(1 pt) In a survey, one hundred college students are asked how many hours per week they spend on the Internet. # Mean, since the final answer would be a numerical value (number of hours).
(1 pt) In a survey, one hundred college students are asked: “What percentage of the time you spend on the Internet is part of your course work?” # Mean, since the final answer would be a numerical value as we can find the average of these percentages.
(1 pt) In a survey, one hundred college students are asked whether or not they cited information from Wikipedia in their papers. #Proportion, since the final answer would be a categorical value (Yes or No).
(1 pt) In a survey, one hundred college students are asked what percentage of their total weekly spending is on alcoholic beverages. # Mean, since the final answer would be a numerical value (percentage).
(1 pt) In a sample of one hundred recent college graduates, it is found that 85 percent expect to get a job within one year of their graduation date. # Proportion, since the final answer would be a categorical value, Yes or No, based on whether a student has got the job or not.
(4 pt) Write down the null and alternative hypotheses for a two-sided test of whether the nutrition label is lying. #Null Hypothesis : H0 :- One ounce (28 gram) serving of potato chips is equal to 130 calories # Ha :- One ounce (28 gram) serving of potato chips is not equal to 130 calories # where H0 is the null hypothesis and # Ha is the alternate hypothesis
(4 pt) Calculate the test statistic and find the p value. # Test Statistic is t = (Xbar - M0)/Standard Error # where Xbar <- Sample Mean and M0 <- Hypothesized Population Mean # Standard Error <- Standard Deviation / sqrt(Sample Size) # Therefore, t = ( 136 - 130 )/( 17 / sqrt(35) ) = 2.088 # Degree of freedom, df = (n-1) = 34, where n <- Sample Size # p value of the above found test statistic is 0.9816024
(2 pt) If you were the potato chip company would you rather have your alpha = 0.05 or 0.025 in this case? Why? # If p value is greater than significance level we cannot reject null hypothesis. # Current p value is greater than 0.025 and 0.05, thus, making the hypothesized mean correct and proving that the one ounce of potato chip has 130 calories based on hypothesized t test # Therefore, If I were the potato chip company, I would rather have my alpha = 0.05 in this case because my samples seem to be way more accurate
library(dplyr)
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
## filter, lag
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(UsingR)
## Loading required package: MASS
##
## Attaching package: 'MASS'
##
## The following object is masked from 'package:dplyr':
##
## select
##
## Loading required package: HistData
## Loading required package: Hmisc
## Loading required package: grid
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
##
## The following objects are masked from 'package:dplyr':
##
## combine, src, summarize
##
## The following objects are masked from 'package:base':
##
## format.pval, round.POSIXt, trunc.POSIXt, units
##
##
## Attaching package: 'UsingR'
##
## The following object is masked from 'package:ggplot2':
##
## movies
##
## The following object is masked from 'package:survival':
##
## cancer
library(ggplot2)
height <- get("father.son")
ggplot(father.son,aes(x=father.son$sheight))+geom_histogram(binwidth=0.5)
cor(father.son,use="complete.obs")
## fheight sheight
## fheight 1.0000000 0.5013383
## sheight 0.5013383 1.0000000
# Medium positive correlation based on correlation
filling in estimated coefficient values and interpret the coefficient estimates.
lin <- lm(sheight~fheight,data=father.son)
summary(lin)
##
## Call:
## lm(formula = sheight ~ fheight, data = father.son)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.8772 -1.5144 -0.0079 1.6285 8.9685
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.88660 1.83235 18.49 <2e-16 ***
## fheight 0.51409 0.02705 19.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.437 on 1076 degrees of freedom
## Multiple R-squared: 0.2513, Adjusted R-squared: 0.2506
## F-statistic: 361.2 on 1 and 1076 DF, p-value: < 2.2e-16
confint(lin,level=0.95)
## 2.5 % 97.5 %
## (Intercept) 30.2912126 37.4819961
## fheight 0.4610188 0.5671673
plot(father.son$fheight,father.son$sheight)
fit <- lm(father.son$sheight~father.son$fheight)
abline(fit, col = 'red')
# The above plot shows the relation between the data and the red colored least squares regression line looks positive.
resid(lin)
## 1 2 3 4 5
## -7.549320518 -3.189432294 -3.937262188 -4.897126876 -1.035698698
## 6 7 8 9 10
## -2.043843444 -3.410828758 -3.165011904 -3.236827219 -4.334628227
## 11 12 13 14 15
## 1.022303623 -0.888502884 -0.939312002 -1.389889738 -1.848607024
## 16 17 18 19 20
## -2.591991494 -2.989964076 -2.052904112 -3.438394247 -2.717010607
## 21 22 23 24 25
## -3.605699113 -4.121340976 0.546305037 -0.312543404 -0.875422298
## 26 27 28 29 30
## -1.312839748 -1.192957249 -1.230181614 -1.812453255 -1.615901663
## 31 32 33 34 35
## -2.375460072 -2.204042616 -1.619202118 -3.046443067 -2.648375866
## 36 37 38 39 40
## -2.626129125 -2.805758011 -3.212520458 -4.390581934 1.251267433
## 41 42 43 44 45
## 0.423048888 -0.045610592 0.017480915 -0.497696232 -0.474796414
## 46 47 48 49 50
## 1.651610444 -0.093493379 -6.433844280 -1.501642356 -0.690917366
## 51 52 53 54 55
## 0.167196487 -0.296185711 -0.663097904 -0.437084264 0.035412008
## 56 57 58 59 60
## -0.270065897 -0.778626280 -0.794462663 -0.920354365 -1.725711657
## 61 62 63 64 65
## -1.230643968 -0.620670541 -1.364184860 -1.572385589 -1.470870305
## 66 67 68 69 70
## -1.513833405 -1.745407337 -2.069684088 -2.846581324 -3.329580662
## 71 72 73 74 75
## -2.946462676 -3.640587809 1.860225243 2.281611743 1.304137765
## 76 77 78 79 80
## 1.278954303 1.282886041 0.483236276 0.464206224 0.684499731
## 81 82 83 84 85
## 0.541204255 0.635911455 -0.167036297 0.447075292 -0.375922595
## 86 87 88 89 90
## -0.216290319 0.116000909 -0.540760234 -0.514137299 -0.965763441
## 91 92 93 94 95
## -0.408536148 -1.177500783 -0.045185671 -1.231809237 -1.256862315
## 96 97 98 99 100
## -1.283594057 -0.807166782 -1.300360878 -0.583115367 -1.592844342
## 101 102 103 104 105
## -1.694391204 -2.726917798 -1.696968809 -2.808427293 -3.721415968
## 106 107 108 109 110
## 2.481860301 2.991852489 2.191823951 2.316841460 1.663529726
## 111 112 113 114 115
## 1.509323610 1.810568992 1.750030102 1.182320365 1.412419651
## 116 117 118 119 120
## 0.593792097 0.609404304 0.130282046 0.484382391 0.873493002
## 121 122 123 124 125
## 0.234369977 -0.507444670 0.256542544 0.113457481 0.050642153
## 126 127 128 129 130
## -0.456481594 -0.714303903 -1.006836579 -0.642387828 -0.821788545
## 131 132 133 134 135
## -0.904210026 -1.227948506 -1.903205886 -3.391252138 2.614688577
## 136 137 138 139 140
## 2.476442442 2.256267373 2.481986131 2.739712775 1.972221011
## 141 142 143 144 145
## 1.206614827 1.720636825 0.898841785 0.733899166 1.800290795
## 146 147 148 149 150
## 0.561337916 0.719309646 0.393519322 0.726053610 0.182004139
## 151 152 153 154 155
## 0.015308736 0.133562580 -0.366483521 -0.228146526 -0.531668437
## 156 157 158 159 160
## -0.322913060 -0.986682154 -2.575892643 4.288392671 2.811879391
## 161 162 163 164 165
## 3.854350538 2.964102656 3.377198232 2.462113473 2.147711164
## 166 167 168 169 170
## 2.500735498 1.712579696 1.766511791 1.668353743 1.576386544
## 171 172 173 174 175
## 1.530073205 1.281262567 1.039887763 1.046845499 1.162054402
## 176 177 178 179 180
## 0.026946632 -0.515032586 -0.680480615 3.857967348 3.386384510
## 181 182 183 184 185
## 3.613236253 2.639723729 3.303625096 2.120430141 2.598257226
## 186 187 188 189 190
## 2.241349711 1.826296299 0.819806704 1.033570797 4.187133519
## 191 192 193 194 195
## 4.073441414 3.622528817 3.353553128 2.995469909 2.616144304
## 196 197 198 199 200
## 2.324543094 8.003255538 5.442858656 3.865042378 3.616255354
## 201 202 203 204 205
## 2.560981725 6.751380784 7.093602167 5.901547869 -4.818473013
## 206 207 208 209 210
## 5.339813720 3.591276323 3.711810584 -4.456682821 -2.036181060
## 211 212 213 214 215
## -7.357182705 3.280337809 -4.094563645 -7.402425332 -4.546391439
## 216 217 218 219 220
## -3.547572138 -2.996731758 -3.058385489 -4.114599078 -5.963614403
## 221 222 223 224 225
## -1.937790543 -2.947703222 -2.850429872 -4.008435512 -3.586611265
## 226 227 228 229 230
## -4.981214007 -0.455548844 -1.843159299 -1.066749004 -2.356374230
## 231 232 233 234 235
## -2.339795194 -2.037973366 -2.089951647 -2.198188552 -3.484180192
## 236 237 238 239 240
## -3.311773147 -4.661443598 -0.009016003 -0.379773844 -0.055167765
## 241 242 243 244 245
## -0.966452762 -0.676800413 -1.302263927 -1.650971009 -1.416779793
## 246 247 248 249 250
## -1.019166136 -2.330428929 -1.957194664 -1.842430538 -3.005425792
## 251 252 253 254 255
## -2.799590649 -2.524552853 -3.378735919 -4.134563822 0.902462882
## 256 257 258 259 260
## 0.600731530 0.536295550 0.953143203 -0.014966588 -0.237475177
## 261 262 263 264 265
## 0.265131054 -0.228149267 -5.391354890 -2.849681116 -1.850511525
## 266 267 268 269 270
## -3.589695641 -0.102142686 -1.043803584 -0.666873710 -0.613530122
## 271 272 273 274 275
## -0.782423016 -0.765505802 -0.981290464 -1.070444318 -0.568468247
## 276 277 278 279 280
## -1.610169354 -1.765660462 -1.642620503 -1.486344337 -2.148516404
## 281 282 283 284 285
## -2.177641887 -1.785823380 -2.458158060 -2.459333375 -3.180891716
## 286 287 288 289 290
## -2.358938099 -3.344303343 1.737870221 1.529971642 2.126584122
## 291 292 293 294 295
## 1.837056693 1.339263165 1.180360089 0.674466681 0.463427763
## 296 297 298 299 300
## -0.123244601 0.742131310 -0.293302886 -0.188462701 0.335081797
## 301 302 303 304 305
## 0.145177756 -0.264314883 -0.427049864 0.084303897 -0.927216569
## 306 307 308 309 310
## -0.791968391 -1.187685475 -0.234938274 -1.272797267 -1.642547450
## 311 312 313 314 315
## -0.822138191 -0.732354563 -1.497519308 -1.531592328 -2.319124873
## 316 317 318 319 320
## -1.420630068 -1.632832247 -1.879364631 -3.047175858 -2.731998400
## 321 322 323 324 325
## 3.238853634 2.267149069 2.325138632 1.685806236 1.877961690
## 326 327 328 329 330
## 1.616795594 0.998786670 1.879586855 1.013560311 1.266195138
## 331 332 333 334 335
## 0.417645158 0.461415500 0.255616549 0.157141033 0.998830954
## 336 337 338 339 340
## -0.265556588 0.105104884 -0.294442609 -0.151975195 -0.122545542
## 341 342 343 344 345
## 0.047138344 -0.187101821 -0.329330033 -1.375334272 -1.103788678
## 346 347 348 349 350
## -0.655542638 -1.121097939 -1.017182163 -1.979390319 2.955116189
## 351 352 353 354 355
## 2.662128458 1.985806920 1.903415364 2.163431715 1.717846883
## 356 357 358 359 360
## 2.148443709 0.821629353 1.132662390 1.446649298 1.690406308
## 361 362 363 364 365
## 1.158488113 0.988784179 1.243774578 0.607180922 0.101055811
## 366 367 368 369 370
## 0.542196241 0.177075898 0.517863104 -0.564554608 0.047002321
## 371 372 373 374 375
## -0.653364255 -0.963612058 -1.659336497 4.138422805 3.552991910
## 376 377 378 379 380
## 3.349257552 2.174165598 2.560942560 2.337009107 2.182338515
## 381 382 383 384 385
## 1.917710543 1.828863893 1.772559456 1.904477732 1.488699510
## 386 387 388 389 390
## 1.486941263 1.954373022 1.111390949 0.859528685 1.197521578
## 391 392 393 394 395
## 0.358195739 0.240338195 -0.148113758 4.182020693 3.565863898
## 396 397 398 399 400
## 3.250366427 2.324158514 2.389633338 2.537895513 2.374891897
## 401 402 403 404 405
## 2.617766937 1.520946125 0.864434305 0.729090171 4.699917114
## 406 407 408 409 410
## 4.672887051 3.795810853 3.707780237 3.487485465 2.732503400
## 411 412 413 414 415
## 1.666374075 1.963024008 5.064569422 5.484583810 3.387810643
## 416 417 418 419 420
## 3.637810778 2.024863332 4.629300349 8.151747800 -4.165330595
## 421 422 423 424 425
## -4.397042931 0.092183980 -8.271382039 -1.875112825 0.074072255
## 426 427 428 429 430
## -0.294812949 2.968543040 -1.649808898 -5.637762696 1.390831221
## 431 432 433 434 435
## 0.549083220 -4.497157752 -3.497778992 -4.525255176 -5.520827464
## 436 437 438 439 440
## -1.986475485 -2.387577959 -3.302808121 -3.025704983 -3.618434519
## 441 442 443 444 445
## -4.864695754 0.821873405 -1.462888129 -0.933447502 -2.631248222
## 446 447 448 449 450
## -2.581049069 -2.088575488 -2.392377869 -2.632835083 -2.985479647
## 451 452 453 454 455
## -3.746318585 -4.570049223 0.123878967 0.017222335 -0.636215736
## 456 457 458 459 460
## -0.343478636 -1.308177593 -0.996858657 -1.356835908 -1.482939709
## 461 462 463 464 465
## -1.045068074 -2.380873782 -2.035909345 -2.405678827 -2.577727027
## 466 467 468 469 470
## -2.282927149 -2.269134787 -2.804976822 -3.263977852 1.507905714
## 471 472 473 474 475
## 1.401090723 0.220064646 -0.064974348 0.629756131 -0.350102478
## 476 477 478 479 480
## -0.248751352 -0.711485837 -3.486091137 -4.676935637 -1.760437753
## 481 482 483 484 485
## -2.470469682 -0.068363565 -0.003059954 -0.667482049 -0.834641792
## 486 487 488 489 490
## -1.015693781 -0.740362645 -0.875387261 -1.605599758 -1.349426932
## 491 492 493 494 495
## -0.864106255 -0.919440855 -0.822352004 -1.658792381 -1.976064268
## 496 497 498 499 500
## -1.658146023 -1.891878029 -2.229115654 -1.760182271 -2.455244350
## 501 502 503 504 505
## -3.012410151 -2.582018386 2.218731817 2.286712411 1.032497054
## 506 507 508 509 510
## 1.134678004 0.918782672 1.073320623 0.796418419 -0.170741632
## 511 512 513 514 515
## 0.287647361 -0.118998035 0.014531984 -0.341609600 -0.512497595
## 516 517 518 519 520
## -0.166179153 0.058683229 0.157404465 -0.070758990 -0.434102977
## 521 522 523 524 525
## -0.193019062 -0.485859072 -0.864082612 -1.463250029 -0.804839027
## 526 527 528 529 530
## -1.232652814 -1.401964163 -1.186450226 -1.064415076 -1.499661599
## 531 532 533 534 535
## -1.203505578 -2.081020787 -1.941188075 -2.456274391 -2.494140757
## 536 537 538 539 540
## 3.857451958 3.073832008 2.427127077 1.603469118 2.417727796
## 541 542 543 544 545
## 1.823501510 1.593041702 0.940236448 0.577220003 0.910136172
## 546 547 548 549 550
## 0.515233980 0.703753170 -0.233272042 0.196287715 0.100233396
## 551 552 553 554 555
## 0.476631073 -0.467795173 -0.484116104 -0.394556034 0.026199662
## 556 557 558 559 560
## 0.121192064 -0.615982756 -0.349044921 -0.111379734 -0.520127446
## 561 562 563 564 565
## -0.956518584 -0.900222426 -1.879284146 -1.571540721 3.390140321
## 566 567 568 569 570
## 2.714972594 2.529337171 2.331660578 2.185673182 2.205944965
## 571 572 573 574 575
## 1.617506217 1.841601958 0.994719840 1.925553736 1.311455510
## 576 577 578 579 580
## 0.206828320 1.042816425 0.505300846 0.523866950 0.632331719
## 581 582 583 584 585
## 0.122432249 0.605779235 0.420151602 -0.498952678 -0.565600690
## 586 587 588 589 590
## -0.006776941 -1.034715921 -0.712179528 4.139316630 3.906986317
## 591 592 593 594 595
## 3.293088672 2.426219526 2.224091815 2.731735177 2.764149030
## 596 597 598 599 600
## 1.733662782 2.318791395 2.003560969 1.544138142 1.888508198
## 601 602 603 604 605
## 1.384333399 1.614683392 1.222460389 1.958252376 0.723632483
## 606 607 608 609 610
## 0.246105987 -0.211022623 0.359560060 5.307896020 4.380018759
## 611 612 613 614 615
## 3.032073323 3.081352240 2.559210884 3.158959859 1.998324951
## 616 617 618 619 620
## 2.155955791 2.167794730 1.924072275 0.860063659 1.295236203
## 621 622 623 624 625
## 4.209837674 3.804104926 4.104828835 3.690333035 3.165760595
## 626 627 628 629 630
## 1.968800825 1.632180526 6.933304176 4.754464919 4.110180686
## 631 632 633 634 635
## 2.919973210 2.715892034 6.406283771 4.432464139 8.343688769
## 636 637 638 639 640
## -6.912291784 2.729159120 -2.864912195 -1.004644842 1.402358037
## 641 642 643 644 645
## 0.310794534 4.414340456 0.593138224 -6.197892353 -0.863888343
## 646 647 648 649 650
## -0.960672325 -3.003959566 -7.392165742 -2.912550245 -3.631370065
## 651 652 653 654 655
## -4.822340049 -2.113980471 -2.389505185 -2.863227011 -3.241792826
## 656 657 658 659 660
## -3.660770957 -3.557003416 0.347453597 -1.046381008 -1.210875925
## 661 662 663 664 665
## -1.199720032 -2.198016722 -1.753317097 -2.283677937 -2.250404110
## 666 667 668 669 670
## -3.154485655 -4.073990691 -3.496240977 1.147346305 -0.176037520
## 671 672 673 674 675
## -0.807078631 -0.557475725 -0.869483985 -0.886144096 -1.789389167
## 676 677 678 679 680
## -1.879991423 -2.216156355 -1.873581809 -2.065795216 -2.224427754
## 681 682 683 684 685
## -2.153025312 -2.756852481 -2.821668994 -2.891438726 -3.107287648
## 686 687 688 689 690
## 2.556559092 1.585146235 0.912853044 0.243258742 0.084565160
## 691 692 693 694 695
## -0.176879207 -0.582579831 0.728382928 -2.031688861 -5.673090644
## 696 697 698 699 700
## 0.128901089 -0.848534235 -0.425037232 -0.026043450 -0.461419334
## 701 702 703 704 705
## -0.666059743 -0.583233298 -0.576804909 -1.025709317 -1.727829408
## 706 707 708 709 710
## -0.656146609 -1.173511313 -1.483330169 -1.102655255 -1.984596098
## 711 712 713 714 715
## -1.925230237 -2.075224673 -2.241378133 -2.105931208 -2.162257874
## 716 717 718 719 720
## -2.301354229 -2.591485584 -2.352828690 2.679176774 2.552197385
## 721 722 723 724 725
## 1.475345605 1.081885037 1.336060999 1.320918248 -0.163937907
## 726 727 728 729 730
## 0.226689115 0.155647222 0.615597172 0.841266298 0.306471871
## 731 732 733 734 735
## -0.177464407 0.347112755 0.422040392 -0.615294736 -0.348105883
## 736 737 738 739 740
## -0.791977664 -0.518978094 -0.636249443 -0.960427270 -0.107662718
## 741 742 743 744 745
## -1.446767273 -0.847153161 -0.853009530 -1.087654005 -1.037981022
## 746 747 748 749 750
## -1.341329846 -1.545713529 -2.050437241 -1.931290112 -3.112732942
## 751 752 753 754 755
## -2.649142210 -3.309949996 2.785279007 2.263076122 1.531179258
## 756 757 758 759 760
## 1.905201983 1.764683451 1.213794428 1.666860943 1.826353542
## 761 762 763 764 765
## 1.094292047 0.642080206 0.786003233 0.293665575 0.561125983
## 766 767 768 769 770
## 0.183822293 -0.296645354 0.459255598 0.257705551 -0.463951074
## 771 772 773 774 775
## -0.687939067 0.165302297 -0.485975879 -0.702747144 -0.516705767
## 776 777 778 779 780
## -0.798849741 -1.189519749 -1.284811307 -1.137687029 -2.215477427
## 781 782 783 784 785
## 3.981979061 3.257037431 2.441659396 1.865190889 2.184233319
## 786 787 788 789 790
## 2.438748847 1.523302204 1.744129527 1.792821336 0.977441966
## 791 792 793 794 795
## 0.761255989 0.987603262 0.845677064 0.751871029 1.311344445
## 796 797 798 799 800
## 1.121127694 0.939099389 -0.076258444 0.328537243 0.054671476
## 801 802 803 804 805
## 0.280665660 0.367567953 -0.843409666 -1.183476486 4.547311529
## 806 807 808 809 810
## 3.923177995 3.928424900 2.511007480 3.132594693 2.421288524
## 811 812 813 814 815
## 2.210515640 2.619886458 2.615086752 2.144988651 1.925027600
## 816 817 818 819 820
## 2.140899245 0.995929277 1.676481318 0.899878283 1.421671863
## 821 822 823 824 825
## 0.706562463 1.010632168 0.330221258 -0.676492952 5.512939661
## 826 827 828 829 830
## 3.582462901 3.565717639 3.207917457 2.921717005 2.891910573
## 831 832 833 834 835
## 1.970314406 2.583362960 2.434336198 1.514810192 1.805870562
## 836 837 838 839 840
## 1.103459451 4.316685112 4.858847022 3.737191773 2.971788177
## 841 842 843 844 845
## 3.110645457 2.544724923 2.029458434 6.796174721 5.605938444
## 846 847 848 849 850
## 4.054330034 3.889141502 3.209280692 5.693750433 5.221715677
## 851 852 853 854 855
## 8.968478813 -8.743284614 1.540916577 0.396943250 1.471849840
## 856 857 858 859 860
## 2.905875337 -1.061552721 -6.910148818 1.510890334 2.068747073
## 861 862 863 864 865
## -5.731984395 -2.572537507 -4.664720036 -2.422006258 -3.815460108
## 866 867 868 869 870
## -4.266914447 -0.520498395 -2.221230289 -2.771972252 -2.997079420
## 871 872 873 874 875
## -2.925450034 -3.579032884 -6.245864307 -0.992296736 -1.651270933
## 876 877 878 879 880
## -1.731973307 -1.784466334 -2.309649546 -2.035579488 -2.274169372
## 881 882 883 884 885
## -3.139890119 -3.757720851 -3.203750953 -4.590130726 0.172744471
## 886 887 888 889 890
## -0.916724729 -0.730549555 -0.887759564 -0.822638186 -1.364119639
## 891 892 893 894 895
## -1.144799831 -1.514609136 -2.067856275 -1.915276036 -1.980686728
## 896 897 898 899 900
## -1.697328359 -2.642619860 -2.485659262 -3.179389457 -3.698535260
## 901 902 903 904 905
## -4.187737492 1.975566233 1.138536012 0.039401362 0.476744056
## 906 907 908 909 910
## -0.358221327 0.233489628 0.326412660 -0.385024862 -5.470119405
## 911 912 913 914 915
## -0.943585721 -3.858235770 1.721985741 0.411202107 -0.570615118
## 916 917 918 919 920
## -0.584183699 -0.618681331 -1.021739968 0.031520090 -1.290869634
## 921 922 923 924 925
## -1.464087582 -1.339519526 -0.922204781 -1.427366675 -1.125437078
## 926 927 928 929 930
## -1.689962615 -1.566518148 -1.994245576 -2.162774545 -1.965427571
## 931 932 933 934 935
## -1.932382933 -2.225195673 -2.552031012 -2.562924943 1.567945618
## 936 937 938 939 940
## 1.705210854 1.478785397 1.632961910 0.689264831 1.447444579
## 941 942 943 944 945
## 0.386428459 0.627950374 0.422352636 0.435988172 0.030293202
## 946 947 948 949 950
## 0.403164614 0.131251766 0.216064953 0.141792061 -0.575767023
## 951 952 953 954 955
## -0.894873844 -1.086366203 -0.876240723 -0.332976163 -0.722298637
## 956 957 958 959 960
## -0.940250308 -0.954278596 -1.291021065 -1.371546810 -1.005424910
## 961 962 963 964 965
## -1.193308727 -1.825408209 -1.966702622 -2.205402332 -2.280651354
## 966 967 968 969 970
## -2.668852466 -2.801679762 3.350174082 1.944998698 1.834501349
## 971 972 973 974 975
## 1.240292894 1.318071750 1.018360789 1.293638770 0.673796039
## 976 977 978 979 980
## 0.978309682 0.547953795 0.711440073 0.545759462 0.662990964
## 981 982 983 984 985
## 0.273431755 0.180373017 0.208792946 -0.016661794 0.164318768
## 986 987 988 989 990
## 0.179359096 0.199053067 0.037893666 -0.341811880 -1.120156569
## 991 992 993 994 995
## -0.837729072 -1.109617521 -0.933549710 -1.109290052 -0.735894733
## 996 997 998 999 1000
## -1.633203894 3.028308450 2.181361796 3.050111495 2.889867743
## 1001 1002 1003 1004 1005
## 2.195399495 1.535078644 2.191354836 1.104142120 1.014290782
## 1006 1007 1008 1009 1010
## 1.997966028 1.384245909 1.004036442 0.598681741 1.378897978
## 1011 1012 1013 1014 1015
## 1.086436763 0.119568553 0.163910582 0.322355679 0.554619095
## 1016 1017 1018 1019 1020
## -0.414866878 0.171365277 -0.236351870 -0.520593564 -1.634873942
## 1021 1022 1023 1024 1025
## 3.436372382 3.506197296 3.668358411 2.939776083 2.466993091
## 1026 1027 1028 1029 1030
## 2.385146036 2.790695191 2.584203554 1.583647664 1.912701017
## 1031 1032 1033 1034 1035
## 1.586134683 1.580070675 1.332671761 1.946137415 1.254843310
## 1036 1037 1038 1039 1040
## 1.309027961 0.602998826 0.414716046 -0.364875489 -1.278200379
## 1041 1042 1043 1044 1045
## 4.136000253 3.682608593 3.774236726 3.211133930 2.378770554
## 1046 1047 1048 1049 1050
## 2.131856040 2.588984847 2.049679070 1.836506945 1.220304149
## 1051 1052 1053 1054 1055
## 0.962337404 4.331060985 4.028872564 4.195720592 3.619775234
## 1056 1057 1058 1059 1060
## 2.313494450 2.811195962 2.270234930 1.997450895 5.865147140
## 1061 1062 1063 1064 1065
## 4.680763131 3.452156878 2.926232447 1.284000836 4.123250188
## 1066 1067 1068 1069 1070
## 7.400658027 -7.523332626 5.628732981 -4.251839278 -7.593037101
## 1071 1072 1073 1074 1075
## -3.658603782 -6.671128941 -8.877150660 2.423122015 -2.290051307
## 1076 1077 1078
## -1.483926919 -0.950717935 -3.015475796
ggplot(lin, aes(x=residuals(lin))) + geom_density() + labs(x='Residuals',y='Density',title='Density Plot for Residuals')
# The plot seems like a nearly normal distributed. This means we can create a linear model which will be fairly accurate
ggplot(father.son, aes(x=fheight, y=sheight)) +
geom_point(shape=1)+labs(x='Father Height',y='Son Height',title='Scatterplot between Father height and son height') + geom_smooth(method='lm')
new.df <- data.frame(fheight=c(50,55,70,75,90))
predict(lin,newdata=new.df)
## 1 2 3 4 5
## 59.59126 62.16172 69.87312 72.44358 80.15498
library(openintro)
## Please visit openintro.org for free statistics materials
##
## Attaching package: 'openintro'
##
## The following object is masked from 'package:MASS':
##
## mammals
##
## The following object is masked from 'package:datasets':
##
## cars
data(gifted)
glimpse(gifted)
## Observations: 36
## Variables: 8
## $ score (int) 159, 164, 154, 157, 156, 150, 155, 161, 163, 162, 154...
## $ fatheriq (int) 115, 117, 115, 113, 110, 113, 118, 117, 111, 122, 111...
## $ motheriq (int) 117, 113, 118, 131, 109, 109, 119, 120, 128, 120, 117...
## $ speak (int) 18, 20, 20, 12, 17, 13, 19, 18, 22, 18, 19, 20, 20, 2...
## $ count (int) 26, 37, 32, 24, 34, 28, 24, 32, 28, 27, 32, 33, 35, 2...
## $ read (dbl) 1.9, 2.5, 2.2, 1.7, 2.2, 1.9, 1.8, 2.3, 2.1, 2.1, 2.2...
## $ edutv (dbl) 3.00, 1.75, 2.75, 2.75, 2.25, 1.25, 2.00, 2.25, 1.00,...
## $ cartoons (dbl) 2.00, 3.25, 2.50, 2.25, 2.50, 3.75, 3.00, 2.50, 4.00,...
score - Score in test of analytical skills. fatheriq - Father’s IQ. motheriq - Mother’s IQ. speak - Age in months when the child first said ‘mummy’ or ‘daddy’. count - Age in months when the child first counted to 10 successfully. read - Average number of hours per week the child’s mother or father reads to the child. edutv - Average number of hours per week the child watched an educational program on TV during the past three months. cartoons - Average number of hours per week the child watched cartoons on TV during the past three months.
linfather <- lm(score~fatheriq,data=gifted)
linfather
##
## Call:
## lm(formula = score ~ fatheriq, data = gifted)
##
## Coefficients:
## (Intercept) fatheriq
## 130.4294 0.2501
linmother <- lm(score~motheriq,data=gifted)
linmother
##
## Call:
## lm(formula = score ~ motheriq, data = gifted)
##
## Coefficients:
## (Intercept) motheriq
## 111.0930 0.4066
(5 pt) How are these interpreted?
(5 pt) What conclusions can you draw about the association between the child’s score and the mother and father’s IQ? # There is less positive correlation between father’s IQ and child’s score and there is a little higher, yet less positive correlation between mother’s IQ and child’s score.