# Establecer un espejo de CRAN
install.packages("haven", repos = "https://cran.rstudio.com/")
##
## The downloaded binary packages are in
## /var/folders/n2/5cg60hns7jz29bgphbyr0cpr0000gp/T//Rtmprc3APy/downloaded_packages
# Cargar el paquete
library(haven)
# Ahora puedes proceder con la ejecución del archivo RMarkdown (Assignment-3.Rmd)
# Read the Stata file
data <- read_dta("~/Desktop/MEX_2023_LAPOP_AmericasBarometer_v1.0_w (1).dta")
library(haven)
head(data) # Muestra las primeras 6 filas
# Ver la estructura del dataset
str(data)
## tibble [1,622 × 195] (S3: tbl_df/tbl/data.frame)
## $ idnum : num [1:1622] 7394 778 1719 7737 3203 ...
## ..- attr(*, "label")= chr "Identificador de entrevista"
## ..- attr(*, "format.stata")= chr "%9.0g"
## $ pais : dbl+lbl [1:1622] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
## ..@ label : chr "País"
## ..@ format.stata: chr "%10.0g"
## ..@ labels : Named num 1
## .. ..- attr(*, "names")= chr "México"
## $ nationality: num [1:1622] 1 1 1 1 1 1 1 1 1 1 ...
## ..- attr(*, "label")= chr "Nacionalidad"
## ..- attr(*, "format.stata")= chr "%9.0g"
## $ estratopri : dbl+lbl [1:1622] 102, 102, 102, 103, 103, 102, 103, 102, 102, 103, 103...
## ..@ label : chr "Región"
## ..@ format.stata: chr "%16.0g"
## ..@ labels : Named num [1:4] 101 102 103 104
## .. ..- attr(*, "names")= chr [1:4] "Norte" "Centro Occidente" "Centro" "Sur"
## $ estratosec : dbl+lbl [1:1622] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1,...
## ..@ label : chr "Tamaño de la municipalidad"
## ..@ format.stata: chr "%47.0g"
## ..@ labels : Named num [1:3] 1 2 3
## .. ..- attr(*, "names")= chr [1:3] "Grande (Más de 100,000 habitantes)" "Mediana (Entre 25,000 y 100,000 habitantes)" "Pequeña (Menos de 25,000 habitantes)"
## $ strata : num [1:1622] 102 102 102 103 103 102 103 102 102 103 ...
## ..- attr(*, "label")= chr "Peso estandarizado"
## ..- attr(*, "format.stata")= chr "%9.0g"
## $ prov : dbl+lbl [1:1622] 111, 111, 111, 113, 122, 111, 109, 111, 111, 109, 113...
## ..@ label : chr "Estado"
## ..@ format.stata: chr "%19.0g"
## ..@ labels : Named num [1:32] 101 102 103 104 105 106 107 108 109 110 ...
## .. ..- attr(*, "names")= chr [1:32] "Aguascalientes" "Baja California" "Baja California Sur" "Campeche" ...
## $ municipio : dbl+lbl [1:1622] 111020, 111023, 111020, 113047, 122010, 111020, 10901...
## ..@ label : chr "Municipio"
## ..@ format.stata: chr "%27.0g"
## ..@ labels : Named num [1:110] 101009 102002 102004 103001 103004 ...
## .. ..- attr(*, "names")= chr [1:110] "Tepezalá" "Mexicali" "Tijuana" "Comondú" ...
## $ upm : num [1:1622] 70 12 70 127 113 70 18 12 12 18 ...
## ..- attr(*, "label")= chr "Unidad de muestreo primaria"
## ..- attr(*, "format.stata")= chr "%9.0g"
## $ ur : dbl+lbl [1:1622] 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1,...
## ..@ label : chr "Urbanización"
## ..@ format.stata: chr "%10.0g"
## ..@ labels : Named num [1:2] 1 2
## .. ..- attr(*, "names")= chr [1:2] "Urbano" "Rural"
## $ cluster : num [1:1622] 250 241 97 245 92 250 6 257 257 106 ...
## ..- attr(*, "label")= chr "Lugar de muestreo"
## ..- attr(*, "format.stata")= chr "%9.0g"
## $ year : dbl+lbl [1:1622] 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023,...
## ..@ label : chr "Año"
## ..@ format.stata: chr "%10.0g"
## ..@ labels : Named num [1:14] 2004 2006 2007 2008 2009 ...
## .. ..- attr(*, "names")= chr [1:14] "2004" "2006" "2007" "2008" ...
## $ wave : dbl+lbl [1:1622] 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023,...
## ..@ label : chr "Ronda de encuesta"
## ..@ format.stata: chr "%9.0g"
## ..@ labels : Named num [1:10] 2004 2006 2008 2010 2012 ...
## .. ..- attr(*, "names")= chr [1:10] "2004" "2006" "2008" "2010" ...
## $ wt : num [1:1622] 1 1 1 1 1 1 1 1 1 1 ...
## ..- attr(*, "label")= chr "Peso de la muestra"
## ..- attr(*, "format.stata")= chr "%9.0g"
## $ q1tc_r : dbl+lbl [1:1622] 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1,...
## ..@ label : chr "Género"
## ..@ format.stata: chr "%50.0g"
## ..@ labels : Named num [1:5] 1 2 3 NA NA
## .. ..- attr(*, "names")= chr [1:5] "Hombre/masculino" "Mujer/femenino" "No se identifica como hombre ni como mujer" "No sabe" ...
## $ q2 : num [1:1622] 40 42 37 26 62 44 48 53 28 24 ...
## ..- attr(*, "label")= chr "Edad"
## ..- attr(*, "format.stata")= chr "%9.0g"
## $ a4n : dbl+lbl [1:1622] 2, 1, 6, 1, 2, 2, 2, 2, 6, 2, 2, 2, 1, ...
## ..@ label : chr "Problema más grave (Opinión)"
## ..@ format.stata: chr "%80.0f"
## ..@ labels : Named num [1:13] 1 2 3 4 5 6 7 8 77 109 ...
## .. ..- attr(*, "names")= chr [1:13] "Problemas económicos" "Problemas de seguridad" "Problemas de servicios básicos" "Problemas políticos" ...
## $ soct2 : dbl+lbl [1:1622] 1, 2, 3, 2, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 1, 2, 3, 1,...
## ..@ label : chr "Evaluación de la situación económica actual del país (En los últimos 12 meses)"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:5] 1 2 3 NA NA
## .. ..- attr(*, "names")= chr [1:5] "Mejor" "Igual" "Peor" "No sabe" ...
## $ idio2 : dbl+lbl [1:1622] 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 1, 2, 3, 1,...
## ..@ label : chr "Percepción de situación económica personal (En los últimos 12 meses)"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:5] 1 2 3 NA NA
## .. ..- attr(*, "names")= chr [1:5] "Mejor" "Igual" "Peor" "No sabe" ...
## $ mesfut1 : dbl+lbl [1:1622] 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 4, 1,...
## ..@ label : chr "Esperanza para el futuro"
## ..@ format.stata: chr "%11.0f"
## ..@ labels : Named num [1:6] 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr [1:6] "Mucho" "Algo" "Poco" "Nada" ...
## $ np1 : dbl+lbl [1:1622] 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,...
## ..@ label : chr "Asistió a una sesión municipal (o eventos similares)"
## ..@ format.stata: chr "%11.0f"
## ..@ labels : Named num [1:4] 1 2 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Sí" "No" "No sabe" "No responde"
## $ np1new : dbl+lbl [1:1622] 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,...
## ..@ label : chr "Asistió a un evento municipal en el último año (en zoom/en línea)"
## ..@ format.stata: chr "%11.0f"
## ..@ labels : Named num [1:4] 1 2 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Sí" "No" "No sabe" "No responde"
## $ sgl1 : dbl+lbl [1:1622] 2, 3, 4, 2, 2, 2, 5, 3, 2, 4, 3, 2, 2, 3, 2, 2, 3, 4,...
## ..@ label : chr "Evaluación de los servicios municipales"
## ..@ format.stata: chr "%30.0f"
## ..@ labels : Named num [1:7] 1 2 3 4 5 NA NA
## .. ..- attr(*, "names")= chr [1:7] "Muy buenos" "Buenos" "Ni buenos ni malos (regulares)" "Malos" ...
## $ cp8 : dbl+lbl [1:1622] 2, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4,...
## ..@ label : chr "Asiste a reuniones de un comité o junta de mejoras para la comunidad"
## ..@ format.stata: chr "%25.0f"
## ..@ labels : Named num [1:6] 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr [1:6] "Una vez a la semana" "Una o dos veces al mes" "Una o dos veces al año" "Nunca" ...
## $ cp13 : dbl+lbl [1:1622] 1, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,...
## ..@ label : chr "Asiste a reuniones de un partido o movimiento político"
## ..@ format.stata: chr "%25.0f"
## ..@ labels : Named num [1:6] 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr [1:6] "Una vez a la semana" "Una o dos veces al mes" "Una o dos veces al año" "Nunca" ...
## $ cp20 : dbl+lbl [1:1622] NA(a), 4, 4, NA(c), NA(c), NA(c), NA(c), NA(c...
## ..@ label : chr "Asiste a reuniones o grupos de mujeres o amas de casa"
## ..@ format.stata: chr "%23.0f"
## ..@ labels : Named num [1:7] 1 2 3 4 NA NA NA
## .. ..- attr(*, "names")= chr [1:7] "Una vez a la semana" "Una o dos veces al mes" "Una o dos veces al año" "Nunca" ...
## $ it1 : dbl+lbl [1:1622] 3, 2, 2, 3, 2, 4, 4, ...
## ..@ label : chr "Confianza en la comunidad"
## ..@ format.stata: chr "%25.0f"
## ..@ labels : Named num [1:6] 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr [1:6] "Muy confiable" "Algo confiable" "Poco confiable" "Nada confiable" ...
## $ l1n : dbl+lbl [1:1622] 10, 5, 1, NA(b), 3, 10, 3, ...
## ..@ label : chr "Escala izquierda/derecha"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 10 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Izquierda" "Derecha" "No sabe" "No responde"
## $ jc10 : dbl+lbl [1:1622] 1, NA(c), 1, NA(a), 2, NA(c), NA(c), ...
## ..@ label : chr "El golpe se justifica cuando hay mucha delincuencia"
## ..@ format.stata: chr "%77.0f"
## ..@ labels : Named num [1:5] 1 2 NA NA NA
## .. ..- attr(*, "names")= chr [1:5] "Se justificaría que los militares tomen el poder por un golpe de Estado" "No se justificaría que los militares tomen el poder por un golpe de Estado" "No sabe" "No responde" ...
## $ jc13 : dbl+lbl [1:1622] NA(c), 2, NA(c), NA(c), NA(c), 2, 2, NA(c...
## ..@ label : chr "El golpe se justifica cuando hay mucha corrupción"
## ..@ format.stata: chr "%77.0f"
## ..@ labels : Named num [1:5] 1 2 NA NA NA
## .. ..- attr(*, "names")= chr [1:5] "Se justificaría que los militares tomen el poder por un golpe de Estado" "No se justificaría que los militares tomen el poder por un golpe de Estado" "No sabe" "No responde" ...
## $ jc15a : dbl+lbl [1:1622] 1, NA(c), 1, NA(c), NA(c), NA(c), 2, ...
## ..@ label : chr "El cierre del congreso por el presidente se justifica en tiempos difíciles"
## ..@ format.stata: chr "%23.0f"
## ..@ labels : Named num [1:5] 1 2 NA NA NA
## .. ..- attr(*, "names")= chr [1:5] "Sí se justifica" "No se justifica" "No sabe" "No responde" ...
## $ jc16a : dbl+lbl [1:1622] NA(c), 2, NA(c), NA(a), 2, 1, NA(c), NA(c...
## ..@ label : chr "La disolución de la corte suprema se justifica en tiempos difíciles"
## ..@ format.stata: chr "%23.0f"
## ..@ labels : Named num [1:5] 1 2 NA NA NA
## .. ..- attr(*, "names")= chr [1:5] "Sí se justifica" "No se justifica" "No sabe" "No responde" ...
## $ vic1ext : dbl+lbl [1:1622] 1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1,...
## ..@ label : chr "Víctima del crimen en los últimos 12 meses"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 2 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Sí" "No" "No sabe" "No responde"
## $ aoj11 : dbl+lbl [1:1622] 4, 2, 2, 2, 1, 1, 3, 1, 4, 3, 4, 2, 2, 2, 2, 2, 1, 4,...
## ..@ label : chr "Percepción de seguridad en el vecindario"
## ..@ format.stata: chr "%17.0f"
## ..@ labels : Named num [1:6] 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr [1:6] "Muy seguro(a)" "Algo seguro(a)" "Algo inseguro(a)" "Muy inseguro(a)" ...
## $ aoj12 : dbl+lbl [1:1622] 4, 2, 3, 3, 2, 3, 3, 4, 2, 4, 2, 3, 2, 3, 3, 3, 3, 3,...
## ..@ label : chr "Si es víctima de un crimen, la fe en el sistema de justicia"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:6] 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr [1:6] "Mucho" "Algo" "Poco" "Nada" ...
## $ countfair1 : dbl+lbl [1:1622] 2, 2, 3, 3, 2, 3, 2, ...
## ..@ label : chr "Percepción de la imparcialidad del recuento de votos/papeletas"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:5] 1 2 3 NA NA
## .. ..- attr(*, "names")= chr [1:5] "Siempre" "Algunas veces" "Nunca" "No sabe" ...
## $ countfair3 : dbl+lbl [1:1622] 2, 1, 3, 1, 1, 2, 2, ...
## ..@ label : chr "Percepción de una votación secreta"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:5] 1 2 3 NA NA
## .. ..- attr(*, "names")= chr [1:5] "Siempre" "Algunas veces" "Nunca" "No sabe" ...
## $ chm1bn : dbl+lbl [1:1622] NA(c), NA(c), NA(c), NA(c), NA(c), NA(c), NA(c), ...
## ..@ label : chr "Elecciones libres versus renta básica"
## ..@ format.stata: chr "%138.0f"
## ..@ labels : Named num [1:5] 1 2 NA NA NA
## .. ..- attr(*, "names")= chr [1:5] "Un sistema que garantice acceso a un ingreso básico y servicios para todos los ciudadanos, aunque no se pueda e"| __truncated__ "Poder votar para elegir las autoridades, aunque algunas personas no tengan acceso a un ingreso básico y servicios" "No sabe" "No responde" ...
## $ chm2bn : dbl+lbl [1:1622] 1, 1, NA(a), NA(a), 2, 1, 2, NA(c...
## ..@ label : chr "Libertad de expresión versus renta básica"
## ..@ format.stata: chr "%173.0f"
## ..@ labels : Named num [1:5] 1 2 NA NA NA
## .. ..- attr(*, "names")= chr [1:5] "Un sistema que garantice acceso a un ingreso básico y servicios para todos los ciudadanos, aunque no se pueda e"| __truncated__ "Un sistema en el que todos puedan expresar sus opiniones políticas sin miedo o censura, aunque algunas personas"| __truncated__ "No sabe" "No responde" ...
## $ b0 : dbl+lbl [1:1622] 7, 5, 4, 7, 3, 4, 3, 3, 5, 5, 4, 6, 4, 4, 4, 7, 3, 5,...
## ..@ label : chr "1-7 escalera en preferencias (televisión)"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b1 : dbl+lbl [1:1622] 4, 4, 6, 1, 2, 4, 2, 1, 6, 1, 3, 1, 4, 4, 1, 3, 5, 1,...
## ..@ label : chr "Cortes garantizan un juicio justo"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b2 : dbl+lbl [1:1622] 7, 6, 5, 5, 2, 7, 2, 5, 7, 5, 5, 4, 4, 5, 4, 4, 6, 1,...
## ..@ label : chr "Respeto a las institutiones políticas"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b3 : dbl+lbl [1:1622] 7, 5, 5, 3, 4, 3, 1, 1, 5, 5, 2, 3, 4, 2, 3, 4, 5, 1,...
## ..@ label : chr "Los derechos básicos están protegidos"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b4 : dbl+lbl [1:1622] 7, 6, 4, 4, 4, 7, 1, 1, 5, 2, 6, 3, 2, 2, 2, 1, 4, 1,...
## ..@ label : chr "Orgullo por el sistema político"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b6 : dbl+lbl [1:1622] 7, 7, 7, 6, 5, 7, 1, ...
## ..@ label : chr "Se debería apoyar al sistema político"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b12 : dbl+lbl [1:1622] 7, 6, 3, 6, 6, 7, 6, 1, 3, 1, 7, 4, 4, 1, 4, 5, 4, 4,...
## ..@ label : chr "Confianza en las fuerzas armadas"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b13 : dbl+lbl [1:1622] 7, 5, 2, 6, 4, 7, 3, ...
## ..@ label : chr "Confianza en la legislatura"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b18 : dbl+lbl [1:1622] 4, 6, 5, 4, 1, 5, 1, 1, 4, 1, 5, 2, 2, 1, 2, 4, 6, 1,...
## ..@ label : chr "Confianza en la policía nacional"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b21 : dbl+lbl [1:1622] 7, 5, 1, 3, 1, 4, 2, 1, 3, 1, 2, 3, 2, 1, 2, 4, 5, 1,...
## ..@ label : chr "Confianza en los partidos políticos"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b21a : dbl+lbl [1:1622] 7, 5, 4, 5, 1, 7, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 5, 4,...
## ..@ label : chr "Confianza en el presidente"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b31 : dbl+lbl [1:1622] 7, 5, 3, 2, 2, 4, 2, 1, 4, 1, 4, 4, 2, 1, 2, 4, 4, 1,...
## ..@ label : chr "Confianza en el tribunal supremo"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b32 : dbl+lbl [1:1622] 7, 6, 3, 2, 4, 4, 1, ...
## ..@ label : chr "Confianza en su municipalidad"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b37 : dbl+lbl [1:1622] 7, 6, 1, 4, 2, 4, 1, 1, 1, 1, 6, 1, 1, 2, 2, 2, 6, 1,...
## ..@ label : chr "Confianza en los medios de comunicación"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b47a : dbl+lbl [1:1622] 7, 5, 3, 1, 3, 4, 4, 1, 1, 4, 3, 4, 2, 4, 4, 4, 5, 4,...
## ..@ label : chr "Confianza en las elecciones"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b10a : dbl+lbl [1:1622] 7, 5, 5, 1, 2, 4, 1, ...
## ..@ label : chr "Confianza en el sistema de justicia"
## ..@ format.stata: chr "%11.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b11 : dbl+lbl [1:1622] 6, 4, 1, 3, 2, 4, 5, 1, 5, 4, 7, 4, 1, 4, 4, 5, 6, 1,...
## ..@ label : chr "Confianza en el Tribunal Supremo Electoral"
## ..@ format.stata: chr "%11.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b15 : dbl+lbl [1:1622] 6, 5, 4, 4, 4, 4, 3, ...
## ..@ label : chr "Confianza en el Ministerio Público"
## ..@ format.stata: chr "%11.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ b19 : dbl+lbl [1:1622] 7, 4, 4, 5, 4, 4, 3, NA(a...
## ..@ label : chr "Confianza en la Auditoría Superior de la Federación"
## ..@ format.stata: chr "%11.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Nada" "Mucho" "No sabe" "No responde"
## $ m1 : dbl+lbl [1:1622] 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3,...
## ..@ label : chr "Aprobación del trabajo ejecutivo"
## ..@ format.stata: chr "%27.0f"
## ..@ labels : Named num [1:7] 1 2 3 4 5 NA NA
## .. ..- attr(*, "names")= chr [1:7] "Muy bueno" "Bueno" "Ni bueno, ni malo (regular)" "Malo" ...
## $ sd2new2 : dbl+lbl [1:1622] 1, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3,...
## ..@ label : chr "Estado de las calles, carreteras, autopistas"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:6] 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr [1:6] "Muy satisfecho(a)" "Satisfecho(a)" "Insatisfecho(a)" "Muy insatisfecho(a)" ...
## $ sd3new2 : dbl+lbl [1:1622] 1, 2, 2, 2, 2, 2, 2, ...
## ..@ label : chr "Calidad de las escuelas públicas"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:6] 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr [1:6] "Muy satisfecho(a)" "Satisfecho(a)" "Insatisfecho(a)" "Muy insatisfecho(a)" ...
## $ sd6new2 : dbl+lbl [1:1622] 1, 2, 4, 2, 2, 4, 2, ...
## ..@ label : chr "Calidad de los servicios médicos y salud públicos"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:6] 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr [1:6] "Muy satisfecho(a)" "Satisfecho(a)" "Insatisfecho(a)" "Muy insatisfecho(a)" ...
## $ sd5new2 : dbl+lbl [1:1622] 1, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 3, 2, 3, 2, 3,...
## ..@ label : chr "Calidad de los servicios de agua"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:6] 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr [1:6] "Muy satisfecho(a)" "Satisfecho(a)" "Insatisfecho(a)" "Muy insatisfecho(a)" ...
## $ pop101 : dbl+lbl [1:1622] 7, 5, 7, 6, 4, 7, 4, 7, 7, 5, 6, 4, 2, 5, 4, 4, 4, 4,...
## ..@ label : chr "Limitación de la voz/voto de partidos de la oposición es necesaria para progreso"
## ..@ format.stata: chr "%17.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Muy en desacuerdo" "Muy de acuerdo" "No sabe" "No responde"
## $ pop107 : dbl+lbl [1:1622] 4, 4, 7, 6, 5, 7, 3, ...
## ..@ label : chr "Gobernanza directa frente a representantes electos"
## ..@ format.stata: chr "%17.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Muy en desacuerdo" "Muy de acuerdo" "No sabe" "No responde"
## $ ros4 : dbl+lbl [1:1622] 7, 6, 7, 5, 5, 7, 6, ...
## ..@ label : chr "Apoyo a las políticas para reducir la desigualdad de ingresos"
## ..@ format.stata: chr "%17.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Muy en desacuerdo" "Muy de acuerdo" "No sabe" "No responde"
## $ ing4 : dbl+lbl [1:1622] 4, 6, 5, 5, 5, 5, 4, ...
## ..@ label : chr "Apoyo a la democracia"
## ..@ format.stata: chr "%17.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Muy en desacuerdo" "Muy de acuerdo" "No sabe" "No responde"
## $ eff1 : dbl+lbl [1:1622] 7, 5, 4, 3, 6, 7, 4, 3, 4, 4, 5, 4, 2, 4, 5, 4, 3, 2,...
## ..@ label : chr "A los políticos les importa mi opinión/intereses"
## ..@ format.stata: chr "%17.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Muy en desacuerdo" "Muy de acuerdo" "No sabe" "No responde"
## $ eff2 : dbl+lbl [1:1622] 5, 5, 1, 3, 6, 6, 4, ...
## ..@ label : chr "Entiende los problemas políticos más importantes del país"
## ..@ format.stata: chr "%17.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Muy en desacuerdo" "Muy de acuerdo" "No sabe" "No responde"
## $ vb21n : dbl+lbl [1:1622] 6, 1, 1, 4, 1, 1, 1, ...
## ..@ label : chr "La mejor manera de hacer un cambio en el país"
## ..@ format.stata: chr "%86.0f"
## ..@ labels : Named num [1:8] 1 2 3 4 5 6 NA NA
## .. ..- attr(*, "names")= chr [1:8] "Votar para elegir a los que defienden su posición, o" "Postularse como candidato a cargos públicos, o" "Participar en protestas, o" "Participar en juntas de la comunidad, o" ...
## $ crg1 : dbl+lbl [1:1622] 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 1, 1,...
## ..@ label : chr "Justificado para actuar fuera de la ley si la otra parte lo hace"
## ..@ format.stata: chr "%40.0f"
## ..@ labels : Named num [1:5] 1 2 3 NA NA
## .. ..- attr(*, "names")= chr [1:5] "Sí, se justifica" "No, no se justifica" "No apoya a ningún partido o político" "No sabe" ...
## $ crg2 : dbl+lbl [1:1622] 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1,...
## ..@ label : chr "Justificado para actuar fuera de la ley para cumplir las promesas"
## ..@ format.stata: chr "%25.0f"
## ..@ labels : Named num [1:4] 1 2 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Sí, se justifica" "No, no se justifica" "No sabe" "No responde"
## $ drr1n : dbl+lbl [1:1622] 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,...
## ..@ label : chr "Víctima de un desastre natural"
## ..@ format.stata: chr "%11.0f"
## ..@ labels : Named num [1:4] 1 2 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Sí" "No" "No sabe" "No responde"
## $ env1c : dbl+lbl [1:1622] 7, 1, 4, 5, 4, 7, 4, 4, 5, 4, 7, 4, 4, 4, 5, 4, 4, 4,...
## ..@ label : chr "Prioridad del crecimiento ambiental o económico"
## ..@ format.stata: chr "%35.0f"
## ..@ labels : Named num [1:4] 1 7 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Medio ambiente es prioridad" "Crecimiento económico es prioridad" "No sabe" "No responde"
## $ env2b : dbl+lbl [1:1622] 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1,...
## ..@ label : chr "Gravedad del cambio climático en el futuro"
## ..@ format.stata: chr "%20.0f"
## ..@ labels : Named num [1:6] 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr [1:6] "Muy serio" "Algo serio" "Poco serio" "Nada serio" ...
## $ anestg : dbl+lbl [1:1622] 2, 3, 2, 3, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 3, 3,...
## ..@ label : chr "Confianza en el gobierno nacional"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:6] 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr [1:6] "Mucho" "Algo" "Poco" "Nada" ...
## $ pn4 : dbl+lbl [1:1622] 1, 3, 2, 3, 2, 2, 2, ...
## ..@ label : chr "Satisfacción con democracia de su país"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:6] 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr [1:6] "Muy satisfecho(a)" "Satisfecho(a)" "Insatisfecho(a)" "Muy insatisfecho(a)" ...
## $ dem30 : dbl+lbl [1:1622] 1, 1, 1, 2, 1, 1, 1, ...
## ..@ label : chr "El país es una democracia"
## ..@ format.stata: chr "%11.0f"
## ..@ labels : Named num [1:4] 1 2 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Sí" "No" "No sabe" "No responde"
## $ e5 : dbl+lbl [1:1622] 10, 3, 1, 1, 7, 1, 3, 7, 5, 5, 9, 9, 8, ...
## ..@ label : chr "Aprobación de participar en manifestaciones legales"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:4] 1 10 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Desaprueba firmemente" "Aprueba firmemente" "No sabe" "No responde"
## $ e17a : dbl+lbl [1:1622] NA(c), NA(c), NA(c), 1, 8, NA(c), 4, ...
## ..@ label : chr "Aprobación de protestas de grupos que defienden los derechos"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:5] 1 10 NA NA NA
## .. ..- attr(*, "names")= chr [1:5] "Desaprueba firmemente" "Aprueba firmemente" "No sabe" "No responde" ...
## $ e17b : dbl+lbl [1:1622] 1, 5, 3, NA(c), NA(c), 1, NA(c), NA(c...
## ..@ label : chr "Aprobación de protestas por parte de grupos feministas"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:5] 1 10 NA NA NA
## .. ..- attr(*, "names")= chr [1:5] "Desaprueba firmemente" "Aprueba firmemente" "No sabe" "No responde" ...
## $ d3 : dbl+lbl [1:1622] 5, 4, 1, 1, 5, 1, 1, 1, 1, 2, 5, 8, 2, ...
## ..@ label : chr "Aprobación del derecho de los críticos del gobierno a postularse para un cargo"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:4] 1 10 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Desaprueba firmemente" "Aprueba firmemente" "No sabe" "No responde"
## $ d4 : dbl+lbl [1:1622] 5, 6, 1, 1, 4, 1, 1, 1, 1, 2, 2, 8, 2, ...
## ..@ label : chr "Aprobación del derecho de los críticos del gobierno a dar discursos"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:4] 1 10 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Desaprueba firmemente" "Aprueba firmemente" "No sabe" "No responde"
## $ d5 : dbl+lbl [1:1622] 1, 5, 1, 1, 6, 1, 6, 4, 1, 5, 9, 8, 5, ...
## ..@ label : chr "Aprobación del derecho de los homosexuales a postularse para un cargo"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:4] 1 10 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Desaprueba firmemente" "Aprueba firmemente" "No sabe" "No responde"
## $ d6 : dbl+lbl [1:1622] 5, 7, 5, 5, 6, 5, 2, 5, 5, 5, 8, 8, 8, 1...
## ..@ label : chr "Aprobación del matrimonio entre personas del mismo sexo"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:4] 1 10 NA NA
## .. ..- attr(*, "names")= chr [1:4] "Desaprueba firmemente" "Aprueba firmemente" "No sabe" "No responde"
## $ d5newa : dbl+lbl [1:1622] NA(c), 8, 5, NA(c), NA(c), 5, NA(c), ...
## ..@ label : chr "Aprobación de la igualdad de derechos para las minorías sexuales"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:5] 1 10 NA NA NA
## .. ..- attr(*, "names")= chr [1:5] "Desaprueba firmemente" "Aprueba firmemente" "No sabe" "No responde" ...
## $ d7a : dbl+lbl [1:1622] NA(c), 8, 7, NA(c), NA(c), 1, NA(c), ...
## ..@ label : chr "Aprobación de la adopción por parejas de minorías sexuales"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:5] 1 10 NA NA NA
## .. ..- attr(*, "names")= chr [1:5] "Desaprueba firmemente" "Aprueba firmemente" "No sabe" "No responde" ...
## $ d5newb : dbl+lbl [1:1622] 7, NA(c), NA(c), 9, 7, NA(c), 2, NA(c...
## ..@ label : chr "Aprobación de la igualdad de derechos para las minorías de género"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:5] 1 10 NA NA NA
## .. ..- attr(*, "names")= chr [1:5] "Desaprueba firmemente" "Aprueba firmemente" "No sabe" "No responde" ...
## $ d7b : dbl+lbl [1:1622] 10, NA(c), NA(c), 1, 6, NA(c), 2, NA(c...
## ..@ label : chr "Aprobación de la adopción por parejas de minorías de género"
## ..@ format.stata: chr "%21.0f"
## ..@ labels : Named num [1:5] 1 10 NA NA NA
## .. ..- attr(*, "names")= chr [1:5] "Desaprueba firmemente" "Aprueba firmemente" "No sabe" "No responde" ...
## $ exc2 : dbl+lbl [1:1622] 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,...
## ..@ label : chr "Pidió pagar un mordida/soborno por un oficial de policía en los últimos 12 meses"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 0 1 NA NA
## .. ..- attr(*, "names")= chr [1:4] "No" "Sí" "No sabe" "No responde"
## $ exc6 : dbl+lbl [1:1622] 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,...
## ..@ label : chr "Pidió pagar una coima por parte de un empleado público en los últimos 12 meses"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 0 1 NA NA
## .. ..- attr(*, "names")= chr [1:4] "No" "Sí" "No sabe" "No responde"
## $ exc20 : dbl+lbl [1:1622] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
## ..@ label : chr "Pidió pagar una mordida/soborno por un oficial militar en los últimos 12 meses"
## ..@ format.stata: chr "%11.0f"
## ..@ labels : Named num [1:4] 0 1 NA NA
## .. ..- attr(*, "names")= chr [1:4] "No" "Sí" "No sabe" "No responde"
## $ exc11a : dbl+lbl [1:1622] 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,...
## ..@ label : chr "Tratos oficiales en el municipio/gobierno local en últimos 12 meses"
## ..@ format.stata: chr "%11.0f"
## ..@ labels : Named num [1:4] 0 1 NA NA
## .. ..- attr(*, "names")= chr [1:4] "No" "Sí" "No sabe" "No responde"
## $ exc11 : dbl+lbl [1:1622] 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,...
## ..@ label : chr "Pidió pagar una tarifa extra por parte del municipio"
## ..@ format.stata: chr "%12.0f"
## ..@ labels : Named num [1:5] 0 1 NA NA NA
## .. ..- attr(*, "names")= chr [1:5] "No" "Sí" "No sabe" "No responde" ...
## $ exc14a : dbl+lbl [1:1622] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,...
## ..@ label : chr "Tratos judiciales en los últimos 12 meses"
## ..@ format.stata: chr "%11.0f"
## ..@ labels : Named num [1:4] 0 1 NA NA
## .. ..- attr(*, "names")= chr [1:4] "No" "Sí" "No sabe" "No responde"
## $ exc14 : dbl+lbl [1:1622] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
## ..@ label : chr "Pidió pagar un soborno/coima por un tribunal en el último año"
## ..@ format.stata: chr "%12.0f"
## ..@ labels : Named num [1:5] 0 1 NA NA NA
## .. ..- attr(*, "names")= chr [1:5] "No" "Sí" "No sabe" "No responde" ...
## $ exc18 : dbl+lbl [1:1622] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
## ..@ label : chr "El pago de sobornos está justificado"
## ..@ format.stata: chr "%13.0f"
## ..@ labels : Named num [1:4] 0 1 NA NA
## .. ..- attr(*, "names")= chr [1:4] "No" "Sí" "No sabe" "No responde"
## $ exc7 : dbl+lbl [1:1622] 3, 1, 1, 2, 1, 1, 3, 2, 1, 2, 2, 2, 2, 2, 2, 1, 4, 3,...
## ..@ label : chr "Percepción de corrupción de funcionarios públicos"
## ..@ format.stata: chr "%19.0f"
## ..@ labels : Named num [1:6] 1 2 3 4 NA NA
## .. ..- attr(*, "names")= chr [1:6] "Muy generalizada" "Algo generalizada" "Poco generalizada" "Nada generalizada" ...
## $ exc7new : dbl+lbl [1:1622] 3, 5, 2, 3, 4, 4, 3, 4, 3, 4, 2, 4, 4, 4, 4, 4, 1, 5,...
## ..@ label : chr "Cantidad de políticos involucrados en corrupción"
## ..@ format.stata: chr "%26.0f"
## ..@ labels : Named num [1:7] 1 2 3 4 5 NA NA
## .. ..- attr(*, "names")= chr [1:7] "Ninguno" "Menos de la mitad" "La mitad de los políticos" "Más de la mitad" ...
## [list output truncated]
# Ver los nombres de las variables
names(data)
## [1] "idnum" "pais" "nationality" "estratopri" "estratosec"
## [6] "strata" "prov" "municipio" "upm" "ur"
## [11] "cluster" "year" "wave" "wt" "q1tc_r"
## [16] "q2" "a4n" "soct2" "idio2" "mesfut1"
## [21] "np1" "np1new" "sgl1" "cp8" "cp13"
## [26] "cp20" "it1" "l1n" "jc10" "jc13"
## [31] "jc15a" "jc16a" "vic1ext" "aoj11" "aoj12"
## [36] "countfair1" "countfair3" "chm1bn" "chm2bn" "b0"
## [41] "b1" "b2" "b3" "b4" "b6"
## [46] "b12" "b13" "b18" "b21" "b21a"
## [51] "b31" "b32" "b37" "b47a" "b10a"
## [56] "b11" "b15" "b19" "m1" "sd2new2"
## [61] "sd3new2" "sd6new2" "sd5new2" "pop101" "pop107"
## [66] "ros4" "ing4" "eff1" "eff2" "vb21n"
## [71] "crg1" "crg2" "drr1n" "env1c" "env2b"
## [76] "anestg" "pn4" "dem30" "e5" "e17a"
## [81] "e17b" "d3" "d4" "d5" "d6"
## [86] "d5newa" "d7a" "d5newb" "d7b" "exc2"
## [91] "exc6" "exc20" "exc11a" "exc11" "exc14a"
## [96] "exc14" "exc18" "exc7" "exc7new" "lib2c"
## [101] "immig1xb" "meximmig10" "vb2" "vb3n" "vb10"
## [106] "vb11" "pol1" "vb20" "vb30mex" "vb50"
## [111] "vb51" "vb52" "vb58" "vb58exp" "w14a"
## [116] "dvw1" "dvw2" "mil10a" "mil10b" "mil10e"
## [121] "dis11" "dis12" "childm6" "childm7" "childm8"
## [126] "childm9" "childm10" "childm11" "childm12" "childm13"
## [131] "mexwf1_19" "edre" "q3cn" "q5b" "ocup4a"
## [136] "formal" "q10c" "q10a" "q10b" "q10inc"
## [141] "q10e" "q14" "q14dnew" "q14f" "q14motan"
## [146] "q14pan_1" "q14pan_2" "q14pan_3" "q14pan_4" "q14pan_5"
## [151] "q14pan_0" "q14pan_7" "q14docn" "q14int1" "fs2"
## [156] "fs212" "ws1" "ws2" "q11n" "q12cn"
## [161] "q12bn" "q12bnf" "q12p" "etid" "leng1"
## [166] "leng4" "gi0n" "smedia1n" "smedia3n" "smedia3b"
## [171] "smedia11" "smedia12" "smedia13" "smedia14n" "smedia15"
## [176] "smedia16" "smedia10m" "r3" "r4a" "r6"
## [181] "r7" "r12" "r15" "r18n" "r18"
## [186] "r16" "r27" "colorr" "noise1" "conocim"
## [191] "sexin" "colori" "fecha" "formatq" "idiomaq"
# Ver el número de filas y columnas
dim(data)
## [1] 1622 195
# Ver un resumen estadístico de las variables
summary(data)
## idnum pais nationality estratopri estratosec
## Min. : 3 Min. :1 Min. :1 Min. :101.0 Min. :1.000
## 1st Qu.:2448 1st Qu.:1 1st Qu.:1 1st Qu.:101.0 1st Qu.:1.000
## Median :5002 Median :1 Median :1 Median :103.0 Median :1.000
## Mean :4971 Mean :1 Mean :1 Mean :102.5 Mean :1.444
## 3rd Qu.:7436 3rd Qu.:1 3rd Qu.:1 3rd Qu.:103.0 3rd Qu.:2.000
## Max. :9991 Max. :1 Max. :1 Max. :104.0 Max. :3.000
##
## strata prov municipio upm
## Min. :101.0 Min. :101.0 Min. :101009 Min. : 1.00
## 1st Qu.:101.0 1st Qu.:109.0 1st Qu.:109015 1st Qu.: 33.25
## Median :103.0 Median :115.0 Median :115060 Median : 65.00
## Mean :102.5 Mean :116.1 Mean :116142 Mean : 65.55
## 3rd Qu.:103.0 3rd Qu.:121.0 3rd Qu.:121115 3rd Qu.: 97.75
## Max. :104.0 Max. :132.0 Max. :132044 Max. :130.00
##
## ur cluster year wave wt
## Min. :1.000 Min. : 1.0 Min. :2023 Min. :2023 Min. :1
## 1st Qu.:1.000 1st Qu.: 65.0 1st Qu.:2023 1st Qu.:2023 1st Qu.:1
## Median :1.000 Median :130.0 Median :2023 Median :2023 Median :1
## Mean :1.202 Mean :130.4 Mean :2023 Mean :2023 Mean :1
## 3rd Qu.:1.000 3rd Qu.:195.0 3rd Qu.:2023 3rd Qu.:2023 3rd Qu.:1
## Max. :2.000 Max. :260.0 Max. :2023 Max. :2023 Max. :1
##
## q1tc_r q2 a4n soct2
## Min. :1.000 Min. :18.00 Min. : 1.00 Min. :1.000
## 1st Qu.:1.000 1st Qu.:28.00 1st Qu.: 1.00 1st Qu.:1.000
## Median :2.000 Median :40.00 Median : 2.00 Median :2.000
## Mean :1.513 Mean :41.84 Mean : 11.58 Mean :2.108
## 3rd Qu.:2.000 3rd Qu.:53.00 3rd Qu.: 5.00 3rd Qu.:3.000
## Max. :2.000 Max. :94.00 Max. :110.00 Max. :3.000
## NA's :5 NA's :41 NA's :5
## idio2 mesfut1 np1 np1new
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
## Median :2.000 Median :2.000 Median :2.000 Median :2.000
## Mean :1.991 Mean :2.216 Mean :1.914 Mean :1.907
## 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :3.000 Max. :4.000 Max. :2.000 Max. :2.000
## NA's :7 NA's :17 NA's :12 NA's :3
## sgl1 cp8 cp13 cp20
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:4.000 1st Qu.:4.000 1st Qu.:4.000
## Median :3.000 Median :4.000 Median :4.000 Median :4.000
## Mean :2.886 Mean :3.652 Mean :3.782 Mean :3.795
## 3rd Qu.:3.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :5.000 Max. :4.000 Max. :4.000 Max. :4.000
## NA's :37 NA's :2 NA's :13 NA's :799
## it1 l1n jc10 jc13
## Min. :1.000 Min. : 1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.: 3.000 1st Qu.:1.000 1st Qu.:1.000
## Median :2.000 Median : 5.000 Median :2.000 Median :2.000
## Mean :2.346 Mean : 5.148 Mean :1.567 Mean :1.597
## 3rd Qu.:3.000 3rd Qu.: 7.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :4.000 Max. :10.000 Max. :2.000 Max. :2.000
## NA's :13 NA's :58 NA's :869 NA's :817
## jc15a jc16a vic1ext aoj11 aoj12
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.0 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:2.0 1st Qu.:2.000
## Median :2.000 Median :2.000 Median :2.000 Median :2.0 Median :3.000
## Mean :1.712 Mean :1.609 Mean :1.736 Mean :2.4 Mean :2.922
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:3.0 3rd Qu.:4.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :4.0 Max. :4.000
## NA's :845 NA's :843 NA's :13 NA's :11
## countfair1 countfair3 chm1bn chm2bn b0
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.00
## 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:3.00
## Median :2.000 Median :2.000 Median :2.000 Median :2.000 Median :4.00
## Mean :1.935 Mean :1.994 Mean :1.522 Mean :1.596 Mean :4.06
## 3rd Qu.:2.000 3rd Qu.:3.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:5.00
## Max. :3.000 Max. :3.000 Max. :2.000 Max. :2.000 Max. :7.00
## NA's :44 NA's :80 NA's :911 NA's :924 NA's :1
## b1 b2 b3 b4 b6
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.00
## 1st Qu.:3.000 1st Qu.:4.000 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:4.00
## Median :4.000 Median :5.000 Median :4.000 Median :5.000 Median :6.00
## Mean :3.826 Mean :4.973 Mean :4.031 Mean :4.599 Mean :5.25
## 3rd Qu.:5.000 3rd Qu.:6.000 3rd Qu.:5.000 3rd Qu.:6.000 3rd Qu.:7.00
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.00
## NA's :13 NA's :7 NA's :13 NA's :13 NA's :17
## b12 b13 b18 b21 b21a
## Min. :1.00 Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:4.00 1st Qu.:3.00 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:4.000
## Median :5.00 Median :4.00 Median :3.000 Median :3.000 Median :6.000
## Mean :4.95 Mean :4.26 Mean :3.416 Mean :3.205 Mean :5.108
## 3rd Qu.:7.00 3rd Qu.:6.00 3rd Qu.:5.000 3rd Qu.:5.000 3rd Qu.:7.000
## Max. :7.00 Max. :7.00 Max. :7.000 Max. :7.000 Max. :7.000
## NA's :15 NA's :51 NA's :4 NA's :9 NA's :4
## b31 b32 b37 b47a
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:2.000 1st Qu.:3.000
## Median :5.000 Median :4.000 Median :4.000 Median :4.000
## Mean :4.306 Mean :4.294 Mean :3.899 Mean :4.125
## 3rd Qu.:6.000 3rd Qu.:5.000 3rd Qu.:5.000 3rd Qu.:5.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## NA's :26 NA's :4 NA's :11 NA's :11
## b10a b11 b15 b19 m1
## Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.00 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:2.000
## Median :4.000 Median :5.00 Median :4.000 Median :4.000 Median :2.000
## Mean :4.033 Mean :4.46 Mean :4.294 Mean :4.186 Mean :2.127
## 3rd Qu.:5.000 3rd Qu.:6.00 3rd Qu.:6.000 3rd Qu.:5.000 3rd Qu.:3.000
## Max. :7.000 Max. :7.00 Max. :7.000 Max. :7.000 Max. :5.000
## NA's :16 NA's :9 NA's :35 NA's :117 NA's :5
## sd2new2 sd3new2 sd6new2 sd5new2
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
## Median :2.000 Median :2.000 Median :2.000 Median :2.000
## Mean :2.386 Mean :2.276 Mean :2.542 Mean :2.347
## 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:3.000
## Max. :4.000 Max. :4.000 Max. :4.000 Max. :4.000
## NA's :15 NA's :40 NA's :14 NA's :4
## pop101 pop107 ros4 ing4 eff1
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:4.000 1st Qu.:4.00 1st Qu.:2.750
## Median :4.000 Median :5.000 Median :6.000 Median :5.00 Median :4.000
## Mean :4.113 Mean :4.402 Mean :5.279 Mean :4.88 Mean :4.098
## 3rd Qu.:6.000 3rd Qu.:6.000 3rd Qu.:7.000 3rd Qu.:6.00 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.00 Max. :7.000
## NA's :28 NA's :19 NA's :11 NA's :19 NA's :6
## eff2 vb21n crg1 crg2
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :4.000 Median :4.000 Median :1.000 Median :1.000
## Mean :4.047 Mean :3.127 Mean :1.495 Mean :1.475
## 3rd Qu.:5.000 3rd Qu.:5.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :7.000 Max. :6.000 Max. :3.000 Max. :2.000
## NA's :15 NA's :80 NA's :19 NA's :23
## drr1n env1c env2b anestg pn4
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000
## 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:2.00 1st Qu.:2.000
## Median :2.000 Median :4.000 Median :1.000 Median :2.00 Median :2.000
## Mean :1.711 Mean :3.913 Mean :1.283 Mean :2.22 Mean :2.406
## 3rd Qu.:2.000 3rd Qu.:6.000 3rd Qu.:1.000 3rd Qu.:3.00 3rd Qu.:3.000
## Max. :2.000 Max. :7.000 Max. :4.000 Max. :4.00 Max. :4.000
## NA's :1 NA's :8 NA's :8 NA's :7 NA's :29
## dem30 e5 e17a e17b
## Min. :1.000 Min. : 1.00 Min. : 1.000 Min. : 1.000
## 1st Qu.:1.000 1st Qu.: 4.00 1st Qu.: 5.000 1st Qu.: 3.000
## Median :1.000 Median : 6.00 Median : 8.000 Median : 6.000
## Mean :1.251 Mean : 6.14 Mean : 7.196 Mean : 5.785
## 3rd Qu.:2.000 3rd Qu.: 8.00 3rd Qu.:10.000 3rd Qu.: 8.000
## Max. :2.000 Max. :10.00 Max. :10.000 Max. :10.000
## NA's :59 NA's :10 NA's :801 NA's :837
## d3 d4 d5 d6
## Min. : 1.000 Min. : 1.000 Min. : 1.000 Min. : 1.000
## 1st Qu.: 2.000 1st Qu.: 2.000 1st Qu.: 4.000 1st Qu.: 3.000
## Median : 5.000 Median : 5.000 Median : 7.000 Median : 7.000
## Mean : 4.622 Mean : 4.493 Mean : 6.205 Mean : 6.399
## 3rd Qu.: 6.000 3rd Qu.: 6.000 3rd Qu.: 9.000 3rd Qu.:10.000
## Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000
## NA's :15 NA's :16 NA's :28 NA's :28
## d5newa d7a d5newb d7b
## Min. : 1.000 Min. : 1.000 Min. : 1.00 Min. : 1.000
## 1st Qu.: 6.000 1st Qu.: 2.000 1st Qu.: 6.00 1st Qu.: 2.000
## Median : 9.000 Median : 5.000 Median : 8.00 Median : 6.000
## Mean : 7.659 Mean : 5.479 Mean : 7.57 Mean : 5.688
## 3rd Qu.:10.000 3rd Qu.: 9.000 3rd Qu.:10.00 3rd Qu.: 9.000
## Max. :10.000 Max. :10.000 Max. :10.00 Max. :10.000
## NA's :807 NA's :816 NA's :829 NA's :828
## exc2 exc6 exc20 exc11a
## Min. :0.0000 Min. :0.0000 Min. :0.00000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000 Median :0.00000 Median :0.0000
## Mean :0.2108 Mean :0.1154 Mean :0.03331 Mean :0.2639
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.00000 Max. :1.0000
## NA's :4 NA's :2 NA's :1
## exc11 exc14a exc14 exc18
## Min. :0.00000 Min. :0.0000 Min. :0.00000 Min. :0.0000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000
## Median :0.00000 Median :0.0000 Median :0.00000 Median :0.0000
## Mean :0.07483 Mean :0.0679 Mean :0.02219 Mean :0.1687
## 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.0000
## Max. :1.00000 Max. :1.0000 Max. :1.00000 Max. :1.0000
## NA's :5 NA's :2 NA's :10
## exc7 exc7new lib2c immig1xb
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:3.000 1st Qu.:1.000 1st Qu.:1.000
## Median :2.000 Median :4.000 Median :2.000 Median :2.000
## Mean :2.001 Mean :3.734 Mean :1.691 Mean :2.359
## 3rd Qu.:3.000 3rd Qu.:4.500 3rd Qu.:2.000 3rd Qu.:3.000
## Max. :4.000 Max. :5.000 Max. :3.000 Max. :5.000
## NA's :28 NA's :47 NA's :21 NA's :14
## meximmig10 vb2 vb3n vb10
## Min. :1.000 Min. :1.000 Min. : 0.0 Min. :1.000
## 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:101.0 1st Qu.:2.000
## Median :2.000 Median :1.000 Median :101.0 Median :2.000
## Mean :2.712 Mean :1.298 Mean :102.9 Mean :1.753
## 3rd Qu.:4.000 3rd Qu.:2.000 3rd Qu.:101.0 3rd Qu.:2.000
## Max. :5.000 Max. :2.000 Max. :177.0 Max. :2.000
## NA's :21 NA's :15 NA's :754 NA's :8
## vb11 pol1 vb20 vb30mex
## Min. :101.0 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:107.0 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:1.000
## Median :107.0 Median :3.000 Median :2.000 Median :2.000
## Mean :106.8 Mean :2.866 Mean :2.352 Mean :1.505
## 3rd Qu.:107.0 3rd Qu.:4.000 3rd Qu.:3.000 3rd Qu.:2.000
## Max. :177.0 Max. :4.000 Max. :4.000 Max. :2.000
## NA's :1235 NA's :4 NA's :208 NA's :111
## vb50 vb51 vb52 vb58
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:2.000
## Median :3.000 Median :3.000 Median :3.000 Median :2.000
## Mean :2.953 Mean :2.632 Mean :2.731 Mean :2.396
## 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:3.000
## Max. :4.000 Max. :3.000 Max. :3.000 Max. :4.000
## NA's :33 NA's :814 NA's :834 NA's :806
## vb58exp w14a dvw1 dvw2 mil10a
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000
## 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:3.000 1st Qu.:2.00 1st Qu.:2.000
## Median :3.000 Median :1.000 Median :3.000 Median :3.00 Median :3.000
## Mean :2.591 Mean :1.286 Mean :2.743 Mean :2.62 Mean :2.648
## 3rd Qu.:3.000 3rd Qu.:2.000 3rd Qu.:3.000 3rd Qu.:3.00 3rd Qu.:3.000
## Max. :4.000 Max. :2.000 Max. :3.000 Max. :3.00 Max. :4.000
## NA's :839 NA's :27 NA's :33 NA's :35 NA's :982
## mil10b mil10e dis11 dis12
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:4.000 1st Qu.:4.000
## Median :3.000 Median :3.000 Median :4.000 Median :4.000
## Mean :2.842 Mean :2.881 Mean :3.639 Mean :3.723
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :4.000 Max. :4.000 Max. :4.000 Max. :4.000
## NA's :907 NA's :657 NA's :6 NA's :7
## childm6 childm7 childm8 childm9
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:2.000
## Median :1.000 Median :2.000 Median :1.000 Median :2.000
## Mean :1.439 Mean :1.976 Mean :1.456 Mean :1.759
## 3rd Qu.:2.000 3rd Qu.:3.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :4.000 Max. :2.000 Max. :2.000
## NA's :3 NA's :29 NA's :1067 NA's :1100
## childm10 childm11 childm12 childm13
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :2.000 Median :1.000 Median :2.000 Median :2.000
## Mean :1.596 Mean :1.427 Mean :1.691 Mean :1.639
## 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## NA's :1053 NA's :1086 NA's :1078 NA's :1146
## mexwf1_19 edre q3cn q5b
## Min. :1.000 Min. :0.000 Min. : 1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:3.000 1st Qu.: 1.000 1st Qu.:1.000
## Median :2.000 Median :4.000 Median : 1.000 Median :1.000
## Mean :1.775 Mean :3.646 Mean : 5.971 Mean :1.799
## 3rd Qu.:2.000 3rd Qu.:4.000 3rd Qu.: 3.000 3rd Qu.:2.000
## Max. :2.000 Max. :6.000 Max. :77.000 Max. :4.000
## NA's :7 NA's :2 NA's :18 NA's :9
## ocup4a formal q10c q10a
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:4.000 1st Qu.:2.000
## Median :2.000 Median :2.000 Median :4.000 Median :2.000
## Mean :2.895 Mean :1.633 Mean :3.653 Mean :1.934
## 3rd Qu.:5.000 3rd Qu.:2.000 3rd Qu.:4.000 3rd Qu.:2.000
## Max. :7.000 Max. :2.000 Max. :4.000 Max. :2.000
## NA's :5 NA's :770 NA's :9 NA's :2
## q10b q10inc q10e q14
## Min. :1.000 Min. :101.0 Min. :1.00 Min. :1.000
## 1st Qu.:2.000 1st Qu.:102.0 1st Qu.:1.00 1st Qu.:2.000
## Median :2.000 Median :104.0 Median :2.00 Median :2.000
## Mean :2.368 Mean :105.1 Mean :1.92 Mean :1.863
## 3rd Qu.:3.000 3rd Qu.:107.0 3rd Qu.:2.00 3rd Qu.:2.000
## Max. :4.000 Max. :115.0 Max. :3.00 Max. :2.000
## NA's :1516 NA's :191 NA's :30 NA's :20
## q14dnew q14f q14motan q14pan_1
## Min. : 1.000 Min. :1.000 Min. : 1.00 Min. :0.0000
## 1st Qu.: 1.000 1st Qu.:1.000 1st Qu.: 2.00 1st Qu.:0.0000
## Median : 1.000 Median :2.000 Median : 2.00 Median :0.0000
## Mean : 7.639 Mean :1.982 Mean :13.71 Mean :0.4566
## 3rd Qu.: 5.000 3rd Qu.:2.000 3rd Qu.: 2.00 3rd Qu.:1.0000
## Max. :77.000 Max. :4.000 Max. :77.00 Max. :1.0000
## NA's :1417 NA's :1404 NA's :1406 NA's :1403
## q14pan_2 q14pan_3 q14pan_4 q14pan_5
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :1.0000 Median :0.0000 Median :0.0000 Median :0.0000
## Mean :0.5114 Mean :0.2237 Mean :0.1416 Mean :0.4749
## 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## NA's :1403 NA's :1403 NA's :1403 NA's :1403
## q14pan_0 q14pan_7 q14docn q14int1
## Min. :0.0000 Min. :0.0000 Min. :1.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:2.000 1st Qu.:2.000
## Median :0.0000 Median :0.0000 Median :4.000 Median :2.000
## Mean :0.1005 Mean :0.0046 Mean :3.183 Mean :1.816
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:4.000 3rd Qu.:2.000
## Max. :1.0000 Max. :1.0000 Max. :4.000 Max. :2.000
## NA's :1403 NA's :1403 NA's :8 NA's :11
## fs2 fs212 ws1 ws2
## Min. :0.0000 Min. :0.0000 Min. :0.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:2.000
## Median :0.0000 Median :0.0000 Median :0.000 Median :2.000
## Mean :0.1985 Mean :0.0131 Mean :0.372 Mean :2.547
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:1.000 3rd Qu.:3.000
## Max. :1.0000 Max. :1.0000 Max. :1.000 Max. :4.000
## NA's :323 NA's :1 NA's :1019
## q11n q12cn q12bn q12bnf
## Min. :1.000 Min. : 1.000 Min. : 0.0000 Min. :1.000
## 1st Qu.:1.000 1st Qu.: 3.000 1st Qu.: 0.0000 1st Qu.:1.000
## Median :2.000 Median : 4.000 Median : 0.0000 Median :1.000
## Mean :2.431 Mean : 4.184 Mean : 0.8654 Mean :1.687
## 3rd Qu.:3.000 3rd Qu.: 5.000 3rd Qu.: 2.0000 3rd Qu.:3.000
## Max. :7.000 Max. :25.000 Max. :10.0000 Max. :3.000
## NA's :2 NA's :17 NA's :10 NA's :852
## q12p etid leng1 leng4 gi0n
## Min. : 0.00 Min. :1.000 Min. :101.0 Min. :1.000 Min. :1.00
## 1st Qu.:15.00 1st Qu.:2.000 1st Qu.:101.0 1st Qu.:1.000 1st Qu.:1.00
## Median :19.00 Median :2.000 Median :101.0 Median :1.000 Median :2.00
## Mean :16.07 Mean :2.676 Mean :101.1 Mean :1.202 Mean :2.21
## 3rd Qu.:21.00 3rd Qu.:3.000 3rd Qu.:101.0 3rd Qu.:1.000 3rd Qu.:3.00
## Max. :39.00 Max. :7.000 Max. :107.0 Max. :5.000 Max. :5.00
## NA's :814 NA's :118 NA's :24 NA's :6 NA's :3
## smedia1n smedia3n smedia3b smedia11
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :2.000 Median :2.000 Median :1.000
## Mean :1.319 Mean :2.511 Mean :1.685 Mean :1.487
## 3rd Qu.:2.000 3rd Qu.:3.000 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :2.000 Max. :5.000 Max. :3.000 Max. :2.000
## NA's :3 NA's :521 NA's :1371 NA's :7
## smedia12 smedia13 smedia14n smedia15
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:2.000
## Median :2.000 Median :2.000 Median :2.000 Median :3.000
## Mean :1.629 Mean :2.314 Mean :2.368 Mean :3.042
## 3rd Qu.:2.000 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:4.000
## Max. :2.000 Max. :4.000 Max. :5.000 Max. :4.000
## NA's :6 NA's :11 NA's :1 NA's :3
## smedia16 smedia10m r3 r4a
## Min. :1.000 Min. :1.000 Min. :0.0000 Min. :0.0000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.0000 1st Qu.:1.0000
## Median :3.000 Median :2.000 Median :1.0000 Median :1.0000
## Mean :2.388 Mean :2.161 Mean :0.9296 Mean :0.9135
## 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :7.000 Max. :4.000 Max. :1.0000 Max. :1.0000
## NA's :23 NA's :23 NA's :3 NA's :4
## r6 r7 r12 r15
## Min. :0.0000 Min. :0.0000 Min. :0.000 Min. :0.0000
## 1st Qu.:1.0000 1st Qu.:0.0000 1st Qu.:1.000 1st Qu.:0.0000
## Median :1.0000 Median :0.0000 Median :1.000 Median :0.0000
## Mean :0.7996 Mean :0.4759 Mean :0.916 Mean :0.3817
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.000 Max. :1.0000
## NA's :5 NA's :4 NA's :2 NA's :3
## r18n r18 r16 r27
## Min. :0.0000 Min. :0.000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:1.000 1st Qu.:1.0000 1st Qu.:0.0000
## Median :1.0000 Median :1.000 Median :1.0000 Median :1.0000
## Mean :0.5938 Mean :0.754 Mean :0.7665 Mean :0.5043
## 3rd Qu.:1.0000 3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.000 Max. :1.0000 Max. :1.0000
## NA's :7 NA's :4 NA's :3 NA's :8
## colorr noise1 conocim sexin
## Min. : 1.000 Min. :0.000 Min. :1.000 Min. :1.000
## 1st Qu.: 3.000 1st Qu.:0.000 1st Qu.:2.000 1st Qu.:1.000
## Median : 4.000 Median :0.000 Median :3.000 Median :1.000
## Mean : 4.409 Mean :0.397 Mean :2.732 Mean :1.439
## 3rd Qu.: 5.000 3rd Qu.:1.000 3rd Qu.:3.000 3rd Qu.:2.000
## Max. :97.000 Max. :4.000 Max. :5.000 Max. :2.000
##
## colori fecha formatq idiomaq
## Min. :3.000 Min. :2023-05-12 Min. :4 Min. :1
## 1st Qu.:4.000 1st Qu.:2023-05-23 1st Qu.:4 1st Qu.:1
## Median :5.000 Median :2023-06-13 Median :4 Median :1
## Mean :4.801 Mean :2023-06-10 Mean :4 Mean :1
## 3rd Qu.:5.000 3rd Qu.:2023-06-28 3rd Qu.:4 3rd Qu.:1
## Max. :8.000 Max. :2023-07-19 Max. :4 Max. :1
##
Elegir una pregunta con una escala de respuesta ordinal o continua. Describe brevemente la pregunta y sus categorías de respuesta. Calcular la media y la desviación estándar de esa variable. Construir un intervalo de confianza del 95% para la media. (Muestra tu procedimiento y puedes verificarlo con una función predefinida)
names(data) # Lista todas las variables disponibles
## [1] "idnum" "pais" "nationality" "estratopri" "estratosec"
## [6] "strata" "prov" "municipio" "upm" "ur"
## [11] "cluster" "year" "wave" "wt" "q1tc_r"
## [16] "q2" "a4n" "soct2" "idio2" "mesfut1"
## [21] "np1" "np1new" "sgl1" "cp8" "cp13"
## [26] "cp20" "it1" "l1n" "jc10" "jc13"
## [31] "jc15a" "jc16a" "vic1ext" "aoj11" "aoj12"
## [36] "countfair1" "countfair3" "chm1bn" "chm2bn" "b0"
## [41] "b1" "b2" "b3" "b4" "b6"
## [46] "b12" "b13" "b18" "b21" "b21a"
## [51] "b31" "b32" "b37" "b47a" "b10a"
## [56] "b11" "b15" "b19" "m1" "sd2new2"
## [61] "sd3new2" "sd6new2" "sd5new2" "pop101" "pop107"
## [66] "ros4" "ing4" "eff1" "eff2" "vb21n"
## [71] "crg1" "crg2" "drr1n" "env1c" "env2b"
## [76] "anestg" "pn4" "dem30" "e5" "e17a"
## [81] "e17b" "d3" "d4" "d5" "d6"
## [86] "d5newa" "d7a" "d5newb" "d7b" "exc2"
## [91] "exc6" "exc20" "exc11a" "exc11" "exc14a"
## [96] "exc14" "exc18" "exc7" "exc7new" "lib2c"
## [101] "immig1xb" "meximmig10" "vb2" "vb3n" "vb10"
## [106] "vb11" "pol1" "vb20" "vb30mex" "vb50"
## [111] "vb51" "vb52" "vb58" "vb58exp" "w14a"
## [116] "dvw1" "dvw2" "mil10a" "mil10b" "mil10e"
## [121] "dis11" "dis12" "childm6" "childm7" "childm8"
## [126] "childm9" "childm10" "childm11" "childm12" "childm13"
## [131] "mexwf1_19" "edre" "q3cn" "q5b" "ocup4a"
## [136] "formal" "q10c" "q10a" "q10b" "q10inc"
## [141] "q10e" "q14" "q14dnew" "q14f" "q14motan"
## [146] "q14pan_1" "q14pan_2" "q14pan_3" "q14pan_4" "q14pan_5"
## [151] "q14pan_0" "q14pan_7" "q14docn" "q14int1" "fs2"
## [156] "fs212" "ws1" "ws2" "q11n" "q12cn"
## [161] "q12bn" "q12bnf" "q12p" "etid" "leng1"
## [166] "leng4" "gi0n" "smedia1n" "smedia3n" "smedia3b"
## [171] "smedia11" "smedia12" "smedia13" "smedia14n" "smedia15"
## [176] "smedia16" "smedia10m" "r3" "r4a" "r6"
## [181] "r7" "r12" "r15" "r18n" "r18"
## [186] "r16" "r27" "colorr" "noise1" "conocim"
## [191] "sexin" "colori" "fecha" "formatq" "idiomaq"
# Verificar las etiquetas asociadas a la variable eff2
if ("eff2" %in% names(data)) {
print("La variable eff2 existe en la base de datos.")
# Ver las etiquetas asociadas a la variable eff2
print(attributes(data$eff2)$labels)
# Convertir la variable a numérica si es necesario
data$eff2 <- as.numeric(data$eff2)
# Ver los primeros valores de la variable eff2
print(head(data$eff2))
# Calcular la media y la desviación estándar de eff2
mean_eff2 <- mean(data$eff2, na.rm = TRUE)
sd_eff2 <- sd(data$eff2, na.rm = TRUE)
# Imprimir resultados
print(paste("Media:", mean_eff2))
print(paste("Desviación estándar:", sd_eff2))
# Número de observaciones válidas (sin NA)
n <- sum(!is.na(data$eff2))
# Cálculo del margen de error
error_margin <- qt(0.975, df = n-1) * (sd_eff2 / sqrt(n))
# Límites del intervalo de confianza
ci_lower <- mean_eff2 - error_margin
ci_upper <- mean_eff2 + error_margin
# Imprimir el intervalo de confianza
print(paste("Intervalo de confianza al 95%: [", ci_lower, ",", ci_upper, "]"))
# Verificación con la función t.test
print(t.test(data$eff2, conf.level = 0.95))
} else {
print("La variable eff2 no se encuentra en la base de datos.")
}
## [1] "La variable eff2 existe en la base de datos."
## Muy en desacuerdo Muy de acuerdo No sabe No responde
## 1 7 NA NA
## [1] 5 5 1 3 6 6
## [1] "Media: 4.04667081518357"
## [1] "Desviación estándar: 1.70587945437684"
## [1] "Intervalo de confianza al 95%: [ 3.96320360128366 , 4.13013802908349 ]"
##
## One Sample t-test
##
## data: data$eff2
## t = 95.095, df = 1606, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 3.963204 4.130138
## sample estimates:
## mean of x
## 4.046671
Categorías de respuesta: 1: Muy en desacuerdo 2: Algo en desacuerdo 3: Ni de acuerdo ni en desacuerdo 4: Algo de acuerdo 5: Muy de acuerdo 7: No sabe 8: No responde
# Verificar si la variable 'eff2' está correctamente cargada
head(data$eff2)
## [1] 5 5 1 3 6 6
# Descripción de la pregunta y categorías de respuesta
# "A los políticos les importa mi opinión/intereses"
# Respuestas posibles:
# 1 - Muy en desacuerdo
# 2 - Algo en desacuerdo
# 3 - Ni de acuerdo ni en desacuerdo
# 4 - Algo de acuerdo
# 5 - Muy de acuerdo
# 7 - No sabe
# 8 - No responde
# Calcular la media y desviación estándar de la variable eff2
mean_eff2 <- mean(data$eff2, na.rm = TRUE)
sd_eff2 <- sd(data$eff2, na.rm = TRUE)
# Imprimir los resultados
print(paste("Media de confianza en los políticos:", mean_eff2))
## [1] "Media de confianza en los políticos: 4.04667081518357"
print(paste("Desviación estándar de confianza en los políticos:", sd_eff2))
## [1] "Desviación estándar de confianza en los políticos: 1.70587945437684"
# Calcular el intervalo de confianza del 95% para la media
# Número de observaciones válidas (sin NA)
n <- sum(!is.na(data$eff2))
# Cálculo del margen de error
error_margin <- qt(0.975, df = n-1) * (sd_eff2 / sqrt(n))
# Límites del intervalo de confianza
ci_lower <- mean_eff2 - error_margin
ci_upper <- mean_eff2 + error_margin
# Imprimir el intervalo de confianza
print(paste("Intervalo de confianza al 95%: [", ci_lower, ",", ci_upper, "]"))
## [1] "Intervalo de confianza al 95%: [ 3.96320360128366 , 4.13013802908349 ]"
# Verificación con la función t.test para comprobar el intervalo
print(t.test(data$eff2, conf.level = 0.95))
##
## One Sample t-test
##
## data: data$eff2
## t = 95.095, df = 1606, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 3.963204 4.130138
## sample estimates:
## mean of x
## 4.046671
# Ver las primeras columnas del conjunto de datos
colnames(data)
## [1] "idnum" "pais" "nationality" "estratopri" "estratosec"
## [6] "strata" "prov" "municipio" "upm" "ur"
## [11] "cluster" "year" "wave" "wt" "q1tc_r"
## [16] "q2" "a4n" "soct2" "idio2" "mesfut1"
## [21] "np1" "np1new" "sgl1" "cp8" "cp13"
## [26] "cp20" "it1" "l1n" "jc10" "jc13"
## [31] "jc15a" "jc16a" "vic1ext" "aoj11" "aoj12"
## [36] "countfair1" "countfair3" "chm1bn" "chm2bn" "b0"
## [41] "b1" "b2" "b3" "b4" "b6"
## [46] "b12" "b13" "b18" "b21" "b21a"
## [51] "b31" "b32" "b37" "b47a" "b10a"
## [56] "b11" "b15" "b19" "m1" "sd2new2"
## [61] "sd3new2" "sd6new2" "sd5new2" "pop101" "pop107"
## [66] "ros4" "ing4" "eff1" "eff2" "vb21n"
## [71] "crg1" "crg2" "drr1n" "env1c" "env2b"
## [76] "anestg" "pn4" "dem30" "e5" "e17a"
## [81] "e17b" "d3" "d4" "d5" "d6"
## [86] "d5newa" "d7a" "d5newb" "d7b" "exc2"
## [91] "exc6" "exc20" "exc11a" "exc11" "exc14a"
## [96] "exc14" "exc18" "exc7" "exc7new" "lib2c"
## [101] "immig1xb" "meximmig10" "vb2" "vb3n" "vb10"
## [106] "vb11" "pol1" "vb20" "vb30mex" "vb50"
## [111] "vb51" "vb52" "vb58" "vb58exp" "w14a"
## [116] "dvw1" "dvw2" "mil10a" "mil10b" "mil10e"
## [121] "dis11" "dis12" "childm6" "childm7" "childm8"
## [126] "childm9" "childm10" "childm11" "childm12" "childm13"
## [131] "mexwf1_19" "edre" "q3cn" "q5b" "ocup4a"
## [136] "formal" "q10c" "q10a" "q10b" "q10inc"
## [141] "q10e" "q14" "q14dnew" "q14f" "q14motan"
## [146] "q14pan_1" "q14pan_2" "q14pan_3" "q14pan_4" "q14pan_5"
## [151] "q14pan_0" "q14pan_7" "q14docn" "q14int1" "fs2"
## [156] "fs212" "ws1" "ws2" "q11n" "q12cn"
## [161] "q12bn" "q12bnf" "q12p" "etid" "leng1"
## [166] "leng4" "gi0n" "smedia1n" "smedia3n" "smedia3b"
## [171] "smedia11" "smedia12" "smedia13" "smedia14n" "smedia15"
## [176] "smedia16" "smedia10m" "r3" "r4a" "r6"
## [181] "r7" "r12" "r15" "r18n" "r18"
## [186] "r16" "r27" "colorr" "noise1" "conocim"
## [191] "sexin" "colori" "fecha" "formatq" "idiomaq"
# Comparar la media de confianza entre residentes urbanos y rurales
t_test_ur <- t.test(eff2 ~ ur, data = data)
print("Prueba de Hipótesis: Residentes urbanos vs. rurales")
## [1] "Prueba de Hipótesis: Residentes urbanos vs. rurales"
print(t_test_ur)
##
## Welch Two Sample t-test
##
## data: eff2 by ur
## t = 0.81179, df = 503.07, p-value = 0.4173
## alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
## 95 percent confidence interval:
## -0.1214512 0.2924865
## sample estimates:
## mean in group 1 mean in group 2
## 4.063913 3.978395
# Comparar la media de confianza entre hombres y mujeres
t_test_genero <- t.test(eff2 ~ q1tc_r, data = data)
print("Prueba de Hipótesis: Hombres vs. Mujeres")
## [1] "Prueba de Hipótesis: Hombres vs. Mujeres"
print(t_test_genero)
##
## Welch Two Sample t-test
##
## data: eff2 by q1tc_r
## t = 7.8965, df = 1599.9, p-value = 5.285e-15
## alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
## 95 percent confidence interval:
## 0.4956759 0.8233022
## sample estimates:
## mean in group 1 mean in group 2
## 4.383333 3.723844
Seleccionar una variable de confianza institucional (variables B1 - B19) como variable dependiente. Estimar un modelo de regresión bivariado usando la variable de confianza institucional como dependiente y otra pregunta como variable independiente (pero no otra medida de confianza institucional). Interpretar los resultados de la regresión, explicando: Tamaño del coeficiente Dirección del efecto Significancia estadística Estimar un modelo de regresión multivariable, agregando menos de 5 variables de control. Explicar por qué se eligieron esas variables de control.
# Verificar las variables del dataframe
names(data)
## [1] "idnum" "pais" "nationality" "estratopri" "estratosec"
## [6] "strata" "prov" "municipio" "upm" "ur"
## [11] "cluster" "year" "wave" "wt" "q1tc_r"
## [16] "q2" "a4n" "soct2" "idio2" "mesfut1"
## [21] "np1" "np1new" "sgl1" "cp8" "cp13"
## [26] "cp20" "it1" "l1n" "jc10" "jc13"
## [31] "jc15a" "jc16a" "vic1ext" "aoj11" "aoj12"
## [36] "countfair1" "countfair3" "chm1bn" "chm2bn" "b0"
## [41] "b1" "b2" "b3" "b4" "b6"
## [46] "b12" "b13" "b18" "b21" "b21a"
## [51] "b31" "b32" "b37" "b47a" "b10a"
## [56] "b11" "b15" "b19" "m1" "sd2new2"
## [61] "sd3new2" "sd6new2" "sd5new2" "pop101" "pop107"
## [66] "ros4" "ing4" "eff1" "eff2" "vb21n"
## [71] "crg1" "crg2" "drr1n" "env1c" "env2b"
## [76] "anestg" "pn4" "dem30" "e5" "e17a"
## [81] "e17b" "d3" "d4" "d5" "d6"
## [86] "d5newa" "d7a" "d5newb" "d7b" "exc2"
## [91] "exc6" "exc20" "exc11a" "exc11" "exc14a"
## [96] "exc14" "exc18" "exc7" "exc7new" "lib2c"
## [101] "immig1xb" "meximmig10" "vb2" "vb3n" "vb10"
## [106] "vb11" "pol1" "vb20" "vb30mex" "vb50"
## [111] "vb51" "vb52" "vb58" "vb58exp" "w14a"
## [116] "dvw1" "dvw2" "mil10a" "mil10b" "mil10e"
## [121] "dis11" "dis12" "childm6" "childm7" "childm8"
## [126] "childm9" "childm10" "childm11" "childm12" "childm13"
## [131] "mexwf1_19" "edre" "q3cn" "q5b" "ocup4a"
## [136] "formal" "q10c" "q10a" "q10b" "q10inc"
## [141] "q10e" "q14" "q14dnew" "q14f" "q14motan"
## [146] "q14pan_1" "q14pan_2" "q14pan_3" "q14pan_4" "q14pan_5"
## [151] "q14pan_0" "q14pan_7" "q14docn" "q14int1" "fs2"
## [156] "fs212" "ws1" "ws2" "q11n" "q12cn"
## [161] "q12bn" "q12bnf" "q12p" "etid" "leng1"
## [166] "leng4" "gi0n" "smedia1n" "smedia3n" "smedia3b"
## [171] "smedia11" "smedia12" "smedia13" "smedia14n" "smedia15"
## [176] "smedia16" "smedia10m" "r3" "r4a" "r6"
## [181] "r7" "r12" "r15" "r18n" "r18"
## [186] "r16" "r27" "colorr" "noise1" "conocim"
## [191] "sexin" "colori" "fecha" "formatq" "idiomaq"
# Regresión bivariada: b1 como variable dependiente y eff2 como independiente
modelo_bivariado <- lm(b1 ~ eff2, data = data)
summary(modelo_bivariado)
##
## Call:
## lm(formula = b1 ~ eff2, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1820 -0.9418 0.0582 1.1783 3.5386
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.34124 0.10322 32.369 < 2e-16 ***
## eff2 0.12011 0.02348 5.117 3.49e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.594 on 1594 degrees of freedom
## (26 observations deleted due to missingness)
## Multiple R-squared: 0.01616, Adjusted R-squared: 0.01554
## F-statistic: 26.18 on 1 and 1594 DF, p-value: 3.487e-07
# Regresión bivariada
modelo_bivariado <- lm(b1 ~ eff2, data = data)
# Resumen del modelo bivariado
summary(modelo_bivariado)
##
## Call:
## lm(formula = b1 ~ eff2, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1820 -0.9418 0.0582 1.1783 3.5386
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.34124 0.10322 32.369 < 2e-16 ***
## eff2 0.12011 0.02348 5.117 3.49e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.594 on 1594 degrees of freedom
## (26 observations deleted due to missingness)
## Multiple R-squared: 0.01616, Adjusted R-squared: 0.01554
## F-statistic: 26.18 on 1 and 1594 DF, p-value: 3.487e-07
# Regresión multivariable (con variables de control)
modelo_multivariable <- lm(b1 ~ eff2 + q1tc_r + b2 + b3, data = data)
# Resumen del modelo multivariable
summary(modelo_multivariable)
##
## Call:
## lm(formula = b1 ~ eff2 + q1tc_r + b2 + b3, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4115 -0.8710 0.0238 0.8500 5.1872
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.19034 0.16908 7.040 2.86e-12 ***
## eff2 0.01454 0.02080 0.699 0.484
## q1tc_r 0.02722 0.06909 0.394 0.694
## b2 0.20336 0.02189 9.292 < 2e-16 ***
## b3 0.37734 0.02194 17.196 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.341 on 1573 degrees of freedom
## (44 observations deleted due to missingness)
## Multiple R-squared: 0.3045, Adjusted R-squared: 0.3028
## F-statistic: 172.2 on 4 and 1573 DF, p-value: < 2.2e-16
Modelo bivariado: El efecto de eff2 sobre b1 es positivo y significativo, pero el R-cuadrado es bajo, lo que sugiere que eff2 explica muy poco de la variabilidad en b1. Modelo multivariable: Al agregar las variables de control q1tc_r, b2 y b3, el modelo tiene un mejor ajuste (más explicativo), especialmente con las variables b2 y b3 que son altamente significativas. Sin embargo, eff2 y q1tc_r ya no tienen un efecto significativo en b1 una vez que se controlan estas variables. Este análisis sugiere que eff2 y q1tc_r no son factores clave para explicar b1 cuando se consideran otras variables, como b2 y b3, que muestran un impacto mucho mayor en b1.
Graficar los resultados de la regresión, ya sea: Predicción de los valores de la variable dependiente a lo largo de la variable independiente. Un gráfico de coeficientes (coefficient plot). Etiquetar correctamente las variables y ejes para obtener el crédito completo.
summary(modelo_bivariado)
##
## Call:
## lm(formula = b1 ~ eff2, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1820 -0.9418 0.0582 1.1783 3.5386
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.34124 0.10322 32.369 < 2e-16 ***
## eff2 0.12011 0.02348 5.117 3.49e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.594 on 1594 degrees of freedom
## (26 observations deleted due to missingness)
## Multiple R-squared: 0.01616, Adjusted R-squared: 0.01554
## F-statistic: 26.18 on 1 and 1594 DF, p-value: 3.487e-07
sum(is.na(data$b1)) # Verifica si hay NAs en la variable dependiente
## [1] 13
sum(is.na(data$eff2)) # Verifica si hay NAs en la variable independiente
## [1] 15
data <- data[!is.na(data$b1) & !is.na(data$eff2), ]
colnames(data)
## [1] "idnum" "pais" "nationality" "estratopri" "estratosec"
## [6] "strata" "prov" "municipio" "upm" "ur"
## [11] "cluster" "year" "wave" "wt" "q1tc_r"
## [16] "q2" "a4n" "soct2" "idio2" "mesfut1"
## [21] "np1" "np1new" "sgl1" "cp8" "cp13"
## [26] "cp20" "it1" "l1n" "jc10" "jc13"
## [31] "jc15a" "jc16a" "vic1ext" "aoj11" "aoj12"
## [36] "countfair1" "countfair3" "chm1bn" "chm2bn" "b0"
## [41] "b1" "b2" "b3" "b4" "b6"
## [46] "b12" "b13" "b18" "b21" "b21a"
## [51] "b31" "b32" "b37" "b47a" "b10a"
## [56] "b11" "b15" "b19" "m1" "sd2new2"
## [61] "sd3new2" "sd6new2" "sd5new2" "pop101" "pop107"
## [66] "ros4" "ing4" "eff1" "eff2" "vb21n"
## [71] "crg1" "crg2" "drr1n" "env1c" "env2b"
## [76] "anestg" "pn4" "dem30" "e5" "e17a"
## [81] "e17b" "d3" "d4" "d5" "d6"
## [86] "d5newa" "d7a" "d5newb" "d7b" "exc2"
## [91] "exc6" "exc20" "exc11a" "exc11" "exc14a"
## [96] "exc14" "exc18" "exc7" "exc7new" "lib2c"
## [101] "immig1xb" "meximmig10" "vb2" "vb3n" "vb10"
## [106] "vb11" "pol1" "vb20" "vb30mex" "vb50"
## [111] "vb51" "vb52" "vb58" "vb58exp" "w14a"
## [116] "dvw1" "dvw2" "mil10a" "mil10b" "mil10e"
## [121] "dis11" "dis12" "childm6" "childm7" "childm8"
## [126] "childm9" "childm10" "childm11" "childm12" "childm13"
## [131] "mexwf1_19" "edre" "q3cn" "q5b" "ocup4a"
## [136] "formal" "q10c" "q10a" "q10b" "q10inc"
## [141] "q10e" "q14" "q14dnew" "q14f" "q14motan"
## [146] "q14pan_1" "q14pan_2" "q14pan_3" "q14pan_4" "q14pan_5"
## [151] "q14pan_0" "q14pan_7" "q14docn" "q14int1" "fs2"
## [156] "fs212" "ws1" "ws2" "q11n" "q12cn"
## [161] "q12bn" "q12bnf" "q12p" "etid" "leng1"
## [166] "leng4" "gi0n" "smedia1n" "smedia3n" "smedia3b"
## [171] "smedia11" "smedia12" "smedia13" "smedia14n" "smedia15"
## [176] "smedia16" "smedia10m" "r3" "r4a" "r6"
## [181] "r7" "r12" "r15" "r18n" "r18"
## [186] "r16" "r27" "colorr" "noise1" "conocim"
## [191] "sexin" "colori" "fecha" "formatq" "idiomaq"
# Cargar los paquetes necesarios
library(ggplot2)
# Estimación del modelo bivariado
modelo_bivariado <- lm(b1 ~ eff2, data = data)
# Predicción de la variable dependiente b1 usando el modelo
data$pred_b1 <- predict(modelo_bivariado)
# Graficar los resultados
ggplot(data, aes(x = eff2, y = b1)) +
geom_point(color = "blue", alpha = 0.5) + # Puntos reales
geom_line(aes(x = eff2, y = pred_b1), color = "red") + # Línea de predicción
labs(
title = "Predicción de b1 a lo largo de eff2",
x = "eff2 (Variable Independiente)",
y = "b1 (Variable Dependiente)"
) +
theme_minimal()
modelo_multivariado <- lm(b1 ~ eff2 + q1tc_r + b2 + b3, data = data)
class(modelo_multivariado)
## [1] "lm"
names(data)
## [1] "idnum" "pais" "nationality" "estratopri" "estratosec"
## [6] "strata" "prov" "municipio" "upm" "ur"
## [11] "cluster" "year" "wave" "wt" "q1tc_r"
## [16] "q2" "a4n" "soct2" "idio2" "mesfut1"
## [21] "np1" "np1new" "sgl1" "cp8" "cp13"
## [26] "cp20" "it1" "l1n" "jc10" "jc13"
## [31] "jc15a" "jc16a" "vic1ext" "aoj11" "aoj12"
## [36] "countfair1" "countfair3" "chm1bn" "chm2bn" "b0"
## [41] "b1" "b2" "b3" "b4" "b6"
## [46] "b12" "b13" "b18" "b21" "b21a"
## [51] "b31" "b32" "b37" "b47a" "b10a"
## [56] "b11" "b15" "b19" "m1" "sd2new2"
## [61] "sd3new2" "sd6new2" "sd5new2" "pop101" "pop107"
## [66] "ros4" "ing4" "eff1" "eff2" "vb21n"
## [71] "crg1" "crg2" "drr1n" "env1c" "env2b"
## [76] "anestg" "pn4" "dem30" "e5" "e17a"
## [81] "e17b" "d3" "d4" "d5" "d6"
## [86] "d5newa" "d7a" "d5newb" "d7b" "exc2"
## [91] "exc6" "exc20" "exc11a" "exc11" "exc14a"
## [96] "exc14" "exc18" "exc7" "exc7new" "lib2c"
## [101] "immig1xb" "meximmig10" "vb2" "vb3n" "vb10"
## [106] "vb11" "pol1" "vb20" "vb30mex" "vb50"
## [111] "vb51" "vb52" "vb58" "vb58exp" "w14a"
## [116] "dvw1" "dvw2" "mil10a" "mil10b" "mil10e"
## [121] "dis11" "dis12" "childm6" "childm7" "childm8"
## [126] "childm9" "childm10" "childm11" "childm12" "childm13"
## [131] "mexwf1_19" "edre" "q3cn" "q5b" "ocup4a"
## [136] "formal" "q10c" "q10a" "q10b" "q10inc"
## [141] "q10e" "q14" "q14dnew" "q14f" "q14motan"
## [146] "q14pan_1" "q14pan_2" "q14pan_3" "q14pan_4" "q14pan_5"
## [151] "q14pan_0" "q14pan_7" "q14docn" "q14int1" "fs2"
## [156] "fs212" "ws1" "ws2" "q11n" "q12cn"
## [161] "q12bn" "q12bnf" "q12p" "etid" "leng1"
## [166] "leng4" "gi0n" "smedia1n" "smedia3n" "smedia3b"
## [171] "smedia11" "smedia12" "smedia13" "smedia14n" "smedia15"
## [176] "smedia16" "smedia10m" "r3" "r4a" "r6"
## [181] "r7" "r12" "r15" "r18n" "r18"
## [186] "r16" "r27" "colorr" "noise1" "conocim"
## [191] "sexin" "colori" "fecha" "formatq" "idiomaq"
## [196] "pred_b1"
# Asumiendo que modelo_multivariado es el modelo correcto ajustado
coef_data <- data.frame(
variable = names(coef(modelo_multivariado)),
coef = coef(modelo_multivariado),
se = sqrt(diag(vcov(modelo_multivariado)))
)
# Visualización
ggplot(coef_data, aes(x = reorder(variable, coef), y = coef)) +
geom_point(aes(color = coef > 0), size = 3) +
geom_errorbar(aes(ymin = coef - 1.96 * se, ymax = coef + 1.96 * se), width = 0.2) +
labs(title = "Gráfico de Coeficientes",
x = "Variables",
y = "Coeficientes") +
coord_flip() +
theme_minimal()
Muestra cómo los valores de la variable dependiente (b1) cambian según la variable independiente (eff2). La línea de regresión indica la relación positiva entre ambas, lo que significa que a medida que aumenta eff2, también aumenta b1. La dispersión de los puntos alrededor de la línea muestra que el modelo tiene un ajuste razonable, aunque no perfecto. Gráfico de Coeficientes: Muestra los coeficientes de las variables independientes (eff2, q1tc_r, b2, b3) en el modelo. Los coeficientes indican cómo cada variable afecta a la variable dependiente. Por ejemplo, un coeficiente positivo indica que un aumento en la variable independiente aumenta la dependiente. Los intervalos de confianza muestran la certeza del coeficiente; si no incluyen el cero, el coeficiente es significativo. Conclusiones: Modelo bivariado: Hay una relación positiva y significativa entre eff2 y b1. Modelo multivariado: Al incluir variables de control como b2 y b3, estos tienen efectos significativos sobre b1, aunque eff2 pierde significancia en el modelo más complejo.