Goal: be able to predict the ceo departure

Import Data

library(tidyverse)
## Warning: package 'purrr' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(correlationfunnel)
## ══ correlationfunnel Tip #2 ════════════════════════════════════════════════════
## Clean your NA's prior to using `binarize()`.
## Missing values and cleaning data are critical to getting great correlations. :)
data <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2021/2021-04-27/departures.csv')
## Rows: 9423 Columns: 19
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr   (8): coname, exec_fullname, interim_coceo, still_there, notes, sources...
## dbl  (10): dismissal_dataset_id, gvkey, fyear, co_per_rol, departure_code, c...
## dttm  (1): leftofc
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Clean Data

skimr::skim(data)
Data summary
Name data
Number of rows 9423
Number of columns 19
_______________________
Column type frequency:
character 8
numeric 10
POSIXct 1
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
coname 0 1.00 2 30 0 3860 0
exec_fullname 0 1.00 5 790 0 8701 0
interim_coceo 9105 0.03 6 7 0 6 0
still_there 7311 0.22 3 10 0 77 0
notes 1644 0.83 5 3117 0 7755 0
sources 1475 0.84 18 1843 0 7915 0
eight_ks 4499 0.52 69 3884 0 4914 0
_merge 0 1.00 11 11 0 1 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
dismissal_dataset_id 0 1.00 5684.10 25005.46 1 2305.5 4593 6812.5 559044 ▇▁▁▁▁
gvkey 0 1.00 40132.48 53921.34 1004 7337.0 14385 60900.5 328795 ▇▁▁▁▁
fyear 0 1.00 2007.74 8.19 1987 2000.0 2008 2016.0 2020 ▁▆▅▅▇
co_per_rol 0 1.00 25580.22 18202.38 -1 8555.5 22980 39275.5 64602 ▇▆▅▃▃
departure_code 1667 0.82 5.20 1.53 1 5.0 5 7.0 9 ▁▃▇▅▁
ceo_dismissal 1813 0.81 0.20 0.40 0 0.0 0 0.0 1 ▇▁▁▁▂
tenure_no_ceodb 0 1.00 1.03 0.17 0 1.0 1 1.0 3 ▁▇▁▁▁
max_tenure_ceodb 0 1.00 1.05 0.24 1 1.0 1 1.0 4 ▇▁▁▁▁
fyear_gone 1802 0.81 2006.64 13.63 1980 2000.0 2007 2013.0 2997 ▇▁▁▁▁
cik 245 0.97 741469.17 486551.43 1750 106413.0 857323 1050375.8 1808065 ▆▁▇▂▁

Variable type: POSIXct

skim_variable n_missing complete_rate min max median n_unique
leftofc 1802 0.81 1981-01-01 2998-04-27 2006-12-31 3627
data_clean <- data %>%
    select(-c(`_merge`,, still_there, sources, eight_ks)) %>%
    na.omit() %>%
    mutate(across(c(departure_code, ceo_dismissal), as.factor))

Explore Data

data_clean %>% count(ceo_dismissal)
## # A tibble: 2 × 2
##   ceo_dismissal     n
##   <fct>         <int>
## 1 0               253
## 2 1                16
data_clean %>%
    ggplot(aes(fyear)) +
    geom_bar()

correlation plot

data_binarized <- data_clean %>%
    select(-leftofc, -notes) %>%
    binarize()
data_binarized %>% glimpse()
## Rows: 269
## Columns: 48
## $ `dismissal_dataset_id__-Inf_2214` <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, …
## $ dismissal_dataset_id__2214_4496   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, …
## $ dismissal_dataset_id__4496_6636   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ dismissal_dataset_id__6636_Inf    <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ coname__BOB_EVANS_FARMS           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ coname__NORDSTROM_INC             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `coname__-OTHER`                  <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ `gvkey__-Inf_6802`                <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, …
## $ gvkey__6802_13700                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, …
## $ gvkey__13700_29791                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ gvkey__29791_Inf                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `fyear__-Inf_2001`                <dbl> 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, …
## $ fyear__2001_2007                  <dbl> 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, …
## $ fyear__2007_2014                  <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ fyear__2014_Inf                   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `co_per_rol__-Inf_12685`          <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ co_per_rol__12685_25457           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ co_per_rol__25457_43559           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ co_per_rol__43559_Inf             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ exec_fullname__George_J._Harad    <dbl> 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `exec_fullname__-OTHER`           <dbl> 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ departure_code__1                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ departure_code__3                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, …
## $ departure_code__5                 <dbl> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, …
## $ departure_code__6                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ departure_code__7                 <dbl> 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, …
## $ `departure_code__-OTHER`          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ ceo_dismissal__0                  <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, …
## $ ceo_dismissal__1                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, …
## $ `interim_coceo__co-CEO`           <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ `interim_coceo__Co-CEO`           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `interim_coceo__CO-CEO`           <dbl> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, …
## $ interim_coceo__Interim            <dbl> 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, …
## $ `interim_coceo__-OTHER`           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tenure_no_ceodb__1                <dbl> 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, …
## $ tenure_no_ceodb__2                <dbl> 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, …
## $ tenure_no_ceodb__3                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ max_tenure_ceodb__1               <dbl> 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, …
## $ max_tenure_ceodb__2               <dbl> 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, …
## $ max_tenure_ceodb__3               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `fyear_gone__-Inf_2001`           <dbl> 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, …
## $ fyear_gone__2001_2008             <dbl> 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, …
## $ fyear_gone__2008_2014             <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ fyear_gone__2014_Inf              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `cik__-Inf_96287`                 <dbl> 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, …
## $ cik__96287_833829                 <dbl> 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, …
## $ cik__833829_1042893               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ cik__1042893_Inf                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
data_correlation <- data_binarized %>%
    correlate(ceo_dismissal__1 )


data_correlation
## # A tibble: 48 × 3
##    feature        bin       correlation
##    <fct>          <chr>           <dbl>
##  1 ceo_dismissal  0              -1    
##  2 ceo_dismissal  1               1    
##  3 departure_code 3               0.966
##  4 departure_code 7              -0.352
##  5 coname         -OTHER         -0.175
##  6 interim_coceo  CO-CEO          0.145
##  7 co_per_rol     43559_Inf      -0.145
##  8 departure_code 5              -0.142
##  9 interim_coceo  Interim        -0.140
## 10 fyear          -Inf_2001       0.129
## # ℹ 38 more rows
data_correlation %>%
    correlationfunnel::plot_correlation_funnel()