Justin Kaplan

Mini Project

# Load the needed packages
library(readr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(jsonlite)
library(httr)
# Load the needed data sets
data(cars)
Flying_Data <- read_csv("~/Desktop/On_Time_Performance.csv")
## New names:
## • `` -> `...110`
## Warning: One or more parsing issues, call `problems()` on your data frame for details,
## e.g.:
##   dat <- vroom(...)
##   problems(dat)
## Rows: 570131 Columns: 110
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (28): UniqueCarrier, Carrier, TailNum, Origin, OriginCityName, OriginSt...
## dbl  (54): Year, Quarter, Month, DayofMonth, DayOfWeek, AirlineID, FlightNum...
## lgl  (27): Div2WheelsOff, Div2TailNum, Div3Airport, Div3AirportID, Div3Airpo...
## date  (1): FlightDate
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Question 1, Find the median of the first column

# Use the median function to calculate the median from the speed column
median(cars$speed)
## [1] 15

Question 2,How many observations and variables are there

# Use the structure function to find the size of the dataframe
str(Flying_Data)
## spc_tbl_ [570,131 × 110] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ Year                : num [1:570131] 2018 2018 2018 2018 2018 ...
##  $ Quarter             : num [1:570131] 1 1 1 1 1 1 1 1 1 1 ...
##  $ Month               : num [1:570131] 1 1 1 1 1 1 1 1 1 1 ...
##  $ DayofMonth          : num [1:570131] 16 17 18 19 20 21 22 23 24 25 ...
##  $ DayOfWeek           : num [1:570131] 2 3 4 5 6 7 1 2 3 4 ...
##  $ FlightDate          : Date[1:570131], format: "2018-01-16" "2018-01-17" ...
##  $ UniqueCarrier       : chr [1:570131] "AA" "AA" "AA" "AA" ...
##  $ AirlineID           : num [1:570131] 19805 19805 19805 19805 19805 ...
##  $ Carrier             : chr [1:570131] "AA" "AA" "AA" "AA" ...
##  $ TailNum             : chr [1:570131] "N128AN" "N128AN" "N121AN" "N129AA" ...
##  $ FlightNum           : num [1:570131] 228 228 228 228 228 228 228 228 228 228 ...
##  $ OriginAirportID     : num [1:570131] 12892 12892 12892 12892 12892 ...
##  $ OriginAirportSeqID  : num [1:570131] 1289206 1289206 1289206 1289206 1289206 ...
##  $ OriginCityMarketID  : num [1:570131] 32575 32575 32575 32575 32575 ...
##  $ Origin              : chr [1:570131] "LAX" "LAX" "LAX" "LAX" ...
##  $ OriginCityName      : chr [1:570131] "Los Angeles, CA" "Los Angeles, CA" "Los Angeles, CA" "Los Angeles, CA" ...
##  $ OriginState         : chr [1:570131] "CA" "CA" "CA" "CA" ...
##  $ OriginStateFips     : chr [1:570131] "06" "06" "06" "06" ...
##  $ OriginStateName     : chr [1:570131] "California" "California" "California" "California" ...
##  $ OriginWac           : num [1:570131] 91 91 91 91 91 91 91 91 91 91 ...
##  $ DestAirportID       : num [1:570131] 12173 12173 12173 12173 12173 ...
##  $ DestAirportSeqID    : num [1:570131] 1217303 1217303 1217303 1217303 1217303 ...
##  $ DestCityMarketID    : num [1:570131] 32134 32134 32134 32134 32134 ...
##  $ Dest                : chr [1:570131] "HNL" "HNL" "HNL" "HNL" ...
##  $ DestCityName        : chr [1:570131] "Honolulu, HI" "Honolulu, HI" "Honolulu, HI" "Honolulu, HI" ...
##  $ DestState           : chr [1:570131] "HI" "HI" "HI" "HI" ...
##  $ DestStateFips       : chr [1:570131] "15" "15" "15" "15" ...
##  $ DestStateName       : chr [1:570131] "Hawaii" "Hawaii" "Hawaii" "Hawaii" ...
##  $ DestWac             : num [1:570131] 2 2 2 2 2 2 2 2 2 2 ...
##  $ CRSDepTime          : chr [1:570131] "2011" "2011" "2011" "2011" ...
##  $ DepTime             : chr [1:570131] "2010" "2003" "2008" "2010" ...
##  $ DepDelay            : num [1:570131] -1 -8 -3 -1 -10 -8 -8 0 71 -4 ...
##  $ DepDelayMinutes     : num [1:570131] 0 0 0 0 0 0 0 0 71 0 ...
##  $ DepDel15            : num [1:570131] 0 0 0 0 0 0 0 0 1 0 ...
##  $ DepartureDelayGroups: num [1:570131] -1 -1 -1 -1 -1 -1 -1 0 4 -1 ...
##  $ DepTimeBlk          : chr [1:570131] "2000-2059" "2000-2059" "2000-2059" "2000-2059" ...
##  $ TaxiOut             : num [1:570131] 24 18 14 17 17 17 24 23 26 18 ...
##  $ WheelsOff           : chr [1:570131] "2034" "2021" "2022" "2027" ...
##  $ WheelsOn            : chr [1:570131] "2358" "2348" "0006" "2352" ...
##  $ TaxiIn              : num [1:570131] 7 5 6 3 5 4 3 14 3 2 ...
##  $ CRSArrTime          : chr [1:570131] "0029" "0029" "0029" "0029" ...
##  $ ArrTime             : chr [1:570131] "0005" "2353" "0012" "2355" ...
##  $ ArrDelay            : num [1:570131] -24 -36 -17 -34 -32 -24 -12 -23 59 -30 ...
##  $ ArrDelayMinutes     : num [1:570131] 0 0 0 0 0 0 0 0 59 0 ...
##  $ ArrDel15            : num [1:570131] 0 0 0 0 0 0 0 0 1 0 ...
##  $ ArrivalDelayGroups  : num [1:570131] -2 -2 -2 -2 -2 -2 -1 -2 3 -2 ...
##  $ ArrTimeBlk          : chr [1:570131] "0001-0559" "0001-0559" "0001-0559" "0001-0559" ...
##  $ Cancelled           : num [1:570131] 0 0 0 0 0 0 0 0 0 0 ...
##  $ CancellationCode    : chr [1:570131] NA NA NA NA ...
##  $ Diverted            : num [1:570131] 0 0 0 0 0 0 0 0 0 0 ...
##  $ CRSElapsedTime      : num [1:570131] 378 378 378 378 378 378 378 378 378 378 ...
##  $ ActualElapsedTime   : num [1:570131] 355 350 364 345 356 362 374 355 366 352 ...
##  $ AirTime             : num [1:570131] 324 327 344 325 334 341 347 318 337 332 ...
##  $ Flights             : num [1:570131] 1 1 1 1 1 1 1 1 1 1 ...
##  $ Distance            : num [1:570131] 2556 2556 2556 2556 2556 ...
##  $ DistanceGroup       : num [1:570131] 11 11 11 11 11 11 11 11 11 11 ...
##  $ CarrierDelay        : num [1:570131] NA NA NA NA NA NA NA NA 59 NA ...
##  $ WeatherDelay        : num [1:570131] NA NA NA NA NA NA NA NA 0 NA ...
##  $ NASDelay            : num [1:570131] NA NA NA NA NA NA NA NA 0 NA ...
##  $ SecurityDelay       : num [1:570131] NA NA NA NA NA NA NA NA 0 NA ...
##  $ LateAircraftDelay   : num [1:570131] NA NA NA NA NA NA NA NA 0 NA ...
##  $ FirstDepTime        : chr [1:570131] NA NA NA NA ...
##  $ TotalAddGTime       : num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ LongestAddGTime     : num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ DivAirportLandings  : num [1:570131] 0 0 0 0 0 0 0 0 0 0 ...
##  $ DivReachedDest      : num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ DivActualElapsedTime: num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ DivArrDelay         : num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ DivDistance         : num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ Div1Airport         : chr [1:570131] NA NA NA NA ...
##  $ Div1AirportID       : num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ Div1AirportSeqID    : num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ Div1WheelsOn        : chr [1:570131] NA NA NA NA ...
##  $ Div1TotalGTime      : num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ Div1LongestGTime    : num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ Div1WheelsOff       : chr [1:570131] NA NA NA NA ...
##  $ Div1TailNum         : chr [1:570131] NA NA NA NA ...
##  $ Div2Airport         : chr [1:570131] NA NA NA NA ...
##  $ Div2AirportID       : num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ Div2AirportSeqID    : num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ Div2WheelsOn        : num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ Div2TotalGTime      : num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ Div2LongestGTime    : num [1:570131] NA NA NA NA NA NA NA NA NA NA ...
##  $ Div2WheelsOff       : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div2TailNum         : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div3Airport         : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div3AirportID       : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div3AirportSeqID    : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div3WheelsOn        : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div3TotalGTime      : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div3LongestGTime    : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div3WheelsOff       : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div3TailNum         : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div4Airport         : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div4AirportID       : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div4AirportSeqID    : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div4WheelsOn        : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div4TotalGTime      : logi [1:570131] NA NA NA NA NA NA ...
##  $ Div4LongestGTime    : logi [1:570131] NA NA NA NA NA NA ...
##   [list output truncated]
##  - attr(*, "spec")=
##   .. cols(
##   ..   Year = col_double(),
##   ..   Quarter = col_double(),
##   ..   Month = col_double(),
##   ..   DayofMonth = col_double(),
##   ..   DayOfWeek = col_double(),
##   ..   FlightDate = col_date(format = ""),
##   ..   UniqueCarrier = col_character(),
##   ..   AirlineID = col_double(),
##   ..   Carrier = col_character(),
##   ..   TailNum = col_character(),
##   ..   FlightNum = col_double(),
##   ..   OriginAirportID = col_double(),
##   ..   OriginAirportSeqID = col_double(),
##   ..   OriginCityMarketID = col_double(),
##   ..   Origin = col_character(),
##   ..   OriginCityName = col_character(),
##   ..   OriginState = col_character(),
##   ..   OriginStateFips = col_character(),
##   ..   OriginStateName = col_character(),
##   ..   OriginWac = col_double(),
##   ..   DestAirportID = col_double(),
##   ..   DestAirportSeqID = col_double(),
##   ..   DestCityMarketID = col_double(),
##   ..   Dest = col_character(),
##   ..   DestCityName = col_character(),
##   ..   DestState = col_character(),
##   ..   DestStateFips = col_character(),
##   ..   DestStateName = col_character(),
##   ..   DestWac = col_double(),
##   ..   CRSDepTime = col_character(),
##   ..   DepTime = col_character(),
##   ..   DepDelay = col_double(),
##   ..   DepDelayMinutes = col_double(),
##   ..   DepDel15 = col_double(),
##   ..   DepartureDelayGroups = col_double(),
##   ..   DepTimeBlk = col_character(),
##   ..   TaxiOut = col_double(),
##   ..   WheelsOff = col_character(),
##   ..   WheelsOn = col_character(),
##   ..   TaxiIn = col_double(),
##   ..   CRSArrTime = col_character(),
##   ..   ArrTime = col_character(),
##   ..   ArrDelay = col_double(),
##   ..   ArrDelayMinutes = col_double(),
##   ..   ArrDel15 = col_double(),
##   ..   ArrivalDelayGroups = col_double(),
##   ..   ArrTimeBlk = col_character(),
##   ..   Cancelled = col_double(),
##   ..   CancellationCode = col_character(),
##   ..   Diverted = col_double(),
##   ..   CRSElapsedTime = col_double(),
##   ..   ActualElapsedTime = col_double(),
##   ..   AirTime = col_double(),
##   ..   Flights = col_double(),
##   ..   Distance = col_double(),
##   ..   DistanceGroup = col_double(),
##   ..   CarrierDelay = col_double(),
##   ..   WeatherDelay = col_double(),
##   ..   NASDelay = col_double(),
##   ..   SecurityDelay = col_double(),
##   ..   LateAircraftDelay = col_double(),
##   ..   FirstDepTime = col_character(),
##   ..   TotalAddGTime = col_double(),
##   ..   LongestAddGTime = col_double(),
##   ..   DivAirportLandings = col_double(),
##   ..   DivReachedDest = col_double(),
##   ..   DivActualElapsedTime = col_double(),
##   ..   DivArrDelay = col_double(),
##   ..   DivDistance = col_double(),
##   ..   Div1Airport = col_character(),
##   ..   Div1AirportID = col_double(),
##   ..   Div1AirportSeqID = col_double(),
##   ..   Div1WheelsOn = col_character(),
##   ..   Div1TotalGTime = col_double(),
##   ..   Div1LongestGTime = col_double(),
##   ..   Div1WheelsOff = col_character(),
##   ..   Div1TailNum = col_character(),
##   ..   Div2Airport = col_character(),
##   ..   Div2AirportID = col_double(),
##   ..   Div2AirportSeqID = col_double(),
##   ..   Div2WheelsOn = col_double(),
##   ..   Div2TotalGTime = col_double(),
##   ..   Div2LongestGTime = col_double(),
##   ..   Div2WheelsOff = col_logical(),
##   ..   Div2TailNum = col_logical(),
##   ..   Div3Airport = col_logical(),
##   ..   Div3AirportID = col_logical(),
##   ..   Div3AirportSeqID = col_logical(),
##   ..   Div3WheelsOn = col_logical(),
##   ..   Div3TotalGTime = col_logical(),
##   ..   Div3LongestGTime = col_logical(),
##   ..   Div3WheelsOff = col_logical(),
##   ..   Div3TailNum = col_logical(),
##   ..   Div4Airport = col_logical(),
##   ..   Div4AirportID = col_logical(),
##   ..   Div4AirportSeqID = col_logical(),
##   ..   Div4WheelsOn = col_logical(),
##   ..   Div4TotalGTime = col_logical(),
##   ..   Div4LongestGTime = col_logical(),
##   ..   Div4WheelsOff = col_logical(),
##   ..   Div4TailNum = col_logical(),
##   ..   Div5Airport = col_logical(),
##   ..   Div5AirportID = col_logical(),
##   ..   Div5AirportSeqID = col_logical(),
##   ..   Div5WheelsOn = col_logical(),
##   ..   Div5TotalGTime = col_logical(),
##   ..   Div5LongestGTime = col_logical(),
##   ..   Div5WheelsOff = col_logical(),
##   ..   Div5TailNum = col_logical(),
##   ..   ...110 = col_logical()
##   .. )
##  - attr(*, "problems")=<externalptr>
# The data is 570,131 x 110

Question 3, How many missing values are there in the Div2WheelsOff Column

# Use the summary function to get the sum of rows with n/a
summary(Flying_Data$Div2WheelsOff)
##    Mode    NA's 
## logical  570131

Question 4, Find the average departure delay by carrier

# Use Dplyr functions to group by carrier and calculate the average by carrier
Question_4 <- Flying_Data %>% 
 group_by(Carrier) %>% 
 summarise(
  Average_delay = mean(DepDelay, na.rm = TRUE))
print(Question_4)
## # A tibble: 18 × 2
##    Carrier Average_delay
##    <chr>           <dbl>
##  1 9E              12.4 
##  2 AA               6.93
##  3 AS              -2.25
##  4 B6              20.4 
##  5 DL               9.74
##  6 EV              13.6 
##  7 F9              16.0 
##  8 G4              10.4 
##  9 HA               1.72
## 10 MQ               8.82
## 11 NK               5.61
## 12 OH              13.8 
## 13 OO              15.1 
## 14 UA               5.87
## 15 VX               2.83
## 16 WN               8.03
## 17 YV               8.86
## 18 YX               7.26

Question 5

# Load the data
DF <- fromJSON("https://min-api.cryptocompare.com/data/v2/histoday?fsym=BTC&tsym=USD&limit=100")
head(DF)
## $Response
## [1] "Success"
## 
## $Message
## [1] ""
## 
## $HasWarning
## [1] FALSE
## 
## $Type
## [1] 100
## 
## $RateLimit
## named list()
## 
## $Data
## $Data$Aggregated
## [1] FALSE
## 
## $Data$TimeFrom
## [1] 1732579200
## 
## $Data$TimeTo
## [1] 1741219200
## 
## $Data$Data
##           time      high       low      open volumefrom    volumeto     close
## 1   1732579200  95007.52  90730.54  93019.38   77087.79  7150066319  91903.89
## 2   1732665600  97373.56  91757.22  91903.89   47765.92  4533983271  95957.51
## 3   1732752000  96672.28  94677.17  95957.51   24214.50  2311939500  95670.41
## 4   1732838400  98735.69  95391.39  95670.41   39884.80  3883366950  97510.92
## 5   1732924800  97514.26  96137.13  97510.92   12565.01  1215861239  96473.51
## 6   1733011200  97896.77  95752.22  96473.51   17120.23  1659820135  97276.47
## 7   1733097600  98219.29  94419.96  97276.47   52454.21  5040855659  95859.75
## 8   1733184000  96304.02  93590.91  95859.75   52781.20  5033493735  95928.37
## 9   1733270400  99226.36  94663.42  95928.37   59092.55  5727735676  98751.87
## 10  1733356800 104028.51  91741.97  98751.87  119875.78 12041439287  97053.82
## 11  1733443200 102088.57  96427.00  97053.82   56899.66  5653979066  99897.97
## 12  1733529600 100578.80  99025.63  99897.97   17306.94  1728102575  99926.38
## 13  1733616000 101430.60  98730.22  99926.38   17851.82  1785051035 101189.81
## 14  1733702400 101290.02  94567.01 101189.81   69981.57  6847958219  97338.34
## 15  1733788800  98316.66  94284.00  97338.34   68661.05  6621616095  96657.88
## 16  1733875200 101979.09  95730.76  96657.88   55047.48  5482015399 101203.07
## 17  1733961600 102598.04  99311.56 101203.07   47200.64  4765401240 100041.98
## 18  1734048000 101947.10  99232.64 100041.98   34639.86  3492131955 101429.78
## 19  1734134400 102653.76 100606.28 101429.78   16577.72  1683710017 101402.95
## 20  1734220800 105140.47 101228.16 101402.95   24799.66  2557994218 104424.54
## 21  1734307200 107829.08 103299.75 104424.54   60439.19  6398449052 106089.20
## 22  1734393600 108369.13 105308.99 106089.20   40879.26  4365460606 106140.14
## 23  1734480000 106502.15  99946.11 106140.14   75094.41  7727995790 100147.26
## 24  1734566400 102767.84  95555.55 100147.26   80969.49  8011759335  97381.10
## 25  1734652800  98131.87  92144.03  97381.10   84967.20  8141536427  97769.49
## 26  1734739200  99529.45  96379.46  97769.49   29797.52  2907358272  97223.39
## 27  1734825600  97387.01  94186.04  97223.39   29661.75  2842280144  95098.66
## 28  1734912000  96428.13  92378.53  95098.66   57639.30  5422281369  94771.64
## 29  1734998400  99439.54  93437.90  94771.64   40945.61  3967574826  98606.93
## 30  1735084800  99484.75  97568.85  98606.93   21801.56  2147049999  99356.06
## 31  1735171200  99888.75  95098.08  99356.06   38437.52  3704007593  95680.19
## 32  1735257600  97351.17  93270.34  95680.19   47149.30  4479654695  94170.09
## 33  1735344000  95542.25  94008.53  94170.09   14159.69  1339743546  95140.15
## 34  1735430400  95175.67  92850.44  95140.15   17921.90  1684134736  93564.85
## 35  1735516800  94910.24  91310.52  93564.85   56846.06  5287498462  92646.21
## 36  1735603200  96139.70  91894.97  92646.21   38897.74  3659994868  93391.98
## 37  1735689600  94953.50  92728.81  93391.98   19153.02  1798161468  94392.51
## 38  1735776000  97766.59  94197.85  94392.51   38283.30  3693985155  96900.96
## 39  1735862400  98963.23  96021.74  96900.96   28427.30  2773288956  98135.80
## 40  1735948800  98757.16  97522.47  98135.80    9919.49   972181437  98213.69
## 41  1736035200  98818.40  97248.40  98213.69    9872.68   967941540  98346.97
## 42  1736121600 102530.34  97908.09  98346.97   46146.96  4654078183 102282.20
## 43  1736208000 102747.54  96112.95 102282.20   54319.14  5348079997  96942.47
## 44  1736294400  97251.53  92488.45  96942.47   57721.92  5480363249  95051.06
## 45  1736380800  95345.44  91197.56  95051.06   50519.28  4696698492  92548.12
## 46  1736467200  95845.36  92206.53  92548.12   55479.83  5217667771  94710.29
## 47  1736553600  94985.54  93826.56  94710.29    9594.23   905586720  94569.95
## 48  1736640000  95388.08  93675.70  94569.95   10865.93  1027482280  94505.67
## 49  1736726400  95894.16  89153.40  94505.67   67978.59  6274787648  94517.66
## 50  1736812800  97357.87  94324.09  94517.66   44347.27  4263471095  96526.87
## 51  1736899200 100719.11  96466.75  96526.87   43167.20  4261664752 100510.84
## 52  1736985600 100867.35  97275.38 100510.84   43426.87  4314930790  99979.43
## 53  1737072000 105926.06  99941.15  99979.43   54200.85  5613810480 104111.13
## 54  1737158400 104927.11 102234.37 104111.13   25366.61  2633222971 104431.52
## 55  1737244800 106317.18  99537.53 104431.52   41597.34  4325905602 101212.56
## 56  1737331200 109340.21  99449.75 101212.56   68840.35  7208305685 102148.74
## 57  1737417600 107252.77 100069.04 102148.74   84552.76  8798621119 106155.61
## 58  1737504000 106398.57 103321.48 106155.61   43996.49  4603973397 103669.08
## 59  1737590400 106865.30 101221.00 103669.08   94063.64  9801561615 103933.88
## 60  1737676800 107170.86 102751.09 103933.88   40201.93  4233037158 104854.78
## 61  1737763200 105282.15 104107.08 104854.78   11835.64  1239370332 104733.15
## 62  1737849600 105475.33 102487.80 104733.15   14118.63  1469434498 102576.93
## 63  1737936000 103230.24  97712.77 102576.93   94472.14  9486896779 102065.72
## 64  1738022400 103787.72 100221.08 102065.72   44096.37  4510250877 101284.47
## 65  1738108800 104796.98 101279.83 101284.47   47080.07  4842279589 103742.97
## 66  1738195200 106472.04 103297.81 103742.97   36659.17  3857857706 104739.58
## 67  1738281600 106101.91 101514.21 104739.58   42222.31  4378171064 102412.41
## 68  1738368000 102768.26 100270.22 102412.41   15691.73  1595801666 100619.87
## 69  1738454400 101436.90  96158.45 100619.87   56620.33  5562003742  97665.06
## 70  1738540800 102575.82  91142.87  97665.06  119095.77 11504010038 101451.28
## 71  1738627200 101800.32  95090.81 101451.28   63348.17  6271562967  97794.88
## 72  1738713600  99208.65  96175.47  97794.88   42695.62  4171560523  96633.71
## 73  1738800000  99180.75  95691.57  96633.71   44725.10  4349625341  96564.27
## 74  1738886400 100202.29  95630.04  96564.27   51939.12  5075285222  96532.73
## 75  1738972800  96906.35  95685.31  96532.73   12529.37  1207354074  96475.59
## 76  1739059200  97340.86  94752.27  96475.59   18638.48  1791686347  96485.60
## 77  1739145600  98363.35  95276.70  96485.60   28119.40  2731410652  97458.59
## 78  1739232000  98499.44  94852.37  97458.59   29002.62  2800036234  95781.05
## 79  1739318400  98127.45  94087.33  95781.05   40118.73  3853980408  97874.61
## 80  1739404800  98104.11  95225.08  97874.61   23246.76  2236344586  96632.78
## 81  1739491200  98869.28  96282.72  96632.78   20187.22  1966704818  97508.71
## 82  1739577600  97979.54  97245.24  97508.71    5831.48   569120592  97596.21
## 83  1739664000  97728.27  96069.15  97596.21    6632.76   643146269  96132.69
## 84  1739750400  97046.20  95226.61  96132.69   14565.31  1398128551  95790.31
## 85  1739836800  96736.69  93361.47  95790.31   26359.54  2502902526  95630.67
## 86  1739923200  96885.35  95032.61  95630.67   17048.51  1637124692  96640.99
## 87  1740009600  98763.14  96430.11  96640.99   21068.47  2057024375  98345.66
## 88  1740096000  99519.21  94775.25  98345.66   40404.88  3928905118  96150.27
## 89  1740182400  96973.86  95771.79  96150.27   11673.75  1126120706  96580.46
## 90  1740268800  96674.04  95255.75  96580.46    7473.29   718043734  96274.12
## 91  1740355200  96514.26  91349.77  96274.12   31216.13  2945422583  91536.97
## 92  1740441600  92540.35  85944.14  91536.97   73085.74  6473414679  88609.26
## 93  1740528000  89320.19  82199.13  88609.26   59111.39  5069737664  84128.38
## 94  1740614400  87008.08  82601.58  84128.38   46301.47  3929681160  84657.34
## 95  1740700800  85114.25  78203.72  84657.34   79539.18  6502539275  84322.57
## 96  1740787200  86537.62  83798.96  84322.57   18530.02  1577375765  86050.58
## 97  1740873600  95106.04  85047.82  86050.58   48038.07  4350642164  94275.76
## 98  1740960000  94415.65  85071.66  94275.76   65233.70  5844734403  86158.95
## 99  1741046400  88941.97  81449.43  86158.95   67017.22  5671376307  87255.42
## 100 1741132800  91001.98  86341.87  87255.42   38856.74  3457722669  90610.80
## 101 1741219200  92808.83  87818.33  90610.80   34741.78  3130644302  89229.85
##     conversionType conversionSymbol
## 1           direct                 
## 2           direct                 
## 3           direct                 
## 4           direct                 
## 5           direct                 
## 6           direct                 
## 7           direct                 
## 8           direct                 
## 9           direct                 
## 10          direct                 
## 11          direct                 
## 12          direct                 
## 13          direct                 
## 14          direct                 
## 15          direct                 
## 16          direct                 
## 17          direct                 
## 18          direct                 
## 19          direct                 
## 20          direct                 
## 21          direct                 
## 22          direct                 
## 23          direct                 
## 24          direct                 
## 25          direct                 
## 26          direct                 
## 27          direct                 
## 28          direct                 
## 29          direct                 
## 30          direct                 
## 31          direct                 
## 32          direct                 
## 33          direct                 
## 34          direct                 
## 35          direct                 
## 36          direct                 
## 37          direct                 
## 38          direct                 
## 39          direct                 
## 40          direct                 
## 41          direct                 
## 42          direct                 
## 43          direct                 
## 44          direct                 
## 45          direct                 
## 46          direct                 
## 47          direct                 
## 48          direct                 
## 49          direct                 
## 50          direct                 
## 51          direct                 
## 52          direct                 
## 53          direct                 
## 54          direct                 
## 55          direct                 
## 56          direct                 
## 57          direct                 
## 58          direct                 
## 59          direct                 
## 60          direct                 
## 61          direct                 
## 62          direct                 
## 63          direct                 
## 64          direct                 
## 65          direct                 
## 66          direct                 
## 67          direct                 
## 68          direct                 
## 69          direct                 
## 70          direct                 
## 71          direct                 
## 72          direct                 
## 73          direct                 
## 74          direct                 
## 75          direct                 
## 76          direct                 
## 77          direct                 
## 78          direct                 
## 79          direct                 
## 80          direct                 
## 81          direct                 
## 82          direct                 
## 83          direct                 
## 84          direct                 
## 85          direct                 
## 86          direct                 
## 87          direct                 
## 88          direct                 
## 89          direct                 
## 90          direct                 
## 91          direct                 
## 92          direct                 
## 93          direct                 
## 94          direct                 
## 95          direct                 
## 96          direct                 
## 97          direct                 
## 98          direct                 
## 99          direct                 
## 100         direct                 
## 101         direct

Question 5 Part 2

# Past the close data and use code to return the highest value
max(DF[["Data"]][["Data"]][["close"]])
## [1] 106155.6
# The formula returned that 106155.6 was the highest close value