data <- read_excel("myData.xlsx")
data
How many teams have a similar PAKE and PACE rank? ## Variation
data %>%
ggplot(aes(x = PAKE)) +
geom_bar()
data %>%
ggplot(mapping = aes(x = PASE)) +
geom_histogram(binwidth = 0.5)
data %>%
filter(PAKE < 1) %>%
ggplot(aes(x = PAKE)) +
geom_histogram(binwidth = 0.5)
data %>%
ggplot(aes(x = PAKE, color = WINPERCENT)) +
geom_freqpoly()
data %>%
# Filter out bigger diamonds
filter(PAKE < 1) %>%
# Plot
ggplot(aes(x = PAKE)) +
geom_histogram(binwidth = 0.01)
data %>%
ggplot(aes(x = PAKE)) +
geom_histogram()
data %>%
ggplot(aes(x = PAKE)) +
geom_histogram()
data %>%
ggplot(aes(x = PAKE)) +
geom_histogram() +
coord_cartesian(ylim = c(0,50))
data %>%
# Plot
ggplot(aes(x = PAKE, y = WINPERCENT)) +
geom_point()
data %>%
ggplot(aes(x = PAKE, y = TEAMID)) +
geom_boxplot()
data %>%
count(PAKE, WINPERCENT) %>%
ggplot(aes(x = PAKE, y = WINPERCENT, fill = n)) +
geom_tile()
library(hexbin)
data %>%
ggplot(aes(x = PAKE, y = WINPERCENT)) +
geom_hex()
data %>%
filter(PAKE < 1) %>%
ggplot(aes(x = PAKE, y = WINPERCENT)) +
geom_boxplot(aes(group = cut_width(PAKE, 0.1)))
data %>%
ggplot(aes(PAKE, WINPERCENT)) +
geom_point()
data %>%
ggplot(aes(PAKE, WINPERCENT)) +
geom_boxplot()