Goal: to predict the rental prices in the SF rental market Click here for the data.

Import Data

rent <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2022/2022-07-05/rent.csv')
## Rows: 200796 Columns: 17
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (8): post_id, nhood, city, county, address, title, descr, details
## dbl (9): date, year, price, beds, baths, sqft, room_in_apt, lat, lon
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
skimr:: skim(rent)
Data summary
Name rent
Number of rows 200796
Number of columns 17
_______________________
Column type frequency:
character 8
numeric 9
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
post_id 0 1.00 9 14 0 200796 0
nhood 0 1.00 4 43 0 167 0
city 0 1.00 5 19 0 104 0
county 1394 0.99 4 13 0 10 0
address 196888 0.02 1 38 0 2869 0
title 2517 0.99 2 298 0 184961 0
descr 197542 0.02 13 16975 0 3025 0
details 192780 0.04 4 595 0 7667 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
date 0 1.00 20095718.38 44694.07 20000902.00 20050227.00 20110924.00 20120805.0 20180717.00 ▁▇▁▆▃
year 0 1.00 2009.51 4.48 2000.00 2005.00 2011.00 2012.0 2018.00 ▁▇▁▆▃
price 0 1.00 2135.36 1427.75 220.00 1295.00 1800.00 2505.0 40000.00 ▇▁▁▁▁
beds 6608 0.97 1.89 1.08 0.00 1.00 2.00 3.0 12.00 ▇▂▁▁▁
baths 158121 0.21 1.68 0.69 1.00 1.00 2.00 2.0 8.00 ▇▁▁▁▁
sqft 136117 0.32 1201.83 5000.22 80.00 750.00 1000.00 1360.0 900000.00 ▇▁▁▁▁
room_in_apt 0 1.00 0.00 0.04 0.00 0.00 0.00 0.0 1.00 ▇▁▁▁▁
lat 193145 0.04 37.67 0.35 33.57 37.40 37.76 37.8 40.43 ▁▁▅▇▁
lon 196484 0.02 -122.21 0.78 -123.20 -122.42 -122.26 -122.0 -74.20 ▇▁▁▁▁
data <- rent %>%
  
  # Treat missing values
  select(-address, -descr, -details, -lat, -lon) %>%
  na.omit() %>%
  
  # log transform variables with pos-skewed distribution
  mutate(price=log(price))

`

Explore Data

Identify good predictors.

sqft

data %>%
  ggplot(aes(price, sqft)) + 
  scale_y_log10() +
  geom_point()

beds

data %>%
  ggplot(aes(price, as.factor(beds))) +
  geom_boxplot()

title

data %>%
  
  #tokenize title
  unnest_tokens(output = word, input = title) %>%

# calculate average rent per word
group_by(word) %>%
  summarise(price = mean(price),
n      = n()) %>%
  ungroup() %>%
  
  filter(n > 10, !str_detect(word,"\\d")) %>%
slice_max(order_by = price, n = 20) %>%

# Plot
ggplot(aes(price, fct_reorder(word, price))) +
  geom_point() +
  
  labs(y = "Words in Title")

EDA shortcut

# Step 1: Prepare Data
data_binarized_tbl <- data %>%
  select(-post_id, -title) %>%
  binarize()

data_binarized_tbl %>% glimpse()
## Rows: 14,394
## Columns: 95
## $ `date__-Inf_20120214`                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ date__20120214_20140817                     <dbl> 1, 1, 1, 1, 0, 1, 1, 1, 0,…
## $ date__20140817_20160126                     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ date__20160126_Inf                          <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 1,…
## $ `year__-Inf_2012`                           <dbl> 0, 1, 1, 1, 0, 1, 1, 0, 0,…
## $ year__2012_2014                             <dbl> 1, 0, 0, 0, 0, 0, 0, 1, 0,…
## $ year__2014_2016                             <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 1,…
## $ year__2016_Inf                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__campbell                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__concord_/_pleasant_hill_/_martinez` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__cupertino                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__daly_city                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__danville_/_san_ramon`               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__dublin_/_pleasanton`                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__fairfield_/_vacaville`              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__foster_city                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__hayward_/_castro_valley`            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__milpitas                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__mountain_view                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__napa_county                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__palo_alto                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__petaluma                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__pittsburg_/_antioch`                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__rohnert_pk_/_cotati`                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_francisco                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_central                     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_east                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_north                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_south                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_west                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_mateo                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_rafael                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__santa_clara                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__santa_cruz                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__santa_rosa                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__SOMA_/_south_beach`                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__sunnyvale                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__union_city                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__vallejo_/_benicia`                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__willow_glen_/_cambrian`             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__-OTHER`                             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ city__cambrian                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__campbell                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__concord                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__cupertino                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__daly_city                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__dublin                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__fairfield                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__foster_city                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__hayward                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__milpitas                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__mountain_view                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__napa_county                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__oakland                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__palo_alto                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__petaluma                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__pittsburg                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__rohnert_park                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_francisco                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_jose                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_mateo                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_rafael                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_ramon                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__santa_clara                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__santa_cruz                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__santa_rosa                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__sunnyvale                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__union_city                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__vallejo                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `city__-OTHER`                              <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ county__alameda                             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ county__contra_costa                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__marin                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__napa                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__san_francisco                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__san_mateo                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__santa_clara                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__santa_cruz                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__solano                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__sonoma                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `price__-Inf_7.52294091807237`              <dbl> 0, 1, 0, 1, 0, 1, 1, 0, 0,…
## $ price__7.52294091807237_7.80384330353877    <dbl> 0, 0, 1, 0, 0, 0, 0, 1, 1,…
## $ price__7.80384330353877_8.07868822922987    <dbl> 1, 0, 0, 0, 1, 0, 0, 0, 0,…
## $ price__8.07868822922987_Inf                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `beds__-Inf_2`                              <dbl> 0, 1, 0, 1, 1, 1, 0, 0, 1,…
## $ beds__2_3                                   <dbl> 0, 0, 1, 0, 0, 0, 1, 1, 0,…
## $ beds__3_Inf                                 <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `baths__-Inf_2`                             <dbl> 0, 1, 1, 1, 1, 1, 0, 0, 1,…
## $ baths__2_Inf                                <dbl> 1, 0, 0, 0, 0, 0, 1, 1, 0,…
## $ `sqft__-Inf_887`                            <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 1,…
## $ sqft__887_1100                              <dbl> 0, 0, 0, 1, 0, 0, 0, 1, 0,…
## $ sqft__1100_1500                             <dbl> 0, 0, 1, 0, 1, 1, 0, 0, 0,…
## $ sqft__1500_Inf                              <dbl> 1, 0, 0, 0, 0, 0, 1, 0, 0,…
## $ room_in_apt__0                              <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ `room_in_apt__-OTHER`                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
# Step 2 : Correlate
data_corr_tbl <- data_binarized_tbl %>%
  correlate(price__8.07868822922987_Inf)

data_corr_tbl
## # A tibble: 95 × 3
##    feature bin                               correlation
##    <fct>   <chr>                                   <dbl>
##  1 price   8.07868822922987_Inf                    1    
##  2 city    san_francisco                           0.389
##  3 county  san_francisco                           0.389
##  4 price   -Inf_7.52294091807237                  -0.342
##  5 price   7.80384330353877_8.07868822922987      -0.330
##  6 price   7.52294091807237_7.80384330353877      -0.328
##  7 sqft    1500_Inf                                0.324
##  8 beds    -Inf_2                                 -0.254
##  9 year    -Inf_2012                              -0.246
## 10 beds    3_Inf                                   0.241
## # ℹ 85 more rows
#Step 3: Plot
data_corr_tbl %>%
  plot_correlation_funnel()
## Warning: ggrepel: 70 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Build Models

Split Data

 data <- sample_n(data, 100)

#Split into train and test dataset
set.seed(1234)
data_split <- rsample::initial_split(data) 
data_train <- training(data_split)
data_test <- testing(data_split)
 
#Further split training dataset for cross-validation
set.seed(2345)
data_cv <- rsample::vfold_cv(data_train)
data_cv
## #  10-fold cross-validation 
## # A tibble: 10 × 2
##    splits         id    
##    <list>         <chr> 
##  1 <split [67/8]> Fold01
##  2 <split [67/8]> Fold02
##  3 <split [67/8]> Fold03
##  4 <split [67/8]> Fold04
##  5 <split [67/8]> Fold05
##  6 <split [68/7]> Fold06
##  7 <split [68/7]> Fold07
##  8 <split [68/7]> Fold08
##  9 <split [68/7]> Fold09
## 10 <split [68/7]> Fold10
usemodels::use_xgboost(price ~ ., data = data_train)
## xgboost_recipe <- 
##   recipe(formula = price ~ ., data = data_train) %>% 
##   step_zv(all_predictors()) 
## 
## xgboost_spec <- 
##   boost_tree(trees = tune(), min_n = tune(), tree_depth = tune(), learn_rate = tune(), 
##     loss_reduction = tune(), sample_size = tune()) %>% 
##   set_mode("classification") %>% 
##   set_engine("xgboost") 
## 
## xgboost_workflow <- 
##   workflow() %>% 
##   add_recipe(xgboost_recipe) %>% 
##   add_model(xgboost_spec) 
## 
## set.seed(6804)
## xgboost_tune <-
##   tune_grid(xgboost_workflow, resamples = stop("add your rsample object"), grid = stop("add number of candidate points"))
# specify recipe

xgboost_recipe <- 
  recipe(formula = price ~ ., data = data_train) %>% 
recipes::update_role(post_id, new_role = "id variable") %>%
step_tokenize(title) %>%
  step_tokenfilter(title, max_tokens = 100) %>%
  step_tfidf(title) %>%
  step_other(nhood,city) %>%
  step_dummy(nhood, city, county, one_hot = TRUE) %>%
  step_YeoJohnson(sqft, beds, baths)
  
  

xgboost_recipe %>% prep() %>% juice() %>% glimpse()
## Rows: 75
## Columns: 125
## $ post_id               <chr> "3812150630", "pre2013_49593", "4614967425", "pr…
## $ date                  <dbl> 20130518, 20120115, 20140817, 20120112, 20150106…
## $ year                  <dbl> 2013, 2012, 2014, 2012, 2015, 2012, 2012, 2012, …
## $ beds                  <dbl> 1.5987282, 2.2408127, 2.2408127, 0.8740267, 2.24…
## $ baths                 <dbl> 1.3387891, 1.3387891, 1.3387891, 0.7841239, 1.57…
## $ sqft                  <dbl> 3.718957, 3.835847, 3.808913, 3.652452, 3.876690…
## $ room_in_apt           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ price                 <dbl> 7.261225, 7.718685, 7.935587, 7.003065, 8.160518…
## $ tfidf_title_1         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.4105569, 0.00…
## $ tfidf_title_12        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_1550      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_16        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_17        <dbl> 0.000000, 0.000000, 0.608443, 0.000000, 0.000000…
## $ tfidf_title_1795      <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.000000…
## $ tfidf_title_1850      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_1ba       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_1br       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.2791990, 0.00…
## $ tfidf_title_2         <dbl> 0.0000000, 0.1899782, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_2.5       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.69…
## $ tfidf_title_2.5ba     <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_2500ft2   <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_2600      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_2800      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_2980      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_2ba       <dbl> 0.0000000, 0.0000000, 0.3566777, 0.0000000, 0.00…
## $ tfidf_title_2bath     <dbl> 0.5430161, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_2bd       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_2bed      <dbl> 0.608443, 0.000000, 0.000000, 0.000000, 0.000000…
## $ tfidf_title_2br       <dbl> 0.2737046, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_3         <dbl> 0.0000000, 0.2172838, 0.0000000, 0.0000000, 0.43…
## $ tfidf_title_3200      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_3500      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_3ba       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_3bd       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_3br       <dbl> 0.0000000, 0.1854586, 0.2472781, 0.0000000, 0.00…
## $ tfidf_title_4         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_4br       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_5br       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_7         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_9         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_900ft2    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_a         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.4072621, 0.00…
## $ tfidf_title_and       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_apartment <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_available <dbl> 0.4101348, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_ba        <dbl> 0.0000000, 0.2924249, 0.0000000, 0.0000000, 0.58…
## $ tfidf_title_bath      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.1696280, 0.00…
## $ tfidf_title_bathroom  <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_bed       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_bedroom   <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_br        <dbl> 0.0000000, 0.3076011, 0.0000000, 0.0000000, 0.61…
## $ tfidf_title_car       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_condo     <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.000000…
## $ tfidf_title_cruz      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_cupertino <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_for       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_full      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_garage    <dbl> 0.0000000, 0.0000000, 0.0000000, 0.3253362, 0.00…
## $ tfidf_title_gorgeous  <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_great     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_har       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_hide      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_home      <dbl> 0.0000000, 0.0000000, 0.4101348, 0.0000000, 0.00…
## $ tfidf_title_house     <dbl> 0.0000000, 0.2570565, 0.3427420, 0.0000000, 0.00…
## $ tfidf_title_huge      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_in        <dbl> 0.00000000, 0.00000000, 0.00000000, 0.00000000, …
## $ tfidf_title_jose      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_kitchen   <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_large     <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_location  <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.000000…
## $ tfidf_title_luxury    <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_map       <dbl> 0.4620981, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_near      <dbl> 0.5430161, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_new       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_now       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_oca       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_open      <dbl> 0.0000000, 0.0000000, 0.5430161, 0.0000000, 0.00…
## $ tfidf_title_parking   <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_patio     <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_pic       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_posting   <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_private   <dbl> 0.0000000, 0.0000000, 0.0000000, 0.4072621, 0.00…
## $ tfidf_title_ramon     <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.000000…
## $ tfidf_title_remodeled <dbl> 0.0000000, 0.3253362, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_rent      <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.000000…
## $ tfidf_title_resim     <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_restore   <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_room      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_san       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_santa     <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_schools   <dbl> 0.0000000, 0.3728942, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_south     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_spacious  <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_storage   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_the       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_this      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_to        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_townhome  <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_townhouse <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_two       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_unit      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_w         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_with      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.2675083, 0.00…
## $ tfidf_title_게시물    <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_사진      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_월        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_이        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ tfidf_title_지도      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.00…
## $ nhood_cupertino       <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ nhood_san.jose.east   <dbl> 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ nhood_san.jose.south  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ nhood_other           <dbl> 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ city_cupertino        <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_san.francisco    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_san.jose         <dbl> 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, …
## $ city_other            <dbl> 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, …
## $ county_alameda        <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ county_contra.costa   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, …
## $ county_marin          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ county_napa           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …
## $ county_san.francisco  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ county_san.mateo      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, …
## $ county_santa.clara    <dbl> 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, …
## $ county_santa.cruz     <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ county_sonoma         <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
# Specify model
xgboost_spec <- 
  boost_tree(trees = tune(), min_n = tune(), tree_depth = tune(), learn_rate = tune()) %>% 
  set_mode("regression") %>% 
  set_engine("xgboost") 

# Combine recipe and model using work
xgboost_workflow <- 
  workflow() %>% 
  add_recipe(xgboost_recipe) %>% 
  add_model(xgboost_spec) 

# Tune hyperparameters
set.seed(30220)
xgboost_tune <-
  tune_grid(xgboost_workflow, resamples = data_cv, grid = 5)
## → A | warning: A correlation computation is required, but `estimate` is constant and has 0
##                standard deviation, resulting in a divide by 0 error. `NA` will be returned.
## There were issues with some computations   A: x1There were issues with some computations   A: x2There were issues with some computations   A: x3There were issues with some computations   A: x4There were issues with some computations   A: x5There were issues with some computations   A: x6There were issues with some computations   A: x7There were issues with some computations   A: x8There were issues with some computations   A: x9                                                 → B | warning: ! There are new levels in `county`: "napa".
##                ℹ Consider using step_novel() (`?recipes::step_novel()`) before `step_dummy()`
##                  to handle unseen values.
## There were issues with some computations   A: x9There were issues with some computations   A: x9   B: x1There were issues with some computations   A: x9   B: x2There were issues with some computations   A: x9   B: x3There were issues with some computations   A: x9   B: x4There were issues with some computations   A: x9   B: x5There were issues with some computations   A: x10   B: x5

Evaluate Models

tune::show_best(xgboost_tune, metric = "rmse")
## # A tibble: 5 × 10
##   trees min_n tree_depth learn_rate .metric .estimator  mean     n std_err
##   <int> <int>      <int>      <dbl> <chr>   <chr>      <dbl> <int>   <dbl>
## 1  1000     2          1    0.0750  rmse    standard   0.356    10  0.0438
## 2   500    21         15    0.316   rmse    standard   0.364    10  0.0359
## 3  2000    40          8    0.0178  rmse    standard   0.476    10  0.0492
## 4  1500    11         11    0.001   rmse    standard   1.75     10  0.0700
## 5     1    30          4    0.00422 rmse    standard   7.38     10  0.0607
## # ℹ 1 more variable: .config <chr>
# Update the model by selecting the best hyperparameters
xgboost_fw <- tune::finalize_workflow(xgboost_workflow, tune::select_best(xgboost_tune, metric = "rmse") )

# Fit the model on the entire training data and test it on the test data.

data_fit <- tune::last_fit(xgboost_fw, data_split)
tune::collect_metrics(data_fit)
## # A tibble: 2 × 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard       0.342 Preprocessor1_Model1
## 2 rsq     standard       0.604 Preprocessor1_Model1
tune::collect_predictions(data_fit) %>%
  ggplot(aes(price, .pred)) +
  geom_point(alpha = 0.3, fill = "midnightblue") +
  geom_abline(lty = 2, color = "gray50") +
  coord_fixed()

Make Predictions