Import data

# excel file
data <- read_excel("../00_data/MyData.xlsx")
data
## # A tibble: 19 × 100
##    Date                Opponent   Score Column1 `All shifts` `Time on ice` Goals
##    <dttm>              <chr>      <chr>   <dbl>        <dbl> <chr>         <dbl>
##  1 2024-10-24 00:00:00 vs New En… 5:2         0           17 18:02          1   
##  2 2024-11-01 00:00:00 @ Univers… 0:5         0           23 22:59          0   
##  3 2024-11-03 00:00:00 @ Babson … 4:5         0           23 25:07          0   
##  4 2024-11-07 00:00:00 vs SUNY-P… 5:3         0           22 21:26          0   
##  5 2024-11-09 00:00:00 @ New Eng… 5:1         0           20 21:19          0   
##  6 2024-11-15 00:00:00 vs Worces… 8:2         0           18 18:16          0   
##  7 2024-11-21 00:00:00 vs Framin… 7:1         0           20 19:11          0   
##  8 2024-11-23 00:00:00 @ Salem S… 4:3         0           24 20:05          0   
##  9 2024-11-26 00:00:00 vs Trinit… 1:2         0           24 21:10          0   
## 10 2024-12-05 00:00:00 @ UMass D… 4:2         0           17 19:00          0   
## 11 2024-12-07 00:00:00 vs Westfi… 1:0         0           27 22:20          1   
## 12 2025-01-03 00:00:00 @ Hamilto… 0:4         0           20 19:35          0   
## 13 2025-01-04 00:00:00 @ William… 8:2         0           19 18:18          0   
## 14 2025-01-09 00:00:00 @ Rivier … 6:1         0           20 18:30          0   
## 15 2025-01-11 00:00:00 vs Fitchb… 3:2         0           24 21:30          0   
## 16 2025-01-16 00:00:00 @ Worcest… 5:2         0           20 20:22          0   
## 17 2025-01-18 00:00:00 vs Massac… 3:1         0           19 17:18          0   
## 18 2025-01-23 00:00:00 @ Anna Ma… 2:4         0           25 25:17          0   
## 19 NA                  Average p… <NA>      169           20 18:59          0.17
## # ℹ 93 more variables: `First assist` <dbl>, `Second assist` <dbl>,
## #   Assists <dbl>, `Puck touches` <dbl>, `Puck control time` <chr>,
## #   Points <dbl>, `+/-` <dbl>, Plus <dbl>, Minus <dbl>, Penalties <dbl>,
## #   `Penalties drawn` <dbl>, `Penalty time` <chr>, Hits <dbl>,
## #   `Hits against` <dbl>, `Error leading to goal` <dbl>, `Dump ins` <dbl>,
## #   `Dump outs` <dbl>, `Team goals when on ice` <dbl>,
## #   `Opponent's goals when on ice` <dbl>, Shots <dbl>, `Shots on goal` <dbl>, …

Apply the following dplyr verbs to your data

Filter rows

Games with zero shots on goal

filter(data, `Shots on goal` == 0)
## # A tibble: 3 × 100
##   Date                Opponent    Score Column1 `All shifts` `Time on ice` Goals
##   <dttm>              <chr>       <chr>   <dbl>        <dbl> <chr>         <dbl>
## 1 2024-11-07 00:00:00 vs SUNY-Pl… 5:3         0           22 21:26             0
## 2 2024-11-21 00:00:00 vs Framing… 7:1         0           20 19:11             0
## 3 2025-01-09 00:00:00 @ Rivier U… 6:1         0           20 18:30             0
## # ℹ 93 more variables: `First assist` <dbl>, `Second assist` <dbl>,
## #   Assists <dbl>, `Puck touches` <dbl>, `Puck control time` <chr>,
## #   Points <dbl>, `+/-` <dbl>, Plus <dbl>, Minus <dbl>, Penalties <dbl>,
## #   `Penalties drawn` <dbl>, `Penalty time` <chr>, Hits <dbl>,
## #   `Hits against` <dbl>, `Error leading to goal` <dbl>, `Dump ins` <dbl>,
## #   `Dump outs` <dbl>, `Team goals when on ice` <dbl>,
## #   `Opponent's goals when on ice` <dbl>, Shots <dbl>, `Shots on goal` <dbl>, …

Arrange rows

Descending Total Shifts

arrange(data, desc(`All shifts`))
## # A tibble: 19 × 100
##    Date                Opponent   Score Column1 `All shifts` `Time on ice` Goals
##    <dttm>              <chr>      <chr>   <dbl>        <dbl> <chr>         <dbl>
##  1 2024-12-07 00:00:00 vs Westfi… 1:0         0           27 22:20          1   
##  2 2025-01-23 00:00:00 @ Anna Ma… 2:4         0           25 25:17          0   
##  3 2024-11-23 00:00:00 @ Salem S… 4:3         0           24 20:05          0   
##  4 2024-11-26 00:00:00 vs Trinit… 1:2         0           24 21:10          0   
##  5 2025-01-11 00:00:00 vs Fitchb… 3:2         0           24 21:30          0   
##  6 2024-11-01 00:00:00 @ Univers… 0:5         0           23 22:59          0   
##  7 2024-11-03 00:00:00 @ Babson … 4:5         0           23 25:07          0   
##  8 2024-11-07 00:00:00 vs SUNY-P… 5:3         0           22 21:26          0   
##  9 2024-11-09 00:00:00 @ New Eng… 5:1         0           20 21:19          0   
## 10 2024-11-21 00:00:00 vs Framin… 7:1         0           20 19:11          0   
## 11 2025-01-03 00:00:00 @ Hamilto… 0:4         0           20 19:35          0   
## 12 2025-01-09 00:00:00 @ Rivier … 6:1         0           20 18:30          0   
## 13 2025-01-16 00:00:00 @ Worcest… 5:2         0           20 20:22          0   
## 14 NA                  Average p… <NA>      169           20 18:59          0.17
## 15 2025-01-04 00:00:00 @ William… 8:2         0           19 18:18          0   
## 16 2025-01-18 00:00:00 vs Massac… 3:1         0           19 17:18          0   
## 17 2024-11-15 00:00:00 vs Worces… 8:2         0           18 18:16          0   
## 18 2024-10-24 00:00:00 vs New En… 5:2         0           17 18:02          1   
## 19 2024-12-05 00:00:00 @ UMass D… 4:2         0           17 19:00          0   
## # ℹ 93 more variables: `First assist` <dbl>, `Second assist` <dbl>,
## #   Assists <dbl>, `Puck touches` <dbl>, `Puck control time` <chr>,
## #   Points <dbl>, `+/-` <dbl>, Plus <dbl>, Minus <dbl>, Penalties <dbl>,
## #   `Penalties drawn` <dbl>, `Penalty time` <chr>, Hits <dbl>,
## #   `Hits against` <dbl>, `Error leading to goal` <dbl>, `Dump ins` <dbl>,
## #   `Dump outs` <dbl>, `Team goals when on ice` <dbl>,
## #   `Opponent's goals when on ice` <dbl>, Shots <dbl>, `Shots on goal` <dbl>, …

Select columns

Shot data per game

select(data, Date, Shots, `Shots on goal`, `Blocked shots`, `Missed shots`)
## # A tibble: 19 × 5
##    Date                Shots `Shots on goal` `Blocked shots` `Missed shots`
##    <dttm>              <dbl>           <dbl>           <dbl>          <dbl>
##  1 2024-10-24 00:00:00   5                 2            3               0  
##  2 2024-11-01 00:00:00  10                 4            2               4  
##  3 2024-11-03 00:00:00   6                 4            0               2  
##  4 2024-11-07 00:00:00   3                 0            3               0  
##  5 2024-11-09 00:00:00   4                 2            2               0  
##  6 2024-11-15 00:00:00  10                 4            2               4  
##  7 2024-11-21 00:00:00   0                 0            0               0  
##  8 2024-11-23 00:00:00   6                 1            3               2  
##  9 2024-11-26 00:00:00   8                 3            5               0  
## 10 2024-12-05 00:00:00   6                 3            3               0  
## 11 2024-12-07 00:00:00   9                 4            3               2  
## 12 2025-01-03 00:00:00   4                 3            0               1  
## 13 2025-01-04 00:00:00   7                 4            2               1  
## 14 2025-01-09 00:00:00   3                 0            3               0  
## 15 2025-01-11 00:00:00   8                 7            0               1  
## 16 2025-01-16 00:00:00   5                 2            3               0  
## 17 2025-01-18 00:00:00   6                 3            3               0  
## 18 2025-01-23 00:00:00   9                 6            2               1  
## 19 NA                    5.8               3            1.77            1.1

Add columns

Shots blocked percentage

data %>%
    mutate(blkPercent = `Blocked shots` / Shots) %>%
    select(Date, Shots, `Blocked shots`, blkPercent)
## # A tibble: 19 × 4
##    Date                Shots `Blocked shots` blkPercent
##    <dttm>              <dbl>           <dbl>      <dbl>
##  1 2024-10-24 00:00:00   5              3         0.6  
##  2 2024-11-01 00:00:00  10              2         0.2  
##  3 2024-11-03 00:00:00   6              0         0    
##  4 2024-11-07 00:00:00   3              3         1    
##  5 2024-11-09 00:00:00   4              2         0.5  
##  6 2024-11-15 00:00:00  10              2         0.2  
##  7 2024-11-21 00:00:00   0              0       NaN    
##  8 2024-11-23 00:00:00   6              3         0.5  
##  9 2024-11-26 00:00:00   8              5         0.625
## 10 2024-12-05 00:00:00   6              3         0.5  
## 11 2024-12-07 00:00:00   9              3         0.333
## 12 2025-01-03 00:00:00   4              0         0    
## 13 2025-01-04 00:00:00   7              2         0.286
## 14 2025-01-09 00:00:00   3              3         1    
## 15 2025-01-11 00:00:00   8              0         0    
## 16 2025-01-16 00:00:00   5              3         0.6  
## 17 2025-01-18 00:00:00   6              3         0.5  
## 18 2025-01-23 00:00:00   9              2         0.222
## 19 NA                    5.8            1.77      0.305

Summarize by groups

Grouped by +/-

data %>%
    
    # Group by airlines
    group_by(`+/-`) %>%
    
    # Calc avg dep delay
    summarise(avg_dumps = mean(`Dump ins`, na.rm = TRUE)) %>%

    # Sort it
    arrange(avg_dumps)
## # A tibble: 5 × 2
##   `+/-` avg_dumps
##   <dbl>     <dbl>
## 1 -1         1   
## 2  2         1   
## 3  0         1.71
## 4  0.48      2   
## 5  1         2.2