Preliminaries

Upload Data and Load Psych Package

# Download data and Store in data1
data1 <- read.csv(url("https://www.dropbox.com/s/ypygopkc9dzwhn6/data1.csv?dl=1"), header = TRUE)

# Remove first column and store in efaData
efaData <- data1[,2:35]

# Load Packages
library("psych")

Exploratory Factor Analysis Result

An exploratory factor analysis (EFA) was conducted to identify underlying factors among the survey responses. Prior to EFA, initial analyses will be performed to assess if the dataset is suited for an exploratory factor analysis. Kaiser-Meyer-Olkin measure of sampling adequacy was used to measure how suited the data is for factor analysis. This test aims to measure the adequacy of the data for factor analysis with an acceptable value of at least 0.60 (Kaiser and Rice, 1974). Bartlett’s Test of Sphericity was used to test the hypothesis that the correlation matrix is an identity matrix (Snedecor and Cochran, 1980). Once the dataset is established to be suited for the analysis, an exploratory factor analysis will be performed. An exploratory factor analysis is a statistical technique that analyze patterns of linear relationship that aims to identify empirically distinct or unobserved constructs (Sakaluk and Short, 2016).


KMO and Bartlett’s Test of Sphericity

Initially, the factorability of the survey questionnaire was examined using Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy, and Bartlett’s test of Sphericity. The KMO measure of sampling adequacy is 0.99 which is considered marvelous. Moreover, Bartlett’s test of sphericity was significant \(\chi^2(561) = 900,013.70, p < 0.001)\). Given all these indicators, factor analysis is deemed to be appropriate for the survey items.

Kaiser-Meyer-Olkins Test

KMO(efaData)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = efaData)
## Overall MSA =  0.99
## MSA for each item = 
##  JST_1  JST_2  JST_3  JST_4  JST_5  JST_6  JST_7  JST_8  JST_9 JST_10   OS_1 
##   0.99   0.99   0.99   0.99   0.99   0.98   0.99   0.99   0.99   0.98   0.99 
##   OS_2   OS_3   OS_4   OS_5  JSA_1  JSA_2  JSA_3  JSA_4  JSA_5  JSA_6  JSA_7 
##   0.99   0.99   0.99   0.98   0.99   0.99   0.99   0.99   0.99   0.99   0.99 
##  JSA_8  JSA_9 JSA_10 JSA_11 JSA_12 JSA_13   TI_1   TI_2   TI_3   TI_4   TI_5 
##   0.98   0.99   0.99   0.99   0.99   0.99   0.99   0.98   0.99   0.98   0.99 
##   TI_6 
##   0.99

Bartlett’s Test of Sphericity

cortest(efaData)
## Tests of correlation matrices 
## Call:cortest(R1 = efaData)
##  Chi Square value 900013.7  with df =  561   with probability < 0

Exploratory Factor Analysis

EFA was run iteratively to achieve a simple factor structure where every statements has a primary factor loading of at least 0.50 with no cross-loading among factors. Items that did not meet these criteria were removed. The following results illustrate the entire process undertaken by the researchers to achieve a simple 4-factor structure using the items included in the survey.

Iteration1

print(
    fa(efaData[,-c(6)],
       nfactors = 4,
       rotate = "bentlerQ",             
       scores = "regression",           
       fm = "ml"                       
    )$loadings,
    digits = 3, cutoff = 0.30, sort = FALSE)
## 
## Loadings:
##        ML3    ML4    ML1    ML2   
## JST_1          0.621 -0.491       
## JST_2          0.520 -0.471       
## JST_3          0.811              
## JST_4          0.893              
## JST_5          0.822 -0.314       
## JST_7          0.927              
## JST_8          0.957              
## JST_9  -0.391  0.544              
## JST_10 -0.874  0.308  0.487       
## OS_1          -0.396              
## OS_2    1.038  0.304              
## OS_3    0.331         0.444       
## OS_4    0.362         0.311       
## OS_5    0.312         0.565 -0.329
## JSA_1   1.106                     
## JSA_2   0.483               -0.477
## JSA_3   0.356 -0.453              
## JSA_4   0.812                     
## JSA_5   0.885 -0.382         0.335
## JSA_6                 0.657       
## JSA_7                 0.937       
## JSA_8                 0.900       
## JSA_9   0.661                     
## JSA_10                0.509 -0.418
## JSA_11  0.651         0.311       
## JSA_12                0.936       
## JSA_13  1.044                     
## TI_1           0.638         0.338
## TI_2                         0.708
## TI_3           0.358         0.816
## TI_4                         0.825
## TI_5                         0.822
## TI_6                         0.776
## 
##                  ML3   ML4   ML1   ML2
## SS loadings    7.729 6.631 5.090 4.414
## Proportion Var 0.234 0.201 0.154 0.134
## Cumulative Var 0.234 0.435 0.589 0.723

Initially, JST_6 is removed as per recommendation. Cut-off is set to 0.30 to help researchers identify which item should be removed based on their factor loadings. The result shows no cross-loading (items with factor loadings of at least 0.50 in two or more factors) but some items have factor loading that is less than 0.5. From among these items, OS_4 has the lowest. Hence, it is removed.

Iteration2

print(
    fa(efaData[,-c(6, 14)],
       nfactors = 4,
       rotate = "bentlerQ",             
       scores = "regression",           
       fm = "ml"                       
    )$loadings,
    digits = 3, cutoff = 0.30, sort = FALSE)
## 
## Loadings:
##        ML3    ML4    ML1    ML2   
## JST_1          0.621 -0.491       
## JST_2          0.521 -0.471       
## JST_3          0.820              
## JST_4          0.887              
## JST_5          0.814 -0.320       
## JST_7          0.927              
## JST_8          0.957              
## JST_9  -0.390  0.544              
## JST_10 -0.872  0.305  0.476       
## OS_1          -0.400              
## OS_2    1.033                     
## OS_3    0.323         0.441       
## OS_5    0.316         0.575 -0.322
## JSA_1   1.101                     
## JSA_2   0.486               -0.470
## JSA_3   0.353 -0.456              
## JSA_4   0.813                     
## JSA_5   0.875 -0.386         0.332
## JSA_6                 0.669       
## JSA_7                 0.941       
## JSA_8                 0.889       
## JSA_9   0.655                     
## JSA_10                0.509 -0.415
## JSA_11  0.637         0.305       
## JSA_12                0.938       
## JSA_13  1.021                     
## TI_1           0.646         0.338
## TI_2                         0.699
## TI_3           0.362         0.810
## TI_4                         0.816
## TI_5                         0.815
## TI_6                         0.768
## 
##                  ML3   ML4   ML1   ML2
## SS loadings    7.470 6.607 5.000 4.313
## Proportion Var 0.233 0.206 0.156 0.135
## Cumulative Var 0.233 0.440 0.596 0.731

After removing OS_4, the second iteration of EFA was conducted. Still, cross-loading is not observed but some items have factor loading that is less than 0.5. From among the items, OS_1 has the lowest. Thus, it is removed.

Iteration3

print(
    fa(efaData[,-c(6, 14, 11)],
       nfactors = 4,
       rotate = "bentlerQ",             
       scores = "regression",           
       fm = "ml"                       
    )$loadings,
    digits = 3, cutoff = 0.3, sort = FALSE)
## 
## Loadings:
##        ML3    ML4    ML1    ML2   
## JST_1          0.606 -0.494       
## JST_2          0.518 -0.469       
## JST_3          0.809              
## JST_4          0.879              
## JST_5          0.819 -0.312       
## JST_7          0.913              
## JST_8          0.947              
## JST_9  -0.391  0.540              
## JST_10 -0.866  0.304  0.473       
## OS_2    1.026  0.301              
## OS_3    0.325         0.438       
## OS_5    0.313         0.567 -0.326
## JSA_1   1.095                     
## JSA_2   0.481               -0.474
## JSA_3   0.356 -0.450              
## JSA_4   0.813                     
## JSA_5   0.873 -0.379         0.330
## JSA_6                 0.663       
## JSA_7                 0.934       
## JSA_8                 0.886       
## JSA_9   0.652                     
## JSA_10                0.503 -0.418
## JSA_11  0.635         0.306       
## JSA_12                0.929       
## JSA_13  1.019                     
## TI_1           0.635         0.341
## TI_2                         0.705
## TI_3           0.353         0.816
## TI_4                         0.822
## TI_5                         0.821
## TI_6                         0.774
## 
##                  ML3   ML4   ML1   ML2
## SS loadings    7.330 6.307 4.885 4.370
## Proportion Var 0.236 0.203 0.158 0.141
## Cumulative Var 0.236 0.440 0.597 0.738

After removing OS_1, the third iteration of EFA was conducted. Similar to the previous result, cross-loading is not observed but some items have factor loading score of less than 0.5. From among the items, OS_3 has the lowest. Thus, it is removed.

Iteration4

print(
    fa(efaData[,-c(6, 14, 11, 13)],
       nfactors = 4,
       rotate = "bentlerQ",             
       scores = "regression",           
       fm = "ml"                       
    )$loadings,
    digits = 3, cutoff = 0.4, sort = FALSE)
## 
## Loadings:
##        ML3    ML4    ML1    ML2   
## JST_1          0.599 -0.501       
## JST_2          0.512 -0.475       
## JST_3          0.805              
## JST_4          0.868              
## JST_5          0.815              
## JST_7          0.912              
## JST_8          0.951              
## JST_9          0.548              
## JST_10 -0.871         0.460       
## OS_2    1.021                     
## OS_5                  0.566       
## JSA_1   1.088                     
## JSA_2   0.489               -0.463
## JSA_3         -0.445              
## JSA_4   0.810                     
## JSA_5   0.869                     
## JSA_6                 0.677       
## JSA_7                 0.927       
## JSA_8                 0.886       
## JSA_9   0.655                     
## JSA_10                0.496 -0.418
## JSA_11  0.631                     
## JSA_12                0.925       
## JSA_13  1.008                     
## TI_1           0.633              
## TI_2                         0.696
## TI_3                         0.811
## TI_4                         0.818
## TI_5                         0.817
## TI_6                         0.765
## 
##                  ML3   ML4   ML1   ML2
## SS loadings    7.173 6.220 4.699 4.299
## Proportion Var 0.239 0.207 0.157 0.143
## Cumulative Var 0.239 0.446 0.603 0.746

After removing OS_3, the fourth iteration of EFA was conducted setting the cutoff value to 0.40. Now, cross-loading is observed in JST_1 and some items have factor loading score of less than 0.5. From among the items, JSA_3 has the lowest. Hence, it is removed.

Iteration5

print(
    fa(efaData[,-c(6, 14, 11, 13, 18)],
       nfactors = 4,
       rotate = "bentlerQ",             
       scores = "regression",           
       fm = "ml"                       
    )$loadings,
    digits = 3, cutoff = 0.4, sort = FALSE)
## 
## Loadings:
##        ML3    ML4    ML1    ML2   
## JST_1          0.593 -0.500       
## JST_2          0.512 -0.470       
## JST_3          0.784              
## JST_4          0.864              
## JST_5          0.804              
## JST_7          0.900              
## JST_8          0.938              
## JST_9          0.538              
## JST_10 -0.868         0.461       
## OS_2    1.013                     
## OS_5                  0.552       
## JSA_1   1.080                     
## JSA_2   0.484               -0.469
## JSA_4   0.809                     
## JSA_5   0.874                     
## JSA_6                 0.669       
## JSA_7                 0.916       
## JSA_8                 0.881       
## JSA_9   0.649                     
## JSA_10                0.493 -0.426
## JSA_11  0.630                     
## JSA_12                0.909       
## JSA_13  1.002                     
## TI_1           0.620              
## TI_2                         0.699
## TI_3                         0.819
## TI_4                         0.825
## TI_5                         0.825
## TI_6                         0.783
## 
##                  ML3   ML4   ML1   ML2
## SS loadings    6.980 5.873 4.562 4.393
## Proportion Var 0.241 0.203 0.157 0.151
## Cumulative Var 0.241 0.443 0.601 0.752

After removing JSA_3, the fifth iteration of EFA was done. Still, cross-loading is observed in JST_1 and some items have factor loading score of less than 0.5. From among the items, JSA_2 has the lowest. Hence, it is removed.

Iteration6

print(
    fa(efaData[,-c(6, 14, 11, 13, 18, 17)],
       nfactors = 4,
       rotate = "bentlerQ",             
       scores = "regression",           
       fm = "ml"                       
    )$loadings,
    digits = 3, cutoff = 0.5, sort = FALSE)
## 
## Loadings:
##        ML3    ML4    ML1    ML2   
## JST_1          0.608              
## JST_2          0.519              
## JST_3          0.806              
## JST_4          0.886              
## JST_5          0.821              
## JST_7          0.911              
## JST_8          0.947              
## JST_9          0.541              
## JST_10 -0.860                     
## OS_2    1.000                     
## OS_5                  0.561       
## JSA_1   1.083                     
## JSA_4   0.798                     
## JSA_5   0.855                     
## JSA_6                 0.675       
## JSA_7                 0.914       
## JSA_8                 0.879       
## JSA_9   0.644                     
## JSA_10                            
## JSA_11  0.630                     
## JSA_12                0.915       
## JSA_13  0.998                     
## TI_1           0.637              
## TI_2                         0.684
## TI_3                         0.807
## TI_4                         0.817
## TI_5                         0.813
## TI_6                         0.770
## 
##                  ML3   ML4   ML1   ML2
## SS loadings    6.648 6.078 4.580 4.040
## Proportion Var 0.237 0.217 0.164 0.144
## Cumulative Var 0.237 0.454 0.618 0.762

After removing JSA_2, the sixth iteration of EFA was done setting the cutoff value to 0.50. Now, cross-loading is no longer observed but JSA_10 has a factor loading of less than 0.50. Thus, it is removed.

Iteration7

print(
    fa(efaData[,-c(6, 14, 11, 13, 18, 17, 25)],
       nfactors = 4,
       rotate = "bentlerQ",             
       scores = "regression",           
       fm = "ml"                       
    )$loadings,
    digits = 3, cutoff = 0.5, sort = FALSE)
## 
## Loadings:
##        ML4    ML3    ML1    ML2   
## JST_1   0.628                     
## JST_2   0.506                     
## JST_3   0.851                     
## JST_4   0.895                     
## JST_5   0.824                     
## JST_7   0.925                     
## JST_8   0.959                     
## JST_9   0.607                     
## JST_10        -0.854              
## OS_2           0.980              
## OS_5                  0.609       
## JSA_1          1.069              
## JSA_4          0.753              
## JSA_5          0.829              
## JSA_6                 0.699       
## JSA_7                 0.902       
## JSA_8                 0.857       
## JSA_9          0.632              
## JSA_11         0.619              
## JSA_12                0.933       
## JSA_13         0.961              
## TI_1    0.651                     
## TI_2                         0.657
## TI_3                         0.775
## TI_4                         0.787
## TI_5                         0.780
## TI_6                         0.743
## 
##                  ML4   ML3   ML1   ML2
## SS loadings    6.331 6.252 4.381 3.577
## Proportion Var 0.234 0.232 0.162 0.132
## Cumulative Var 0.234 0.466 0.628 0.761

After removing JSA_10, the seventh iteration of EFA was done while arranging the items based on their factor loadings. Similarly, cross-loading is no longer observed and all items has a factor loading of at least 0.50. Thus, a good factor structure is achieved and items are examined to create the final factor model.


Final EFA Model

Upon final examination. TI_1 is removed since TL_1 - I think about quitting my present job., and JST_7 - I often think about quitting my present job., are basically the same. Final iteration of EFA was conducted and the researchers were able to achieve a good factor structure since cross-loadings among items are not present and all items has a factor loading of at least 0.5.

KMO and Bartlett’s Test

# KMO
KMO(efaData)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = efaData)
## Overall MSA =  0.99
## MSA for each item = 
##  JST_1  JST_2  JST_3  JST_4  JST_5  JST_6  JST_7  JST_8  JST_9 JST_10   OS_1 
##   0.99   0.99   0.99   0.99   0.99   0.98   0.99   0.99   0.99   0.98   0.99 
##   OS_2   OS_3   OS_4   OS_5  JSA_1  JSA_2  JSA_3  JSA_4  JSA_5  JSA_6  JSA_7 
##   0.99   0.99   0.99   0.98   0.99   0.99   0.99   0.99   0.99   0.99   0.99 
##  JSA_8  JSA_9 JSA_10 JSA_11 JSA_12 JSA_13   TI_1   TI_2   TI_3   TI_4   TI_5 
##   0.98   0.99   0.99   0.99   0.99   0.99   0.99   0.98   0.99   0.98   0.99 
##   TI_6 
##   0.99
# Bartlett's Test
cortest(efaData)
## Tests of correlation matrices 
## Call:cortest(R1 = efaData)
##  Chi Square value 900013.7  with df =  561   with probability < 0

the factorability of the survey questionnaire was examined using Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy, and Bartlett’s test of Sphericity. The KMO measure of sampling adequacy is 0.99 which is considered marvelous. Moreover, Bartlett’s test of sphericity was significant \(\chi^2(561) = 900,013.70, p < 0.001)\). Given all these indicators, factor analysis is deemed to be appropriate for the survey items.

Final Rotated Component Matrix

print(
    fa(efaData[,-c(6, 14, 11, 13, 18, 17, 25, 29)],
       nfactors = 4,
       rotate = "bentlerQ",             
       scores = "regression",           
       fm = "ml"                       
    )$loadings,
    digits = 3, cutoff = 0.5, sort = TRUE)
## 
## Loadings:
##        ML3    ML4    ML1    ML2   
## JST_10 -0.802                     
## OS_2    1.033                     
## JSA_1   1.055                     
## JSA_4   0.775                     
## JSA_5   0.847                     
## JSA_9   0.697                     
## JSA_11  0.687                     
## JSA_13  1.021                     
## JST_1          0.616              
## JST_2          0.575              
## JST_3          0.723              
## JST_4          0.909              
## JST_5          0.854              
## JST_7          0.885              
## JST_8          0.964              
## JST_9          0.633              
## OS_5                  0.512       
## JSA_6                 0.638       
## JSA_7                 0.826       
## JSA_8                 0.840       
## JSA_12                0.851       
## TI_2                         0.696
## TI_3                         0.788
## TI_4                         0.794
## TI_5                         0.788
## TI_6                         0.749
## 
##                  ML3   ML4   ML1   ML2
## SS loadings    6.605 5.839 3.785 3.618
## Proportion Var 0.254 0.225 0.146 0.139
## Cumulative Var 0.254 0.479 0.624 0.763

Most of the statements belong to the hypothesized component (Job Stress and Turnover Intention). However, the hypothesized statements Job Satisfaction items were broken down into two components while JST_10, OS_2, and OS_5 now belongs to one of these two components.

Specifically, Component 1 (ML1) includes 5 statements which are OS_5, JSA_6, JSA_7, JSA_8, and JSA_12. These statements reflect respondents’ perceptions of organizational support, pride in their work, accountability, feedback, and opportunities for career advancement. Hence, this component will be named Organizational Support as it highlights the support and growth potential they perceive within the organization.

Moreover, Component 2 (ML2) includes 5 statements which are TI_2, TI_3, TI_4, TI_5, and TI_6. These statements describes the respondents intent to look for an alternative job/workplace. Thus, this component is named as Turnover Intention and will be used to describe the how likely it is for the respondents to render their resignation and look for an alternative job/workplace.

Additionally, Component 3 (ML3) includes 8 statements which are JST_10, OS_2, JSA_1, JSA_4, JSA_5, JSA_9, JSA_11, and JSA_13. It is important to take note that JSA_10 (My job makes it difficult to fulfill family responsibilities) has a negative factor loading suggesting that the statement is negatively phrased when compared to the other statements that belong to this component. These statements reflect respondents’ perception of their work-life balance, compensation, recognition, and job satisfaction. Thus, this component will be named as Job Satisfaction as it captures the different aspects of their job experience which includes how their roles impact their personal lives and how they feel valued by the company.

Finally, Component 4 (ML4) includes 8 statements which are JST_1, JST_2, JST_3, JST_4, JST_5, JST_7, JST_8, and JST_9. These statements describes the respondents’ feelings of dissatisfaction, stress, and uncertainty within the organization and job roles. Thus, this component will be named as Job stress and will be used to capture their emotions and attitudes related to their work environment and future career prospects.


Reliability Test

Reliability test using Cronbach \(\alpha\) was conducted after generating the factor structure of the statments using Exploratory Factor Analysis. Cronbach \(\alpha\) tests the reliability of a measurement tool by measuring its internal consistency. For it to be acceptable, all components should have at least 0.70 which indicates strong internal consistency among items within the component.

In summary, all four components has an internal consistency of 0.98 suggesting a very strong internal consistency among items within each component. It is important to note, however, that JST_10 of Component 3 is reverse coded (that is, scores of 1 are encoded as 5, 2 as 4, 4 as 2, and 5 as 1) to ensure that the tone of this statement is consistent with the other items within this component.

Finally, for each component considered, removing items does not merit an improvement to the internal consistency of each. Removing items may, in turn, decrease the overall internal consistency of the component suggesting that all items considered in each component contribute positively to the overall internal consistency of the component.

Component 1

alpha(efaData[,c(15,21,22,23,27)], check.keys = TRUE)
## 
## Reliability analysis   
## Call: alpha(x = efaData[, c(15, 21, 22, 23, 27)], check.keys = TRUE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.98      0.98    0.97       0.9  47 0.0011  2.7 1.6      0.9
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.98  0.98  0.98
## Duhachek  0.98  0.98  0.98
## 
##  Reliability if an item is dropped:
##        raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## OS_5        0.97      0.97    0.97      0.91  39   0.0013 0.00011  0.91
## JSA_6       0.97      0.97    0.97      0.91  39   0.0013 0.00018  0.91
## JSA_7       0.97      0.97    0.97      0.90  36   0.0014 0.00018  0.90
## JSA_8       0.97      0.97    0.97      0.91  39   0.0013 0.00007  0.90
## JSA_12      0.97      0.97    0.96      0.90  35   0.0014 0.00012  0.90
## 
##  Item statistics 
##          n raw.r std.r r.cor r.drop mean  sd
## OS_5   210  0.96  0.96  0.94   0.93  2.5 1.7
## JSA_6  210  0.96  0.96  0.94   0.93  2.6 1.6
## JSA_7  210  0.96  0.96  0.95   0.94  2.7 1.7
## JSA_8  210  0.96  0.96  0.94   0.93  2.7 1.7
## JSA_12 210  0.97  0.97  0.96   0.95  2.7 1.7
## 
## Non missing response frequency for each item
##           1    2    3    4    5 miss
## OS_5   0.47 0.09 0.12 0.08 0.24 0.79
## JSA_6  0.41 0.12 0.13 0.11 0.22 0.79
## JSA_7  0.41 0.11 0.10 0.10 0.27 0.79
## JSA_8  0.42 0.10 0.10 0.10 0.28 0.79
## JSA_12 0.43 0.11 0.09 0.08 0.29 0.79

Component 2

alpha(efaData[,c(30:34)], check.keys = TRUE)
## 
## Reliability analysis   
## Call: alpha(x = efaData[, c(30:34)], check.keys = TRUE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.98      0.98    0.97       0.9  44 0.0011  3.4 1.5      0.9
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.98  0.98  0.98
## Duhachek  0.98  0.98  0.98
## 
##  Reliability if an item is dropped:
##      raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## TI_2      0.97      0.97    0.96       0.9  35   0.0014 2.1e-05   0.9
## TI_3      0.97      0.97    0.96       0.9  34   0.0015 6.1e-06   0.9
## TI_4      0.97      0.97    0.96       0.9  35   0.0014 2.6e-05   0.9
## TI_5      0.97      0.97    0.96       0.9  36   0.0014 3.9e-05   0.9
## TI_6      0.97      0.97    0.96       0.9  36   0.0014 2.7e-05   0.9
## 
##  Item statistics 
##        n raw.r std.r r.cor r.drop mean  sd
## TI_2 210  0.96  0.96  0.95   0.94  3.4 1.6
## TI_3 210  0.96  0.96  0.95   0.94  3.4 1.6
## TI_4 210  0.96  0.96  0.95   0.94  3.4 1.6
## TI_5 210  0.96  0.96  0.94   0.93  3.4 1.6
## TI_6 210  0.96  0.96  0.94   0.93  3.4 1.6
## 
## Non missing response frequency for each item
##         1    2    3    4    5 miss
## TI_2 0.21 0.09 0.16 0.16 0.38 0.79
## TI_3 0.24 0.10 0.11 0.14 0.41 0.79
## TI_4 0.23 0.06 0.17 0.13 0.41 0.79
## TI_5 0.24 0.08 0.12 0.17 0.39 0.79
## TI_6 0.22 0.09 0.15 0.12 0.42 0.79

Component 3

alpha(efaData[,c(10,12,16,19,20,24,26,28)], check.keys = TRUE)
## Warning in alpha(efaData[, c(10, 12, 16, 19, 20, 24, 26, 28)], check.keys = TRUE): Some items were negatively correlated with the first principal component and were automatically reversed.
##  This is indicated by a negative sign for the variable name.
## 
## Reliability analysis   
## Call: alpha(x = efaData[, c(10, 12, 16, 19, 20, 24, 26, 28)], check.keys = TRUE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N     ase mean  sd median_r
##       0.98      0.98    0.98      0.87  54 0.00088  2.4 1.5     0.87
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.98  0.98  0.98
## Duhachek  0.98  0.98  0.98
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## JST_10-      0.98      0.98    0.98      0.87  49  0.00098 0.00023  0.87
## OS_2         0.98      0.98    0.98      0.87  47  0.00102 0.00027  0.87
## JSA_1        0.98      0.98    0.98      0.87  47  0.00102 0.00031  0.87
## JSA_4        0.98      0.98    0.98      0.87  48  0.00100 0.00031  0.87
## JSA_5        0.98      0.98    0.98      0.87  47  0.00103 0.00029  0.87
## JSA_9        0.98      0.98    0.98      0.87  47  0.00102 0.00023  0.87
## JSA_11       0.98      0.98    0.98      0.87  46  0.00104 0.00022  0.87
## JSA_13       0.98      0.98    0.98      0.87  49  0.00098 0.00024  0.87
## 
##  Item statistics 
##           n raw.r std.r r.cor r.drop mean  sd
## JST_10- 210  0.93  0.93  0.92   0.91  2.4 1.6
## OS_2    210  0.94  0.94  0.93   0.93  2.4 1.5
## JSA_1   210  0.95  0.95  0.94   0.93  2.4 1.5
## JSA_4   210  0.94  0.94  0.93   0.92  2.4 1.6
## JSA_5   210  0.95  0.95  0.94   0.93  2.5 1.6
## JSA_9   210  0.95  0.95  0.94   0.93  2.5 1.6
## JSA_11  210  0.95  0.95  0.95   0.94  2.5 1.6
## JSA_13  210  0.93  0.93  0.92   0.91  2.5 1.7
## 
## Non missing response frequency for each item
##           1    2    3    4    5 miss
## JST_10 0.21 0.05 0.09 0.20 0.44 0.79
## OS_2   0.41 0.21 0.11 0.08 0.19 0.79
## JSA_1  0.40 0.20 0.14 0.04 0.21 0.79
## JSA_4  0.45 0.13 0.16 0.05 0.21 0.79
## JSA_5  0.43 0.14 0.15 0.08 0.20 0.79
## JSA_9  0.43 0.13 0.16 0.06 0.21 0.79
## JSA_11 0.44 0.14 0.12 0.09 0.20 0.79
## JSA_13 0.50 0.09 0.09 0.08 0.24 0.79

Component 4

alpha(efaData[,c(1,2,3,4,5,7,8,9)], check.keys = TRUE)
## 
## Reliability analysis   
## Call: alpha(x = efaData[, c(1, 2, 3, 4, 5, 7, 8, 9)], check.keys = TRUE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.98      0.98    0.98      0.87  52 9e-04  3.4 1.5     0.86
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.98  0.98  0.98
## Duhachek  0.98  0.98  0.98
## 
##  Reliability if an item is dropped:
##       raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## JST_1      0.98      0.98    0.97      0.86  43  0.00110 0.00039  0.86
## JST_2      0.98      0.98    0.98      0.86  45  0.00106 0.00051  0.86
## JST_3      0.98      0.98    0.98      0.87  46  0.00102 0.00075  0.86
## JST_4      0.98      0.98    0.98      0.86  44  0.00107 0.00051  0.86
## JST_5      0.98      0.98    0.98      0.87  47  0.00101 0.00053  0.86
## JST_7      0.98      0.98    0.98      0.87  47  0.00101 0.00072  0.86
## JST_8      0.98      0.98    0.98      0.87  46  0.00102 0.00076  0.86
## JST_9      0.98      0.98    0.98      0.88  49  0.00097 0.00050  0.87
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop mean  sd
## JST_1 210  0.96  0.96  0.96   0.95  3.4 1.7
## JST_2 210  0.95  0.95  0.94   0.93  3.4 1.7
## JST_3 210  0.94  0.94  0.93   0.92  3.4 1.6
## JST_4 210  0.95  0.95  0.95   0.94  3.4 1.6
## JST_5 210  0.94  0.94  0.92   0.92  3.4 1.7
## JST_7 210  0.93  0.93  0.92   0.91  3.5 1.6
## JST_8 210  0.94  0.94  0.92   0.92  3.4 1.6
## JST_9 210  0.92  0.92  0.90   0.89  3.5 1.6
## 
## Non missing response frequency for each item
##          1    2    3    4    5 miss
## JST_1 0.29 0.06 0.09 0.11 0.45 0.79
## JST_2 0.25 0.09 0.11 0.14 0.41 0.79
## JST_3 0.22 0.09 0.14 0.15 0.40 0.79
## JST_4 0.25 0.08 0.10 0.17 0.40 0.79
## JST_5 0.27 0.07 0.10 0.16 0.40 0.79
## JST_7 0.21 0.12 0.10 0.13 0.43 0.79
## JST_8 0.21 0.11 0.12 0.16 0.40 0.79
## JST_9 0.20 0.08 0.15 0.16 0.40 0.79

Structural Equation Modeling Result


Session Info for Reproducibility

sessionInfo()
## R version 4.4.3 (2025-02-28 ucrt)
## Platform: x86_64-w64-mingw32/x64
## Running under: Windows 11 x64 (build 26100)
## 
## Matrix products: default
## 
## 
## locale:
## [1] LC_COLLATE=English_United States.utf8 
## [2] LC_CTYPE=English_United States.utf8   
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.utf8    
## 
## time zone: Asia/Manila
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] psych_2.4.12
## 
## loaded via a namespace (and not attached):
##  [1] digest_0.6.37        R6_2.6.1             fastmap_1.2.0       
##  [4] xfun_0.51            lattice_0.22-6       GPArotation_2024.3-1
##  [7] cachem_1.1.0         parallel_4.4.3       knitr_1.49          
## [10] htmltools_0.5.8.1    rmarkdown_2.29       lifecycle_1.0.4     
## [13] cli_3.6.4            grid_4.4.3           sass_0.4.9          
## [16] jquerylib_0.1.4      mnormt_2.1.1         compiler_4.4.3      
## [19] rstudioapi_0.17.1    tools_4.4.3          nlme_3.1-167        
## [22] evaluate_1.0.3       bslib_0.9.0          yaml_2.3.10         
## [25] rlang_1.1.5          jsonlite_1.9.1