Welcome to this R demo session! Here, I will demonstrate how to use R to deal with missing data.
Missing data can be a not so trivial problem when analysing a dataset and accounting for it is usually not so straightforward either.
If the amount of missing data is very small relatively to the size of the dataset, then leaving out the few samples with missing features may be the best strategy in order not to bias the analysis, however leaving out available datapoints deprives the data of some amount of information and depending on the situation you face, you may want to look for other fixes before wiping out potentially useful datapoints from your dataset.
While some quick fixes such as mean-substitution may be fine in some cases, such simple approaches usually introduce bias into the data, for instance, applying mean substitution leaves the mean unchanged (which is desirable) but decreases variance, which may be undesirable.
The mice
package in R, helps you imputing missing values
with plausible data values. These plausible values are drawn from a
distribution specifically designed for each missing datapoint.
In this rmarkdown we are going to impute missing values using the
airquality
dataset (available in R). For the purpose of the
demonstration I am going to remove some datapoints from the dataset.
data <- airquality
# Examine the data
head(data)
## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 5 NA NA 14.3 56 5 5
## 6 28 NA 14.9 66 5 6
# Remove some datapoints
data[4:10,3] <- rep(NA,7)
data[1:5,4] <- NA
As far as categorical variables are concerned, replacing categorical
variables is usually not advisable. Some common practice include
replacing missing categorical variables with the mode of the observed
ones, however, it is questionable whether it is a good choice. Even
though in this case no datapoints are missing from the categorical
variables, we remove them from our dataset (we can add them back later
if needed) and take a look at the data using summary()
.
data <- data[-c(5,6)]
summary(data)
## Ozone Solar.R Wind Temp
## Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :57.00
## 1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:73.00
## Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
## Mean : 42.13 Mean :185.9 Mean : 9.806 Mean :78.28
## 3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
## Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
## NA's :37 NA's :7 NA's :7 NA's :5
Apparently Ozone is the variable with the most missing datapoints. Below we are going to dig deeper into the missing data patterns.
As we learned in class lectures, there are three types of missing data:
Assuming data is MCAR, too much missing data can be a problem too. Usually a safe maximum threshold is 5% of the total for large datasets. If missing data for a certain feature or sample is more than 5% then you probably should leave that feature or sample out. We therefore check for features (columns) and samples (rows) where more than 5% of the data is missing using a simple function.
pMiss <- function(x){sum(is.na(x))/length(x)*100}
apply(data,2,pMiss)
## Ozone Solar.R Wind Temp
## 24.183007 4.575163 4.575163 3.267974
apply(data,1,pMiss)
## [1] 25 25 25 50 100 50 25 25 25 50 25 0 0 0 0 0 0 0
## [19] 0 0 0 0 0 0 25 25 50 0 0 0 0 25 25 25 25 25
## [37] 25 0 25 0 0 25 25 0 25 25 0 0 0 0 0 25 25 25
## [55] 25 25 25 25 25 25 25 0 0 0 25 0 0 0 0 0 0 25
## [73] 0 0 25 0 0 0 0 0 0 0 25 25 0 0 0 0 0 0
## [91] 0 0 0 0 0 25 25 25 0 0 0 25 25 0 0 0 25 0
## [109] 0 0 0 0 0 0 25 0 0 0 25 0 0 0 0 0 0 0
## [127] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [145] 0 0 0 0 0 25 0 0 0
We see that Ozone is missing almost 25% of the datapoints. The other variables are below the 5% threshold.
The mice
package provides a nice function
md.pattern()
to get a better understanding of the pattern
of missing data
library(mice)
##
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
##
## filter
## The following objects are masked from 'package:base':
##
## cbind, rbind
md.pattern(data)
## Temp Solar.R Wind Ozone
## 104 1 1 1 1 0
## 34 1 1 1 0 1
## 3 1 1 0 1 1
## 1 1 1 0 0 2
## 4 1 0 1 1 1
## 1 1 0 1 0 2
## 1 1 0 0 1 2
## 3 0 1 1 1 1
## 1 0 1 0 1 2
## 1 0 0 0 0 4
## 5 7 7 37 56
The output tells us that 104 samples are complete, 34 samples miss
only the Ozone measurement, 4 samples miss only the Solar.R
value and so on.
The accompanied plot also contains some useful information:
A perhaps more helpful visual representation can be obtained using
the VIM
package as follows
library(VIM)
## Loading required package: colorspace
## Loading required package: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
##
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
##
## sleep
aggr_plot <- aggr(data, col=c('navyblue','red'), numbers=TRUE, sortVars=TRUE, labels=names(data), cex.axis=.7, gap=3, ylab=c("Histogram of missing data","Pattern"))
##
## Variables sorted by number of missings:
## Variable Count
## Ozone 0.24183007
## Solar.R 0.04575163
## Wind 0.04575163
## Temp 0.03267974
The plot helps us understanding that almost 70% of the samples are not missing any information, 22% are missing the Ozone value, and the remaining ones show other missing patterns. Through this approach the situation looks a bit clearer in my opinion.
Another (hopefully) helpful visual approach is a special box plot.
marginplot(data[c(1,2)])
Obviously here we are constrained at plotting 2 variables at a time only, but nevertheless we can gather some interesting insights.
The red box plot on the left shows the distribution of Solar.R with Ozone missing while the blue box plot shows the distribution of the remaining datapoints. Likewhise for the Ozone box plots at the bottom of the graph.
If our assumption of MCAR data is correct, then we expect the red and blue box plots to be very similar.
The mice()
function takes care of the imputing
process
tempData <- mice(data,m=5,maxit=50,meth='pmm',seed=500)
##
## iter imp variable
## 1 1 Ozone Solar.R Wind Temp
## 1 2 Ozone Solar.R Wind Temp
## 1 3 Ozone Solar.R Wind Temp
## 1 4 Ozone Solar.R Wind Temp
## 1 5 Ozone Solar.R Wind Temp
## 2 1 Ozone Solar.R Wind Temp
## 2 2 Ozone Solar.R Wind Temp
## 2 3 Ozone Solar.R Wind Temp
## 2 4 Ozone Solar.R Wind Temp
## 2 5 Ozone Solar.R Wind Temp
## 3 1 Ozone Solar.R Wind Temp
## 3 2 Ozone Solar.R Wind Temp
## 3 3 Ozone Solar.R Wind Temp
## 3 4 Ozone Solar.R Wind Temp
## 3 5 Ozone Solar.R Wind Temp
## 4 1 Ozone Solar.R Wind Temp
## 4 2 Ozone Solar.R Wind Temp
## 4 3 Ozone Solar.R Wind Temp
## 4 4 Ozone Solar.R Wind Temp
## 4 5 Ozone Solar.R Wind Temp
## 5 1 Ozone Solar.R Wind Temp
## 5 2 Ozone Solar.R Wind Temp
## 5 3 Ozone Solar.R Wind Temp
## 5 4 Ozone Solar.R Wind Temp
## 5 5 Ozone Solar.R Wind Temp
## 6 1 Ozone Solar.R Wind Temp
## 6 2 Ozone Solar.R Wind Temp
## 6 3 Ozone Solar.R Wind Temp
## 6 4 Ozone Solar.R Wind Temp
## 6 5 Ozone Solar.R Wind Temp
## 7 1 Ozone Solar.R Wind Temp
## 7 2 Ozone Solar.R Wind Temp
## 7 3 Ozone Solar.R Wind Temp
## 7 4 Ozone Solar.R Wind Temp
## 7 5 Ozone Solar.R Wind Temp
## 8 1 Ozone Solar.R Wind Temp
## 8 2 Ozone Solar.R Wind Temp
## 8 3 Ozone Solar.R Wind Temp
## 8 4 Ozone Solar.R Wind Temp
## 8 5 Ozone Solar.R Wind Temp
## 9 1 Ozone Solar.R Wind Temp
## 9 2 Ozone Solar.R Wind Temp
## 9 3 Ozone Solar.R Wind Temp
## 9 4 Ozone Solar.R Wind Temp
## 9 5 Ozone Solar.R Wind Temp
## 10 1 Ozone Solar.R Wind Temp
## 10 2 Ozone Solar.R Wind Temp
## 10 3 Ozone Solar.R Wind Temp
## 10 4 Ozone Solar.R Wind Temp
## 10 5 Ozone Solar.R Wind Temp
## 11 1 Ozone Solar.R Wind Temp
## 11 2 Ozone Solar.R Wind Temp
## 11 3 Ozone Solar.R Wind Temp
## 11 4 Ozone Solar.R Wind Temp
## 11 5 Ozone Solar.R Wind Temp
## 12 1 Ozone Solar.R Wind Temp
## 12 2 Ozone Solar.R Wind Temp
## 12 3 Ozone Solar.R Wind Temp
## 12 4 Ozone Solar.R Wind Temp
## 12 5 Ozone Solar.R Wind Temp
## 13 1 Ozone Solar.R Wind Temp
## 13 2 Ozone Solar.R Wind Temp
## 13 3 Ozone Solar.R Wind Temp
## 13 4 Ozone Solar.R Wind Temp
## 13 5 Ozone Solar.R Wind Temp
## 14 1 Ozone Solar.R Wind Temp
## 14 2 Ozone Solar.R Wind Temp
## 14 3 Ozone Solar.R Wind Temp
## 14 4 Ozone Solar.R Wind Temp
## 14 5 Ozone Solar.R Wind Temp
## 15 1 Ozone Solar.R Wind Temp
## 15 2 Ozone Solar.R Wind Temp
## 15 3 Ozone Solar.R Wind Temp
## 15 4 Ozone Solar.R Wind Temp
## 15 5 Ozone Solar.R Wind Temp
## 16 1 Ozone Solar.R Wind Temp
## 16 2 Ozone Solar.R Wind Temp
## 16 3 Ozone Solar.R Wind Temp
## 16 4 Ozone Solar.R Wind Temp
## 16 5 Ozone Solar.R Wind Temp
## 17 1 Ozone Solar.R Wind Temp
## 17 2 Ozone Solar.R Wind Temp
## 17 3 Ozone Solar.R Wind Temp
## 17 4 Ozone Solar.R Wind Temp
## 17 5 Ozone Solar.R Wind Temp
## 18 1 Ozone Solar.R Wind Temp
## 18 2 Ozone Solar.R Wind Temp
## 18 3 Ozone Solar.R Wind Temp
## 18 4 Ozone Solar.R Wind Temp
## 18 5 Ozone Solar.R Wind Temp
## 19 1 Ozone Solar.R Wind Temp
## 19 2 Ozone Solar.R Wind Temp
## 19 3 Ozone Solar.R Wind Temp
## 19 4 Ozone Solar.R Wind Temp
## 19 5 Ozone Solar.R Wind Temp
## 20 1 Ozone Solar.R Wind Temp
## 20 2 Ozone Solar.R Wind Temp
## 20 3 Ozone Solar.R Wind Temp
## 20 4 Ozone Solar.R Wind Temp
## 20 5 Ozone Solar.R Wind Temp
## 21 1 Ozone Solar.R Wind Temp
## 21 2 Ozone Solar.R Wind Temp
## 21 3 Ozone Solar.R Wind Temp
## 21 4 Ozone Solar.R Wind Temp
## 21 5 Ozone Solar.R Wind Temp
## 22 1 Ozone Solar.R Wind Temp
## 22 2 Ozone Solar.R Wind Temp
## 22 3 Ozone Solar.R Wind Temp
## 22 4 Ozone Solar.R Wind Temp
## 22 5 Ozone Solar.R Wind Temp
## 23 1 Ozone Solar.R Wind Temp
## 23 2 Ozone Solar.R Wind Temp
## 23 3 Ozone Solar.R Wind Temp
## 23 4 Ozone Solar.R Wind Temp
## 23 5 Ozone Solar.R Wind Temp
## 24 1 Ozone Solar.R Wind Temp
## 24 2 Ozone Solar.R Wind Temp
## 24 3 Ozone Solar.R Wind Temp
## 24 4 Ozone Solar.R Wind Temp
## 24 5 Ozone Solar.R Wind Temp
## 25 1 Ozone Solar.R Wind Temp
## 25 2 Ozone Solar.R Wind Temp
## 25 3 Ozone Solar.R Wind Temp
## 25 4 Ozone Solar.R Wind Temp
## 25 5 Ozone Solar.R Wind Temp
## 26 1 Ozone Solar.R Wind Temp
## 26 2 Ozone Solar.R Wind Temp
## 26 3 Ozone Solar.R Wind Temp
## 26 4 Ozone Solar.R Wind Temp
## 26 5 Ozone Solar.R Wind Temp
## 27 1 Ozone Solar.R Wind Temp
## 27 2 Ozone Solar.R Wind Temp
## 27 3 Ozone Solar.R Wind Temp
## 27 4 Ozone Solar.R Wind Temp
## 27 5 Ozone Solar.R Wind Temp
## 28 1 Ozone Solar.R Wind Temp
## 28 2 Ozone Solar.R Wind Temp
## 28 3 Ozone Solar.R Wind Temp
## 28 4 Ozone Solar.R Wind Temp
## 28 5 Ozone Solar.R Wind Temp
## 29 1 Ozone Solar.R Wind Temp
## 29 2 Ozone Solar.R Wind Temp
## 29 3 Ozone Solar.R Wind Temp
## 29 4 Ozone Solar.R Wind Temp
## 29 5 Ozone Solar.R Wind Temp
## 30 1 Ozone Solar.R Wind Temp
## 30 2 Ozone Solar.R Wind Temp
## 30 3 Ozone Solar.R Wind Temp
## 30 4 Ozone Solar.R Wind Temp
## 30 5 Ozone Solar.R Wind Temp
## 31 1 Ozone Solar.R Wind Temp
## 31 2 Ozone Solar.R Wind Temp
## 31 3 Ozone Solar.R Wind Temp
## 31 4 Ozone Solar.R Wind Temp
## 31 5 Ozone Solar.R Wind Temp
## 32 1 Ozone Solar.R Wind Temp
## 32 2 Ozone Solar.R Wind Temp
## 32 3 Ozone Solar.R Wind Temp
## 32 4 Ozone Solar.R Wind Temp
## 32 5 Ozone Solar.R Wind Temp
## 33 1 Ozone Solar.R Wind Temp
## 33 2 Ozone Solar.R Wind Temp
## 33 3 Ozone Solar.R Wind Temp
## 33 4 Ozone Solar.R Wind Temp
## 33 5 Ozone Solar.R Wind Temp
## 34 1 Ozone Solar.R Wind Temp
## 34 2 Ozone Solar.R Wind Temp
## 34 3 Ozone Solar.R Wind Temp
## 34 4 Ozone Solar.R Wind Temp
## 34 5 Ozone Solar.R Wind Temp
## 35 1 Ozone Solar.R Wind Temp
## 35 2 Ozone Solar.R Wind Temp
## 35 3 Ozone Solar.R Wind Temp
## 35 4 Ozone Solar.R Wind Temp
## 35 5 Ozone Solar.R Wind Temp
## 36 1 Ozone Solar.R Wind Temp
## 36 2 Ozone Solar.R Wind Temp
## 36 3 Ozone Solar.R Wind Temp
## 36 4 Ozone Solar.R Wind Temp
## 36 5 Ozone Solar.R Wind Temp
## 37 1 Ozone Solar.R Wind Temp
## 37 2 Ozone Solar.R Wind Temp
## 37 3 Ozone Solar.R Wind Temp
## 37 4 Ozone Solar.R Wind Temp
## 37 5 Ozone Solar.R Wind Temp
## 38 1 Ozone Solar.R Wind Temp
## 38 2 Ozone Solar.R Wind Temp
## 38 3 Ozone Solar.R Wind Temp
## 38 4 Ozone Solar.R Wind Temp
## 38 5 Ozone Solar.R Wind Temp
## 39 1 Ozone Solar.R Wind Temp
## 39 2 Ozone Solar.R Wind Temp
## 39 3 Ozone Solar.R Wind Temp
## 39 4 Ozone Solar.R Wind Temp
## 39 5 Ozone Solar.R Wind Temp
## 40 1 Ozone Solar.R Wind Temp
## 40 2 Ozone Solar.R Wind Temp
## 40 3 Ozone Solar.R Wind Temp
## 40 4 Ozone Solar.R Wind Temp
## 40 5 Ozone Solar.R Wind Temp
## 41 1 Ozone Solar.R Wind Temp
## 41 2 Ozone Solar.R Wind Temp
## 41 3 Ozone Solar.R Wind Temp
## 41 4 Ozone Solar.R Wind Temp
## 41 5 Ozone Solar.R Wind Temp
## 42 1 Ozone Solar.R Wind Temp
## 42 2 Ozone Solar.R Wind Temp
## 42 3 Ozone Solar.R Wind Temp
## 42 4 Ozone Solar.R Wind Temp
## 42 5 Ozone Solar.R Wind Temp
## 43 1 Ozone Solar.R Wind Temp
## 43 2 Ozone Solar.R Wind Temp
## 43 3 Ozone Solar.R Wind Temp
## 43 4 Ozone Solar.R Wind Temp
## 43 5 Ozone Solar.R Wind Temp
## 44 1 Ozone Solar.R Wind Temp
## 44 2 Ozone Solar.R Wind Temp
## 44 3 Ozone Solar.R Wind Temp
## 44 4 Ozone Solar.R Wind Temp
## 44 5 Ozone Solar.R Wind Temp
## 45 1 Ozone Solar.R Wind Temp
## 45 2 Ozone Solar.R Wind Temp
## 45 3 Ozone Solar.R Wind Temp
## 45 4 Ozone Solar.R Wind Temp
## 45 5 Ozone Solar.R Wind Temp
## 46 1 Ozone Solar.R Wind Temp
## 46 2 Ozone Solar.R Wind Temp
## 46 3 Ozone Solar.R Wind Temp
## 46 4 Ozone Solar.R Wind Temp
## 46 5 Ozone Solar.R Wind Temp
## 47 1 Ozone Solar.R Wind Temp
## 47 2 Ozone Solar.R Wind Temp
## 47 3 Ozone Solar.R Wind Temp
## 47 4 Ozone Solar.R Wind Temp
## 47 5 Ozone Solar.R Wind Temp
## 48 1 Ozone Solar.R Wind Temp
## 48 2 Ozone Solar.R Wind Temp
## 48 3 Ozone Solar.R Wind Temp
## 48 4 Ozone Solar.R Wind Temp
## 48 5 Ozone Solar.R Wind Temp
## 49 1 Ozone Solar.R Wind Temp
## 49 2 Ozone Solar.R Wind Temp
## 49 3 Ozone Solar.R Wind Temp
## 49 4 Ozone Solar.R Wind Temp
## 49 5 Ozone Solar.R Wind Temp
## 50 1 Ozone Solar.R Wind Temp
## 50 2 Ozone Solar.R Wind Temp
## 50 3 Ozone Solar.R Wind Temp
## 50 4 Ozone Solar.R Wind Temp
## 50 5 Ozone Solar.R Wind Temp
summary(tempData)
## Class: mids
## Number of multiple imputations: 5
## Imputation methods:
## Ozone Solar.R Wind Temp
## "pmm" "pmm" "pmm" "pmm"
## PredictorMatrix:
## Ozone Solar.R Wind Temp
## Ozone 0 1 1 1
## Solar.R 1 0 1 1
## Wind 1 1 0 1
## Temp 1 1 1 0
A couple of notes on the parameters:
m=5
refers to the number of imputed datasets. Five is
the default value.meth='pmm'
refers to the imputation method. In this
case we are using predictive mean matching as imputation method. Other
imputation methods can be used, type methods(mice)
for a
list of the available imputation methods.If you would like to check the imputed data, for instance for the variable Ozone, you need to enter the following line of code
tempData$imp$Ozone
## 1 2 3 4 5
## 5 13 19 12 115 63
## 10 30 12 13 21 7
## 25 8 28 6 18 28
## 26 9 32 4 18 37
## 27 37 21 4 32 32
## 32 40 39 35 32 47
## 33 44 28 36 52 20
## 34 20 23 37 37 19
## 35 32 28 16 32 35
## 36 89 80 48 49 115
## 37 18 7 16 30 22
## 39 96 77 135 76 85
## 42 50 168 64 50 41
## 43 96 78 96 96 78
## 45 63 20 18 24 31
## 46 71 37 20 20 28
## 52 20 35 37 63 63
## 53 16 78 73 48 115
## 54 59 35 46 44 23
## 55 16 39 28 40 49
## 56 24 36 52 21 44
## 57 36 20 20 18 23
## 58 11 11 24 7 23
## 59 44 13 23 23 27
## 60 23 4 19 4 32
## 61 44 16 46 37 35
## 65 30 23 65 30 30
## 72 45 37 63 63 44
## 75 39 46 32 39 28
## 83 37 40 59 32 35
## 84 40 59 28 28 35
## 102 61 85 96 79 78
## 103 31 59 20 31 36
## 107 32 24 11 21 21
## 115 52 16 11 14 13
## 119 78 96 168 76 50
## 150 14 12 13 23 11
The output shows the imputed data for each observation (first column left) within each imputed dataset (first row at the top).
If you need to check the imputation method used for each variable,
mice
makes it very easy to do.
tempData$meth
## Ozone Solar.R Wind Temp
## "pmm" "pmm" "pmm" "pmm"
Now we can get back the completed dataset using the
complete()
function. It is almost plain English:
completedData <- complete(tempData,1)
The missing values have been replaced with the imputed values in the
first of the five datasets. If you wish to use another one, just change
the second parameter in the complete()
function.
Let’s compare the distributions of original and imputed data using a some useful plots.
First of all we can use a scatterplot and plot Ozone against all the other variables
xyplot(tempData,Ozone ~ Wind+Temp+Solar.R,pch=18,cex=1)
What we would like to see is that the shape of the magenta points (imputed) matches the shape of the blue ones (observed). The matching shape tells us that the imputed values are indeed “plausible values”.
Another helpful plot is the density plot:
densityplot(tempData)
The density of the imputed data for each imputed dataset is showed in pink while the density of the observed data is showed in blue. Again, under our previous assumptions we expect the distributions to be similar.
Another useful visual take on the distributions can be obtained using
the stripplot()
function that shows the distributions of
the variables as individual points.
stripplot(tempData, pch = 20, cex = 1.2)
Suppose that the next step in our analysis is to fit a linear model
to the data. You may ask what imputed dataset to choose. The
mice
package makes it again very easy to fit a a model to
each of the imputed dataset and then pool the results together.
modelFit1 <- with(tempData,lm(Temp~ Ozone+Solar.R+Wind))
pool(modelFit1)
## Class: mipo m = 5
## term m estimate ubar b t dfcom
## 1 (Intercept) 5 72.70719792 7.093339e+00 4.431440e-01 7.625111e+00 149
## 2 Ozone 5 0.15924872 5.268255e-04 1.206098e-04 6.715573e-04 149
## 3 Solar.R 5 0.01252384 4.396201e-05 2.612657e-05 7.531389e-05 149
## 4 Wind 5 -0.34547006 4.067195e-02 2.113942e-03 4.320868e-02 149
## df riv lambda fmi
## 1 117.27936 0.07496792 0.06973968 0.08520801
## 2 49.30693 0.27472436 0.21551668 0.24551207
## 3 18.19046 0.71315866 0.41628290 0.47137535
## 4 123.65905 0.06237052 0.05870882 0.07357220
# Get the summary
summary(pool(modelFit1))
## term estimate std.error statistic df p.value
## 1 (Intercept) 72.70719792 2.761360433 26.330209 117.27936 4.655973e-51
## 2 Ozone 0.15924872 0.025914423 6.145177 49.30693 1.367056e-07
## 3 Solar.R 0.01252384 0.008678358 1.443112 18.19046 1.659893e-01
## 4 Wind -0.34547006 0.207866970 -1.661977 123.65905 9.905045e-02
The variable modelFit1
contains the results of the
fitting performed over the imputed datasets, while the
pool()
function pools them all together. Apparently, only
the Ozone variable is statistically significant.
Note that there are other columns aside from those typical of the
lm()
model: fmi
contains the fraction of
missing information while lambda
is the proportion of total
variance that is attributable to the missing data. For more information
I suggest to check out the paper by Stef van Buuren: link to the
paper.
Remember that we initialized the mice
function with a
specific seed (seed = 500), therefore the results are somewhat dependent
on our initial choice. To reduce this effect, we can impute a higher
number of dataset, by changing the default m=5
parameter in
the mice()
function as follows.
tempData2 <- mice(data,m=50,seed=245435)
##
## iter imp variable
## 1 1 Ozone Solar.R Wind Temp
## 1 2 Ozone Solar.R Wind Temp
## 1 3 Ozone Solar.R Wind Temp
## 1 4 Ozone Solar.R Wind Temp
## 1 5 Ozone Solar.R Wind Temp
## 1 6 Ozone Solar.R Wind Temp
## 1 7 Ozone Solar.R Wind Temp
## 1 8 Ozone Solar.R Wind Temp
## 1 9 Ozone Solar.R Wind Temp
## 1 10 Ozone Solar.R Wind Temp
## 1 11 Ozone Solar.R Wind Temp
## 1 12 Ozone Solar.R Wind Temp
## 1 13 Ozone Solar.R Wind Temp
## 1 14 Ozone Solar.R Wind Temp
## 1 15 Ozone Solar.R Wind Temp
## 1 16 Ozone Solar.R Wind Temp
## 1 17 Ozone Solar.R Wind Temp
## 1 18 Ozone Solar.R Wind Temp
## 1 19 Ozone Solar.R Wind Temp
## 1 20 Ozone Solar.R Wind Temp
## 1 21 Ozone Solar.R Wind Temp
## 1 22 Ozone Solar.R Wind Temp
## 1 23 Ozone Solar.R Wind Temp
## 1 24 Ozone Solar.R Wind Temp
## 1 25 Ozone Solar.R Wind Temp
## 1 26 Ozone Solar.R Wind Temp
## 1 27 Ozone Solar.R Wind Temp
## 1 28 Ozone Solar.R Wind Temp
## 1 29 Ozone Solar.R Wind Temp
## 1 30 Ozone Solar.R Wind Temp
## 1 31 Ozone Solar.R Wind Temp
## 1 32 Ozone Solar.R Wind Temp
## 1 33 Ozone Solar.R Wind Temp
## 1 34 Ozone Solar.R Wind Temp
## 1 35 Ozone Solar.R Wind Temp
## 1 36 Ozone Solar.R Wind Temp
## 1 37 Ozone Solar.R Wind Temp
## 1 38 Ozone Solar.R Wind Temp
## 1 39 Ozone Solar.R Wind Temp
## 1 40 Ozone Solar.R Wind Temp
## 1 41 Ozone Solar.R Wind Temp
## 1 42 Ozone Solar.R Wind Temp
## 1 43 Ozone Solar.R Wind Temp
## 1 44 Ozone Solar.R Wind Temp
## 1 45 Ozone Solar.R Wind Temp
## 1 46 Ozone Solar.R Wind Temp
## 1 47 Ozone Solar.R Wind Temp
## 1 48 Ozone Solar.R Wind Temp
## 1 49 Ozone Solar.R Wind Temp
## 1 50 Ozone Solar.R Wind Temp
## 2 1 Ozone Solar.R Wind Temp
## 2 2 Ozone Solar.R Wind Temp
## 2 3 Ozone Solar.R Wind Temp
## 2 4 Ozone Solar.R Wind Temp
## 2 5 Ozone Solar.R Wind Temp
## 2 6 Ozone Solar.R Wind Temp
## 2 7 Ozone Solar.R Wind Temp
## 2 8 Ozone Solar.R Wind Temp
## 2 9 Ozone Solar.R Wind Temp
## 2 10 Ozone Solar.R Wind Temp
## 2 11 Ozone Solar.R Wind Temp
## 2 12 Ozone Solar.R Wind Temp
## 2 13 Ozone Solar.R Wind Temp
## 2 14 Ozone Solar.R Wind Temp
## 2 15 Ozone Solar.R Wind Temp
## 2 16 Ozone Solar.R Wind Temp
## 2 17 Ozone Solar.R Wind Temp
## 2 18 Ozone Solar.R Wind Temp
## 2 19 Ozone Solar.R Wind Temp
## 2 20 Ozone Solar.R Wind Temp
## 2 21 Ozone Solar.R Wind Temp
## 2 22 Ozone Solar.R Wind Temp
## 2 23 Ozone Solar.R Wind Temp
## 2 24 Ozone Solar.R Wind Temp
## 2 25 Ozone Solar.R Wind Temp
## 2 26 Ozone Solar.R Wind Temp
## 2 27 Ozone Solar.R Wind Temp
## 2 28 Ozone Solar.R Wind Temp
## 2 29 Ozone Solar.R Wind Temp
## 2 30 Ozone Solar.R Wind Temp
## 2 31 Ozone Solar.R Wind Temp
## 2 32 Ozone Solar.R Wind Temp
## 2 33 Ozone Solar.R Wind Temp
## 2 34 Ozone Solar.R Wind Temp
## 2 35 Ozone Solar.R Wind Temp
## 2 36 Ozone Solar.R Wind Temp
## 2 37 Ozone Solar.R Wind Temp
## 2 38 Ozone Solar.R Wind Temp
## 2 39 Ozone Solar.R Wind Temp
## 2 40 Ozone Solar.R Wind Temp
## 2 41 Ozone Solar.R Wind Temp
## 2 42 Ozone Solar.R Wind Temp
## 2 43 Ozone Solar.R Wind Temp
## 2 44 Ozone Solar.R Wind Temp
## 2 45 Ozone Solar.R Wind Temp
## 2 46 Ozone Solar.R Wind Temp
## 2 47 Ozone Solar.R Wind Temp
## 2 48 Ozone Solar.R Wind Temp
## 2 49 Ozone Solar.R Wind Temp
## 2 50 Ozone Solar.R Wind Temp
## 3 1 Ozone Solar.R Wind Temp
## 3 2 Ozone Solar.R Wind Temp
## 3 3 Ozone Solar.R Wind Temp
## 3 4 Ozone Solar.R Wind Temp
## 3 5 Ozone Solar.R Wind Temp
## 3 6 Ozone Solar.R Wind Temp
## 3 7 Ozone Solar.R Wind Temp
## 3 8 Ozone Solar.R Wind Temp
## 3 9 Ozone Solar.R Wind Temp
## 3 10 Ozone Solar.R Wind Temp
## 3 11 Ozone Solar.R Wind Temp
## 3 12 Ozone Solar.R Wind Temp
## 3 13 Ozone Solar.R Wind Temp
## 3 14 Ozone Solar.R Wind Temp
## 3 15 Ozone Solar.R Wind Temp
## 3 16 Ozone Solar.R Wind Temp
## 3 17 Ozone Solar.R Wind Temp
## 3 18 Ozone Solar.R Wind Temp
## 3 19 Ozone Solar.R Wind Temp
## 3 20 Ozone Solar.R Wind Temp
## 3 21 Ozone Solar.R Wind Temp
## 3 22 Ozone Solar.R Wind Temp
## 3 23 Ozone Solar.R Wind Temp
## 3 24 Ozone Solar.R Wind Temp
## 3 25 Ozone Solar.R Wind Temp
## 3 26 Ozone Solar.R Wind Temp
## 3 27 Ozone Solar.R Wind Temp
## 3 28 Ozone Solar.R Wind Temp
## 3 29 Ozone Solar.R Wind Temp
## 3 30 Ozone Solar.R Wind Temp
## 3 31 Ozone Solar.R Wind Temp
## 3 32 Ozone Solar.R Wind Temp
## 3 33 Ozone Solar.R Wind Temp
## 3 34 Ozone Solar.R Wind Temp
## 3 35 Ozone Solar.R Wind Temp
## 3 36 Ozone Solar.R Wind Temp
## 3 37 Ozone Solar.R Wind Temp
## 3 38 Ozone Solar.R Wind Temp
## 3 39 Ozone Solar.R Wind Temp
## 3 40 Ozone Solar.R Wind Temp
## 3 41 Ozone Solar.R Wind Temp
## 3 42 Ozone Solar.R Wind Temp
## 3 43 Ozone Solar.R Wind Temp
## 3 44 Ozone Solar.R Wind Temp
## 3 45 Ozone Solar.R Wind Temp
## 3 46 Ozone Solar.R Wind Temp
## 3 47 Ozone Solar.R Wind Temp
## 3 48 Ozone Solar.R Wind Temp
## 3 49 Ozone Solar.R Wind Temp
## 3 50 Ozone Solar.R Wind Temp
## 4 1 Ozone Solar.R Wind Temp
## 4 2 Ozone Solar.R Wind Temp
## 4 3 Ozone Solar.R Wind Temp
## 4 4 Ozone Solar.R Wind Temp
## 4 5 Ozone Solar.R Wind Temp
## 4 6 Ozone Solar.R Wind Temp
## 4 7 Ozone Solar.R Wind Temp
## 4 8 Ozone Solar.R Wind Temp
## 4 9 Ozone Solar.R Wind Temp
## 4 10 Ozone Solar.R Wind Temp
## 4 11 Ozone Solar.R Wind Temp
## 4 12 Ozone Solar.R Wind Temp
## 4 13 Ozone Solar.R Wind Temp
## 4 14 Ozone Solar.R Wind Temp
## 4 15 Ozone Solar.R Wind Temp
## 4 16 Ozone Solar.R Wind Temp
## 4 17 Ozone Solar.R Wind Temp
## 4 18 Ozone Solar.R Wind Temp
## 4 19 Ozone Solar.R Wind Temp
## 4 20 Ozone Solar.R Wind Temp
## 4 21 Ozone Solar.R Wind Temp
## 4 22 Ozone Solar.R Wind Temp
## 4 23 Ozone Solar.R Wind Temp
## 4 24 Ozone Solar.R Wind Temp
## 4 25 Ozone Solar.R Wind Temp
## 4 26 Ozone Solar.R Wind Temp
## 4 27 Ozone Solar.R Wind Temp
## 4 28 Ozone Solar.R Wind Temp
## 4 29 Ozone Solar.R Wind Temp
## 4 30 Ozone Solar.R Wind Temp
## 4 31 Ozone Solar.R Wind Temp
## 4 32 Ozone Solar.R Wind Temp
## 4 33 Ozone Solar.R Wind Temp
## 4 34 Ozone Solar.R Wind Temp
## 4 35 Ozone Solar.R Wind Temp
## 4 36 Ozone Solar.R Wind Temp
## 4 37 Ozone Solar.R Wind Temp
## 4 38 Ozone Solar.R Wind Temp
## 4 39 Ozone Solar.R Wind Temp
## 4 40 Ozone Solar.R Wind Temp
## 4 41 Ozone Solar.R Wind Temp
## 4 42 Ozone Solar.R Wind Temp
## 4 43 Ozone Solar.R Wind Temp
## 4 44 Ozone Solar.R Wind Temp
## 4 45 Ozone Solar.R Wind Temp
## 4 46 Ozone Solar.R Wind Temp
## 4 47 Ozone Solar.R Wind Temp
## 4 48 Ozone Solar.R Wind Temp
## 4 49 Ozone Solar.R Wind Temp
## 4 50 Ozone Solar.R Wind Temp
## 5 1 Ozone Solar.R Wind Temp
## 5 2 Ozone Solar.R Wind Temp
## 5 3 Ozone Solar.R Wind Temp
## 5 4 Ozone Solar.R Wind Temp
## 5 5 Ozone Solar.R Wind Temp
## 5 6 Ozone Solar.R Wind Temp
## 5 7 Ozone Solar.R Wind Temp
## 5 8 Ozone Solar.R Wind Temp
## 5 9 Ozone Solar.R Wind Temp
## 5 10 Ozone Solar.R Wind Temp
## 5 11 Ozone Solar.R Wind Temp
## 5 12 Ozone Solar.R Wind Temp
## 5 13 Ozone Solar.R Wind Temp
## 5 14 Ozone Solar.R Wind Temp
## 5 15 Ozone Solar.R Wind Temp
## 5 16 Ozone Solar.R Wind Temp
## 5 17 Ozone Solar.R Wind Temp
## 5 18 Ozone Solar.R Wind Temp
## 5 19 Ozone Solar.R Wind Temp
## 5 20 Ozone Solar.R Wind Temp
## 5 21 Ozone Solar.R Wind Temp
## 5 22 Ozone Solar.R Wind Temp
## 5 23 Ozone Solar.R Wind Temp
## 5 24 Ozone Solar.R Wind Temp
## 5 25 Ozone Solar.R Wind Temp
## 5 26 Ozone Solar.R Wind Temp
## 5 27 Ozone Solar.R Wind Temp
## 5 28 Ozone Solar.R Wind Temp
## 5 29 Ozone Solar.R Wind Temp
## 5 30 Ozone Solar.R Wind Temp
## 5 31 Ozone Solar.R Wind Temp
## 5 32 Ozone Solar.R Wind Temp
## 5 33 Ozone Solar.R Wind Temp
## 5 34 Ozone Solar.R Wind Temp
## 5 35 Ozone Solar.R Wind Temp
## 5 36 Ozone Solar.R Wind Temp
## 5 37 Ozone Solar.R Wind Temp
## 5 38 Ozone Solar.R Wind Temp
## 5 39 Ozone Solar.R Wind Temp
## 5 40 Ozone Solar.R Wind Temp
## 5 41 Ozone Solar.R Wind Temp
## 5 42 Ozone Solar.R Wind Temp
## 5 43 Ozone Solar.R Wind Temp
## 5 44 Ozone Solar.R Wind Temp
## 5 45 Ozone Solar.R Wind Temp
## 5 46 Ozone Solar.R Wind Temp
## 5 47 Ozone Solar.R Wind Temp
## 5 48 Ozone Solar.R Wind Temp
## 5 49 Ozone Solar.R Wind Temp
## 5 50 Ozone Solar.R Wind Temp
modelFit2 <- with(tempData2,lm(Temp~ Ozone+Solar.R+Wind))
summary(pool(modelFit2))
## term estimate std.error statistic df p.value
## 1 (Intercept) 72.60178955 2.915916315 24.898448 105.59368 5.380239e-46
## 2 Ozone 0.16345639 0.026054628 6.273603 99.86352 9.122568e-09
## 3 Solar.R 0.01193645 0.007134344 1.673097 120.41496 9.690433e-02
## 4 Wind -0.33592048 0.222350762 -1.510768 107.41496 1.337838e-01
After having taken into account the random seed initialization, we obtain (in this case) more or less the same results as before with only Ozone showing statistical significance.
Let’s compare the results.
Let’s use a different dataset. We’ll use the training portion of the
Titanic
dataset and try to impute missing values for the
Age
column:
library(titanic)
titanic_train$Age
## [1] 22.00 38.00 26.00 35.00 35.00 NA 54.00 2.00 27.00 14.00 4.00 58.00
## [13] 20.00 39.00 14.00 55.00 2.00 NA 31.00 NA 35.00 34.00 15.00 28.00
## [25] 8.00 38.00 NA 19.00 NA NA 40.00 NA NA 66.00 28.00 42.00
## [37] NA 21.00 18.00 14.00 40.00 27.00 NA 3.00 19.00 NA NA NA
## [49] NA 18.00 7.00 21.00 49.00 29.00 65.00 NA 21.00 28.50 5.00 11.00
## [61] 22.00 38.00 45.00 4.00 NA NA 29.00 19.00 17.00 26.00 32.00 16.00
## [73] 21.00 26.00 32.00 25.00 NA NA 0.83 30.00 22.00 29.00 NA 28.00
## [85] 17.00 33.00 16.00 NA 23.00 24.00 29.00 20.00 46.00 26.00 59.00 NA
## [97] 71.00 23.00 34.00 34.00 28.00 NA 21.00 33.00 37.00 28.00 21.00 NA
## [109] 38.00 NA 47.00 14.50 22.00 20.00 17.00 21.00 70.50 29.00 24.00 2.00
## [121] 21.00 NA 32.50 32.50 54.00 12.00 NA 24.00 NA 45.00 33.00 20.00
## [133] 47.00 29.00 25.00 23.00 19.00 37.00 16.00 24.00 NA 22.00 24.00 19.00
## [145] 18.00 19.00 27.00 9.00 36.50 42.00 51.00 22.00 55.50 40.50 NA 51.00
## [157] 16.00 30.00 NA NA 44.00 40.00 26.00 17.00 1.00 9.00 NA 45.00
## [169] NA 28.00 61.00 4.00 1.00 21.00 56.00 18.00 NA 50.00 30.00 36.00
## [181] NA NA 9.00 1.00 4.00 NA NA 45.00 40.00 36.00 32.00 19.00
## [193] 19.00 3.00 44.00 58.00 NA 42.00 NA 24.00 28.00 NA 34.00 45.50
## [205] 18.00 2.00 32.00 26.00 16.00 40.00 24.00 35.00 22.00 30.00 NA 31.00
## [217] 27.00 42.00 32.00 30.00 16.00 27.00 51.00 NA 38.00 22.00 19.00 20.50
## [229] 18.00 NA 35.00 29.00 59.00 5.00 24.00 NA 44.00 8.00 19.00 33.00
## [241] NA NA 29.00 22.00 30.00 44.00 25.00 24.00 37.00 54.00 NA 29.00
## [253] 62.00 30.00 41.00 29.00 NA 30.00 35.00 50.00 NA 3.00 52.00 40.00
## [265] NA 36.00 16.00 25.00 58.00 35.00 NA 25.00 41.00 37.00 NA 63.00
## [277] 45.00 NA 7.00 35.00 65.00 28.00 16.00 19.00 NA 33.00 30.00 22.00
## [289] 42.00 22.00 26.00 19.00 36.00 24.00 24.00 NA 23.50 2.00 NA 50.00
## [301] NA NA 19.00 NA NA 0.92 NA 17.00 30.00 30.00 24.00 18.00
## [313] 26.00 28.00 43.00 26.00 24.00 54.00 31.00 40.00 22.00 27.00 30.00 22.00
## [325] NA 36.00 61.00 36.00 31.00 16.00 NA 45.50 38.00 16.00 NA NA
## [337] 29.00 41.00 45.00 45.00 2.00 24.00 28.00 25.00 36.00 24.00 40.00 NA
## [349] 3.00 42.00 23.00 NA 15.00 25.00 NA 28.00 22.00 38.00 NA NA
## [361] 40.00 29.00 45.00 35.00 NA 30.00 60.00 NA NA 24.00 25.00 18.00
## [373] 19.00 22.00 3.00 NA 22.00 27.00 20.00 19.00 42.00 1.00 32.00 35.00
## [385] NA 18.00 1.00 36.00 NA 17.00 36.00 21.00 28.00 23.00 24.00 22.00
## [397] 31.00 46.00 23.00 28.00 39.00 26.00 21.00 28.00 20.00 34.00 51.00 3.00
## [409] 21.00 NA NA NA 33.00 NA 44.00 NA 34.00 18.00 30.00 10.00
## [421] NA 21.00 29.00 28.00 18.00 NA 28.00 19.00 NA 32.00 28.00 NA
## [433] 42.00 17.00 50.00 14.00 21.00 24.00 64.00 31.00 45.00 20.00 25.00 28.00
## [445] NA 4.00 13.00 34.00 5.00 52.00 36.00 NA 30.00 49.00 NA 29.00
## [457] 65.00 NA 50.00 NA 48.00 34.00 47.00 48.00 NA 38.00 NA 56.00
## [469] NA 0.75 NA 38.00 33.00 23.00 22.00 NA 34.00 29.00 22.00 2.00
## [481] 9.00 NA 50.00 63.00 25.00 NA 35.00 58.00 30.00 9.00 NA 21.00
## [493] 55.00 71.00 21.00 NA 54.00 NA 25.00 24.00 17.00 21.00 NA 37.00
## [505] 16.00 18.00 33.00 NA 28.00 26.00 29.00 NA 36.00 54.00 24.00 47.00
## [517] 34.00 NA 36.00 32.00 30.00 22.00 NA 44.00 NA 40.50 50.00 NA
## [529] 39.00 23.00 2.00 NA 17.00 NA 30.00 7.00 45.00 30.00 NA 22.00
## [541] 36.00 9.00 11.00 32.00 50.00 64.00 19.00 NA 33.00 8.00 17.00 27.00
## [553] NA 22.00 22.00 62.00 48.00 NA 39.00 36.00 NA 40.00 28.00 NA
## [565] NA 24.00 19.00 29.00 NA 32.00 62.00 53.00 36.00 NA 16.00 19.00
## [577] 34.00 39.00 NA 32.00 25.00 39.00 54.00 36.00 NA 18.00 47.00 60.00
## [589] 22.00 NA 35.00 52.00 47.00 NA 37.00 36.00 NA 49.00 NA 49.00
## [601] 24.00 NA NA 44.00 35.00 36.00 30.00 27.00 22.00 40.00 39.00 NA
## [613] NA NA 35.00 24.00 34.00 26.00 4.00 26.00 27.00 42.00 20.00 21.00
## [625] 21.00 61.00 57.00 21.00 26.00 NA 80.00 51.00 32.00 NA 9.00 28.00
## [637] 32.00 31.00 41.00 NA 20.00 24.00 2.00 NA 0.75 48.00 19.00 56.00
## [649] NA 23.00 NA 18.00 21.00 NA 18.00 24.00 NA 32.00 23.00 58.00
## [661] 50.00 40.00 47.00 36.00 20.00 32.00 25.00 NA 43.00 NA 40.00 31.00
## [673] 70.00 31.00 NA 18.00 24.50 18.00 43.00 36.00 NA 27.00 20.00 14.00
## [685] 60.00 25.00 14.00 19.00 18.00 15.00 31.00 4.00 NA 25.00 60.00 52.00
## [697] 44.00 NA 49.00 42.00 18.00 35.00 18.00 25.00 26.00 39.00 45.00 42.00
## [709] 22.00 NA 24.00 NA 48.00 29.00 52.00 19.00 38.00 27.00 NA 33.00
## [721] 6.00 17.00 34.00 50.00 27.00 20.00 30.00 NA 25.00 25.00 29.00 11.00
## [733] NA 23.00 23.00 28.50 48.00 35.00 NA NA NA 36.00 21.00 24.00
## [745] 31.00 70.00 16.00 30.00 19.00 31.00 4.00 6.00 33.00 23.00 48.00 0.67
## [757] 28.00 18.00 34.00 33.00 NA 41.00 20.00 36.00 16.00 51.00 NA 30.50
## [769] NA 32.00 24.00 48.00 57.00 NA 54.00 18.00 NA 5.00 NA 43.00
## [781] 13.00 17.00 29.00 NA 25.00 25.00 18.00 8.00 1.00 46.00 NA 16.00
## [793] NA NA 25.00 39.00 49.00 31.00 30.00 30.00 34.00 31.00 11.00 0.42
## [805] 27.00 31.00 39.00 18.00 39.00 33.00 26.00 39.00 35.00 6.00 30.50 NA
## [817] 23.00 31.00 43.00 10.00 52.00 27.00 38.00 27.00 2.00 NA NA 1.00
## [829] NA 62.00 15.00 0.83 NA 23.00 18.00 39.00 21.00 NA 32.00 NA
## [841] 20.00 16.00 30.00 34.50 17.00 42.00 NA 35.00 28.00 NA 4.00 74.00
## [853] 9.00 16.00 44.00 18.00 45.00 51.00 24.00 NA 41.00 21.00 48.00 NA
## [865] 24.00 42.00 27.00 31.00 NA 4.00 26.00 47.00 33.00 47.00 28.00 15.00
## [877] 20.00 19.00 NA 56.00 25.00 33.00 22.00 28.00 25.00 39.00 27.00 19.00
## [889] NA 26.00 32.00
There’s a fair amount of NA
values, and it’s our job to
impute them. They’re most likely missing because the creator of the
dataset had no information on the person’s age. If you were to build a,
say machine learning model, on this dataset, the best way to evaluate
the imputation technique would be to measure classification metrics
(accuracy, precision, recall, f1) after training the model (we will talk
more about this when we discuss logistic regression).
The value_imputed
variable will store a data.frame of
the imputed ages The imputation itself boils down to replacing a column
subset that has a value of NA
with the value of our choice.
We now have a dataset with four columns representing the ages.
value_imputed <- data.frame(original = titanic_train$Age,
imputed_zero = replace(titanic_train$Age, is.na(titanic_train$Age), 0),
imputed_mean = replace(titanic_train$Age,
is.na(titanic_train$Age),
mean(titanic_train$Age, na.rm = TRUE)),
imputed_median = replace(titanic_train$Age,
is.na(titanic_train$Age),
median(titanic_train$Age, na.rm = TRUE)))
value_imputed
## original imputed_zero imputed_mean imputed_median
## 1 22.00 22.00 22.00000 22.00
## 2 38.00 38.00 38.00000 38.00
## 3 26.00 26.00 26.00000 26.00
## 4 35.00 35.00 35.00000 35.00
## 5 35.00 35.00 35.00000 35.00
## 6 NA 0.00 29.69912 28.00
## 7 54.00 54.00 54.00000 54.00
## 8 2.00 2.00 2.00000 2.00
## 9 27.00 27.00 27.00000 27.00
## 10 14.00 14.00 14.00000 14.00
## 11 4.00 4.00 4.00000 4.00
## 12 58.00 58.00 58.00000 58.00
## 13 20.00 20.00 20.00000 20.00
## 14 39.00 39.00 39.00000 39.00
## 15 14.00 14.00 14.00000 14.00
## 16 55.00 55.00 55.00000 55.00
## 17 2.00 2.00 2.00000 2.00
## 18 NA 0.00 29.69912 28.00
## 19 31.00 31.00 31.00000 31.00
## 20 NA 0.00 29.69912 28.00
## 21 35.00 35.00 35.00000 35.00
## 22 34.00 34.00 34.00000 34.00
## 23 15.00 15.00 15.00000 15.00
## 24 28.00 28.00 28.00000 28.00
## 25 8.00 8.00 8.00000 8.00
## 26 38.00 38.00 38.00000 38.00
## 27 NA 0.00 29.69912 28.00
## 28 19.00 19.00 19.00000 19.00
## 29 NA 0.00 29.69912 28.00
## 30 NA 0.00 29.69912 28.00
## 31 40.00 40.00 40.00000 40.00
## 32 NA 0.00 29.69912 28.00
## 33 NA 0.00 29.69912 28.00
## 34 66.00 66.00 66.00000 66.00
## 35 28.00 28.00 28.00000 28.00
## 36 42.00 42.00 42.00000 42.00
## 37 NA 0.00 29.69912 28.00
## 38 21.00 21.00 21.00000 21.00
## 39 18.00 18.00 18.00000 18.00
## 40 14.00 14.00 14.00000 14.00
## 41 40.00 40.00 40.00000 40.00
## 42 27.00 27.00 27.00000 27.00
## 43 NA 0.00 29.69912 28.00
## 44 3.00 3.00 3.00000 3.00
## 45 19.00 19.00 19.00000 19.00
## 46 NA 0.00 29.69912 28.00
## 47 NA 0.00 29.69912 28.00
## 48 NA 0.00 29.69912 28.00
## 49 NA 0.00 29.69912 28.00
## 50 18.00 18.00 18.00000 18.00
## 51 7.00 7.00 7.00000 7.00
## 52 21.00 21.00 21.00000 21.00
## 53 49.00 49.00 49.00000 49.00
## 54 29.00 29.00 29.00000 29.00
## 55 65.00 65.00 65.00000 65.00
## 56 NA 0.00 29.69912 28.00
## 57 21.00 21.00 21.00000 21.00
## 58 28.50 28.50 28.50000 28.50
## 59 5.00 5.00 5.00000 5.00
## 60 11.00 11.00 11.00000 11.00
## 61 22.00 22.00 22.00000 22.00
## 62 38.00 38.00 38.00000 38.00
## 63 45.00 45.00 45.00000 45.00
## 64 4.00 4.00 4.00000 4.00
## 65 NA 0.00 29.69912 28.00
## 66 NA 0.00 29.69912 28.00
## 67 29.00 29.00 29.00000 29.00
## 68 19.00 19.00 19.00000 19.00
## 69 17.00 17.00 17.00000 17.00
## 70 26.00 26.00 26.00000 26.00
## 71 32.00 32.00 32.00000 32.00
## 72 16.00 16.00 16.00000 16.00
## 73 21.00 21.00 21.00000 21.00
## 74 26.00 26.00 26.00000 26.00
## 75 32.00 32.00 32.00000 32.00
## 76 25.00 25.00 25.00000 25.00
## 77 NA 0.00 29.69912 28.00
## 78 NA 0.00 29.69912 28.00
## 79 0.83 0.83 0.83000 0.83
## 80 30.00 30.00 30.00000 30.00
## 81 22.00 22.00 22.00000 22.00
## 82 29.00 29.00 29.00000 29.00
## 83 NA 0.00 29.69912 28.00
## 84 28.00 28.00 28.00000 28.00
## 85 17.00 17.00 17.00000 17.00
## 86 33.00 33.00 33.00000 33.00
## 87 16.00 16.00 16.00000 16.00
## 88 NA 0.00 29.69912 28.00
## 89 23.00 23.00 23.00000 23.00
## 90 24.00 24.00 24.00000 24.00
## 91 29.00 29.00 29.00000 29.00
## 92 20.00 20.00 20.00000 20.00
## 93 46.00 46.00 46.00000 46.00
## 94 26.00 26.00 26.00000 26.00
## 95 59.00 59.00 59.00000 59.00
## 96 NA 0.00 29.69912 28.00
## 97 71.00 71.00 71.00000 71.00
## 98 23.00 23.00 23.00000 23.00
## 99 34.00 34.00 34.00000 34.00
## 100 34.00 34.00 34.00000 34.00
## 101 28.00 28.00 28.00000 28.00
## 102 NA 0.00 29.69912 28.00
## 103 21.00 21.00 21.00000 21.00
## 104 33.00 33.00 33.00000 33.00
## 105 37.00 37.00 37.00000 37.00
## 106 28.00 28.00 28.00000 28.00
## 107 21.00 21.00 21.00000 21.00
## 108 NA 0.00 29.69912 28.00
## 109 38.00 38.00 38.00000 38.00
## 110 NA 0.00 29.69912 28.00
## 111 47.00 47.00 47.00000 47.00
## 112 14.50 14.50 14.50000 14.50
## 113 22.00 22.00 22.00000 22.00
## 114 20.00 20.00 20.00000 20.00
## 115 17.00 17.00 17.00000 17.00
## 116 21.00 21.00 21.00000 21.00
## 117 70.50 70.50 70.50000 70.50
## 118 29.00 29.00 29.00000 29.00
## 119 24.00 24.00 24.00000 24.00
## 120 2.00 2.00 2.00000 2.00
## 121 21.00 21.00 21.00000 21.00
## 122 NA 0.00 29.69912 28.00
## 123 32.50 32.50 32.50000 32.50
## 124 32.50 32.50 32.50000 32.50
## 125 54.00 54.00 54.00000 54.00
## 126 12.00 12.00 12.00000 12.00
## 127 NA 0.00 29.69912 28.00
## 128 24.00 24.00 24.00000 24.00
## 129 NA 0.00 29.69912 28.00
## 130 45.00 45.00 45.00000 45.00
## 131 33.00 33.00 33.00000 33.00
## 132 20.00 20.00 20.00000 20.00
## 133 47.00 47.00 47.00000 47.00
## 134 29.00 29.00 29.00000 29.00
## 135 25.00 25.00 25.00000 25.00
## 136 23.00 23.00 23.00000 23.00
## 137 19.00 19.00 19.00000 19.00
## 138 37.00 37.00 37.00000 37.00
## 139 16.00 16.00 16.00000 16.00
## 140 24.00 24.00 24.00000 24.00
## 141 NA 0.00 29.69912 28.00
## 142 22.00 22.00 22.00000 22.00
## 143 24.00 24.00 24.00000 24.00
## 144 19.00 19.00 19.00000 19.00
## 145 18.00 18.00 18.00000 18.00
## 146 19.00 19.00 19.00000 19.00
## 147 27.00 27.00 27.00000 27.00
## 148 9.00 9.00 9.00000 9.00
## 149 36.50 36.50 36.50000 36.50
## 150 42.00 42.00 42.00000 42.00
## 151 51.00 51.00 51.00000 51.00
## 152 22.00 22.00 22.00000 22.00
## 153 55.50 55.50 55.50000 55.50
## 154 40.50 40.50 40.50000 40.50
## 155 NA 0.00 29.69912 28.00
## 156 51.00 51.00 51.00000 51.00
## 157 16.00 16.00 16.00000 16.00
## 158 30.00 30.00 30.00000 30.00
## 159 NA 0.00 29.69912 28.00
## 160 NA 0.00 29.69912 28.00
## 161 44.00 44.00 44.00000 44.00
## 162 40.00 40.00 40.00000 40.00
## 163 26.00 26.00 26.00000 26.00
## 164 17.00 17.00 17.00000 17.00
## 165 1.00 1.00 1.00000 1.00
## 166 9.00 9.00 9.00000 9.00
## 167 NA 0.00 29.69912 28.00
## 168 45.00 45.00 45.00000 45.00
## 169 NA 0.00 29.69912 28.00
## 170 28.00 28.00 28.00000 28.00
## 171 61.00 61.00 61.00000 61.00
## 172 4.00 4.00 4.00000 4.00
## 173 1.00 1.00 1.00000 1.00
## 174 21.00 21.00 21.00000 21.00
## 175 56.00 56.00 56.00000 56.00
## 176 18.00 18.00 18.00000 18.00
## 177 NA 0.00 29.69912 28.00
## 178 50.00 50.00 50.00000 50.00
## 179 30.00 30.00 30.00000 30.00
## 180 36.00 36.00 36.00000 36.00
## 181 NA 0.00 29.69912 28.00
## 182 NA 0.00 29.69912 28.00
## 183 9.00 9.00 9.00000 9.00
## 184 1.00 1.00 1.00000 1.00
## 185 4.00 4.00 4.00000 4.00
## 186 NA 0.00 29.69912 28.00
## 187 NA 0.00 29.69912 28.00
## 188 45.00 45.00 45.00000 45.00
## 189 40.00 40.00 40.00000 40.00
## 190 36.00 36.00 36.00000 36.00
## 191 32.00 32.00 32.00000 32.00
## 192 19.00 19.00 19.00000 19.00
## 193 19.00 19.00 19.00000 19.00
## 194 3.00 3.00 3.00000 3.00
## 195 44.00 44.00 44.00000 44.00
## 196 58.00 58.00 58.00000 58.00
## 197 NA 0.00 29.69912 28.00
## 198 42.00 42.00 42.00000 42.00
## 199 NA 0.00 29.69912 28.00
## 200 24.00 24.00 24.00000 24.00
## 201 28.00 28.00 28.00000 28.00
## 202 NA 0.00 29.69912 28.00
## 203 34.00 34.00 34.00000 34.00
## 204 45.50 45.50 45.50000 45.50
## 205 18.00 18.00 18.00000 18.00
## 206 2.00 2.00 2.00000 2.00
## 207 32.00 32.00 32.00000 32.00
## 208 26.00 26.00 26.00000 26.00
## 209 16.00 16.00 16.00000 16.00
## 210 40.00 40.00 40.00000 40.00
## 211 24.00 24.00 24.00000 24.00
## 212 35.00 35.00 35.00000 35.00
## 213 22.00 22.00 22.00000 22.00
## 214 30.00 30.00 30.00000 30.00
## 215 NA 0.00 29.69912 28.00
## 216 31.00 31.00 31.00000 31.00
## 217 27.00 27.00 27.00000 27.00
## 218 42.00 42.00 42.00000 42.00
## 219 32.00 32.00 32.00000 32.00
## 220 30.00 30.00 30.00000 30.00
## 221 16.00 16.00 16.00000 16.00
## 222 27.00 27.00 27.00000 27.00
## 223 51.00 51.00 51.00000 51.00
## 224 NA 0.00 29.69912 28.00
## 225 38.00 38.00 38.00000 38.00
## 226 22.00 22.00 22.00000 22.00
## 227 19.00 19.00 19.00000 19.00
## 228 20.50 20.50 20.50000 20.50
## 229 18.00 18.00 18.00000 18.00
## 230 NA 0.00 29.69912 28.00
## 231 35.00 35.00 35.00000 35.00
## 232 29.00 29.00 29.00000 29.00
## 233 59.00 59.00 59.00000 59.00
## 234 5.00 5.00 5.00000 5.00
## 235 24.00 24.00 24.00000 24.00
## 236 NA 0.00 29.69912 28.00
## 237 44.00 44.00 44.00000 44.00
## 238 8.00 8.00 8.00000 8.00
## 239 19.00 19.00 19.00000 19.00
## 240 33.00 33.00 33.00000 33.00
## 241 NA 0.00 29.69912 28.00
## 242 NA 0.00 29.69912 28.00
## 243 29.00 29.00 29.00000 29.00
## 244 22.00 22.00 22.00000 22.00
## 245 30.00 30.00 30.00000 30.00
## 246 44.00 44.00 44.00000 44.00
## 247 25.00 25.00 25.00000 25.00
## 248 24.00 24.00 24.00000 24.00
## 249 37.00 37.00 37.00000 37.00
## 250 54.00 54.00 54.00000 54.00
## 251 NA 0.00 29.69912 28.00
## 252 29.00 29.00 29.00000 29.00
## 253 62.00 62.00 62.00000 62.00
## 254 30.00 30.00 30.00000 30.00
## 255 41.00 41.00 41.00000 41.00
## 256 29.00 29.00 29.00000 29.00
## 257 NA 0.00 29.69912 28.00
## 258 30.00 30.00 30.00000 30.00
## 259 35.00 35.00 35.00000 35.00
## 260 50.00 50.00 50.00000 50.00
## 261 NA 0.00 29.69912 28.00
## 262 3.00 3.00 3.00000 3.00
## 263 52.00 52.00 52.00000 52.00
## 264 40.00 40.00 40.00000 40.00
## 265 NA 0.00 29.69912 28.00
## 266 36.00 36.00 36.00000 36.00
## 267 16.00 16.00 16.00000 16.00
## 268 25.00 25.00 25.00000 25.00
## 269 58.00 58.00 58.00000 58.00
## 270 35.00 35.00 35.00000 35.00
## 271 NA 0.00 29.69912 28.00
## 272 25.00 25.00 25.00000 25.00
## 273 41.00 41.00 41.00000 41.00
## 274 37.00 37.00 37.00000 37.00
## 275 NA 0.00 29.69912 28.00
## 276 63.00 63.00 63.00000 63.00
## 277 45.00 45.00 45.00000 45.00
## 278 NA 0.00 29.69912 28.00
## 279 7.00 7.00 7.00000 7.00
## 280 35.00 35.00 35.00000 35.00
## 281 65.00 65.00 65.00000 65.00
## 282 28.00 28.00 28.00000 28.00
## 283 16.00 16.00 16.00000 16.00
## 284 19.00 19.00 19.00000 19.00
## 285 NA 0.00 29.69912 28.00
## 286 33.00 33.00 33.00000 33.00
## 287 30.00 30.00 30.00000 30.00
## 288 22.00 22.00 22.00000 22.00
## 289 42.00 42.00 42.00000 42.00
## 290 22.00 22.00 22.00000 22.00
## 291 26.00 26.00 26.00000 26.00
## 292 19.00 19.00 19.00000 19.00
## 293 36.00 36.00 36.00000 36.00
## 294 24.00 24.00 24.00000 24.00
## 295 24.00 24.00 24.00000 24.00
## 296 NA 0.00 29.69912 28.00
## 297 23.50 23.50 23.50000 23.50
## 298 2.00 2.00 2.00000 2.00
## 299 NA 0.00 29.69912 28.00
## 300 50.00 50.00 50.00000 50.00
## 301 NA 0.00 29.69912 28.00
## 302 NA 0.00 29.69912 28.00
## 303 19.00 19.00 19.00000 19.00
## 304 NA 0.00 29.69912 28.00
## 305 NA 0.00 29.69912 28.00
## 306 0.92 0.92 0.92000 0.92
## 307 NA 0.00 29.69912 28.00
## 308 17.00 17.00 17.00000 17.00
## 309 30.00 30.00 30.00000 30.00
## 310 30.00 30.00 30.00000 30.00
## 311 24.00 24.00 24.00000 24.00
## 312 18.00 18.00 18.00000 18.00
## 313 26.00 26.00 26.00000 26.00
## 314 28.00 28.00 28.00000 28.00
## 315 43.00 43.00 43.00000 43.00
## 316 26.00 26.00 26.00000 26.00
## 317 24.00 24.00 24.00000 24.00
## 318 54.00 54.00 54.00000 54.00
## 319 31.00 31.00 31.00000 31.00
## 320 40.00 40.00 40.00000 40.00
## 321 22.00 22.00 22.00000 22.00
## 322 27.00 27.00 27.00000 27.00
## 323 30.00 30.00 30.00000 30.00
## 324 22.00 22.00 22.00000 22.00
## 325 NA 0.00 29.69912 28.00
## 326 36.00 36.00 36.00000 36.00
## 327 61.00 61.00 61.00000 61.00
## 328 36.00 36.00 36.00000 36.00
## 329 31.00 31.00 31.00000 31.00
## 330 16.00 16.00 16.00000 16.00
## 331 NA 0.00 29.69912 28.00
## 332 45.50 45.50 45.50000 45.50
## 333 38.00 38.00 38.00000 38.00
## 334 16.00 16.00 16.00000 16.00
## 335 NA 0.00 29.69912 28.00
## 336 NA 0.00 29.69912 28.00
## 337 29.00 29.00 29.00000 29.00
## 338 41.00 41.00 41.00000 41.00
## 339 45.00 45.00 45.00000 45.00
## 340 45.00 45.00 45.00000 45.00
## 341 2.00 2.00 2.00000 2.00
## 342 24.00 24.00 24.00000 24.00
## 343 28.00 28.00 28.00000 28.00
## 344 25.00 25.00 25.00000 25.00
## 345 36.00 36.00 36.00000 36.00
## 346 24.00 24.00 24.00000 24.00
## 347 40.00 40.00 40.00000 40.00
## 348 NA 0.00 29.69912 28.00
## 349 3.00 3.00 3.00000 3.00
## 350 42.00 42.00 42.00000 42.00
## 351 23.00 23.00 23.00000 23.00
## 352 NA 0.00 29.69912 28.00
## 353 15.00 15.00 15.00000 15.00
## 354 25.00 25.00 25.00000 25.00
## 355 NA 0.00 29.69912 28.00
## 356 28.00 28.00 28.00000 28.00
## 357 22.00 22.00 22.00000 22.00
## 358 38.00 38.00 38.00000 38.00
## 359 NA 0.00 29.69912 28.00
## 360 NA 0.00 29.69912 28.00
## 361 40.00 40.00 40.00000 40.00
## 362 29.00 29.00 29.00000 29.00
## 363 45.00 45.00 45.00000 45.00
## 364 35.00 35.00 35.00000 35.00
## 365 NA 0.00 29.69912 28.00
## 366 30.00 30.00 30.00000 30.00
## 367 60.00 60.00 60.00000 60.00
## 368 NA 0.00 29.69912 28.00
## 369 NA 0.00 29.69912 28.00
## 370 24.00 24.00 24.00000 24.00
## 371 25.00 25.00 25.00000 25.00
## 372 18.00 18.00 18.00000 18.00
## 373 19.00 19.00 19.00000 19.00
## 374 22.00 22.00 22.00000 22.00
## 375 3.00 3.00 3.00000 3.00
## 376 NA 0.00 29.69912 28.00
## 377 22.00 22.00 22.00000 22.00
## 378 27.00 27.00 27.00000 27.00
## 379 20.00 20.00 20.00000 20.00
## 380 19.00 19.00 19.00000 19.00
## 381 42.00 42.00 42.00000 42.00
## 382 1.00 1.00 1.00000 1.00
## 383 32.00 32.00 32.00000 32.00
## 384 35.00 35.00 35.00000 35.00
## 385 NA 0.00 29.69912 28.00
## 386 18.00 18.00 18.00000 18.00
## 387 1.00 1.00 1.00000 1.00
## 388 36.00 36.00 36.00000 36.00
## 389 NA 0.00 29.69912 28.00
## 390 17.00 17.00 17.00000 17.00
## 391 36.00 36.00 36.00000 36.00
## 392 21.00 21.00 21.00000 21.00
## 393 28.00 28.00 28.00000 28.00
## 394 23.00 23.00 23.00000 23.00
## 395 24.00 24.00 24.00000 24.00
## 396 22.00 22.00 22.00000 22.00
## 397 31.00 31.00 31.00000 31.00
## 398 46.00 46.00 46.00000 46.00
## 399 23.00 23.00 23.00000 23.00
## 400 28.00 28.00 28.00000 28.00
## 401 39.00 39.00 39.00000 39.00
## 402 26.00 26.00 26.00000 26.00
## 403 21.00 21.00 21.00000 21.00
## 404 28.00 28.00 28.00000 28.00
## 405 20.00 20.00 20.00000 20.00
## 406 34.00 34.00 34.00000 34.00
## 407 51.00 51.00 51.00000 51.00
## 408 3.00 3.00 3.00000 3.00
## 409 21.00 21.00 21.00000 21.00
## 410 NA 0.00 29.69912 28.00
## 411 NA 0.00 29.69912 28.00
## 412 NA 0.00 29.69912 28.00
## 413 33.00 33.00 33.00000 33.00
## 414 NA 0.00 29.69912 28.00
## 415 44.00 44.00 44.00000 44.00
## 416 NA 0.00 29.69912 28.00
## 417 34.00 34.00 34.00000 34.00
## 418 18.00 18.00 18.00000 18.00
## 419 30.00 30.00 30.00000 30.00
## 420 10.00 10.00 10.00000 10.00
## 421 NA 0.00 29.69912 28.00
## 422 21.00 21.00 21.00000 21.00
## 423 29.00 29.00 29.00000 29.00
## 424 28.00 28.00 28.00000 28.00
## 425 18.00 18.00 18.00000 18.00
## 426 NA 0.00 29.69912 28.00
## 427 28.00 28.00 28.00000 28.00
## 428 19.00 19.00 19.00000 19.00
## 429 NA 0.00 29.69912 28.00
## 430 32.00 32.00 32.00000 32.00
## 431 28.00 28.00 28.00000 28.00
## 432 NA 0.00 29.69912 28.00
## 433 42.00 42.00 42.00000 42.00
## 434 17.00 17.00 17.00000 17.00
## 435 50.00 50.00 50.00000 50.00
## 436 14.00 14.00 14.00000 14.00
## 437 21.00 21.00 21.00000 21.00
## 438 24.00 24.00 24.00000 24.00
## 439 64.00 64.00 64.00000 64.00
## 440 31.00 31.00 31.00000 31.00
## 441 45.00 45.00 45.00000 45.00
## 442 20.00 20.00 20.00000 20.00
## 443 25.00 25.00 25.00000 25.00
## 444 28.00 28.00 28.00000 28.00
## 445 NA 0.00 29.69912 28.00
## 446 4.00 4.00 4.00000 4.00
## 447 13.00 13.00 13.00000 13.00
## 448 34.00 34.00 34.00000 34.00
## 449 5.00 5.00 5.00000 5.00
## 450 52.00 52.00 52.00000 52.00
## 451 36.00 36.00 36.00000 36.00
## 452 NA 0.00 29.69912 28.00
## 453 30.00 30.00 30.00000 30.00
## 454 49.00 49.00 49.00000 49.00
## 455 NA 0.00 29.69912 28.00
## 456 29.00 29.00 29.00000 29.00
## 457 65.00 65.00 65.00000 65.00
## 458 NA 0.00 29.69912 28.00
## 459 50.00 50.00 50.00000 50.00
## 460 NA 0.00 29.69912 28.00
## 461 48.00 48.00 48.00000 48.00
## 462 34.00 34.00 34.00000 34.00
## 463 47.00 47.00 47.00000 47.00
## 464 48.00 48.00 48.00000 48.00
## 465 NA 0.00 29.69912 28.00
## 466 38.00 38.00 38.00000 38.00
## 467 NA 0.00 29.69912 28.00
## 468 56.00 56.00 56.00000 56.00
## 469 NA 0.00 29.69912 28.00
## 470 0.75 0.75 0.75000 0.75
## 471 NA 0.00 29.69912 28.00
## 472 38.00 38.00 38.00000 38.00
## 473 33.00 33.00 33.00000 33.00
## 474 23.00 23.00 23.00000 23.00
## 475 22.00 22.00 22.00000 22.00
## 476 NA 0.00 29.69912 28.00
## 477 34.00 34.00 34.00000 34.00
## 478 29.00 29.00 29.00000 29.00
## 479 22.00 22.00 22.00000 22.00
## 480 2.00 2.00 2.00000 2.00
## 481 9.00 9.00 9.00000 9.00
## 482 NA 0.00 29.69912 28.00
## 483 50.00 50.00 50.00000 50.00
## 484 63.00 63.00 63.00000 63.00
## 485 25.00 25.00 25.00000 25.00
## 486 NA 0.00 29.69912 28.00
## 487 35.00 35.00 35.00000 35.00
## 488 58.00 58.00 58.00000 58.00
## 489 30.00 30.00 30.00000 30.00
## 490 9.00 9.00 9.00000 9.00
## 491 NA 0.00 29.69912 28.00
## 492 21.00 21.00 21.00000 21.00
## 493 55.00 55.00 55.00000 55.00
## 494 71.00 71.00 71.00000 71.00
## 495 21.00 21.00 21.00000 21.00
## 496 NA 0.00 29.69912 28.00
## 497 54.00 54.00 54.00000 54.00
## 498 NA 0.00 29.69912 28.00
## 499 25.00 25.00 25.00000 25.00
## 500 24.00 24.00 24.00000 24.00
## 501 17.00 17.00 17.00000 17.00
## 502 21.00 21.00 21.00000 21.00
## 503 NA 0.00 29.69912 28.00
## 504 37.00 37.00 37.00000 37.00
## 505 16.00 16.00 16.00000 16.00
## 506 18.00 18.00 18.00000 18.00
## 507 33.00 33.00 33.00000 33.00
## 508 NA 0.00 29.69912 28.00
## 509 28.00 28.00 28.00000 28.00
## 510 26.00 26.00 26.00000 26.00
## 511 29.00 29.00 29.00000 29.00
## 512 NA 0.00 29.69912 28.00
## 513 36.00 36.00 36.00000 36.00
## 514 54.00 54.00 54.00000 54.00
## 515 24.00 24.00 24.00000 24.00
## 516 47.00 47.00 47.00000 47.00
## 517 34.00 34.00 34.00000 34.00
## 518 NA 0.00 29.69912 28.00
## 519 36.00 36.00 36.00000 36.00
## 520 32.00 32.00 32.00000 32.00
## 521 30.00 30.00 30.00000 30.00
## 522 22.00 22.00 22.00000 22.00
## 523 NA 0.00 29.69912 28.00
## 524 44.00 44.00 44.00000 44.00
## 525 NA 0.00 29.69912 28.00
## 526 40.50 40.50 40.50000 40.50
## 527 50.00 50.00 50.00000 50.00
## 528 NA 0.00 29.69912 28.00
## 529 39.00 39.00 39.00000 39.00
## 530 23.00 23.00 23.00000 23.00
## 531 2.00 2.00 2.00000 2.00
## 532 NA 0.00 29.69912 28.00
## 533 17.00 17.00 17.00000 17.00
## 534 NA 0.00 29.69912 28.00
## 535 30.00 30.00 30.00000 30.00
## 536 7.00 7.00 7.00000 7.00
## 537 45.00 45.00 45.00000 45.00
## 538 30.00 30.00 30.00000 30.00
## 539 NA 0.00 29.69912 28.00
## 540 22.00 22.00 22.00000 22.00
## 541 36.00 36.00 36.00000 36.00
## 542 9.00 9.00 9.00000 9.00
## 543 11.00 11.00 11.00000 11.00
## 544 32.00 32.00 32.00000 32.00
## 545 50.00 50.00 50.00000 50.00
## 546 64.00 64.00 64.00000 64.00
## 547 19.00 19.00 19.00000 19.00
## 548 NA 0.00 29.69912 28.00
## 549 33.00 33.00 33.00000 33.00
## 550 8.00 8.00 8.00000 8.00
## 551 17.00 17.00 17.00000 17.00
## 552 27.00 27.00 27.00000 27.00
## 553 NA 0.00 29.69912 28.00
## 554 22.00 22.00 22.00000 22.00
## 555 22.00 22.00 22.00000 22.00
## 556 62.00 62.00 62.00000 62.00
## 557 48.00 48.00 48.00000 48.00
## 558 NA 0.00 29.69912 28.00
## 559 39.00 39.00 39.00000 39.00
## 560 36.00 36.00 36.00000 36.00
## 561 NA 0.00 29.69912 28.00
## 562 40.00 40.00 40.00000 40.00
## 563 28.00 28.00 28.00000 28.00
## 564 NA 0.00 29.69912 28.00
## 565 NA 0.00 29.69912 28.00
## 566 24.00 24.00 24.00000 24.00
## 567 19.00 19.00 19.00000 19.00
## 568 29.00 29.00 29.00000 29.00
## 569 NA 0.00 29.69912 28.00
## 570 32.00 32.00 32.00000 32.00
## 571 62.00 62.00 62.00000 62.00
## 572 53.00 53.00 53.00000 53.00
## 573 36.00 36.00 36.00000 36.00
## 574 NA 0.00 29.69912 28.00
## 575 16.00 16.00 16.00000 16.00
## 576 19.00 19.00 19.00000 19.00
## 577 34.00 34.00 34.00000 34.00
## 578 39.00 39.00 39.00000 39.00
## 579 NA 0.00 29.69912 28.00
## 580 32.00 32.00 32.00000 32.00
## 581 25.00 25.00 25.00000 25.00
## 582 39.00 39.00 39.00000 39.00
## 583 54.00 54.00 54.00000 54.00
## 584 36.00 36.00 36.00000 36.00
## 585 NA 0.00 29.69912 28.00
## 586 18.00 18.00 18.00000 18.00
## 587 47.00 47.00 47.00000 47.00
## 588 60.00 60.00 60.00000 60.00
## 589 22.00 22.00 22.00000 22.00
## 590 NA 0.00 29.69912 28.00
## 591 35.00 35.00 35.00000 35.00
## 592 52.00 52.00 52.00000 52.00
## 593 47.00 47.00 47.00000 47.00
## 594 NA 0.00 29.69912 28.00
## 595 37.00 37.00 37.00000 37.00
## 596 36.00 36.00 36.00000 36.00
## 597 NA 0.00 29.69912 28.00
## 598 49.00 49.00 49.00000 49.00
## 599 NA 0.00 29.69912 28.00
## 600 49.00 49.00 49.00000 49.00
## 601 24.00 24.00 24.00000 24.00
## 602 NA 0.00 29.69912 28.00
## 603 NA 0.00 29.69912 28.00
## 604 44.00 44.00 44.00000 44.00
## 605 35.00 35.00 35.00000 35.00
## 606 36.00 36.00 36.00000 36.00
## 607 30.00 30.00 30.00000 30.00
## 608 27.00 27.00 27.00000 27.00
## 609 22.00 22.00 22.00000 22.00
## 610 40.00 40.00 40.00000 40.00
## 611 39.00 39.00 39.00000 39.00
## 612 NA 0.00 29.69912 28.00
## 613 NA 0.00 29.69912 28.00
## 614 NA 0.00 29.69912 28.00
## 615 35.00 35.00 35.00000 35.00
## 616 24.00 24.00 24.00000 24.00
## 617 34.00 34.00 34.00000 34.00
## 618 26.00 26.00 26.00000 26.00
## 619 4.00 4.00 4.00000 4.00
## 620 26.00 26.00 26.00000 26.00
## 621 27.00 27.00 27.00000 27.00
## 622 42.00 42.00 42.00000 42.00
## 623 20.00 20.00 20.00000 20.00
## 624 21.00 21.00 21.00000 21.00
## 625 21.00 21.00 21.00000 21.00
## 626 61.00 61.00 61.00000 61.00
## 627 57.00 57.00 57.00000 57.00
## 628 21.00 21.00 21.00000 21.00
## 629 26.00 26.00 26.00000 26.00
## 630 NA 0.00 29.69912 28.00
## 631 80.00 80.00 80.00000 80.00
## 632 51.00 51.00 51.00000 51.00
## 633 32.00 32.00 32.00000 32.00
## 634 NA 0.00 29.69912 28.00
## 635 9.00 9.00 9.00000 9.00
## 636 28.00 28.00 28.00000 28.00
## 637 32.00 32.00 32.00000 32.00
## 638 31.00 31.00 31.00000 31.00
## 639 41.00 41.00 41.00000 41.00
## 640 NA 0.00 29.69912 28.00
## 641 20.00 20.00 20.00000 20.00
## 642 24.00 24.00 24.00000 24.00
## 643 2.00 2.00 2.00000 2.00
## 644 NA 0.00 29.69912 28.00
## 645 0.75 0.75 0.75000 0.75
## 646 48.00 48.00 48.00000 48.00
## 647 19.00 19.00 19.00000 19.00
## 648 56.00 56.00 56.00000 56.00
## 649 NA 0.00 29.69912 28.00
## 650 23.00 23.00 23.00000 23.00
## 651 NA 0.00 29.69912 28.00
## 652 18.00 18.00 18.00000 18.00
## 653 21.00 21.00 21.00000 21.00
## 654 NA 0.00 29.69912 28.00
## 655 18.00 18.00 18.00000 18.00
## 656 24.00 24.00 24.00000 24.00
## 657 NA 0.00 29.69912 28.00
## 658 32.00 32.00 32.00000 32.00
## 659 23.00 23.00 23.00000 23.00
## 660 58.00 58.00 58.00000 58.00
## 661 50.00 50.00 50.00000 50.00
## 662 40.00 40.00 40.00000 40.00
## 663 47.00 47.00 47.00000 47.00
## 664 36.00 36.00 36.00000 36.00
## 665 20.00 20.00 20.00000 20.00
## 666 32.00 32.00 32.00000 32.00
## 667 25.00 25.00 25.00000 25.00
## 668 NA 0.00 29.69912 28.00
## 669 43.00 43.00 43.00000 43.00
## 670 NA 0.00 29.69912 28.00
## 671 40.00 40.00 40.00000 40.00
## 672 31.00 31.00 31.00000 31.00
## 673 70.00 70.00 70.00000 70.00
## 674 31.00 31.00 31.00000 31.00
## 675 NA 0.00 29.69912 28.00
## 676 18.00 18.00 18.00000 18.00
## 677 24.50 24.50 24.50000 24.50
## 678 18.00 18.00 18.00000 18.00
## 679 43.00 43.00 43.00000 43.00
## 680 36.00 36.00 36.00000 36.00
## 681 NA 0.00 29.69912 28.00
## 682 27.00 27.00 27.00000 27.00
## 683 20.00 20.00 20.00000 20.00
## 684 14.00 14.00 14.00000 14.00
## 685 60.00 60.00 60.00000 60.00
## 686 25.00 25.00 25.00000 25.00
## 687 14.00 14.00 14.00000 14.00
## 688 19.00 19.00 19.00000 19.00
## 689 18.00 18.00 18.00000 18.00
## 690 15.00 15.00 15.00000 15.00
## 691 31.00 31.00 31.00000 31.00
## 692 4.00 4.00 4.00000 4.00
## 693 NA 0.00 29.69912 28.00
## 694 25.00 25.00 25.00000 25.00
## 695 60.00 60.00 60.00000 60.00
## 696 52.00 52.00 52.00000 52.00
## 697 44.00 44.00 44.00000 44.00
## 698 NA 0.00 29.69912 28.00
## 699 49.00 49.00 49.00000 49.00
## 700 42.00 42.00 42.00000 42.00
## 701 18.00 18.00 18.00000 18.00
## 702 35.00 35.00 35.00000 35.00
## 703 18.00 18.00 18.00000 18.00
## 704 25.00 25.00 25.00000 25.00
## 705 26.00 26.00 26.00000 26.00
## 706 39.00 39.00 39.00000 39.00
## 707 45.00 45.00 45.00000 45.00
## 708 42.00 42.00 42.00000 42.00
## 709 22.00 22.00 22.00000 22.00
## 710 NA 0.00 29.69912 28.00
## 711 24.00 24.00 24.00000 24.00
## 712 NA 0.00 29.69912 28.00
## 713 48.00 48.00 48.00000 48.00
## 714 29.00 29.00 29.00000 29.00
## 715 52.00 52.00 52.00000 52.00
## 716 19.00 19.00 19.00000 19.00
## 717 38.00 38.00 38.00000 38.00
## 718 27.00 27.00 27.00000 27.00
## 719 NA 0.00 29.69912 28.00
## 720 33.00 33.00 33.00000 33.00
## 721 6.00 6.00 6.00000 6.00
## 722 17.00 17.00 17.00000 17.00
## 723 34.00 34.00 34.00000 34.00
## 724 50.00 50.00 50.00000 50.00
## 725 27.00 27.00 27.00000 27.00
## 726 20.00 20.00 20.00000 20.00
## 727 30.00 30.00 30.00000 30.00
## 728 NA 0.00 29.69912 28.00
## 729 25.00 25.00 25.00000 25.00
## 730 25.00 25.00 25.00000 25.00
## 731 29.00 29.00 29.00000 29.00
## 732 11.00 11.00 11.00000 11.00
## 733 NA 0.00 29.69912 28.00
## 734 23.00 23.00 23.00000 23.00
## 735 23.00 23.00 23.00000 23.00
## 736 28.50 28.50 28.50000 28.50
## 737 48.00 48.00 48.00000 48.00
## 738 35.00 35.00 35.00000 35.00
## 739 NA 0.00 29.69912 28.00
## 740 NA 0.00 29.69912 28.00
## 741 NA 0.00 29.69912 28.00
## 742 36.00 36.00 36.00000 36.00
## 743 21.00 21.00 21.00000 21.00
## 744 24.00 24.00 24.00000 24.00
## 745 31.00 31.00 31.00000 31.00
## 746 70.00 70.00 70.00000 70.00
## 747 16.00 16.00 16.00000 16.00
## 748 30.00 30.00 30.00000 30.00
## 749 19.00 19.00 19.00000 19.00
## 750 31.00 31.00 31.00000 31.00
## 751 4.00 4.00 4.00000 4.00
## 752 6.00 6.00 6.00000 6.00
## 753 33.00 33.00 33.00000 33.00
## 754 23.00 23.00 23.00000 23.00
## 755 48.00 48.00 48.00000 48.00
## 756 0.67 0.67 0.67000 0.67
## 757 28.00 28.00 28.00000 28.00
## 758 18.00 18.00 18.00000 18.00
## 759 34.00 34.00 34.00000 34.00
## 760 33.00 33.00 33.00000 33.00
## 761 NA 0.00 29.69912 28.00
## 762 41.00 41.00 41.00000 41.00
## 763 20.00 20.00 20.00000 20.00
## 764 36.00 36.00 36.00000 36.00
## 765 16.00 16.00 16.00000 16.00
## 766 51.00 51.00 51.00000 51.00
## 767 NA 0.00 29.69912 28.00
## 768 30.50 30.50 30.50000 30.50
## 769 NA 0.00 29.69912 28.00
## 770 32.00 32.00 32.00000 32.00
## 771 24.00 24.00 24.00000 24.00
## 772 48.00 48.00 48.00000 48.00
## 773 57.00 57.00 57.00000 57.00
## 774 NA 0.00 29.69912 28.00
## 775 54.00 54.00 54.00000 54.00
## 776 18.00 18.00 18.00000 18.00
## 777 NA 0.00 29.69912 28.00
## 778 5.00 5.00 5.00000 5.00
## 779 NA 0.00 29.69912 28.00
## 780 43.00 43.00 43.00000 43.00
## 781 13.00 13.00 13.00000 13.00
## 782 17.00 17.00 17.00000 17.00
## 783 29.00 29.00 29.00000 29.00
## 784 NA 0.00 29.69912 28.00
## 785 25.00 25.00 25.00000 25.00
## 786 25.00 25.00 25.00000 25.00
## 787 18.00 18.00 18.00000 18.00
## 788 8.00 8.00 8.00000 8.00
## 789 1.00 1.00 1.00000 1.00
## 790 46.00 46.00 46.00000 46.00
## 791 NA 0.00 29.69912 28.00
## 792 16.00 16.00 16.00000 16.00
## 793 NA 0.00 29.69912 28.00
## 794 NA 0.00 29.69912 28.00
## 795 25.00 25.00 25.00000 25.00
## 796 39.00 39.00 39.00000 39.00
## 797 49.00 49.00 49.00000 49.00
## 798 31.00 31.00 31.00000 31.00
## 799 30.00 30.00 30.00000 30.00
## 800 30.00 30.00 30.00000 30.00
## 801 34.00 34.00 34.00000 34.00
## 802 31.00 31.00 31.00000 31.00
## 803 11.00 11.00 11.00000 11.00
## 804 0.42 0.42 0.42000 0.42
## 805 27.00 27.00 27.00000 27.00
## 806 31.00 31.00 31.00000 31.00
## 807 39.00 39.00 39.00000 39.00
## 808 18.00 18.00 18.00000 18.00
## 809 39.00 39.00 39.00000 39.00
## 810 33.00 33.00 33.00000 33.00
## 811 26.00 26.00 26.00000 26.00
## 812 39.00 39.00 39.00000 39.00
## 813 35.00 35.00 35.00000 35.00
## 814 6.00 6.00 6.00000 6.00
## 815 30.50 30.50 30.50000 30.50
## 816 NA 0.00 29.69912 28.00
## 817 23.00 23.00 23.00000 23.00
## 818 31.00 31.00 31.00000 31.00
## 819 43.00 43.00 43.00000 43.00
## 820 10.00 10.00 10.00000 10.00
## 821 52.00 52.00 52.00000 52.00
## 822 27.00 27.00 27.00000 27.00
## 823 38.00 38.00 38.00000 38.00
## 824 27.00 27.00 27.00000 27.00
## 825 2.00 2.00 2.00000 2.00
## 826 NA 0.00 29.69912 28.00
## 827 NA 0.00 29.69912 28.00
## 828 1.00 1.00 1.00000 1.00
## 829 NA 0.00 29.69912 28.00
## 830 62.00 62.00 62.00000 62.00
## 831 15.00 15.00 15.00000 15.00
## 832 0.83 0.83 0.83000 0.83
## 833 NA 0.00 29.69912 28.00
## 834 23.00 23.00 23.00000 23.00
## 835 18.00 18.00 18.00000 18.00
## 836 39.00 39.00 39.00000 39.00
## 837 21.00 21.00 21.00000 21.00
## 838 NA 0.00 29.69912 28.00
## 839 32.00 32.00 32.00000 32.00
## 840 NA 0.00 29.69912 28.00
## 841 20.00 20.00 20.00000 20.00
## 842 16.00 16.00 16.00000 16.00
## 843 30.00 30.00 30.00000 30.00
## 844 34.50 34.50 34.50000 34.50
## 845 17.00 17.00 17.00000 17.00
## 846 42.00 42.00 42.00000 42.00
## 847 NA 0.00 29.69912 28.00
## 848 35.00 35.00 35.00000 35.00
## 849 28.00 28.00 28.00000 28.00
## 850 NA 0.00 29.69912 28.00
## 851 4.00 4.00 4.00000 4.00
## 852 74.00 74.00 74.00000 74.00
## 853 9.00 9.00 9.00000 9.00
## 854 16.00 16.00 16.00000 16.00
## 855 44.00 44.00 44.00000 44.00
## 856 18.00 18.00 18.00000 18.00
## 857 45.00 45.00 45.00000 45.00
## 858 51.00 51.00 51.00000 51.00
## 859 24.00 24.00 24.00000 24.00
## 860 NA 0.00 29.69912 28.00
## 861 41.00 41.00 41.00000 41.00
## 862 21.00 21.00 21.00000 21.00
## 863 48.00 48.00 48.00000 48.00
## 864 NA 0.00 29.69912 28.00
## 865 24.00 24.00 24.00000 24.00
## 866 42.00 42.00 42.00000 42.00
## 867 27.00 27.00 27.00000 27.00
## 868 31.00 31.00 31.00000 31.00
## 869 NA 0.00 29.69912 28.00
## 870 4.00 4.00 4.00000 4.00
## 871 26.00 26.00 26.00000 26.00
## 872 47.00 47.00 47.00000 47.00
## 873 33.00 33.00 33.00000 33.00
## 874 47.00 47.00 47.00000 47.00
## 875 28.00 28.00 28.00000 28.00
## 876 15.00 15.00 15.00000 15.00
## 877 20.00 20.00 20.00000 20.00
## 878 19.00 19.00 19.00000 19.00
## 879 NA 0.00 29.69912 28.00
## 880 56.00 56.00 56.00000 56.00
## 881 25.00 25.00 25.00000 25.00
## 882 33.00 33.00 33.00000 33.00
## 883 22.00 22.00 22.00000 22.00
## 884 28.00 28.00 28.00000 28.00
## 885 25.00 25.00 25.00000 25.00
## 886 39.00 39.00 39.00000 39.00
## 887 27.00 27.00 27.00000 27.00
## 888 19.00 19.00 19.00000 19.00
## 889 NA 0.00 29.69912 28.00
## 890 26.00 26.00 26.00000 26.00
## 891 32.00 32.00 32.00000 32.00
Let’s take a look at the variable distribution changes introduced by imputation on a 2×2 grid of histograms:
library(ggplot2)
library(cowplot) # for plot_grid()
h1 <- ggplot(value_imputed, aes(x = original)) +
geom_histogram(fill = "#ad1538", color = "#000000", position = "identity") +
ggtitle("Original distribution") +
theme_classic()
h2 <- ggplot(value_imputed, aes(x = imputed_zero)) +
geom_histogram(fill = "#15ad4f", color = "#000000", position = "identity") +
ggtitle("Zero-imputed distribution") +
theme_classic()
h3 <- ggplot(value_imputed, aes(x = imputed_mean)) +
geom_histogram(fill = "#1543ad", color = "#000000", position = "identity") +
ggtitle("Mean-imputed distribution") +
theme_classic()
h4 <- ggplot(value_imputed, aes(x = imputed_median)) +
geom_histogram(fill = "#ad8415", color = "#000000", position = "identity") +
ggtitle("Median-imputed distribution") +
theme_classic()
plot_grid(h1, h2, h3, h4, nrow = 2, ncol = 2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 177 rows containing non-finite outside the scale range
## (`stat_bin()`).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
All imputation methods severely impact the distribution. There are a lot of missing values, so setting a single constant value doesn’t make much sense. Zero imputation is the worst, as it’s highly unlikely for close to 200 passengers to have the age of zero.
Maybe mode imputation would provide better results, but we’ll leave that up to you.
What about the results from the imputation methods from using MICE?
Here, we will need the information from the other variables in the dataset.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
titanic_numeric <- titanic_train %>%
select(Survived, Pclass, SibSp, Parch, Age)
Here, we will use the following MICE imputation methods:
pmm
: Predictive mean matching.cart
: Classification and regression trees.laso.norm
: Lasso linear regression.Once again, the results will be stored in a data.frame:
mice_imputed <- data.frame(original = titanic_train$Age,
imputed_pmm = complete(mice(titanic_numeric, method = "pmm"))$Age,
imputed_cart = complete(mice(titanic_numeric, method = "cart"))$Age,
imputed_lasso = complete(mice(titanic_numeric, method = "lasso.norm"))$Age)
##
## iter imp variable
## 1 1 Age
## 1 2 Age
## 1 3 Age
## 1 4 Age
## 1 5 Age
## 2 1 Age
## 2 2 Age
## 2 3 Age
## 2 4 Age
## 2 5 Age
## 3 1 Age
## 3 2 Age
## 3 3 Age
## 3 4 Age
## 3 5 Age
## 4 1 Age
## 4 2 Age
## 4 3 Age
## 4 4 Age
## 4 5 Age
## 5 1 Age
## 5 2 Age
## 5 3 Age
## 5 4 Age
## 5 5 Age
##
## iter imp variable
## 1 1 Age
## 1 2 Age
## 1 3 Age
## 1 4 Age
## 1 5 Age
## 2 1 Age
## 2 2 Age
## 2 3 Age
## 2 4 Age
## 2 5 Age
## 3 1 Age
## 3 2 Age
## 3 3 Age
## 3 4 Age
## 3 5 Age
## 4 1 Age
## 4 2 Age
## 4 3 Age
## 4 4 Age
## 4 5 Age
## 5 1 Age
## 5 2 Age
## 5 3 Age
## 5 4 Age
## 5 5 Age
##
## iter imp variable
## 1 1 Age
## 1 2 Age
## 1 3 Age
## 1 4 Age
## 1 5 Age
## 2 1 Age
## 2 2 Age
## 2 3 Age
## 2 4 Age
## 2 5 Age
## 3 1 Age
## 3 2 Age
## 3 3 Age
## 3 4 Age
## 3 5 Age
## 4 1 Age
## 4 2 Age
## 4 3 Age
## 4 4 Age
## 4 5 Age
## 5 1 Age
## 5 2 Age
## 5 3 Age
## 5 4 Age
## 5 5 Age
mice_imputed
## original imputed_pmm imputed_cart imputed_lasso
## 1 22.00 22.00 22.00 22.000000
## 2 38.00 38.00 38.00 38.000000
## 3 26.00 26.00 26.00 26.000000
## 4 35.00 35.00 35.00 35.000000
## 5 35.00 35.00 35.00 35.000000
## 6 NA 50.00 28.00 23.138597
## 7 54.00 54.00 54.00 54.000000
## 8 2.00 2.00 2.00 2.000000
## 9 27.00 27.00 27.00 27.000000
## 10 14.00 14.00 14.00 14.000000
## 11 4.00 4.00 4.00 4.000000
## 12 58.00 58.00 58.00 58.000000
## 13 20.00 20.00 20.00 20.000000
## 14 39.00 39.00 39.00 39.000000
## 15 14.00 14.00 14.00 14.000000
## 16 55.00 55.00 55.00 55.000000
## 17 2.00 2.00 2.00 2.000000
## 18 NA 19.00 34.00 29.699241
## 19 31.00 31.00 31.00 31.000000
## 20 NA 16.00 63.00 28.063402
## 21 35.00 35.00 35.00 35.000000
## 22 34.00 34.00 34.00 34.000000
## 23 15.00 15.00 15.00 15.000000
## 24 28.00 28.00 28.00 28.000000
## 25 8.00 8.00 8.00 8.000000
## 26 38.00 38.00 38.00 38.000000
## 27 NA 50.00 29.00 33.361442
## 28 19.00 19.00 19.00 19.000000
## 29 NA 27.00 45.00 49.407257
## 30 NA 13.00 45.50 44.382027
## 31 40.00 40.00 40.00 40.000000
## 32 NA 17.00 51.00 40.220626
## 33 NA 32.00 19.00 27.968374
## 34 66.00 66.00 66.00 66.000000
## 35 28.00 28.00 28.00 28.000000
## 36 42.00 42.00 42.00 42.000000
## 37 NA 24.00 13.00 18.964398
## 38 21.00 21.00 21.00 21.000000
## 39 18.00 18.00 18.00 18.000000
## 40 14.00 14.00 14.00 14.000000
## 41 40.00 40.00 40.00 40.000000
## 42 27.00 27.00 27.00 27.000000
## 43 NA 50.00 25.00 58.783021
## 44 3.00 3.00 3.00 3.000000
## 45 19.00 19.00 19.00 19.000000
## 46 NA 18.00 19.00 34.664493
## 47 NA 40.00 26.00 29.418582
## 48 NA 32.00 23.00 25.814748
## 49 NA 39.00 29.00 17.092353
## 50 18.00 18.00 18.00 18.000000
## 51 7.00 7.00 7.00 7.000000
## 52 21.00 21.00 21.00 21.000000
## 53 49.00 49.00 49.00 49.000000
## 54 29.00 29.00 29.00 29.000000
## 55 65.00 65.00 65.00 65.000000
## 56 NA 25.00 62.00 34.964772
## 57 21.00 21.00 21.00 21.000000
## 58 28.50 28.50 28.50 28.500000
## 59 5.00 5.00 5.00 5.000000
## 60 11.00 11.00 11.00 11.000000
## 61 22.00 22.00 22.00 22.000000
## 62 38.00 38.00 38.00 38.000000
## 63 45.00 45.00 45.00 45.000000
## 64 4.00 4.00 4.00 4.000000
## 65 NA 71.00 40.00 42.456328
## 66 NA 3.00 27.00 38.422024
## 67 29.00 29.00 29.00 29.000000
## 68 19.00 19.00 19.00 19.000000
## 69 17.00 17.00 17.00 17.000000
## 70 26.00 26.00 26.00 26.000000
## 71 32.00 32.00 32.00 32.000000
## 72 16.00 16.00 16.00 16.000000
## 73 21.00 21.00 21.00 21.000000
## 74 26.00 26.00 26.00 26.000000
## 75 32.00 32.00 32.00 32.000000
## 76 25.00 25.00 25.00 25.000000
## 77 NA 18.00 16.00 7.928571
## 78 NA 18.00 24.00 19.626921
## 79 0.83 0.83 0.83 0.830000
## 80 30.00 30.00 30.00 30.000000
## 81 22.00 22.00 22.00 22.000000
## 82 29.00 29.00 29.00 29.000000
## 83 NA 32.00 16.00 21.627360
## 84 28.00 28.00 28.00 28.000000
## 85 17.00 17.00 17.00 17.000000
## 86 33.00 33.00 33.00 33.000000
## 87 16.00 16.00 16.00 16.000000
## 88 NA 41.00 36.00 53.314791
## 89 23.00 23.00 23.00 23.000000
## 90 24.00 24.00 24.00 24.000000
## 91 29.00 29.00 29.00 29.000000
## 92 20.00 20.00 20.00 20.000000
## 93 46.00 46.00 46.00 46.000000
## 94 26.00 26.00 26.00 26.000000
## 95 59.00 59.00 59.00 59.000000
## 96 NA 25.00 19.00 25.431443
## 97 71.00 71.00 71.00 71.000000
## 98 23.00 23.00 23.00 23.000000
## 99 34.00 34.00 34.00 34.000000
## 100 34.00 34.00 34.00 34.000000
## 101 28.00 28.00 28.00 28.000000
## 102 NA 18.00 16.00 35.232305
## 103 21.00 21.00 21.00 21.000000
## 104 33.00 33.00 33.00 33.000000
## 105 37.00 37.00 37.00 37.000000
## 106 28.00 28.00 28.00 28.000000
## 107 21.00 21.00 21.00 21.000000
## 108 NA 45.00 30.00 25.935342
## 109 38.00 38.00 38.00 38.000000
## 110 NA 25.00 33.00 12.848847
## 111 47.00 47.00 47.00 47.000000
## 112 14.50 14.50 14.50 14.500000
## 113 22.00 22.00 22.00 22.000000
## 114 20.00 20.00 20.00 20.000000
## 115 17.00 17.00 17.00 17.000000
## 116 21.00 21.00 21.00 21.000000
## 117 70.50 70.50 70.50 70.500000
## 118 29.00 29.00 29.00 29.000000
## 119 24.00 24.00 24.00 24.000000
## 120 2.00 2.00 2.00 2.000000
## 121 21.00 21.00 21.00 21.000000
## 122 NA 25.00 23.00 28.661167
## 123 32.50 32.50 32.50 32.500000
## 124 32.50 32.50 32.50 32.500000
## 125 54.00 54.00 54.00 54.000000
## 126 12.00 12.00 12.00 12.000000
## 127 NA 13.00 29.00 30.054590
## 128 24.00 24.00 24.00 24.000000
## 129 NA 35.00 0.42 18.657682
## 130 45.00 45.00 45.00 45.000000
## 131 33.00 33.00 33.00 33.000000
## 132 20.00 20.00 20.00 20.000000
## 133 47.00 47.00 47.00 47.000000
## 134 29.00 29.00 29.00 29.000000
## 135 25.00 25.00 25.00 25.000000
## 136 23.00 23.00 23.00 23.000000
## 137 19.00 19.00 19.00 19.000000
## 138 37.00 37.00 37.00 37.000000
## 139 16.00 16.00 16.00 16.000000
## 140 24.00 24.00 24.00 24.000000
## 141 NA 28.00 44.00 20.391541
## 142 22.00 22.00 22.00 22.000000
## 143 24.00 24.00 24.00 24.000000
## 144 19.00 19.00 19.00 19.000000
## 145 18.00 18.00 18.00 18.000000
## 146 19.00 19.00 19.00 19.000000
## 147 27.00 27.00 27.00 27.000000
## 148 9.00 9.00 9.00 9.000000
## 149 36.50 36.50 36.50 36.500000
## 150 42.00 42.00 42.00 42.000000
## 151 51.00 51.00 51.00 51.000000
## 152 22.00 22.00 22.00 22.000000
## 153 55.50 55.50 55.50 55.500000
## 154 40.50 40.50 40.50 40.500000
## 155 NA 41.00 33.00 40.138689
## 156 51.00 51.00 51.00 51.000000
## 157 16.00 16.00 16.00 16.000000
## 158 30.00 30.00 30.00 30.000000
## 159 NA 41.00 41.00 20.403791
## 160 NA 5.00 11.00 -1.686867
## 161 44.00 44.00 44.00 44.000000
## 162 40.00 40.00 40.00 40.000000
## 163 26.00 26.00 26.00 26.000000
## 164 17.00 17.00 17.00 17.000000
## 165 1.00 1.00 1.00 1.000000
## 166 9.00 9.00 9.00 9.000000
## 167 NA 28.00 58.00 39.490353
## 168 45.00 45.00 45.00 45.000000
## 169 NA 45.50 62.00 42.199702
## 170 28.00 28.00 28.00 28.000000
## 171 61.00 61.00 61.00 61.000000
## 172 4.00 4.00 4.00 4.000000
## 173 1.00 1.00 1.00 1.000000
## 174 21.00 21.00 21.00 21.000000
## 175 56.00 56.00 56.00 56.000000
## 176 18.00 18.00 18.00 18.000000
## 177 NA 10.00 3.00 17.414502
## 178 50.00 50.00 50.00 50.000000
## 179 30.00 30.00 30.00 30.000000
## 180 36.00 36.00 36.00 36.000000
## 181 NA 16.00 16.00 -3.147851
## 182 NA 30.00 35.00 55.961696
## 183 9.00 9.00 9.00 9.000000
## 184 1.00 1.00 1.00 1.000000
## 185 4.00 4.00 4.00 4.000000
## 186 NA 38.00 45.00 36.839671
## 187 NA 20.00 25.00 22.049281
## 188 45.00 45.00 45.00 45.000000
## 189 40.00 40.00 40.00 40.000000
## 190 36.00 36.00 36.00 36.000000
## 191 32.00 32.00 32.00 32.000000
## 192 19.00 19.00 19.00 19.000000
## 193 19.00 19.00 19.00 19.000000
## 194 3.00 3.00 3.00 3.000000
## 195 44.00 44.00 44.00 44.000000
## 196 58.00 58.00 58.00 58.000000
## 197 NA 25.00 28.00 27.222496
## 198 42.00 42.00 42.00 42.000000
## 199 NA 24.00 16.00 12.997681
## 200 24.00 24.00 24.00 24.000000
## 201 28.00 28.00 28.00 28.000000
## 202 NA 5.00 1.00 14.523671
## 203 34.00 34.00 34.00 34.000000
## 204 45.50 45.50 45.50 45.500000
## 205 18.00 18.00 18.00 18.000000
## 206 2.00 2.00 2.00 2.000000
## 207 32.00 32.00 32.00 32.000000
## 208 26.00 26.00 26.00 26.000000
## 209 16.00 16.00 16.00 16.000000
## 210 40.00 40.00 40.00 40.000000
## 211 24.00 24.00 24.00 24.000000
## 212 35.00 35.00 35.00 35.000000
## 213 22.00 22.00 22.00 22.000000
## 214 30.00 30.00 30.00 30.000000
## 215 NA 3.00 47.00 20.278079
## 216 31.00 31.00 31.00 31.000000
## 217 27.00 27.00 27.00 27.000000
## 218 42.00 42.00 42.00 42.000000
## 219 32.00 32.00 32.00 32.000000
## 220 30.00 30.00 30.00 30.000000
## 221 16.00 16.00 16.00 16.000000
## 222 27.00 27.00 27.00 27.000000
## 223 51.00 51.00 51.00 51.000000
## 224 NA 25.00 19.00 37.804621
## 225 38.00 38.00 38.00 38.000000
## 226 22.00 22.00 22.00 22.000000
## 227 19.00 19.00 19.00 19.000000
## 228 20.50 20.50 20.50 20.500000
## 229 18.00 18.00 18.00 18.000000
## 230 NA 9.00 5.00 7.609335
## 231 35.00 35.00 35.00 35.000000
## 232 29.00 29.00 29.00 29.000000
## 233 59.00 59.00 59.00 59.000000
## 234 5.00 5.00 5.00 5.000000
## 235 24.00 24.00 24.00 24.000000
## 236 NA 50.00 21.00 17.485835
## 237 44.00 44.00 44.00 44.000000
## 238 8.00 8.00 8.00 8.000000
## 239 19.00 19.00 19.00 19.000000
## 240 33.00 33.00 33.00 33.000000
## 241 NA 40.00 47.00 25.829111
## 242 NA 25.00 25.00 26.289708
## 243 29.00 29.00 29.00 29.000000
## 244 22.00 22.00 22.00 22.000000
## 245 30.00 30.00 30.00 30.000000
## 246 44.00 44.00 44.00 44.000000
## 247 25.00 25.00 25.00 25.000000
## 248 24.00 24.00 24.00 24.000000
## 249 37.00 37.00 37.00 37.000000
## 250 54.00 54.00 54.00 54.000000
## 251 NA 18.00 19.00 53.828940
## 252 29.00 29.00 29.00 29.000000
## 253 62.00 62.00 62.00 62.000000
## 254 30.00 30.00 30.00 30.000000
## 255 41.00 41.00 41.00 41.000000
## 256 29.00 29.00 29.00 29.000000
## 257 NA 35.00 40.00 37.090808
## 258 30.00 30.00 30.00 30.000000
## 259 35.00 35.00 35.00 35.000000
## 260 50.00 50.00 50.00 50.000000
## 261 NA 41.00 21.00 36.689417
## 262 3.00 3.00 3.00 3.000000
## 263 52.00 52.00 52.00 52.000000
## 264 40.00 40.00 40.00 40.000000
## 265 NA 50.00 48.00 24.460699
## 266 36.00 36.00 36.00 36.000000
## 267 16.00 16.00 16.00 16.000000
## 268 25.00 25.00 25.00 25.000000
## 269 58.00 58.00 58.00 58.000000
## 270 35.00 35.00 35.00 35.000000
## 271 NA 62.00 64.00 35.306099
## 272 25.00 25.00 25.00 25.000000
## 273 41.00 41.00 41.00 41.000000
## 274 37.00 37.00 37.00 37.000000
## 275 NA 16.00 22.00 5.522564
## 276 63.00 63.00 63.00 63.000000
## 277 45.00 45.00 45.00 45.000000
## 278 NA 25.00 31.00 45.213842
## 279 7.00 7.00 7.00 7.000000
## 280 35.00 35.00 35.00 35.000000
## 281 65.00 65.00 65.00 65.000000
## 282 28.00 28.00 28.00 28.000000
## 283 16.00 16.00 16.00 16.000000
## 284 19.00 19.00 19.00 19.000000
## 285 NA 47.00 40.00 48.073608
## 286 33.00 33.00 33.00 33.000000
## 287 30.00 30.00 30.00 30.000000
## 288 22.00 22.00 22.00 22.000000
## 289 42.00 42.00 42.00 42.000000
## 290 22.00 22.00 22.00 22.000000
## 291 26.00 26.00 26.00 26.000000
## 292 19.00 19.00 19.00 19.000000
## 293 36.00 36.00 36.00 36.000000
## 294 24.00 24.00 24.00 24.000000
## 295 24.00 24.00 24.00 24.000000
## 296 NA 47.00 31.00 43.169129
## 297 23.50 23.50 23.50 23.500000
## 298 2.00 2.00 2.00 2.000000
## 299 NA 35.00 36.00 34.449586
## 300 50.00 50.00 50.00 50.000000
## 301 NA 32.00 27.00 31.543555
## 302 NA 9.00 36.00 22.861419
## 303 19.00 19.00 19.00 19.000000
## 304 NA 25.00 50.00 37.010063
## 305 NA 18.00 45.00 13.570978
## 306 0.92 0.92 0.92 0.920000
## 307 NA 35.00 30.00 44.566861
## 308 17.00 17.00 17.00 17.000000
## 309 30.00 30.00 30.00 30.000000
## 310 30.00 30.00 30.00 30.000000
## 311 24.00 24.00 24.00 24.000000
## 312 18.00 18.00 18.00 18.000000
## 313 26.00 26.00 26.00 26.000000
## 314 28.00 28.00 28.00 28.000000
## 315 43.00 43.00 43.00 43.000000
## 316 26.00 26.00 26.00 26.000000
## 317 24.00 24.00 24.00 24.000000
## 318 54.00 54.00 54.00 54.000000
## 319 31.00 31.00 31.00 31.000000
## 320 40.00 40.00 40.00 40.000000
## 321 22.00 22.00 22.00 22.000000
## 322 27.00 27.00 27.00 27.000000
## 323 30.00 30.00 30.00 30.000000
## 324 22.00 22.00 22.00 22.000000
## 325 NA 3.00 11.00 2.604959
## 326 36.00 36.00 36.00 36.000000
## 327 61.00 61.00 61.00 61.000000
## 328 36.00 36.00 36.00 36.000000
## 329 31.00 31.00 31.00 31.000000
## 330 16.00 16.00 16.00 16.000000
## 331 NA 38.00 25.00 15.333732
## 332 45.50 45.50 45.50 45.500000
## 333 38.00 38.00 38.00 38.000000
## 334 16.00 16.00 16.00 16.000000
## 335 NA 49.00 27.00 38.640769
## 336 NA 41.00 45.00 38.717188
## 337 29.00 29.00 29.00 29.000000
## 338 41.00 41.00 41.00 41.000000
## 339 45.00 45.00 45.00 45.000000
## 340 45.00 45.00 45.00 45.000000
## 341 2.00 2.00 2.00 2.000000
## 342 24.00 24.00 24.00 24.000000
## 343 28.00 28.00 28.00 28.000000
## 344 25.00 25.00 25.00 25.000000
## 345 36.00 36.00 36.00 36.000000
## 346 24.00 24.00 24.00 24.000000
## 347 40.00 40.00 40.00 40.000000
## 348 NA 19.00 19.00 22.108909
## 349 3.00 3.00 3.00 3.000000
## 350 42.00 42.00 42.00 42.000000
## 351 23.00 23.00 23.00 23.000000
## 352 NA 47.00 39.00 46.434081
## 353 15.00 15.00 15.00 15.000000
## 354 25.00 25.00 25.00 25.000000
## 355 NA 25.00 21.00 38.389168
## 356 28.00 28.00 28.00 28.000000
## 357 22.00 22.00 22.00 22.000000
## 358 38.00 38.00 38.00 38.000000
## 359 NA 24.00 26.00 24.662871
## 360 NA 27.00 18.00 9.260164
## 361 40.00 40.00 40.00 40.000000
## 362 29.00 29.00 29.00 29.000000
## 363 45.00 45.00 45.00 45.000000
## 364 35.00 35.00 35.00 35.000000
## 365 NA 40.00 14.50 45.875044
## 366 30.00 30.00 30.00 30.000000
## 367 60.00 60.00 60.00 60.000000
## 368 NA 24.00 22.00 7.847575
## 369 NA 32.00 39.00 37.099847
## 370 24.00 24.00 24.00 24.000000
## 371 25.00 25.00 25.00 25.000000
## 372 18.00 18.00 18.00 18.000000
## 373 19.00 19.00 19.00 19.000000
## 374 22.00 22.00 22.00 22.000000
## 375 3.00 3.00 3.00 3.000000
## 376 NA 25.00 53.00 26.291744
## 377 22.00 22.00 22.00 22.000000
## 378 27.00 27.00 27.00 27.000000
## 379 20.00 20.00 20.00 20.000000
## 380 19.00 19.00 19.00 19.000000
## 381 42.00 42.00 42.00 42.000000
## 382 1.00 1.00 1.00 1.000000
## 383 32.00 32.00 32.00 32.000000
## 384 35.00 35.00 35.00 35.000000
## 385 NA 41.00 25.00 35.418128
## 386 18.00 18.00 18.00 18.000000
## 387 1.00 1.00 1.00 1.000000
## 388 36.00 36.00 36.00 36.000000
## 389 NA 41.00 19.00 30.581699
## 390 17.00 17.00 17.00 17.000000
## 391 36.00 36.00 36.00 36.000000
## 392 21.00 21.00 21.00 21.000000
## 393 28.00 28.00 28.00 28.000000
## 394 23.00 23.00 23.00 23.000000
## 395 24.00 24.00 24.00 24.000000
## 396 22.00 22.00 22.00 22.000000
## 397 31.00 31.00 31.00 31.000000
## 398 46.00 46.00 46.00 46.000000
## 399 23.00 23.00 23.00 23.000000
## 400 28.00 28.00 28.00 28.000000
## 401 39.00 39.00 39.00 39.000000
## 402 26.00 26.00 26.00 26.000000
## 403 21.00 21.00 21.00 21.000000
## 404 28.00 28.00 28.00 28.000000
## 405 20.00 20.00 20.00 20.000000
## 406 34.00 34.00 34.00 34.000000
## 407 51.00 51.00 51.00 51.000000
## 408 3.00 3.00 3.00 3.000000
## 409 21.00 21.00 21.00 21.000000
## 410 NA 4.00 0.75 2.240382
## 411 NA 50.00 19.00 35.054886
## 412 NA 13.00 29.00 45.052403
## 413 33.00 33.00 33.00 33.000000
## 414 NA 66.00 35.00 37.121316
## 415 44.00 44.00 44.00 44.000000
## 416 NA 18.00 24.50 48.544095
## 417 34.00 34.00 34.00 34.000000
## 418 18.00 18.00 18.00 18.000000
## 419 30.00 30.00 30.00 30.000000
## 420 10.00 10.00 10.00 10.000000
## 421 NA 41.00 21.00 36.152166
## 422 21.00 21.00 21.00 21.000000
## 423 29.00 29.00 29.00 29.000000
## 424 28.00 28.00 28.00 28.000000
## 425 18.00 18.00 18.00 18.000000
## 426 NA 41.00 38.00 34.540660
## 427 28.00 28.00 28.00 28.000000
## 428 19.00 19.00 19.00 19.000000
## 429 NA 13.00 20.00 33.408042
## 430 32.00 32.00 32.00 32.000000
## 431 28.00 28.00 28.00 28.000000
## 432 NA 12.00 20.00 18.540613
## 433 42.00 42.00 42.00 42.000000
## 434 17.00 17.00 17.00 17.000000
## 435 50.00 50.00 50.00 50.000000
## 436 14.00 14.00 14.00 14.000000
## 437 21.00 21.00 21.00 21.000000
## 438 24.00 24.00 24.00 24.000000
## 439 64.00 64.00 64.00 64.000000
## 440 31.00 31.00 31.00 31.000000
## 441 45.00 45.00 45.00 45.000000
## 442 20.00 20.00 20.00 20.000000
## 443 25.00 25.00 25.00 25.000000
## 444 28.00 28.00 28.00 28.000000
## 445 NA 24.00 29.00 28.639739
## 446 4.00 4.00 4.00 4.000000
## 447 13.00 13.00 13.00 13.000000
## 448 34.00 34.00 34.00 34.000000
## 449 5.00 5.00 5.00 5.000000
## 450 52.00 52.00 52.00 52.000000
## 451 36.00 36.00 36.00 36.000000
## 452 NA 41.00 40.00 32.207197
## 453 30.00 30.00 30.00 30.000000
## 454 49.00 49.00 49.00 49.000000
## 455 NA 13.00 51.00 27.241407
## 456 29.00 29.00 29.00 29.000000
## 457 65.00 65.00 65.00 65.000000
## 458 NA 49.00 35.00 46.530238
## 459 50.00 50.00 50.00 50.000000
## 460 NA 18.00 11.00 35.745600
## 461 48.00 48.00 48.00 48.000000
## 462 34.00 34.00 34.00 34.000000
## 463 47.00 47.00 47.00 47.000000
## 464 48.00 48.00 48.00 48.000000
## 465 NA 25.00 33.00 19.322652
## 466 38.00 38.00 38.00 38.000000
## 467 NA 30.00 50.00 50.200934
## 468 56.00 56.00 56.00 56.000000
## 469 NA 13.00 59.00 25.620317
## 470 0.75 0.75 0.75 0.750000
## 471 NA 41.00 43.00 57.706203
## 472 38.00 38.00 38.00 38.000000
## 473 33.00 33.00 33.00 33.000000
## 474 23.00 23.00 23.00 23.000000
## 475 22.00 22.00 22.00 22.000000
## 476 NA 71.00 39.00 41.032847
## 477 34.00 34.00 34.00 34.000000
## 478 29.00 29.00 29.00 29.000000
## 479 22.00 22.00 22.00 22.000000
## 480 2.00 2.00 2.00 2.000000
## 481 9.00 9.00 9.00 9.000000
## 482 NA 66.00 19.00 25.914125
## 483 50.00 50.00 50.00 50.000000
## 484 63.00 63.00 63.00 63.000000
## 485 25.00 25.00 25.00 25.000000
## 486 NA 2.00 0.75 -5.867558
## 487 35.00 35.00 35.00 35.000000
## 488 58.00 58.00 58.00 58.000000
## 489 30.00 30.00 30.00 30.000000
## 490 9.00 9.00 9.00 9.000000
## 491 NA 39.00 25.00 46.664719
## 492 21.00 21.00 21.00 21.000000
## 493 55.00 55.00 55.00 55.000000
## 494 71.00 71.00 71.00 71.000000
## 495 21.00 21.00 21.00 21.000000
## 496 NA 25.00 20.00 39.076812
## 497 54.00 54.00 54.00 54.000000
## 498 NA 50.00 21.00 14.470910
## 499 25.00 25.00 25.00 25.000000
## 500 24.00 24.00 24.00 24.000000
## 501 17.00 17.00 17.00 17.000000
## 502 21.00 21.00 21.00 21.000000
## 503 NA 13.00 43.00 28.932999
## 504 37.00 37.00 37.00 37.000000
## 505 16.00 16.00 16.00 16.000000
## 506 18.00 18.00 18.00 18.000000
## 507 33.00 33.00 33.00 33.000000
## 508 NA 52.00 35.00 30.212159
## 509 28.00 28.00 28.00 28.000000
## 510 26.00 26.00 26.00 26.000000
## 511 29.00 29.00 29.00 29.000000
## 512 NA 13.00 42.00 50.832488
## 513 36.00 36.00 36.00 36.000000
## 514 54.00 54.00 54.00 54.000000
## 515 24.00 24.00 24.00 24.000000
## 516 47.00 47.00 47.00 47.000000
## 517 34.00 34.00 34.00 34.000000
## 518 NA 25.00 38.00 27.024037
## 519 36.00 36.00 36.00 36.000000
## 520 32.00 32.00 32.00 32.000000
## 521 30.00 30.00 30.00 30.000000
## 522 22.00 22.00 22.00 22.000000
## 523 NA 25.00 22.00 30.992980
## 524 44.00 44.00 44.00 44.000000
## 525 NA 25.00 34.00 31.351219
## 526 40.50 40.50 40.50 40.500000
## 527 50.00 50.00 50.00 50.000000
## 528 NA 47.00 47.00 53.624024
## 529 39.00 39.00 39.00 39.000000
## 530 23.00 23.00 23.00 23.000000
## 531 2.00 2.00 2.00 2.000000
## 532 NA 41.00 34.50 36.462676
## 533 17.00 17.00 17.00 17.000000
## 534 NA 21.00 24.00 20.863092
## 535 30.00 30.00 30.00 30.000000
## 536 7.00 7.00 7.00 7.000000
## 537 45.00 45.00 45.00 45.000000
## 538 30.00 30.00 30.00 30.000000
## 539 NA 18.00 30.50 29.051316
## 540 22.00 22.00 22.00 22.000000
## 541 36.00 36.00 36.00 36.000000
## 542 9.00 9.00 9.00 9.000000
## 543 11.00 11.00 11.00 11.000000
## 544 32.00 32.00 32.00 32.000000
## 545 50.00 50.00 50.00 50.000000
## 546 64.00 64.00 64.00 64.000000
## 547 19.00 19.00 19.00 19.000000
## 548 NA 25.00 23.00 36.466799
## 549 33.00 33.00 33.00 33.000000
## 550 8.00 8.00 8.00 8.000000
## 551 17.00 17.00 17.00 17.000000
## 552 27.00 27.00 27.00 27.000000
## 553 NA 13.00 24.00 31.901357
## 554 22.00 22.00 22.00 22.000000
## 555 22.00 22.00 22.00 22.000000
## 556 62.00 62.00 62.00 62.000000
## 557 48.00 48.00 48.00 48.000000
## 558 NA 71.00 39.00 69.165379
## 559 39.00 39.00 39.00 39.000000
## 560 36.00 36.00 36.00 36.000000
## 561 NA 41.00 43.00 17.500269
## 562 40.00 40.00 40.00 40.000000
## 563 28.00 28.00 28.00 28.000000
## 564 NA 50.00 30.00 18.340103
## 565 NA 13.00 24.00 33.991401
## 566 24.00 24.00 24.00 24.000000
## 567 19.00 19.00 19.00 19.000000
## 568 29.00 29.00 29.00 29.000000
## 569 NA 50.00 18.00 18.403709
## 570 32.00 32.00 32.00 32.000000
## 571 62.00 62.00 62.00 62.000000
## 572 53.00 53.00 53.00 53.000000
## 573 36.00 36.00 36.00 36.000000
## 574 NA 32.00 29.00 47.034050
## 575 16.00 16.00 16.00 16.000000
## 576 19.00 19.00 19.00 19.000000
## 577 34.00 34.00 34.00 34.000000
## 578 39.00 39.00 39.00 39.000000
## 579 NA 40.00 28.00 23.189149
## 580 32.00 32.00 32.00 32.000000
## 581 25.00 25.00 25.00 25.000000
## 582 39.00 39.00 39.00 39.000000
## 583 54.00 54.00 54.00 54.000000
## 584 36.00 36.00 36.00 36.000000
## 585 NA 18.00 21.00 67.694091
## 586 18.00 18.00 18.00 18.000000
## 587 47.00 47.00 47.00 47.000000
## 588 60.00 60.00 60.00 60.000000
## 589 22.00 22.00 22.00 22.000000
## 590 NA 25.00 17.00 30.649153
## 591 35.00 35.00 35.00 35.000000
## 592 52.00 52.00 52.00 52.000000
## 593 47.00 47.00 47.00 47.000000
## 594 NA 24.00 40.50 32.436296
## 595 37.00 37.00 37.00 37.000000
## 596 36.00 36.00 36.00 36.000000
## 597 NA 19.00 18.00 31.221822
## 598 49.00 49.00 49.00 49.000000
## 599 NA 50.00 25.00 47.436361
## 600 49.00 49.00 49.00 49.000000
## 601 24.00 24.00 24.00 24.000000
## 602 NA 13.00 18.00 18.820254
## 603 NA 71.00 47.00 58.670056
## 604 44.00 44.00 44.00 44.000000
## 605 35.00 35.00 35.00 35.000000
## 606 36.00 36.00 36.00 36.000000
## 607 30.00 30.00 30.00 30.000000
## 608 27.00 27.00 27.00 27.000000
## 609 22.00 22.00 22.00 22.000000
## 610 40.00 40.00 40.00 40.000000
## 611 39.00 39.00 39.00 39.000000
## 612 NA 18.00 20.00 25.907702
## 613 NA 12.00 25.00 25.518209
## 614 NA 18.00 28.00 33.791775
## 615 35.00 35.00 35.00 35.000000
## 616 24.00 24.00 24.00 24.000000
## 617 34.00 34.00 34.00 34.000000
## 618 26.00 26.00 26.00 26.000000
## 619 4.00 4.00 4.00 4.000000
## 620 26.00 26.00 26.00 26.000000
## 621 27.00 27.00 27.00 27.000000
## 622 42.00 42.00 42.00 42.000000
## 623 20.00 20.00 20.00 20.000000
## 624 21.00 21.00 21.00 21.000000
## 625 21.00 21.00 21.00 21.000000
## 626 61.00 61.00 61.00 61.000000
## 627 57.00 57.00 57.00 57.000000
## 628 21.00 21.00 21.00 21.000000
## 629 26.00 26.00 26.00 26.000000
## 630 NA 13.00 22.00 46.119539
## 631 80.00 80.00 80.00 80.000000
## 632 51.00 51.00 51.00 51.000000
## 633 32.00 32.00 32.00 32.000000
## 634 NA 62.00 22.00 37.860192
## 635 9.00 9.00 9.00 9.000000
## 636 28.00 28.00 28.00 28.000000
## 637 32.00 32.00 32.00 32.000000
## 638 31.00 31.00 31.00 31.000000
## 639 41.00 41.00 41.00 41.000000
## 640 NA 39.00 24.00 26.211401
## 641 20.00 20.00 20.00 20.000000
## 642 24.00 24.00 24.00 24.000000
## 643 2.00 2.00 2.00 2.000000
## 644 NA 32.00 18.00 31.775737
## 645 0.75 0.75 0.75 0.750000
## 646 48.00 48.00 48.00 48.000000
## 647 19.00 19.00 19.00 19.000000
## 648 56.00 56.00 56.00 56.000000
## 649 NA 41.00 33.00 23.171088
## 650 23.00 23.00 23.00 23.000000
## 651 NA 50.00 17.00 59.713457
## 652 18.00 18.00 18.00 18.000000
## 653 21.00 21.00 21.00 21.000000
## 654 NA 24.00 16.00 36.481209
## 655 18.00 18.00 18.00 18.000000
## 656 24.00 24.00 24.00 24.000000
## 657 NA 13.00 50.00 23.331798
## 658 32.00 32.00 32.00 32.000000
## 659 23.00 23.00 23.00 23.000000
## 660 58.00 58.00 58.00 58.000000
## 661 50.00 50.00 50.00 50.000000
## 662 40.00 40.00 40.00 40.000000
## 663 47.00 47.00 47.00 47.000000
## 664 36.00 36.00 36.00 36.000000
## 665 20.00 20.00 20.00 20.000000
## 666 32.00 32.00 32.00 32.000000
## 667 25.00 25.00 25.00 25.000000
## 668 NA 13.00 22.00 50.931164
## 669 43.00 43.00 43.00 43.000000
## 670 NA 48.00 33.00 48.648657
## 671 40.00 40.00 40.00 40.000000
## 672 31.00 31.00 31.00 31.000000
## 673 70.00 70.00 70.00 70.000000
## 674 31.00 31.00 31.00 31.000000
## 675 NA 34.00 35.00 43.780320
## 676 18.00 18.00 18.00 18.000000
## 677 24.50 24.50 24.50 24.500000
## 678 18.00 18.00 18.00 18.000000
## 679 43.00 43.00 43.00 43.000000
## 680 36.00 36.00 36.00 36.000000
## 681 NA 13.00 24.00 22.710286
## 682 27.00 27.00 27.00 27.000000
## 683 20.00 20.00 20.00 20.000000
## 684 14.00 14.00 14.00 14.000000
## 685 60.00 60.00 60.00 60.000000
## 686 25.00 25.00 25.00 25.000000
## 687 14.00 14.00 14.00 14.000000
## 688 19.00 19.00 19.00 19.000000
## 689 18.00 18.00 18.00 18.000000
## 690 15.00 15.00 15.00 15.000000
## 691 31.00 31.00 31.00 31.000000
## 692 4.00 4.00 4.00 4.000000
## 693 NA 24.00 16.00 34.746741
## 694 25.00 25.00 25.00 25.000000
## 695 60.00 60.00 60.00 60.000000
## 696 52.00 52.00 52.00 52.000000
## 697 44.00 44.00 44.00 44.000000
## 698 NA 32.00 22.00 32.130059
## 699 49.00 49.00 49.00 49.000000
## 700 42.00 42.00 42.00 42.000000
## 701 18.00 18.00 18.00 18.000000
## 702 35.00 35.00 35.00 35.000000
## 703 18.00 18.00 18.00 18.000000
## 704 25.00 25.00 25.00 25.000000
## 705 26.00 26.00 26.00 26.000000
## 706 39.00 39.00 39.00 39.000000
## 707 45.00 45.00 45.00 45.000000
## 708 42.00 42.00 42.00 42.000000
## 709 22.00 22.00 22.00 22.000000
## 710 NA 3.00 9.00 33.182082
## 711 24.00 24.00 24.00 24.000000
## 712 NA 45.50 58.00 33.466917
## 713 48.00 48.00 48.00 48.000000
## 714 29.00 29.00 29.00 29.000000
## 715 52.00 52.00 52.00 52.000000
## 716 19.00 19.00 19.00 19.000000
## 717 38.00 38.00 38.00 38.000000
## 718 27.00 27.00 27.00 27.000000
## 719 NA 41.00 36.00 36.130454
## 720 33.00 33.00 33.00 33.000000
## 721 6.00 6.00 6.00 6.000000
## 722 17.00 17.00 17.00 17.000000
## 723 34.00 34.00 34.00 34.000000
## 724 50.00 50.00 50.00 50.000000
## 725 27.00 27.00 27.00 27.000000
## 726 20.00 20.00 20.00 20.000000
## 727 30.00 30.00 30.00 30.000000
## 728 NA 32.00 32.00 19.740786
## 729 25.00 25.00 25.00 25.000000
## 730 25.00 25.00 25.00 25.000000
## 731 29.00 29.00 29.00 29.000000
## 732 11.00 11.00 11.00 11.000000
## 733 NA 25.00 52.00 32.450605
## 734 23.00 23.00 23.00 23.000000
## 735 23.00 23.00 23.00 23.000000
## 736 28.50 28.50 28.50 28.500000
## 737 48.00 48.00 48.00 48.000000
## 738 35.00 35.00 35.00 35.000000
## 739 NA 18.00 32.00 50.635961
## 740 NA 50.00 26.00 48.306316
## 741 NA 52.00 19.00 50.612894
## 742 36.00 36.00 36.00 36.000000
## 743 21.00 21.00 21.00 21.000000
## 744 24.00 24.00 24.00 24.000000
## 745 31.00 31.00 31.00 31.000000
## 746 70.00 70.00 70.00 70.000000
## 747 16.00 16.00 16.00 16.000000
## 748 30.00 30.00 30.00 30.000000
## 749 19.00 19.00 19.00 19.000000
## 750 31.00 31.00 31.00 31.000000
## 751 4.00 4.00 4.00 4.000000
## 752 6.00 6.00 6.00 6.000000
## 753 33.00 33.00 33.00 33.000000
## 754 23.00 23.00 23.00 23.000000
## 755 48.00 48.00 48.00 48.000000
## 756 0.67 0.67 0.67 0.670000
## 757 28.00 28.00 28.00 28.000000
## 758 18.00 18.00 18.00 18.000000
## 759 34.00 34.00 34.00 34.000000
## 760 33.00 33.00 33.00 33.000000
## 761 NA 13.00 16.00 31.803481
## 762 41.00 41.00 41.00 41.000000
## 763 20.00 20.00 20.00 20.000000
## 764 36.00 36.00 36.00 36.000000
## 765 16.00 16.00 16.00 16.000000
## 766 51.00 51.00 51.00 51.000000
## 767 NA 47.00 56.00 40.361236
## 768 30.50 30.50 30.50 30.500000
## 769 NA 3.00 25.00 15.651240
## 770 32.00 32.00 32.00 32.000000
## 771 24.00 24.00 24.00 24.000000
## 772 48.00 48.00 48.00 48.000000
## 773 57.00 57.00 57.00 57.000000
## 774 NA 13.00 24.00 36.102583
## 775 54.00 54.00 54.00 54.000000
## 776 18.00 18.00 18.00 18.000000
## 777 NA 50.00 24.00 12.751652
## 778 5.00 5.00 5.00 5.000000
## 779 NA 25.00 45.50 35.792110
## 780 43.00 43.00 43.00 43.000000
## 781 13.00 13.00 13.00 13.000000
## 782 17.00 17.00 17.00 17.000000
## 783 29.00 29.00 29.00 29.000000
## 784 NA 18.00 26.00 9.943468
## 785 25.00 25.00 25.00 25.000000
## 786 25.00 25.00 25.00 25.000000
## 787 18.00 18.00 18.00 18.000000
## 788 8.00 8.00 8.00 8.000000
## 789 1.00 1.00 1.00 1.000000
## 790 46.00 46.00 46.00 46.000000
## 791 NA 13.00 19.00 13.405442
## 792 16.00 16.00 16.00 16.000000
## 793 NA 16.00 11.00 -27.366029
## 794 NA 38.00 62.00 56.220349
## 795 25.00 25.00 25.00 25.000000
## 796 39.00 39.00 39.00 39.000000
## 797 49.00 49.00 49.00 49.000000
## 798 31.00 31.00 31.00 31.000000
## 799 30.00 30.00 30.00 30.000000
## 800 30.00 30.00 30.00 30.000000
## 801 34.00 34.00 34.00 34.000000
## 802 31.00 31.00 31.00 31.000000
## 803 11.00 11.00 11.00 11.000000
## 804 0.42 0.42 0.42 0.420000
## 805 27.00 27.00 27.00 27.000000
## 806 31.00 31.00 31.00 31.000000
## 807 39.00 39.00 39.00 39.000000
## 808 18.00 18.00 18.00 18.000000
## 809 39.00 39.00 39.00 39.000000
## 810 33.00 33.00 33.00 33.000000
## 811 26.00 26.00 26.00 26.000000
## 812 39.00 39.00 39.00 39.000000
## 813 35.00 35.00 35.00 35.000000
## 814 6.00 6.00 6.00 6.000000
## 815 30.50 30.50 30.50 30.500000
## 816 NA 71.00 62.00 37.351594
## 817 23.00 23.00 23.00 23.000000
## 818 31.00 31.00 31.00 31.000000
## 819 43.00 43.00 43.00 43.000000
## 820 10.00 10.00 10.00 10.000000
## 821 52.00 52.00 52.00 52.000000
## 822 27.00 27.00 27.00 27.000000
## 823 38.00 38.00 38.00 38.000000
## 824 27.00 27.00 27.00 27.000000
## 825 2.00 2.00 2.00 2.000000
## 826 NA 25.00 30.00 35.616908
## 827 NA 25.00 49.00 18.377707
## 828 1.00 1.00 1.00 1.000000
## 829 NA 45.00 26.00 15.378832
## 830 62.00 62.00 62.00 62.000000
## 831 15.00 15.00 15.00 15.000000
## 832 0.83 0.83 0.83 0.830000
## 833 NA 50.00 25.00 36.482607
## 834 23.00 23.00 23.00 23.000000
## 835 18.00 18.00 18.00 18.000000
## 836 39.00 39.00 39.00 39.000000
## 837 21.00 21.00 21.00 21.000000
## 838 NA 18.00 28.00 25.091181
## 839 32.00 32.00 32.00 32.000000
## 840 NA 35.00 44.00 40.287568
## 841 20.00 20.00 20.00 20.000000
## 842 16.00 16.00 16.00 16.000000
## 843 30.00 30.00 30.00 30.000000
## 844 34.50 34.50 34.50 34.500000
## 845 17.00 17.00 17.00 17.000000
## 846 42.00 42.00 42.00 42.000000
## 847 NA 5.00 11.00 -9.862554
## 848 35.00 35.00 35.00 35.000000
## 849 28.00 28.00 28.00 28.000000
## 850 NA 48.00 39.00 38.411686
## 851 4.00 4.00 4.00 4.000000
## 852 74.00 74.00 74.00 74.000000
## 853 9.00 9.00 9.00 9.000000
## 854 16.00 16.00 16.00 16.000000
## 855 44.00 44.00 44.00 44.000000
## 856 18.00 18.00 18.00 18.000000
## 857 45.00 45.00 45.00 45.000000
## 858 51.00 51.00 51.00 51.000000
## 859 24.00 24.00 24.00 24.000000
## 860 NA 13.00 28.00 58.146066
## 861 41.00 41.00 41.00 41.000000
## 862 21.00 21.00 21.00 21.000000
## 863 48.00 48.00 48.00 48.000000
## 864 NA 14.00 9.00 -3.237722
## 865 24.00 24.00 24.00 24.000000
## 866 42.00 42.00 42.00 42.000000
## 867 27.00 27.00 27.00 27.000000
## 868 31.00 31.00 31.00 31.000000
## 869 NA 25.00 28.00 14.966908
## 870 4.00 4.00 4.00 4.000000
## 871 26.00 26.00 26.00 26.000000
## 872 47.00 47.00 47.00 47.000000
## 873 33.00 33.00 33.00 33.000000
## 874 47.00 47.00 47.00 47.000000
## 875 28.00 28.00 28.00 28.000000
## 876 15.00 15.00 15.00 15.000000
## 877 20.00 20.00 20.00 20.000000
## 878 19.00 19.00 19.00 19.000000
## 879 NA 18.00 22.00 23.425275
## 880 56.00 56.00 56.00 56.000000
## 881 25.00 25.00 25.00 25.000000
## 882 33.00 33.00 33.00 33.000000
## 883 22.00 22.00 22.00 22.000000
## 884 28.00 28.00 28.00 28.000000
## 885 25.00 25.00 25.00 25.000000
## 886 39.00 39.00 39.00 39.000000
## 887 27.00 27.00 27.00 27.000000
## 888 19.00 19.00 19.00 19.000000
## 889 NA 4.00 32.00 13.016662
## 890 26.00 26.00 26.00 26.000000
## 891 32.00 32.00 32.00 32.000000
It’s hard to judge from the table data alone, so we’ll draw a grid of histograms once again (copy and modify the code from the previous section):
h1 <- ggplot(mice_imputed, aes(x = original)) +
geom_histogram(fill = "#ad1538", color = "#000000", position = "identity") +
ggtitle("Original distribution") +
theme_classic()
h2 <- ggplot(mice_imputed, aes(x = imputed_pmm)) +
geom_histogram(fill = "#15ad4f", color = "#000000", position = "identity") +
ggtitle("MICE-pmm-imputed distribution") +
theme_classic()
h3 <- ggplot(mice_imputed, aes(x = imputed_cart)) +
geom_histogram(fill = "#1543ad", color = "#000000", position = "identity") +
ggtitle("MICE-cart-imputed distribution") +
theme_classic()
h4 <- ggplot(mice_imputed, aes(x = imputed_lasso)) +
geom_histogram(fill = "#ad8415", color = "#000000", position = "identity") +
ggtitle("MICE-lasso-imputed distribution") +
theme_classic()
plot_grid(h1, h2, h3, h4, nrow = 2, ncol = 2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 177 rows containing non-finite outside the scale range
## (`stat_bin()`).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
The imputed distributions overall look much closer to the original one. The CART-imputed age distribution probably looks the closest. Also, take a look at the last histogram – the age values go below zero. This doesn’t make sense for a variable such as age, so you will need to correct the negative values manually if you opt for this imputation technique.
The Miss Forest imputation technique is based on the Random Forest algorithm. It’s a non-parametric imputation method, which means it doesn’t make explicit assumptions about the function form, but instead tries to estimate the function in a way that’s closest to the data points.
In other words, it builds a random forest model for each variable and then uses the model to predict missing values. You can learn more about it by reading the article by Oxford Academic.
Let’s see how it works for imputation in R. We’ll apply it to the entire numerical dataset and only extract the age:
library(missForest)
##
## Attaching package: 'missForest'
## The following object is masked from 'package:VIM':
##
## nrmse
missForest_imputed <- data.frame(
original = titanic_numeric$Age,
imputed_missForest = missForest(titanic_numeric)$ximp$Age
)
missForest_imputed
## original imputed_missForest
## 1 22.00 22.000000
## 2 38.00 38.000000
## 3 26.00 26.000000
## 4 35.00 35.000000
## 5 35.00 35.000000
## 6 NA 28.935501
## 7 54.00 54.000000
## 8 2.00 2.000000
## 9 27.00 27.000000
## 10 14.00 14.000000
## 11 4.00 4.000000
## 12 58.00 58.000000
## 13 20.00 20.000000
## 14 39.00 39.000000
## 15 14.00 14.000000
## 16 55.00 55.000000
## 17 2.00 2.000000
## 18 NA 32.117919
## 19 31.00 31.000000
## 20 NA 27.099293
## 21 35.00 35.000000
## 22 34.00 34.000000
## 23 15.00 15.000000
## 24 28.00 28.000000
## 25 8.00 8.000000
## 26 38.00 38.000000
## 27 NA 28.935501
## 28 19.00 19.000000
## 29 NA 27.099293
## 30 NA 28.935501
## 31 40.00 40.000000
## 32 NA 37.533744
## 33 NA 27.099293
## 34 66.00 66.000000
## 35 28.00 28.000000
## 36 42.00 42.000000
## 37 NA 27.099293
## 38 21.00 21.000000
## 39 18.00 18.000000
## 40 14.00 14.000000
## 41 40.00 40.000000
## 42 27.00 27.000000
## 43 NA 28.935501
## 44 3.00 3.000000
## 45 19.00 19.000000
## 46 NA 28.935501
## 47 NA 27.447446
## 48 NA 27.099293
## 49 NA 26.968359
## 50 18.00 18.000000
## 51 7.00 7.000000
## 52 21.00 21.000000
## 53 49.00 49.000000
## 54 29.00 29.000000
## 55 65.00 65.000000
## 56 NA 36.413750
## 57 21.00 21.000000
## 58 28.50 28.500000
## 59 5.00 5.000000
## 60 11.00 11.000000
## 61 22.00 22.000000
## 62 38.00 38.000000
## 63 45.00 45.000000
## 64 4.00 4.000000
## 65 NA 45.034064
## 66 NA 14.045910
## 67 29.00 29.000000
## 68 19.00 19.000000
## 69 17.00 17.000000
## 70 26.00 26.000000
## 71 32.00 32.000000
## 72 16.00 16.000000
## 73 21.00 21.000000
## 74 26.00 26.000000
## 75 32.00 32.000000
## 76 25.00 25.000000
## 77 NA 28.935501
## 78 NA 28.935501
## 79 0.83 0.830000
## 80 30.00 30.000000
## 81 22.00 22.000000
## 82 29.00 29.000000
## 83 NA 27.099293
## 84 28.00 28.000000
## 85 17.00 17.000000
## 86 33.00 33.000000
## 87 16.00 16.000000
## 88 NA 28.935501
## 89 23.00 23.000000
## 90 24.00 24.000000
## 91 29.00 29.000000
## 92 20.00 20.000000
## 93 46.00 46.000000
## 94 26.00 26.000000
## 95 59.00 59.000000
## 96 NA 28.935501
## 97 71.00 71.000000
## 98 23.00 23.000000
## 99 34.00 34.000000
## 100 34.00 34.000000
## 101 28.00 28.000000
## 102 NA 28.935501
## 103 21.00 21.000000
## 104 33.00 33.000000
## 105 37.00 37.000000
## 106 28.00 28.000000
## 107 21.00 21.000000
## 108 NA 27.099293
## 109 38.00 38.000000
## 110 NA 23.695411
## 111 47.00 47.000000
## 112 14.50 14.500000
## 113 22.00 22.000000
## 114 20.00 20.000000
## 115 17.00 17.000000
## 116 21.00 21.000000
## 117 70.50 70.500000
## 118 29.00 29.000000
## 119 24.00 24.000000
## 120 2.00 2.000000
## 121 21.00 21.000000
## 122 NA 28.935501
## 123 32.50 32.500000
## 124 32.50 32.500000
## 125 54.00 54.000000
## 126 12.00 12.000000
## 127 NA 28.935501
## 128 24.00 24.000000
## 129 NA 14.045910
## 130 45.00 45.000000
## 131 33.00 33.000000
## 132 20.00 20.000000
## 133 47.00 47.000000
## 134 29.00 29.000000
## 135 25.00 25.000000
## 136 23.00 23.000000
## 137 19.00 19.000000
## 138 37.00 37.000000
## 139 16.00 16.000000
## 140 24.00 24.000000
## 141 NA 30.097261
## 142 22.00 22.000000
## 143 24.00 24.000000
## 144 19.00 19.000000
## 145 18.00 18.000000
## 146 19.00 19.000000
## 147 27.00 27.000000
## 148 9.00 9.000000
## 149 36.50 36.500000
## 150 42.00 42.000000
## 151 51.00 51.000000
## 152 22.00 22.000000
## 153 55.50 55.500000
## 154 40.50 40.500000
## 155 NA 28.935501
## 156 51.00 51.000000
## 157 16.00 16.000000
## 158 30.00 30.000000
## 159 NA 28.935501
## 160 NA 9.825194
## 161 44.00 44.000000
## 162 40.00 40.000000
## 163 26.00 26.000000
## 164 17.00 17.000000
## 165 1.00 1.000000
## 166 9.00 9.000000
## 167 NA 35.255782
## 168 45.00 45.000000
## 169 NA 45.034064
## 170 28.00 28.000000
## 171 61.00 61.000000
## 172 4.00 4.000000
## 173 1.00 1.000000
## 174 21.00 21.000000
## 175 56.00 56.000000
## 176 18.00 18.000000
## 177 NA 5.255613
## 178 50.00 50.000000
## 179 30.00 30.000000
## 180 36.00 36.000000
## 181 NA 9.825194
## 182 NA 33.467588
## 183 9.00 9.000000
## 184 1.00 1.000000
## 185 4.00 4.000000
## 186 NA 45.034064
## 187 NA 23.695411
## 188 45.00 45.000000
## 189 40.00 40.000000
## 190 36.00 36.000000
## 191 32.00 32.000000
## 192 19.00 19.000000
## 193 19.00 19.000000
## 194 3.00 3.000000
## 195 44.00 44.000000
## 196 58.00 58.000000
## 197 NA 28.935501
## 198 42.00 42.000000
## 199 NA 27.099293
## 200 24.00 24.000000
## 201 28.00 28.000000
## 202 NA 9.825194
## 203 34.00 34.000000
## 204 45.50 45.500000
## 205 18.00 18.000000
## 206 2.00 2.000000
## 207 32.00 32.000000
## 208 26.00 26.000000
## 209 16.00 16.000000
## 210 40.00 40.000000
## 211 24.00 24.000000
## 212 35.00 35.000000
## 213 22.00 22.000000
## 214 30.00 30.000000
## 215 NA 27.447446
## 216 31.00 31.000000
## 217 27.00 27.000000
## 218 42.00 42.000000
## 219 32.00 32.000000
## 220 30.00 30.000000
## 221 16.00 16.000000
## 222 27.00 27.000000
## 223 51.00 51.000000
## 224 NA 28.935501
## 225 38.00 38.000000
## 226 22.00 22.000000
## 227 19.00 19.000000
## 228 20.50 20.500000
## 229 18.00 18.000000
## 230 NA 5.255613
## 231 35.00 35.000000
## 232 29.00 29.000000
## 233 59.00 59.000000
## 234 5.00 5.000000
## 235 24.00 24.000000
## 236 NA 28.935501
## 237 44.00 44.000000
## 238 8.00 8.000000
## 239 19.00 19.000000
## 240 33.00 33.000000
## 241 NA 27.447446
## 242 NA 23.695411
## 243 29.00 29.000000
## 244 22.00 22.000000
## 245 30.00 30.000000
## 246 44.00 44.000000
## 247 25.00 25.000000
## 248 24.00 24.000000
## 249 37.00 37.000000
## 250 54.00 54.000000
## 251 NA 28.935501
## 252 29.00 29.000000
## 253 62.00 62.000000
## 254 30.00 30.000000
## 255 41.00 41.000000
## 256 29.00 29.000000
## 257 NA 36.413750
## 258 30.00 30.000000
## 259 35.00 35.000000
## 260 50.00 50.000000
## 261 NA 28.935501
## 262 3.00 3.000000
## 263 52.00 52.000000
## 264 40.00 40.000000
## 265 NA 28.935501
## 266 36.00 36.000000
## 267 16.00 16.000000
## 268 25.00 25.000000
## 269 58.00 58.000000
## 270 35.00 35.000000
## 271 NA 45.034064
## 272 25.00 25.000000
## 273 41.00 41.000000
## 274 37.00 37.000000
## 275 NA 27.099293
## 276 63.00 63.000000
## 277 45.00 45.000000
## 278 NA 33.467588
## 279 7.00 7.000000
## 280 35.00 35.000000
## 281 65.00 65.000000
## 282 28.00 28.000000
## 283 16.00 16.000000
## 284 19.00 19.000000
## 285 NA 45.034064
## 286 33.00 33.000000
## 287 30.00 30.000000
## 288 22.00 22.000000
## 289 42.00 42.000000
## 290 22.00 22.000000
## 291 26.00 26.000000
## 292 19.00 19.000000
## 293 36.00 36.000000
## 294 24.00 24.000000
## 295 24.00 24.000000
## 296 NA 45.034064
## 297 23.50 23.500000
## 298 2.00 2.000000
## 299 NA 36.413750
## 300 50.00 50.000000
## 301 NA 27.099293
## 302 NA 24.198155
## 303 19.00 19.000000
## 304 NA 32.117919
## 305 NA 28.935501
## 306 0.92 0.920000
## 307 NA 36.413750
## 308 17.00 17.000000
## 309 30.00 30.000000
## 310 30.00 30.000000
## 311 24.00 24.000000
## 312 18.00 18.000000
## 313 26.00 26.000000
## 314 28.00 28.000000
## 315 43.00 43.000000
## 316 26.00 26.000000
## 317 24.00 24.000000
## 318 54.00 54.000000
## 319 31.00 31.000000
## 320 40.00 40.000000
## 321 22.00 22.000000
## 322 27.00 27.000000
## 323 30.00 30.000000
## 324 22.00 22.000000
## 325 NA 9.825194
## 326 36.00 36.000000
## 327 61.00 61.000000
## 328 36.00 36.000000
## 329 31.00 31.000000
## 330 16.00 16.000000
## 331 NA 24.198155
## 332 45.50 45.500000
## 333 38.00 38.000000
## 334 16.00 16.000000
## 335 NA 37.533744
## 336 NA 28.935501
## 337 29.00 29.000000
## 338 41.00 41.000000
## 339 45.00 45.000000
## 340 45.00 45.000000
## 341 2.00 2.000000
## 342 24.00 24.000000
## 343 28.00 28.000000
## 344 25.00 25.000000
## 345 36.00 36.000000
## 346 24.00 24.000000
## 347 40.00 40.000000
## 348 NA 23.695411
## 349 3.00 3.000000
## 350 42.00 42.000000
## 351 23.00 23.000000
## 352 NA 45.034064
## 353 15.00 15.000000
## 354 25.00 25.000000
## 355 NA 28.935501
## 356 28.00 28.000000
## 357 22.00 22.000000
## 358 38.00 38.000000
## 359 NA 27.099293
## 360 NA 27.099293
## 361 40.00 40.000000
## 362 29.00 29.000000
## 363 45.00 45.000000
## 364 35.00 35.000000
## 365 NA 27.447446
## 366 30.00 30.000000
## 367 60.00 60.000000
## 368 NA 27.099293
## 369 NA 27.099293
## 370 24.00 24.000000
## 371 25.00 25.000000
## 372 18.00 18.000000
## 373 19.00 19.000000
## 374 22.00 22.000000
## 375 3.00 3.000000
## 376 NA 37.533744
## 377 22.00 22.000000
## 378 27.00 27.000000
## 379 20.00 20.000000
## 380 19.00 19.000000
## 381 42.00 42.000000
## 382 1.00 1.000000
## 383 32.00 32.000000
## 384 35.00 35.000000
## 385 NA 28.935501
## 386 18.00 18.000000
## 387 1.00 1.000000
## 388 36.00 36.000000
## 389 NA 28.935501
## 390 17.00 17.000000
## 391 36.00 36.000000
## 392 21.00 21.000000
## 393 28.00 28.000000
## 394 23.00 23.000000
## 395 24.00 24.000000
## 396 22.00 22.000000
## 397 31.00 31.000000
## 398 46.00 46.000000
## 399 23.00 23.000000
## 400 28.00 28.000000
## 401 39.00 39.000000
## 402 26.00 26.000000
## 403 21.00 21.000000
## 404 28.00 28.000000
## 405 20.00 20.000000
## 406 34.00 34.000000
## 407 51.00 51.000000
## 408 3.00 3.000000
## 409 21.00 21.000000
## 410 NA 5.255613
## 411 NA 28.935501
## 412 NA 28.935501
## 413 33.00 33.000000
## 414 NA 33.467588
## 415 44.00 44.000000
## 416 NA 28.935501
## 417 34.00 34.000000
## 418 18.00 18.000000
## 419 30.00 30.000000
## 420 10.00 10.000000
## 421 NA 28.935501
## 422 21.00 21.000000
## 423 29.00 29.000000
## 424 28.00 28.000000
## 425 18.00 18.000000
## 426 NA 28.935501
## 427 28.00 28.000000
## 428 19.00 19.000000
## 429 NA 28.935501
## 430 32.00 32.000000
## 431 28.00 28.000000
## 432 NA 23.695411
## 433 42.00 42.000000
## 434 17.00 17.000000
## 435 50.00 50.000000
## 436 14.00 14.000000
## 437 21.00 21.000000
## 438 24.00 24.000000
## 439 64.00 64.000000
## 440 31.00 31.000000
## 441 45.00 45.000000
## 442 20.00 20.000000
## 443 25.00 25.000000
## 444 28.00 28.000000
## 445 NA 27.099293
## 446 4.00 4.000000
## 447 13.00 13.000000
## 448 34.00 34.000000
## 449 5.00 5.000000
## 450 52.00 52.000000
## 451 36.00 36.000000
## 452 NA 27.447446
## 453 30.00 30.000000
## 454 49.00 49.000000
## 455 NA 28.935501
## 456 29.00 29.000000
## 457 65.00 65.000000
## 458 NA 37.533744
## 459 50.00 50.000000
## 460 NA 28.935501
## 461 48.00 48.000000
## 462 34.00 34.000000
## 463 47.00 47.000000
## 464 48.00 48.000000
## 465 NA 28.935501
## 466 38.00 38.000000
## 467 NA 33.467588
## 468 56.00 56.000000
## 469 NA 28.935501
## 470 0.75 0.750000
## 471 NA 28.935501
## 472 38.00 38.000000
## 473 33.00 33.000000
## 474 23.00 23.000000
## 475 22.00 22.000000
## 476 NA 45.034064
## 477 34.00 34.000000
## 478 29.00 29.000000
## 479 22.00 22.000000
## 480 2.00 2.000000
## 481 9.00 9.000000
## 482 NA 33.467588
## 483 50.00 50.000000
## 484 63.00 63.000000
## 485 25.00 25.000000
## 486 NA 5.255613
## 487 35.00 35.000000
## 488 58.00 58.000000
## 489 30.00 30.000000
## 490 9.00 9.000000
## 491 NA 27.447446
## 492 21.00 21.000000
## 493 55.00 55.000000
## 494 71.00 71.000000
## 495 21.00 21.000000
## 496 NA 28.935501
## 497 54.00 54.000000
## 498 NA 28.935501
## 499 25.00 25.000000
## 500 24.00 24.000000
## 501 17.00 17.000000
## 502 21.00 21.000000
## 503 NA 28.935501
## 504 37.00 37.000000
## 505 16.00 16.000000
## 506 18.00 18.000000
## 507 33.00 33.000000
## 508 NA 36.413750
## 509 28.00 28.000000
## 510 26.00 26.000000
## 511 29.00 29.000000
## 512 NA 28.935501
## 513 36.00 36.000000
## 514 54.00 54.000000
## 515 24.00 24.000000
## 516 47.00 47.000000
## 517 34.00 34.000000
## 518 NA 28.935501
## 519 36.00 36.000000
## 520 32.00 32.000000
## 521 30.00 30.000000
## 522 22.00 22.000000
## 523 NA 28.935501
## 524 44.00 44.000000
## 525 NA 28.935501
## 526 40.50 40.500000
## 527 50.00 50.000000
## 528 NA 45.034064
## 529 39.00 39.000000
## 530 23.00 23.000000
## 531 2.00 2.000000
## 532 NA 28.935501
## 533 17.00 17.000000
## 534 NA 15.536604
## 535 30.00 30.000000
## 536 7.00 7.000000
## 537 45.00 45.000000
## 538 30.00 30.000000
## 539 NA 28.935501
## 540 22.00 22.000000
## 541 36.00 36.000000
## 542 9.00 9.000000
## 543 11.00 11.000000
## 544 32.00 32.000000
## 545 50.00 50.000000
## 546 64.00 64.000000
## 547 19.00 19.000000
## 548 NA 32.117919
## 549 33.00 33.000000
## 550 8.00 8.000000
## 551 17.00 17.000000
## 552 27.00 27.000000
## 553 NA 28.935501
## 554 22.00 22.000000
## 555 22.00 22.000000
## 556 62.00 62.000000
## 557 48.00 48.000000
## 558 NA 45.034064
## 559 39.00 39.000000
## 560 36.00 36.000000
## 561 NA 28.935501
## 562 40.00 40.000000
## 563 28.00 28.000000
## 564 NA 28.935501
## 565 NA 28.935501
## 566 24.00 24.000000
## 567 19.00 19.000000
## 568 29.00 29.000000
## 569 NA 28.935501
## 570 32.00 32.000000
## 571 62.00 62.000000
## 572 53.00 53.000000
## 573 36.00 36.000000
## 574 NA 27.099293
## 575 16.00 16.000000
## 576 19.00 19.000000
## 577 34.00 34.000000
## 578 39.00 39.000000
## 579 NA 27.447446
## 580 32.00 32.000000
## 581 25.00 25.000000
## 582 39.00 39.000000
## 583 54.00 54.000000
## 584 36.00 36.000000
## 585 NA 28.935501
## 586 18.00 18.000000
## 587 47.00 47.000000
## 588 60.00 60.000000
## 589 22.00 22.000000
## 590 NA 28.935501
## 591 35.00 35.000000
## 592 52.00 52.000000
## 593 47.00 47.000000
## 594 NA 30.097261
## 595 37.00 37.000000
## 596 36.00 36.000000
## 597 NA 32.117919
## 598 49.00 49.000000
## 599 NA 28.935501
## 600 49.00 49.000000
## 601 24.00 24.000000
## 602 NA 28.935501
## 603 NA 45.034064
## 604 44.00 44.000000
## 605 35.00 35.000000
## 606 36.00 36.000000
## 607 30.00 30.000000
## 608 27.00 27.000000
## 609 22.00 22.000000
## 610 40.00 40.000000
## 611 39.00 39.000000
## 612 NA 28.935501
## 613 NA 23.695411
## 614 NA 28.935501
## 615 35.00 35.000000
## 616 24.00 24.000000
## 617 34.00 34.000000
## 618 26.00 26.000000
## 619 4.00 4.000000
## 620 26.00 26.000000
## 621 27.00 27.000000
## 622 42.00 42.000000
## 623 20.00 20.000000
## 624 21.00 21.000000
## 625 21.00 21.000000
## 626 61.00 61.000000
## 627 57.00 57.000000
## 628 21.00 21.000000
## 629 26.00 26.000000
## 630 NA 28.935501
## 631 80.00 80.000000
## 632 51.00 51.000000
## 633 32.00 32.000000
## 634 NA 45.034064
## 635 9.00 9.000000
## 636 28.00 28.000000
## 637 32.00 32.000000
## 638 31.00 31.000000
## 639 41.00 41.000000
## 640 NA 27.447446
## 641 20.00 20.000000
## 642 24.00 24.000000
## 643 2.00 2.000000
## 644 NA 27.099293
## 645 0.75 0.750000
## 646 48.00 48.000000
## 647 19.00 19.000000
## 648 56.00 56.000000
## 649 NA 28.935501
## 650 23.00 23.000000
## 651 NA 28.935501
## 652 18.00 18.000000
## 653 21.00 21.000000
## 654 NA 27.099293
## 655 18.00 18.000000
## 656 24.00 24.000000
## 657 NA 28.935501
## 658 32.00 32.000000
## 659 23.00 23.000000
## 660 58.00 58.000000
## 661 50.00 50.000000
## 662 40.00 40.000000
## 663 47.00 47.000000
## 664 36.00 36.000000
## 665 20.00 20.000000
## 666 32.00 32.000000
## 667 25.00 25.000000
## 668 NA 28.935501
## 669 43.00 43.000000
## 670 NA 37.533744
## 671 40.00 40.000000
## 672 31.00 31.000000
## 673 70.00 70.000000
## 674 31.00 31.000000
## 675 NA 33.467588
## 676 18.00 18.000000
## 677 24.50 24.500000
## 678 18.00 18.000000
## 679 43.00 43.000000
## 680 36.00 36.000000
## 681 NA 28.935501
## 682 27.00 27.000000
## 683 20.00 20.000000
## 684 14.00 14.000000
## 685 60.00 60.000000
## 686 25.00 25.000000
## 687 14.00 14.000000
## 688 19.00 19.000000
## 689 18.00 18.000000
## 690 15.00 15.000000
## 691 31.00 31.000000
## 692 4.00 4.000000
## 693 NA 27.099293
## 694 25.00 25.000000
## 695 60.00 60.000000
## 696 52.00 52.000000
## 697 44.00 44.000000
## 698 NA 27.099293
## 699 49.00 49.000000
## 700 42.00 42.000000
## 701 18.00 18.000000
## 702 35.00 35.000000
## 703 18.00 18.000000
## 704 25.00 25.000000
## 705 26.00 26.000000
## 706 39.00 39.000000
## 707 45.00 45.000000
## 708 42.00 42.000000
## 709 22.00 22.000000
## 710 NA 14.045910
## 711 24.00 24.000000
## 712 NA 45.034064
## 713 48.00 48.000000
## 714 29.00 29.000000
## 715 52.00 52.000000
## 716 19.00 19.000000
## 717 38.00 38.000000
## 718 27.00 27.000000
## 719 NA 28.935501
## 720 33.00 33.000000
## 721 6.00 6.000000
## 722 17.00 17.000000
## 723 34.00 34.000000
## 724 50.00 50.000000
## 725 27.00 27.000000
## 726 20.00 20.000000
## 727 30.00 30.000000
## 728 NA 27.099293
## 729 25.00 25.000000
## 730 25.00 25.000000
## 731 29.00 29.000000
## 732 11.00 11.000000
## 733 NA 33.467588
## 734 23.00 23.000000
## 735 23.00 23.000000
## 736 28.50 28.500000
## 737 48.00 48.000000
## 738 35.00 35.000000
## 739 NA 28.935501
## 740 NA 28.935501
## 741 NA 36.413750
## 742 36.00 36.000000
## 743 21.00 21.000000
## 744 24.00 24.000000
## 745 31.00 31.000000
## 746 70.00 70.000000
## 747 16.00 16.000000
## 748 30.00 30.000000
## 749 19.00 19.000000
## 750 31.00 31.000000
## 751 4.00 4.000000
## 752 6.00 6.000000
## 753 33.00 33.000000
## 754 23.00 23.000000
## 755 48.00 48.000000
## 756 0.67 0.670000
## 757 28.00 28.000000
## 758 18.00 18.000000
## 759 34.00 34.000000
## 760 33.00 33.000000
## 761 NA 28.935501
## 762 41.00 41.000000
## 763 20.00 20.000000
## 764 36.00 36.000000
## 765 16.00 16.000000
## 766 51.00 51.000000
## 767 NA 45.034064
## 768 30.50 30.500000
## 769 NA 27.447446
## 770 32.00 32.000000
## 771 24.00 24.000000
## 772 48.00 48.000000
## 773 57.00 57.000000
## 774 NA 28.935501
## 775 54.00 54.000000
## 776 18.00 18.000000
## 777 NA 28.935501
## 778 5.00 5.000000
## 779 NA 28.935501
## 780 43.00 43.000000
## 781 13.00 13.000000
## 782 17.00 17.000000
## 783 29.00 29.000000
## 784 NA 25.821523
## 785 25.00 25.000000
## 786 25.00 25.000000
## 787 18.00 18.000000
## 788 8.00 8.000000
## 789 1.00 1.000000
## 790 46.00 46.000000
## 791 NA 28.935501
## 792 16.00 16.000000
## 793 NA 9.825194
## 794 NA 45.034064
## 795 25.00 25.000000
## 796 39.00 39.000000
## 797 49.00 49.000000
## 798 31.00 31.000000
## 799 30.00 30.000000
## 800 30.00 30.000000
## 801 34.00 34.000000
## 802 31.00 31.000000
## 803 11.00 11.000000
## 804 0.42 0.420000
## 805 27.00 27.000000
## 806 31.00 31.000000
## 807 39.00 39.000000
## 808 18.00 18.000000
## 809 39.00 39.000000
## 810 33.00 33.000000
## 811 26.00 26.000000
## 812 39.00 39.000000
## 813 35.00 35.000000
## 814 6.00 6.000000
## 815 30.50 30.500000
## 816 NA 45.034064
## 817 23.00 23.000000
## 818 31.00 31.000000
## 819 43.00 43.000000
## 820 10.00 10.000000
## 821 52.00 52.000000
## 822 27.00 27.000000
## 823 38.00 38.000000
## 824 27.00 27.000000
## 825 2.00 2.000000
## 826 NA 28.935501
## 827 NA 28.935501
## 828 1.00 1.000000
## 829 NA 27.099293
## 830 62.00 62.000000
## 831 15.00 15.000000
## 832 0.83 0.830000
## 833 NA 28.935501
## 834 23.00 23.000000
## 835 18.00 18.000000
## 836 39.00 39.000000
## 837 21.00 21.000000
## 838 NA 28.935501
## 839 32.00 32.000000
## 840 NA 36.413750
## 841 20.00 20.000000
## 842 16.00 16.000000
## 843 30.00 30.000000
## 844 34.50 34.500000
## 845 17.00 17.000000
## 846 42.00 42.000000
## 847 NA 9.825194
## 848 35.00 35.000000
## 849 28.00 28.000000
## 850 NA 37.533744
## 851 4.00 4.000000
## 852 74.00 74.000000
## 853 9.00 9.000000
## 854 16.00 16.000000
## 855 44.00 44.000000
## 856 18.00 18.000000
## 857 45.00 45.000000
## 858 51.00 51.000000
## 859 24.00 24.000000
## 860 NA 28.935501
## 861 41.00 41.000000
## 862 21.00 21.000000
## 863 48.00 48.000000
## 864 NA 9.825194
## 865 24.00 24.000000
## 866 42.00 42.000000
## 867 27.00 27.000000
## 868 31.00 31.000000
## 869 NA 28.935501
## 870 4.00 4.000000
## 871 26.00 26.000000
## 872 47.00 47.000000
## 873 33.00 33.000000
## 874 47.00 47.000000
## 875 28.00 28.000000
## 876 15.00 15.000000
## 877 20.00 20.000000
## 878 19.00 19.000000
## 879 NA 28.935501
## 880 56.00 56.000000
## 881 25.00 25.000000
## 882 33.00 33.000000
## 883 22.00 22.000000
## 884 28.00 28.000000
## 885 25.00 25.000000
## 886 39.00 39.000000
## 887 27.00 27.000000
## 888 19.00 19.000000
## 889 NA 25.821523
## 890 26.00 26.000000
## 891 32.00 32.000000
There’s no option for different imputation techniques with Miss Forest, as it always uses the random forests algorithm:
Finally, let’s visualize the distributions:
h1 <- ggplot(missForest_imputed, aes(x = original)) +
geom_histogram(fill = "#ad1538", color = "#000000", position = "identity") +
ggtitle("Original distribution") +
theme_classic()
h2 <- ggplot(missForest_imputed, aes(x = imputed_missForest)) +
geom_histogram(fill = "#15ad4f", color = "#000000", position = "identity") +
ggtitle("random-forest-imputed distribution") +
theme_classic()
plot_grid(h1, h2, nrow = 1, ncol = 2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 177 rows containing non-finite outside the scale range
## (`stat_bin()`).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
It looks like Miss Forest gravitated towards a constant value imputation since a large portion of values is around 35. The distribution is quite different from the original one, which means Miss Forest isn’t the best imputation technique we’ve seen today.