set.seed(1)
x1 <- runif(100)
x2 <- 0.5 * x1 + rnorm(100) / 10
 y <- 2 + 2 * x1 + 0.3 * x2 + rnorm(100)
 set.seed(1)
x1 <- runif(100)
x2 <- 0.5 * x1 + rnorm(100) / 10
y <- 2 + 2 * x1 + 0.3 * x2 + rnorm(100)
cor(x1, x2)
## [1] 0.8351212
plot(x1, x2)

summary(lm(y ~ x1 + x2))
## 
## Call:
## lm(formula = y ~ x1 + x2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8311 -0.7273 -0.0537  0.6338  2.3359 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.1305     0.2319   9.188 7.61e-15 ***
## x1            1.4396     0.7212   1.996   0.0487 *  
## x2            1.0097     1.1337   0.891   0.3754    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.056 on 97 degrees of freedom
## Multiple R-squared:  0.2088, Adjusted R-squared:  0.1925 
## F-statistic:  12.8 on 2 and 97 DF,  p-value: 1.164e-05
summary(lm(y ~ x1))
## 
## Call:
## lm(formula = y ~ x1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.89495 -0.66874 -0.07785  0.59221  2.45560 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.1124     0.2307   9.155 8.27e-15 ***
## x1            1.9759     0.3963   4.986 2.66e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.055 on 98 degrees of freedom
## Multiple R-squared:  0.2024, Adjusted R-squared:  0.1942 
## F-statistic: 24.86 on 1 and 98 DF,  p-value: 2.661e-06
summary(lm(y ~ x2))
## 
## Call:
## lm(formula = y ~ x2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.62687 -0.75156 -0.03598  0.72383  2.44890 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3899     0.1949   12.26  < 2e-16 ***
## x2            2.8996     0.6330    4.58 1.37e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.072 on 98 degrees of freedom
## Multiple R-squared:  0.1763, Adjusted R-squared:  0.1679 
## F-statistic: 20.98 on 1 and 98 DF,  p-value: 1.366e-05
x1 <- c(x1, 0.1)
x2 <- c(x2, 0.8)
y <- c(y, 6)
x1 <- c(x1, 0.1)
x2 <- c(x2, 0.8)
y <- c(y, 6)
summary(lm(y ~ x1 + x2))
## 
## Call:
## lm(formula = y ~ x1 + x2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.69309 -0.68184 -0.04583  0.75224  2.29389 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.2665     0.2303   9.840 2.45e-16 ***
## x1            0.1671     0.5246   0.318    0.751    
## x2            3.1371     0.7703   4.073 9.37e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.079 on 99 degrees of freedom
## Multiple R-squared:  0.246,  Adjusted R-squared:  0.2308 
## F-statistic: 16.15 on 2 and 99 DF,  p-value: 8.501e-07
summary(lm(y ~ x1))
## 
## Call:
## lm(formula = y ~ x1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8848 -0.6542 -0.0769  0.6137  3.4510 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3921     0.2454   9.747 3.55e-16 ***
## x1            1.5691     0.4255   3.687 0.000369 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.16 on 100 degrees of freedom
## Multiple R-squared:  0.1197, Adjusted R-squared:  0.1109 
## F-statistic:  13.6 on 1 and 100 DF,  p-value: 0.0003686
summary(lm(y ~ x2))
## 
## Call:
## lm(formula = y ~ x2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.66396 -0.67794 -0.06181  0.75541  2.32512 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3085     0.1879   12.28  < 2e-16 ***
## x2            3.2981     0.5786    5.70 1.21e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.074 on 100 degrees of freedom
## Multiple R-squared:  0.2452, Adjusted R-squared:  0.2377 
## F-statistic: 32.49 on 1 and 100 DF,  p-value: 1.214e-07
par(mfrow = c(2, 2))
plot(lm(y ~ x1 + x2), cex = 0.2)

par(mfrow = c(2, 2))
plot(lm(y ~ x1), cex = 0.2)

par(mfrow = c(2, 2))
plot(lm(y ~ x2), cex = 0.2)

plot(x1, x2)
points(0.1, 0.8, col = "red", pch = 19)