We use the ETT-small.csv dataset for our analysis.
The ETT dataset records information such as the temperature of the transformer (oil temperature) and the load.
## Rows: 17420 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (7): HUFL, HULL, MUFL, MULL, LUFL, LULL, OT
## dttm (1): date
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 6 × 8
## date HUFL HULL MUFL MULL LUFL LULL OT
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-07-01 00:00:00 5.83 2.01 1.60 0.462 4.20 1.34 30.5
## 2 2016-07-01 01:00:00 5.69 2.08 1.49 0.426 4.14 1.37 27.8
## 3 2016-07-01 02:00:00 5.16 1.74 1.28 0.355 3.78 1.22 27.8
## 4 2016-07-01 03:00:00 5.09 1.94 1.28 0.391 3.81 1.28 25.0
## 5 2016-07-01 04:00:00 5.36 1.94 1.49 0.462 3.87 1.28 21.9
## 6 2016-07-01 05:00:00 5.63 2.14 1.53 0.533 4.05 1.37 21.2
## date HUFL HULL
## Min. :2016-07-01 00:00:00 Min. :-22.706 Min. :-4.756
## 1st Qu.:2016-12-29 10:45:00 1st Qu.: 5.827 1st Qu.: 0.737
## Median :2017-06-28 21:30:00 Median : 8.774 Median : 2.210
## Mean :2017-06-28 21:30:00 Mean : 7.375 Mean : 2.242
## 3rd Qu.:2017-12-27 08:15:00 3rd Qu.: 11.788 3rd Qu.: 3.684
## Max. :2018-06-26 19:00:00 Max. : 23.644 Max. :10.114
## MUFL MULL LUFL LULL
## Min. :-25.088 Min. :-5.9340 Min. :-1.188 Min. :-1.3710
## 1st Qu.: 3.296 1st Qu.:-0.2840 1st Qu.: 2.315 1st Qu.: 0.6700
## Median : 5.970 Median : 0.9590 Median : 2.833 Median : 0.9750
## Mean : 4.300 Mean : 0.8816 Mean : 3.066 Mean : 0.8569
## 3rd Qu.: 8.635 3rd Qu.: 2.2030 3rd Qu.: 3.625 3rd Qu.: 1.2180
## Max. : 17.341 Max. : 7.7470 Max. : 8.498 Max. : 3.0460
## OT
## Min. :-4.080
## 1st Qu.: 6.964
## Median :11.396
## Mean :13.325
## 3rd Qu.:18.079
## Max. :46.007
## Loading required package: Rcpp
## Loading required package: rlang
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Rows: 17420 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (7): HUFL, HULL, MUFL, MULL, LUFL, LULL, OT
## dttm (1): date
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## Disabling yearly seasonality. Run prophet with yearly.seasonality=TRUE to override this.
The ETT-small dataset records information such as transformer temperature (oil temperature) and load. It is commonly used for time series forecasting, especially playing an important role in monitoring energy systems and predicting the future performance of electrical transformers.
The main goal of this project is to perform time series forecasting on the transformer’s oil temperature (OT) using the Facebook Prophet model. The purpose is to explore and predict temperature trends, which can better assist in achieving preventive maintenance, fault detection, and performance monitoring of electrical equipment.
The chart is generated in this project to analyze the trend and seasonality of oil temperature over time. The Prophet model is selected due to its strong ability to handle time-series data with clear trends and seasonal effects.
Through observations from the charts, the following insights are obtained:
By modeling the OT variable from the ETT-small dataset, we can better understand the operating patterns of transformers. At the same time, this helps predict potential anomalies that may occur, thereby ensuring the stability and reliability of the system.