1.000                               1.000    1.000    0.216    0.216
##    .electronic        1.000                               1.000    1.000    0.188    0.188
##    .speed             1.000                               1.000    1.000    0.397    0.397
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              0.788    0.060   13.038    0.000    0.669    0.906    3.074    0.582
##     sswk              1.942    0.152   12.762    0.000    1.643    2.240    7.578    0.934
##     sspc              0.806    0.062   12.962    0.000    0.684    0.928    3.145    0.874
##   math =~                                                                                 
##     ssar              3.074    0.091   33.594    0.000    2.894    3.253    7.119    0.945
##     ssmk              2.508    0.073   34.457    0.000    2.365    2.650    5.808    0.882
##     ssmc              0.430    0.051    8.358    0.000    0.329    0.530    0.995    0.181
##   electronic =~                                                                           
##     ssgs              0.919    0.061   15.168    0.000    0.801    1.038    1.861    0.352
##     ssasi             2.305    0.064   35.811    0.000    2.179    2.432    4.666    0.835
##     ssmc              1.929    0.070   27.369    0.000    1.791    2.067    3.905    0.711
##     ssei              1.990    0.049   40.714    0.000    1.894    2.085    4.027    0.921
##   speed =~                                                                                
##     ssno              0.476    0.012   39.432    0.000    0.453    0.500    0.849    0.877
##     sscs              0.433    0.011   38.015    0.000    0.411    0.456    0.772    0.824
##   g =~                                                                                    
##     verbal            3.773    0.313   12.069    0.000    3.160    4.386    0.967    0.967
##     math              2.089    0.073   28.713    0.000    1.947    2.232    0.902    0.902
##     electronic        1.760    0.060   29.327    0.000    1.642    1.877    0.869    0.869
##     speed             1.475    0.050   29.365    0.000    1.376    1.573    0.828    0.828
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             16.358    0.087  188.331    0.000   16.188   16.528   16.358    3.098
##    .sswk             25.460    0.130  195.905    0.000   25.205   25.715   25.460    3.139
##    .sspc             10.389    0.059  175.230    0.000   10.273   10.505   10.389    2.887
##    .ssar             18.393    0.130  141.785    0.000   18.139   18.647   18.393    2.440
##    .ssmk             13.626    0.116  116.977    0.000   13.397   13.854   13.626    2.068
##    .ssmc             15.617    0.092  169.826    0.000   15.437   15.797   15.617    2.844
##    .ssasi            16.348    0.092  177.720    0.000   16.168   16.528   16.348    2.926
##    .ssei             12.524    0.072  174.554    0.000   12.384   12.665   12.524    2.865
##    .ssno              0.084    0.016    5.181    0.000    0.052    0.116    0.084    0.087
##    .sscs             -0.042    0.016   -2.602    0.009   -0.073   -0.010   -0.042   -0.045
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.355    0.161   33.292    0.000    5.040    5.670    5.355    0.192
##    .sswk              8.353    0.463   18.057    0.000    7.446    9.260    8.353    0.127
##    .sspc              3.061    0.106   28.755    0.000    2.852    3.269    3.061    0.236
##    .ssar              6.125    0.395   15.499    0.000    5.351    6.900    6.125    0.108
##    .ssmk              9.679    0.334   28.948    0.000    9.024   10.334    9.679    0.223
##    .ssmc              7.831    0.256   30.562    0.000    7.328    8.333    7.831    0.260
##    .ssasi             9.454    0.328   28.814    0.000    8.811   10.097    9.454    0.303
##    .ssei              2.898    0.146   19.889    0.000    2.612    3.184    2.898    0.152
##    .ssno              0.215    0.012   18.638    0.000    0.193    0.238    0.215    0.230
##    .sscs              0.282    0.015   19.272    0.000    0.254    0.311    0.282    0.321
##    .verbal            1.000                               1.000    1.000    0.066    0.066
##    .math              1.000                               1.000    1.000    0.186    0.186
##    .electronic        1.000                               1.000    1.000    0.244    0.244
##    .speed             1.000                               1.000    1.000    0.315    0.315
##     g                 1.000                               1.000    1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2992.380     69.000      0.000      0.969      0.088      0.052 504556.888 505002.076
Mc(metric)
## [1] 0.8746853
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 88 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        77
##   Number of equality constraints                    16
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2992.380    1787.849
##   Degrees of freedom                                69          69
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.674
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1094.578     653.975
##     0                                         1897.801    1133.874
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.883    0.043   20.334    0.000    0.798    0.969    2.633    0.568
##     sswk    (.p2.)    2.312    0.106   21.743    0.000    2.103    2.520    6.891    0.926
##     sspc    (.p3.)    0.939    0.043   21.998    0.000    0.855    1.022    2.798    0.856
##   math =~                                                                                 
##     ssar    (.p4.)    3.035    0.078   38.895    0.000    2.882    3.188    6.428    0.933
##     ssmk    (.p5.)    2.487    0.063   39.413    0.000    2.364    2.611    5.268    0.872
##     ssmc    (.p6.)    0.522    0.040   12.966    0.000    0.443    0.600    1.105    0.246
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.570    0.037   15.287    0.000    0.497    0.643    1.500    0.324
##     ssasi   (.p8.)    1.212    0.054   22.317    0.000    1.105    1.318    3.190    0.791
##     ssmc    (.p9.)    0.986    0.048   20.645    0.000    0.893    1.080    2.596    0.577
##     ssei    (.10.)    1.139    0.051   22.239    0.000    1.038    1.239    2.997    0.825
##   speed =~                                                                                
##     ssno    (.11.)    0.515    0.011   47.150    0.000    0.494    0.536    0.804    0.871
##     sscs    (.12.)    0.469    0.010   45.934    0.000    0.449    0.489    0.732    0.785
##   g =~                                                                                    
##     verbal  (.13.)    2.808    0.138   20.419    0.000    2.538    3.077    0.942    0.942
##     math    (.14.)    1.867    0.057   32.713    0.000    1.755    1.979    0.882    0.882
##     elctrnc (.15.)    2.435    0.111   22.031    0.000    2.218    2.651    0.925    0.925
##     speed   (.16.)    1.198    0.033   35.925    0.000    1.133    1.263    0.768    0.768
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             14.716    0.078  188.083    0.000   14.563   14.869   14.716    3.177
##    .sswk             25.615    0.123  208.263    0.000   25.374   25.856   25.615    3.444
##    .sspc             11.115    0.053  210.841    0.000   11.011   11.218   11.115    3.402
##    .ssar             16.646    0.123  135.820    0.000   16.405   16.886   16.646    2.417
##    .ssmk             13.157    0.108  122.070    0.000   12.946   13.369   13.157    2.178
##    .ssmc             11.841    0.076  156.606    0.000   11.693   11.989   11.841    2.634
##    .ssasi            10.952    0.064  171.593    0.000   10.827   11.077   10.952    2.717
##    .ssei              9.613    0.062  156.264    0.000    9.492    9.733    9.613    2.648
##    .ssno              0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.328
##    .sscs              0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.407
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.385    0.162   33.338    0.000    5.069    5.702    5.385    0.251
##    .sswk              7.842    0.402   19.529    0.000    7.055    8.629    7.842    0.142
##    .sspc              2.848    0.096   29.618    0.000    2.660    3.037    2.848    0.267
##    .ssar              6.110    0.380   16.092    0.000    5.366    6.854    6.110    0.129
##    .ssmk              8.741    0.306   28.584    0.000    8.141    9.340    8.741    0.240
##    .ssmc              7.579    0.223   33.963    0.000    7.141    8.016    7.579    0.375
##    .ssasi             6.073    0.197   30.866    0.000    5.688    6.459    6.073    0.374
##    .ssei              4.199    0.144   29.247    0.000    3.917    4.480    4.199    0.319
##    .ssno              0.205    0.012   17.655    0.000    0.182    0.228    0.205    0.241
##    .sscs              0.334    0.015   22.387    0.000    0.305    0.364    0.334    0.384
##    .verbal            1.000                               1.000    1.000    0.113    0.113
##    .math              1.000                               1.000    1.000    0.223    0.223
##    .electronic        1.000                               1.000    1.000    0.144    0.144
##    .speed             1.000                               1.000    1.000    0.411    0.411
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.883    0.043   20.334    0.000    0.798    0.969    2.965    0.569
##     sswk    (.p2.)    2.312    0.106   21.743    0.000    2.103    2.520    7.758    0.937
##     sspc    (.p3.)    0.939    0.043   21.998    0.000    0.855    1.022    3.150    0.875
##   math =~                                                                                 
##     ssar    (.p4.)    3.035    0.078   38.895    0.000    2.882    3.188    7.211    0.945
##     ssmk    (.p5.)    2.487    0.063   39.413    0.000    2.364    2.611    5.910    0.886
##     ssmc    (.p6.)    0.522    0.040   12.966    0.000    0.443    0.600    1.239    0.238
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.570    0.037   15.287    0.000    0.497    0.643    1.936    0.372
##     ssasi   (.p8.)    1.212    0.054   22.317    0.000    1.105    1.318    4.117    0.794
##     ssmc    (.p9.)    0.986    0.048   20.645    0.000    0.893    1.080    3.350    0.642
##     ssei    (.10.)    1.139    0.051   22.239    0.000    1.038    1.239    3.868    0.923
##   speed =~                                                                                
##     ssno    (.11.)    0.515    0.011   47.150    0.000    0.494    0.536    0.854    0.879
##     sscs    (.12.)    0.469    0.010   45.934    0.000    0.449    0.489    0.778    0.826
##   g =~                                                                                    
##     verbal  (.13.)    2.808    0.138   20.419    0.000    2.538    3.077    0.968    0.968
##     math    (.14.)    1.867    0.057   32.713    0.000    1.755    1.979    0.909    0.909
##     elctrnc (.15.)    2.435    0.111   22.031    0.000    2.218    2.651    0.829    0.829
##     speed   (.16.)    1.198    0.033   35.925    0.000    1.133    1.263    0.835    0.835
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             16.358    0.087  188.331    0.000   16.188   16.528   16.358    3.142
##    .sswk             25.460    0.130  195.905    0.000   25.205   25.715   25.460    3.075
##    .sspc             10.389    0.059  175.230    0.000   10.273   10.505   10.389    2.885
##    .ssar             18.393    0.130  141.785    0.000   18.139   18.647   18.393    2.409
##    .ssmk             13.626    0.116  116.977    0.000   13.397   13.854   13.626    2.042
##    .ssmc             15.617    0.092  169.826    0.000   15.437   15.797   15.617    2.994
##    .ssasi            16.348    0.092  177.720    0.000   16.168   16.528   16.348    3.153
##    .ssei             12.524    0.072  174.554    0.000   12.384   12.665   12.524    2.988
##    .ssno              0.084    0.016    5.181    0.000    0.052    0.116    0.084    0.086
##    .sscs             -0.042    0.016   -2.602    0.009   -0.073   -0.010   -0.042   -0.044
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.360    0.160   33.398    0.000    5.045    5.674    5.360    0.198
##    .sswk              8.367    0.459   18.211    0.000    7.466    9.267    8.367    0.122
##    .sspc              3.045    0.105   28.986    0.000    2.839    3.251    3.045    0.235
##    .ssar              6.284    0.376   16.708    0.000    5.547    7.021    6.284    0.108
##    .ssmk              9.586    0.318   30.106    0.000    8.962   10.210    9.586    0.215
##    .ssmc              8.196    0.257   31.916    0.000    7.693    8.700    8.196    0.301
##    .ssasi             9.928    0.331   30.030    0.000    9.280   10.576    9.928    0.369
##    .ssei              2.610    0.146   17.913    0.000    2.325    2.896    2.610    0.149
##    .ssno              0.215    0.011   19.779    0.000    0.194    0.236    0.215    0.228
##    .sscs              0.283    0.014   20.243    0.000    0.255    0.310    0.283    0.318
##    .verbal            0.711    0.117    6.089    0.000    0.482    0.939    0.063    0.063
##    .math              0.980    0.072   13.689    0.000    0.840    1.121    0.174    0.174
##    .electronic        3.608    0.359   10.053    0.000    2.904    4.311    0.313    0.313
##    .speed             0.831    0.051   16.166    0.000    0.730    0.932    0.302    0.302
##     g                 1.338    0.039   34.084    0.000    1.261    1.415    1.000    1.000
lavTestScore(metric, release = 1:16)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 455.652 16       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs      X2 df p.value
## 1   .p1. == .p47.   0.257  1   0.612
## 2   .p2. == .p48.  52.751  1   0.000
## 3   .p3. == .p49.   2.036  1   0.154
## 4   .p4. == .p50.   8.020  1   0.005
## 5   .p5. == .p51.   3.577  1   0.059
## 6   .p6. == .p52.  19.955  1   0.000
## 7   .p7. == .p53.   5.854  1   0.016
## 8   .p8. == .p54. 162.602  1   0.000
## 9   .p9. == .p55.  63.480  1   0.000
## 10 .p10. == .p56.   0.723  1   0.395
## 11 .p11. == .p57.   0.379  1   0.538
## 12 .p12. == .p58.   1.054  1   0.305
## 13 .p13. == .p59.  61.141  1   0.000
## 14 .p14. == .p60.  17.788  1   0.000
## 15 .p15. == .p61. 246.435  1   0.000
## 16 .p16. == .p62.   2.620  1   0.106
metric2<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"), group.partial=c("g=~electronic"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2744.061     68.000      0.000      0.972      0.085      0.032 504310.569 504763.055
Mc(metric2)
## [1] 0.8846493
scalar<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 5.835506e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   4294.531     73.000      0.000      0.955      0.103      0.051 505851.039 506267.035
Mc(scalar)
## [1] 0.8241962
summary(scalar, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 136 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    25
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              4294.531    2537.521
##   Degrees of freedom                                73          73
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.692
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1883.781    1113.075
##     0                                         2410.750    1424.446
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.845    0.046   18.271    0.000    0.755    0.936    2.736    0.596
##     sswk    (.p2.)    2.175    0.116   18.823    0.000    1.949    2.402    7.040    0.927
##     sspc    (.p3.)    0.887    0.047   19.025    0.000    0.795    0.978    2.869    0.860
##   math =~                                                                                 
##     ssar    (.p4.)    3.018    0.081   37.382    0.000    2.860    3.176    6.585    0.937
##     ssmk    (.p5.)    2.441    0.065   37.700    0.000    2.314    2.568    5.325    0.872
##     ssmc    (.p6.)    0.467    0.035   13.371    0.000    0.399    0.536    1.020    0.235
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.559    0.029   19.208    0.000    0.502    0.616    1.339    0.292
##     ssasi   (.p8.)    1.333    0.058   23.104    0.000    1.220    1.446    3.193    0.792
##     ssmc    (.p9.)    1.040    0.047   22.152    0.000    0.948    1.132    2.492    0.574
##     ssei    (.10.)    1.061    0.046   23.022    0.000    0.971    1.152    2.542    0.754
##   speed =~                                                                                
##     ssno    (.11.)    0.494    0.011   46.184    0.000    0.473    0.515    0.796    0.860
##     sscs    (.12.)    0.471    0.011   44.114    0.000    0.450    0.492    0.759    0.797
##   g =~                                                                                    
##     verbal  (.13.)    3.078    0.173   17.839    0.000    2.740    3.416    0.951    0.951
##     math    (.14.)    1.939    0.060   32.522    0.000    1.822    2.056    0.889    0.889
##     elctrnc           2.177    0.104   20.879    0.000    1.973    2.381    0.909    0.909
##     speed   (.16.)    1.264    0.035   35.897    0.000    1.195    1.333    0.784    0.784
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   14.726    0.076  192.945    0.000   14.576   14.875   14.726    3.210
##    .sswk    (.33.)   25.863    0.121  214.249    0.000   25.626   26.099   25.863    3.407
##    .sspc    (.34.)   10.891    0.053  206.983    0.000   10.788   10.994   10.891    3.264
##    .ssar    (.35.)   16.817    0.122  138.261    0.000   16.579   17.056   16.817    2.393
##    .ssmk    (.36.)   12.834    0.104  123.935    0.000   12.631   13.037   12.834    2.100
##    .ssmc    (.37.)   11.874    0.072  164.263    0.000   11.733   12.016   11.874    2.735
##    .ssasi   (.38.)   11.315    0.066  171.926    0.000   11.186   11.444   11.315    2.807
##    .ssei    (.39.)    9.218    0.056  163.689    0.000    9.107    9.328    9.218    2.734
##    .ssno    (.40.)    0.347    0.015   23.393    0.000    0.318    0.376    0.347    0.375
##    .sscs    (.41.)    0.310    0.016   19.316    0.000    0.278    0.341    0.310    0.325
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.438    0.163   33.452    0.000    5.119    5.757    5.438    0.258
##    .sswk              8.065    0.409   19.724    0.000    7.264    8.867    8.065    0.140
##    .sspc              2.902    0.098   29.688    0.000    2.711    3.094    2.902    0.261
##    .ssar              6.041    0.389   15.541    0.000    5.279    6.803    6.041    0.122
##    .ssmk              8.978    0.309   29.051    0.000    8.372    9.583    8.978    0.240
##    .ssmc              7.492    0.221   33.887    0.000    7.059    7.925    7.492    0.398
##    .ssasi             6.057    0.212   28.535    0.000    5.641    6.473    6.057    0.373
##    .ssei              4.902    0.158   30.999    0.000    4.592    5.212    4.902    0.431
##    .ssno              0.223    0.012   19.357    0.000    0.200    0.245    0.223    0.260
##    .sscs              0.332    0.016   21.350    0.000    0.301    0.362    0.332    0.365
##    .verbal            1.000                               1.000    1.000    0.095    0.095
##    .math              1.000                               1.000    1.000    0.210    0.210
##    .electronic        1.000                               1.000    1.000    0.174    0.174
##    .speed             1.000                               1.000    1.000    0.385    0.385
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.845    0.046   18.271    0.000    0.755    0.936    2.958    0.555
##     sswk    (.p2.)    2.175    0.116   18.823    0.000    1.949    2.402    7.612    0.935
##     sspc    (.p3.)    0.887    0.047   19.025    0.000    0.795    0.978    3.102    0.868
##   math =~                                                                                 
##     ssar    (.p4.)    3.018    0.081   37.382    0.000    2.860    3.176    7.125    0.945
##     ssmk    (.p5.)    2.441    0.065   37.700    0.000    2.314    2.568    5.762    0.877
##     ssmc    (.p6.)    0.467    0.035   13.371    0.000    0.399    0.536    1.103    0.201
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.559    0.029   19.208    0.000    0.502    0.616    2.049    0.384
##     ssasi   (.p8.)    1.333    0.058   23.104    0.000    1.220    1.446    4.886    0.844
##     ssmc    (.p9.)    1.040    0.047   22.152    0.000    0.948    1.132    3.814    0.695
##     ssei    (.10.)    1.061    0.046   23.022    0.000    0.971    1.152    3.890    0.907
##   speed =~                                                                                
##     ssno    (.11.)    0.494    0.011   46.184    0.000    0.473    0.515    0.827    0.864
##     sscs    (.12.)    0.471    0.011   44.114    0.000    0.450    0.492    0.788    0.831
##   g =~                                                                                    
##     verbal  (.13.)    3.078    0.173   17.839    0.000    2.740    3.416    0.966    0.966
##     math    (.14.)    1.939    0.060   32.522    0.000    1.822    2.056    0.902    0.902
##     elctrnc           2.899    0.133   21.877    0.000    2.639    3.159    0.868    0.868
##     speed   (.16.)    1.264    0.035   35.897    0.000    1.195    1.333    0.830    0.830
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   14.726    0.076  192.945    0.000   14.576   14.875   14.726    2.762
##    .sswk    (.33.)   25.863    0.121  214.249    0.000   25.626   26.099   25.863    3.176
##    .sspc    (.34.)   10.891    0.053  206.983    0.000   10.788   10.994   10.891    3.047
##    .ssar    (.35.)   16.817    0.122  138.261    0.000   16.579   17.056   16.817    2.230
##    .ssmk    (.36.)   12.834    0.104  123.935    0.000   12.631   13.037   12.834    1.954
##    .ssmc    (.37.)   11.874    0.072  164.263    0.000   11.733   12.016   11.874    2.164
##    .ssasi   (.38.)   11.315    0.066  171.926    0.000   11.186   11.444   11.315    1.955
##    .ssei    (.39.)    9.218    0.056  163.689    0.000    9.107    9.328    9.218    2.149
##    .ssno    (.40.)    0.347    0.015   23.393    0.000    0.318    0.376    0.347    0.363
##    .sscs    (.41.)    0.310    0.016   19.316    0.000    0.278    0.341    0.310    0.327
##    .verbal           -1.246    0.063  -19.915    0.000   -1.369   -1.124   -0.356   -0.356
##    .math             -0.130    0.044   -2.930    0.003   -0.217   -0.043   -0.055   -0.055
##    .elctrnc           2.465    0.082   30.086    0.000    2.304    2.626    0.672    0.672
##    .speed            -1.014    0.042  -24.391    0.000   -1.095   -0.932   -0.606   -0.606
##     g                 0.308    0.030   10.273    0.000    0.249    0.366    0.280    0.280
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.312    0.161   33.036    0.000    4.997    5.628    5.312    0.187
##    .sswk              8.374    0.463   18.091    0.000    7.466    9.281    8.374    0.126
##    .sspc              3.156    0.112   28.258    0.000    2.937    3.375    3.156    0.247
##    .ssar              6.120    0.391   15.646    0.000    5.353    6.887    6.120    0.108
##    .ssmk              9.933    0.334   29.742    0.000    9.279   10.588    9.933    0.230
##    .ssmc              7.742    0.244   31.785    0.000    7.265    8.220    7.742    0.257
##    .ssasi             9.615    0.352   27.329    0.000    8.926   10.305    9.615    0.287
##    .ssei              3.263    0.143   22.866    0.000    2.983    3.543    3.263    0.177
##    .ssno              0.233    0.011   20.776    0.000    0.211    0.255    0.233    0.254
##    .sscs              0.278    0.015   19.097    0.000    0.249    0.307    0.278    0.309
##    .verbal            0.818    0.133    6.167    0.000    0.558    1.077    0.067    0.067
##    .math              1.038    0.075   13.838    0.000    0.891    1.185    0.186    0.186
##    .electronic        3.303    0.331    9.965    0.000    2.654    3.953    0.246    0.246
##    .speed             0.872    0.055   15.826    0.000    0.764    0.980    0.312    0.312
##     g                 1.206    0.035   34.470    0.000    1.138    1.275    1.000    1.000
lavTestScore(scalar, release = 16:25)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test       X2 df p.value
## 1 score 1502.515 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs      X2 df p.value
## 1  .p32. == .p78.   0.700  1   0.403
## 2  .p33. == .p79. 242.075  1   0.000
## 3  .p34. == .p80. 271.793  1   0.000
## 4  .p35. == .p81. 175.625  1   0.000
## 5  .p36. == .p82. 186.312  1   0.000
## 6  .p37. == .p83.   3.779  1   0.052
## 7  .p38. == .p84. 644.396  1   0.000
## 8  .p39. == .p85. 688.394  1   0.000
## 9  .p40. == .p86. 258.153  1   0.000
## 10 .p41. == .p87. 258.153  1   0.000
scalar2<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 5.967310e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2991.943     70.000      0.000      0.969      0.087      0.034 504554.451 504992.341
Mc(scalar2)
## [1] 0.8747428
summary(scalar2, standardized=T, ci=T) # g -.285 Std.all
## lavaan 0.6-18 ended normally after 148 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2991.943    1761.746
##   Degrees of freedom                                70          70
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.698
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1094.943     644.736
##     0                                         1896.999    1117.011
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.828    0.046   18.029    0.000    0.738    0.918    2.741    0.596
##     sswk    (.p2.)    2.129    0.117   18.249    0.000    1.901    2.358    7.049    0.929
##     sspc    (.p3.)    0.863    0.047   18.387    0.000    0.771    0.955    2.858    0.861
##   math =~                                                                                 
##     ssar    (.p4.)    3.042    0.079   38.620    0.000    2.887    3.196    6.578    0.936
##     ssmk    (.p5.)    2.464    0.064   38.753    0.000    2.339    2.589    5.329    0.872
##     ssmc    (.p6.)    0.642    0.035   18.357    0.000    0.573    0.710    1.387    0.318
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.592    0.028   21.227    0.000    0.537    0.647    1.357    0.295
##     ssasi   (.p8.)    1.332    0.052   25.423    0.000    1.230    1.435    3.055    0.782
##     ssmc    (.p9.)    0.946    0.041   23.151    0.000    0.866    1.026    2.169    0.497
##     ssei    (.10.)    1.212    0.048   25.384    0.000    1.119    1.306    2.779    0.803
##   speed =~                                                                                
##     ssno    (.11.)    0.509    0.011   46.606    0.000    0.488    0.531    0.813    0.874
##     sscs    (.12.)    0.465    0.010   45.310    0.000    0.445    0.485    0.742    0.789
##   g =~                                                                                    
##     verbal  (.13.)    3.156    0.182   17.297    0.000    2.798    3.514    0.953    0.953
##     math    (.14.)    1.918    0.057   33.487    0.000    1.805    2.030    0.887    0.887
##     elctrnc           2.063    0.090   22.996    0.000    1.887    2.239    0.900    0.900
##     speed   (.16.)    1.245    0.034   36.113    0.000    1.177    1.312    0.780    0.780
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   14.719    0.077  191.746    0.000   14.569   14.870   14.719    3.200
##    .sswk             25.615    0.123  208.263    0.000   25.374   25.856   25.615    3.376
##    .sspc    (.34.)   11.113    0.053  211.279    0.000   11.010   11.216   11.113    3.350
##    .ssar    (.35.)   16.836    0.122  138.397    0.000   16.598   17.075   16.836    2.395
##    .ssmk    (.36.)   12.849    0.104  123.936    0.000   12.646   13.052   12.849    2.103
##    .ssmc    (.37.)   11.729    0.073  161.511    0.000   11.587   11.871   11.729    2.687
##    .ssasi   (.38.)   11.012    0.064  173.283    0.000   10.888   11.137   11.012    2.821
##    .ssei              9.613    0.062  156.264    0.000    9.492    9.733    9.613    2.777
##    .ssno    (.40.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.325
##    .sscs              0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.404
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.413    0.162   33.448    0.000    5.096    5.731    5.413    0.256
##    .sswk              7.886    0.397   19.847    0.000    7.107    8.664    7.886    0.137
##    .sspc              2.838    0.095   29.924    0.000    2.652    3.024    2.838    0.258
##    .ssar              6.141    0.382   16.093    0.000    5.393    6.889    6.141    0.124
##    .ssmk              8.933    0.307   29.052    0.000    8.330    9.535    8.933    0.239
##    .ssmc              7.626    0.220   34.707    0.000    7.195    8.056    7.626    0.400
##    .ssasi             5.908    0.196   30.122    0.000    5.524    6.293    5.908    0.388
##    .ssei              4.260    0.146   29.185    0.000    3.974    4.546    4.260    0.355
##    .ssno              0.205    0.012   17.797    0.000    0.182    0.228    0.205    0.237
##    .sscs              0.334    0.015   22.454    0.000    0.305    0.363    0.334    0.377
##    .verbal            1.000                               1.000    1.000    0.091    0.091
##    .math              1.000                               1.000    1.000    0.214    0.214
##    .electronic        1.000                               1.000    1.000    0.190    0.190
##    .speed             1.000                               1.000    1.000    0.392    0.392
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.828    0.046   18.029    0.000    0.738    0.918    2.972    0.558
##     sswk    (.p2.)    2.129    0.117   18.249    0.000    1.901    2.358    7.641    0.936
##     sspc    (.p3.)    0.863    0.047   18.387    0.000    0.771    0.955    3.098    0.870
##   math =~                                                                                 
##     ssar    (.p4.)    3.042    0.079   38.620    0.000    2.887    3.196    7.119    0.944
##     ssmk    (.p5.)    2.464    0.064   38.753    0.000    2.339    2.589    5.767    0.878
##     ssmc    (.p6.)    0.642    0.035   18.357    0.000    0.573    0.710    1.501    0.280
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.592    0.028   21.227    0.000    0.537    0.647    2.018    0.379
##     ssasi   (.p8.)    1.332    0.052   25.423    0.000    1.230    1.435    4.541    0.823
##     ssmc    (.p9.)    0.946    0.041   23.151    0.000    0.866    1.026    3.225    0.602
##     ssei    (.10.)    1.212    0.048   25.384    0.000    1.119    1.306    4.131    0.933
##   speed =~                                                                                
##     ssno    (.11.)    0.509    0.011   46.606    0.000    0.488    0.531    0.845    0.876
##     sscs    (.12.)    0.465    0.010   45.310    0.000    0.445    0.485    0.771    0.824
##   g =~                                                                                    
##     verbal  (.13.)    3.156    0.182   17.297    0.000    2.798    3.514    0.968    0.968
##     math    (.14.)    1.918    0.057   33.487    0.000    1.805    2.030    0.902    0.902
##     elctrnc           2.683    0.112   23.857    0.000    2.463    2.903    0.866    0.866
##     speed   (.16.)    1.245    0.034   36.113    0.000    1.177    1.312    0.826    0.826
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   14.719    0.077  191.746    0.000   14.569   14.870   14.719    2.766
##    .sswk             27.241    0.156  174.461    0.000   26.935   27.547   27.241    3.339
##    .sspc    (.34.)   11.113    0.053  211.279    0.000   11.010   11.216   11.113    3.120
##    .ssar    (.35.)   16.836    0.122  138.397    0.000   16.598   17.075   16.836    2.231
##    .ssmk    (.36.)   12.849    0.104  123.936    0.000   12.646   13.052   12.849    1.955
##    .ssmc    (.37.)   11.729    0.073  161.511    0.000   11.587   11.871   11.729    2.190
##    .ssasi   (.38.)   11.012    0.064  173.283    0.000   10.888   11.137   11.012    1.995
##    .ssei              7.758    0.096   80.658    0.000    7.570    7.947    7.758    1.753
##    .ssno    (.40.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.313
##    .sscs              0.157    0.019    8.328    0.000    0.120    0.194    0.157    0.168
##    .verbal           -1.825    0.081  -22.578    0.000   -1.984   -1.667   -0.509   -0.509
##    .math             -0.151    0.050   -3.003    0.003   -0.249   -0.052   -0.064   -0.064
##    .elctrnc           3.091    0.104   29.624    0.000    2.886    3.295    0.907    0.907
##    .speed            -0.818    0.043  -18.937    0.000   -0.903   -0.734   -0.493   -0.493
##     g                 0.313    0.033    9.507    0.000    0.249    0.378    0.285    0.285
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.359    0.161   33.302    0.000    5.043    5.674    5.359    0.189
##    .sswk              8.186    0.447   18.311    0.000    7.310    9.062    8.186    0.123
##    .sspc              3.088    0.106   29.185    0.000    2.880    3.295    3.088    0.243
##    .ssar              6.244    0.386   16.162    0.000    5.487    7.001    6.244    0.110
##    .ssmk              9.924    0.331   29.960    0.000    9.275   10.574    9.924    0.230
##    .ssmc              8.453    0.247   34.181    0.000    7.968    8.938    8.453    0.295
##    .ssasi             9.849    0.330   29.811    0.000    9.202   10.497    9.849    0.323
##    .ssei              2.524    0.136   18.505    0.000    2.256    2.791    2.524    0.129
##    .ssno              0.216    0.011   19.744    0.000    0.195    0.237    0.216    0.232
##    .sscs              0.282    0.014   20.108    0.000    0.254    0.309    0.282    0.321
##    .verbal            0.816    0.136    6.013    0.000    0.550    1.082    0.063    0.063
##    .math              1.025    0.073   14.043    0.000    0.882    1.168    0.187    0.187
##    .electronic        2.898    0.268   10.807    0.000    2.372    3.423    0.249    0.249
##    .speed             0.876    0.054   16.302    0.000    0.771    0.982    0.318    0.318
##     g                 1.211    0.035   34.511    0.000    1.142    1.280    1.000    1.000
strict<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 4.916545e-14) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   3353.154     80.000      0.000      0.965      0.087      0.042 504895.663 505260.571
Mc(strict) 
## [1] 0.8607847
summary(strict, standardized=T, ci=T) # g -.274 Std.all
## lavaan 0.6-18 ended normally after 129 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    32
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3353.154    1941.895
##   Degrees of freedom                                80          80
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.727
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1296.762     750.987
##     0                                         2056.393    1190.908
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.812    0.045   18.001    0.000    0.723    0.900    2.717    0.591
##     sswk    (.p2.)    2.100    0.116   18.172    0.000    1.874    2.327    7.032    0.927
##     sspc    (.p3.)    0.853    0.046   18.357    0.000    0.762    0.944    2.854    0.856
##   math =~                                                                                 
##     ssar    (.p4.)    3.029    0.077   39.268    0.000    2.877    3.180    6.575    0.935
##     ssmk    (.p5.)    2.453    0.062   39.646    0.000    2.331    2.574    5.324    0.866
##     ssmc    (.p6.)    0.608    0.034   17.873    0.000    0.541    0.674    1.319    0.300
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.593    0.028   21.088    0.000    0.538    0.648    1.383    0.301
##     ssasi   (.p8.)    1.343    0.053   25.358    0.000    1.239    1.447    3.133    0.752
##     ssmc    (.p9.)    0.965    0.041   23.596    0.000    0.885    1.045    2.250    0.511
##     ssei    (.10.)    1.191    0.049   24.508    0.000    1.096    1.286    2.777    0.824
##   speed =~                                                                                
##     ssno    (.11.)    0.512    0.010   50.978    0.000    0.493    0.532    0.815    0.871
##     sscs    (.12.)    0.468    0.010   47.002    0.000    0.449    0.488    0.745    0.803
##   g =~                                                                                    
##     verbal  (.13.)    3.195    0.186   17.180    0.000    2.831    3.560    0.954    0.954
##     math    (.14.)    1.927    0.057   33.669    0.000    1.815    2.039    0.888    0.888
##     elctrnc           2.107    0.093   22.707    0.000    1.925    2.289    0.903    0.903
##     speed   (.16.)    1.238    0.033   37.697    0.000    1.173    1.302    0.778    0.778
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   14.724    0.077  192.147    0.000   14.574   14.874   14.724    3.202
##    .sswk             25.615    0.123  208.263    0.000   25.374   25.856   25.615    3.378
##    .sspc    (.34.)   11.110    0.053  210.926    0.000   11.007   11.214   11.110    3.334
##    .ssar    (.35.)   16.838    0.122  138.014    0.000   16.599   17.077   16.838    2.396
##    .ssmk    (.36.)   12.833    0.104  123.870    0.000   12.630   13.036   12.833    2.088
##    .ssmc    (.37.)   11.712    0.072  162.052    0.000   11.570   11.853   11.712    2.658
##    .ssasi   (.38.)   11.036    0.064  173.533    0.000   10.912   11.161   11.036    2.651
##    .ssei              9.613    0.062  156.264    0.000    9.492    9.733    9.613    2.852
##    .ssno    (.40.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.323
##    .sscs              0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.409
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.17.)    5.369    0.116   46.484    0.000    5.143    5.595    5.369    0.254
##    .sswk    (.18.)    8.052    0.313   25.717    0.000    7.438    8.665    8.052    0.140
##    .sspc    (.19.)    2.960    0.071   41.628    0.000    2.821    3.100    2.960    0.267
##    .ssar    (.20.)    6.171    0.284   21.715    0.000    5.614    6.728    6.171    0.125
##    .ssmk    (.21.)    9.434    0.237   39.786    0.000    8.969    9.899    9.434    0.250
##    .ssmc    (.22.)    7.846    0.165   47.537    0.000    7.522    8.169    7.846    0.404
##    .ssasi   (.23.)    7.518    0.194   38.689    0.000    7.138    7.899    7.518    0.434
##    .ssei    (.24.)    3.647    0.108   33.719    0.000    3.435    3.859    3.647    0.321
##    .ssno    (.25.)    0.212    0.009   24.636    0.000    0.195    0.229    0.212    0.242
##    .sscs    (.26.)    0.307    0.011   28.169    0.000    0.285    0.328    0.307    0.356
##    .verbal            1.000                               1.000    1.000    0.089    0.089
##    .math              1.000                               1.000    1.000    0.212    0.212
##    .elctrnc           1.000                               1.000    1.000    0.184    0.184
##    .speed             1.000                               1.000    1.000    0.395    0.395
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.812    0.045   18.001    0.000    0.723    0.900    2.957    0.556
##     sswk    (.p2.)    2.100    0.116   18.172    0.000    1.874    2.327    7.653    0.938
##     sspc    (.p3.)    0.853    0.046   18.357    0.000    0.762    0.944    3.107    0.875
##   math =~                                                                                 
##     ssar    (.p4.)    3.029    0.077   39.268    0.000    2.877    3.180    7.125    0.944
##     ssmk    (.p5.)    2.453    0.062   39.646    0.000    2.331    2.574    5.770    0.883
##     ssmc    (.p6.)    0.608    0.034   17.873    0.000    0.541    0.674    1.430    0.269
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.593    0.028   21.088    0.000    0.538    0.648    2.045    0.384
##     ssasi   (.p8.)    1.343    0.053   25.358    0.000    1.239    1.447    4.633    0.861
##     ssmc    (.p9.)    0.965    0.041   23.596    0.000    0.885    1.045    3.328    0.625
##     ssei    (.10.)    1.191    0.049   24.508    0.000    1.096    1.286    4.108    0.907
##   speed =~                                                                                
##     ssno    (.11.)    0.512    0.010   50.978    0.000    0.493    0.532    0.842    0.878
##     sscs    (.12.)    0.468    0.010   47.002    0.000    0.449    0.488    0.770    0.812
##   g =~                                                                                    
##     verbal  (.13.)    3.195    0.186   17.180    0.000    2.831    3.560    0.965    0.965
##     math    (.14.)    1.927    0.057   33.669    0.000    1.815    2.039    0.902    0.902
##     elctrnc           2.694    0.115   23.523    0.000    2.470    2.919    0.860    0.860
##     speed   (.16.)    1.238    0.033   37.697    0.000    1.173    1.302    0.829    0.829
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   14.724    0.077  192.147    0.000   14.574   14.874   14.724    2.766
##    .sswk             27.227    0.156  174.749    0.000   26.922   27.532   27.227    3.336
##    .sspc    (.34.)   11.110    0.053  210.926    0.000   11.007   11.214   11.110    3.129
##    .ssar    (.35.)   16.838    0.122  138.014    0.000   16.599   17.077   16.838    2.231
##    .ssmk    (.36.)   12.833    0.104  123.870    0.000   12.630   13.036   12.833    1.963
##    .ssmc    (.37.)   11.712    0.072  162.052    0.000   11.570   11.853   11.712    2.200
##    .ssasi   (.38.)   11.036    0.064  173.533    0.000   10.912   11.161   11.036    2.050
##    .ssei              7.887    0.091   86.901    0.000    7.709    8.065    7.887    1.741
##    .ssno    (.40.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.315
##    .sscs              0.158    0.019    8.335    0.000    0.121    0.195    0.158    0.166
##    .verbal           -1.805    0.081  -22.367    0.000   -1.964   -1.647   -0.495   -0.495
##    .math             -0.130    0.050   -2.609    0.009   -0.227   -0.032   -0.055   -0.055
##    .elctrnc           3.081    0.104   29.683    0.000    2.878    3.285    0.893    0.893
##    .speed            -0.799    0.042  -18.822    0.000   -0.883   -0.716   -0.486   -0.486
##     g                 0.302    0.033    9.115    0.000    0.237    0.367    0.274    0.274
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.17.)    5.369    0.116   46.484    0.000    5.143    5.595    5.369    0.189
##    .sswk    (.18.)    8.052    0.313   25.717    0.000    7.438    8.665    8.052    0.121
##    .sspc    (.19.)    2.960    0.071   41.628    0.000    2.821    3.100    2.960    0.235
##    .ssar    (.20.)    6.171    0.284   21.715    0.000    5.614    6.728    6.171    0.108
##    .ssmk    (.21.)    9.434    0.237   39.786    0.000    8.969    9.899    9.434    0.221
##    .ssmc    (.22.)    7.846    0.165   47.537    0.000    7.522    8.169    7.846    0.277
##    .ssasi   (.23.)    7.518    0.194   38.689    0.000    7.138    7.899    7.518    0.259
##    .ssei    (.24.)    3.647    0.108   33.719    0.000    3.435    3.859    3.647    0.178
##    .ssno    (.25.)    0.212    0.009   24.636    0.000    0.195    0.229    0.212    0.230
##    .sscs    (.26.)    0.307    0.011   28.169    0.000    0.285    0.328    0.307    0.341
##    .verbal            0.903    0.136    6.629    0.000    0.636    1.170    0.068    0.068
##    .math              1.034    0.067   15.384    0.000    0.902    1.166    0.187    0.187
##    .elctrnc           3.102    0.297   10.430    0.000    2.519    3.685    0.261    0.261
##    .speed             0.847    0.048   17.755    0.000    0.754    0.941    0.313    0.313
##     g                 1.212    0.035   34.509    0.000    1.143    1.281    1.000    1.000
latent<-cfa(hof.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 3.347973e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   3340.736     75.000      0.000      0.965      0.089      0.063 504893.244 505294.643
Mc(latent)
## [1] 0.8610772
summary(latent, standardized=T, ci=T) # g -.138 Std.all
## lavaan 0.6-18 ended normally after 114 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        77
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3340.736    1980.915
##   Degrees of freedom                                75          75
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.686
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1254.689     743.977
##     0                                         2086.046    1236.937
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.784    0.038   20.438    0.000    0.709    0.859    2.851    0.601
##     sswk    (.p2.)    2.026    0.099   20.454    0.000    1.832    2.220    7.364    0.934
##     sspc    (.p3.)    0.819    0.039   20.841    0.000    0.742    0.896    2.978    0.871
##   math =~                                                                                 
##     ssar    (.p4.)    3.107    0.060   51.430    0.000    2.989    3.226    6.860    0.941
##     ssmk    (.p5.)    2.514    0.048   51.952    0.000    2.419    2.609    5.550    0.881
##     ssmc    (.p6.)    0.665    0.032   20.505    0.000    0.601    0.728    1.468    0.326
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.808    0.026   30.718    0.000    0.757    0.860    1.481    0.312
##     ssasi   (.p8.)    1.796    0.042   42.556    0.000    1.713    1.879    3.291    0.810
##     ssmc    (.p9.)    1.272    0.039   32.333    0.000    1.195    1.349    2.331    0.518
##     ssei    (.10.)    1.654    0.037   44.922    0.000    1.582    1.726    3.031    0.833
##   speed =~                                                                                
##     ssno    (.11.)    0.495    0.008   59.384    0.000    0.478    0.511    0.829    0.877
##     sscs    (.12.)    0.452    0.008   56.762    0.000    0.436    0.467    0.757    0.794
##   g =~                                                                                    
##     verbal  (.13.)    3.495    0.182   19.208    0.000    3.139    3.852    0.961    0.961
##     math    (.14.)    1.968    0.046   42.966    0.000    1.878    2.058    0.892    0.892
##     elctrnc           1.536    0.043   35.940    0.000    1.452    1.619    0.838    0.838
##     speed   (.16.)    1.345    0.031   42.788    0.000    1.284    1.407    0.803    0.803
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   14.710    0.077  191.284    0.000   14.559   14.861   14.710    3.100
##    .sswk             25.615    0.123  208.263    0.000   25.374   25.856   25.615    3.250
##    .sspc    (.34.)   11.118    0.053  211.525    0.000   11.015   11.221   11.118    3.254
##    .ssar    (.35.)   16.833    0.122  138.199    0.000   16.594   17.072   16.833    2.309
##    .ssmk    (.36.)   12.851    0.104  123.959    0.000   12.648   13.055   12.851    2.040
##    .ssmc    (.37.)   11.735    0.073  161.564    0.000   11.593   11.877   11.735    2.609
##    .ssasi   (.38.)   11.012    0.064  173.125    0.000   10.887   11.136   11.012    2.710
##    .ssei              9.613    0.062  156.264    0.000    9.492    9.733    9.613    2.642
##    .ssno    (.40.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.319
##    .sscs              0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.399
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.396    0.162   33.391    0.000    5.079    5.712    5.396    0.240
##    .sswk              7.899    0.390   20.246    0.000    7.134    8.663    7.899    0.127
##    .sspc              2.810    0.094   29.833    0.000    2.625    2.994    2.810    0.241
##    .ssar              6.070    0.373   16.251    0.000    5.338    6.802    6.070    0.114
##    .ssmk              8.886    0.310   28.666    0.000    8.279    9.494    8.886    0.224
##    .ssmc              7.536    0.220   34.221    0.000    7.104    7.967    7.536    0.372
##    .ssasi             5.676    0.197   28.824    0.000    5.290    6.062    5.676    0.344
##    .ssei              4.050    0.150   26.996    0.000    3.756    4.345    4.050    0.306
##    .ssno              0.207    0.011   18.900    0.000    0.185    0.228    0.207    0.231
##    .sscs              0.335    0.015   22.779    0.000    0.306    0.364    0.335    0.369
##    .verbal            1.000                               1.000    1.000    0.076    0.076
##    .math              1.000                               1.000    1.000    0.205    0.205
##    .electronic        1.000                               1.000    1.000    0.298    0.298
##    .speed             1.000                               1.000    1.000    0.356    0.356
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.784    0.038   20.438    0.000    0.709    0.859    2.851    0.552
##     sswk    (.p2.)    2.026    0.099   20.454    0.000    1.832    2.220    7.364    0.934
##     sspc    (.p3.)    0.819    0.039   20.841    0.000    0.742    0.896    2.978    0.859
##   math =~                                                                                 
##     ssar    (.p4.)    3.107    0.060   51.430    0.000    2.989    3.226    6.860    0.940
##     ssmk    (.p5.)    2.514    0.048   51.952    0.000    2.419    2.609    5.550    0.868
##     ssmc    (.p6.)    0.665    0.032   20.505    0.000    0.601    0.728    1.468    0.282
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.808    0.026   30.718    0.000    0.757    0.860    1.919    0.371
##     ssasi   (.p8.)    1.796    0.042   42.556    0.000    1.713    1.879    4.265    0.801
##     ssmc    (.p9.)    1.272    0.039   32.333    0.000    1.195    1.349    3.021    0.581
##     ssei    (.10.)    1.654    0.037   44.922    0.000    1.582    1.726    3.927    0.922
##   speed =~                                                                                
##     ssno    (.11.)    0.495    0.008   59.384    0.000    0.478    0.511    0.829    0.873
##     sscs    (.12.)    0.452    0.008   56.762    0.000    0.436    0.467    0.757    0.820
##   g =~                                                                                    
##     verbal  (.13.)    3.495    0.182   19.208    0.000    3.139    3.852    0.961    0.961
##     math    (.14.)    1.968    0.046   42.966    0.000    1.878    2.058    0.892    0.892
##     elctrnc           2.154    0.063   34.162    0.000    2.030    2.277    0.907    0.907
##     speed   (.16.)    1.345    0.031   42.788    0.000    1.284    1.407    0.803    0.803
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   14.710    0.077  191.284    0.000   14.559   14.861   14.710    2.848
##    .sswk             27.270    0.157  173.994    0.000   26.963   27.577   27.270    3.459
##    .sspc    (.34.)   11.118    0.053  211.525    0.000   11.015   11.221   11.118    3.207
##    .ssar    (.35.)   16.833    0.122  138.199    0.000   16.594   17.072   16.833    2.306
##    .ssmk    (.36.)   12.851    0.104  123.959    0.000   12.648   13.055   12.851    2.010
##    .ssmc    (.37.)   11.735    0.073  161.564    0.000   11.593   11.877   11.735    2.255
##    .ssasi   (.38.)   11.012    0.064  173.125    0.000   10.887   11.136   11.012    2.067
##    .ssei              7.706    0.097   79.151    0.000    7.515    7.897    7.706    1.809
##    .ssno    (.40.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.318
##    .sscs              0.157    0.019    8.329    0.000    0.120    0.195    0.157    0.170
##    .verbal           -1.375    0.050  -27.424    0.000   -1.474   -1.277   -0.378   -0.378
##    .math              0.171    0.037    4.636    0.000    0.098    0.243    0.077    0.077
##    .elctrnc           2.617    0.071   36.643    0.000    2.477    2.757    1.102    1.102
##    .speed            -0.626    0.037  -16.757    0.000   -0.700   -0.553   -0.374   -0.374
##     g                 0.138    0.026    5.360    0.000    0.087    0.188    0.138    0.138
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.328    0.160   33.242    0.000    5.014    5.642    5.328    0.200
##    .sswk              7.904    0.410   19.266    0.000    7.100    8.708    7.904    0.127
##    .sspc              3.150    0.108   29.116    0.000    2.938    3.362    3.150    0.262
##    .ssar              6.237    0.370   16.874    0.000    5.513    6.962    6.237    0.117
##    .ssmk             10.069    0.333   30.273    0.000    9.418   10.721   10.069    0.246
##    .ssmc              8.627    0.245   35.279    0.000    8.148    9.106    8.627    0.319
##    .ssasi            10.182    0.326   31.237    0.000    9.543   10.821   10.182    0.359
##    .ssei              2.733    0.130   21.090    0.000    2.479    2.987    2.733    0.151
##    .ssno              0.216    0.011   20.023    0.000    0.194    0.237    0.216    0.239
##    .sscs              0.280    0.014   19.877    0.000    0.252    0.308    0.280    0.328
##    .verbal            1.000                               1.000    1.000    0.076    0.076
##    .math              1.000                               1.000    1.000    0.205    0.205
##    .electronic        1.000                               1.000    1.000    0.177    0.177
##    .speed             1.000                               1.000    1.000    0.356    0.356
##     g                 1.000                               1.000    1.000    1.000    1.000
latent2<-cfa(hof.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 1.526351e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   3002.336     73.000      0.000      0.969      0.086      0.034 504558.844 504974.840
Mc(latent2)
## [1] 0.8744467
summary(latent2, standardized=T, ci=T) # -.264, but -.304 if g variance is constrained
## lavaan 0.6-18 ended normally after 134 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        79
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3002.336    1773.589
##   Degrees of freedom                                73          73
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.693
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1100.037     649.832
##     0                                         1902.299    1123.757
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.786    0.038   20.468    0.000    0.711    0.861    2.735    0.595
##     sswk    (.p2.)    2.020    0.098   20.509    0.000    1.827    2.213    7.029    0.928
##     sspc    (.p3.)    0.819    0.039   20.861    0.000    0.742    0.896    2.850    0.861
##   math =~                                                                                 
##     ssar    (.p4.)    3.066    0.061   50.050    0.000    2.946    3.186    6.596    0.936
##     ssmk    (.p5.)    2.483    0.049   50.648    0.000    2.387    2.579    5.342    0.873
##     ssmc    (.p6.)    0.648    0.033   19.799    0.000    0.584    0.712    1.393    0.319
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.596    0.028   21.495    0.000    0.541    0.650    1.356    0.295
##     ssasi   (.p8.)    1.341    0.052   25.886    0.000    1.240    1.443    3.055    0.783
##     ssmc    (.p9.)    0.952    0.041   23.493    0.000    0.873    1.032    2.168    0.496
##     ssei    (.10.)    1.221    0.047   25.840    0.000    1.128    1.313    2.780    0.803
##   speed =~                                                                                
##     ssno    (.11.)    0.492    0.008   59.038    0.000    0.476    0.509    0.803    0.868
##     sscs    (.12.)    0.449    0.008   56.553    0.000    0.434    0.465    0.734    0.785
##   g =~                                                                                    
##     verbal  (.13.)    3.333    0.175   19.030    0.000    2.990    3.676    0.958    0.958
##     math    (.14.)    1.905    0.047   40.241    0.000    1.812    1.997    0.885    0.885
##     elctrnc           2.046    0.087   23.442    0.000    1.875    2.217    0.898    0.898
##     speed   (.16.)    1.290    0.032   40.522    0.000    1.227    1.352    0.790    0.790
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   14.720    0.077  191.757    0.000   14.569   14.870   14.720    3.203
##    .sswk             25.615    0.123  208.263    0.000   25.374   25.856   25.615    3.380
##    .sspc    (.34.)   11.113    0.053  211.231    0.000   11.009   11.216   11.113    3.357
##    .ssar    (.35.)   16.836    0.122  138.234    0.000   16.597   17.075   16.836    2.389
##    .ssmk    (.36.)   12.849    0.104  123.960    0.000   12.646   13.053   12.849    2.099
##    .ssmc    (.37.)   11.729    0.073  161.633    0.000   11.587   11.871   11.729    2.685
##    .ssasi   (.38.)   11.012    0.064  173.185    0.000   10.887   11.136   11.012    2.821
##    .ssei              9.613    0.062  156.264    0.000    9.492    9.733    9.613    2.777
##    .ssno    (.40.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.326
##    .sscs              0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.407
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.083    0.083
##    .math              1.000                               1.000    1.000    0.216    0.216
##    .speed             1.000                               1.000    1.000    0.376    0.376
##    .ssgs              5.418    0.162   33.443    0.000    5.101    5.736    5.418    0.257
##    .sswk              8.023    0.387   20.730    0.000    7.264    8.781    8.023    0.140
##    .sspc              2.837    0.094   30.024    0.000    2.652    3.022    2.837    0.259
##    .ssar              6.137    0.370   16.575    0.000    5.411    6.862    6.137    0.124
##    .ssmk              8.926    0.308   29.009    0.000    8.323    9.529    8.926    0.238
##    .ssmc              7.634    0.220   34.741    0.000    7.203    8.065    7.634    0.400
##    .ssasi             5.904    0.196   30.148    0.000    5.520    6.288    5.904    0.388
##    .ssei              4.257    0.146   29.199    0.000    3.971    4.543    4.257    0.355
##    .ssno              0.211    0.011   19.300    0.000    0.190    0.233    0.211    0.246
##    .sscs              0.335    0.015   22.779    0.000    0.306    0.364    0.335    0.384
##    .electronic        1.000                               1.000    1.000    0.193    0.193
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.786    0.038   20.468    0.000    0.711    0.861    2.980    0.560
##     sswk    (.p2.)    2.020    0.098   20.509    0.000    1.827    2.213    7.659    0.938
##     sspc    (.p3.)    0.819    0.039   20.861    0.000    0.742    0.896    3.105    0.870
##   math =~                                                                                 
##     ssar    (.p4.)    3.066    0.061   50.050    0.000    2.946    3.186    7.104    0.943
##     ssmk    (.p5.)    2.483    0.049   50.648    0.000    2.387    2.579    5.754    0.877
##     ssmc    (.p6.)    0.648    0.033   19.799    0.000    0.584    0.712    1.501    0.280
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.596    0.028   21.495    0.000    0.541    0.650    2.016    0.379
##     ssasi   (.p8.)    1.341    0.052   25.886    0.000    1.240    1.443    4.540    0.823
##     ssmc    (.p9.)    0.952    0.041   23.493    0.000    0.873    1.032    3.222    0.602
##     ssei    (.10.)    1.221    0.047   25.840    0.000    1.128    1.313    4.131    0.933
##   speed =~                                                                                
##     ssno    (.11.)    0.492    0.008   59.038    0.000    0.476    0.509    0.853    0.880
##     sscs    (.12.)    0.449    0.008   56.553    0.000    0.434    0.465    0.779    0.827
##   g =~                                                                                    
##     verbal  (.13.)    3.333    0.175   19.030    0.000    2.990    3.676    0.965    0.965
##     math    (.14.)    1.905    0.047   40.241    0.000    1.812    1.997    0.902    0.902
##     elctrnc           2.675    0.111   24.181    0.000    2.458    2.892    0.867    0.867
##     speed   (.16.)    1.290    0.032   40.522    0.000    1.227    1.352    0.817    0.817
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs    (.32.)   14.720    0.077  191.757    0.000   14.569   14.870   14.720    2.765
##    .sswk             27.239    0.156  174.415    0.000   26.933   27.546   27.239    3.335
##    .sspc    (.34.)   11.113    0.053  211.231    0.000   11.009   11.216   11.113    3.114
##    .ssar    (.35.)   16.836    0.122  138.234    0.000   16.597   17.075   16.836    2.236
##    .ssmk    (.36.)   12.849    0.104  123.960    0.000   12.646   13.053   12.849    1.958
##    .ssmc    (.37.)   11.729    0.073  161.633    0.000   11.587   11.871   11.729    2.191
##    .ssasi   (.38.)   11.012    0.064  173.185    0.000   10.887   11.136   11.012    1.995
##    .ssei              7.756    0.096   80.525    0.000    7.568    7.945    7.756    1.752
##    .ssno    (.40.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.312
##    .sscs              0.157    0.019    8.330    0.000    0.120    0.194    0.157    0.167
##    .verbal           -1.847    0.077  -24.041    0.000   -1.998   -1.697   -0.487   -0.487
##    .math             -0.106    0.048   -2.195    0.028   -0.200   -0.011   -0.046   -0.046
##    .elctrnc           3.131    0.106   29.538    0.000    2.923    3.338    0.925    0.925
##    .speed            -0.817    0.044  -18.704    0.000   -0.903   -0.731   -0.472   -0.472
##     g                 0.290    0.031    9.487    0.000    0.230    0.350    0.264    0.264
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.070    0.070
##    .math              1.000                               1.000    1.000    0.186    0.186
##    .speed             1.000                               1.000    1.000    0.333    0.333
##    .ssgs              5.353    0.161   33.327    0.000    5.039    5.668    5.353    0.189
##    .sswk              8.050    0.426   18.917    0.000    7.216    8.884    8.050    0.121
##    .sspc              3.089    0.106   29.154    0.000    2.882    3.297    3.089    0.243
##    .ssar              6.233    0.371   16.811    0.000    5.506    6.960    6.233    0.110
##    .ssmk              9.941    0.332   29.924    0.000    9.290   10.592    9.941    0.231
##    .ssmc              8.450    0.247   34.165    0.000    7.965    8.935    8.450    0.295
##    .ssasi             9.852    0.330   29.817    0.000    9.204   10.500    9.852    0.323
##    .ssei              2.524    0.137   18.487    0.000    2.256    2.792    2.524    0.129
##    .ssno              0.212    0.011   19.691    0.000    0.191    0.233    0.212    0.225
##    .sscs              0.280    0.014   19.863    0.000    0.253    0.308    0.280    0.316
##    .electronic        2.840    0.260   10.941    0.000    2.331    3.349    0.248    0.248
##     g                 1.204    0.035   34.641    0.000    1.136    1.272    1.000    1.000
weak<-cfa(hof.weak, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   3002.336     74.000      0.000      0.969      0.085      0.034 504556.844 504965.542
Mc(weak)
## [1] 0.8744867
summary(weak, standardized=T, ci=T) # -.214
## lavaan 0.6-18 ended normally after 135 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        78
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3002.336    1797.886
##   Degrees of freedom                                74          74
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.670
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1100.038     658.734
##     0                                         1902.299    1139.152
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.786    0.038   20.467    0.000    0.711    0.861    2.735    0.595
##     sswk    (.p2.)    2.020    0.098   20.508    0.000    1.827    2.213    7.029    0.928
##     sspc    (.p3.)    0.819    0.039   20.859    0.000    0.742    0.896    2.850    0.861
##   math =~                                                                                 
##     ssar    (.p4.)    3.066    0.061   50.050    0.000    2.946    3.186    6.596    0.936
##     ssmk    (.p5.)    2.483    0.049   50.648    0.000    2.387    2.579    5.342    0.873
##     ssmc    (.p6.)    0.648    0.033   19.798    0.000    0.584    0.712    1.393    0.319
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.596    0.028   21.495    0.000    0.541    0.650    1.356    0.295
##     ssasi   (.p8.)    1.341    0.052   25.886    0.000    1.240    1.443    3.055    0.783
##     ssmc    (.p9.)    0.952    0.041   23.494    0.000    0.873    1.032    2.168    0.496
##     ssei    (.10.)    1.221    0.047   25.840    0.000    1.128    1.313    2.780    0.803
##   speed =~                                                                                
##     ssno    (.11.)    0.492    0.008   59.038    0.000    0.476    0.509    0.803    0.868
##     sscs    (.12.)    0.449    0.008   56.553    0.000    0.434    0.465    0.734    0.785
##   g =~                                                                                    
##     verbal  (.13.)    3.333    0.175   19.029    0.000    2.990    3.676    0.958    0.958
##     math    (.14.)    1.905    0.047   40.241    0.000    1.812    1.997    0.885    0.885
##     elctrnc           2.046    0.087   23.443    0.000    1.875    2.217    0.898    0.898
##     speed   (.16.)    1.290    0.032   40.522    0.000    1.227    1.352    0.790    0.790
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.33.)   14.720    0.077  191.757    0.000   14.569   14.870   14.720    3.203
##    .sswk             25.615    0.123  208.263    0.000   25.374   25.856   25.615    3.380
##    .sspc    (.35.)   11.113    0.053  211.231    0.000   11.009   11.216   11.113    3.357
##    .ssar    (.36.)   16.836    0.122  138.234    0.000   16.597   17.075   16.836    2.389
##    .ssmk    (.37.)   12.849    0.104  123.960    0.000   12.646   13.053   12.849    2.099
##    .ssmc    (.38.)   11.729    0.073  161.633    0.000   11.587   11.871   11.729    2.685
##    .ssasi   (.39.)   11.012    0.064  173.185    0.000   10.887   11.136   11.012    2.821
##    .ssei              9.613    0.062  156.264    0.000    9.492    9.733    9.613    2.777
##    .ssno    (.41.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.326
##    .sscs              0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.407
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.083    0.083
##    .math              1.000                               1.000    1.000    0.216    0.216
##    .speed             1.000                               1.000    1.000    0.376    0.376
##    .ssgs              5.418    0.162   33.443    0.000    5.101    5.736    5.418    0.257
##    .sswk              8.023    0.387   20.730    0.000    7.264    8.781    8.023    0.140
##    .sspc              2.837    0.094   30.024    0.000    2.652    3.022    2.837    0.259
##    .ssar              6.137    0.370   16.575    0.000    5.411    6.862    6.137    0.124
##    .ssmk              8.926    0.308   29.009    0.000    8.323    9.529    8.926    0.238
##    .ssmc              7.634    0.220   34.741    0.000    7.203    8.065    7.634    0.400
##    .ssasi             5.904    0.196   30.148    0.000    5.520    6.288    5.904    0.388
##    .ssei              4.257    0.146   29.199    0.000    3.971    4.543    4.257    0.355
##    .ssno              0.211    0.011   19.300    0.000    0.190    0.233    0.211    0.246
##    .sscs              0.335    0.015   22.779    0.000    0.306    0.364    0.335    0.384
##    .electronic        1.000                               1.000    1.000    0.193    0.193
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.786    0.038   20.467    0.000    0.711    0.861    2.980    0.560
##     sswk    (.p2.)    2.020    0.098   20.508    0.000    1.827    2.213    7.659    0.938
##     sspc    (.p3.)    0.819    0.039   20.859    0.000    0.742    0.896    3.105    0.870
##   math =~                                                                                 
##     ssar    (.p4.)    3.066    0.061   50.050    0.000    2.946    3.186    7.104    0.943
##     ssmk    (.p5.)    2.483    0.049   50.648    0.000    2.387    2.579    5.754    0.877
##     ssmc    (.p6.)    0.648    0.033   19.798    0.000    0.584    0.712    1.501    0.280
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.596    0.028   21.495    0.000    0.541    0.650    2.016    0.379
##     ssasi   (.p8.)    1.341    0.052   25.886    0.000    1.240    1.443    4.540    0.823
##     ssmc    (.p9.)    0.952    0.041   23.494    0.000    0.873    1.032    3.222    0.602
##     ssei    (.10.)    1.221    0.047   25.840    0.000    1.128    1.313    4.131    0.933
##   speed =~                                                                                
##     ssno    (.11.)    0.492    0.008   59.038    0.000    0.476    0.509    0.853    0.880
##     sscs    (.12.)    0.449    0.008   56.553    0.000    0.434    0.465    0.779    0.827
##   g =~                                                                                    
##     verbal  (.13.)    3.333    0.175   19.029    0.000    2.990    3.676    0.965    0.965
##     math    (.14.)    1.905    0.047   40.241    0.000    1.812    1.997    0.902    0.902
##     elctrnc           2.675    0.111   24.181    0.000    2.458    2.892    0.867    0.867
##     speed   (.16.)    1.290    0.032   40.522    0.000    1.227    1.352    0.817    0.817
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.33.)   14.720    0.077  191.757    0.000   14.569   14.870   14.720    2.765
##    .sswk             27.239    0.156  174.415    0.000   26.933   27.546   27.239    3.335
##    .sspc    (.35.)   11.113    0.053  211.231    0.000   11.009   11.216   11.113    3.114
##    .ssar    (.36.)   16.836    0.122  138.234    0.000   16.597   17.075   16.836    2.236
##    .ssmk    (.37.)   12.849    0.104  123.960    0.000   12.646   13.053   12.849    1.958
##    .ssmc    (.38.)   11.729    0.073  161.633    0.000   11.587   11.871   11.729    2.191
##    .ssasi   (.39.)   11.012    0.064  173.185    0.000   10.887   11.136   11.012    1.995
##    .ssei              7.756    0.096   80.525    0.000    7.568    7.945    7.756    1.752
##    .ssno    (.41.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.312
##    .sscs              0.157    0.019    8.330    0.000    0.120    0.194    0.157    0.167
##    .verbal           -1.662    0.110  -15.156    0.000   -1.877   -1.447   -0.438   -0.438
##    .elctrnc           3.279    0.151   21.710    0.000    2.983    3.575    0.969    0.969
##    .speed            -0.746    0.038  -19.545    0.000   -0.820   -0.671   -0.430   -0.430
##     g                 0.234    0.031    7.616    0.000    0.174    0.295    0.214    0.214
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.070    0.070
##    .math              1.000                               1.000    1.000    0.186    0.186
##    .speed             1.000                               1.000    1.000    0.333    0.333
##    .ssgs              5.353    0.161   33.327    0.000    5.039    5.668    5.353    0.189
##    .sswk              8.050    0.426   18.917    0.000    7.216    8.884    8.050    0.121
##    .sspc              3.089    0.106   29.154    0.000    2.882    3.297    3.089    0.243
##    .ssar              6.233    0.371   16.811    0.000    5.506    6.960    6.233    0.110
##    .ssmk              9.941    0.332   29.924    0.000    9.290   10.592    9.941    0.231
##    .ssmc              8.450    0.247   34.165    0.000    7.965    8.935    8.450    0.295
##    .ssasi             9.852    0.330   29.817    0.000    9.204   10.500    9.852    0.323
##    .ssei              2.524    0.137   18.487    0.000    2.256    2.792    2.524    0.129
##    .ssno              0.212    0.011   19.691    0.000    0.191    0.233    0.212    0.225
##    .sscs              0.280    0.014   19.863    0.000    0.253    0.308    0.280    0.316
##    .electronic        2.840    0.260   10.941    0.000    2.331    3.349    0.248    0.248
##     g                 1.204    0.035   34.641    0.000    1.136    1.272    1.000    1.000
standardizedSolution(weak) # get the correct SEs for standardized solution
##           lhs op        rhs group label est.std    se       z pvalue ci.lower ci.upper
## 1      verbal =~       ssgs     1  .p1.   0.595 0.009  64.267      0    0.577    0.613
## 2      verbal =~       sswk     1  .p2.   0.928 0.004 247.710      0    0.920    0.935
## 3      verbal =~       sspc     1  .p3.   0.861 0.005 188.570      0    0.852    0.870
## 4        math =~       ssar     1  .p4.   0.936 0.004 240.469      0    0.929    0.944
## 5        math =~       ssmk     1  .p5.   0.873 0.005 182.611      0    0.863    0.882
## 6        math =~       ssmc     1  .p6.   0.319 0.014  23.194      0    0.292    0.346
## 7  electronic =~       ssgs     1  .p7.   0.295 0.009  34.163      0    0.278    0.312
## 8  electronic =~      ssasi     1  .p8.   0.783 0.007 111.021      0    0.769    0.796
## 9  electronic =~       ssmc     1  .p9.   0.496 0.012  40.630      0    0.472    0.520
## 10 electronic =~       ssei     1 .p10.   0.803 0.008 105.901      0    0.788    0.818
## 11      speed =~       ssno     1 .p11.   0.868 0.007 125.477      0    0.855    0.882
## 12      speed =~       sscs     1 .p12.   0.785 0.009  90.581      0    0.768    0.802
## 13          g =~     verbal     1 .p13.   0.958 0.004 230.430      0    0.950    0.966
## 14          g =~       math     1 .p14.   0.885 0.005 186.234      0    0.876    0.895
## 15          g =~ electronic     1         0.898 0.007 121.559      0    0.884    0.913
## 16          g =~      speed     1 .p16.   0.790 0.007 107.913      0    0.776    0.805
## 17     verbal ~~     verbal     1         0.083 0.008  10.371      0    0.067    0.098
## 18       math ~~       math     1         0.216 0.008  25.667      0    0.200    0.233
## 19      speed ~~      speed     1         0.376 0.012  32.444      0    0.353    0.398
## 20       math ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 21       ssgs ~~       ssgs     1         0.257 0.008  32.938      0    0.241    0.272
## 22       sswk ~~       sswk     1         0.140 0.007  20.112      0    0.126    0.153
## 23       sspc ~~       sspc     1         0.259 0.008  32.933      0    0.243    0.274
## 24       ssar ~~       ssar     1         0.124 0.007  16.959      0    0.109    0.138
## 25       ssmk ~~       ssmk     1         0.238 0.008  28.558      0    0.222    0.255
## 26       ssmc ~~       ssmc     1         0.400 0.010  40.999      0    0.381    0.419
## 27      ssasi ~~      ssasi     1         0.388 0.011  35.126      0    0.366    0.409
## 28       ssei ~~       ssei     1         0.355 0.012  29.175      0    0.331    0.379
## 29       ssno ~~       ssno     1         0.246 0.012  20.520      0    0.223    0.270
## 30       sscs ~~       sscs     1         0.384 0.014  28.204      0    0.357    0.410
## 31 electronic ~~ electronic     1         0.193 0.013  14.522      0    0.167    0.219
## 32          g ~~          g     1         1.000 0.000      NA     NA    1.000    1.000
## 33       ssgs ~1                1 .p33.   3.203 0.033  95.616      0    3.137    3.269
## 34       sswk ~1                1         3.380 0.041  82.110      0    3.299    3.461
## 35       sspc ~1                1 .p35.   3.357 0.044  76.613      0    3.271    3.443
## 36       ssar ~1                1 .p36.   2.389 0.024  99.171      0    2.342    2.437
## 37       ssmk ~1                1 .p37.   2.099 0.021 102.236      0    2.059    2.140
## 38       ssmc ~1                1 .p38.   2.685 0.027  97.955      0    2.631    2.739
## 39      ssasi ~1                1 .p39.   2.821 0.030  93.715      0    2.762    2.880
## 40       ssei ~1                1         2.777 0.029  94.588      0    2.719    2.834
## 41       ssno ~1                1 .p41.   0.326 0.018  18.546      0    0.292    0.361
## 42       sscs ~1                1         0.407 0.018  22.289      0    0.371    0.442
## 43     verbal ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 44 electronic ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 45      speed ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 46          g ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 47     verbal =~       ssgs     2  .p1.   0.560 0.009  61.659      0    0.542    0.577
## 48     verbal =~       sswk     2  .p2.   0.938 0.003 276.228      0    0.931    0.944
## 49     verbal =~       sspc     2  .p3.   0.870 0.005 190.620      0    0.861    0.879
## 50       math =~       ssar     2  .p4.   0.943 0.004 268.943      0    0.937    0.950
## 51       math =~       ssmk     2  .p5.   0.877 0.005 194.537      0    0.868    0.886
## 52       math =~       ssmc     2  .p6.   0.280 0.013  22.147      0    0.256    0.305
## 53 electronic =~       ssgs     2  .p7.   0.379 0.010  39.354      0    0.360    0.397
## 54 electronic =~      ssasi     2  .p8.   0.823 0.007 119.802      0    0.809    0.836
## 55 electronic =~       ssmc     2  .p9.   0.602 0.013  44.988      0    0.576    0.628
## 56 electronic =~       ssei     2 .p10.   0.933 0.004 257.307      0    0.926    0.940
## 57      speed =~       ssno     2 .p11.   0.880 0.006 140.056      0    0.868    0.892
## 58      speed =~       sscs     2 .p12.   0.827 0.008  98.575      0    0.811    0.843
## 59          g =~     verbal     2 .p13.   0.965 0.004 274.807      0    0.958    0.971
## 60          g =~       math     2 .p14.   0.902 0.004 215.755      0    0.894    0.910
## 61          g =~ electronic     2         0.867 0.007 120.881      0    0.853    0.881
## 62          g =~      speed     2 .p16.   0.817 0.007 123.341      0    0.804    0.830
## 63     verbal ~~     verbal     2         0.070 0.007  10.271      0    0.056    0.083
## 64       math ~~       math     2         0.186 0.008  24.694      0    0.171    0.201
## 65      speed ~~      speed     2         0.333 0.011  30.795      0    0.312    0.354
## 66       math ~1                2         0.000 0.000      NA     NA    0.000    0.000
## 67       ssgs ~~       ssgs     2         0.189 0.006  31.463      0    0.177    0.201
## 68       sswk ~~       sswk     2         0.121 0.006  18.954      0    0.108    0.133
## 69       sspc ~~       sspc     2         0.243 0.008  30.532      0    0.227    0.258
## 70       ssar ~~       ssar     2         0.110 0.007  16.606      0    0.097    0.123
## 71       ssmk ~~       ssmk     2         0.231 0.008  29.208      0    0.215    0.246
## 72       ssmc ~~       ssmc     2         0.295 0.009  31.837      0    0.277    0.313
## 73      ssasi ~~      ssasi     2         0.323 0.011  28.631      0    0.301    0.346
## 74       ssei ~~       ssei     2         0.129 0.007  19.026      0    0.116    0.142
## 75       ssno ~~       ssno     2         0.225 0.011  20.365      0    0.204    0.247
## 76       sscs ~~       sscs     2         0.316 0.014  22.786      0    0.289    0.343
## 77 electronic ~~ electronic     2         0.248 0.012  19.925      0    0.224    0.272
## 78          g ~~          g     2         1.000 0.000      NA     NA    1.000    1.000
## 79       ssgs ~1                2 .p33.   2.765 0.028  97.995      0    2.709    2.820
## 80       sswk ~1                2         3.335 0.037  90.877      0    3.263    3.407
## 81       sspc ~1                2 .p35.   3.114 0.034  92.713      0    3.048    3.180
## 82       ssar ~1                2 .p36.   2.236 0.022 103.875      0    2.194    2.278
## 83       ssmk ~1                2 .p37.   1.958 0.018 107.292      0    1.923    1.994
## 84       ssmc ~1                2 .p38.   2.191 0.022 100.720      0    2.149    2.234
## 85      ssasi ~1                2 .p39.   1.995 0.020  97.874      0    1.955    2.035
## 86       ssei ~1                2         1.752 0.027  63.964      0    1.699    1.806
## 87       ssno ~1                2 .p41.   0.312 0.016  19.244      0    0.280    0.343
## 88       sscs ~1                2         0.167 0.020   8.261      0    0.127    0.207
## 89     verbal ~1                2        -0.438 0.019 -22.803      0   -0.476   -0.401
## 90 electronic ~1                2         0.969 0.029  33.484      0    0.912    1.026
##  [ reached 'max' / getOption("max.print") -- omitted 2 rows ]
tests<-lavTestLRT(configural, metric2, scalar2, latent2, weak)
## Warning: lavaan->lav_test_diff_SatorraBentler2001():  
##    scaling factor is negative
Td=tests[2:5,"Chisq diff"]
Td
## [1] 136.004741 103.785824   6.641612         NA
dfd=tests[2:5,"Df diff"]
dfd
## [1] 10  2  3  1
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-5449+ 5469 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04804815 0.09656325 0.01491315         NA
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04105558 0.05538730
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.08124546 0.11280849
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]         NA 0.03050019
RMSEA.CI(T=Td[4],df=dfd[4],N=N,G=2)
## [1] NA NA
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.343     0.003     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.962     0.379
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.916     0.769     0.000     0.000     0.000     0.000
round(pvals(T=Td[4],df=dfd[4],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##        NA        NA        NA        NA        NA        NA
tests<-lavTestLRT(configural, metric2, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 136.0047 103.7858 229.3231
dfd=tests[2:4,"Df diff"]
dfd
## [1] 10  2  5
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-5449+ 5469 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04804815 0.09656325 0.09066407
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.08124546 0.11280849
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.08085696 0.10085883
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.962     0.379
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.963     0.066
tests<-lavTestLRT(configural, metric2, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 136.0047 103.7858 187.5479
dfd=tests[2:4,"Df diff"]
dfd
## [1] 10  2 10
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-5449+ 5469 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04804815 0.09656325 0.05703494
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04105558 0.05538730
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.08124546 0.11280849
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.05005450 0.06431334
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.343     0.003     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     0.962     0.379
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.951     0.259     0.000     0.000
tests<-lavTestLRT(configural, metric2, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1] 136.0047 820.9512
dfd=tests[2:3,"Df diff"]
dfd
## [1] 10  5
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-5449+ 5469 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.04804815 0.17291407
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04105558 0.05538730
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.1630428 0.1829802
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.343     0.003     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric)
Td=tests[2,"Chisq diff"]
Td
## [1] 307.5256
dfd=tests[2,"Df diff"]
dfd
## [1] 11
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-5449+ 5469 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.07027778
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.06361947 0.07715784
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.994     0.010     0.000
hof.age<-'
verbal =~ ssgs + sswk + sspc 
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
g ~ age
'

hof.ageq<-'
verbal =~ ssgs + sswk + sspc 
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
g ~ c(a,a)*age
'

hof.age2<-'
verbal =~ ssgs + sswk + sspc 
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
g ~ age + age2
'

hof.age2q<-'
verbal =~ ssgs + sswk + sspc 
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed 
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
g ~c(a,a)*age + c(b,b)*age2
'

sem.age<-cfa(hof.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   3867.542     92.000      0.000      0.961      0.087      0.039      0.365 504184.603 504607.897
Mc(sem.age)
## [1] 0.8412046
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 120 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        80
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3867.542    2306.132
##   Degrees of freedom                                92          92
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.677
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1595.950     951.630
##     0                                         2271.593    1354.501
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.783    0.038   20.612    0.000    0.708    0.857    2.734    0.595
##     sswk    (.p2.)    2.014    0.098   20.653    0.000    1.823    2.205    7.036    0.928
##     sspc    (.p3.)    0.815    0.039   21.014    0.000    0.739    0.891    2.849    0.860
##   math =~                                                                                 
##     ssar    (.p4.)    3.106    0.061   51.221    0.000    2.987    3.225    6.606    0.937
##     ssmk    (.p5.)    2.510    0.048   51.811    0.000    2.415    2.604    5.338    0.872
##     ssmc    (.p6.)    0.656    0.033   19.927    0.000    0.591    0.720    1.394    0.319
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.588    0.028   21.275    0.000    0.534    0.643    1.355    0.295
##     ssasi   (.p8.)    1.327    0.052   25.504    0.000    1.225    1.429    3.055    0.783
##     ssmc    (.p9.)    0.941    0.041   23.196    0.000    0.862    1.021    2.167    0.496
##     ssei    (.10.)    1.208    0.047   25.474    0.000    1.115    1.301    2.780    0.803
##   speed =~                                                                                
##     ssno    (.11.)    0.493    0.008   59.192    0.000    0.476    0.509    0.803    0.867
##     sscs    (.12.)    0.451    0.008   56.709    0.000    0.435    0.466    0.734    0.786
##   g =~                                                                                    
##     verbal  (.13.)    3.307    0.172   19.238    0.000    2.970    3.644    0.958    0.958
##     math    (.14.)    1.854    0.046   40.081    0.000    1.764    1.945    0.883    0.883
##     elctrnc           2.049    0.088   23.209    0.000    1.876    2.222    0.901    0.901
##     speed   (.16.)    1.270    0.032   39.998    0.000    1.208    1.333    0.789    0.789
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.068    0.008    8.783    0.000    0.053    0.083    0.067    0.155
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   14.780    0.077  192.916    0.000   14.630   14.930   14.780    3.216
##    .sswk             25.720    0.122  211.528    0.000   25.481   25.958   25.720    3.394
##    .sspc    (.37.)   11.154    0.052  212.641    0.000   11.052   11.257   11.154    3.369
##    .ssar    (.38.)   16.923    0.123  137.830    0.000   16.682   17.163   16.923    2.401
##    .ssmk    (.39.)   12.921    0.105  123.266    0.000   12.715   13.126   12.921    2.110
##    .ssmc    (.40.)   11.778    0.073  161.883    0.000   11.636   11.921   11.778    2.696
##    .ssasi   (.41.)   11.054    0.063  174.645    0.000   10.930   11.178   11.054    2.832
##    .ssei              9.651    0.061  158.423    0.000    9.532    9.771    9.651    2.789
##    .ssno    (.43.)    0.312    0.015   20.138    0.000    0.282    0.342    0.312    0.337
##    .sscs              0.389    0.016   24.814    0.000    0.358    0.420    0.389    0.416
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.082    0.082
##    .math              1.000                               1.000    1.000    0.221    0.221
##    .speed             1.000                               1.000    1.000    0.377    0.377
##    .ssgs              5.424    0.162   33.484    0.000    5.106    5.741    5.424    0.257
##    .sswk              7.926    0.386   20.560    0.000    7.170    8.682    7.926    0.138
##    .sspc              2.848    0.095   30.045    0.000    2.662    3.033    2.848    0.260
##    .ssar              6.037    0.371   16.292    0.000    5.311    6.764    6.037    0.122
##    .ssmk              8.994    0.310   29.028    0.000    8.387    9.601    8.994    0.240
##    .ssmc              7.646    0.220   34.777    0.000    7.215    8.077    7.646    0.401
##    .ssasi             5.907    0.196   30.210    0.000    5.524    6.291    5.907    0.388
##    .ssei              4.247    0.145   29.249    0.000    3.963    4.532    4.247    0.355
##    .ssno              0.213    0.011   19.380    0.000    0.191    0.234    0.213    0.248
##    .sscs              0.334    0.015   22.666    0.000    0.305    0.363    0.334    0.382
##    .electronic        1.000                               1.000    1.000    0.189    0.189
##    .g                 1.000                               1.000    1.000    0.976    0.976
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.783    0.038   20.612    0.000    0.708    0.857    2.978    0.559
##     sswk    (.p2.)    2.014    0.098   20.653    0.000    1.823    2.205    7.664    0.938
##     sspc    (.p3.)    0.815    0.039   21.014    0.000    0.739    0.891    3.103    0.870
##   math =~                                                                                 
##     ssar    (.p4.)    3.106    0.061   51.221    0.000    2.987    3.225    7.110    0.944
##     ssmk    (.p5.)    2.510    0.048   51.811    0.000    2.415    2.604    5.745    0.876
##     ssmc    (.p6.)    0.656    0.033   19.927    0.000    0.591    0.720    1.501    0.280
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.588    0.028   21.275    0.000    0.534    0.643    2.013    0.378
##     ssasi   (.p8.)    1.327    0.052   25.504    0.000    1.225    1.429    4.539    0.823
##     ssmc    (.p9.)    0.941    0.041   23.196    0.000    0.862    1.021    3.220    0.602
##     ssei    (.10.)    1.208    0.047   25.474    0.000    1.115    1.301    4.132    0.933
##   speed =~                                                                                
##     ssno    (.11.)    0.493    0.008   59.192    0.000    0.476    0.509    0.852    0.879
##     sscs    (.12.)    0.451    0.008   56.709    0.000    0.435    0.466    0.780    0.828
##   g =~                                                                                    
##     verbal  (.13.)    3.307    0.172   19.238    0.000    2.970    3.644    0.965    0.965
##     math    (.14.)    1.854    0.046   40.081    0.000    1.764    1.945    0.900    0.900
##     elctrnc           2.681    0.112   23.891    0.000    2.461    2.901    0.870    0.870
##     speed   (.16.)    1.270    0.032   39.998    0.000    1.208    1.333    0.816    0.816
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.104    0.008   12.967    0.000    0.088    0.120    0.094    0.221
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   14.780    0.077  192.916    0.000   14.630   14.930   14.780    2.775
##    .sswk             27.344    0.156  175.081    0.000   27.038   27.651   27.344    3.348
##    .sspc    (.37.)   11.154    0.052  212.641    0.000   11.052   11.257   11.154    3.126
##    .ssar    (.38.)   16.923    0.123  137.830    0.000   16.682   17.163   16.923    2.248
##    .ssmk    (.39.)   12.921    0.105  123.266    0.000   12.715   13.126   12.921    1.970
##    .ssmc    (.40.)   11.778    0.073  161.883    0.000   11.636   11.921   11.778    2.201
##    .ssasi   (.41.)   11.054    0.063  174.645    0.000   10.930   11.178   11.054    2.003
##    .ssei              7.793    0.096   81.239    0.000    7.605    7.981    7.793    1.760
##    .ssno    (.43.)    0.312    0.015   20.138    0.000    0.282    0.342    0.312    0.322
##    .sscs              0.167    0.019    8.776    0.000    0.130    0.204    0.167    0.177
##    .verbal           -1.675    0.110  -15.257    0.000   -1.890   -1.459   -0.440   -0.440
##    .elctrnc           3.319    0.155   21.479    0.000    3.016    3.622    0.970    0.970
##    .speed            -0.747    0.038  -19.587    0.000   -0.821   -0.672   -0.432   -0.432
##    .g                 0.250    0.031    8.001    0.000    0.189    0.311    0.225    0.225
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.069    0.069
##    .math              1.000                               1.000    1.000    0.191    0.191
##    .speed             1.000                               1.000    1.000    0.334    0.334
##    .ssgs              5.372    0.161   33.327    0.000    5.056    5.688    5.372    0.189
##    .sswk              7.973    0.424   18.810    0.000    7.142    8.804    7.973    0.120
##    .sspc              3.102    0.106   29.167    0.000    2.893    3.310    3.102    0.244
##    .ssar              6.117    0.371   16.475    0.000    5.389    6.844    6.117    0.108
##    .ssmk             10.017    0.334   29.988    0.000    9.362   10.671   10.017    0.233
##    .ssmc              8.460    0.247   34.240    0.000    7.976    8.945    8.460    0.295
##    .ssasi             9.846    0.330   29.843    0.000    9.199   10.493    9.846    0.323
##    .ssei              2.523    0.136   18.600    0.000    2.257    2.789    2.523    0.129
##    .ssno              0.213    0.011   19.795    0.000    0.192    0.234    0.213    0.227
##    .sscs              0.279    0.014   19.768    0.000    0.252    0.307    0.279    0.315
##    .electronic        2.840    0.263   10.793    0.000    2.324    3.355    0.243    0.243
##    .g                 1.173    0.036   32.600    0.000    1.102    1.243    0.951    0.951
sem.ageq<-cfa(hof.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   3884.270     93.000      0.000      0.960      0.086      0.042      0.366 504199.331 504615.326
Mc(sem.ageq)
## [1] 0.8405989
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 139 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        80
##   Number of equality constraints                    23
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3884.270    2318.661
##   Degrees of freedom                                93          93
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.675
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1603.862     957.403
##     0                                         2280.408    1361.258
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.779    0.038   20.456    0.000    0.704    0.854    2.754    0.596
##     sswk    (.p2.)    2.005    0.098   20.485    0.000    1.813    2.197    7.086    0.929
##     sspc    (.p3.)    0.812    0.039   20.842    0.000    0.735    0.888    2.869    0.862
##   math =~                                                                                 
##     ssar    (.p4.)    3.110    0.061   51.380    0.000    2.991    3.229    6.647    0.938
##     ssmk    (.p5.)    2.513    0.048   51.954    0.000    2.418    2.608    5.370    0.873
##     ssmc    (.p6.)    0.657    0.033   19.947    0.000    0.592    0.721    1.403    0.320
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.587    0.028   21.258    0.000    0.533    0.641    1.362    0.295
##     ssasi   (.p8.)    1.324    0.052   25.468    0.000    1.222    1.426    3.072    0.784
##     ssmc    (.p9.)    0.939    0.041   23.165    0.000    0.860    1.019    2.179    0.497
##     ssei    (.10.)    1.205    0.047   25.431    0.000    1.113    1.298    2.796    0.805
##   speed =~                                                                                
##     ssno    (.11.)    0.493    0.008   59.219    0.000    0.477    0.509    0.807    0.868
##     sscs    (.12.)    0.451    0.008   56.734    0.000    0.435    0.467    0.738    0.788
##   g =~                                                                                    
##     verbal  (.13.)    3.326    0.174   19.086    0.000    2.985    3.668    0.959    0.959
##     math    (.14.)    1.853    0.046   40.131    0.000    1.762    1.943    0.884    0.884
##     elctrnc           2.053    0.089   23.181    0.000    1.880    2.227    0.902    0.902
##     speed   (.16.)    1.271    0.032   39.944    0.000    1.209    1.333    0.792    0.792
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.085    0.006   15.013    0.000    0.074    0.096    0.084    0.194
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   14.796    0.076  193.549    0.000   14.646   14.945   14.796    3.202
##    .sswk             25.747    0.121  213.244    0.000   25.510   25.983   25.747    3.377
##    .sspc    (.37.)   11.165    0.052  213.351    0.000   11.063   11.268   11.165    3.354
##    .ssar    (.38.)   16.946    0.123  138.005    0.000   16.705   17.186   16.946    2.392
##    .ssmk    (.39.)   12.939    0.105  123.054    0.000   12.733   13.145   12.939    2.103
##    .ssmc    (.40.)   11.791    0.073  162.270    0.000   11.649   11.934   11.791    2.688
##    .ssasi   (.41.)   11.065    0.063  175.700    0.000   10.941   11.188   11.065    2.825
##    .ssei              9.661    0.061  159.634    0.000    9.543    9.780    9.661    2.782
##    .ssno    (.43.)    0.314    0.015   20.332    0.000    0.284    0.345    0.314    0.338
##    .sscs              0.391    0.016   25.079    0.000    0.361    0.422    0.391    0.418
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.080    0.080
##    .math              1.000                               1.000    1.000    0.219    0.219
##    .speed             1.000                               1.000    1.000    0.373    0.373
##    .ssgs              5.424    0.162   33.482    0.000    5.107    5.742    5.424    0.254
##    .sswk              7.914    0.385   20.562    0.000    7.160    8.669    7.914    0.136
##    .sspc              2.850    0.095   30.059    0.000    2.664    3.036    2.850    0.257
##    .ssar              6.028    0.371   16.268    0.000    5.302    6.754    6.028    0.120
##    .ssmk              9.005    0.310   29.028    0.000    8.397    9.613    9.005    0.238
##    .ssmc              7.649    0.220   34.783    0.000    7.218    8.080    7.649    0.398
##    .ssasi             5.908    0.195   30.227    0.000    5.525    6.291    5.908    0.385
##    .ssei              4.245    0.145   29.267    0.000    3.961    4.529    4.245    0.352
##    .ssno              0.213    0.011   19.397    0.000    0.191    0.235    0.213    0.247
##    .sscs              0.333    0.015   22.649    0.000    0.305    0.362    0.333    0.380
##    .electronic        1.000                               1.000    1.000    0.186    0.186
##    .g                 1.000                               1.000    1.000    0.962    0.962
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.779    0.038   20.456    0.000    0.704    0.854    2.958    0.558
##     sswk    (.p2.)    2.005    0.098   20.485    0.000    1.813    2.197    7.612    0.937
##     sspc    (.p3.)    0.812    0.039   20.842    0.000    0.735    0.888    3.082    0.868
##   math =~                                                                                 
##     ssar    (.p4.)    3.110    0.061   51.380    0.000    2.991    3.229    7.067    0.944
##     ssmk    (.p5.)    2.513    0.048   51.954    0.000    2.418    2.608    5.710    0.875
##     ssmc    (.p6.)    0.657    0.033   19.947    0.000    0.592    0.721    1.492    0.280
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.587    0.028   21.258    0.000    0.533    0.641    2.003    0.378
##     ssasi   (.p8.)    1.324    0.052   25.468    0.000    1.222    1.426    4.516    0.821
##     ssmc    (.p9.)    0.939    0.041   23.165    0.000    0.860    1.019    3.203    0.601
##     ssei    (.10.)    1.205    0.047   25.431    0.000    1.113    1.298    4.111    0.933
##   speed =~                                                                                
##     ssno    (.11.)    0.493    0.008   59.219    0.000    0.477    0.509    0.848    0.878
##     sscs    (.12.)    0.451    0.008   56.734    0.000    0.435    0.467    0.776    0.826
##   g =~                                                                                    
##     verbal  (.13.)    3.326    0.174   19.086    0.000    2.985    3.668    0.965    0.965
##     math    (.14.)    1.853    0.046   40.131    0.000    1.762    1.943    0.898    0.898
##     elctrnc           2.689    0.113   23.815    0.000    2.468    2.911    0.868    0.868
##     speed   (.16.)    1.271    0.032   39.944    0.000    1.209    1.333    0.814    0.814
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.085    0.006   15.013    0.000    0.074    0.096    0.077    0.182
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.35.)   14.796    0.076  193.549    0.000   14.646   14.945   14.796    2.793
##    .sswk             27.371    0.156  175.362    0.000   27.066   27.677   27.371    3.371
##    .sspc    (.37.)   11.165    0.052  213.351    0.000   11.063   11.268   11.165    3.146
##    .ssar    (.38.)   16.946    0.123  138.005    0.000   16.705   17.186   16.946    2.263
##    .ssmk    (.39.)   12.939    0.105  123.054    0.000   12.733   13.145   12.939    1.982
##    .ssmc    (.40.)   11.791    0.073  162.270    0.000   11.649   11.934   11.791    2.212
##    .ssasi   (.41.)   11.065    0.063  175.700    0.000   10.941   11.188   11.065    2.012
##    .ssei              7.802    0.096   81.426    0.000    7.614    7.990    7.802    1.770
##    .ssno    (.43.)    0.314    0.015   20.332    0.000    0.284    0.345    0.314    0.326
##    .sscs              0.169    0.019    8.899    0.000    0.132    0.206    0.169    0.180
##    .verbal           -1.683    0.111  -15.169    0.000   -1.900   -1.465   -0.443   -0.443
##    .elctrnc           3.327    0.155   21.454    0.000    3.023    3.631    0.976    0.976
##    .speed            -0.746    0.038  -19.587    0.000   -0.821   -0.672   -0.434   -0.434
##    .g                 0.241    0.031    7.749    0.000    0.180    0.302    0.219    0.219
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.069    0.069
##    .math              1.000                               1.000    1.000    0.194    0.194
##    .speed             1.000                               1.000    1.000    0.338    0.338
##    .ssgs              5.369    0.161   33.330    0.000    5.053    5.685    5.369    0.191
##    .sswk              7.984    0.424   18.840    0.000    7.153    8.814    7.984    0.121
##    .sspc              3.101    0.106   29.165    0.000    2.892    3.309    3.101    0.246
##    .ssar              6.120    0.372   16.469    0.000    5.392    6.848    6.120    0.109
##    .ssmk             10.008    0.334   29.959    0.000    9.353   10.663   10.008    0.235
##    .ssmc              8.460    0.247   34.239    0.000    7.976    8.945    8.460    0.298
##    .ssasi             9.848    0.330   29.845    0.000    9.201   10.495    9.848    0.326
##    .ssei              2.522    0.136   18.582    0.000    2.256    2.788    2.522    0.130
##    .ssno              0.213    0.011   19.787    0.000    0.192    0.234    0.213    0.229
##    .sscs              0.279    0.014   19.771    0.000    0.252    0.307    0.279    0.317
##    .electronic        2.858    0.265   10.791    0.000    2.339    3.377    0.246    0.246
##    .g                 1.172    0.036   32.528    0.000    1.102    1.243    0.967    0.967
sem.age2<-cfa(hof.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   3926.960    110.000      0.000      0.960      0.080      0.037      0.371 504177.090 504614.981
Mc(sem.age2)
## [1] 0.8396104
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 125 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    22
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3926.960    2333.884
##   Degrees of freedom                               110         110
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.683
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1620.669     963.202
##     0                                         2306.291    1370.683
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.783    0.038   20.621    0.000    0.708    0.857    2.734    0.595
##     sswk    (.p2.)    2.014    0.097   20.666    0.000    1.823    2.205    7.036    0.928
##     sspc    (.p3.)    0.815    0.039   21.028    0.000    0.739    0.892    2.849    0.860
##   math =~                                                                                 
##     ssar    (.p4.)    3.106    0.061   51.224    0.000    2.987    3.225    6.606    0.937
##     ssmk    (.p5.)    2.510    0.048   51.819    0.000    2.415    2.605    5.338    0.872
##     ssmc    (.p6.)    0.656    0.033   19.922    0.000    0.591    0.720    1.394    0.319
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.588    0.028   21.275    0.000    0.534    0.643    1.355    0.295
##     ssasi   (.p8.)    1.327    0.052   25.504    0.000    1.225    1.429    3.055    0.783
##     ssmc    (.p9.)    0.941    0.041   23.197    0.000    0.862    1.021    2.167    0.496
##     ssei    (.10.)    1.208    0.047   25.475    0.000    1.115    1.301    2.780    0.803
##   speed =~                                                                                
##     ssno    (.11.)    0.493    0.008   59.196    0.000    0.476    0.509    0.803    0.867
##     sscs    (.12.)    0.451    0.008   56.716    0.000    0.435    0.466    0.734    0.786
##   g =~                                                                                    
##     verbal  (.13.)    3.306    0.172   19.249    0.000    2.970    3.643    0.958    0.958
##     math    (.14.)    1.854    0.046   40.083    0.000    1.763    1.945    0.883    0.883
##     elctrnc           2.049    0.088   23.210    0.000    1.876    2.222    0.901    0.901
##     speed   (.16.)    1.270    0.032   40.003    0.000    1.208    1.333    0.789    0.789
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.068    0.008    8.597    0.000    0.052    0.083    0.067    0.155
##     age2             -0.000    0.003   -0.142    0.887   -0.007    0.006   -0.000   -0.002
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   14.790    0.102  145.601    0.000   14.591   14.989   14.790    3.218
##    .sswk             25.737    0.171  150.536    0.000   25.402   26.072   25.737    3.396
##    .sspc    (.40.)   11.162    0.071  156.920    0.000   11.022   11.301   11.162    3.371
##    .ssar    (.41.)   16.938    0.161  105.480    0.000   16.623   17.252   16.938    2.403
##    .ssmk    (.42.)   12.933    0.134   96.578    0.000   12.670   13.195   12.933    2.112
##    .ssmc    (.43.)   11.787    0.093  126.690    0.000   11.604   11.969   11.787    2.698
##    .ssasi   (.44.)   11.061    0.081  136.744    0.000   10.902   11.219   11.061    2.833
##    .ssei              9.658    0.076  127.164    0.000    9.509    9.807    9.658    2.791
##    .ssno    (.46.)    0.314    0.019   16.436    0.000    0.276    0.351    0.314    0.339
##    .sscs              0.391    0.019   20.655    0.000    0.353    0.428    0.391    0.418
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.082    0.082
##    .math              1.000                               1.000    1.000    0.221    0.221
##    .speed             1.000                               1.000    1.000    0.377    0.377
##    .ssgs              5.424    0.162   33.486    0.000    5.106    5.741    5.424    0.257
##    .sswk              7.925    0.386   20.558    0.000    7.170    8.681    7.925    0.138
##    .sspc              2.848    0.095   30.045    0.000    2.662    3.033    2.848    0.260
##    .ssar              6.037    0.371   16.291    0.000    5.311    6.763    6.037    0.122
##    .ssmk              8.994    0.310   29.028    0.000    8.387    9.601    8.994    0.240
##    .ssmc              7.646    0.220   34.778    0.000    7.215    8.077    7.646    0.401
##    .ssasi             5.907    0.196   30.207    0.000    5.524    6.291    5.907    0.388
##    .ssei              4.247    0.145   29.249    0.000    3.963    4.532    4.247    0.355
##    .ssno              0.213    0.011   19.379    0.000    0.191    0.234    0.213    0.248
##    .sscs              0.334    0.015   22.664    0.000    0.305    0.363    0.334    0.382
##    .electronic        1.000                               1.000    1.000    0.189    0.189
##    .g                 1.000                               1.000    1.000    0.976    0.976
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.783    0.038   20.621    0.000    0.708    0.857    2.978    0.559
##     sswk    (.p2.)    2.014    0.097   20.666    0.000    1.823    2.205    7.664    0.938
##     sspc    (.p3.)    0.815    0.039   21.028    0.000    0.739    0.892    3.103    0.870
##   math =~                                                                                 
##     ssar    (.p4.)    3.106    0.061   51.224    0.000    2.987    3.225    7.110    0.944
##     ssmk    (.p5.)    2.510    0.048   51.819    0.000    2.415    2.605    5.745    0.876
##     ssmc    (.p6.)    0.656    0.033   19.922    0.000    0.591    0.720    1.501    0.280
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.588    0.028   21.275    0.000    0.534    0.643    2.013    0.378
##     ssasi   (.p8.)    1.327    0.052   25.504    0.000    1.225    1.429    4.539    0.823
##     ssmc    (.p9.)    0.941    0.041   23.197    0.000    0.862    1.021    3.220    0.602
##     ssei    (.10.)    1.208    0.047   25.475    0.000    1.115    1.301    4.132    0.933
##   speed =~                                                                                
##     ssno    (.11.)    0.493    0.008   59.196    0.000    0.476    0.509    0.852    0.879
##     sscs    (.12.)    0.451    0.008   56.716    0.000    0.435    0.466    0.780    0.828
##   g =~                                                                                    
##     verbal  (.13.)    3.306    0.172   19.249    0.000    2.970    3.643    0.965    0.965
##     math    (.14.)    1.854    0.046   40.083    0.000    1.763    1.945    0.900    0.900
##     elctrnc           2.682    0.112   23.890    0.000    2.462    2.902    0.870    0.870
##     speed   (.16.)    1.270    0.032   40.003    0.000    1.208    1.333    0.816    0.816
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.099    0.008   11.947    0.000    0.083    0.116    0.090    0.211
##     age2             -0.010    0.004   -2.736    0.006   -0.017   -0.003   -0.009   -0.047
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   14.790    0.102  145.601    0.000   14.591   14.989   14.790    2.777
##    .sswk             27.362    0.196  139.607    0.000   26.978   27.746   27.362    3.350
##    .sspc    (.40.)   11.162    0.071  156.920    0.000   11.022   11.301   11.162    3.128
##    .ssar    (.41.)   16.938    0.161  105.480    0.000   16.623   17.252   16.938    2.250
##    .ssmk    (.42.)   12.933    0.134   96.578    0.000   12.670   13.195   12.933    1.972
##    .ssmc    (.43.)   11.787    0.093  126.690    0.000   11.604   11.969   11.787    2.202
##    .ssasi   (.44.)   11.061    0.081  136.744    0.000   10.902   11.219   11.061    2.004
##    .ssei              7.799    0.106   73.475    0.000    7.591    8.007    7.799    1.762
##    .ssno    (.46.)    0.314    0.019   16.436    0.000    0.276    0.351    0.314    0.324
##    .sscs              0.168    0.022    7.779    0.000    0.126    0.211    0.168    0.179
##    .verbal           -1.674    0.110  -15.262    0.000   -1.889   -1.459   -0.440   -0.440
##    .elctrnc           3.321    0.155   21.455    0.000    3.017    3.624    0.971    0.971
##    .speed            -0.747    0.038  -19.587    0.000   -0.821   -0.672   -0.432   -0.432
##    .g                 0.303    0.041    7.373    0.000    0.222    0.383    0.273    0.273
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.069    0.069
##    .math              1.000                               1.000    1.000    0.191    0.191
##    .speed             1.000                               1.000    1.000    0.334    0.334
##    .ssgs              5.372    0.161   33.321    0.000    5.056    5.688    5.372    0.189
##    .sswk              7.973    0.423   18.836    0.000    7.143    8.802    7.973    0.120
##    .sspc              3.101    0.106   29.160    0.000    2.893    3.310    3.101    0.244
##    .ssar              6.120    0.371   16.479    0.000    5.392    6.847    6.120    0.108
##    .ssmk             10.015    0.334   29.987    0.000    9.360   10.669   10.015    0.233
##    .ssmc              8.461    0.247   34.241    0.000    7.976    8.945    8.461    0.295
##    .ssasi             9.845    0.330   29.843    0.000    9.198   10.491    9.845    0.323
##    .ssei              2.523    0.136   18.604    0.000    2.257    2.789    2.523    0.129
##    .ssno              0.213    0.011   19.797    0.000    0.192    0.234    0.213    0.227
##    .sscs              0.279    0.014   19.769    0.000    0.252    0.307    0.279    0.315
##    .electronic        2.838    0.263   10.791    0.000    2.322    3.353    0.242    0.242
##    .g                 1.170    0.036   32.649    0.000    1.100    1.240    0.949    0.949
sem.age2q<-cfa(hof.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   3949.147    112.000      0.000      0.960      0.079      0.041      0.372 504195.277 504618.571
Mc(sem.age2q)
## [1] 0.8388345
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 137 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    24
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3949.147    2351.922
##   Degrees of freedom                               112         112
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.679
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1631.230     971.482
##     0                                         2317.916    1380.440
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.779    0.038   20.462    0.000    0.704    0.854    2.755    0.596
##     sswk    (.p2.)    2.005    0.098   20.494    0.000    1.813    2.197    7.090    0.930
##     sspc    (.p3.)    0.812    0.039   20.851    0.000    0.735    0.888    2.871    0.862
##   math =~                                                                                 
##     ssar    (.p4.)    3.111    0.061   51.394    0.000    2.992    3.229    6.650    0.938
##     ssmk    (.p5.)    2.513    0.048   51.972    0.000    2.419    2.608    5.373    0.873
##     ssmc    (.p6.)    0.657    0.033   19.947    0.000    0.592    0.721    1.404    0.320
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.587    0.028   21.254    0.000    0.533    0.641    1.363    0.295
##     ssasi   (.p8.)    1.324    0.052   25.464    0.000    1.222    1.426    3.073    0.784
##     ssmc    (.p9.)    0.939    0.041   23.164    0.000    0.860    1.019    2.180    0.497
##     ssei    (.10.)    1.205    0.047   25.427    0.000    1.112    1.298    2.797    0.805
##   speed =~                                                                                
##     ssno    (.11.)    0.493    0.008   59.215    0.000    0.477    0.509    0.807    0.868
##     sscs    (.12.)    0.451    0.008   56.733    0.000    0.435    0.467    0.738    0.788
##   g =~                                                                                    
##     verbal  (.13.)    3.327    0.174   19.094    0.000    2.985    3.668    0.959    0.959
##     math    (.14.)    1.853    0.046   40.137    0.000    1.763    1.943    0.884    0.884
##     elctrnc           2.054    0.089   23.176    0.000    1.880    2.228    0.902    0.902
##     speed   (.16.)    1.271    0.032   39.946    0.000    1.209    1.334    0.792    0.792
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.083    0.006   14.213    0.000    0.071    0.094    0.081    0.188
##     age2       (b)   -0.005    0.003   -2.017    0.044   -0.010   -0.000   -0.005   -0.025
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   14.899    0.090  164.637    0.000   14.722   15.077   14.899    3.223
##    .sswk             25.929    0.148  174.865    0.000   25.638   26.219   25.929    3.399
##    .sspc    (.40.)   11.239    0.062  179.923    0.000   11.117   11.361   11.239    3.375
##    .ssar    (.41.)   17.103    0.144  118.831    0.000   16.821   17.385   17.103    2.413
##    .ssmk    (.42.)   13.066    0.121  107.655    0.000   12.828   13.304   13.066    2.123
##    .ssmc    (.43.)   11.877    0.084  141.316    0.000   11.712   12.042   11.877    2.707
##    .ssasi   (.44.)   11.139    0.073  152.549    0.000   10.996   11.282   11.139    2.843
##    .ssei              9.729    0.069  140.727    0.000    9.593    9.864    9.729    2.800
##    .ssno    (.46.)    0.332    0.017   19.075    0.000    0.297    0.366    0.332    0.357
##    .sscs              0.407    0.017   23.446    0.000    0.373    0.441    0.407    0.434
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.080    0.080
##    .math              1.000                               1.000    1.000    0.219    0.219
##    .speed             1.000                               1.000    1.000    0.373    0.373
##    .ssgs              5.425    0.162   33.480    0.000    5.107    5.742    5.425    0.254
##    .sswk              7.913    0.385   20.554    0.000    7.158    8.667    7.913    0.136
##    .sspc              2.850    0.095   30.064    0.000    2.664    3.036    2.850    0.257
##    .ssar              6.027    0.370   16.270    0.000    5.301    6.753    6.027    0.120
##    .ssmk              9.006    0.310   29.025    0.000    8.397    9.614    9.006    0.238
##    .ssmc              7.649    0.220   34.784    0.000    7.218    8.080    7.649    0.397
##    .ssasi             5.907    0.195   30.228    0.000    5.524    6.291    5.907    0.385
##    .ssei              4.246    0.145   29.272    0.000    3.962    4.530    4.246    0.352
##    .ssno              0.213    0.011   19.402    0.000    0.192    0.235    0.213    0.247
##    .sscs              0.333    0.015   22.646    0.000    0.305    0.362    0.333    0.379
##    .electronic        1.000                               1.000    1.000    0.186    0.186
##    .g                 1.000                               1.000    1.000    0.962    0.962
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs    (.p1.)    0.779    0.038   20.462    0.000    0.704    0.854    2.956    0.558
##     sswk    (.p2.)    2.005    0.098   20.494    0.000    1.813    2.197    7.608    0.937
##     sspc    (.p3.)    0.812    0.039   20.851    0.000    0.735    0.888    3.080    0.868
##   math =~                                                                                 
##     ssar    (.p4.)    3.111    0.061   51.394    0.000    2.992    3.229    7.064    0.944
##     ssmk    (.p5.)    2.513    0.048   51.972    0.000    2.419    2.608    5.708    0.875
##     ssmc    (.p6.)    0.657    0.033   19.947    0.000    0.592    0.721    1.491    0.280
##   electronic =~                                                                           
##     ssgs    (.p7.)    0.587    0.028   21.254    0.000    0.533    0.641    2.002    0.378
##     ssasi   (.p8.)    1.324    0.052   25.464    0.000    1.222    1.426    4.515    0.821
##     ssmc    (.p9.)    0.939    0.041   23.164    0.000    0.860    1.019    3.202    0.601
##     ssei    (.10.)    1.205    0.047   25.427    0.000    1.112    1.298    4.109    0.933
##   speed =~                                                                                
##     ssno    (.11.)    0.493    0.008   59.215    0.000    0.477    0.509    0.848    0.878
##     sscs    (.12.)    0.451    0.008   56.733    0.000    0.435    0.467    0.776    0.826
##   g =~                                                                                    
##     verbal  (.13.)    3.327    0.174   19.094    0.000    2.985    3.668    0.965    0.965
##     math    (.14.)    1.853    0.046   40.137    0.000    1.763    1.943    0.898    0.898
##     elctrnc           2.691    0.113   23.808    0.000    2.469    2.912    0.868    0.868
##     speed   (.16.)    1.271    0.032   39.946    0.000    1.209    1.334    0.814    0.814
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (a)    0.083    0.006   14.213    0.000    0.071    0.094    0.075    0.177
##     age2       (b)   -0.005    0.003   -2.017    0.044   -0.010   -0.000   -0.005   -0.024
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .math              0.000                               0.000    0.000    0.000    0.000
##    .ssgs    (.38.)   14.899    0.090  164.637    0.000   14.722   15.077   14.899    2.814
##    .sswk             27.553    0.178  154.565    0.000   27.204   27.903   27.553    3.395
##    .sspc    (.40.)   11.239    0.062  179.923    0.000   11.117   11.361   11.239    3.168
##    .ssar    (.41.)   17.103    0.144  118.831    0.000   16.821   17.385   17.103    2.285
##    .ssmk    (.42.)   13.066    0.121  107.655    0.000   12.828   13.304   13.066    2.002
##    .ssmc    (.43.)   11.877    0.084  141.316    0.000   11.712   12.042   11.877    2.229
##    .ssasi   (.44.)   11.139    0.073  152.549    0.000   10.996   11.282   11.139    2.026
##    .ssei              7.870    0.101   77.559    0.000    7.671    8.069    7.870    1.786
##    .ssno    (.46.)    0.332    0.017   19.075    0.000    0.297    0.366    0.332    0.344
##    .sscs              0.185    0.020    9.080    0.000    0.145    0.225    0.185    0.197
##    .verbal           -1.683    0.111  -15.172    0.000   -1.900   -1.465   -0.443   -0.443
##    .elctrnc           3.345    0.156   21.482    0.000    3.040    3.650    0.981    0.981
##    .speed            -0.747    0.038  -19.588    0.000   -0.821   -0.672   -0.434   -0.434
##    .g                 0.242    0.031    7.777    0.000    0.181    0.303    0.220    0.220
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .verbal            1.000                               1.000    1.000    0.069    0.069
##    .math              1.000                               1.000    1.000    0.194    0.194
##    .speed             1.000                               1.000    1.000    0.338    0.338
##    .ssgs              5.369    0.161   33.327    0.000    5.054    5.685    5.369    0.192
##    .sswk              7.983    0.423   18.853    0.000    7.153    8.813    7.983    0.121
##    .sspc              3.101    0.106   29.161    0.000    2.892    3.309    3.101    0.246
##    .ssar              6.121    0.372   16.468    0.000    5.392    6.849    6.121    0.109
##    .ssmk             10.007    0.334   29.958    0.000    9.353   10.662   10.007    0.235
##    .ssmc              8.460    0.247   34.240    0.000    7.976    8.945    8.460    0.298
##    .ssasi             9.847    0.330   29.845    0.000    9.201   10.494    9.847    0.326
##    .ssei              2.522    0.136   18.586    0.000    2.256    2.788    2.522    0.130
##    .ssno              0.213    0.011   19.791    0.000    0.192    0.234    0.213    0.229
##    .sscs              0.279    0.014   19.771    0.000    0.252    0.307    0.279    0.317
##    .electronic        2.857    0.265   10.788    0.000    2.338    3.376    0.246    0.246
##    .g                 1.170    0.036   32.559    0.000    1.099    1.240    0.966    0.966
# BIFACTOR  (freeing pc intercept alone leads to very good CFI change, but still very bad RMSEAD, thus ar was freed as well)

bf.notworking<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
'

baseline<-cfa(bf.notworking, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= -1.077605e-03) is smaller than zero. This may 
##    be a symptom that the model is not identified.
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2543.836     23.000      0.000      0.973      0.100      0.036 512110.012 512416.535
Mc(baseline)
## [1] 0.890961
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 51 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        42
## 
##   Number of observations                         10918
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2543.836    1437.362
##   Degrees of freedom                                23          23
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.770
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal =~                                                                               
##     ssgs              0.401    0.117    3.431    0.001    0.172    0.629    0.401    0.080
##     sswk              5.523    1.295    4.265    0.000    2.985    8.061    5.523    0.701
##     sspc              0.439    0.122    3.599    0.000    0.200    0.679    0.439    0.127
##   math =~                                                                                 
##     ssar              2.905    0.110   26.415    0.000    2.689    3.120    2.905    0.396
##     ssmk              2.177    0.089   24.503    0.000    2.003    2.351    2.177    0.342
##     ssmc              1.127    0.058   19.577    0.000    1.015    1.240    1.127    0.214
##   electronic =~                                                                           
##     ssgs              1.146    0.042   27.375    0.000    1.064    1.228    1.146    0.228
##     ssasi             3.650    0.056   65.738    0.000    3.541    3.758    3.650    0.665
##     ssmc              2.700    0.051   53.163    0.000    2.600    2.799    2.700    0.513
##     ssei              2.029    0.040   50.363    0.000    1.950    2.108    2.029    0.477
##   speed =~                                                                                
##     ssno              0.433    0.009   49.928    0.000    0.416    0.450    0.433    0.454
##     sscs              0.586    0.032   18.260    0.000    0.523    0.649    0.586    0.609
##   g =~                                                                                    
##     ssgs              4.268    0.046   91.852    0.000    4.177    4.359    4.268    0.848
##     ssar              6.223    0.056  110.147    0.000    6.112    6.334    6.223    0.849
##     sswk              6.891    0.070   97.747    0.000    6.753    7.029    6.891    0.874
##     sspc              2.843    0.032   87.562    0.000    2.779    2.906    2.843    0.821
##     ssno              0.669    0.010   67.970    0.000    0.649    0.688    0.669    0.701
##     sscs              0.594    0.011   55.483    0.000    0.573    0.615    0.594    0.618
##     ssasi             3.171    0.059   53.682    0.000    3.055    3.287    3.171    0.578
##     ssmk              5.160    0.052   99.792    0.000    5.059    5.261    5.160    0.810
##     ssmc              3.550    0.051   69.297    0.000    3.450    3.651    3.550    0.675
##     ssei              3.159    0.039   80.150    0.000    3.082    3.236    3.159    0.742
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   verbal ~~                                                                               
##     math              0.000                               0.000    0.000    0.000    0.000
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs             15.549    0.060  260.619    0.000   15.432   15.666   15.549    3.089
##    .sswk             25.536    0.090  285.179    0.000   25.361   25.712   25.536    3.239
##    .sspc             10.746    0.040  268.728    0.000   10.668   10.825   10.746    3.102
##    .ssar             17.532    0.090  194.495    0.000   17.355   17.709   17.532    2.393
##    .ssmk             13.395    0.080  168.423    0.000   13.239   13.551   13.395    2.102
##    .ssmc             13.757    0.065  211.689    0.000   13.629   13.884   13.757    2.614
##    .ssasi            13.689    0.067  204.057    0.000   13.558   13.821   13.689    2.496
##    .ssei             11.090    0.051  216.290    0.000   10.989   11.190   11.090    2.605
##    .ssno              0.191    0.011   16.982    0.000    0.169    0.214    0.191    0.201
##    .sscs              0.166    0.012   14.363    0.000    0.143    0.189    0.166    0.173
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssgs              5.640    0.132   42.723    0.000    5.381    5.899    5.640    0.223
##    .sswk            -15.842   14.458   -1.096    0.273  -44.180   12.496  -15.842   -0.255
##    .sspc              3.725    0.101   36.833    0.000    3.527    3.924    3.725    0.310
##    .ssar              6.534    0.500   13.071    0.000    5.555    7.514    6.534    0.122
##    .ssmk              9.234    0.329   28.086    0.000    8.590    9.879    9.234    0.227
##    .ssmc              6.529    0.198   32.936    0.000    6.141    6.918    6.529    0.236
##    .ssasi             6.708    0.247   27.209    0.000    6.225    7.191    6.708    0.223
##    .ssei              4.031    0.103   39.300    0.000    3.830    4.232    4.031    0.222
##    .ssno              0.276       NA                         NA       NA    0.276    0.303
##    .sscs              0.229    0.043    5.317    0.000    0.144    0.313    0.229    0.247
##     verbal            1.000                               1.000    1.000    1.000    1.000
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
bf.model<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
'

bf.lv<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
'

baseline<-cfa(bf.model, data=dgroup, meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= -8.988298e-08) is smaller than zero. This may 
##    be a symptom that the model is not identified.
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   3083.901     26.000      0.000      0.968      0.104      0.037 512644.077 512928.705
Mc(baseline)
## [1] 0.8693128
summary(baseline, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        39
## 
##   Number of observations                         10918
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3083.901    1711.703
##   Degrees of freedom                                26          26
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.802
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar              3.470    0.098   35.367    0.000    3.278    3.663    3.470    0.474
##     ssmk              2.613    0.081   32.353    0.000    2.455    2.771    2.613    0.410
##     ssmc              1.132    0.049   23.062    0.000    1.035    1.228    1.132    0.217
##   electronic =~                                                                           
##     ssgs              1.221    0.040   30.304    0.000    1.142    1.300    1.221    0.242
##     ssasi             3.689    0.053   69.699    0.000    3.585    3.792    3.689    0.673
##     ssmc              2.696    0.049   55.251    0.000    2.601    2.792    2.696    0.516
##     ssei              2.076    0.038   55.009    0.000    2.002    2.150    2.076    0.488
##   speed =~                                                                                
##     ssno              0.473    0.010   48.601    0.000    0.454    0.492    0.473    0.495
##     sscs              0.561    0.004  133.204    0.000    0.552    0.569    0.561    0.583
##   g =~                                                                                    
##     ssgs              4.328    0.042  103.306    0.000    4.246    4.410    4.328    0.857
##     ssar              5.941    0.055  107.532    0.000    5.833    6.050    5.941    0.811
##     sswk              7.283    0.062  117.546    0.000    7.161    7.404    7.283    0.924
##     sspc              2.962    0.029  101.692    0.000    2.905    3.019    2.962    0.855
##     ssno              0.653    0.010   67.278    0.000    0.634    0.672    0.653    0.684
##     sscs              0.591    0.010   56.717    0.000    0.571    0.612    0.591    0.615
##     ssasi             3.133    0.056   55.776    0.000    3.023    3.243    3.133    0.571
##     ssmk              4.943    0.051   97.610    0.000    4.843    5.042    4.943    0.776
##     ssmc              3.473    0.049   70.198    0.000    3.376    3.570    3.473    0.664
##     ssei              3.121    0.037   83.347    0.000    3.048    3.195    3.121    0.733
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             17.532    0.090  194.495    0.000   17.355   17.709   17.532    2.393
##    .ssmk             13.395    0.080  168.423    0.000   13.239   13.551   13.395    2.102
##    .ssmc             13.757    0.065  211.689    0.000   13.629   13.884   13.757    2.632
##    .ssgs             15.549    0.060  260.619    0.000   15.432   15.666   15.549    3.078
##    .ssasi            13.689    0.067  204.057    0.000   13.558   13.821   13.689    2.496
##    .ssei             11.090    0.051  216.290    0.000   10.989   11.190   11.090    2.605
##    .ssno              0.191    0.011   16.982    0.000    0.169    0.214    0.191    0.201
##    .sscs              0.166    0.012   14.363    0.000    0.143    0.189    0.166    0.173
##    .sswk             25.536    0.090  285.179    0.000   25.361   25.712   25.536    3.239
##    .sspc             10.746    0.040  268.728    0.000   10.668   10.825   10.746    3.102
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.354    0.579   10.972    0.000    5.219    7.489    6.354    0.118
##    .ssmk              9.342    0.373   25.026    0.000    8.610   10.073    9.342    0.230
##    .ssmc              6.701    0.185   36.213    0.000    6.339    7.064    6.701    0.245
##    .ssgs              5.294    0.117   45.407    0.000    5.066    5.523    5.294    0.207
##    .ssasi             6.661    0.244   27.327    0.000    6.183    7.138    6.661    0.221
##    .ssei              4.077    0.103   39.713    0.000    3.876    4.278    4.077    0.225
##    .ssno              0.261    0.008   32.728    0.000    0.245    0.277    0.261    0.287
##    .sscs              0.261    0.010   26.040    0.000    0.242    0.281    0.261    0.282
##    .sswk              9.106    0.304   29.924    0.000    8.509    9.702    9.106    0.147
##    .sspc              3.227    0.078   41.571    0.000    3.075    3.379    3.227    0.269
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
configural<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= -3.349823e-07) is smaller than zero. This may 
##    be a symptom that the model is not identified.
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2288.019     52.000      0.000      0.976      0.089      0.026 503886.527 504455.784
Mc(configural)
## [1] 0.9026594
summary(configural, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 36 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        78
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2288.019    1279.672
##   Degrees of freedom                                52          52
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.788
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                          888.789     497.093
##     0                                         1399.230     782.579
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar              3.385    0.131   25.816    0.000    3.128    3.642    3.385    0.484
##     ssmk              2.679    0.114   23.576    0.000    2.456    2.901    2.679    0.437
##     ssmc              1.158    0.068   17.107    0.000    1.025    1.291    1.158    0.270
##   electronic =~                                                                           
##     ssgs              0.776    0.078    9.903    0.000    0.622    0.929    0.776    0.167
##     ssasi             1.455    0.087   16.810    0.000    1.285    1.624    1.455    0.387
##     ssmc              1.374    0.094   14.562    0.000    1.189    1.559    1.374    0.320
##     ssei              1.070    0.079   13.606    0.000    0.916    1.225    1.070    0.299
##   speed =~                                                                                
##     ssno              0.502    0.013   37.930    0.000    0.476    0.528    0.502    0.541
##     sscs              0.500    0.007   75.512    0.000    0.487    0.513    0.500    0.532
##   g =~                                                                                    
##     ssgs              3.969    0.056   71.205    0.000    3.859    4.078    3.969    0.853
##     ssar              5.596    0.078   71.821    0.000    5.444    5.749    5.596    0.800
##     sswk              7.042    0.085   82.756    0.000    6.875    7.209    7.042    0.922
##     sspc              2.800    0.041   67.888    0.000    2.719    2.881    2.800    0.854
##     ssno              0.615    0.014   44.519    0.000    0.588    0.642    0.615    0.663
##     sscs              0.568    0.015   38.118    0.000    0.539    0.597    0.568    0.604
##     ssasi             2.494    0.053   47.216    0.000    2.390    2.597    2.494    0.663
##     ssmk              4.646    0.070   66.472    0.000    4.509    4.783    4.646    0.758
##     ssmc              2.889    0.058   49.803    0.000    2.775    3.003    2.889    0.673
##     ssei              2.682    0.045   59.751    0.000    2.594    2.770    2.682    0.749
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             16.646    0.123  135.820    0.000   16.405   16.886   16.646    2.379
##    .ssmk             13.157    0.108  122.070    0.000   12.946   13.369   13.157    2.146
##    .ssmc             11.841    0.076  156.606    0.000   11.693   11.989   11.841    2.759
##    .ssgs             14.716    0.078  188.083    0.000   14.563   14.869   14.716    3.165
##    .ssasi            10.952    0.064  171.593    0.000   10.827   11.077   10.952    2.913
##    .ssei              9.613    0.062  156.264    0.000    9.492    9.733    9.613    2.685
##    .ssno              0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.326
##    .sscs              0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.404
##    .sswk             25.615    0.123  208.263    0.000   25.374   25.856   25.615    3.352
##    .sspc             11.115    0.053  210.841    0.000   11.011   11.218   11.115    3.390
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.162    0.743    8.291    0.000    4.705    7.619    6.162    0.126
##    .ssmk              8.830    0.526   16.784    0.000    7.799    9.861    8.830    0.235
##    .ssmc              6.849    0.282   24.303    0.000    6.297    7.402    6.849    0.372
##    .ssgs              5.272    0.171   30.791    0.000    4.936    5.607    5.272    0.244
##    .ssasi             5.795    0.237   24.501    0.000    5.332    6.259    5.795    0.410
##    .ssei              4.475    0.164   27.269    0.000    4.154    4.797    4.475    0.349
##    .ssno              0.231    0.012   19.348    0.000    0.207    0.254    0.231    0.268
##    .sscs              0.311    0.014   22.242    0.000    0.284    0.339    0.311    0.352
##    .sswk              8.791    0.397   22.141    0.000    8.013    9.569    8.791    0.151
##    .sspc              2.910    0.094   30.919    0.000    2.726    3.095    2.910    0.271
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar              3.408    0.149   22.908    0.000    3.116    3.699    3.408    0.452
##     ssmk              2.627    0.121   21.743    0.000    2.390    2.864    2.627    0.399
##     ssmc              0.956    0.070   13.640    0.000    0.819    1.093    0.956    0.174
##   electronic =~                                                                           
##     ssgs              0.807    0.064   12.633    0.000    0.682    0.932    0.807    0.153
##     ssasi             3.003    0.081   36.930    0.000    2.844    3.162    3.003    0.537
##     ssmc              2.428    0.075   32.279    0.000    2.281    2.575    2.428    0.442
##     ssei              1.578    0.059   26.739    0.000    1.463    1.694    1.578    0.361
##   speed =~                                                                                
##     ssno              0.473    0.010   48.755    0.000    0.454    0.492    0.473    0.489
##     sscs              0.479    0.011   44.467    0.000    0.458    0.501    0.479    0.512
##   g =~                                                                                    
##     ssgs              4.690    0.058   80.614    0.000    4.576    4.804    4.690    0.887
##     ssar              6.256    0.075   83.871    0.000    6.110    6.402    6.256    0.830
##     sswk              7.518    0.088   85.874    0.000    7.346    7.689    7.518    0.927
##     sspc              3.130    0.039   80.144    0.000    3.053    3.206    3.130    0.870
##     ssno              0.686    0.013   51.778    0.000    0.660    0.712    0.686    0.709
##     sscs              0.624    0.014   45.873    0.000    0.598    0.651    0.624    0.666
##     ssasi             3.864    0.078   49.792    0.000    3.712    4.016    3.864    0.691
##     ssmk              5.171    0.072   72.306    0.000    5.030    5.311    5.171    0.785
##     ssmc              4.108    0.066   62.045    0.000    3.978    4.238    4.108    0.748
##     ssei              3.596    0.050   71.745    0.000    3.497    3.694    3.596    0.822
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             18.393    0.130  141.785    0.000   18.139   18.647   18.393    2.440
##    .ssmk             13.626    0.116  116.977    0.000   13.397   13.854   13.626    2.068
##    .ssmc             15.617    0.092  169.826    0.000   15.437   15.797   15.617    2.842
##    .ssgs             16.358    0.087  188.331    0.000   16.188   16.528   16.358    3.093
##    .ssasi            16.348    0.092  177.720    0.000   16.168   16.528   16.348    2.926
##    .ssei             12.524    0.072  174.554    0.000   12.384   12.665   12.524    2.865
##    .ssno              0.084    0.016    5.181    0.000    0.052    0.116    0.084    0.087
##    .sscs             -0.042    0.016   -2.602    0.009   -0.073   -0.010   -0.042   -0.045
##    .sswk             25.460    0.130  195.905    0.000   25.205   25.715   25.460    3.139
##    .sspc             10.389    0.059  175.230    0.000   10.273   10.505   10.389    2.887
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.060    0.895    6.772    0.000    4.306    7.814    6.060    0.107
##    .ssmk              9.777    0.583   16.765    0.000    8.634   10.921    9.777    0.225
##    .ssmc              6.510    0.285   22.878    0.000    5.952    7.068    6.510    0.216
##    .ssgs              5.332    0.162   32.904    0.000    5.014    5.649    5.332    0.191
##    .ssasi             7.279    0.364   19.997    0.000    6.565    7.992    7.279    0.233
##    .ssei              3.692    0.130   28.407    0.000    3.438    3.947    3.692    0.193
##    .ssno              0.241    0.010   24.823    0.000    0.222    0.260    0.241    0.257
##    .sscs              0.259    0.013   19.327    0.000    0.233    0.285    0.259    0.295
##    .sswk              9.269    0.408   22.711    0.000    8.469   10.069    9.269    0.141
##    .sspc              3.156    0.107   29.621    0.000    2.948    3.365    3.156    0.244
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
#modificationIndices(configural, sort=T, maximum.number=30)

metric<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2634.909     67.000      0.000      0.973      0.084      0.053 504203.417 504663.202
Mc(metric)
## [1] 0.8890422
summary(metric, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 62 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    19
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2634.909    1543.380
##   Degrees of freedom                                67          67
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.707
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1039.285     608.754
##     0                                         1595.624     934.626
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.379    0.107   31.616    0.000    3.169    3.588    3.379    0.485
##     ssmk    (.p2.)    2.664    0.091   29.163    0.000    2.485    2.843    2.664    0.436
##     ssmc    (.p3.)    1.064    0.052   20.285    0.000    0.961    1.167    1.064    0.238
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.496    0.034   14.597    0.000    0.429    0.562    0.496    0.106
##     ssasi   (.p5.)    1.614    0.060   27.110    0.000    1.497    1.731    1.614    0.406
##     ssmc    (.p6.)    1.326    0.054   24.361    0.000    1.219    1.433    1.326    0.297
##     ssei    (.p7.)    0.885    0.039   22.889    0.000    0.809    0.961    0.885    0.239
##   speed =~                                                                                
##     ssno    (.p8.)    0.460    0.056    8.164    0.000    0.349    0.570    0.460    0.496
##     sscs    (.p9.)    0.551    0.076    7.241    0.000    0.402    0.700    0.551    0.589
##   g =~                                                                                    
##     ssgs    (.10.)    4.027    0.048   83.979    0.000    3.933    4.121    4.027    0.862
##     ssar    (.11.)    5.576    0.067   83.527    0.000    5.445    5.707    5.576    0.800
##     sswk    (.12.)    6.809    0.080   85.411    0.000    6.653    6.965    6.809    0.911
##     sspc    (.13.)    2.784    0.035   79.105    0.000    2.715    2.853    2.784    0.851
##     ssno    (.14.)    0.612    0.010   59.475    0.000    0.591    0.632    0.612    0.660
##     sscs    (.15.)    0.559    0.010   53.498    0.000    0.539    0.580    0.559    0.598
##     ssasi   (.16.)    2.817    0.045   61.999    0.000    2.728    2.906    2.817    0.708
##     ssmk    (.17.)    4.624    0.060   76.447    0.000    4.505    4.742    4.624    0.757
##     ssmc    (.18.)    3.180    0.046   69.835    0.000    3.090    3.269    3.180    0.712
##     ssei    (.19.)    2.885    0.036   79.851    0.000    2.815    2.956    2.885    0.778
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             16.646    0.123  135.820    0.000   16.405   16.886   16.646    2.388
##    .ssmk             13.157    0.108  122.070    0.000   12.946   13.369   13.157    2.154
##    .ssmc             11.841    0.076  156.606    0.000   11.693   11.989   11.841    2.650
##    .ssgs             14.716    0.078  188.083    0.000   14.563   14.869   14.716    3.150
##    .ssasi            10.952    0.064  171.593    0.000   10.827   11.077   10.952    2.752
##    .ssei              9.613    0.062  156.264    0.000    9.492    9.733    9.613    2.593
##    .ssno              0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.326
##    .sscs              0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.406
##    .sswk             25.615    0.123  208.263    0.000   25.374   25.856   25.615    3.429
##    .sspc             11.115    0.053  210.841    0.000   11.011   11.218   11.115    3.396
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.069    0.611    9.940    0.000    4.873    7.266    6.069    0.125
##    .ssmk              8.847    0.443   19.991    0.000    7.980    9.715    8.847    0.237
##    .ssmc              6.969    0.228   30.523    0.000    6.521    7.416    6.969    0.349
##    .ssgs              5.358    0.164   32.688    0.000    5.037    5.679    5.358    0.246
##    .ssasi             5.293    0.204   25.977    0.000    4.893    5.692    5.293    0.334
##    .ssei              4.638    0.136   34.154    0.000    4.372    4.904    4.638    0.337
##    .ssno              0.274    0.054    5.036    0.000    0.167    0.381    0.274    0.319
##    .sscs              0.259    0.081    3.193    0.001    0.100    0.419    0.259    0.296
##    .sswk              9.442    0.383   24.673    0.000    8.692   10.192    9.442    0.169
##    .sspc              2.962    0.095   31.214    0.000    2.776    3.148    2.962    0.276
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.379    0.107   31.616    0.000    3.169    3.588    3.335    0.441
##     ssmk    (.p2.)    2.664    0.091   29.163    0.000    2.485    2.843    2.629    0.398
##     ssmc    (.p3.)    1.064    0.052   20.285    0.000    0.961    1.167    1.050    0.203
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.496    0.034   14.597    0.000    0.429    0.562    0.953    0.184
##     ssasi   (.p5.)    1.614    0.060   27.110    0.000    1.497    1.731    3.103    0.595
##     ssmc    (.p6.)    1.326    0.054   24.361    0.000    1.219    1.433    2.549    0.492
##     ssei    (.p7.)    0.885    0.039   22.889    0.000    0.809    0.961    1.701    0.411
##   speed =~                                                                                
##     ssno    (.p8.)    0.460    0.056    8.139    0.000    0.349    0.570    0.432    0.447
##     sscs    (.p9.)    0.551    0.076    7.241    0.000    0.402    0.700    0.518    0.551
##   g =~                                                                                    
##     ssgs    (.10.)    4.027    0.048   83.979    0.000    3.933    4.121    4.544    0.876
##     ssar    (.11.)    5.576    0.067   83.527    0.000    5.445    5.707    6.291    0.832
##     sswk    (.12.)    6.809    0.080   85.411    0.000    6.653    6.965    7.682    0.930
##     sspc    (.13.)    2.784    0.035   79.105    0.000    2.715    2.853    3.141    0.872
##     ssno    (.14.)    0.612    0.010   59.475    0.000    0.591    0.632    0.690    0.713
##     sscs    (.15.)    0.559    0.010   53.498    0.000    0.539    0.580    0.631    0.671
##     ssasi   (.16.)    2.817    0.045   61.999    0.000    2.728    2.906    3.178    0.610
##     ssmk    (.17.)    4.624    0.060   76.447    0.000    4.505    4.742    5.217    0.789
##     ssmc    (.18.)    3.180    0.046   69.835    0.000    3.090    3.269    3.587    0.692
##     ssei    (.19.)    2.885    0.036   79.851    0.000    2.815    2.956    3.255    0.786
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar             18.393    0.130  141.785    0.000   18.139   18.647   18.393    2.433
##    .ssmk             13.626    0.116  116.977    0.000   13.397   13.854   13.626    2.061
##    .ssmc             15.617    0.092  169.826    0.000   15.437   15.797   15.617    3.013
##    .ssgs             16.358    0.087  188.331    0.000   16.188   16.528   16.358    3.155
##    .ssasi            16.348    0.092  177.720    0.000   16.168   16.528   16.348    3.137
##    .ssei             12.524    0.072  174.554    0.000   12.384   12.665   12.524    3.024
##    .ssno              0.084    0.016    5.181    0.000    0.052    0.116    0.084    0.087
##    .sscs             -0.042    0.016   -2.602    0.009   -0.073   -0.010   -0.042   -0.044
##    .sswk             25.460    0.130  195.905    0.000   25.205   25.715   25.460    3.082
##    .sspc             10.389    0.059  175.230    0.000   10.273   10.505   10.389    2.882
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              6.471    0.633   10.222    0.000    5.231    7.712    6.471    0.113
##    .ssmk              9.566    0.444   21.524    0.000    8.695   10.437    9.566    0.219
##    .ssmc              6.402    0.272   23.565    0.000    5.869    6.934    6.402    0.238
##    .ssgs              5.329    0.160   33.209    0.000    5.015    5.644    5.329    0.198
##    .ssasi             7.434    0.351   21.158    0.000    6.745    8.122    7.434    0.274
##    .ssei              3.663    0.130   28.181    0.000    3.408    3.917    3.663    0.214
##    .ssno              0.274    0.051    5.412    0.000    0.175    0.373    0.274    0.292
##    .sscs              0.218    0.067    3.270    0.001    0.087    0.349    0.218    0.247
##    .sswk              9.203    0.411   22.400    0.000    8.398   10.008    9.203    0.135
##    .sspc              3.122    0.105   29.776    0.000    2.917    3.328    3.122    0.240
##     math              0.974    0.056   17.529    0.000    0.865    1.083    1.000    1.000
##     electronic        3.696    0.292   12.642    0.000    3.123    4.269    1.000    1.000
##     speed             0.885    0.051   17.452    0.000    0.786    0.985    1.000    1.000
##     g                 1.273    0.037   34.624    0.000    1.201    1.345    1.000    1.000
lavTestScore(metric, release = 1:19)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 341.992 19       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op   rhs     X2 df p.value
## 1   .p1. == .p54.  1.262  1   0.261
## 2   .p2. == .p55.  0.239  1   0.625
## 3   .p3. == .p56.  2.785  1   0.095
## 4   .p4. == .p57.  7.829  1   0.005
## 5   .p5. == .p58. 10.609  1   0.001
## 6   .p6. == .p59.  0.032  1   0.857
## 7   .p7. == .p60.  1.890  1   0.169
## 8   .p8. == .p61.  0.000  1   1.000
## 9   .p9. == .p62.  0.000  1   1.000
## 10 .p10. == .p63.  0.355  1   0.552
## 11 .p11. == .p64.  2.522  1   0.112
## 12 .p12. == .p65. 62.661  1   0.000
## 13 .p13. == .p66.  0.199  1   0.655
## 14 .p14. == .p67.  0.066  1   0.798
## 15 .p15. == .p68.  0.831  1   0.362
## 16 .p16. == .p69. 72.114  1   0.000
## 17 .p17. == .p70.  0.955  1   0.329
## 18 .p18. == .p71. 29.831  1   0.000
## 19 .p19. == .p72. 20.152  1   0.000
scalar<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   3074.963     73.000      0.000      0.968      0.087      0.054 504631.471 505047.467
Mc(scalar)
## [1] 0.8715428
summary(scalar, standardized=T, ci=T) # +.090
## lavaan 0.6-18 ended normally after 129 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    29
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3074.963    1837.005
##   Degrees of freedom                                73          73
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.674
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1248.741     746.007
##     0                                         1826.222    1090.998
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.972    0.125   31.869    0.000    3.728    4.216    3.972    0.570
##     ssmk    (.p2.)    2.167    0.084   25.680    0.000    2.002    2.333    2.167    0.356
##     ssmc    (.p3.)    0.828    0.055   15.068    0.000    0.720    0.935    0.828    0.185
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.572    0.026   22.246    0.000    0.521    0.622    0.572    0.123
##     ssasi   (.p5.)    1.658    0.060   27.512    0.000    1.539    1.776    1.658    0.417
##     ssmc    (.p6.)    1.128    0.044   25.890    0.000    1.043    1.213    1.128    0.252
##     ssei    (.p7.)    0.928    0.035   26.230    0.000    0.858    0.997    0.928    0.251
##   speed =~                                                                                
##     ssno    (.p8.)    0.328    0.017   19.215    0.000    0.295    0.362    0.328    0.354
##     sscs    (.p9.)    0.767    0.041   18.873    0.000    0.688    0.847    0.767    0.820
##   g =~                                                                                    
##     ssgs    (.10.)    4.009    0.048   83.026    0.000    3.914    4.103    4.009    0.860
##     ssar    (.11.)    5.586    0.067   83.751    0.000    5.456    5.717    5.586    0.802
##     sswk    (.12.)    6.785    0.081   84.247    0.000    6.628    6.943    6.785    0.909
##     sspc    (.13.)    2.796    0.034   81.209    0.000    2.728    2.863    2.796    0.849
##     ssno    (.14.)    0.613    0.010   59.923    0.000    0.593    0.633    0.613    0.661
##     sscs    (.15.)    0.561    0.010   53.747    0.000    0.540    0.581    0.561    0.599
##     ssasi   (.16.)    2.799    0.045   61.739    0.000    2.710    2.888    2.799    0.705
##     ssmk    (.17.)    4.649    0.060   77.206    0.000    4.531    4.767    4.649    0.763
##     ssmc    (.18.)    3.228    0.045   71.123    0.000    3.139    3.317    3.228    0.722
##     ssei    (.19.)    2.872    0.036   79.360    0.000    2.801    2.943    2.872    0.775
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   16.662    0.124  134.581    0.000   16.419   16.905   16.662    2.391
##    .ssmk    (.41.)   13.008    0.103  126.906    0.000   12.807   13.209   13.008    2.134
##    .ssmc    (.42.)   11.733    0.074  158.524    0.000   11.588   11.878   11.733    2.625
##    .ssgs    (.43.)   14.768    0.077  192.949    0.000   14.618   14.918   14.768    3.167
##    .ssasi   (.44.)   10.969    0.064  172.489    0.000   10.844   11.093   10.969    2.761
##    .ssei    (.45.)    9.638    0.061  159.192    0.000    9.520    9.757    9.638    2.603
##    .ssno    (.46.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.326
##    .sscs    (.47.)    0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.406
##    .sswk    (.48.)   25.888    0.120  216.161    0.000   25.654   26.123   25.888    3.467
##    .sspc    (.49.)   10.895    0.053  207.023    0.000   10.792   10.998   10.895    3.310
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.581    0.925    1.708    0.088   -0.233    3.394    1.581    0.033
##    .ssmk             10.840    0.381   28.436    0.000   10.093   11.588   10.840    0.292
##    .ssmc              7.600    0.223   34.017    0.000    7.162    8.038    7.600    0.380
##    .ssgs              5.349    0.164   32.593    0.000    5.027    5.671    5.349    0.246
##    .ssasi             5.201    0.204   25.540    0.000    4.802    5.600    5.201    0.330
##    .ssei              4.605    0.135   34.111    0.000    4.340    4.870    4.605    0.336
##    .ssno              0.376    0.015   25.502    0.000    0.347    0.405    0.376    0.437
##    .sscs             -0.027    0.063   -0.428    0.668   -0.151    0.097   -0.027   -0.031
##    .sswk              9.713    0.395   24.618    0.000    8.940   10.487    9.713    0.174
##    .sspc              3.017    0.097   31.075    0.000    2.827    3.207    3.017    0.279
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.972    0.125   31.869    0.000    3.728    4.216    3.950    0.522
##     ssmk    (.p2.)    2.167    0.084   25.680    0.000    2.002    2.333    2.155    0.326
##     ssmc    (.p3.)    0.828    0.055   15.068    0.000    0.720    0.935    0.823    0.161
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.572    0.026   22.246    0.000    0.521    0.622    1.105    0.213
##     ssasi   (.p5.)    1.658    0.060   27.512    0.000    1.539    1.776    3.204    0.611
##     ssmc    (.p6.)    1.128    0.044   25.890    0.000    1.043    1.213    2.180    0.427
##     ssei    (.p7.)    0.928    0.035   26.230    0.000    0.858    0.997    1.793    0.432
##   speed =~                                                                                
##     ssno    (.p8.)    0.328    0.017   19.215    0.000    0.295    0.362    0.308    0.318
##     sscs    (.p9.)    0.767    0.041   18.873    0.000    0.688    0.847    0.720    0.765
##   g =~                                                                                    
##     ssgs    (.10.)    4.009    0.048   83.026    0.000    3.914    4.103    4.522    0.870
##     ssar    (.11.)    5.586    0.067   83.751    0.000    5.456    5.717    6.301    0.833
##     sswk    (.12.)    6.785    0.081   84.247    0.000    6.628    6.943    7.654    0.928
##     sspc    (.13.)    2.796    0.034   81.209    0.000    2.728    2.863    3.153    0.871
##     ssno    (.14.)    0.613    0.010   59.923    0.000    0.593    0.633    0.692    0.715
##     sscs    (.15.)    0.561    0.010   53.747    0.000    0.540    0.581    0.633    0.673
##     ssasi   (.16.)    2.799    0.045   61.739    0.000    2.710    2.888    3.157    0.602
##     ssmk    (.17.)    4.649    0.060   77.206    0.000    4.531    4.767    5.244    0.793
##     ssmc    (.18.)    3.228    0.045   71.123    0.000    3.139    3.317    3.641    0.712
##     ssei    (.19.)    2.872    0.036   79.360    0.000    2.801    2.943    3.239    0.779
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   16.662    0.124  134.581    0.000   16.419   16.905   16.662    2.202
##    .ssmk    (.41.)   13.008    0.103  126.906    0.000   12.807   13.209   13.008    1.968
##    .ssmc    (.42.)   11.733    0.074  158.524    0.000   11.588   11.878   11.733    2.296
##    .ssgs    (.43.)   14.768    0.077  192.949    0.000   14.618   14.918   14.768    2.842
##    .ssasi   (.44.)   10.969    0.064  172.489    0.000   10.844   11.093   10.969    2.093
##    .ssei    (.45.)    9.638    0.061  159.192    0.000    9.520    9.757    9.638    2.319
##    .ssno    (.46.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.312
##    .sscs    (.47.)    0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.404
##    .sswk    (.48.)   25.888    0.120  216.161    0.000   25.654   26.123   25.888    3.138
##    .sspc    (.49.)   10.895    0.053  207.023    0.000   10.792   10.998   10.895    3.011
##     math              0.573    0.031   18.334    0.000    0.512    0.635    0.576    0.576
##     elctrnc           3.403    0.135   25.256    0.000    3.139    3.667    1.761    1.761
##     speed            -0.476    0.036  -13.132    0.000   -0.547   -0.405   -0.507   -0.507
##     g                -0.101    0.026   -3.859    0.000   -0.153   -0.050   -0.090   -0.090
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.941    0.952    2.038    0.042    0.075    3.806    1.941    0.034
##    .ssmk             11.531    0.416   27.727    0.000   10.716   12.346   11.531    0.264
##    .ssmc              7.431    0.236   31.508    0.000    6.969    7.893    7.431    0.284
##    .ssgs              5.337    0.162   33.003    0.000    5.020    5.654    5.337    0.198
##    .ssasi             7.237    0.318   22.766    0.000    6.614    7.860    7.237    0.263
##    .ssei              3.564    0.128   27.869    0.000    3.313    3.814    3.564    0.206
##    .ssno              0.364    0.013   27.874    0.000    0.338    0.389    0.364    0.388
##    .sscs             -0.034    0.052   -0.651    0.515   -0.135    0.068   -0.034   -0.038
##    .sswk              9.474    0.434   21.853    0.000    8.624   10.324    9.474    0.139
##    .sspc              3.151    0.109   28.967    0.000    2.938    3.364    3.151    0.241
##     math              0.989    0.056   17.696    0.000    0.879    1.099    1.000    1.000
##     electronic        3.736    0.304   12.274    0.000    3.139    4.333    1.000    1.000
##     speed             0.880    0.051   17.332    0.000    0.780    0.979    1.000    1.000
##     g                 1.272    0.037   34.769    0.000    1.201    1.344    1.000    1.000
lavTestScore(scalar, release = 20:29) 
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 420.736 10       0
## 
## $uni
## 
## univariate score tests:
## 
##      lhs op    rhs      X2 df p.value
## 1  .p40. ==  .p93.  98.866  1   0.000
## 2  .p41. ==  .p94.  50.174  1   0.000
## 3  .p42. ==  .p95.  80.606  1   0.000
## 4  .p43. ==  .p96.  20.125  1   0.000
## 5  .p44. ==  .p97.   6.888  1   0.009
## 6  .p45. ==  .p98.   6.494  1   0.011
## 7  .p46. ==  .p99.   0.000  1   1.000
## 8  .p47. == .p100.   0.000  1   1.000
## 9  .p48. == .p101. 204.649  1   0.000
## 10 .p49. == .p102. 255.609  1   0.000
scalar2<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2817.216     72.000      0.000      0.971      0.084      0.054 504375.725 504799.018
Mc(scalar2)
## [1] 0.8818518
summary(scalar2, standardized=T, ci=T) # +.024
## lavaan 0.6-18 ended normally after 145 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2817.216    1682.627
##   Degrees of freedom                                72          72
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.674
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1125.998     672.520
##     0                                         1691.219    1010.107
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.964    0.138   28.618    0.000    3.692    4.235    3.964    0.569
##     ssmk    (.p2.)    2.182    0.095   22.913    0.000    1.995    2.369    2.182    0.358
##     ssmc    (.p3.)    0.845    0.060   14.096    0.000    0.727    0.962    0.845    0.189
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.529    0.025   21.086    0.000    0.479    0.578    0.529    0.113
##     ssasi   (.p5.)    1.679    0.061   27.705    0.000    1.560    1.798    1.679    0.423
##     ssmc    (.p6.)    1.139    0.044   26.052    0.000    1.053    1.224    1.139    0.255
##     ssei    (.p7.)    0.914    0.035   26.225    0.000    0.846    0.982    0.914    0.247
##   speed =~                                                                                
##     ssno    (.p8.)    0.354    0.015   23.827    0.000    0.325    0.383    0.354    0.382
##     sscs    (.p9.)    0.714    0.031   23.089    0.000    0.653    0.774    0.714    0.762
##   g =~                                                                                    
##     ssgs    (.10.)    4.019    0.048   83.532    0.000    3.925    4.113    4.019    0.861
##     ssar    (.11.)    5.581    0.067   83.774    0.000    5.450    5.711    5.581    0.801
##     sswk    (.12.)    6.804    0.080   85.485    0.000    6.648    6.960    6.804    0.911
##     sspc    (.13.)    2.787    0.035   79.665    0.000    2.718    2.855    2.787    0.851
##     ssno    (.14.)    0.612    0.010   59.860    0.000    0.592    0.632    0.612    0.660
##     sscs    (.15.)    0.560    0.010   53.715    0.000    0.540    0.580    0.560    0.598
##     ssasi   (.16.)    2.801    0.045   61.762    0.000    2.712    2.890    2.801    0.705
##     ssmk    (.17.)    4.639    0.060   77.470    0.000    4.521    4.756    4.639    0.762
##     ssmc    (.18.)    3.223    0.045   70.914    0.000    3.134    3.312    3.223    0.721
##     ssei    (.19.)    2.876    0.036   79.525    0.000    2.805    2.947    2.876    0.776
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   16.669    0.125  132.999    0.000   16.423   16.914   16.669    2.392
##    .ssmk    (.41.)   12.949    0.101  127.984    0.000   12.751   13.147   12.949    2.126
##    .ssmc    (.42.)   11.738    0.074  159.293    0.000   11.594   11.882   11.738    2.626
##    .ssgs    (.43.)   14.740    0.077  192.256    0.000   14.590   14.890   14.740    3.158
##    .ssasi   (.44.)   10.977    0.064  172.503    0.000   10.853   11.102   10.977    2.762
##    .ssei    (.45.)    9.637    0.060  159.576    0.000    9.519    9.756    9.637    2.601
##    .ssno    (.46.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.326
##    .sscs    (.47.)    0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.406
##    .sswk    (.48.)   25.630    0.123  208.921    0.000   25.390   25.871   25.630    3.431
##    .sspc             11.115    0.053  210.841    0.000   11.011   11.218   11.115    3.394
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.719    1.052    1.633    0.102   -0.344    3.782    1.719    0.035
##    .ssmk             10.828    0.415   26.108    0.000   10.015   11.640   10.828    0.292
##    .ssmc              7.577    0.226   33.596    0.000    7.135    8.019    7.577    0.379
##    .ssgs              5.358    0.164   32.707    0.000    5.037    5.679    5.358    0.246
##    .ssasi             5.128    0.205   24.982    0.000    4.726    5.531    5.128    0.325
##    .ssei              4.625    0.135   34.258    0.000    4.360    4.889    4.625    0.337
##    .ssno              0.359    0.014   25.756    0.000    0.332    0.387    0.359    0.418
##    .sscs              0.053    0.045    1.175    0.240   -0.035    0.141    0.053    0.061
##    .sswk              9.524    0.385   24.713    0.000    8.769   10.280    9.524    0.171
##    .sspc              2.959    0.095   31.257    0.000    2.773    3.144    2.959    0.276
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.964    0.138   28.618    0.000    3.692    4.235    3.941    0.521
##     ssmk    (.p2.)    2.182    0.095   22.913    0.000    1.995    2.369    2.170    0.329
##     ssmc    (.p3.)    0.845    0.060   14.096    0.000    0.727    0.962    0.840    0.164
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.529    0.025   21.086    0.000    0.479    0.578    1.021    0.197
##     ssasi   (.p5.)    1.679    0.061   27.705    0.000    1.560    1.798    3.243    0.618
##     ssmc    (.p6.)    1.139    0.044   26.052    0.000    1.053    1.224    2.199    0.430
##     ssei    (.p7.)    0.914    0.035   26.225    0.000    0.846    0.982    1.766    0.425
##   speed =~                                                                                
##     ssno    (.p8.)    0.354    0.015   23.827    0.000    0.325    0.383    0.332    0.343
##     sscs    (.p9.)    0.714    0.031   23.089    0.000    0.653    0.774    0.671    0.713
##   g =~                                                                                    
##     ssgs    (.10.)    4.019    0.048   83.532    0.000    3.925    4.113    4.534    0.874
##     ssar    (.11.)    5.581    0.067   83.774    0.000    5.450    5.711    6.296    0.832
##     sswk    (.12.)    6.804    0.080   85.485    0.000    6.648    6.960    7.676    0.929
##     sspc    (.13.)    2.787    0.035   79.665    0.000    2.718    2.855    3.144    0.873
##     ssno    (.14.)    0.612    0.010   59.860    0.000    0.592    0.632    0.691    0.714
##     sscs    (.15.)    0.560    0.010   53.715    0.000    0.540    0.580    0.632    0.672
##     ssasi   (.16.)    2.801    0.045   61.762    0.000    2.712    2.890    3.160    0.602
##     ssmk    (.17.)    4.639    0.060   77.470    0.000    4.521    4.756    5.233    0.792
##     ssmc    (.18.)    3.223    0.045   70.914    0.000    3.134    3.312    3.636    0.711
##     ssei    (.19.)    2.876    0.036   79.525    0.000    2.805    2.947    3.245    0.781
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   16.669    0.125  132.999    0.000   16.423   16.914   16.669    2.203
##    .ssmk    (.41.)   12.949    0.101  127.984    0.000   12.751   13.147   12.949    1.961
##    .ssmc    (.42.)   11.738    0.074  159.293    0.000   11.594   11.882   11.738    2.296
##    .ssgs    (.43.)   14.740    0.077  192.256    0.000   14.590   14.890   14.740    2.840
##    .ssasi   (.44.)   10.977    0.064  172.503    0.000   10.853   11.102   10.977    2.091
##    .ssei    (.45.)    9.637    0.060  159.576    0.000    9.519    9.756    9.637    2.320
##    .ssno    (.46.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.312
##    .sscs    (.47.)    0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.404
##    .sswk    (.48.)   25.630    0.123  208.921    0.000   25.390   25.871   25.630    3.103
##    .sspc             10.464    0.062  169.596    0.000   10.343   10.585   10.464    2.904
##     math              0.466    0.031   14.819    0.000    0.405    0.528    0.469    0.469
##     elctrnc           3.223    0.128   25.196    0.000    2.973    3.474    1.669    1.669
##     speed            -0.570    0.037  -15.547    0.000   -0.642   -0.498   -0.606   -0.606
##     g                -0.027    0.026   -1.026    0.305   -0.079    0.025   -0.024   -0.024
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              2.096    1.082    1.938    0.053   -0.024    4.217    2.096    0.037
##    .ssmk             11.519    0.448   25.727    0.000   10.641   12.397   11.519    0.264
##    .ssmc              7.380    0.238   31.029    0.000    6.914    7.847    7.380    0.282
##    .ssgs              5.335    0.161   33.200    0.000    5.020    5.650    5.335    0.198
##    .ssasi             7.042    0.319   22.046    0.000    6.416    7.668    7.042    0.256
##    .ssei              3.604    0.128   28.156    0.000    3.353    3.855    3.604    0.209
##    .ssno              0.349    0.012   28.017    0.000    0.325    0.374    0.349    0.373
##    .sscs              0.036    0.036    0.992    0.321   -0.035    0.107    0.036    0.041
##    .sswk              9.285    0.419   22.145    0.000    8.463   10.107    9.285    0.136
##    .sspc              3.099    0.104   29.704    0.000    2.894    3.303    3.099    0.239
##     math              0.989    0.056   17.806    0.000    0.880    1.098    1.000    1.000
##     electronic        3.731    0.301   12.386    0.000    3.140    4.321    1.000    1.000
##     speed             0.883    0.051   17.394    0.000    0.784    0.983    1.000    1.000
##     g                 1.273    0.037   34.829    0.000    1.201    1.344    1.000    1.000
lavTestScore(scalar2, release = 20:27)
## Warning: lavaan->lavTestScore():  
##    se is not `standard'; not implemented yet; falling back to ordinary score test
## $test
## 
## total score test:
## 
##    test      X2 df p.value
## 1 score 172.263  8       0
## 
## $uni
## 
## univariate score tests:
## 
##     lhs op    rhs      X2 df p.value
## 1 .p40. ==  .p93. 129.427  1   0.000
## 2 .p41. ==  .p94.  80.619  1   0.000
## 3 .p42. ==  .p95.  68.110  1   0.000
## 4 .p43. ==  .p96.   4.014  1   0.045
## 5 .p44. ==  .p97.  15.975  1   0.000
## 6 .p45. ==  .p98.   5.339  1   0.021
## 7 .p46. ==  .p99.   0.000  1   1.000
## 8 .p47. == .p100.   0.000  1   1.000
strict<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2923.054     82.000      0.000      0.970      0.080      0.053 504461.562 504811.874
Mc(strict)
## [1] 0.8779895
summary(strict, standardized=T, ci=T) # +.021
## lavaan 0.6-18 ended normally after 89 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    38
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2923.054    1723.193
##   Degrees of freedom                                82          82
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.696
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1170.442     689.996
##     0                                         1752.612    1033.196
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.911    0.132   29.654    0.000    3.652    4.169    3.911    0.561
##     ssmk    (.p2.)    2.183    0.094   23.272    0.000    1.999    2.367    2.183    0.357
##     ssmc    (.p3.)    0.849    0.060   14.265    0.000    0.733    0.966    0.849    0.191
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.505    0.024   20.714    0.000    0.457    0.553    0.505    0.108
##     ssasi   (.p5.)    1.645    0.059   27.723    0.000    1.529    1.762    1.645    0.407
##     ssmc    (.p6.)    1.094    0.043   25.389    0.000    1.010    1.179    1.094    0.246
##     ssei    (.p7.)    0.873    0.034   25.492    0.000    0.806    0.940    0.873    0.240
##   speed =~                                                                                
##     ssno    (.p8.)    0.356    0.015   23.823    0.000    0.327    0.386    0.356    0.385
##     sscs    (.p9.)    0.722    0.027   26.813    0.000    0.670    0.775    0.722    0.772
##   g =~                                                                                    
##     ssgs    (.10.)    4.019    0.048   83.570    0.000    3.925    4.113    4.019    0.862
##     ssar    (.11.)    5.582    0.066   84.022    0.000    5.452    5.713    5.582    0.801
##     sswk    (.12.)    6.803    0.079   86.002    0.000    6.648    6.958    6.803    0.911
##     sspc    (.13.)    2.786    0.035   79.994    0.000    2.718    2.855    2.786    0.848
##     ssno    (.14.)    0.612    0.010   59.994    0.000    0.592    0.632    0.612    0.661
##     sscs    (.15.)    0.560    0.010   53.841    0.000    0.540    0.581    0.560    0.598
##     ssasi   (.16.)    2.810    0.045   61.836    0.000    2.721    2.899    2.810    0.695
##     ssmk    (.17.)    4.641    0.060   77.689    0.000    4.524    4.758    4.641    0.759
##     ssmc    (.18.)    3.219    0.045   71.090    0.000    3.130    3.308    3.219    0.723
##     ssei    (.19.)    2.867    0.036   79.580    0.000    2.796    2.938    2.867    0.790
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   16.675    0.126  132.641    0.000   16.429   16.922   16.675    2.391
##    .ssmk    (.41.)   12.934    0.101  127.766    0.000   12.736   13.133   12.934    2.115
##    .ssmc    (.42.)   11.754    0.074  159.762    0.000   11.609   11.898   11.754    2.642
##    .ssgs    (.43.)   14.747    0.077  192.467    0.000   14.597   14.897   14.747    3.161
##    .ssasi   (.44.)   10.955    0.064  171.629    0.000   10.830   11.080   10.955    2.711
##    .ssei    (.45.)    9.656    0.060  160.807    0.000    9.538    9.773    9.656    2.659
##    .ssno    (.46.)    0.301    0.015   19.575    0.000    0.271    0.331    0.301    0.325
##    .sscs    (.47.)    0.380    0.016   24.184    0.000    0.349    0.411    0.380    0.406
##    .sswk    (.48.)   25.616    0.123  208.353    0.000   25.376   25.857   25.616    3.431
##    .sspc             11.115    0.053  210.841    0.000   11.011   11.218   11.115    3.383
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.20.)    2.163    0.998    2.168    0.030    0.208    4.119    2.163    0.044
##    .ssmk    (.21.)   11.094    0.377   29.391    0.000   10.354   11.834   11.094    0.297
##    .ssmc    (.22.)    7.516    0.168   44.650    0.000    7.186    7.846    7.516    0.380
##    .ssgs    (.23.)    5.356    0.117   45.957    0.000    5.127    5.584    5.356    0.246
##    .ssasi   (.24.)    5.728    0.186   30.854    0.000    5.364    6.092    5.728    0.351
##    .ssei    (.25.)    4.200    0.095   43.986    0.000    4.013    4.387    4.200    0.319
##    .ssno    (.26.)    0.355    0.011   32.532    0.000    0.334    0.377    0.355    0.415
##    .sscs    (.27.)    0.041    0.037    1.121    0.262   -0.031    0.113    0.041    0.047
##    .sswk    (.28.)    9.467    0.294   32.184    0.000    8.891   10.044    9.467    0.170
##    .sspc    (.29.)    3.032    0.071   42.933    0.000    2.894    3.171    3.032    0.281
##     math              1.000                               1.000    1.000    1.000    1.000
##     elctrnc           1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.911    0.132   29.654    0.000    3.652    4.169    3.926    0.519
##     ssmk    (.p2.)    2.183    0.094   23.272    0.000    1.999    2.367    2.192    0.333
##     ssmc    (.p3.)    0.849    0.060   14.265    0.000    0.733    0.966    0.852    0.166
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.505    0.024   20.714    0.000    0.457    0.553    1.023    0.197
##     ssasi   (.p5.)    1.645    0.059   27.723    0.000    1.529    1.762    3.333    0.643
##     ssmc    (.p6.)    1.094    0.043   25.389    0.000    1.010    1.179    2.217    0.432
##     ssei    (.p7.)    0.873    0.034   25.492    0.000    0.806    0.940    1.768    0.419
##   speed =~                                                                                
##     ssno    (.p8.)    0.356    0.015   23.823    0.000    0.327    0.386    0.329    0.339
##     sscs    (.p9.)    0.722    0.027   26.813    0.000    0.670    0.775    0.666    0.709
##   g =~                                                                                    
##     ssgs    (.10.)    4.019    0.048   83.570    0.000    3.925    4.113    4.533    0.873
##     ssar    (.11.)    5.582    0.066   84.022    0.000    5.452    5.713    6.296    0.832
##     sswk    (.12.)    6.803    0.079   86.002    0.000    6.648    6.958    7.673    0.928
##     sspc    (.13.)    2.786    0.035   79.994    0.000    2.718    2.855    3.143    0.875
##     ssno    (.14.)    0.612    0.010   59.994    0.000    0.592    0.632    0.690    0.712
##     sscs    (.15.)    0.560    0.010   53.841    0.000    0.540    0.581    0.632    0.672
##     ssasi   (.16.)    2.810    0.045   61.836    0.000    2.721    2.899    3.169    0.611
##     ssmk    (.17.)    4.641    0.060   77.689    0.000    4.524    4.758    5.235    0.796
##     ssmc    (.18.)    3.219    0.045   71.090    0.000    3.130    3.308    3.631    0.707
##     ssei    (.19.)    2.867    0.036   79.580    0.000    2.796    2.938    3.234    0.767
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   16.675    0.126  132.641    0.000   16.429   16.922   16.675    2.204
##    .ssmk    (.41.)   12.934    0.101  127.766    0.000   12.736   13.133   12.934    1.966
##    .ssmc    (.42.)   11.754    0.074  159.762    0.000   11.609   11.898   11.754    2.290
##    .ssgs    (.43.)   14.747    0.077  192.467    0.000   14.597   14.897   14.747    2.841
##    .ssasi   (.44.)   10.955    0.064  171.629    0.000   10.830   11.080   10.955    2.113
##    .ssei    (.45.)    9.656    0.060  160.807    0.000    9.538    9.773    9.656    2.290
##    .ssno    (.46.)    0.301    0.015   19.575    0.000    0.271    0.331    0.301    0.310
##    .sscs    (.47.)    0.380    0.016   24.184    0.000    0.349    0.411    0.380    0.404
##    .sswk    (.48.)   25.616    0.123  208.353    0.000   25.376   25.857   25.616    3.099
##    .sspc             10.454    0.062  168.641    0.000   10.332   10.575   10.454    2.909
##     math              0.465    0.032   14.662    0.000    0.403    0.527    0.463    0.463
##     elctrnc           3.315    0.132   25.113    0.000    3.056    3.574    1.637    1.637
##     speed            -0.566    0.037  -15.306    0.000   -0.639   -0.494   -0.614   -0.614
##     g                -0.023    0.026   -0.877    0.380   -0.075    0.029   -0.021   -0.021
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.20.)    2.163    0.998    2.168    0.030    0.208    4.119    2.163    0.038
##    .ssmk    (.21.)   11.094    0.377   29.391    0.000   10.354   11.834   11.094    0.256
##    .ssmc    (.22.)    7.516    0.168   44.650    0.000    7.186    7.846    7.516    0.285
##    .ssgs    (.23.)    5.356    0.117   45.957    0.000    5.127    5.584    5.356    0.199
##    .ssasi   (.24.)    5.728    0.186   30.854    0.000    5.364    6.092    5.728    0.213
##    .ssei    (.25.)    4.200    0.095   43.986    0.000    4.013    4.387    4.200    0.236
##    .ssno    (.26.)    0.355    0.011   32.532    0.000    0.334    0.377    0.355    0.378
##    .sscs    (.27.)    0.041    0.037    1.121    0.262   -0.031    0.113    0.041    0.046
##    .sswk    (.28.)    9.467    0.294   32.184    0.000    8.891   10.044    9.467    0.139
##    .sspc    (.29.)    3.032    0.071   42.933    0.000    2.894    3.171    3.032    0.235
##     math              1.008    0.044   23.091    0.000    0.922    1.093    1.000    1.000
##     elctrnc           4.104    0.323   12.707    0.000    3.471    4.737    1.000    1.000
##     speed             0.850    0.039   21.747    0.000    0.774    0.927    1.000    1.000
##     g                 1.272    0.036   34.988    0.000    1.201    1.343    1.000    1.000
latent<-cfa(bf.model, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("sspc~1"))
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   3520.352     76.000      0.000      0.964      0.091      0.129 505070.860 505464.961
Mc(latent)
## [1] 0.8540618
summary(latent, standardized=T, ci=T) # +.030
## lavaan 0.6-18 ended normally after 94 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        82
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3520.352    2115.983
##   Degrees of freedom                                76          76
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.664
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1612.164     969.026
##     0                                         1908.188    1146.957
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.028    0.133   30.257    0.000    3.767    4.288    4.028    0.554
##     ssmk    (.p2.)    2.173    0.090   24.095    0.000    1.996    2.350    2.173    0.344
##     ssmc    (.p3.)    0.818    0.058   14.193    0.000    0.705    0.931    0.818    0.168
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.801    0.028   28.735    0.000    0.746    0.856    0.801    0.160
##     ssasi   (.p5.)    2.483    0.047   52.923    0.000    2.391    2.575    2.483    0.548
##     ssmc    (.p6.)    1.694    0.042   40.491    0.000    1.612    1.776    1.694    0.348
##     ssei    (.p7.)    1.385    0.031   45.143    0.000    1.325    1.445    1.385    0.340
##   speed =~                                                                                
##     ssno    (.p8.)    0.342    0.014   24.309    0.000    0.314    0.370    0.342    0.361
##     sscs    (.p9.)    0.695    0.029   24.262    0.000    0.639    0.752    0.695    0.730
##   g =~                                                                                    
##     ssgs    (.10.)    4.345    0.040  107.951    0.000    4.266    4.424    4.345    0.870
##     ssar    (.11.)    5.943    0.054  110.494    0.000    5.837    6.048    5.943    0.817
##     sswk    (.12.)    7.278    0.061  118.453    0.000    7.157    7.398    7.278    0.923
##     sspc    (.13.)    2.973    0.028  104.508    0.000    2.918    3.029    2.973    0.868
##     ssno    (.14.)    0.653    0.010   68.290    0.000    0.634    0.671    0.653    0.689
##     sscs    (.15.)    0.597    0.010   59.700    0.000    0.578    0.617    0.597    0.627
##     ssasi   (.16.)    3.154    0.048   65.999    0.000    3.060    3.248    3.154    0.696
##     ssmk    (.17.)    4.933    0.050   98.416    0.000    4.835    5.031    4.933    0.780
##     ssmc    (.18.)    3.567    0.046   78.333    0.000    3.477    3.656    3.567    0.732
##     ssei    (.19.)    3.174    0.034   92.640    0.000    3.107    3.242    3.174    0.779
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   16.662    0.125  133.514    0.000   16.418   16.907   16.662    2.291
##    .ssmk    (.41.)   12.960    0.101  127.704    0.000   12.761   13.159   12.960    2.050
##    .ssmc    (.42.)   11.750    0.074  158.780    0.000   11.605   11.895   11.750    2.411
##    .ssgs    (.43.)   14.731    0.077  192.004    0.000   14.581   14.882   14.731    2.951
##    .ssasi   (.44.)   10.986    0.064  171.959    0.000   10.861   11.111   10.986    2.425
##    .ssei    (.45.)    9.611    0.061  158.116    0.000    9.491    9.730    9.611    2.359
##    .ssno    (.46.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.319
##    .sscs    (.47.)    0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.399
##    .sswk    (.48.)   25.646    0.123  209.237    0.000   25.406   25.887   25.646    3.253
##    .sspc             11.115    0.053  210.841    0.000   11.011   11.218   11.115    3.245
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.360    1.082    1.257    0.209   -0.760    3.480    1.360    0.026
##    .ssmk             10.913    0.418   26.090    0.000   10.093   11.733   10.913    0.273
##    .ssmc              7.492    0.232   32.236    0.000    7.036    7.947    7.492    0.315
##    .ssgs              5.396    0.164   32.879    0.000    5.074    5.718    5.396    0.217
##    .ssasi             4.411    0.212   20.795    0.000    3.996    4.827    4.411    0.215
##    .ssei              4.607    0.140   32.881    0.000    4.332    4.881    4.607    0.278
##    .ssno              0.355    0.013   26.364    0.000    0.328    0.381    0.355    0.395
##    .sscs              0.067    0.043    1.568    0.117   -0.017    0.150    0.067    0.074
##    .sswk              9.193    0.384   23.923    0.000    8.440    9.946    9.193    0.148
##    .sspc              2.887    0.093   30.936    0.000    2.704    3.070    2.887    0.246
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    4.028    0.133   30.257    0.000    3.767    4.288    4.028    0.553
##     ssmk    (.p2.)    2.173    0.090   24.095    0.000    1.996    2.350    2.173    0.340
##     ssmc    (.p3.)    0.818    0.058   14.193    0.000    0.705    0.931    0.818    0.167
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.801    0.028   28.735    0.000    0.746    0.856    0.801    0.161
##     ssasi   (.p5.)    2.483    0.047   52.923    0.000    2.391    2.575    2.483    0.505
##     ssmc    (.p6.)    1.694    0.042   40.491    0.000    1.612    1.776    1.694    0.345
##     ssei    (.p7.)    1.385    0.031   45.143    0.000    1.325    1.445    1.385    0.350
##   speed =~                                                                                
##     ssno    (.p8.)    0.342    0.014   24.309    0.000    0.314    0.370    0.342    0.361
##     sscs    (.p9.)    0.695    0.029   24.262    0.000    0.639    0.752    0.695    0.752
##   g =~                                                                                    
##     ssgs    (.10.)    4.345    0.040  107.951    0.000    4.266    4.424    4.345    0.872
##     ssar    (.11.)    5.943    0.054  110.494    0.000    5.837    6.048    5.943    0.816
##     sswk    (.12.)    7.278    0.061  118.453    0.000    7.157    7.398    7.278    0.924
##     sspc    (.13.)    2.973    0.028  104.508    0.000    2.918    3.029    2.973    0.858
##     ssno    (.14.)    0.653    0.010   68.290    0.000    0.634    0.671    0.653    0.688
##     sscs    (.15.)    0.597    0.010   59.700    0.000    0.578    0.617    0.597    0.646
##     ssasi   (.16.)    3.154    0.048   65.999    0.000    3.060    3.248    3.154    0.641
##     ssmk    (.17.)    4.933    0.050   98.416    0.000    4.835    5.031    4.933    0.772
##     ssmc    (.18.)    3.567    0.046   78.333    0.000    3.477    3.656    3.567    0.727
##     ssei    (.19.)    3.174    0.034   92.640    0.000    3.107    3.242    3.174    0.803
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   16.662    0.125  133.514    0.000   16.418   16.907   16.662    2.288
##    .ssmk    (.41.)   12.960    0.101  127.704    0.000   12.761   13.159   12.960    2.028
##    .ssmc    (.42.)   11.750    0.074  158.780    0.000   11.605   11.895   11.750    2.395
##    .ssgs    (.43.)   14.731    0.077  192.004    0.000   14.581   14.882   14.731    2.957
##    .ssasi   (.44.)   10.986    0.064  171.959    0.000   10.861   11.111   10.986    2.234
##    .ssei    (.45.)    9.611    0.061  158.116    0.000    9.491    9.730    9.611    2.431
##    .ssno    (.46.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.318
##    .sscs    (.47.)    0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.411
##    .sswk    (.48.)   25.646    0.123  209.237    0.000   25.406   25.887   25.646    3.255
##    .sspc             10.477    0.061  170.436    0.000   10.357   10.598   10.477    3.024
##     math              0.469    0.031   15.012    0.000    0.408    0.531    0.469    0.469
##     elctrnc           2.174    0.053   41.316    0.000    2.070    2.277    2.174    2.174
##     speed            -0.581    0.037  -15.524    0.000   -0.654   -0.508   -0.581   -0.581
##     g                -0.030    0.025   -1.211    0.226   -0.078    0.018   -0.030   -0.030
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar              1.486    1.102    1.348    0.178   -0.674    3.645    1.486    0.028
##    .ssmk             11.796    0.447   26.409    0.000   10.921   12.672   11.796    0.289
##    .ssmc              7.804    0.240   32.531    0.000    7.333    8.274    7.804    0.324
##    .ssgs              5.299    0.160   33.051    0.000    4.985    5.613    5.299    0.213
##    .ssasi             8.070    0.322   25.024    0.000    7.438    8.702    8.070    0.334
##    .ssei              3.638    0.127   28.584    0.000    3.389    3.888    3.638    0.233
##    .ssno              0.357    0.013   27.507    0.000    0.332    0.383    0.357    0.397
##    .sscs              0.014    0.038    0.362    0.718   -0.061    0.089    0.014    0.016
##    .sswk              9.124    0.389   23.451    0.000    8.361    9.887    9.124    0.147
##    .sspc              3.163    0.107   29.683    0.000    2.954    3.372    3.163    0.263
##     math              1.000                               1.000    1.000    1.000    1.000
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
latent2<-cfa(bf.lv, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr        aic        bic 
##   2824.141     74.000      0.000      0.971      0.083      0.054 504378.649 504787.346
Mc(latent2)
## [1] 0.8816529
summary(latent2, standardized=T, ci=T) # +.024
## lavaan 0.6-18 ended normally after 119 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        84
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2824.141    1691.338
##   Degrees of freedom                                74          74
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.670
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1129.701     676.562
##     0                                         1694.439    1014.776
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.955    0.130   30.536    0.000    3.702    4.209    3.955    0.568
##     ssmk    (.p2.)    2.178    0.091   23.965    0.000    1.999    2.356    2.178    0.358
##     ssmc    (.p3.)    0.842    0.058   14.532    0.000    0.729    0.956    0.842    0.188
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.529    0.025   21.107    0.000    0.480    0.578    0.529    0.113
##     ssasi   (.p5.)    1.682    0.060   27.805    0.000    1.563    1.800    1.682    0.423
##     ssmc    (.p6.)    1.140    0.044   26.138    0.000    1.055    1.226    1.140    0.255
##     ssei    (.p7.)    0.915    0.035   26.299    0.000    0.847    0.984    0.915    0.247
##   speed =~                                                                                
##     ssno    (.p8.)    0.343    0.014   24.630    0.000    0.316    0.370    0.343    0.372
##     sscs    (.p9.)    0.691    0.028   24.530    0.000    0.636    0.747    0.691    0.744
##   g =~                                                                                    
##     ssgs    (.10.)    4.019    0.048   83.553    0.000    3.925    4.113    4.019    0.861
##     ssar    (.11.)    5.580    0.067   83.802    0.000    5.449    5.710    5.580    0.801
##     sswk    (.12.)    6.805    0.080   85.513    0.000    6.649    6.961    6.805    0.911
##     sspc    (.13.)    2.787    0.035   79.652    0.000    2.718    2.855    2.787    0.851
##     ssno    (.14.)    0.612    0.010   59.733    0.000    0.592    0.632    0.612    0.665
##     sscs    (.15.)    0.560    0.010   53.608    0.000    0.540    0.580    0.560    0.603
##     ssasi   (.16.)    2.801    0.045   61.797    0.000    2.713    2.890    2.801    0.705
##     ssmk    (.17.)    4.638    0.060   77.488    0.000    4.521    4.755    4.638    0.762
##     ssmc    (.18.)    3.223    0.045   70.912    0.000    3.134    3.312    3.223    0.721
##     ssei    (.19.)    2.876    0.036   79.570    0.000    2.806    2.947    2.876    0.776
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   16.669    0.125  132.917    0.000   16.423   16.915   16.669    2.393
##    .ssmk    (.41.)   12.949    0.101  127.808    0.000   12.750   13.148   12.949    2.127
##    .ssmc    (.42.)   11.738    0.074  159.222    0.000   11.593   11.882   11.738    2.626
##    .ssgs    (.43.)   14.740    0.077  192.253    0.000   14.590   14.891   14.740    3.157
##    .ssasi   (.44.)   10.977    0.064  172.503    0.000   10.852   11.102   10.977    2.762
##    .ssei    (.45.)    9.637    0.060  159.629    0.000    9.519    9.756    9.637    2.600
##    .ssno    (.46.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.328
##    .sscs    (.47.)    0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.409
##    .sswk    (.48.)   25.630    0.123  208.869    0.000   25.389   25.870   25.630    3.430
##    .sspc             11.115    0.053  210.841    0.000   11.011   11.218   11.115    3.394
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.742    1.036    1.682    0.093   -0.288    3.772    1.742    0.036
##    .ssmk             10.819    0.413   26.199    0.000   10.010   11.629   10.819    0.292
##    .ssmc              7.576    0.226   33.592    0.000    7.134    8.018    7.576    0.379
##    .ssgs              5.366    0.164   32.746    0.000    5.045    5.687    5.366    0.246
##    .ssasi             5.124    0.205   24.978    0.000    4.722    5.526    5.124    0.324
##    .ssei              4.627    0.135   34.259    0.000    4.363    4.892    4.627    0.337
##    .ssno              0.356    0.013   26.536    0.000    0.329    0.382    0.356    0.419
##    .sscs              0.071    0.042    1.702    0.089   -0.011    0.153    0.071    0.082
##    .sswk              9.542    0.384   24.833    0.000    8.789   10.296    9.542    0.171
##    .sspc              2.957    0.094   31.301    0.000    2.772    3.142    2.957    0.276
##     electronic        1.000                               1.000    1.000    1.000    1.000
##     g                 1.000                               1.000    1.000    1.000    1.000
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.955    0.130   30.536    0.000    3.702    4.209    3.955    0.522
##     ssmk    (.p2.)    2.178    0.091   23.965    0.000    1.999    2.356    2.178    0.330
##     ssmc    (.p3.)    0.842    0.058   14.532    0.000    0.729    0.956    0.842    0.165
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.529    0.025   21.107    0.000    0.480    0.578    1.019    0.196
##     ssasi   (.p5.)    1.682    0.060   27.805    0.000    1.563    1.800    3.241    0.618
##     ssmc    (.p6.)    1.140    0.044   26.138    0.000    1.055    1.226    2.198    0.430
##     ssei    (.p7.)    0.915    0.035   26.299    0.000    0.847    0.984    1.764    0.425
##   speed =~                                                                                
##     ssno    (.p8.)    0.343    0.014   24.630    0.000    0.316    0.370    0.343    0.352
##     sscs    (.p9.)    0.691    0.028   24.530    0.000    0.636    0.747    0.691    0.730
##   g =~                                                                                    
##     ssgs    (.10.)    4.019    0.048   83.553    0.000    3.925    4.113    4.534    0.874
##     ssar    (.11.)    5.580    0.067   83.802    0.000    5.449    5.710    6.294    0.831
##     sswk    (.12.)    6.805    0.080   85.513    0.000    6.649    6.961    7.676    0.930
##     sspc    (.13.)    2.787    0.035   79.652    0.000    2.718    2.855    3.144    0.872
##     ssno    (.14.)    0.612    0.010   59.733    0.000    0.592    0.632    0.691    0.709
##     sscs    (.15.)    0.560    0.010   53.608    0.000    0.540    0.580    0.632    0.667
##     ssasi   (.16.)    2.801    0.045   61.797    0.000    2.713    2.890    3.160    0.602
##     ssmk    (.17.)    4.638    0.060   77.488    0.000    4.521    4.755    5.232    0.792
##     ssmc    (.18.)    3.223    0.045   70.912    0.000    3.134    3.312    3.636    0.711
##     ssei    (.19.)    2.876    0.036   79.570    0.000    2.806    2.947    3.245    0.781
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
##     g                 0.000                               0.000    0.000    0.000    0.000
##   speed ~~                                                                                
##     g                 0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.40.)   16.669    0.125  132.917    0.000   16.423   16.915   16.669    2.202
##    .ssmk    (.41.)   12.949    0.101  127.808    0.000   12.750   13.148   12.949    1.960
##    .ssmc    (.42.)   11.738    0.074  159.222    0.000   11.593   11.882   11.738    2.296
##    .ssgs    (.43.)   14.740    0.077  192.253    0.000   14.590   14.891   14.740    2.841
##    .ssasi   (.44.)   10.977    0.064  172.503    0.000   10.852   11.102   10.977    2.092
##    .ssei    (.45.)    9.637    0.060  159.629    0.000    9.519    9.756    9.637    2.321
##    .ssno    (.46.)    0.302    0.015   19.589    0.000    0.272    0.332    0.302    0.310
##    .sscs    (.47.)    0.380    0.016   24.148    0.000    0.349    0.411    0.380    0.401
##    .sswk    (.48.)   25.630    0.123  208.869    0.000   25.389   25.870   25.630    3.104
##    .sspc             10.464    0.062  169.555    0.000   10.343   10.585   10.464    2.904
##     math              0.467    0.032   14.683    0.000    0.405    0.529    0.467    0.467
##     elctrnc           3.218    0.127   25.278    0.000    2.969    3.468    1.670    1.670
##     speed            -0.588    0.038  -15.663    0.000   -0.662   -0.515   -0.588   -0.588
##     g                -0.027    0.026   -1.023    0.306   -0.079    0.025   -0.024   -0.024
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              2.056    1.063    1.933    0.053   -0.028    4.139    2.056    0.036
##    .ssmk             11.536    0.450   25.623    0.000   10.653   12.418   11.536    0.264
##    .ssmc              7.383    0.238   31.064    0.000    6.917    7.849    7.383    0.282
##    .ssgs              5.328    0.160   33.209    0.000    5.014    5.643    5.328    0.198
##    .ssasi             7.045    0.319   22.055    0.000    6.419    7.671    7.045    0.256
##    .ssei              3.603    0.128   28.166    0.000    3.352    3.853    3.603    0.209
##    .ssno              0.354    0.013   27.332    0.000    0.328    0.379    0.354    0.373
##    .sscs              0.019    0.037    0.512    0.609   -0.054    0.093    0.019    0.021
##    .sswk              9.231    0.410   22.510    0.000    8.427   10.034    9.231    0.135
##    .sspc              3.099    0.104   29.698    0.000    2.895    3.304    3.099    0.239
##     electronic        3.714    0.299   12.412    0.000    3.127    4.300    1.000    1.000
##     g                 1.273    0.037   34.834    0.000    1.201    1.344    1.000    1.000
standardizedSolution(latent2) # get the correct SEs for standardized solution
##           lhs op        rhs group label est.std    se       z pvalue ci.lower ci.upper
## 1        math =~       ssar     1  .p1.   0.568 0.019  29.736  0.000    0.530    0.605
## 2        math =~       ssmk     1  .p2.   0.358 0.015  24.365  0.000    0.329    0.386
## 3        math =~       ssmc     1  .p3.   0.188 0.013  14.683  0.000    0.163    0.214
## 4  electronic =~       ssgs     1  .p4.   0.113 0.005  20.753  0.000    0.103    0.124
## 5  electronic =~      ssasi     1  .p5.   0.423 0.014  30.367  0.000    0.396    0.450
## 6  electronic =~       ssmc     1  .p6.   0.255 0.010  26.646  0.000    0.236    0.274
## 7  electronic =~       ssei     1  .p7.   0.247 0.009  26.845  0.000    0.229    0.265
## 8       speed =~       ssno     1  .p8.   0.372 0.015  24.057  0.000    0.342    0.403
## 9       speed =~       sscs     1  .p9.   0.744 0.031  23.632  0.000    0.683    0.806
## 10          g =~       ssgs     1 .p10.   0.861 0.005 190.332  0.000    0.852    0.870
## 11          g =~       ssar     1 .p11.   0.801 0.005 149.959  0.000    0.791    0.811
## 12          g =~       sswk     1 .p12.   0.911 0.004 227.966  0.000    0.903    0.918
## 13          g =~       sspc     1 .p13.   0.851 0.005 176.878  0.000    0.842    0.860
## 14          g =~       ssno     1 .p14.   0.665 0.008  81.374  0.000    0.649    0.681
## 15          g =~       sscs     1 .p15.   0.603 0.009  64.618  0.000    0.585    0.621
## 16          g =~      ssasi     1 .p16.   0.705 0.007  95.222  0.000    0.690    0.719
## 17          g =~       ssmk     1 .p17.   0.762 0.006 123.613  0.000    0.750    0.774
## 18          g =~       ssmc     1 .p18.   0.721 0.006 111.330  0.000    0.708    0.734
## 19          g =~       ssei     1 .p19.   0.776 0.006 138.889  0.000    0.765    0.787
## 20       math ~~       math     1         1.000 0.000      NA     NA    1.000    1.000
## 21      speed ~~      speed     1         1.000 0.000      NA     NA    1.000    1.000
## 22       ssar ~~       ssar     1         0.036 0.021   1.687  0.092   -0.006    0.078
## 23       ssmk ~~       ssmk     1         0.292 0.011  25.557  0.000    0.269    0.314
## 24       ssmc ~~       ssmc     1         0.379 0.010  39.103  0.000    0.360    0.398
## 25       ssgs ~~       ssgs     1         0.246 0.008  32.453  0.000    0.231    0.261
## 26      ssasi ~~      ssasi     1         0.324 0.012  26.018  0.000    0.300    0.349
## 27       ssei ~~       ssei     1         0.337 0.009  39.284  0.000    0.320    0.354
## 28       ssno ~~       ssno     1         0.419 0.014  29.223  0.000    0.391    0.447
## 29       sscs ~~       sscs     1         0.082 0.048   1.718  0.086   -0.012    0.176
## 30       sswk ~~       sswk     1         0.171 0.007  23.488  0.000    0.157    0.185
## 31       sspc ~~       sspc     1         0.276 0.008  33.675  0.000    0.260    0.292
## 32 electronic ~~ electronic     1         1.000 0.000      NA     NA    1.000    1.000
## 33          g ~~          g     1         1.000 0.000      NA     NA    1.000    1.000
## 34       math ~~ electronic     1         0.000 0.000      NA     NA    0.000    0.000
## 35       math ~~      speed     1         0.000 0.000      NA     NA    0.000    0.000
## 36       math ~~          g     1         0.000 0.000      NA     NA    0.000    0.000
## 37 electronic ~~      speed     1         0.000 0.000      NA     NA    0.000    0.000
## 38 electronic ~~          g     1         0.000 0.000      NA     NA    0.000    0.000
## 39      speed ~~          g     1         0.000 0.000      NA     NA    0.000    0.000
## 40       ssar ~1                1 .p40.   2.393 0.024  99.731  0.000    2.346    2.440
## 41       ssmk ~1                1 .p41.   2.127 0.021  99.926  0.000    2.085    2.168
## 42       ssmc ~1                1 .p42.   2.626 0.027  97.497  0.000    2.574    2.679
## 43       ssgs ~1                1 .p43.   3.157 0.034  93.757  0.000    3.091    3.223
## 44      ssasi ~1                1 .p44.   2.762 0.031  88.267  0.000    2.700    2.823
## 45       ssei ~1                1 .p45.   2.600 0.027  96.135  0.000    2.547    2.653
## 46       ssno ~1                1 .p46.   0.328 0.018  18.543  0.000    0.293    0.363
## 47       sscs ~1                1 .p47.   0.409 0.018  22.285  0.000    0.373    0.445
## 48       sswk ~1                1 .p48.   3.430 0.042  81.844  0.000    3.347    3.512
## 49       sspc ~1                1         3.394 0.045  75.635  0.000    3.306    3.482
## 50       math ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 51 electronic ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 52      speed ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 53          g ~1                1         0.000 0.000      NA     NA    0.000    0.000
## 54       math =~       ssar     2  .p1.   0.522 0.018  29.517  0.000    0.488    0.557
## 55       math =~       ssmk     2  .p2.   0.330 0.014  23.940  0.000    0.303    0.357
## 56       math =~       ssmc     2  .p3.   0.165 0.011  14.529  0.000    0.142    0.187
## 57 electronic =~       ssgs     2  .p4.   0.196 0.007  27.470  0.000    0.182    0.210
## 58 electronic =~      ssasi     2  .p5.   0.618 0.012  53.498  0.000    0.595    0.640
## 59 electronic =~       ssmc     2  .p6.   0.430 0.011  38.791  0.000    0.408    0.452
## 60 electronic =~       ssei     2  .p7.   0.425 0.010  42.412  0.000    0.405    0.444
## 61      speed =~       ssno     2  .p8.   0.352 0.015  24.277  0.000    0.324    0.381
## 62      speed =~       sscs     2  .p9.   0.730 0.029  24.910  0.000    0.673    0.788
## 63          g =~       ssgs     2 .p10.   0.874 0.004 219.822  0.000    0.866    0.882
## 64          g =~       ssar     2 .p11.   0.831 0.005 169.296  0.000    0.822    0.841
## 65          g =~       sswk     2 .p12.   0.930 0.003 285.658  0.000    0.923    0.936
## 66          g =~       sspc     2 .p13.   0.872 0.004 197.896  0.000    0.864    0.881
## 67          g =~       ssno     2 .p14.   0.709 0.008  92.277  0.000    0.694    0.724
## 68          g =~       sscs     2 .p15.   0.667 0.009  72.335  0.000    0.649    0.685
## 69          g =~      ssasi     2 .p16.   0.602 0.010  60.449  0.000    0.583    0.622
## 70          g =~       ssmk     2 .p17.   0.792 0.005 150.052  0.000    0.782    0.802
## 71          g =~       ssmc     2 .p18.   0.711 0.008  90.024  0.000    0.696    0.727
## 72          g =~       ssei     2 .p19.   0.781 0.007 115.644  0.000    0.768    0.795
## 73       math ~~       math     2         1.000 0.000      NA     NA    1.000    1.000
## 74      speed ~~      speed     2         1.000 0.000      NA     NA    1.000    1.000
## 75       ssar ~~       ssar     2         0.036 0.018   1.939  0.052    0.000    0.072
## 76       ssmk ~~       ssmk     2         0.264 0.010  25.263  0.000    0.244    0.285
## 77       ssmc ~~       ssmc     2         0.282 0.009  31.445  0.000    0.265    0.300
## 78       ssgs ~~       ssgs     2         0.198 0.006  31.474  0.000    0.186    0.210
## 79      ssasi ~~      ssasi     2         0.256 0.011  23.517  0.000    0.235    0.277
## 80       ssei ~~       ssei     2         0.209 0.007  28.611  0.000    0.195    0.223
## 81       ssno ~~       ssno     2         0.373 0.013  28.553  0.000    0.347    0.399
## 82       sscs ~~       sscs     2         0.021 0.042   0.512  0.609   -0.060    0.103
## 83       sswk ~~       sswk     2         0.135 0.006  22.374  0.000    0.124    0.147
## 84       sspc ~~       sspc     2         0.239 0.008  31.032  0.000    0.224    0.254
## 85 electronic ~~ electronic     2         1.000 0.000      NA     NA    1.000    1.000
## 86          g ~~          g     2         1.000 0.000      NA     NA    1.000    1.000
## 87       math ~~ electronic     2         0.000 0.000      NA     NA    0.000    0.000
## 88       math ~~      speed     2         0.000 0.000      NA     NA    0.000    0.000
## 89       math ~~          g     2         0.000 0.000      NA     NA    0.000    0.000
## 90 electronic ~~      speed     2         0.000 0.000      NA     NA    0.000    0.000
##  [ reached 'max' / getOption("max.print") -- omitted 16 rows ]
tests<-lavTestLRT(configural, metric, scalar2, latent2)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 243.034287 147.862335   4.595506
dfd=tests[2:4,"Df diff"]
dfd
## [1] 15  5  2
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-5449+ 5469 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05277615 0.07235309 0.01541982
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04704534 0.05871794
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.06256854 0.08262127
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1]         NA 0.03451587
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.792     0.022     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.981     0.112     0.000
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     0.900     0.771     0.001     0.000     0.000     0.000
tests<-lavTestLRT(configural, metric, scalar2, latent)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 243.0343 147.8623 477.3863
dfd=tests[2:4,"Df diff"]
dfd
## [1] 15  5  4
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-5449+ 5469 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05277615 0.07235309 0.14725196
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.06256854 0.08262127
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.1362503 0.1585489
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.981     0.112     0.000
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         1         1         1         1
tests<-lavTestLRT(configural, metric, scalar2, strict)
Td=tests[2:4,"Chisq diff"]
Td
## [1] 243.03429 147.86233  57.06334
dfd=tests[2:4,"Df diff"]
dfd
## [1] 15  5 10
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-5449+ 5469 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05277615 0.07235309 0.02936463
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04704534 0.05871794
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.06256854 0.08262127
RMSEA.CI(T=Td[3],df=dfd[3],N=N,G=2)
## [1] 0.02222937 0.03698418
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.792     0.022     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     0.981     0.112     0.000
round(pvals(T=Td[3],df=dfd[3],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##         1         1         0         0         0         0
tests<-lavTestLRT(configural, metric, scalar)
Td=tests[2:3,"Chisq diff"]
Td
## [1] 243.0343 338.0623
dfd=tests[2:3,"Df diff"]
dfd
## [1] 15  6
lambda<-Td-dfd
ld<-lambda/dfd
G<-2 # number of groups
N<-5449+ 5469 # sample size
RMSEAD<-sqrt((ld)*G/(N-G))
RMSEAD
## [1] 0.05277615 0.10069720
RMSEA.CI(T=Td[1],df=dfd[1],N=N,G=2)
## [1] 0.04704534 0.05871794
RMSEA.CI(T=Td[2],df=dfd[2],N=N,G=2)
## [1] 0.09171843 0.10996486
round(pvals(T=Td[1],df=dfd[1],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     0.792     0.022     0.000     0.000
round(pvals(T=Td[2],df=dfd[2],N=N,G=2),3)
##   RMSEA>0 RMSEA>.01 RMSEA>.05 RMSEA>.06 RMSEA>.08 RMSEA>.10 
##     1.000     1.000     1.000     1.000     1.000     0.561
bf.age<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ age 
'

bf.ageq<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ c(b,b)*age 
'

bf.age2<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ age + age2 
'

bf.age2q<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei  
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei 
math~~1*math
speed~~1*speed
g ~ c(b,b)*age+c(c,c)*age2
'

sem.age<-sem(bf.age, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(sem.age, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   3704.105     92.000      0.000      0.962      0.085      0.055      0.350 504021.166 504444.460
Mc(sem.age)
## [1] 0.8475251
summary(sem.age, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 115 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3704.105    2208.880
##   Degrees of freedom                                92          92
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.677
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1619.995     966.056
##     0                                         2084.110    1242.823
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.963    0.130   30.601    0.000    3.710    4.217    3.963    0.569
##     ssmk    (.p2.)    2.195    0.092   23.973    0.000    2.016    2.375    2.195    0.361
##     ssmc    (.p3.)    0.846    0.058   14.541    0.000    0.732    0.960    0.846    0.189
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.525    0.025   20.971    0.000    0.476    0.574    0.525    0.112
##     ssasi   (.p5.)    1.673    0.061   27.584    0.000    1.554    1.792    1.673    0.421
##     ssmc    (.p6.)    1.136    0.044   25.937    0.000    1.050    1.222    1.136    0.254
##     ssei    (.p7.)    0.910    0.035   26.120    0.000    0.842    0.978    0.910    0.245
##   speed =~                                                                                
##     ssno    (.p8.)    0.343    0.014   24.667    0.000    0.316    0.371    0.343    0.373
##     sscs    (.p9.)    0.691    0.028   24.578    0.000    0.636    0.747    0.691    0.744
##   g =~                                                                                    
##     ssgs    (.10.)    3.967    0.049   80.895    0.000    3.871    4.063    4.019    0.861
##     ssar    (.11.)    5.503    0.068   80.556    0.000    5.369    5.637    5.575    0.800
##     sswk    (.12.)    6.722    0.081   82.888    0.000    6.563    6.881    6.809    0.911
##     sspc    (.13.)    2.749    0.036   76.577    0.000    2.679    2.820    2.785    0.850
##     ssno    (.14.)    0.604    0.010   58.039    0.000    0.583    0.624    0.612    0.664
##     sscs    (.15.)    0.553    0.010   52.856    0.000    0.532    0.573    0.560    0.603
##     ssasi   (.16.)    2.773    0.045   61.711    0.000    2.685    2.861    2.809    0.706
##     ssmk    (.17.)    4.567    0.062   73.775    0.000    4.446    4.688    4.627    0.760
##     ssmc    (.18.)    3.182    0.046   69.758    0.000    3.093    3.272    3.224    0.721
##     ssei    (.19.)    2.844    0.036   79.271    0.000    2.774    2.914    2.881    0.777
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.070    0.008    9.206    0.000    0.055    0.085    0.069    0.160
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.39.)   16.759    0.126  132.867    0.000   16.511   17.006   16.759    2.406
##    .ssmk    (.40.)   13.020    0.102  127.106    0.000   12.819   13.220   13.020    2.138
##    .ssmc    (.41.)   11.787    0.074  159.394    0.000   11.642   11.932   11.787    2.637
##    .ssgs    (.42.)   14.806    0.076  193.804    0.000   14.656   14.956   14.806    3.171
##    .ssasi   (.43.)   11.022    0.063  174.219    0.000   10.898   11.146   11.022    2.771
##    .ssei    (.44.)    9.684    0.060  162.118    0.000    9.567    9.801    9.684    2.612
##    .ssno    (.45.)    0.312    0.015   20.143    0.000    0.282    0.342    0.312    0.339
##    .sscs    (.46.)    0.389    0.016   24.824    0.000    0.358    0.420    0.389    0.419
##    .sswk    (.47.)   25.736    0.121  211.858    0.000   25.498   25.974   25.736    3.445
##    .sspc             11.159    0.053  212.148    0.000   11.056   11.262   11.159    3.408
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.740    1.039    1.675    0.094   -0.296    3.775    1.740    0.036
##    .ssmk             10.851    0.417   25.999    0.000   10.033   11.669   10.851    0.293
##    .ssmc              7.580    0.226   33.576    0.000    7.138    8.023    7.580    0.379
##    .ssgs              5.370    0.164   32.777    0.000    5.049    5.691    5.370    0.246
##    .ssasi             5.132    0.205   25.025    0.000    4.730    5.534    5.132    0.324
##    .ssei              4.616    0.135   34.271    0.000    4.352    4.880    4.616    0.336
##    .ssno              0.356    0.013   26.553    0.000    0.330    0.383    0.356    0.420
##    .sscs              0.071    0.042    1.697    0.090   -0.011    0.153    0.071    0.082
##    .sswk              9.455    0.383   24.701    0.000    8.705   10.205    9.455    0.169
##    .sspc              2.966    0.095   31.303    0.000    2.781    3.152    2.966    0.277
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.974    0.974
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.963    0.130   30.601    0.000    3.710    4.217    3.963    0.524
##     ssmk    (.p2.)    2.195    0.092   23.973    0.000    2.016    2.375    2.195    0.332
##     ssmc    (.p3.)    0.846    0.058   14.541    0.000    0.732    0.960    0.846    0.165
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.525    0.025   20.971    0.000    0.476    0.574    1.011    0.195
##     ssasi   (.p5.)    1.673    0.061   27.584    0.000    1.554    1.792    3.224    0.615
##     ssmc    (.p6.)    1.136    0.044   25.937    0.000    1.050    1.222    2.189    0.428
##     ssei    (.p7.)    0.910    0.035   26.120    0.000    0.842    0.978    1.753    0.422
##   speed =~                                                                                
##     ssno    (.p8.)    0.343    0.014   24.667    0.000    0.316    0.371    0.343    0.353
##     sscs    (.p9.)    0.691    0.028   24.578    0.000    0.636    0.747    0.691    0.730
##   g =~                                                                                    
##     ssgs    (.10.)    3.967    0.049   80.895    0.000    3.871    4.063    4.535    0.874
##     ssar    (.11.)    5.503    0.068   80.556    0.000    5.369    5.637    6.290    0.831
##     sswk    (.12.)    6.722    0.081   82.888    0.000    6.563    6.881    7.683    0.930
##     sspc    (.13.)    2.749    0.036   76.577    0.000    2.679    2.820    3.142    0.872
##     ssno    (.14.)    0.604    0.010   58.039    0.000    0.583    0.624    0.690    0.709
##     sscs    (.15.)    0.553    0.010   52.856    0.000    0.532    0.573    0.632    0.667
##     ssasi   (.16.)    2.773    0.045   61.711    0.000    2.685    2.861    3.169    0.604
##     ssmk    (.17.)    4.567    0.062   73.775    0.000    4.446    4.688    5.220    0.790
##     ssmc    (.18.)    3.182    0.046   69.758    0.000    3.093    3.272    3.637    0.712
##     ssei    (.19.)    2.844    0.036   79.271    0.000    2.774    2.914    3.251    0.783
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.101    0.008   12.221    0.000    0.085    0.117    0.088    0.208
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.39.)   16.759    0.126  132.867    0.000   16.511   17.006   16.759    2.214
##    .ssmk    (.40.)   13.020    0.102  127.106    0.000   12.819   13.220   13.020    1.971
##    .ssmc    (.41.)   11.787    0.074  159.394    0.000   11.642   11.932   11.787    2.306
##    .ssgs    (.42.)   14.806    0.076  193.804    0.000   14.656   14.956   14.806    2.853
##    .ssasi   (.43.)   11.022    0.063  174.219    0.000   10.898   11.146   11.022    2.102
##    .ssei    (.44.)    9.684    0.060  162.118    0.000    9.567    9.801    9.684    2.332
##    .ssno    (.45.)    0.312    0.015   20.143    0.000    0.282    0.342    0.312    0.320
##    .sscs    (.46.)    0.389    0.016   24.824    0.000    0.358    0.420    0.389    0.411
##    .sswk    (.47.)   25.736    0.121  211.858    0.000   25.498   25.974   25.736    3.117
##    .sspc             10.507    0.061  171.395    0.000   10.387   10.627   10.507    2.916
##     math              0.465    0.032   14.635    0.000    0.403    0.527    0.465    0.465
##     elctrnc           3.234    0.129   25.113    0.000    2.981    3.486    1.678    1.678
##     speed            -0.589    0.038  -15.686    0.000   -0.662   -0.515   -0.589   -0.589
##    .g                -0.017    0.026   -0.658    0.511   -0.069    0.034   -0.015   -0.015
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              2.036    1.066    1.909    0.056   -0.054    4.126    2.036    0.036
##    .ssmk             11.571    0.454   25.468    0.000   10.681   12.462   11.571    0.265
##    .ssmc              7.384    0.238   31.039    0.000    6.918    7.851    7.384    0.283
##    .ssgs              5.349    0.161   33.213    0.000    5.033    5.664    5.349    0.199
##    .ssasi             7.066    0.319   22.123    0.000    6.440    7.691    7.066    0.257
##    .ssei              3.597    0.128   28.187    0.000    3.347    3.847    3.597    0.209
##    .ssno              0.354    0.013   27.356    0.000    0.329    0.380    0.354    0.374
##    .sscs              0.019    0.037    0.509    0.610   -0.054    0.092    0.019    0.021
##    .sswk              9.165    0.408   22.477    0.000    8.366    9.965    9.165    0.134
##    .sspc              3.109    0.105   29.712    0.000    2.904    3.314    3.109    0.239
##     electronic        3.712    0.301   12.322    0.000    3.122    4.303    1.000    1.000
##    .g                 1.250    0.038   33.261    0.000    1.176    1.323    0.957    0.957
sem.ageq<-sem(bf.ageq, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(sem.ageq, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   3716.215     93.000      0.000      0.962      0.084      0.059      0.351 504031.276 504447.272
Mc(sem.ageq)
## [1] 0.8470939
summary(sem.ageq, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 117 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        86
##   Number of equality constraints                    29
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3716.215    2218.478
##   Degrees of freedom                                93          93
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.675
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1624.482     969.771
##     0                                         2091.733    1248.707
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.963    0.129   30.637    0.000    3.710    4.217    3.963    0.567
##     ssmk    (.p2.)    2.197    0.092   24.002    0.000    2.018    2.376    2.197    0.359
##     ssmc    (.p3.)    0.847    0.058   14.560    0.000    0.733    0.960    0.847    0.189
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.524    0.025   20.972    0.000    0.475    0.574    0.524    0.112
##     ssasi   (.p5.)    1.672    0.061   27.560    0.000    1.553    1.791    1.672    0.419
##     ssmc    (.p6.)    1.135    0.044   25.911    0.000    1.049    1.221    1.135    0.253
##     ssei    (.p7.)    0.909    0.035   26.104    0.000    0.841    0.978    0.909    0.244
##   speed =~                                                                                
##     ssno    (.p8.)    0.343    0.014   24.667    0.000    0.316    0.371    0.343    0.372
##     sscs    (.p9.)    0.692    0.028   24.576    0.000    0.636    0.747    0.692    0.743
##   g =~                                                                                    
##     ssgs    (.10.)    3.969    0.049   80.579    0.000    3.873    4.066    4.044    0.862
##     ssar    (.11.)    5.506    0.069   80.145    0.000    5.371    5.641    5.610    0.802
##     sswk    (.12.)    6.727    0.081   82.582    0.000    6.567    6.886    6.854    0.913
##     sspc    (.13.)    2.751    0.036   76.281    0.000    2.680    2.822    2.803    0.852
##     ssno    (.14.)    0.604    0.010   57.877    0.000    0.584    0.624    0.615    0.666
##     sscs    (.15.)    0.553    0.010   52.735    0.000    0.533    0.574    0.564    0.606
##     ssasi   (.16.)    2.773    0.045   61.563    0.000    2.685    2.861    2.825    0.708
##     ssmk    (.17.)    4.569    0.062   73.466    0.000    4.447    4.691    4.656    0.762
##     ssmc    (.18.)    3.183    0.046   69.547    0.000    3.093    3.273    3.243    0.723
##     ssei    (.19.)    2.845    0.036   79.043    0.000    2.775    2.916    2.899    0.779
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (b)    0.084    0.006   14.806    0.000    0.073    0.095    0.083    0.192
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.39.)   16.777    0.126  133.244    0.000   16.530   17.024   16.777    2.399
##    .ssmk    (.40.)   13.034    0.103  126.857    0.000   12.833   13.236   13.034    2.133
##    .ssmc    (.41.)   11.797    0.074  159.644    0.000   11.653   11.942   11.797    2.631
##    .ssgs    (.42.)   14.819    0.076  194.472    0.000   14.670   14.968   14.819    3.159
##    .ssasi   (.43.)   11.032    0.063  175.172    0.000   10.908   11.155   11.032    2.766
##    .ssei    (.44.)    9.694    0.059  163.316    0.000    9.577    9.810    9.694    2.605
##    .ssno    (.45.)    0.314    0.015   20.301    0.000    0.284    0.344    0.314    0.340
##    .sscs    (.46.)    0.391    0.016   25.042    0.000    0.360    0.421    0.391    0.420
##    .sswk    (.47.)   25.759    0.121  213.151    0.000   25.522   25.996   25.759    3.430
##    .sspc             11.168    0.053  212.692    0.000   11.065   11.271   11.168    3.395
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.744    1.037    1.681    0.093   -0.289    3.777    1.744    0.036
##    .ssmk             10.855    0.418   25.987    0.000   10.037   11.674   10.855    0.291
##    .ssmc              7.581    0.226   33.574    0.000    7.139    8.024    7.581    0.377
##    .ssgs              5.371    0.164   32.778    0.000    5.050    5.692    5.371    0.244
##    .ssasi             5.133    0.205   25.034    0.000    4.731    5.535    5.133    0.323
##    .ssei              4.614    0.135   34.280    0.000    4.350    4.878    4.614    0.333
##    .ssno              0.356    0.013   26.553    0.000    0.330    0.383    0.356    0.418
##    .sscs              0.071    0.042    1.692    0.091   -0.011    0.152    0.071    0.082
##    .sswk              9.435    0.382   24.710    0.000    8.687   10.184    9.435    0.167
##    .sspc              2.968    0.095   31.302    0.000    2.782    3.154    2.968    0.274
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.963    0.963
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.963    0.129   30.637    0.000    3.710    4.217    3.963    0.526
##     ssmk    (.p2.)    2.197    0.092   24.002    0.000    2.018    2.376    2.197    0.334
##     ssmc    (.p3.)    0.847    0.058   14.560    0.000    0.733    0.960    0.847    0.166
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.524    0.025   20.972    0.000    0.475    0.574    1.012    0.196
##     ssasi   (.p5.)    1.672    0.061   27.560    0.000    1.553    1.791    3.227    0.617
##     ssmc    (.p6.)    1.135    0.044   25.911    0.000    1.049    1.221    2.191    0.430
##     ssei    (.p7.)    0.909    0.035   26.104    0.000    0.841    0.978    1.755    0.424
##   speed =~                                                                                
##     ssno    (.p8.)    0.343    0.014   24.667    0.000    0.316    0.371    0.343    0.354
##     sscs    (.p9.)    0.692    0.028   24.576    0.000    0.636    0.747    0.692    0.732
##   g =~                                                                                    
##     ssgs    (.10.)    3.969    0.049   80.579    0.000    3.873    4.066    4.507    0.872
##     ssar    (.11.)    5.506    0.069   80.145    0.000    5.371    5.641    6.252    0.829
##     sswk    (.12.)    6.727    0.081   82.582    0.000    6.567    6.886    7.637    0.930
##     sspc    (.13.)    2.751    0.036   76.281    0.000    2.680    2.822    3.123    0.871
##     ssno    (.14.)    0.604    0.010   57.877    0.000    0.584    0.624    0.686    0.706
##     sscs    (.15.)    0.553    0.010   52.735    0.000    0.533    0.574    0.628    0.665
##     ssasi   (.16.)    2.773    0.045   61.563    0.000    2.685    2.861    3.148    0.602
##     ssmk    (.17.)    4.569    0.062   73.466    0.000    4.447    4.691    5.188    0.788
##     ssmc    (.18.)    3.183    0.046   69.547    0.000    3.093    3.273    3.614    0.709
##     ssei    (.19.)    2.845    0.036   79.043    0.000    2.775    2.916    3.230    0.781
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (b)    0.084    0.006   14.806    0.000    0.073    0.095    0.074    0.175
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.39.)   16.777    0.126  133.244    0.000   16.530   17.024   16.777    2.225
##    .ssmk    (.40.)   13.034    0.103  126.857    0.000   12.833   13.236   13.034    1.981
##    .ssmc    (.41.)   11.797    0.074  159.644    0.000   11.653   11.942   11.797    2.315
##    .ssgs    (.42.)   14.819    0.076  194.472    0.000   14.670   14.968   14.819    2.869
##    .ssasi   (.43.)   11.032    0.063  175.172    0.000   10.908   11.155   11.032    2.108
##    .ssei    (.44.)    9.694    0.059  163.316    0.000    9.577    9.810    9.694    2.343
##    .ssno    (.45.)    0.314    0.015   20.301    0.000    0.284    0.344    0.314    0.323
##    .sscs    (.46.)    0.391    0.016   25.042    0.000    0.360    0.421    0.391    0.414
##    .sswk    (.47.)   25.759    0.121  213.151    0.000   25.522   25.996   25.759    3.135
##    .sspc             10.516    0.061  172.301    0.000   10.396   10.636   10.516    2.932
##     math              0.465    0.032   14.633    0.000    0.403    0.527    0.465    0.465
##     elctrnc           3.236    0.129   25.092    0.000    2.983    3.489    1.677    1.677
##     speed            -0.589    0.038  -15.683    0.000   -0.662   -0.515   -0.589   -0.589
##    .g                -0.025    0.026   -0.952    0.341   -0.076    0.026   -0.022   -0.022
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              2.051    1.065    1.926    0.054   -0.036    4.138    2.051    0.036
##    .ssmk             11.562    0.454   25.454    0.000   10.672   12.452   11.562    0.267
##    .ssmc              7.383    0.238   31.037    0.000    6.917    7.850    7.383    0.284
##    .ssgs              5.346    0.161   33.220    0.000    5.030    5.661    5.346    0.200
##    .ssasi             7.061    0.319   22.108    0.000    6.435    7.687    7.061    0.258
##    .ssei              3.598    0.128   28.185    0.000    3.348    3.848    3.598    0.210
##    .ssno              0.354    0.013   27.352    0.000    0.329    0.380    0.354    0.376
##    .sscs              0.019    0.037    0.509    0.611   -0.054    0.092    0.019    0.021
##    .sswk              9.167    0.408   22.467    0.000    8.367    9.966    9.167    0.136
##    .sspc              3.107    0.105   29.707    0.000    2.902    3.312    3.107    0.242
##     electronic        3.725    0.302   12.320    0.000    3.132    4.318    1.000    1.000
##    .g                 1.250    0.038   33.227    0.000    1.176    1.323    0.969    0.969
sem.age2<-sem(bf.age2, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(sem.age2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   3764.394    110.000      0.000      0.962      0.078      0.052      0.356 504014.524 504452.414
Mc(sem.age2)
## [1] 0.8458851
summary(sem.age2, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 120 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
##   Number of equality constraints                    28
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3764.394    2237.430
##   Degrees of freedom                               110         110
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.682
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1644.854     977.646
##     0                                         2119.539    1259.783
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.963    0.130   30.603    0.000    3.710    4.217    3.963    0.569
##     ssmk    (.p2.)    2.195    0.092   23.971    0.000    2.016    2.375    2.195    0.361
##     ssmc    (.p3.)    0.846    0.058   14.542    0.000    0.732    0.960    0.846    0.189
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.525    0.025   20.968    0.000    0.476    0.574    0.525    0.112
##     ssasi   (.p5.)    1.673    0.061   27.583    0.000    1.554    1.792    1.673    0.421
##     ssmc    (.p6.)    1.136    0.044   25.936    0.000    1.050    1.222    1.136    0.254
##     ssei    (.p7.)    0.910    0.035   26.119    0.000    0.842    0.978    0.910    0.245
##   speed =~                                                                                
##     ssno    (.p8.)    0.343    0.014   24.667    0.000    0.316    0.371    0.343    0.373
##     sscs    (.p9.)    0.691    0.028   24.579    0.000    0.636    0.747    0.691    0.744
##   g =~                                                                                    
##     ssgs    (.10.)    3.967    0.049   80.896    0.000    3.871    4.063    4.019    0.861
##     ssar    (.11.)    5.503    0.068   80.556    0.000    5.369    5.637    5.575    0.800
##     sswk    (.12.)    6.722    0.081   82.888    0.000    6.563    6.880    6.809    0.911
##     sspc    (.13.)    2.749    0.036   76.575    0.000    2.679    2.820    2.785    0.850
##     ssno    (.14.)    0.604    0.010   58.042    0.000    0.583    0.624    0.612    0.664
##     sscs    (.15.)    0.553    0.010   52.857    0.000    0.532    0.573    0.560    0.603
##     ssasi   (.16.)    2.773    0.045   61.711    0.000    2.685    2.861    2.809    0.706
##     ssmk    (.17.)    4.567    0.062   73.774    0.000    4.446    4.688    4.627    0.760
##     ssmc    (.18.)    3.182    0.046   69.754    0.000    3.093    3.272    3.224    0.721
##     ssei    (.19.)    2.844    0.036   79.273    0.000    2.774    2.914    2.881    0.777
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.070    0.008    9.042    0.000    0.055    0.085    0.069    0.160
##     age2             -0.000    0.003   -0.072    0.942   -0.007    0.006   -0.000   -0.001
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.42.)   16.766    0.159  105.297    0.000   16.454   17.078   16.766    2.407
##    .ssmk    (.43.)   13.025    0.130  100.474    0.000   12.771   13.280   13.025    2.139
##    .ssmc    (.44.)   11.791    0.094  125.497    0.000   11.607   11.975   11.791    2.638
##    .ssgs    (.45.)   14.811    0.103  144.180    0.000   14.610   15.013   14.811    3.172
##    .ssasi   (.46.)   11.026    0.081  135.888    0.000   10.867   11.185   11.026    2.772
##    .ssei    (.47.)    9.688    0.079  123.274    0.000    9.534    9.842    9.688    2.613
##    .ssno    (.48.)    0.313    0.019   16.681    0.000    0.276    0.349    0.313    0.340
##    .sscs    (.49.)    0.390    0.019   20.929    0.000    0.353    0.426    0.390    0.420
##    .sswk    (.50.)   25.745    0.170  151.505    0.000   25.412   26.078   25.745    3.446
##    .sspc             11.163    0.071  156.336    0.000   11.023   11.303   11.163    3.409
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.740    1.039    1.676    0.094   -0.295    3.776    1.740    0.036
##    .ssmk             10.851    0.417   25.999    0.000   10.033   11.669   10.851    0.293
##    .ssmc              7.580    0.226   33.575    0.000    7.138    8.023    7.580    0.379
##    .ssgs              5.370    0.164   32.779    0.000    5.049    5.691    5.370    0.246
##    .ssasi             5.132    0.205   25.026    0.000    4.730    5.534    5.132    0.324
##    .ssei              4.616    0.135   34.270    0.000    4.352    4.880    4.616    0.336
##    .ssno              0.356    0.013   26.553    0.000    0.330    0.383    0.356    0.420
##    .sscs              0.071    0.042    1.698    0.090   -0.011    0.153    0.071    0.082
##    .sswk              9.455    0.383   24.701    0.000    8.705   10.205    9.455    0.169
##    .sspc              2.966    0.095   31.303    0.000    2.781    3.152    2.966    0.277
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.974    0.974
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.963    0.130   30.603    0.000    3.710    4.217    3.963    0.524
##     ssmk    (.p2.)    2.195    0.092   23.971    0.000    2.016    2.375    2.195    0.332
##     ssmc    (.p3.)    0.846    0.058   14.542    0.000    0.732    0.960    0.846    0.165
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.525    0.025   20.968    0.000    0.476    0.574    1.011    0.195
##     ssasi   (.p5.)    1.673    0.061   27.583    0.000    1.554    1.792    3.223    0.615
##     ssmc    (.p6.)    1.136    0.044   25.936    0.000    1.050    1.222    2.189    0.428
##     ssei    (.p7.)    0.910    0.035   26.119    0.000    0.842    0.978    1.753    0.422
##   speed =~                                                                                
##     ssno    (.p8.)    0.343    0.014   24.667    0.000    0.316    0.371    0.343    0.353
##     sscs    (.p9.)    0.691    0.028   24.579    0.000    0.636    0.747    0.691    0.730
##   g =~                                                                                    
##     ssgs    (.10.)    3.967    0.049   80.896    0.000    3.871    4.063    4.535    0.874
##     ssar    (.11.)    5.503    0.068   80.556    0.000    5.369    5.637    6.290    0.831
##     sswk    (.12.)    6.722    0.081   82.888    0.000    6.563    6.880    7.683    0.930
##     sspc    (.13.)    2.749    0.036   76.575    0.000    2.679    2.820    3.142    0.872
##     ssno    (.14.)    0.604    0.010   58.042    0.000    0.583    0.624    0.690    0.709
##     sscs    (.15.)    0.553    0.010   52.857    0.000    0.532    0.573    0.632    0.667
##     ssasi   (.16.)    2.773    0.045   61.711    0.000    2.685    2.861    3.170    0.604
##     ssmk    (.17.)    4.567    0.062   73.774    0.000    4.446    4.688    5.220    0.790
##     ssmc    (.18.)    3.182    0.046   69.754    0.000    3.093    3.272    3.637    0.712
##     ssei    (.19.)    2.844    0.036   79.273    0.000    2.774    2.914    3.251    0.783
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age               0.096    0.009   11.272    0.000    0.080    0.113    0.084    0.199
##     age2             -0.010    0.004   -2.618    0.009   -0.017   -0.003   -0.009   -0.045
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.42.)   16.766    0.159  105.297    0.000   16.454   17.078   16.766    2.215
##    .ssmk    (.43.)   13.025    0.130  100.474    0.000   12.771   13.280   13.025    1.972
##    .ssmc    (.44.)   11.791    0.094  125.497    0.000   11.607   11.975   11.791    2.307
##    .ssgs    (.45.)   14.811    0.103  144.180    0.000   14.610   15.013   14.811    2.854
##    .ssasi   (.46.)   11.026    0.081  135.888    0.000   10.867   11.185   11.026    2.103
##    .ssei    (.47.)    9.688    0.079  123.274    0.000    9.534    9.842    9.688    2.333
##    .ssno    (.48.)    0.313    0.019   16.681    0.000    0.276    0.349    0.313    0.321
##    .sscs    (.49.)    0.390    0.019   20.929    0.000    0.353    0.426    0.390    0.412
##    .sswk    (.50.)   25.745    0.170  151.505    0.000   25.412   26.078   25.745    3.118
##    .sspc             10.510    0.078  134.535    0.000   10.357   10.663   10.510    2.917
##     math              0.465    0.032   14.633    0.000    0.403    0.527    0.465    0.465
##     elctrnc           3.234    0.129   25.113    0.000    2.981    3.486    1.679    1.679
##     speed            -0.589    0.038  -15.686    0.000   -0.662   -0.515   -0.589   -0.589
##    .g                 0.036    0.037    0.975    0.329   -0.037    0.109    0.032    0.032
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              2.038    1.066    1.911    0.056   -0.052    4.128    2.038    0.036
##    .ssmk             11.570    0.454   25.467    0.000   10.680   12.460   11.570    0.265
##    .ssmc              7.384    0.238   31.036    0.000    6.918    7.851    7.384    0.283
##    .ssgs              5.350    0.161   33.207    0.000    5.034    5.666    5.350    0.199
##    .ssasi             7.067    0.319   22.127    0.000    6.441    7.693    7.067    0.257
##    .ssei              3.597    0.128   28.186    0.000    3.347    3.847    3.597    0.209
##    .ssno              0.354    0.013   27.359    0.000    0.329    0.380    0.354    0.374
##    .sscs              0.019    0.037    0.510    0.610   -0.054    0.092    0.019    0.021
##    .sswk              9.166    0.407   22.516    0.000    8.368    9.964    9.166    0.134
##    .sspc              3.108    0.105   29.705    0.000    2.903    3.314    3.108    0.239
##     electronic        3.711    0.301   12.320    0.000    3.120    4.301    1.000    1.000
##    .g                 1.247    0.037   33.334    0.000    1.174    1.321    0.955    0.955
sem.age2q<-sem(bf.age2q, data=dgroup, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(sem.age2q, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr", "ecvi", "aic", "bic"))
##      chisq         df     pvalue        cfi      rmsea       srmr       ecvi        aic        bic 
##   3781.967    112.000      0.000      0.962      0.077      0.057      0.357 504028.097 504451.390
Mc(sem.age2q)
## [1] 0.845282
summary(sem.age2q, standardized=T, ci=T) 
## lavaan 0.6-18 ended normally after 123 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        88
##   Number of equality constraints                    30
## 
##   Number of observations per group:                   
##     1                                             5449
##     0                                             5469
##   Sampling weights variable                    sweight
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3781.967    2252.421
##   Degrees of freedom                               112         112
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.679
##     Yuan-Bentler correction (Mplus variant)                       
##   Test statistic for each group:
##     1                                         1651.781     983.749
##     0                                         2130.186    1268.672
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.963    0.129   30.639    0.000    3.710    4.217    3.963    0.566
##     ssmk    (.p2.)    2.197    0.092   24.002    0.000    2.018    2.377    2.197    0.359
##     ssmc    (.p3.)    0.847    0.058   14.560    0.000    0.733    0.961    0.847    0.189
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.524    0.025   20.968    0.000    0.475    0.573    0.524    0.112
##     ssasi   (.p5.)    1.672    0.061   27.558    0.000    1.553    1.791    1.672    0.419
##     ssmc    (.p6.)    1.135    0.044   25.910    0.000    1.049    1.221    1.135    0.253
##     ssei    (.p7.)    0.909    0.035   26.101    0.000    0.841    0.978    0.909    0.244
##   speed =~                                                                                
##     ssno    (.p8.)    0.343    0.014   24.666    0.000    0.316    0.371    0.343    0.372
##     sscs    (.p9.)    0.692    0.028   24.577    0.000    0.636    0.747    0.692    0.743
##   g =~                                                                                    
##     ssgs    (.10.)    3.970    0.049   80.585    0.000    3.874    4.067    4.046    0.862
##     ssar    (.11.)    5.507    0.069   80.168    0.000    5.373    5.642    5.613    0.802
##     sswk    (.12.)    6.728    0.081   82.587    0.000    6.569    6.888    6.857    0.913
##     sspc    (.13.)    2.752    0.036   76.244    0.000    2.681    2.822    2.804    0.852
##     ssno    (.14.)    0.604    0.010   57.887    0.000    0.584    0.625    0.616    0.667
##     sscs    (.15.)    0.553    0.010   52.751    0.000    0.533    0.574    0.564    0.606
##     ssasi   (.16.)    2.774    0.045   61.531    0.000    2.686    2.862    2.827    0.709
##     ssmk    (.17.)    4.570    0.062   73.474    0.000    4.448    4.692    4.658    0.762
##     ssmc    (.18.)    3.184    0.046   69.523    0.000    3.094    3.274    3.245    0.723
##     ssei    (.19.)    2.846    0.036   79.017    0.000    2.775    2.916    2.900    0.779
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (b)    0.082    0.006   14.057    0.000    0.070    0.093    0.080    0.186
##     age2       (c)   -0.005    0.003   -1.867    0.062   -0.010    0.000   -0.005   -0.024
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.42.)   16.917    0.145  116.595    0.000   16.632   17.201   16.917    2.418
##    .ssmk    (.43.)   13.150    0.119  110.945    0.000   12.918   13.382   13.150    2.151
##    .ssmc    (.44.)   11.878    0.085  139.056    0.000   11.711   12.045   11.878    2.648
##    .ssgs    (.45.)   14.920    0.092  162.905    0.000   14.740   15.099   14.920    3.179
##    .ssasi   (.46.)   11.102    0.074  150.996    0.000   10.958   11.246   11.102    2.782
##    .ssei    (.47.)    9.766    0.071  138.316    0.000    9.627    9.904    9.766    2.624
##    .ssno    (.48.)    0.329    0.017   19.070    0.000    0.295    0.363    0.329    0.356
##    .sscs    (.49.)    0.405    0.017   23.455    0.000    0.371    0.439    0.405    0.435
##    .sswk    (.50.)   25.929    0.149  174.347    0.000   25.638   26.221   25.929    3.451
##    .sspc             11.238    0.063  177.992    0.000   11.114   11.362   11.238    3.415
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              1.743    1.037    1.681    0.093   -0.290    3.777    1.743    0.036
##    .ssmk             10.856    0.418   25.983    0.000   10.037   11.675   10.856    0.290
##    .ssmc              7.581    0.226   33.574    0.000    7.139    8.024    7.581    0.377
##    .ssgs              5.371    0.164   32.774    0.000    5.050    5.692    5.371    0.244
##    .ssasi             5.133    0.205   25.035    0.000    4.731    5.535    5.133    0.322
##    .ssei              4.615    0.135   34.284    0.000    4.351    4.879    4.615    0.333
##    .ssno              0.356    0.013   26.556    0.000    0.330    0.383    0.356    0.418
##    .sscs              0.071    0.042    1.693    0.091   -0.011    0.152    0.071    0.081
##    .sswk              9.434    0.382   24.700    0.000    8.685   10.183    9.434    0.167
##    .sspc              2.968    0.095   31.307    0.000    2.782    3.154    2.968    0.274
##     electronic        1.000                               1.000    1.000    1.000    1.000
##    .g                 1.000                               1.000    1.000    0.963    0.963
## 
## 
## Group 2 [0]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math =~                                                                                 
##     ssar    (.p1.)    3.963    0.129   30.639    0.000    3.710    4.217    3.963    0.526
##     ssmk    (.p2.)    2.197    0.092   24.002    0.000    2.018    2.377    2.197    0.334
##     ssmc    (.p3.)    0.847    0.058   14.560    0.000    0.733    0.961    0.847    0.166
##   electronic =~                                                                           
##     ssgs    (.p4.)    0.524    0.025   20.968    0.000    0.475    0.573    1.012    0.196
##     ssasi   (.p5.)    1.672    0.061   27.558    0.000    1.553    1.791    3.227    0.617
##     ssmc    (.p6.)    1.135    0.044   25.910    0.000    1.049    1.221    2.191    0.430
##     ssei    (.p7.)    0.909    0.035   26.101    0.000    0.841    0.978    1.755    0.424
##   speed =~                                                                                
##     ssno    (.p8.)    0.343    0.014   24.666    0.000    0.316    0.371    0.343    0.354
##     sscs    (.p9.)    0.692    0.028   24.577    0.000    0.636    0.747    0.692    0.732
##   g =~                                                                                    
##     ssgs    (.10.)    3.970    0.049   80.585    0.000    3.874    4.067    4.505    0.872
##     ssar    (.11.)    5.507    0.069   80.168    0.000    5.373    5.642    6.248    0.829
##     sswk    (.12.)    6.728    0.081   82.587    0.000    6.569    6.888    7.633    0.930
##     sspc    (.13.)    2.752    0.036   76.244    0.000    2.681    2.822    3.122    0.871
##     ssno    (.14.)    0.604    0.010   57.887    0.000    0.584    0.625    0.685    0.706
##     sscs    (.15.)    0.553    0.010   52.751    0.000    0.533    0.574    0.628    0.665
##     ssasi   (.16.)    2.774    0.045   61.531    0.000    2.686    2.862    3.147    0.601
##     ssmk    (.17.)    4.570    0.062   73.474    0.000    4.448    4.692    5.185    0.788
##     ssmc    (.18.)    3.184    0.046   69.523    0.000    3.094    3.274    3.612    0.709
##     ssei    (.19.)    2.846    0.036   79.017    0.000    2.775    2.916    3.229    0.781
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   g ~                                                                                     
##     age        (b)    0.082    0.006   14.057    0.000    0.070    0.093    0.072    0.170
##     age2       (c)   -0.005    0.003   -1.867    0.062   -0.010    0.000   -0.004   -0.022
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##   math ~~                                                                                 
##     electronic        0.000                               0.000    0.000    0.000    0.000
##     speed             0.000                               0.000    0.000    0.000    0.000
##   electronic ~~                                                                           
##     speed             0.000                               0.000    0.000    0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##    .ssar    (.42.)   16.917    0.145  116.595    0.000   16.632   17.201   16.917    2.245
##    .ssmk    (.43.)   13.150    0.119  110.945    0.000   12.918   13.382   13.150    1.999
##    .ssmc    (.44.)   11.878    0.085  139.056    0.000   11.711   12.045   11.878    2.332
##    .ssgs    (.45.)   14.920    0.092  162.905    0.000   14.740   15.099   14.920    2.889
##    .ssasi   (.46.)   11.102    0.074  150.996    0.000   10.958   11.246   11.102    2.122
##    .ssei    (.47.)    9.766    0.071  138.316    0.000    9.627    9.904    9.766    2.361
##    .ssno    (.48.)    0.329    0.017   19.070    0.000    0.295    0.363    0.329    0.339
##    .sscs    (.49.)    0.405    0.017   23.455    0.000    0.371    0.439    0.405    0.429
##    .sswk    (.50.)   25.929    0.149  174.347    0.000   25.638   26.221   25.929    3.158
##    .sspc             10.586    0.070  151.290    0.000   10.449   10.723   10.586    2.953
##     math              0.465    0.032   14.633    0.000    0.403    0.527    0.465    0.465
##     elctrnc           3.236    0.129   25.089    0.000    2.984    3.489    1.677    1.677
##     speed            -0.589    0.038  -15.683    0.000   -0.662   -0.515   -0.589   -0.589
##    .g                -0.024    0.026   -0.921    0.357   -0.075    0.027   -0.021   -0.021
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper   Std.lv  Std.all
##     math              1.000                               1.000    1.000    1.000    1.000
##     speed             1.000                               1.000    1.000    1.000    1.000
##    .ssar              2.051    1.065    1.926    0.054   -0.036    4.138    2.051    0.036
##    .ssmk             11.562    0.454   25.453    0.000   10.671   12.452   11.562    0.267
##    .ssmc              7.383    0.238   31.036    0.000    6.917    7.849    7.383    0.285
##    .ssgs              5.346    0.161   33.217    0.000    5.031    5.661    5.346    0.201
##    .ssasi             7.062    0.319   22.110    0.000    6.436    7.688    7.062    0.258
##    .ssei              3.598    0.128   28.184    0.000    3.348    3.848    3.598    0.210
##    .ssno              0.354    0.013   27.354    0.000    0.329    0.380    0.354    0.376
##    .sscs              0.019    0.037    0.510    0.610   -0.054    0.092    0.019    0.021
##    .sswk              9.167    0.408   22.485    0.000    8.368    9.966    9.167    0.136
##    .sspc              3.107    0.105   29.703    0.000    2.902    3.312    3.107    0.242
##     electronic        3.725    0.302   12.319    0.000    3.132    4.318    1.000    1.000
##    .g                 1.247    0.037   33.280    0.000    1.174    1.321    0.969    0.969
# CROSS VALIDATION

set.seed(123) # For reproducibility, set seed if needed
split_indices <- sample(1:nrow(dgroup), size = nrow(dgroup) / 2)
dhalf1 <- dgroup[split_indices, ]
dhalf2 <- dgroup[-split_indices, ]

# ALL RACE GROUP

# CORRELATED FACTOR MODEL

cf.model<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
'

cf.lv<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
verbal~~1*verbal
math~~1*math
speed~~1*speed
'

baseline<-cfa(cf.model, data=dhalf1, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1329.668     27.000      0.000      0.972      0.888      0.094      0.030 256144.510 256395.501
configural<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    928.923     54.000      0.000      0.981      0.923      0.077      0.020 251886.082 252388.063
metric<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1017.633     62.000      0.000      0.980      0.916      0.075      0.026 251958.791 252407.933
scalar<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1799.083     68.000      0.000      0.963      0.853      0.097      0.046 252728.241 253137.752
scalar2<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1164.491     65.000      0.000      0.977      0.904      0.079      0.029 252099.650 252528.976
strict<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1356.579     75.000      0.000      0.973      0.889      0.079      0.037 252271.737 252635.013
cf.cov<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1376.539     71.000      0.000      0.972      0.887      0.082      0.105 252299.697 252689.393
cf.vcov<-cfa(cf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1644.278     75.000      0.000      0.966      0.866      0.088      0.126 252559.436 252922.712
cf.cov2<-cfa(cf.lv, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1409.731     74.000      0.000      0.971      0.885      0.081      0.104 252326.889 252696.770
baseline<-cfa(cf.model, data=dhalf2, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1363.763     27.000      0.000      0.972      0.885      0.095      0.029 256072.369 256323.360
configural<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##    913.551     54.000      0.000      0.982      0.924      0.076      0.019 251490.562 251992.544
metric<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1057.927     62.000      0.000      0.979      0.913      0.077      0.028 251618.938 252068.079
scalar<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1883.486     68.000      0.000      0.962      0.847      0.099      0.047 252432.497 252842.008
scalar2<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1164.009     65.000      0.000      0.977      0.904      0.079      0.030 251719.020 252148.346
strict<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1338.495     75.000      0.000      0.973      0.891      0.079      0.039 251873.506 252236.782
cf.cov<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(cf.cov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1357.242     71.000      0.000      0.973      0.889      0.081      0.113 251900.253 252289.949
cf.vcov<-cfa(cf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances", "lv.variances"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(cf.vcov, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1554.958     75.000      0.000      0.969      0.873      0.085      0.128 252089.969 252453.245
cf.cov2<-cfa(cf.lv, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.covariances"), group.partial=c("ssei~1", "sswk~1", "sscs~1"))
fitMeasures(cf.cov2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1377.823     74.000      0.000      0.973      0.887      0.080      0.112 251914.834 252284.715
# HIGH ORDER FACTOR

hof.model<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed
'

hof.lv<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed
verbal~~1*verbal
math~~1*math
speed~~1*speed
'

hof.weak<-'
verbal =~ ssgs + sswk + sspc
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
g =~ verbal + math + electronic + speed
verbal~~1*verbal
math~~1*math
speed~~1*speed
math~0*1
'

baseline<-cfa(hof.model, data=dhalf1, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1949.011     29.000      0.000      0.959      0.839      0.110      0.044 256759.854 256997.635
configural<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1348.802     58.000      0.000      0.972      0.888      0.090      0.028 252297.961 252773.522
metric<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1569.506     69.000      0.000      0.968      0.872      0.089      0.054 252496.664 252899.571
metric2<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"), group.partial=c("g=~electronic"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1430.656     68.000      0.000      0.971      0.883      0.086      0.033 252359.815 252769.326
scalar<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 6.945956e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   2193.549     73.000      0.000      0.955      0.823      0.103      0.052 253112.708 253489.194
scalar2<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 5.418587e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1575.855     70.000      0.000      0.968      0.871      0.089      0.036 252501.014 252897.315
strict<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 9.336031e-14) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1769.107     80.000      0.000      0.964      0.857      0.088      0.043 252674.265 253004.516
latent<-cfa(hof.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 8.308293e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1786.424     75.000      0.000      0.963      0.855      0.091      0.059 252701.582 253064.859
latent2<-cfa(hof.lv, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 4.373136e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1585.016     73.000      0.000      0.968      0.871      0.087      0.036 252504.174 252880.660
weak<-cfa(hof.weak, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1585.016     74.000      0.000      0.968      0.871      0.086      0.036 252502.174 252872.055
baseline<-cfa(hof.model, data=dhalf2, meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1931.559     29.000      0.000      0.960      0.840      0.110      0.043 256636.166 256873.946
configural<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight")
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1283.972     58.000      0.000      0.974      0.894      0.088      0.026 251852.983 252328.545
metric<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1528.494     69.000      0.000      0.969      0.875      0.088      0.052 252075.505 252478.411
metric2<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings"), group.partial=c("g=~electronic"))
fitMeasures(metric2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1418.607     68.000      0.000      0.972      0.884      0.085      0.034 251967.618 252377.129
scalar<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 3.311871e-14) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   2225.474     73.000      0.000      0.955      0.821      0.104      0.052 252764.485 253140.971
scalar2<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 5.913766e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1522.811     70.000      0.000      0.969      0.875      0.087      0.036 252067.822 252464.123
strict<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 1.505217e-13) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1696.723     80.000      0.000      0.966      0.862      0.086      0.044 252221.734 252551.985
latent<-cfa(hof.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 8.925379e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1672.176     75.000      0.000      0.966      0.864      0.088      0.070 252207.187 252570.463
latent2<-cfa(hof.lv, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= 4.522227e-15) is close to zero. This may be a 
##    symptom that the model is not identified.
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1530.611     73.000      0.000      0.969      0.875      0.086      0.036 252069.622 252446.109
weak<-cfa(hof.weak, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", group.equal=c("loadings", "intercepts"), group.partial=c("g=~electronic", "ssei~1", "sswk~1", "sscs~1"))
fitMeasures(weak, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1530.611     74.000      0.000      0.969      0.875      0.085      0.036 252067.622 252437.504
# BIFACTOR

bf.model<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei
'

bf.lv<-'
math =~ ssar + ssmk + ssmc
electronic =~ ssgs + ssasi + ssmc + ssei
speed =~ ssno + sscs
g =~ ssgs + ssar + sswk + sspc + ssno + sscs + ssasi + ssmk + ssmc + ssei
math~~1*math
speed~~1*speed
'

baseline<-cfa(bf.model, data=dhalf1, meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= -2.225220e+00) is smaller than zero. This may 
##    be a symptom that the model is not identified.
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1539.467     26.000      0.000      0.968      0.871      0.103      0.037 256356.309 256613.905
configural<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= -2.137122e-07) is smaller than zero. This may 
##    be a symptom that the model is not identified.
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1185.160     52.000      0.000      0.976      0.901      0.089      0.027 252146.318 252661.510
metric<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1364.976     67.000      0.000      0.972      0.888      0.084      0.056 252296.135 252712.251
scalar<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"))
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1601.017     73.000      0.000      0.967      0.869      0.088      0.056 252520.175 252896.662
scalar2<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1473.100     72.000      0.000      0.970      0.880      0.084      0.056 252394.259 252777.350
strict<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1"))
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1531.117     82.000      0.000      0.969      0.876      0.080      0.055 252432.275 252749.316
latent<-cfa(bf.model, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("sspc~1"))
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1865.455     76.000      0.000      0.962      0.849      0.093      0.128 252778.613 253135.284
latent2<-cfa(bf.lv, data=dhalf1, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1475.255     74.000      0.000      0.970      0.880      0.083      0.056 252392.413 252762.295
baseline<-cfa(bf.model, data=dhalf2, meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
fitMeasures(baseline, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1597.891     26.000      0.000      0.967      0.866      0.105      0.037 256308.497 256566.093
configural<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T)
## Warning: lavaan->lav_model_vcov():  
##    The variance-covariance matrix of the estimated parameters (vcov) does not appear to be 
##    positive definite! The smallest eigenvalue (= -5.641903e-08) is smaller than zero. This may 
##    be a symptom that the model is not identified.
fitMeasures(configural, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1186.628     52.000      0.000      0.976      0.901      0.089      0.025 251767.639 252282.830
metric<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings"))
fitMeasures(metric, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1374.446     67.000      0.000      0.973      0.887      0.085      0.053 251925.457 252341.573
scalar<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(scalar, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1583.172     73.000      0.000      0.968      0.871      0.087      0.054 252122.182 252498.669
scalar2<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(scalar2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1453.871     72.000      0.000      0.971      0.881      0.084      0.053 251994.882 252377.973
strict<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "residuals"), group.partial=c("sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(strict, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1513.006     82.000      0.000      0.970      0.877      0.080      0.054 252034.016 252351.057
latent<-cfa(bf.model, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts", "lv.variances"), group.partial=c("sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(latent, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1770.962     76.000      0.000      0.964      0.856      0.090      0.130 252303.973 252660.644
latent2<-cfa(bf.lv, data=dhalf2, group="sex", meanstructure=T, std.lv=T, sampling.weights="sweight", orthogonal=T, group.equal=c("loadings", "intercepts"), group.partial=c("sspc~1"))
## Warning: lavaan->lav_object_post_check():  
##    some estimated ov variances are negative
fitMeasures(latent2, c("chisq", "df", "pvalue", "cfi", "mfi", "rmsea", "srmr", "aic", "bic"))
##      chisq         df     pvalue        cfi        mfi      rmsea       srmr        aic        bic 
##   1460.573     74.000      0.000      0.971      0.881      0.083      0.053 251997.583 252367.465
# Testing for selection effect?

dw<- filter(dk, bhw==3)
dw$sexage<- dw$sex*dw$age
dw$sexmomeduc<- dw$sex*dw$momeduc
dw$agemomeduc<- dw$age*dw$momeduc
dw$momeduc<- dw$momeduc-12
dw$sexagemomeduc<- dw$sex*dw$age*dw$momeduc
dw$sexdadeduc<- dw$sex*dw$dadeduc
dw$agedadeduc<- dw$age*dw$dadeduc
dw$dadeduc<- dw$dadeduc-12
dw$sexagedadeduc<- dw$sex*dw$age*dw$dadeduc

fit<-lm(efa ~ sex + age + momeduc + sexage + sexmomeduc + agemomeduc + sexagemomeduc, data=dw, weights=dw$sweight)
summary(fit)
## 
## Call:
## lm(formula = efa ~ sex + age + momeduc + sexage + sexmomeduc + 
##     agemomeduc + sexagemomeduc, data = dw, weights = dw$sweight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -34510  -3707    101   3758  21584 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   110.22225    0.20392 540.528  < 2e-16 ***
## sex            -1.82848    1.46399  -1.249 0.211725    
## age             2.54360    0.44001   5.781 7.82e-09 ***
## momeduc         2.19427    0.08457  25.945  < 2e-16 ***
## sexage         -0.43873    0.12384  -3.543 0.000399 ***
## sexmomeduc     -0.20146    0.11910  -1.692 0.090788 .  
## agemomeduc     -0.09825    0.03579  -2.746 0.006060 ** 
## sexagemomeduc   0.09477    0.04987   1.900 0.057459 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6777 on 5817 degrees of freedom
##   (254 observations deleted due to missingness)
## Multiple R-squared:  0.2425, Adjusted R-squared:  0.2416 
## F-statistic:   266 on 7 and 5817 DF,  p-value: < 2.2e-16
fit<-lm(efa ~ sex + age + dadeduc + sexage + sexdadeduc + agedadeduc + sexagedadeduc, data=dw, weights=dw$sweight)
summary(fit)
## 
## Call:
## lm(formula = efa ~ sex + age + dadeduc + sexage + sexdadeduc + 
##     agedadeduc + sexagedadeduc, data = dw, weights = dw$sweight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -36242  -3645    177   3715  23290 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   109.95878    0.20588 534.085  < 2e-16 ***
## sex            -2.28037    1.12728  -2.023   0.0431 *  
## age             2.22715    0.32498   6.853 7.99e-12 ***
## dadeduc         1.57443    0.06064  25.963  < 2e-16 ***
## sexage         -0.55490    0.12544  -4.424 9.88e-06 ***
## sexdadeduc     -0.17177    0.08791  -1.954   0.0508 .  
## agedadeduc     -0.06181    0.02540  -2.433   0.0150 *  
## sexagedadeduc   0.03844    0.03701   1.039   0.2990    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6732 on 5620 degrees of freedom
##   (456 observations deleted due to missingness)
## Multiple R-squared:  0.2396, Adjusted R-squared:  0.2386 
## F-statistic: 252.9 on 7 and 5620 DF,  p-value: < 2.2e-16
fit<-lm(momeduc~ sex + age + sexage, data=dw, weights=dw$sweight)
summary(fit)
## 
## Call:
## lm(formula = momeduc ~ sex + age + sexage, data = dw, weights = dw$sweight)
## 
## Weighted Residuals:
##      Min       1Q   Median       3Q      Max 
## -10587.8   -489.7    -29.5     38.2   6536.6 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  0.10585    0.04487   2.359   0.0184 *
## sex         -0.12099    0.06398  -1.891   0.0587 .
## age          0.03282    0.01893   1.734   0.0830 .
## sexage      -0.06125    0.02727  -2.246   0.0247 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1494 on 5821 degrees of freedom
##   (254 observations deleted due to missingness)
## Multiple R-squared:  0.001368,   Adjusted R-squared:  0.0008536 
## F-statistic: 2.658 on 3 and 5821 DF,  p-value: 0.04662
fit<-lm(dadeduc ~ sex + age + sexage, data=dw, weights=dw$sweight)
summary(fit)
## 
## Call:
## lm(formula = dadeduc ~ sex + age + sexage, data = dw, weights = dw$sweight)
## 
## Weighted Residuals:
##      Min       1Q   Median       3Q      Max 
## -10710.7   -977.8   -255.9    546.3   7341.1 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.42514    0.06212   6.844 8.51e-12 ***
## sex         -0.06896    0.08883  -0.776    0.438    
## age         -0.02638    0.02625  -1.005    0.315    
## sexage      -0.01742    0.03792  -0.459    0.646    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2047 on 5624 degrees of freedom
##   (456 observations deleted due to missingness)
## Multiple R-squared:  0.0007308,  Adjusted R-squared:  0.0001978 
## F-statistic: 1.371 on 3 and 5624 DF,  p-value: 0.2496
da<- dk
da$sexage<- da$sex*da$age
da$sexmomeduc<- da$sex*da$momeduc
da$agemomeduc<- da$age*da$momeduc
da$momeduc<- da$momeduc-12
da$sexagemomeduc<- da$sex*da$age*da$momeduc
da$sexdadeduc<- da$sex*da$dadeduc
da$agedadeduc<- da$age*da$dadeduc
da$dadeduc<- da$dadeduc-12
da$sexagedadeduc<- da$sex*da$age*da$dadeduc

fit<-lm(efa ~ sex + age + momeduc + sexage + sexmomeduc + agemomeduc + sexagemomeduc, data=da, weights=da$sweight)
summary(fit)
## 
## Call:
## lm(formula = efa ~ sex + age + momeduc + sexage + sexmomeduc + 
##     agemomeduc + sexagemomeduc, data = da, weights = da$sweight)
## 
## Weighted Residuals:
##      Min       1Q   Median       3Q      Max 
## -31050.2  -4609.3   -553.1   3098.7  25205.2 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   107.513848   0.177404 606.039  < 2e-16 ***
## sex            -1.747194   1.072591  -1.629   0.1034    
## age             1.444684   0.326518   4.425 9.77e-06 ***
## momeduc         2.395023   0.063825  37.525  < 2e-16 ***
## sexage         -0.475432   0.108088  -4.399 1.10e-05 ***
## sexmomeduc     -0.183457   0.089610  -2.047   0.0407 *  
## agemomeduc     -0.004453   0.027182  -0.164   0.8699    
## sexagemomeduc   0.018171   0.038024   0.478   0.6327    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6571 on 10098 degrees of freedom
##   (663 observations deleted due to missingness)
## Multiple R-squared:  0.2538, Adjusted R-squared:  0.2533 
## F-statistic: 490.7 on 7 and 10098 DF,  p-value: < 2.2e-16
fit<-lm(efa ~ sex + age + dadeduc + sexage + sexdadeduc + agedadeduc + sexagedadeduc, data=da, weights=da$sweight)
summary(fit)
## 
## Call:
## lm(formula = efa ~ sex + age + dadeduc + sexage + sexdadeduc + 
##     agedadeduc + sexagedadeduc, data = da, weights = da$sweight)
## 
## Weighted Residuals:
##    Min     1Q Median     3Q    Max 
## -33296  -4474   -387   3087  26377 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   107.60989    0.17861 602.492  < 2e-16 ***
## sex            -1.76268    0.87137  -2.023   0.0431 *  
## age             1.62152    0.25786   6.288 3.35e-10 ***
## dadeduc         1.87474    0.04925  38.066  < 2e-16 ***
## sexage         -0.55593    0.10865  -5.117 3.17e-07 ***
## sexdadeduc     -0.19600    0.07012  -2.795   0.0052 ** 
## agedadeduc     -0.01299    0.02074  -0.626   0.5311    
## sexagedadeduc   0.01643    0.02969   0.553   0.5801    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6490 on 9214 degrees of freedom
##   (1566 observations deleted due to missingness)
## Multiple R-squared:  0.2652, Adjusted R-squared:  0.2646 
## F-statistic:   475 on 7 and 9214 DF,  p-value: < 2.2e-16
fit<-lm(momeduc~ sex + age + sexage, data=da, weights=da$sweight)
summary(fit)
## 
## Call:
## lm(formula = momeduc ~ sex + age + sexage, data = da, weights = da$sweight)
## 
## Weighted Residuals:
##      Min       1Q   Median       3Q      Max 
## -10244.8   -793.7     83.1    271.2   6888.4 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.27869    0.03928  -7.096 1.38e-12 ***
## sex         -0.17239    0.05577  -3.091   0.0020 ** 
## age          0.02920    0.01661   1.759   0.0787 .  
## sexage      -0.05689    0.02379  -2.391   0.0168 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1462 on 10102 degrees of freedom
##   (663 observations deleted due to missingness)
## Multiple R-squared:  0.001374,   Adjusted R-squared:  0.001078 
## F-statistic: 4.634 on 3 and 10102 DF,  p-value: 0.003054
fit<-lm(dadeduc ~ sex + age + sexage, data=da, weights=da$sweight)
summary(fit)
## 
## Call:
## lm(formula = dadeduc ~ sex + age + sexage, data = da, weights = da$sweight)
## 
## Weighted Residuals:
##      Min       1Q   Median       3Q      Max 
## -10298.1  -1248.0      0.0    183.3   7797.1 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -0.04499    0.05312  -0.847   0.3970  
## sex         -0.13021    0.07568  -1.721   0.0854 .
## age         -0.02823    0.02245  -1.257   0.2088  
## sexage      -0.02245    0.03229  -0.695   0.4868  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1931 on 9218 degrees of freedom
##   (1566 observations deleted due to missingness)
## Multiple R-squared:  0.000989,   Adjusted R-squared:  0.0006639 
## F-statistic: 3.042 on 3 and 9218 DF,  p-value: 0.02772
dgroup<- dplyr::select(d, id, starts_with("ss"), afqt, efa, educ2000, momeduc, dadeduc, age, age2, sex, agesex, bhw, sweight, weight2000, cweight, asvabweight)
dgroup$sexage<- dgroup$sex*dgroup$age

# momeduc or dadeduc being not mean centered only changes the intercept, nothing else
fit<-lm(momeduc~ sex + age + sexage, data=dgroup, weights=dgroup$sweight)
summary(fit)
## 
## Call:
## lm(formula = momeduc ~ sex + age + sexage, data = dgroup, weights = dgroup$sweight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -6412.5 -1088.4    59.4   179.0  5638.0 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 11.773428   0.084831 138.787   <2e-16 ***
## sex         -0.025962   0.121775  -0.213    0.831    
## age         -0.003619   0.038605  -0.094    0.925    
## sexage       0.065932   0.055793   1.182    0.237    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1500 on 2004 degrees of freedom
##   (112 observations deleted due to missingness)
## Multiple R-squared:  0.00128,    Adjusted R-squared:  -0.0002151 
## F-statistic: 0.8561 on 3 and 2004 DF,  p-value: 0.4632
fit<-lm(dadeduc ~ sex + age + sexage, data=dgroup, weights=dgroup$sweight)
summary(fit)
## 
## Call:
## lm(formula = dadeduc ~ sex + age + sexage, data = dgroup, weights = dgroup$sweight)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -6098.9 -1616.3  -112.4   206.7  7585.2 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 12.09500    0.11921 101.457   <2e-16 ***
## sex         -0.10106    0.17045  -0.593   0.5533    
## age         -0.03700    0.05382  -0.687   0.4919    
## sexage       0.13628    0.07776   1.753   0.0798 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2071 on 1878 degrees of freedom
##   (237 observations deleted due to missingness)
## Multiple R-squared:  0.002304,   Adjusted R-squared:  0.00071 
## F-statistic: 1.446 on 3 and 1878 DF,  p-value: 0.2277