library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)


movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

1. rename(): (4 points)

Rename the “Film” column to “movie_title” and “Year” to “release_year”.

q1 <- movies %>%
  rename(movie_title = Film , release_year = Year)

(q1)
## # A tibble: 77 × 8
##    movie_title              Genre `Lead Studio` `Audience score %` Profitability
##    <chr>                    <chr> <chr>                      <dbl>         <dbl>
##  1 Zack and Miri Make a Po… Roma… The Weinstei…                 70         1.75 
##  2 Youth in Revolt          Come… The Weinstei…                 52         1.09 
##  3 You Will Meet a Tall Da… Come… Independent                   35         1.21 
##  4 When in Rome             Come… Disney                        44         0    
##  5 What Happens in Vegas    Come… Fox                           72         6.27 
##  6 Water For Elephants      Drama 20th Century…                 72         3.08 
##  7 WALL-E                   Anim… Disney                        89         2.90 
##  8 Waitress                 Roma… Independent                   67        11.1  
##  9 Waiting For Forever      Roma… Independent                   53         0.005
## 10 Valentine's Day          Come… Warner Bros.                  54         4.18 
## # ℹ 67 more rows
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

2. select(): (4 points)

Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability,

q2 <- q1 %>%
  select(movie_title, release_year, Genre, Profitability)

(q2)
## # A tibble: 77 × 4
##    movie_title                        release_year Genre     Profitability
##    <chr>                                     <dbl> <chr>             <dbl>
##  1 Zack and Miri Make a Porno                 2008 Romance           1.75 
##  2 Youth in Revolt                            2010 Comedy            1.09 
##  3 You Will Meet a Tall Dark Stranger         2010 Comedy            1.21 
##  4 When in Rome                               2010 Comedy            0    
##  5 What Happens in Vegas                      2008 Comedy            6.27 
##  6 Water For Elephants                        2011 Drama             3.08 
##  7 WALL-E                                     2008 Animation         2.90 
##  8 Waitress                                   2007 Romance          11.1  
##  9 Waiting For Forever                        2011 Romance           0.005
## 10 Valentine's Day                            2010 Comedy            4.18 
## # ℹ 67 more rows

3. filter(): (4 points)

Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80.

q3 <- q1 %>%
  filter(release_year > 2000 & 'Rotten Tomatoes %' > 80)

(q3)
## # A tibble: 77 × 8
##    movie_title              Genre `Lead Studio` `Audience score %` Profitability
##    <chr>                    <chr> <chr>                      <dbl>         <dbl>
##  1 Zack and Miri Make a Po… Roma… The Weinstei…                 70         1.75 
##  2 Youth in Revolt          Come… The Weinstei…                 52         1.09 
##  3 You Will Meet a Tall Da… Come… Independent                   35         1.21 
##  4 When in Rome             Come… Disney                        44         0    
##  5 What Happens in Vegas    Come… Fox                           72         6.27 
##  6 Water For Elephants      Drama 20th Century…                 72         3.08 
##  7 WALL-E                   Anim… Disney                        89         2.90 
##  8 Waitress                 Roma… Independent                   67        11.1  
##  9 Waiting For Forever      Roma… Independent                   53         0.005
## 10 Valentine's Day          Come… Warner Bros.                  54         4.18 
## # ℹ 67 more rows
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

4. mutate(): (4 points)

Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.

q4 <- q3 %>%
  mutate(Profitability_millions = Profitability*1e6)

(q4)
## # A tibble: 77 × 9
##    movie_title              Genre `Lead Studio` `Audience score %` Profitability
##    <chr>                    <chr> <chr>                      <dbl>         <dbl>
##  1 Zack and Miri Make a Po… Roma… The Weinstei…                 70         1.75 
##  2 Youth in Revolt          Come… The Weinstei…                 52         1.09 
##  3 You Will Meet a Tall Da… Come… Independent                   35         1.21 
##  4 When in Rome             Come… Disney                        44         0    
##  5 What Happens in Vegas    Come… Fox                           72         6.27 
##  6 Water For Elephants      Drama 20th Century…                 72         3.08 
##  7 WALL-E                   Anim… Disney                        89         2.90 
##  8 Waitress                 Roma… Independent                   67        11.1  
##  9 Waiting For Forever      Roma… Independent                   53         0.005
## 10 Valentine's Day          Come… Warner Bros.                  54         4.18 
## # ℹ 67 more rows
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>, Profitability_millions <dbl>

5. arrange(): (3 points)

Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))

q5 <- q4 %>%
  arrange(desc('Rotten Tomatoes %'), desc(Profitability_millions))

(q5)
## # A tibble: 77 × 9
##    movie_title              Genre `Lead Studio` `Audience score %` Profitability
##    <chr>                    <chr> <chr>                      <dbl>         <dbl>
##  1 Fireproof                Drama Independent                   51         66.9 
##  2 High School Musical 3: … Come… Disney                        76         22.9 
##  3 The Twilight Saga: New … Drama Summit                        78         14.2 
##  4 Waitress                 Roma… Independent                   67         11.1 
##  5 Twilight                 Roma… Summit                        82         10.2 
##  6 Mamma Mia!               Come… Universal                     76          9.23
##  7 Mamma Mia!               Come… Universal                     76          9.23
##  8 Midnight in Paris        Rome… Sony                          84          8.74
##  9 (500) Days of Summer     come… Fox                           81          8.10
## 10 The Proposal             Come… Disney                        74          7.87
## # ℹ 67 more rows
## # ℹ 4 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>, Profitability_millions <dbl>

6. Combining functions: (3 points)

Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.

q6 <- movies %>%
  rename(movie_title = Film, release_year = Year) %>%
  select(movie_title, release_year, Genre, Profitability, 'Rotten Tomatoes %') %>%
  filter(release_year > 2000 & 'Rotten Tomatoes %' > 80) %>%
  mutate(Profitability_millions = Profitability * 1e6) %>%
  arrange(desc('Rotten Tomatoes %'), desc(Profitability_millions))

(q6)
## # A tibble: 77 × 6
##    movie_title              release_year Genre Profitability `Rotten Tomatoes %`
##    <chr>                           <dbl> <chr>         <dbl>               <dbl>
##  1 Fireproof                        2008 Drama         66.9                   40
##  2 High School Musical 3: …         2008 Come…         22.9                   65
##  3 The Twilight Saga: New …         2009 Drama         14.2                   27
##  4 Waitress                         2007 Roma…         11.1                   89
##  5 Twilight                         2008 Roma…         10.2                   49
##  6 Mamma Mia!                       2008 Come…          9.23                  53
##  7 Mamma Mia!                       2008 Come…          9.23                  53
##  8 Midnight in Paris                2011 Rome…          8.74                  93
##  9 (500) Days of Summer             2009 come…          8.10                  87
## 10 The Proposal                     2009 Come…          7.87                  43
## # ℹ 67 more rows
## # ℹ 1 more variable: Profitability_millions <dbl>

7. Interpret question 6 (1 point)

EXTRA CREDIT (4 points)

Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre. Hint: You’ll need to use group_by() and summarize().

summary_df <- movies %>%
  group_by(Genre) %>%
  summarize(
    Avg_Rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    Avg_Profitability_millions = mean(Profitability, na.rm = TRUE)
  )

print(summary_df)
## # A tibble: 10 × 3
##    Genre     Avg_Rating Avg_Profitability_millions
##    <chr>          <dbl>                      <dbl>
##  1 Action          11                        1.25 
##  2 Animation       74.2                      3.76 
##  3 Comdy           13                        2.65 
##  4 Comedy          42.7                      3.78 
##  5 Drama           51.5                      8.41 
##  6 Fantasy         73                        1.78 
##  7 Romance         42.1                      3.98 
##  8 Romence         93                        8.74 
##  9 comedy          87                        8.10 
## 10 romance         54                        0.653