Introduction

This document presents a comprehensive meta-analysis of neuromodulation techniques in schizophrenia, examining their effects on symptoms and cognitive functions across different intervention parameters.

Setting Up the Environment

First, we load the required packages for our analysis:

# Loading Required Packages
packages <- c("metafor", "dplyr", "tidyr", "ggplot2", "readxl", "knitr", "kableExtra", "RColorBrewer", "gridExtra")
for(pkg in packages) {
  if(!require(pkg, character.only = TRUE)) {
    install.packages(pkg)
    library(pkg, character.only = TRUE)
  }
}

Data Import

We’ll import the data from the Excel file containing our meta-analysis data:

# Import the sheets
baseline <- read_excel("Downloads/final_meta_analysis_data.xlsx", 
                      sheet = "Baseline")
outcomes <- read_excel("Downloads/final_meta_analysis_data.xlsx", 
                      sheet = "Outcomes")
#codes <- read_excel("Downloads/final_meta_analysis_data.xlsx", 
#                    sheet = "Codes")

Data Preprocessing

Next, we preprocess the data for consistency and create domain categorizations:

# Convert to lowercase for consistency
baseline$Study <- tolower(baseline$Study)
baseline$Group <- tolower(baseline$Group)
outcomes$Study <- tolower(outcomes$Study)
outcomes$Group <- tolower(outcomes$Group)

# Create unique identifiers for each study-group combination
baseline$study_group_id <- paste(baseline$Study, baseline$Group, sep = "_")
outcomes$study_group_id <- paste(outcomes$Study, outcomes$Group, sep = "_")

# Categorize outcome measures
outcomes <- outcomes %>%
  mutate(domain = case_when(
    grepl("^P_", Outcome_Measure) ~ "positive_symptoms",
    grepl("^N_", Outcome_Measure) ~ "negative_symptoms",
    grepl("^T_", Outcome_Measure) ~ "total_psychopathology",
    grepl("^G_", Outcome_Measure) ~ "general_psychopathology",
    grepl("^PS_", Outcome_Measure) ~ "processing_speed",
    grepl("^AV_", Outcome_Measure) ~ "attention_vigilance",
    grepl("^WM_", Outcome_Measure) ~ "working_memory",
    grepl("^VerL_", Outcome_Measure) ~ "verbal_learning",
    grepl("^VisL_", Outcome_Measure) ~ "visual_learning",
    grepl("^RPS_", Outcome_Measure) ~ "reasoning_problem_solving",
    grepl("^SC_", Outcome_Measure) ~ "social_cognition",
    grepl("^GC_", Outcome_Measure) ~ "global_cognition",
    TRUE ~ "other"
  ))

Calculate Effect Sizes

We calculate standardized mean differences (Hedges’ g) between active and sham groups:

effect_sizes <- data.frame()

# Identify active and sham groups
for(study in unique(outcomes$Study)) {
  # Get all groups for this study
  groups <- unique(outcomes$Group[outcomes$Study == study])
  
  # Identify which is active and which is sham
  active_groups <- groups[grepl("active", groups, ignore.case = TRUE)]
  sham_groups <- groups[grepl("sham", groups, ignore.case = TRUE)]
  
  for(active in active_groups) {
    for(sham in sham_groups) {
      # For each outcome measure
      for(outcome in unique(outcomes$Outcome_Measure)) {
        # Check if both groups have this outcome
        active_data <- outcomes %>% 
          filter(Study == study, Group == active, Outcome_Measure == outcome)
        
        sham_data <- outcomes %>% 
          filter(Study == study, Group == sham, Outcome_Measure == outcome)
        
        if(nrow(active_data) >= 2 && nrow(sham_data) >= 2) {
          # Get baseline and endpoint data
          active_t0 <- active_data %>% filter(Time_Point == "T0")
          active_t1 <- active_data %>% filter(Time_Point == "T1" | grepl("T1_Change", Time_Point))
          sham_t0 <- sham_data %>% filter(Time_Point == "T0")
          sham_t1 <- sham_data %>% filter(Time_Point == "T1" | grepl("T1_Change", Time_Point))
          
          # Only proceed if we have complete data
          if(nrow(active_t0) == 1 && nrow(active_t1) == 1 && 
             nrow(sham_t0) == 1 && nrow(sham_t1) == 1) {
            
            # Check if this is a change score
            is_change_score <- grepl("T1_Change", active_t1$Time_Point)
            
            # Calculate effect sizes based on whether it's a change score
            if(is_change_score) {
              # For change scores
              n1 <- as.numeric(active_t1$N)
              n2 <- as.numeric(sham_t1$N)
              m1 <- as.numeric(active_t1$Mean)
              m2 <- as.numeric(sham_t1$Mean)
              sd1 <- as.numeric(active_t1$SD)
              sd2 <- as.numeric(sham_t1$SD)
              
              # Skip if any data is missing
              if(any(is.na(c(n1, n2, m1, m2, sd1, sd2)))) next
              
              # Calculate Hedges' g
              es <- escalc(measure = "SMD", 
                          m1i = m1, m2i = m2, 
                          sd1i = sd1, sd2i = sd2, 
                          n1i = n1, n2i = n2)
            } else {
              # For pre-post data
              n1 <- as.numeric(active_t1$N)
              n2 <- as.numeric(sham_t1$N)
              m1_pre <- as.numeric(active_t0$Mean)
              m1_post <- as.numeric(active_t1$Mean)
              m2_pre <- as.numeric(sham_t0$Mean)
              m2_post <- as.numeric(sham_t1$Mean)
              sd1_pre <- as.numeric(active_t0$SD)
              sd1_post <- as.numeric(active_t1$SD)
              sd2_pre <- as.numeric(sham_t0$SD)
              sd2_post <- as.numeric(sham_t1$SD)
              
              # Skip if any data is missing
              if(any(is.na(c(n1, n2, m1_pre, m1_post, m2_pre, m2_post, 
                             sd1_pre, sd1_post, sd2_pre, sd2_post)))) next
              
              # Pre-post correlation (estimate 0.7 if not known)
              cor_pre_post <- 0.7
              
              # Calculate change scores and their SDs
              m1 <- m1_post - m1_pre
              m2 <- m2_post - m2_pre
              
              # Calculate SD of change scores
              sd1 <- sqrt(sd1_pre^2 + sd1_post^2 - 2*cor_pre_post*sd1_pre*sd1_post)
              sd2 <- sqrt(sd2_pre^2 + sd2_post^2 - 2*cor_pre_post*sd2_pre*sd2_post)
              
              # Calculate Hedges' g
              es <- escalc(measure = "SMD", 
                          m1i = m1, m2i = m2, 
                          sd1i = sd1, sd2i = sd2, 
                          n1i = n1, n2i = n2)
            }
            
            # Determine if lower scores are better (for direction adjustment)
            lower_is_better <- grepl("PANSS|SANS|SAPS|AHRS|BPRS|PSYRATS", outcome)
            
            # Adjust direction so positive effect size always means improvement
            if(lower_is_better) {
              es$yi <- -es$yi
            }
            
            # Get the domain of this outcome
            domain <- active_data$domain[1]
            
            # Get technique, target, and other metadata from baseline
            technique <- baseline$Technique[baseline$study_group_id == paste(study, active, sep="_")][1]
            target <- baseline$Target[baseline$study_group_id == paste(study, active, sep="_")][1]
            lateralisation <- baseline$Lateralisation[baseline$study_group_id == paste(study, active, sep="_")][1]
            targeting_method <- baseline$Targeting_Method[baseline$study_group_id == paste(study, active, sep="_")][1]
            total_time <- baseline$Total_Time[baseline$study_group_id == paste(study, active, sep="_")][1]
            total_sessions <- baseline$Total_Sessions[baseline$study_group_id == paste(study, active, sep="_")][1]
            session_frequency <- baseline$Session_Frequency[baseline$study_group_id == paste(study, active, sep="_")][1]
            
            # Add to effect sizes dataframe
            effect_sizes <- rbind(effect_sizes, data.frame(
              study = study,
              outcome = outcome,
              domain = domain,
              technique = technique,
              target = target,
              lateralisation = lateralisation,
              targeting_method = targeting_method,
              total_time = total_time,
              total_sessions = total_sessions,
              session_frequency = session_frequency,
              yi = es$yi,  # Effect size
              vi = es$vi,  # Variance
              n1 = n1,      # Sample size active
              n2 = n2,      # Sample size sham
              lower_is_better = lower_is_better,
              stringsAsFactors = FALSE
            ))
          }
        }
      }
    }
  }
}

# Check the resulting effect sizes
cat("Total number of effect sizes calculated:", nrow(effect_sizes), "\n")
## Total number of effect sizes calculated: 677

Data Quality Check

Let’s check for missing values in key variables:

check_missing <- function(data) {
  cat("Missing values in key variables:\n")
  cat("technique:", sum(is.na(data$technique)), "missing out of", nrow(data), "\n")
  cat("target:", sum(is.na(data$target)), "missing out of", nrow(data), "\n") 
  cat("lateralisation:", sum(is.na(data$lateralisation)), "missing out of", nrow(data), "\n")
  cat("total_time:", sum(is.na(data$total_time)), "missing out of", nrow(data), "\n")
  cat("total_sessions:", sum(is.na(data$total_sessions)), "missing out of", nrow(data), "\n")
  cat("session_frequency:", sum(is.na(data$session_frequency)), "missing out of", nrow(data), "\n")
  
  # Print unique values of technique to see what we're working with
  cat("\nUnique values in technique variable:\n")
  print(table(data$technique, useNA = "always"))
}

Helper Functions for Subgroup Analyses

This function runs the subgroup analyses with error handling:

run_subgroup_analysis <- function(data, factor_var, factor_name, min_studies = 3) {
  # First, remove NAs in the factor variable
  data_clean <- data %>% filter(!is.na(!!sym(factor_var)))
  
  cat("\nAnalyzing", factor_name, "with", nrow(data_clean), "valid cases\n")
  
  # Get the unique levels of the factor
  factor_levels <- unique(data_clean[[factor_var]])
  cat("Found", length(factor_levels), "unique levels:", paste(factor_levels, collapse=", "), "\n")
  
  # Create a list to store results for each subgroup
  subgroup_results <- list()
  
  # Create a dataframe to store results for the table
  results_table <- data.frame(
    Subgroup = character(),
    k = integer(),
    ES = numeric(),
    CI_Lower = numeric(),
    CI_Upper = numeric(),
    p = numeric(),
    I2 = numeric(),
    stringsAsFactors = FALSE
  )
  
  # For each level of the factor, run a separate meta-analysis
  for(level in factor_levels) {
    # Filter data for this level
    subgroup_data <- data_clean %>% filter(!!sym(factor_var) == level)
    
    cat("Level:", level, "- Number of studies:", nrow(subgroup_data), "\n")
    
    # Only analyze if we have enough studies
    if(nrow(subgroup_data) >= min_studies) {
      # Run the meta-analysis
      tryCatch({
        subgroup_model <- rma(yi, vi, data = subgroup_data, method = "REML")
        
        # Store the results
        subgroup_results[[as.character(level)]] <- subgroup_model
        
        # Add to results table
        results_table <- rbind(results_table, data.frame(
          Subgroup = as.character(level),
          k = subgroup_model$k,
          ES = subgroup_model$b,
          CI_Lower = subgroup_model$ci.lb,
          CI_Upper = subgroup_model$ci.ub,
          p = subgroup_model$pval,
          I2 = (subgroup_model$tau2 / (subgroup_model$tau2 + subgroup_model$vt)) * 100,
          stringsAsFactors = FALSE
        ))
      }, error = function(e) {
        cat("Error in subgroup", level, ":", e$message, "\n")
      })
    } else {
      cat("Skipping", level, "- not enough studies\n")
    }
  }
  
  # Check if we have any results
  if(nrow(results_table) == 0) {
    cat("No valid subgroups with enough studies found for", factor_name, "\n")
    return(NULL)
  }
  
  # Run meta-regression to test for subgroup differences
  if(length(unique(data_clean[[factor_var]])) > 1 && nrow(results_table) > 1) {
    # Run meta-regression
    tryCatch({
      metareg_formula <- as.formula(paste("yi ~ factor(", factor_var, ")", sep=""))
      metareg_model <- rma(metareg_formula, vi, data = data_clean, method = "REML")
      
      # Print results
      cat("\n\nMeta-regression for differences between", factor_name, "subgroups:\n")
      print(summary(metareg_model))
    }, error = function(e) {
      cat("Error in meta-regression:", e$message, "\n")
      metareg_model <- NULL
    })
  } else {
    metareg_model <- NULL
  }
  
  # Format the results table
  results_table$ES <- round(results_table$ES, 2)
  results_table$CI_Lower <- round(results_table$CI_Lower, 2)
  results_table$CI_Upper <- round(results_table$CI_Upper, 2)
  results_table$p <- round(results_table$p, 3)
  results_table$I2 <- round(results_table$I2, 1)
  
  # Add significance markers
  results_table$Sig <- ifelse(results_table$p < 0.001, "***",
                              ifelse(results_table$p < 0.01, "**",
                                     ifelse(results_table$p < 0.05, "*", "")))
  
  # Create effect size with CI column
  results_table$Effect_Size <- paste0(results_table$ES, " [", 
                                      results_table$CI_Lower, ", ", 
                                      results_table$CI_Upper, "]", 
                                      results_table$Sig)
  
  # Create a temporary table with columns we need for plotting
  plot_table <- results_table %>%
    select(Subgroup, ES, CI_Lower, CI_Upper, p)
  
  # Reorder columns for display in the results table
  results_table <- results_table %>%
    select(Subgroup, k, Effect_Size, p, I2) %>%
    rename(`Subgroup` = Subgroup,
           `Number of Effect Sizes` = k,
           `Effect Size [95% CI]` = Effect_Size,
           `p-value` = p,
           `` = I2)
  
  # Create a forest plot for subgroups using the plot_table (not the renamed results_table)
  plot_data <- plot_table %>%
    mutate(
      Significant = p < 0.05,
      Subgroup = factor(Subgroup, levels = rev(Subgroup))
    )
  
  # Create the plot
  p <- ggplot(plot_data, aes(x = ES, y = Subgroup, xmin = CI_Lower, xmax = CI_Upper, 
                           color = Significant)) +
    geom_point(size = 3) +
    geom_errorbarh(height = 0.2) +
    geom_vline(xintercept = 0, linetype = "dashed", color = "darkgray") +
    scale_color_manual(values = c("FALSE" = "gray50", "TRUE" = "blue")) +
    labs(title = paste("Effect of Neuromodulation by", factor_name),
         x = "Hedges' g Effect Size",
         y = "",
         color = "Statistically\nSignificant") +
    theme_minimal() +
    theme(legend.position = "bottom")
  
  # Print the table
  cat("\n\nSubgroup Analysis for", factor_name, ":\n")
  print(kable(results_table, 
              caption = paste("Summary of Results by", factor_name)) %>%
        kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                      full_width = FALSE))
  
  # Display the plot
  print(p)
  
  # Return the results
  return(list(table = results_table, plot = p, metareg = metareg_model))
}

Data Preparation for Subgroup Analyses

Let’s clean the data and prepare it for our subgroup analyses:

# First make sure we replace empty strings with NA
effect_sizes <- effect_sizes %>%
  mutate(across(where(is.character), ~na_if(., "")))

# Clean up technique names for better display
effect_sizes$technique <- toupper(effect_sizes$technique)

# Run the check for missing values
check_missing(effect_sizes)
## Missing values in key variables:
## technique: 5 missing out of 677 
## target: 5 missing out of 677 
## lateralisation: 5 missing out of 677 
## total_time: 5 missing out of 677 
## total_sessions: 5 missing out of 677 
## session_frequency: 5 missing out of 677 
## 
## Unique values in technique variable:
## 
##     CTBS     DTMS  HD-TDCS  HF-RTMS     ITBS  LF-RTMS PRM-RTMS     TACS 
##       20       19        9      225      112       88        4       13 
##     TDCS     <NA> 
##      182        5

Intervention Type Analysis

We’ll analyze the effect of different neuromodulation techniques:

cat("\n\n** INTERVENTION TYPE ANALYSIS **\n")
## 
## 
## ** INTERVENTION TYPE ANALYSIS **
technique_results <- run_subgroup_analysis(
  effect_sizes, 
  "technique", 
  "Intervention Type"
)
## 
## Analyzing Intervention Type with 672 valid cases
## Found 9 unique levels: LF-RTMS, HF-RTMS, ITBS, PRM-RTMS, TDCS, TACS, HD-TDCS, DTMS, CTBS 
## Level: LF-RTMS - Number of studies: 88 
## Level: HF-RTMS - Number of studies: 225 
## Level: ITBS - Number of studies: 112 
## Level: PRM-RTMS - Number of studies: 4 
## Level: TDCS - Number of studies: 182 
## Level: TACS - Number of studies: 13 
## Level: HD-TDCS - Number of studies: 9 
## Level: DTMS - Number of studies: 19 
## Level: CTBS - Number of studies: 20 
## 
## 
## Meta-regression for differences between Intervention Type subgroups:
## 
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc   
## -633.0810  1266.1619  1286.1619  1331.1297  1286.4994   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2285 (SE = 0.0186)
## tau (square root of estimated tau^2 value):             0.4780
## I^2 (residual heterogeneity / unaccounted variability): 71.17%
## H^2 (unaccounted variability / sampling variability):   3.47
## R^2 (amount of heterogeneity accounted for):            2.45%
## 
## Test for Residual Heterogeneity:
## QE(df = 663) = 2092.4841, p-val < .0001
## 
## Test of Moderators (coefficients 2:9):
## QM(df = 8) = 17.7426, p-val = 0.0232
## 
## Model Results:
## 
##                            estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                     -0.1079  0.1331  -0.8109  0.4174  -0.3687  0.1529 
## factor(technique)DTMS        0.3653  0.1946   1.8775  0.0605  -0.0161  0.7466 
## factor(technique)HD-TDCS     0.3848  0.2397   1.6052  0.1085  -0.0851  0.8547 
## factor(technique)HF-RTMS     0.3198  0.1385   2.3085  0.0210   0.0483  0.5913 
## factor(technique)ITBS        0.3667  0.1438   2.5502  0.0108   0.0849  0.6485 
## factor(technique)LF-RTMS     0.4548  0.1472   3.0891  0.0020   0.1662  0.7433 
## factor(technique)PRM-RTMS    0.3552  0.3337   1.0644  0.2871  -0.2988  1.0092 
## factor(technique)TACS        0.2964  0.2246   1.3199  0.1869  -0.1437  0.7366 
## factor(technique)TDCS        0.2047  0.1403   1.4587  0.1447  -0.0704  0.4798 
##                               
## intrcpt                       
## factor(technique)DTMS       . 
## factor(technique)HD-TDCS      
## factor(technique)HF-RTMS    * 
## factor(technique)ITBS       * 
## factor(technique)LF-RTMS   ** 
## factor(technique)PRM-RTMS     
## factor(technique)TACS         
## factor(technique)TDCS         
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for Intervention Type :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by Intervention Type</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> LF-RTMS </td>
##    <td style="text-align:right;"> 88 </td>
##    <td style="text-align:left;"> 0.34 [0.2, 0.49]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 79.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> HF-RTMS </td>
##    <td style="text-align:right;"> 225 </td>
##    <td style="text-align:left;"> 0.21 [0.14, 0.28]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 70.5 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> ITBS </td>
##    <td style="text-align:right;"> 112 </td>
##    <td style="text-align:left;"> 0.27 [0.11, 0.42]** </td>
##    <td style="text-align:right;"> 0.001 </td>
##    <td style="text-align:right;"> 87.7 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt3 </td>
##    <td style="text-align:left;"> PRM-RTMS </td>
##    <td style="text-align:right;"> 4 </td>
##    <td style="text-align:left;"> 0.25 [-0.12, 0.62] </td>
##    <td style="text-align:right;"> 0.190 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt4 </td>
##    <td style="text-align:left;"> TDCS </td>
##    <td style="text-align:right;"> 182 </td>
##    <td style="text-align:left;"> 0.08 [0.03, 0.14]** </td>
##    <td style="text-align:right;"> 0.002 </td>
##    <td style="text-align:right;"> 21.9 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt5 </td>
##    <td style="text-align:left;"> TACS </td>
##    <td style="text-align:right;"> 13 </td>
##    <td style="text-align:left;"> 0.23 [0, 0.47]* </td>
##    <td style="text-align:right;"> 0.048 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt6 </td>
##    <td style="text-align:left;"> HD-TDCS </td>
##    <td style="text-align:right;"> 9 </td>
##    <td style="text-align:left;"> 0.22 [0.02, 0.41]* </td>
##    <td style="text-align:right;"> 0.030 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt7 </td>
##    <td style="text-align:left;"> DTMS </td>
##    <td style="text-align:right;"> 19 </td>
##    <td style="text-align:left;"> 0.24 [0.07, 0.42]** </td>
##    <td style="text-align:right;"> 0.006 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt8 </td>
##    <td style="text-align:left;"> CTBS </td>
##    <td style="text-align:right;"> 20 </td>
##    <td style="text-align:left;"> -0.14 [-0.57, 0.28] </td>
##    <td style="text-align:right;"> 0.510 </td>
##    <td style="text-align:right;"> 88.7 </td>
##   </tr>
## </tbody>
## </table>

Target Region Analysis

Next, we examine the effect of different brain targets:

cat("\n\n** TARGET REGION ANALYSIS **\n")
## 
## 
## ** TARGET REGION ANALYSIS **
target_results <- run_subgroup_analysis(
  effect_sizes, 
  "target", 
  "Target Region"
)
## 
## Analyzing Target Region with 672 valid cases
## Found 34 unique levels: L-TPJ, Bi-TPJ, Bi-DLPFC, Cereb-Vermis, L-DLPFC, Bi-DMPFC, L-DLPFC_L-TPJ, L-FC/L-PC_CPz/FCz, L-STS, L-DMPFC, L-DLPFC_R-SORB, Bi-DLPFC_Bi-TPJ, L-DLPFC_R-DLPFC, R-ORBF, DLPFC, L-M1, TPJ, R-DLPFC, R-DLPFC_L-Orbit, L-PC, L-LPC, L-DLPFC_R-ORBF, Bi-PFC, L-DLPFC_Cz, Bi-Insula, fMRI-TC, L_DLPFC, fMRI-TPC, R-IPL, L-SMA, R-DLPFC_L-TPJ, L-DLPFC_L-PFC, L-DLPFC/L-TPJ_Cz, L-DLPFC_R-ORB 
## Level: L-TPJ - Number of studies: 45 
## Level: Bi-TPJ - Number of studies: 12 
## Level: Bi-DLPFC - Number of studies: 45 
## Level: Cereb-Vermis - Number of studies: 36 
## Level: L-DLPFC - Number of studies: 232 
## Level: Bi-DMPFC - Number of studies: 1 
## Skipping Bi-DMPFC - not enough studies
## Level: L-DLPFC_L-TPJ - Number of studies: 71 
## Level: L-FC/L-PC_CPz/FCz - Number of studies: 3 
## Level: L-STS - Number of studies: 1 
## Skipping L-STS - not enough studies
## Level: L-DMPFC - Number of studies: 3 
## Level: L-DLPFC_R-SORB - Number of studies: 10 
## Level: Bi-DLPFC_Bi-TPJ - Number of studies: 4 
## Level: L-DLPFC_R-DLPFC - Number of studies: 32 
## Level: R-ORBF - Number of studies: 24 
## Level: DLPFC - Number of studies: 6 
## Level: L-M1 - Number of studies: 5 
## Level: TPJ - Number of studies: 4 
## Level: R-DLPFC - Number of studies: 14 
## Level: R-DLPFC_L-Orbit - Number of studies: 2 
## Skipping R-DLPFC_L-Orbit - not enough studies
## Level: L-PC - Number of studies: 5 
## Level: L-LPC - Number of studies: 8 
## Level: L-DLPFC_R-ORBF - Number of studies: 48 
## Level: Bi-PFC - Number of studies: 9 
## Level: L-DLPFC_Cz - Number of studies: 6 
## Level: Bi-Insula - Number of studies: 3 
## Level: fMRI-TC - Number of studies: 3 
## Level: L_DLPFC - Number of studies: 3 
## Level: fMRI-TPC - Number of studies: 2 
## Skipping fMRI-TPC - not enough studies
## Level: R-IPL - Number of studies: 6 
## Level: L-SMA - Number of studies: 5 
## Level: R-DLPFC_L-TPJ - Number of studies: 12 
## Level: L-DLPFC_L-PFC - Number of studies: 5 
## Level: L-DLPFC/L-TPJ_Cz - Number of studies: 4 
## Level: L-DLPFC_R-ORB - Number of studies: 3 
## 
## 
## Meta-regression for differences between Target Region subgroups:
## 
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc   
## -593.9482  1187.8965  1257.8965  1413.9383  1262.0825   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2103 (SE = 0.0179)
## tau (square root of estimated tau^2 value):             0.4586
## I^2 (residual heterogeneity / unaccounted variability): 69.52%
## H^2 (unaccounted variability / sampling variability):   3.28
## R^2 (amount of heterogeneity accounted for):            10.19%
## 
## Test for Residual Heterogeneity:
## QE(df = 638) = 1927.4497, p-val < .0001
## 
## Test of Moderators (coefficients 2:34):
## QM(df = 33) = 78.6316, p-val < .0001
## 
## Model Results:
## 
##                                  estimate      se     zval    pval    ci.lb 
## intrcpt                            0.1239  0.0933   1.3284  0.1840  -0.0589 
## factor(target)Bi-DLPFC_Bi-TPJ      0.5546  0.3369   1.6461  0.0998  -0.1058 
## factor(target)Bi-DMPFC            -0.0459  0.6879  -0.0667  0.9468  -1.3942 
## factor(target)Bi-Insula            0.4986  0.3859   1.2922  0.1963  -0.2577 
## factor(target)Bi-PFC               0.0420  0.2137   0.1967  0.8441  -0.3768 
## factor(target)Bi-TPJ              -0.1271  0.1854  -0.6854  0.4931  -0.4905 
## factor(target)Cereb-Vermis        -0.1317  0.1291  -1.0201  0.3077  -0.3846 
## factor(target)DLPFC                0.4471  0.2336   1.9138  0.0556  -0.0108 
## factor(target)fMRI-TC             -0.3721  0.3595  -1.0351  0.3006  -1.0768 
## factor(target)fMRI-TPC            -0.2334  0.4053  -0.5759  0.5647  -1.0278 
## factor(target)L_DLPFC              0.0144  0.3618   0.0399  0.9682  -0.6946 
## factor(target)L-DLPFC              0.1644  0.1003   1.6394  0.1011  -0.0322 
## factor(target)L-DLPFC_Cz           0.0703  0.2725   0.2580  0.7964  -0.4638 
## factor(target)L-DLPFC_L-PFC        0.0431  0.2493   0.1728  0.8628  -0.4455 
## factor(target)L-DLPFC_L-TPJ       -0.0449  0.1173  -0.3825  0.7021  -0.2748 
## factor(target)L-DLPFC_R-DLPFC     -0.0055  0.1342  -0.0412  0.9672  -0.2685 
## factor(target)L-DLPFC_R-ORB       -0.1945  0.3386  -0.5743  0.5657  -0.8582 
## factor(target)L-DLPFC_R-ORBF       0.0003  0.1242   0.0026  0.9979  -0.2432 
## factor(target)L-DLPFC_R-SORB      -0.1635  0.2039  -0.8017  0.4227  -0.5631 
## factor(target)L-DLPFC/L-TPJ_Cz    -0.0634  0.3193  -0.1986  0.8426  -0.6893 
## factor(target)L-DMPFC             -0.1944  0.3538  -0.5496  0.5826  -0.8878 
## factor(target)L-FC/L-PC_CPz/FCz    0.4586  0.3427   1.3381  0.1808  -0.2131 
## factor(target)L-LPC               -0.3844  0.2103  -1.8275  0.0676  -0.7966 
## factor(target)L-M1                 0.1599  0.2667   0.5994  0.5489  -0.3629 
## factor(target)L-PC                 0.2111  0.2958   0.7137  0.4754  -0.3687 
## factor(target)L-SMA                0.8873  0.2697   3.2897  0.0010   0.3587 
## factor(target)L-STS               -0.2319  0.5366  -0.4322  0.6656  -1.2835 
## factor(target)L-TPJ                0.3598  0.1306   2.7542  0.0059   0.1038 
## factor(target)R-DLPFC             -0.0629  0.1712  -0.3673  0.7134  -0.3984 
## factor(target)R-DLPFC_L-Orbit      0.0020  0.4207   0.0048  0.9962  -0.8225 
## factor(target)R-DLPFC_L-TPJ       -0.3385  0.2525  -1.3404  0.1801  -0.8334 
## factor(target)R-IPL               -0.2196  0.2984  -0.7360  0.4618  -0.8045 
## factor(target)R-ORBF               0.2826  0.1395   2.0260  0.0428   0.0092 
## factor(target)TPJ                 -0.8814  0.2969  -2.9686  0.0030  -1.4634 
##                                    ci.ub     
## intrcpt                           0.3068     
## factor(target)Bi-DLPFC_Bi-TPJ     1.2150   . 
## factor(target)Bi-DMPFC            1.3024     
## factor(target)Bi-Insula           1.2549     
## factor(target)Bi-PFC              0.4608     
## factor(target)Bi-TPJ              0.2363     
## factor(target)Cereb-Vermis        0.1213     
## factor(target)DLPFC               0.9050   . 
## factor(target)fMRI-TC             0.3325     
## factor(target)fMRI-TPC            0.5610     
## factor(target)L_DLPFC             0.7235     
## factor(target)L-DLPFC             0.3609     
## factor(target)L-DLPFC_Cz          0.6044     
## factor(target)L-DLPFC_L-PFC       0.5317     
## factor(target)L-DLPFC_L-TPJ       0.1851     
## factor(target)L-DLPFC_R-DLPFC     0.2574     
## factor(target)L-DLPFC_R-ORB       0.4692     
## factor(target)L-DLPFC_R-ORBF      0.2438     
## factor(target)L-DLPFC_R-SORB      0.2362     
## factor(target)L-DLPFC/L-TPJ_Cz    0.5625     
## factor(target)L-DMPFC             0.4989     
## factor(target)L-FC/L-PC_CPz/FCz   1.1302     
## factor(target)L-LPC               0.0279   . 
## factor(target)L-M1                0.6827     
## factor(target)L-PC                0.7910     
## factor(target)L-SMA               1.4160  ** 
## factor(target)L-STS               0.8198     
## factor(target)L-TPJ               0.6159  ** 
## factor(target)R-DLPFC             0.2727     
## factor(target)R-DLPFC_L-Orbit     0.8266     
## factor(target)R-DLPFC_L-TPJ       0.1564     
## factor(target)R-IPL               0.3653     
## factor(target)R-ORBF              0.5561   * 
## factor(target)TPJ                -0.2995  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for Target Region :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by Target Region</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> L-TPJ </td>
##    <td style="text-align:right;"> 45 </td>
##    <td style="text-align:left;"> 0.46 [0.19, 0.72]** </td>
##    <td style="text-align:right;"> 0.001 </td>
##    <td style="text-align:right;"> 81.1 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> Bi-TPJ </td>
##    <td style="text-align:right;"> 12 </td>
##    <td style="text-align:left;"> 0.01 [-0.16, 0.18] </td>
##    <td style="text-align:right;"> 0.938 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> Bi-DLPFC </td>
##    <td style="text-align:right;"> 45 </td>
##    <td style="text-align:left;"> 0.12 [-0.05, 0.29] </td>
##    <td style="text-align:right;"> 0.166 </td>
##    <td style="text-align:right;"> 47.4 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt3 </td>
##    <td style="text-align:left;"> Cereb-Vermis </td>
##    <td style="text-align:right;"> 36 </td>
##    <td style="text-align:left;"> -0.01 [-0.1, 0.08] </td>
##    <td style="text-align:right;"> 0.842 </td>
##    <td style="text-align:right;"> 1.1 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt4 </td>
##    <td style="text-align:left;"> L-DLPFC </td>
##    <td style="text-align:right;"> 232 </td>
##    <td style="text-align:left;"> 0.29 [0.21, 0.37]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 77.9 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt5 </td>
##    <td style="text-align:left;"> L-DLPFC_L-TPJ </td>
##    <td style="text-align:right;"> 71 </td>
##    <td style="text-align:left;"> 0.05 [-0.03, 0.12] </td>
##    <td style="text-align:right;"> 0.251 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt6 </td>
##    <td style="text-align:left;"> L-FC/L-PC_CPz/FCz </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> 0.58 [0.2, 0.97]** </td>
##    <td style="text-align:right;"> 0.003 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt7 </td>
##    <td style="text-align:left;"> L-DMPFC </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> -0.07 [-0.49, 0.35] </td>
##    <td style="text-align:right;"> 0.743 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt8 </td>
##    <td style="text-align:left;"> L-DLPFC_R-SORB </td>
##    <td style="text-align:right;"> 10 </td>
##    <td style="text-align:left;"> -0.04 [-0.41, 0.33] </td>
##    <td style="text-align:right;"> 0.829 </td>
##    <td style="text-align:right;"> 68.6 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt9 </td>
##    <td style="text-align:left;"> Bi-DLPFC_Bi-TPJ </td>
##    <td style="text-align:right;"> 4 </td>
##    <td style="text-align:left;"> 0.72 [-0.25, 1.7] </td>
##    <td style="text-align:right;"> 0.147 </td>
##    <td style="text-align:right;"> 79.1 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt10 </td>
##    <td style="text-align:left;"> L-DLPFC_R-DLPFC </td>
##    <td style="text-align:right;"> 32 </td>
##    <td style="text-align:left;"> 0.08 [0, 0.17] </td>
##    <td style="text-align:right;"> 0.064 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt11 </td>
##    <td style="text-align:left;"> R-ORBF </td>
##    <td style="text-align:right;"> 24 </td>
##    <td style="text-align:left;"> 0.4 [0.25, 0.55]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 65.9 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt12 </td>
##    <td style="text-align:left;"> DLPFC </td>
##    <td style="text-align:right;"> 6 </td>
##    <td style="text-align:left;"> 0.57 [0.15, 0.99]** </td>
##    <td style="text-align:right;"> 0.008 </td>
##    <td style="text-align:right;"> 76.4 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt13 </td>
##    <td style="text-align:left;"> L-M1 </td>
##    <td style="text-align:right;"> 5 </td>
##    <td style="text-align:left;"> 0.28 [0, 0.56] </td>
##    <td style="text-align:right;"> 0.050 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt14 </td>
##    <td style="text-align:left;"> TPJ </td>
##    <td style="text-align:right;"> 4 </td>
##    <td style="text-align:left;"> -1 [-3.18, 1.17] </td>
##    <td style="text-align:right;"> 0.365 </td>
##    <td style="text-align:right;"> 98.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt15 </td>
##    <td style="text-align:left;"> R-DLPFC </td>
##    <td style="text-align:right;"> 14 </td>
##    <td style="text-align:left;"> 0.07 [-0.12, 0.26] </td>
##    <td style="text-align:right;"> 0.480 </td>
##    <td style="text-align:right;"> 43.8 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt16 </td>
##    <td style="text-align:left;"> L-PC </td>
##    <td style="text-align:right;"> 5 </td>
##    <td style="text-align:left;"> 0.44 [-2.81, 3.68] </td>
##    <td style="text-align:right;"> 0.793 </td>
##    <td style="text-align:right;"> 98.8 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt17 </td>
##    <td style="text-align:left;"> L-LPC </td>
##    <td style="text-align:right;"> 8 </td>
##    <td style="text-align:left;"> -0.26 [-0.6, 0.08] </td>
##    <td style="text-align:right;"> 0.137 </td>
##    <td style="text-align:right;"> 69.8 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt18 </td>
##    <td style="text-align:left;"> L-DLPFC_R-ORBF </td>
##    <td style="text-align:right;"> 48 </td>
##    <td style="text-align:left;"> 0.12 [0, 0.25]* </td>
##    <td style="text-align:right;"> 0.046 </td>
##    <td style="text-align:right;"> 41.9 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt19 </td>
##    <td style="text-align:left;"> Bi-PFC </td>
##    <td style="text-align:right;"> 9 </td>
##    <td style="text-align:left;"> 0.17 [-0.06, 0.39] </td>
##    <td style="text-align:right;"> 0.156 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt20 </td>
##    <td style="text-align:left;"> L-DLPFC_Cz </td>
##    <td style="text-align:right;"> 6 </td>
##    <td style="text-align:left;"> 0.19 [-0.36, 0.74] </td>
##    <td style="text-align:right;"> 0.495 </td>
##    <td style="text-align:right;"> 61.9 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt21 </td>
##    <td style="text-align:left;"> Bi-Insula </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> 0.62 [0.1, 1.14]* </td>
##    <td style="text-align:right;"> 0.019 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt22 </td>
##    <td style="text-align:left;"> fMRI-TC </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> -0.25 [-0.69, 0.19] </td>
##    <td style="text-align:right;"> 0.270 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt23 </td>
##    <td style="text-align:left;"> L_DLPFC </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> 0.14 [-0.31, 0.58] </td>
##    <td style="text-align:right;"> 0.547 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt24 </td>
##    <td style="text-align:left;"> R-IPL </td>
##    <td style="text-align:right;"> 6 </td>
##    <td style="text-align:left;"> -0.09 [-0.51, 0.32] </td>
##    <td style="text-align:right;"> 0.660 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt25 </td>
##    <td style="text-align:left;"> L-SMA </td>
##    <td style="text-align:right;"> 5 </td>
##    <td style="text-align:left;"> 1.03 [0.25, 1.82]* </td>
##    <td style="text-align:right;"> 0.010 </td>
##    <td style="text-align:right;"> 86.5 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt26 </td>
##    <td style="text-align:left;"> R-DLPFC_L-TPJ </td>
##    <td style="text-align:right;"> 12 </td>
##    <td style="text-align:left;"> -0.21 [-0.59, 0.17] </td>
##    <td style="text-align:right;"> 0.278 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt27 </td>
##    <td style="text-align:left;"> L-DLPFC_L-PFC </td>
##    <td style="text-align:right;"> 5 </td>
##    <td style="text-align:left;"> 0.17 [-0.04, 0.38] </td>
##    <td style="text-align:right;"> 0.117 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt28 </td>
##    <td style="text-align:left;"> L-DLPFC/L-TPJ_Cz </td>
##    <td style="text-align:right;"> 4 </td>
##    <td style="text-align:left;"> 0.06 [-0.33, 0.46] </td>
##    <td style="text-align:right;"> 0.765 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt29 </td>
##    <td style="text-align:left;"> L-DLPFC_R-ORB </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> -0.07 [-0.45, 0.32] </td>
##    <td style="text-align:right;"> 0.725 </td>
##    <td style="text-align:right;"> 7.0 </td>
##   </tr>
## </tbody>
## </table>

Lateralization Analysis

We analyze the effect of stimulation lateralization:

cat("\n\n** LATERALIZATION ANALYSIS **\n")
## 
## 
## ** LATERALIZATION ANALYSIS **
lateralization_results <- run_subgroup_analysis(
  effect_sizes, 
  "lateralisation", 
  "Lateralization"
)
## 
## Analyzing Lateralization with 672 valid cases
## Found 5 unique levels: Uni-L, Bi-Seq, Bi-Sim, Uni-R, Uni-fMRI-L/R 
## Level: Uni-L - Number of studies: 504 
## Level: Bi-Seq - Number of studies: 55 
## Level: Bi-Sim - Number of studies: 55 
## Level: Uni-R - Number of studies: 56 
## Level: Uni-fMRI-L/R - Number of studies: 2 
## Skipping Uni-fMRI-L/R - not enough studies
## 
## 
## Meta-regression for differences between Lateralization subgroups:
## 
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc   
## -641.0461  1282.0923  1294.0923  1321.1090  1294.2196   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2328 (SE = 0.0188)
## tau (square root of estimated tau^2 value):             0.4825
## I^2 (residual heterogeneity / unaccounted variability): 71.56%
## H^2 (unaccounted variability / sampling variability):   3.52
## R^2 (amount of heterogeneity accounted for):            0.59%
## 
## Test for Residual Heterogeneity:
## QE(df = 667) = 2134.3155, p-val < .0001
## 
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 5.1930, p-val = 0.2681
## 
## Model Results:
## 
##                                     estimate      se     zval    pval    ci.lb 
## intrcpt                               0.0820  0.0839   0.9769  0.3286  -0.0825 
## factor(lateralisation)Bi-Sim          0.0146  0.1149   0.1268  0.8991  -0.2106 
## factor(lateralisation)Uni-fMRI-L/R   -0.1915  0.4170  -0.4593  0.6461  -1.0088 
## factor(lateralisation)Uni-L           0.1430  0.0879   1.6257  0.1040  -0.0294 
## factor(lateralisation)Uni-R           0.1173  0.1156   1.0148  0.3102  -0.1093 
##                                      ci.ub    
## intrcpt                             0.2465    
## factor(lateralisation)Bi-Sim        0.2397    
## factor(lateralisation)Uni-fMRI-L/R  0.6258    
## factor(lateralisation)Uni-L         0.3154    
## factor(lateralisation)Uni-R         0.3439    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for Lateralization :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by Lateralization</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> Uni-L </td>
##    <td style="text-align:right;"> 504 </td>
##    <td style="text-align:left;"> 0.23 [0.17, 0.28]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 76.3 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> Bi-Seq </td>
##    <td style="text-align:right;"> 55 </td>
##    <td style="text-align:left;"> 0.07 [-0.05, 0.18] </td>
##    <td style="text-align:right;"> 0.244 </td>
##    <td style="text-align:right;"> 22.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> Bi-Sim </td>
##    <td style="text-align:right;"> 55 </td>
##    <td style="text-align:left;"> 0.06 [-0.03, 0.15] </td>
##    <td style="text-align:right;"> 0.184 </td>
##    <td style="text-align:right;"> 15.4 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt3 </td>
##    <td style="text-align:left;"> Uni-R </td>
##    <td style="text-align:right;"> 56 </td>
##    <td style="text-align:left;"> 0.23 [0.11, 0.35]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 55.6 </td>
##   </tr>
## </tbody>
## </table>

Treatment Duration Analysis

We categorize and analyze the effect of total treatment time:

# Create categories for total time
effect_sizes <- effect_sizes %>%
  mutate(time_category = case_when(
    total_time < 100 ~ "Very Short (<100 min)",
    total_time >= 100 & total_time < 300 ~ "Short (100-300 min)",
    total_time >= 300 & total_time < 600 ~ "Medium (300-600 min)",
    total_time >= 600 ~ "Long (>600 min)",
    TRUE ~ NA_character_
  ))

cat("\n\n** TREATMENT TIME ANALYSIS **\n")
## 
## 
## ** TREATMENT TIME ANALYSIS **
time_results <- run_subgroup_analysis(
  effect_sizes, 
  "time_category", 
  "Total Treatment Time"
)
## 
## Analyzing Total Treatment Time with 672 valid cases
## Found 4 unique levels: Short (100-300 min), Very Short (<100 min), Medium (300-600 min), Long (>600 min) 
## Level: Short (100-300 min) - Number of studies: 271 
## Level: Very Short (<100 min) - Number of studies: 135 
## Level: Medium (300-600 min) - Number of studies: 199 
## Level: Long (>600 min) - Number of studies: 67 
## 
## 
## Meta-regression for differences between Total Treatment Time subgroups:
## 
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc   
## -640.5327  1281.0655  1291.0655  1313.5869  1291.1561   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2323 (SE = 0.0188)
## tau (square root of estimated tau^2 value):             0.4820
## I^2 (residual heterogeneity / unaccounted variability): 71.49%
## H^2 (unaccounted variability / sampling variability):   3.51
## R^2 (amount of heterogeneity accounted for):            0.83%
## 
## Test for Residual Heterogeneity:
## QE(df = 668) = 2132.2541, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.0736, p-val = 0.0696
## 
## Model Results:
## 
##                                             estimate      se     zval    pval 
## intrcpt                                       0.1526  0.0710   2.1505  0.0315 
## factor(time_category)Medium (300-600 min)     0.1227  0.0819   1.4978  0.1342 
## factor(time_category)Short (100-300 min)      0.0483  0.0799   0.6042  0.5457 
## factor(time_category)Very Short (<100 min)   -0.0443  0.0873  -0.5073  0.6119 
##                                               ci.lb   ci.ub    
## intrcpt                                      0.0135  0.2916  * 
## factor(time_category)Medium (300-600 min)   -0.0379  0.2834    
## factor(time_category)Short (100-300 min)    -0.1084  0.2050    
## factor(time_category)Very Short (<100 min)  -0.2154  0.1268    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for Total Treatment Time :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by Total Treatment Time</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> Short (100-300 min) </td>
##    <td style="text-align:right;"> 271 </td>
##    <td style="text-align:left;"> 0.2 [0.13, 0.26]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 62.5 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> Very Short (&lt;100 min) </td>
##    <td style="text-align:right;"> 135 </td>
##    <td style="text-align:left;"> 0.1 [-0.03, 0.23] </td>
##    <td style="text-align:right;"> 0.131 </td>
##    <td style="text-align:right;"> 83.7 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> Medium (300-600 min) </td>
##    <td style="text-align:right;"> 199 </td>
##    <td style="text-align:left;"> 0.28 [0.19, 0.36]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 76.6 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt3 </td>
##    <td style="text-align:left;"> Long (&gt;600 min) </td>
##    <td style="text-align:right;"> 67 </td>
##    <td style="text-align:left;"> 0.15 [0.06, 0.24]** </td>
##    <td style="text-align:right;"> 0.001 </td>
##    <td style="text-align:right;"> 33.1 </td>
##   </tr>
## </tbody>
## </table>

# Meta-regression with time as a continuous variable
time_metareg <- tryCatch({
  rma(yi, vi, mods = ~ total_time, data = effect_sizes %>% filter(!is.na(total_time)), method = "REML")
}, error = function(e) {
  cat("Error in time meta-regression:", e$message, "\n")
  return(NULL)
})

if(!is.null(time_metareg)) {
  cat("\n\nMeta-regression for Total Treatment Time (continuous):\n")
  print(summary(time_metareg))
  
  # Plot a bubble plot for time vs effect size
  ggplot(effect_sizes %>% filter(!is.na(total_time)), 
         aes(x = total_time, y = yi, size = 1/sqrt(vi))) +
    geom_hline(yintercept = 0, linetype = "dashed", color = "darkgray") +
    geom_point(alpha = 0.5) +
    geom_smooth(method = "lm", se = TRUE, color = "blue") +
    labs(title = "Relationship Between Treatment Time and Effect Size",
         x = "Total Treatment Time (minutes)",
         y = "Hedges' g Effect Size",
         size = "Precision\n(1/SE)") +
    theme_minimal()
}
## 
## 
## Meta-regression for Total Treatment Time (continuous):
## 
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc   
## -643.7424  1287.4847  1293.4847  1307.0066  1293.5208   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2336 (SE = 0.0188)
## tau (square root of estimated tau^2 value):             0.4834
## I^2 (residual heterogeneity / unaccounted variability): 71.64%
## H^2 (unaccounted variability / sampling variability):   3.53
## R^2 (amount of heterogeneity accounted for):            0.25%
## 
## Test for Residual Heterogeneity:
## QE(df = 670) = 2152.1119, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.1814, p-val = 0.1397
## 
## Model Results:
## 
##             estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt       0.1570  0.0372  4.2263  <.0001   0.0842  0.2299  *** 
## total_time    0.0002  0.0001  1.4770  0.1397  -0.0001  0.0004      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `geom_smooth()` using formula = 'y ~ x'
## Warning: The following aesthetics were dropped during statistical transformation: size.
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

Session Frequency Analysis

We analyze the effect of session frequency:

cat("\n\n** SESSION FREQUENCY ANALYSIS **\n")
## 
## 
## ** SESSION FREQUENCY ANALYSIS **
frequency_results <- run_subgroup_analysis(
  effect_sizes, 
  "session_frequency", 
  "Session Frequency"
)
## 
## Analyzing Session Frequency with 672 valid cases
## Found 2 unique levels: high, low 
## Level: high - Number of studies: 167 
## Level: low - Number of studies: 505 
## 
## 
## Meta-regression for differences between Session Frequency subgroups:
## 
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc   
## -642.8603  1285.7206  1291.7206  1305.2424  1291.7566   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2321 (SE = 0.0188)
## tau (square root of estimated tau^2 value):             0.4818
## I^2 (residual heterogeneity / unaccounted variability): 71.50%
## H^2 (unaccounted variability / sampling variability):   3.51
## R^2 (amount of heterogeneity accounted for):            0.91%
## 
## Test for Residual Heterogeneity:
## QE(df = 670) = 2141.1712, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.9577, p-val = 0.0467
## 
## Model Results:
## 
##                               estimate      se    zval    pval   ci.lb   ci.ub 
## intrcpt                         0.1212  0.0458  2.6459  0.0081  0.0314  0.2111 
## factor(session_frequency)low    0.1051  0.0528  1.9894  0.0467  0.0016  0.2087 
##                                  
## intrcpt                       ** 
## factor(session_frequency)low   * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for Session Frequency :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by Session Frequency</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> high </td>
##    <td style="text-align:right;"> 167 </td>
##    <td style="text-align:left;"> 0.12 [0.05, 0.19]** </td>
##    <td style="text-align:right;"> 0.001 </td>
##    <td style="text-align:right;"> 52.5 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> low </td>
##    <td style="text-align:right;"> 505 </td>
##    <td style="text-align:left;"> 0.23 [0.17, 0.28]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 74.9 </td>
##   </tr>
## </tbody>
## </table>

Number of Sessions Analysis

We categorize and analyze the effect of the number of treatment sessions:

# Create categories for number of sessions
effect_sizes <- effect_sizes %>%
  mutate(sessions_category = case_when(
    total_sessions == 1 ~ "Single Session",
    total_sessions > 1 & total_sessions <= 5 ~ "2-5 Sessions",
    total_sessions > 5 & total_sessions <= 10 ~ "6-10 Sessions",
    total_sessions > 10 & total_sessions <= 20 ~ "11-20 Sessions",
    total_sessions > 20 ~ "More than 20 Sessions",
    TRUE ~ NA_character_
  ))

cat("\n\n** NUMBER OF SESSIONS ANALYSIS **\n")
## 
## 
## ** NUMBER OF SESSIONS ANALYSIS **
sessions_results <- run_subgroup_analysis(
  effect_sizes, 
  "sessions_category", 
  "Number of Sessions"
)
## 
## Analyzing Number of Sessions with 672 valid cases
## Found 5 unique levels: 11-20 Sessions, Single Session, 6-10 Sessions, More than 20 Sessions, 2-5 Sessions 
## Level: 11-20 Sessions - Number of studies: 340 
## Level: Single Session - Number of studies: 14 
## Level: 6-10 Sessions - Number of studies: 199 
## Level: More than 20 Sessions - Number of studies: 92 
## Level: 2-5 Sessions - Number of studies: 27 
## 
## 
## Meta-regression for differences between Number of Sessions subgroups:
## 
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc   
## -628.3011  1256.6023  1268.6023  1295.6190  1268.7295   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2189 (SE = 0.0180)
## tau (square root of estimated tau^2 value):             0.4678
## I^2 (residual heterogeneity / unaccounted variability): 70.29%
## H^2 (unaccounted variability / sampling variability):   3.37
## R^2 (amount of heterogeneity accounted for):            6.56%
## 
## Test for Residual Heterogeneity:
## QE(df = 667) = 2057.9858, p-val < .0001
## 
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 31.3649, p-val < .0001
## 
## Model Results:
## 
##                                                 estimate      se     zval 
## intrcpt                                           0.3093  0.0313   9.8884 
## factor(sessions_category)2-5 Sessions            -0.2069  0.1210  -1.7091 
## factor(sessions_category)6-10 Sessions           -0.2676  0.0523  -5.1136 
## factor(sessions_category)More than 20 Sessions   -0.1132  0.0662  -1.7101 
## factor(sessions_category)Single Session          -0.4333  0.1609  -2.6935 
##                                                   pval    ci.lb    ci.ub      
## intrcpt                                         <.0001   0.2480   0.3705  *** 
## factor(sessions_category)2-5 Sessions           0.0874  -0.4441   0.0304    . 
## factor(sessions_category)6-10 Sessions          <.0001  -0.3702  -0.1650  *** 
## factor(sessions_category)More than 20 Sessions  0.0872  -0.2430   0.0165    . 
## factor(sessions_category)Single Session         0.0071  -0.7485  -0.1180   ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for Number of Sessions :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by Number of Sessions</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> 11-20 Sessions </td>
##    <td style="text-align:right;"> 340 </td>
##    <td style="text-align:left;"> 0.31 [0.24, 0.39]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 81.4 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> Single Session </td>
##    <td style="text-align:right;"> 14 </td>
##    <td style="text-align:left;"> -0.09 [-0.3, 0.12] </td>
##    <td style="text-align:right;"> 0.401 </td>
##    <td style="text-align:right;"> 25.9 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> 6-10 Sessions </td>
##    <td style="text-align:right;"> 199 </td>
##    <td style="text-align:left;"> 0.03 [-0.02, 0.08] </td>
##    <td style="text-align:right;"> 0.195 </td>
##    <td style="text-align:right;"> 18.5 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt3 </td>
##    <td style="text-align:left;"> More than 20 Sessions </td>
##    <td style="text-align:right;"> 92 </td>
##    <td style="text-align:left;"> 0.2 [0.11, 0.28]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 52.7 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt4 </td>
##    <td style="text-align:left;"> 2-5 Sessions </td>
##    <td style="text-align:right;"> 27 </td>
##    <td style="text-align:left;"> 0.11 [-0.07, 0.29] </td>
##    <td style="text-align:right;"> 0.241 </td>
##    <td style="text-align:right;"> 37.7 </td>
##   </tr>
## </tbody>
## </table>

# Meta-regression with sessions as a continuous variable
sessions_metareg <- tryCatch({
  rma(yi, vi, mods = ~ total_sessions, data = effect_sizes %>% filter(!is.na(total_sessions)), method = "REML")
}, error = function(e) {
  cat("Error in sessions meta-regression:", e$message, "\n")
  return(NULL)
})

if(!is.null(sessions_metareg)) {
  cat("\n\nMeta-regression for Total Number of Sessions (continuous):\n")
  print(summary(sessions_metareg))
  
  # Plot a bubble plot for sessions vs effect size
  ggplot(effect_sizes %>% filter(!is.na(total_sessions)), 
         aes(x = total_sessions, y = yi, size = 1/sqrt(vi))) +
    geom_hline(yintercept = 0, linetype = "dashed", color = "darkgray") +
    geom_point(alpha = 0.5) +
    geom_smooth(method = "lm", se = TRUE, color = "blue") +
    labs(title = "Relationship Between Number of Sessions and Effect Size",
         x = "Total Number of Sessions",
         y = "Hedges' g Effect Size",
         size = "Precision\n(1/SE)") +
    theme_minimal()
}
## 
## 
## Meta-regression for Total Number of Sessions (continuous):
## 
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc   
## -642.3875  1284.7750  1290.7750  1304.2969  1290.8111   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2320 (SE = 0.0188)
## tau (square root of estimated tau^2 value):             0.4817
## I^2 (residual heterogeneity / unaccounted variability): 71.49%
## H^2 (unaccounted variability / sampling variability):   3.51
## R^2 (amount of heterogeneity accounted for):            0.94%
## 
## Test for Residual Heterogeneity:
## QE(df = 670) = 2142.7155, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.9308, p-val = 0.0264
## 
## Model Results:
## 
##                 estimate      se    zval    pval   ci.lb   ci.ub    
## intrcpt           0.1071  0.0478  2.2422  0.0249  0.0135  0.2007  * 
## total_sessions    0.0052  0.0024  2.2205  0.0264  0.0006  0.0098  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## `geom_smooth()` using formula = 'y ~ x'
## Warning: The following aesthetics were dropped during statistical transformation: size.
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

Domain-Specific Analyses

Function to run analyses on specific symptom domains:

# Function to run subgroup analyses for a specific symptom domain
run_domain_subgroup_analyses <- function(domain_name) {
  # Filter for this domain
  domain_data <- effect_sizes %>% filter(domain == domain_name)
  
  if(nrow(domain_data) >= 10) {  # Only run if we have enough studies
    cat("\n\n## Subgroup Analyses for", gsub("_", " ", domain_name), "Domain\n\n")
    
    # Technique analysis
    cat("\n### Intervention Type Analysis for", gsub("_", " ", domain_name), "\n")
    technique_results <- run_subgroup_analysis(
      domain_data, 
      "technique", 
      paste(gsub("_", " ", domain_name), "- Intervention Type"),
      min_studies = 2  # Reduce minimum for domain-specific analyses
    )
    
    # Target analysis
    cat("\n### Target Region Analysis for", gsub("_", " ", domain_name), "\n")
    target_results <- run_subgroup_analysis(
      domain_data, 
      "target", 
      paste(gsub("_", " ", domain_name), "- Target Region"),
      min_studies = 2
    )
    
    # Sessions analysis
    cat("\n### Treatment Sessions Analysis for", gsub("_", " ", domain_name), "\n")
    sessions_results <- run_subgroup_analysis(
      domain_data, 
      "sessions_category", 
      paste(gsub("_", " ", domain_name), "- Number of Sessions"),
      min_studies = 2
    )
  } else {
    cat("\n\nInsufficient data for subgroup analyses in the", gsub("_", " ", domain_name), "domain\n")
  }
}

Now we run the domain-specific analyses:

# Run subgroup analyses for key domains
domains_to_analyze <- c("positive_symptoms", "negative_symptoms", "total_psychopathology", "global_cognition")

for(domain in domains_to_analyze) {
  cat("\n\n** DOMAIN-SPECIFIC ANALYSIS FOR", toupper(domain), "**\n")
  run_domain_subgroup_analyses(domain)
}
## 
## 
## ** DOMAIN-SPECIFIC ANALYSIS FOR POSITIVE_SYMPTOMS **
## 
## 
## ## Subgroup Analyses for positive symptoms Domain
## 
## 
## ### Intervention Type Analysis for positive symptoms 
## 
## Analyzing positive symptoms - Intervention Type with 118 valid cases
## Found 9 unique levels: LF-RTMS, HF-RTMS, ITBS, PRM-RTMS, TDCS, HD-TDCS, DTMS, CTBS, TACS 
## Level: LF-RTMS - Number of studies: 32 
## Level: HF-RTMS - Number of studies: 29 
## Level: ITBS - Number of studies: 11 
## Level: PRM-RTMS - Number of studies: 3 
## Level: TDCS - Number of studies: 26 
## Level: HD-TDCS - Number of studies: 2 
## Level: DTMS - Number of studies: 2 
## Level: CTBS - Number of studies: 9 
## Level: TACS - Number of studies: 4 
## 
## 
## Meta-regression for differences between positive symptoms - Intervention Type subgroups:
## 
## Mixed-Effects Model (k = 118; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc   
## -128.6486   257.2971   277.2971   304.2106   279.5420   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.4387 (SE = 0.0773)
## tau (square root of estimated tau^2 value):             0.6623
## I^2 (residual heterogeneity / unaccounted variability): 80.25%
## H^2 (unaccounted variability / sampling variability):   5.06
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 109) = 442.6867, p-val < .0001
## 
## Test of Moderators (coefficients 2:9):
## QM(df = 8) = 6.6929, p-val = 0.5701
## 
## Model Results:
## 
##                            estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                     -0.3403  0.2459  -1.3839  0.1664  -0.8222  0.1416 
## factor(technique)DTMS        0.6380  0.5951   1.0722  0.2836  -0.5283  1.8044 
## factor(technique)HD-TDCS     0.6186  0.5962   1.0376  0.2995  -0.5500  1.7872 
## factor(technique)HF-RTMS     0.4888  0.2819   1.7341  0.0829  -0.0637  1.0413 
## factor(technique)ITBS        0.5974  0.3312   1.8037  0.0713  -0.0517  1.2465 
## factor(technique)LF-RTMS     0.6994  0.2807   2.4913  0.0127   0.1492  1.2497 
## factor(technique)PRM-RTMS    0.5204  0.5065   1.0274  0.3042  -0.4723  1.5130 
## factor(technique)TACS        0.3530  0.4743   0.7441  0.4568  -0.5767  1.2826 
## factor(technique)TDCS        0.4875  0.2889   1.6871  0.0916  -0.0788  1.0538 
##                              
## intrcpt                      
## factor(technique)DTMS        
## factor(technique)HD-TDCS     
## factor(technique)HF-RTMS   . 
## factor(technique)ITBS      . 
## factor(technique)LF-RTMS   * 
## factor(technique)PRM-RTMS    
## factor(technique)TACS        
## factor(technique)TDCS      . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for positive symptoms - Intervention Type :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by positive symptoms - Intervention Type</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> LF-RTMS </td>
##    <td style="text-align:right;"> 32 </td>
##    <td style="text-align:left;"> 0.36 [0.02, 0.69]* </td>
##    <td style="text-align:right;"> 0.036 </td>
##    <td style="text-align:right;"> 85.5 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> HF-RTMS </td>
##    <td style="text-align:right;"> 29 </td>
##    <td style="text-align:left;"> 0.14 [0.03, 0.26]* </td>
##    <td style="text-align:right;"> 0.016 </td>
##    <td style="text-align:right;"> 8.4 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> ITBS </td>
##    <td style="text-align:right;"> 11 </td>
##    <td style="text-align:left;"> 0.26 [-0.2, 0.72] </td>
##    <td style="text-align:right;"> 0.273 </td>
##    <td style="text-align:right;"> 85.9 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt3 </td>
##    <td style="text-align:left;"> PRM-RTMS </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> 0.18 [-0.26, 0.62] </td>
##    <td style="text-align:right;"> 0.418 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt4 </td>
##    <td style="text-align:left;"> TDCS </td>
##    <td style="text-align:right;"> 26 </td>
##    <td style="text-align:left;"> 0.12 [-0.03, 0.27] </td>
##    <td style="text-align:right;"> 0.114 </td>
##    <td style="text-align:right;"> 17.5 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt5 </td>
##    <td style="text-align:left;"> HD-TDCS </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.24 [-0.19, 0.67] </td>
##    <td style="text-align:right;"> 0.270 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt6 </td>
##    <td style="text-align:left;"> DTMS </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.24 [-0.27, 0.75] </td>
##    <td style="text-align:right;"> 0.348 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt7 </td>
##    <td style="text-align:left;"> CTBS </td>
##    <td style="text-align:right;"> 9 </td>
##    <td style="text-align:left;"> -0.39 [-1.35, 0.57] </td>
##    <td style="text-align:right;"> 0.422 </td>
##    <td style="text-align:right;"> 95.8 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt8 </td>
##    <td style="text-align:left;"> TACS </td>
##    <td style="text-align:right;"> 4 </td>
##    <td style="text-align:left;"> 0.01 [-0.44, 0.45] </td>
##    <td style="text-align:right;"> 0.975 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
## </tbody>
## </table>

## 
## ### Target Region Analysis for positive symptoms 
## 
## Analyzing positive symptoms - Target Region with 118 valid cases
## Found 27 unique levels: L-TPJ, Bi-TPJ, Bi-DLPFC, Cereb-Vermis, L-DLPFC_L-TPJ, L-DLPFC, L-STS, L-DMPFC, Bi-DLPFC_Bi-TPJ, L-DLPFC_R-DLPFC, R-ORBF, DLPFC, L-M1, TPJ, R-DLPFC, Bi-PFC, L-DLPFC_R-SORB, Bi-Insula, fMRI-TC, L-DLPFC_R-ORBF, L_DLPFC, fMRI-TPC, R-IPL, L-SMA, R-DLPFC_L-TPJ, L-DLPFC_L-PFC, L-DLPFC/L-TPJ_Cz 
## Level: L-TPJ - Number of studies: 23 
## Level: Bi-TPJ - Number of studies: 6 
## Level: Bi-DLPFC - Number of studies: 4 
## Level: Cereb-Vermis - Number of studies: 3 
## Level: L-DLPFC_L-TPJ - Number of studies: 19 
## Level: L-DLPFC - Number of studies: 30 
## Level: L-STS - Number of studies: 1 
## Skipping L-STS - not enough studies
## Level: L-DMPFC - Number of studies: 1 
## Skipping L-DMPFC - not enough studies
## Level: Bi-DLPFC_Bi-TPJ - Number of studies: 1 
## Skipping Bi-DLPFC_Bi-TPJ - not enough studies
## Level: L-DLPFC_R-DLPFC - Number of studies: 2 
## Level: R-ORBF - Number of studies: 2 
## Level: DLPFC - Number of studies: 1 
## Skipping DLPFC - not enough studies
## Level: L-M1 - Number of studies: 2 
## Level: TPJ - Number of studies: 4 
## Level: R-DLPFC - Number of studies: 1 
## Skipping R-DLPFC - not enough studies
## Level: Bi-PFC - Number of studies: 1 
## Skipping Bi-PFC - not enough studies
## Level: L-DLPFC_R-SORB - Number of studies: 1 
## Skipping L-DLPFC_R-SORB - not enough studies
## Level: Bi-Insula - Number of studies: 1 
## Skipping Bi-Insula - not enough studies
## Level: fMRI-TC - Number of studies: 2 
## Level: L-DLPFC_R-ORBF - Number of studies: 3 
## Level: L_DLPFC - Number of studies: 1 
## Skipping L_DLPFC - not enough studies
## Level: fMRI-TPC - Number of studies: 2 
## Level: R-IPL - Number of studies: 1 
## Skipping R-IPL - not enough studies
## Level: L-SMA - Number of studies: 1 
## Skipping L-SMA - not enough studies
## Level: R-DLPFC_L-TPJ - Number of studies: 2 
## Level: L-DLPFC_L-PFC - Number of studies: 1 
## Skipping L-DLPFC_L-PFC - not enough studies
## Level: L-DLPFC/L-TPJ_Cz - Number of studies: 2 
## 
## 
## Meta-regression for differences between positive symptoms - Target Region subgroups:
## 
## Mixed-Effects Model (k = 118; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc   
## -107.4613   214.9226   270.9226   341.2267   297.1161   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.4425 (SE = 0.0853)
## tau (square root of estimated tau^2 value):             0.6652
## I^2 (residual heterogeneity / unaccounted variability): 80.40%
## H^2 (unaccounted variability / sampling variability):   5.10
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 91) = 370.7548, p-val < .0001
## 
## Test of Moderators (coefficients 2:27):
## QM(df = 26) = 25.8135, p-val = 0.4734
## 
## Model Results:
## 
##                                 estimate      se     zval    pval    ci.lb 
## intrcpt                           0.5578  0.4030   1.3841  0.1663  -0.2321 
## factor(target)Bi-DLPFC_Bi-TPJ    -0.0902  0.8898  -0.1014  0.9193  -1.8341 
## factor(target)Bi-Insula          -0.0309  0.9010  -0.0343  0.9727  -1.7968 
## factor(target)Bi-PFC             -0.6051  0.8522  -0.7100  0.4777  -2.2753 
## factor(target)Bi-TPJ             -0.6892  0.5027  -1.3708  0.1704  -1.6745 
## factor(target)Cereb-Vermis       -0.5330  0.5836  -0.9132  0.3611  -1.6768 
## factor(target)DLPFC              -0.4033  0.8159  -0.4943  0.6211  -2.0025 
## factor(target)fMRI-TC            -0.8664  0.6779  -1.2781  0.2012  -2.1951 
## factor(target)fMRI-TPC           -0.6675  0.6588  -1.0132  0.3110  -1.9588 
## factor(target)L_DLPFC            -0.7266  0.8719  -0.8334  0.4046  -2.4355 
## factor(target)L-DLPFC            -0.4497  0.4251  -1.0577  0.2902  -1.2829 
## factor(target)L-DLPFC_L-PFC      -0.3430  0.8134  -0.4217  0.6733  -1.9372 
## factor(target)L-DLPFC_L-TPJ      -0.3934  0.4406  -0.8927  0.3720  -1.2570 
## factor(target)L-DLPFC_R-DLPFC    -0.2464  0.6659  -0.3700  0.7114  -1.5516 
## factor(target)L-DLPFC_R-ORBF     -0.5878  0.5969  -0.9849  0.3247  -1.7577 
## factor(target)L-DLPFC_R-SORB     -0.5233  0.8260  -0.6335  0.5264  -2.1422 
## factor(target)L-DLPFC/L-TPJ_Cz   -0.5711  0.6818  -0.8375  0.4023  -1.9074 
## factor(target)L-DMPFC            -0.6375  0.8625  -0.7392  0.4598  -2.3280 
## factor(target)L-M1               -0.2236  0.6596  -0.3390  0.7346  -1.5163 
## factor(target)L-SMA               1.2757  0.8567   1.4891  0.1365  -0.4034 
## factor(target)L-STS              -0.6658  0.8208  -0.8111  0.4173  -2.2745 
## factor(target)L-TPJ               0.0188  0.4346   0.0433  0.9654  -0.8329 
## factor(target)R-DLPFC            -1.1290  0.8598  -1.3130  0.1892  -2.8142 
## factor(target)R-DLPFC_L-TPJ      -0.7783  0.7937  -0.9805  0.3268  -2.3340 
## factor(target)R-IPL              -0.2843  0.9355  -0.3039  0.7612  -2.1179 
## factor(target)R-ORBF              0.1275  0.6388   0.1995  0.8418  -1.1246 
## factor(target)TPJ                -1.4164  0.5486  -2.5818  0.0098  -2.4916 
##                                   ci.ub     
## intrcpt                          1.3477     
## factor(target)Bi-DLPFC_Bi-TPJ    1.6537     
## factor(target)Bi-Insula          1.7351     
## factor(target)Bi-PFC             1.0652     
## factor(target)Bi-TPJ             0.2962     
## factor(target)Cereb-Vermis       0.6109     
## factor(target)DLPFC              1.1958     
## factor(target)fMRI-TC            0.4623     
## factor(target)fMRI-TPC           0.6238     
## factor(target)L_DLPFC            0.9822     
## factor(target)L-DLPFC            0.3836     
## factor(target)L-DLPFC_L-PFC      1.2513     
## factor(target)L-DLPFC_L-TPJ      0.4703     
## factor(target)L-DLPFC_R-DLPFC    1.0588     
## factor(target)L-DLPFC_R-ORBF     0.5820     
## factor(target)L-DLPFC_R-SORB     1.0956     
## factor(target)L-DLPFC/L-TPJ_Cz   0.7653     
## factor(target)L-DMPFC            1.0529     
## factor(target)L-M1               1.0692     
## factor(target)L-SMA              2.9549     
## factor(target)L-STS              0.9430     
## factor(target)L-TPJ              0.8706     
## factor(target)R-DLPFC            0.5563     
## factor(target)R-DLPFC_L-TPJ      0.7774     
## factor(target)R-IPL              1.5493     
## factor(target)R-ORBF             1.3795     
## factor(target)TPJ               -0.3411  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for positive symptoms - Target Region :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by positive symptoms - Target Region</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> L-TPJ </td>
##    <td style="text-align:right;"> 23 </td>
##    <td style="text-align:left;"> 0.57 [0.15, 0.99]** </td>
##    <td style="text-align:right;"> 0.008 </td>
##    <td style="text-align:right;"> 85.5 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> Bi-TPJ </td>
##    <td style="text-align:right;"> 6 </td>
##    <td style="text-align:left;"> -0.12 [-0.41, 0.17] </td>
##    <td style="text-align:right;"> 0.415 </td>
##    <td style="text-align:right;"> 28.7 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> Bi-DLPFC </td>
##    <td style="text-align:right;"> 4 </td>
##    <td style="text-align:left;"> 0.65 [-0.74, 2.04] </td>
##    <td style="text-align:right;"> 0.360 </td>
##    <td style="text-align:right;"> 90.2 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt3 </td>
##    <td style="text-align:left;"> Cereb-Vermis </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> 0.02 [-0.32, 0.35] </td>
##    <td style="text-align:right;"> 0.914 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt4 </td>
##    <td style="text-align:left;"> L-DLPFC_L-TPJ </td>
##    <td style="text-align:right;"> 19 </td>
##    <td style="text-align:left;"> 0.15 [-0.1, 0.39] </td>
##    <td style="text-align:right;"> 0.241 </td>
##    <td style="text-align:right;"> 55.4 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt5 </td>
##    <td style="text-align:left;"> L-DLPFC </td>
##    <td style="text-align:right;"> 30 </td>
##    <td style="text-align:left;"> 0.12 [-0.03, 0.28] </td>
##    <td style="text-align:right;"> 0.115 </td>
##    <td style="text-align:right;"> 52.4 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt6 </td>
##    <td style="text-align:left;"> L-DLPFC_R-DLPFC </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.32 [-0.13, 0.78] </td>
##    <td style="text-align:right;"> 0.161 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt7 </td>
##    <td style="text-align:left;"> R-ORBF </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.68 [0.38, 0.99]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt8 </td>
##    <td style="text-align:left;"> L-M1 </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.33 [-0.31, 0.98] </td>
##    <td style="text-align:right;"> 0.313 </td>
##    <td style="text-align:right;"> 52.5 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt9 </td>
##    <td style="text-align:left;"> TPJ </td>
##    <td style="text-align:right;"> 4 </td>
##    <td style="text-align:left;"> -1 [-3.18, 1.17] </td>
##    <td style="text-align:right;"> 0.365 </td>
##    <td style="text-align:right;"> 98.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt10 </td>
##    <td style="text-align:left;"> fMRI-TC </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> -0.31 [-0.85, 0.23] </td>
##    <td style="text-align:right;"> 0.263 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt11 </td>
##    <td style="text-align:left;"> L-DLPFC_R-ORBF </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> -0.02 [-0.42, 0.39] </td>
##    <td style="text-align:right;"> 0.938 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt12 </td>
##    <td style="text-align:left;"> fMRI-TPC </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> -0.11 [-0.56, 0.34] </td>
##    <td style="text-align:right;"> 0.638 </td>
##    <td style="text-align:right;"> 5.6 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt13 </td>
##    <td style="text-align:left;"> R-DLPFC_L-TPJ </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> -0.19 [-1.15, 0.77] </td>
##    <td style="text-align:right;"> 0.701 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt14 </td>
##    <td style="text-align:left;"> L-DLPFC/L-TPJ_Cz </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> -0.01 [-0.57, 0.55] </td>
##    <td style="text-align:right;"> 0.963 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
## </tbody>
## </table>

## 
## ### Treatment Sessions Analysis for positive symptoms 
## 
## Analyzing positive symptoms - Number of Sessions with 118 valid cases
## Found 4 unique levels: 11-20 Sessions, 6-10 Sessions, More than 20 Sessions, 2-5 Sessions 
## Level: 11-20 Sessions - Number of studies: 61 
## Level: 6-10 Sessions - Number of studies: 38 
## Level: More than 20 Sessions - Number of studies: 11 
## Level: 2-5 Sessions - Number of studies: 8 
## 
## 
## Meta-regression for differences between positive symptoms - Number of Sessions subgroups:
## 
## Mixed-Effects Model (k = 118; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc   
## -133.3652   266.7304   276.7304   290.4114   277.2859   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.4235 (SE = 0.0735)
## tau (square root of estimated tau^2 value):             0.6508
## I^2 (residual heterogeneity / unaccounted variability): 79.82%
## H^2 (unaccounted variability / sampling variability):   4.96
## R^2 (amount of heterogeneity accounted for):            0.90%
## 
## Test for Residual Heterogeneity:
## QE(df = 114) = 451.4017, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 3.8890, p-val = 0.2737
## 
## Model Results:
## 
##                                                 estimate      se     zval 
## intrcpt                                           0.2811  0.0951   2.9559 
## factor(sessions_category)2-5 Sessions            -0.3435  0.2844  -1.2078 
## factor(sessions_category)6-10 Sessions           -0.2644  0.1563  -1.6911 
## factor(sessions_category)More than 20 Sessions   -0.0020  0.2356  -0.0084 
##                                                   pval    ci.lb   ci.ub     
## intrcpt                                         0.0031   0.0947  0.4674  ** 
## factor(sessions_category)2-5 Sessions           0.2271  -0.9010  0.2139     
## factor(sessions_category)6-10 Sessions          0.0908  -0.5708  0.0420   . 
## factor(sessions_category)More than 20 Sessions  0.9933  -0.4638  0.4598     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for positive symptoms - Number of Sessions :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by positive symptoms - Number of Sessions</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> 11-20 Sessions </td>
##    <td style="text-align:right;"> 61 </td>
##    <td style="text-align:left;"> 0.28 [0.09, 0.48]** </td>
##    <td style="text-align:right;"> 0.005 </td>
##    <td style="text-align:right;"> 82.9 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> 6-10 Sessions </td>
##    <td style="text-align:right;"> 38 </td>
##    <td style="text-align:left;"> 0.02 [-0.26, 0.29] </td>
##    <td style="text-align:right;"> 0.902 </td>
##    <td style="text-align:right;"> 82.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> More than 20 Sessions </td>
##    <td style="text-align:right;"> 11 </td>
##    <td style="text-align:left;"> 0.3 [0.09, 0.51]** </td>
##    <td style="text-align:right;"> 0.006 </td>
##    <td style="text-align:right;"> 34.7 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt3 </td>
##    <td style="text-align:left;"> 2-5 Sessions </td>
##    <td style="text-align:right;"> 8 </td>
##    <td style="text-align:left;"> -0.08 [-0.34, 0.18] </td>
##    <td style="text-align:right;"> 0.553 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
## </tbody>
## </table>

## 
## 
## ** DOMAIN-SPECIFIC ANALYSIS FOR NEGATIVE_SYMPTOMS **
## 
## 
## ## Subgroup Analyses for negative symptoms Domain
## 
## 
## ### Intervention Type Analysis for negative symptoms 
## 
## Analyzing negative symptoms - Intervention Type with 106 valid cases
## Found 8 unique levels: LF-RTMS, HF-RTMS, ITBS, TDCS, TACS, HD-TDCS, DTMS, CTBS 
## Level: LF-RTMS - Number of studies: 18 
## Level: HF-RTMS - Number of studies: 33 
## Level: ITBS - Number of studies: 18 
## Level: TDCS - Number of studies: 23 
## Level: TACS - Number of studies: 4 
## Level: HD-TDCS - Number of studies: 3 
## Level: DTMS - Number of studies: 4 
## Level: CTBS - Number of studies: 3 
## 
## 
## Meta-regression for differences between negative symptoms - Intervention Type subgroups:
## 
## Mixed-Effects Model (k = 106; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc   
## -100.4297   200.8595   218.8595   242.1242   220.9049   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2780 (SE = 0.0581)
## tau (square root of estimated tau^2 value):             0.5272
## I^2 (residual heterogeneity / unaccounted variability): 71.83%
## H^2 (unaccounted variability / sampling variability):   3.55
## R^2 (amount of heterogeneity accounted for):            11.77%
## 
## Test for Residual Heterogeneity:
## QE(df = 98) = 314.1667, p-val < .0001
## 
## Test of Moderators (coefficients 2:8):
## QM(df = 7) = 14.6539, p-val = 0.0407
## 
## Model Results:
## 
##                           estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt                     0.0928  0.3685  0.2517  0.8012  -0.6295  0.8151    
## factor(technique)DTMS       0.2724  0.4983  0.5467  0.5846  -0.7042  1.2490    
## factor(technique)HD-TDCS    0.2090  0.5387  0.3880  0.6980  -0.8467  1.2647    
## factor(technique)HF-RTMS    0.4913  0.3844  1.2780  0.2013  -0.2621  1.2447    
## factor(technique)ITBS       0.6499  0.3976  1.6346  0.1021  -0.1294  1.4293    
## factor(technique)LF-RTMS    0.1344  0.3992  0.3367  0.7364  -0.6480  0.9168    
## factor(technique)TACS       0.2928  0.4955  0.5909  0.5546  -0.6784  1.2640    
## factor(technique)TDCS       0.0159  0.3929  0.0405  0.9677  -0.7541  0.7859    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for negative symptoms - Intervention Type :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by negative symptoms - Intervention Type</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> LF-RTMS </td>
##    <td style="text-align:right;"> 18 </td>
##    <td style="text-align:left;"> 0.29 [0.13, 0.45]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> HF-RTMS </td>
##    <td style="text-align:right;"> 33 </td>
##    <td style="text-align:left;"> 0.59 [0.34, 0.84]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 82.1 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> ITBS </td>
##    <td style="text-align:right;"> 18 </td>
##    <td style="text-align:left;"> 0.72 [0.28, 1.17]** </td>
##    <td style="text-align:right;"> 0.002 </td>
##    <td style="text-align:right;"> 89.3 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt3 </td>
##    <td style="text-align:left;"> TDCS </td>
##    <td style="text-align:right;"> 23 </td>
##    <td style="text-align:left;"> 0.08 [-0.06, 0.23] </td>
##    <td style="text-align:right;"> 0.251 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt4 </td>
##    <td style="text-align:left;"> TACS </td>
##    <td style="text-align:right;"> 4 </td>
##    <td style="text-align:left;"> 0.41 [0.04, 0.79]* </td>
##    <td style="text-align:right;"> 0.032 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt5 </td>
##    <td style="text-align:left;"> HD-TDCS </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> 0.18 [-0.21, 0.58] </td>
##    <td style="text-align:right;"> 0.368 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt6 </td>
##    <td style="text-align:left;"> DTMS </td>
##    <td style="text-align:right;"> 4 </td>
##    <td style="text-align:left;"> 0.34 [-0.06, 0.73] </td>
##    <td style="text-align:right;"> 0.093 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt7 </td>
##    <td style="text-align:left;"> CTBS </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> 0.07 [-0.29, 0.44] </td>
##    <td style="text-align:right;"> 0.693 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
## </tbody>
## </table>

## 
## ### Target Region Analysis for negative symptoms 
## 
## Analyzing negative symptoms - Target Region with 106 valid cases
## Found 28 unique levels: L-TPJ, Bi-TPJ, Bi-DLPFC, Cereb-Vermis, L-DLPFC, Bi-DMPFC, L-DLPFC_L-TPJ, L-FC/L-PC_CPz/FCz, L-DMPFC, Bi-DLPFC_Bi-TPJ, L-DLPFC_R-DLPFC, R-ORBF, DLPFC, L-M1, R-DLPFC, R-DLPFC_L-Orbit, Bi-PFC, L-DLPFC_R-SORB, Bi-Insula, fMRI-TC, L-DLPFC_R-ORBF, L_DLPFC, R-IPL, L-SMA, R-DLPFC_L-TPJ, L-DLPFC_L-PFC, L-DLPFC/L-TPJ_Cz, L-DLPFC_R-ORB 
## Level: L-TPJ - Number of studies: 8 
## Level: Bi-TPJ - Number of studies: 3 
## Level: Bi-DLPFC - Number of studies: 9 
## Level: Cereb-Vermis - Number of studies: 4 
## Level: L-DLPFC - Number of studies: 39 
## Level: Bi-DMPFC - Number of studies: 1 
## Skipping Bi-DMPFC - not enough studies
## Level: L-DLPFC_L-TPJ - Number of studies: 10 
## Level: L-FC/L-PC_CPz/FCz - Number of studies: 2 
## Level: L-DMPFC - Number of studies: 1 
## Skipping L-DMPFC - not enough studies
## Level: Bi-DLPFC_Bi-TPJ - Number of studies: 2 
## Level: L-DLPFC_R-DLPFC - Number of studies: 2 
## Level: R-ORBF - Number of studies: 2 
## Level: DLPFC - Number of studies: 1 
## Skipping DLPFC - not enough studies
## Level: L-M1 - Number of studies: 1 
## Skipping L-M1 - not enough studies
## Level: R-DLPFC - Number of studies: 1 
## Skipping R-DLPFC - not enough studies
## Level: R-DLPFC_L-Orbit - Number of studies: 2 
## Level: Bi-PFC - Number of studies: 1 
## Skipping Bi-PFC - not enough studies
## Level: L-DLPFC_R-SORB - Number of studies: 2 
## Level: Bi-Insula - Number of studies: 1 
## Skipping Bi-Insula - not enough studies
## Level: fMRI-TC - Number of studies: 1 
## Skipping fMRI-TC - not enough studies
## Level: L-DLPFC_R-ORBF - Number of studies: 4 
## Level: L_DLPFC - Number of studies: 2 
## Level: R-IPL - Number of studies: 1 
## Skipping R-IPL - not enough studies
## Level: L-SMA - Number of studies: 2 
## Level: R-DLPFC_L-TPJ - Number of studies: 1 
## Skipping R-DLPFC_L-TPJ - not enough studies
## Level: L-DLPFC_L-PFC - Number of studies: 1 
## Skipping L-DLPFC_L-PFC - not enough studies
## Level: L-DLPFC/L-TPJ_Cz - Number of studies: 1 
## Skipping L-DLPFC/L-TPJ_Cz - not enough studies
## Level: L-DLPFC_R-ORB - Number of studies: 1 
## Skipping L-DLPFC_R-ORB - not enough studies
## 
## 
## Meta-regression for differences between negative symptoms - Target Region subgroups:
## 
## Mixed-Effects Model (k = 106; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
## -82.9655  165.9310  223.9310  292.2756  260.1810   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.3126 (SE = 0.0708)
## tau (square root of estimated tau^2 value):             0.5591
## I^2 (residual heterogeneity / unaccounted variability): 74.49%
## H^2 (unaccounted variability / sampling variability):   3.92
## R^2 (amount of heterogeneity accounted for):            0.78%
## 
## Test for Residual Heterogeneity:
## QE(df = 78) = 271.3771, p-val < .0001
## 
## Test of Moderators (coefficients 2:28):
## QM(df = 27) = 27.7324, p-val = 0.4249
## 
## Model Results:
## 
##                                  estimate      se     zval    pval    ci.lb 
## intrcpt                            0.3725  0.2347   1.5869  0.1125  -0.0876 
## factor(target)Bi-DLPFC_Bi-TPJ      0.4822  0.5725   0.8423  0.3996  -0.6398 
## factor(target)Bi-DMPFC            -0.2945  0.7886  -0.3734  0.7088  -1.8401 
## factor(target)Bi-Insula            0.4536  0.7647   0.5932  0.5530  -1.0452 
## factor(target)Bi-PFC              -0.0204  0.7006  -0.0291  0.9768  -1.3937 
## factor(target)Bi-TPJ              -0.2697  0.4432  -0.6085  0.5428  -1.1383 
## factor(target)Cereb-Vermis        -0.3205  0.3929  -0.8157  0.4147  -1.0906 
## factor(target)DLPFC                0.2870  0.6570   0.4368  0.6623  -1.0007 
## factor(target)fMRI-TC             -0.5006  0.7197  -0.6955  0.4867  -1.9112 
## factor(target)L_DLPFC             -0.0800  0.5383  -0.1485  0.8819  -1.1349 
## factor(target)L-DLPFC              0.4140  0.2574   1.6083  0.1078  -0.0905 
## factor(target)L-DLPFC_L-PFC       -0.3170  0.6513  -0.4868  0.6264  -1.5935 
## factor(target)L-DLPFC_L-TPJ       -0.3136  0.3197  -0.9811  0.3266  -0.9401 
## factor(target)L-DLPFC_R-DLPFC     -0.0225  0.5215  -0.0432  0.9655  -1.0446 
## factor(target)L-DLPFC_R-ORB       -0.3380  0.6886  -0.4909  0.6235  -1.6876 
## factor(target)L-DLPFC_R-ORBF      -0.2512  0.4149  -0.6054  0.5449  -1.0643 
## factor(target)L-DLPFC_R-SORB      -0.5538  0.5003  -1.1069  0.2683  -1.5345 
## factor(target)L-DLPFC/L-TPJ_Cz    -0.3517  0.7280  -0.4831  0.6291  -1.7786 
## factor(target)L-DMPFC             -0.3974  0.7118  -0.5584  0.5766  -1.7924 
## factor(target)L-FC/L-PC_CPz/FCz    0.1987  0.5189   0.3830  0.7017  -0.8183 
## factor(target)L-M1                -0.3613  0.6839  -0.5283  0.5973  -1.7017 
## factor(target)L-SMA               -0.2614  0.5075  -0.5150  0.6065  -1.2561 
## factor(target)L-TPJ               -0.2574  0.3404  -0.7560  0.4496  -0.9246 
## factor(target)R-DLPFC             -0.3069  0.7049  -0.4353  0.6633  -1.6885 
## factor(target)R-DLPFC_L-Orbit     -0.2465  0.5239  -0.4704  0.6381  -1.2734 
## factor(target)R-DLPFC_L-TPJ       -0.9132  0.8845  -1.0324  0.3019  -2.6467 
## factor(target)R-IPL               -0.1332  0.7984  -0.1668  0.8675  -1.6981 
## factor(target)R-ORBF               0.1651  0.4851   0.3403  0.7336  -0.7857 
##                                   ci.ub    
## intrcpt                          0.8326    
## factor(target)Bi-DLPFC_Bi-TPJ    1.6042    
## factor(target)Bi-DMPFC           1.2511    
## factor(target)Bi-Insula          1.9524    
## factor(target)Bi-PFC             1.3528    
## factor(target)Bi-TPJ             0.5989    
## factor(target)Cereb-Vermis       0.4496    
## factor(target)DLPFC              1.5747    
## factor(target)fMRI-TC            0.9100    
## factor(target)L_DLPFC            0.9750    
## factor(target)L-DLPFC            0.9185    
## factor(target)L-DLPFC_L-PFC      0.9595    
## factor(target)L-DLPFC_L-TPJ      0.3129    
## factor(target)L-DLPFC_R-DLPFC    0.9995    
## factor(target)L-DLPFC_R-ORB      1.0116    
## factor(target)L-DLPFC_R-ORBF     0.5620    
## factor(target)L-DLPFC_R-SORB     0.4268    
## factor(target)L-DLPFC/L-TPJ_Cz   1.0753    
## factor(target)L-DMPFC            0.9976    
## factor(target)L-FC/L-PC_CPz/FCz  1.2157    
## factor(target)L-M1               0.9791    
## factor(target)L-SMA              0.7333    
## factor(target)L-TPJ              0.4099    
## factor(target)R-DLPFC            1.0748    
## factor(target)R-DLPFC_L-Orbit    0.7804    
## factor(target)R-DLPFC_L-TPJ      0.8204    
## factor(target)R-IPL              1.4317    
## factor(target)R-ORBF             1.1158    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for negative symptoms - Target Region :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by negative symptoms - Target Region</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> L-TPJ </td>
##    <td style="text-align:right;"> 8 </td>
##    <td style="text-align:left;"> 0.2 [-0.06, 0.46] </td>
##    <td style="text-align:right;"> 0.135 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> Bi-TPJ </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> 0.09 [-0.27, 0.46] </td>
##    <td style="text-align:right;"> 0.611 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> Bi-DLPFC </td>
##    <td style="text-align:right;"> 9 </td>
##    <td style="text-align:left;"> 0.37 [-0.07, 0.81] </td>
##    <td style="text-align:right;"> 0.103 </td>
##    <td style="text-align:right;"> 61.1 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt3 </td>
##    <td style="text-align:left;"> Cereb-Vermis </td>
##    <td style="text-align:right;"> 4 </td>
##    <td style="text-align:left;"> 0.05 [-0.23, 0.33] </td>
##    <td style="text-align:right;"> 0.718 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt4 </td>
##    <td style="text-align:left;"> L-DLPFC </td>
##    <td style="text-align:right;"> 39 </td>
##    <td style="text-align:left;"> 0.79 [0.52, 1.05]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 86.3 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt5 </td>
##    <td style="text-align:left;"> L-DLPFC_L-TPJ </td>
##    <td style="text-align:right;"> 10 </td>
##    <td style="text-align:left;"> 0.09 [-0.13, 0.31] </td>
##    <td style="text-align:right;"> 0.437 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt6 </td>
##    <td style="text-align:left;"> L-FC/L-PC_CPz/FCz </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.57 [0.1, 1.04]* </td>
##    <td style="text-align:right;"> 0.018 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt7 </td>
##    <td style="text-align:left;"> Bi-DLPFC_Bi-TPJ </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.96 [-1.46, 3.37] </td>
##    <td style="text-align:right;"> 0.438 </td>
##    <td style="text-align:right;"> 92.2 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt8 </td>
##    <td style="text-align:left;"> L-DLPFC_R-DLPFC </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.3 [-0.25, 0.84] </td>
##    <td style="text-align:right;"> 0.283 </td>
##    <td style="text-align:right;"> 24.6 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt9 </td>
##    <td style="text-align:left;"> R-ORBF </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.54 [0.23, 0.84]** </td>
##    <td style="text-align:right;"> 0.001 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt10 </td>
##    <td style="text-align:left;"> R-DLPFC_L-Orbit </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.13 [-0.37, 0.62] </td>
##    <td style="text-align:right;"> 0.618 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt11 </td>
##    <td style="text-align:left;"> L-DLPFC_R-SORB </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> -0.18 [-0.57, 0.21] </td>
##    <td style="text-align:right;"> 0.360 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt12 </td>
##    <td style="text-align:left;"> L-DLPFC_R-ORBF </td>
##    <td style="text-align:right;"> 4 </td>
##    <td style="text-align:left;"> 0.08 [-0.31, 0.47] </td>
##    <td style="text-align:right;"> 0.674 </td>
##    <td style="text-align:right;"> 7.9 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt13 </td>
##    <td style="text-align:left;"> L_DLPFC </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.29 [-0.26, 0.84] </td>
##    <td style="text-align:right;"> 0.297 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt14 </td>
##    <td style="text-align:left;"> L-SMA </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.11 [-0.54, 0.76] </td>
##    <td style="text-align:right;"> 0.739 </td>
##    <td style="text-align:right;"> 58.2 </td>
##   </tr>
## </tbody>
## </table>

## 
## ### Treatment Sessions Analysis for negative symptoms 
## 
## Analyzing negative symptoms - Number of Sessions with 106 valid cases
## Found 4 unique levels: 11-20 Sessions, 6-10 Sessions, More than 20 Sessions, 2-5 Sessions 
## Level: 11-20 Sessions - Number of studies: 62 
## Level: 6-10 Sessions - Number of studies: 29 
## Level: More than 20 Sessions - Number of studies: 11 
## Level: 2-5 Sessions - Number of studies: 4 
## 
## 
## Meta-regression for differences between negative symptoms - Number of Sessions subgroups:
## 
## Mixed-Effects Model (k = 106; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc   
## -104.4877   208.9755   218.9755   232.1003   219.6005   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2850 (SE = 0.0579)
## tau (square root of estimated tau^2 value):             0.5339
## I^2 (residual heterogeneity / unaccounted variability): 72.58%
## H^2 (unaccounted variability / sampling variability):   3.65
## R^2 (amount of heterogeneity accounted for):            9.53%
## 
## Test for Residual Heterogeneity:
## QE(df = 102) = 336.9933, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 10.3778, p-val = 0.0156
## 
## Model Results:
## 
##                                                 estimate      se     zval 
## intrcpt                                           0.5520  0.0819   6.7393 
## factor(sessions_category)2-5 Sessions            -0.6457  0.3482  -1.8542 
## factor(sessions_category)6-10 Sessions           -0.4151  0.1482  -2.8001 
## factor(sessions_category)More than 20 Sessions   -0.0433  0.2024  -0.2137 
##                                                   pval    ci.lb    ci.ub      
## intrcpt                                         <.0001   0.3914   0.7125  *** 
## factor(sessions_category)2-5 Sessions           0.0637  -1.3283   0.0368    . 
## factor(sessions_category)6-10 Sessions          0.0051  -0.7057  -0.1246   ** 
## factor(sessions_category)More than 20 Sessions  0.8308  -0.4400   0.3535      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for negative symptoms - Number of Sessions :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by negative symptoms - Number of Sessions</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> 11-20 Sessions </td>
##    <td style="text-align:right;"> 62 </td>
##    <td style="text-align:left;"> 0.56 [0.36, 0.75]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 82.7 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> 6-10 Sessions </td>
##    <td style="text-align:right;"> 29 </td>
##    <td style="text-align:left;"> 0.14 [0.01, 0.27]* </td>
##    <td style="text-align:right;"> 0.035 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> More than 20 Sessions </td>
##    <td style="text-align:right;"> 11 </td>
##    <td style="text-align:left;"> 0.51 [0.21, 0.82]** </td>
##    <td style="text-align:right;"> 0.001 </td>
##    <td style="text-align:right;"> 65.9 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt3 </td>
##    <td style="text-align:left;"> 2-5 Sessions </td>
##    <td style="text-align:right;"> 4 </td>
##    <td style="text-align:left;"> -0.11 [-0.51, 0.29] </td>
##    <td style="text-align:right;"> 0.598 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
## </tbody>
## </table>

## 
## 
## ** DOMAIN-SPECIFIC ANALYSIS FOR TOTAL_PSYCHOPATHOLOGY **
## 
## 
## ## Subgroup Analyses for total psychopathology Domain
## 
## 
## ### Intervention Type Analysis for total psychopathology 
## 
## Analyzing total psychopathology - Intervention Type with 72 valid cases
## Found 9 unique levels: ITBS, LF-RTMS, PRM-RTMS, TDCS, TACS, HF-RTMS, DTMS, CTBS, HD-TDCS 
## Level: ITBS - Number of studies: 10 
## Level: LF-RTMS - Number of studies: 10 
## Level: PRM-RTMS - Number of studies: 1 
## Skipping PRM-RTMS - not enough studies
## Level: TDCS - Number of studies: 17 
## Level: TACS - Number of studies: 3 
## Level: HF-RTMS - Number of studies: 24 
## Level: DTMS - Number of studies: 3 
## Level: CTBS - Number of studies: 3 
## Level: HD-TDCS - Number of studies: 1 
## Skipping HD-TDCS - not enough studies
## 
## 
## Meta-regression for differences between total psychopathology - Intervention Type subgroups:
## 
## Mixed-Effects Model (k = 72; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
## -58.8186  117.6372  137.6372  159.0686  141.8680   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2422 (SE = 0.0647)
## tau (square root of estimated tau^2 value):             0.4921
## I^2 (residual heterogeneity / unaccounted variability): 70.23%
## H^2 (unaccounted variability / sampling variability):   3.36
## R^2 (amount of heterogeneity accounted for):            6.92%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 197.1374, p-val < .0001
## 
## Test of Moderators (coefficients 2:9):
## QM(df = 8) = 10.1498, p-val = 0.2547
## 
## Model Results:
## 
##                            estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                      0.1731  0.3514   0.4927  0.6222  -0.5156  0.8619 
## factor(technique)DTMS        0.1500  0.5078   0.2954  0.7677  -0.8452  1.1452 
## factor(technique)HD-TDCS     0.0860  0.6501   0.1323  0.8948  -1.1881  1.3601 
## factor(technique)HF-RTMS     0.1751  0.3715   0.4715  0.6373  -0.5529  0.9032 
## factor(technique)ITBS        0.6480  0.3997   1.6212  0.1050  -0.1354  1.4314 
## factor(technique)LF-RTMS     0.5003  0.4023   1.2436  0.2137  -0.2882  1.2887 
## factor(technique)PRM-RTMS    0.2688  0.7087   0.3793  0.7045  -1.1202  1.6578 
## factor(technique)TACS        0.1417  0.5132   0.2761  0.7825  -0.8641  1.1475 
## factor(technique)TDCS       -0.0131  0.3822  -0.0343  0.9726  -0.7622  0.7360 
##                              
## intrcpt                      
## factor(technique)DTMS        
## factor(technique)HD-TDCS     
## factor(technique)HF-RTMS     
## factor(technique)ITBS        
## factor(technique)LF-RTMS     
## factor(technique)PRM-RTMS    
## factor(technique)TACS        
## factor(technique)TDCS        
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for total psychopathology - Intervention Type :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by total psychopathology - Intervention Type</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> ITBS </td>
##    <td style="text-align:right;"> 10 </td>
##    <td style="text-align:left;"> 0.82 [0.37, 1.28]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 80.5 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> LF-RTMS </td>
##    <td style="text-align:right;"> 10 </td>
##    <td style="text-align:left;"> 0.65 [0.19, 1.11]** </td>
##    <td style="text-align:right;"> 0.005 </td>
##    <td style="text-align:right;"> 77.6 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> TDCS </td>
##    <td style="text-align:right;"> 17 </td>
##    <td style="text-align:left;"> 0.14 [-0.04, 0.32] </td>
##    <td style="text-align:right;"> 0.134 </td>
##    <td style="text-align:right;"> 13.2 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt3 </td>
##    <td style="text-align:left;"> TACS </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> 0.36 [-0.1, 0.82] </td>
##    <td style="text-align:right;"> 0.120 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt4 </td>
##    <td style="text-align:left;"> HF-RTMS </td>
##    <td style="text-align:right;"> 24 </td>
##    <td style="text-align:left;"> 0.35 [0.09, 0.62]* </td>
##    <td style="text-align:right;"> 0.010 </td>
##    <td style="text-align:right;"> 80.2 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt5 </td>
##    <td style="text-align:left;"> DTMS </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> 0.31 [-0.13, 0.75] </td>
##    <td style="text-align:right;"> 0.165 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt6 </td>
##    <td style="text-align:left;"> CTBS </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> 0.2 [-0.17, 0.57] </td>
##    <td style="text-align:right;"> 0.285 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
## </tbody>
## </table>

## 
## ### Target Region Analysis for total psychopathology 
## 
## Analyzing total psychopathology - Target Region with 72 valid cases
## Found 25 unique levels: L-DLPFC, L-TPJ, L-DLPFC_L-TPJ, L-FC/L-PC_CPz/FCz, Cereb-Vermis, L-DMPFC, Bi-DLPFC, Bi-DLPFC_Bi-TPJ, L-DLPFC_R-DLPFC, R-ORBF, DLPFC, L-M1, R-DLPFC, Bi-PFC, L-DLPFC_R-SORB, L-DLPFC_Cz, Bi-Insula, L-DLPFC_R-ORBF, R-IPL, Bi-TPJ, L-SMA, R-DLPFC_L-TPJ, L-DLPFC_L-PFC, L-DLPFC/L-TPJ_Cz, L-DLPFC_R-ORB 
## Level: L-DLPFC - Number of studies: 28 
## Level: L-TPJ - Number of studies: 7 
## Level: L-DLPFC_L-TPJ - Number of studies: 7 
## Level: L-FC/L-PC_CPz/FCz - Number of studies: 1 
## Skipping L-FC/L-PC_CPz/FCz - not enough studies
## Level: Cereb-Vermis - Number of studies: 3 
## Level: L-DMPFC - Number of studies: 1 
## Skipping L-DMPFC - not enough studies
## Level: Bi-DLPFC - Number of studies: 2 
## Level: Bi-DLPFC_Bi-TPJ - Number of studies: 1 
## Skipping Bi-DLPFC_Bi-TPJ - not enough studies
## Level: L-DLPFC_R-DLPFC - Number of studies: 2 
## Level: R-ORBF - Number of studies: 2 
## Level: DLPFC - Number of studies: 1 
## Skipping DLPFC - not enough studies
## Level: L-M1 - Number of studies: 1 
## Skipping L-M1 - not enough studies
## Level: R-DLPFC - Number of studies: 1 
## Skipping R-DLPFC - not enough studies
## Level: Bi-PFC - Number of studies: 1 
## Skipping Bi-PFC - not enough studies
## Level: L-DLPFC_R-SORB - Number of studies: 1 
## Skipping L-DLPFC_R-SORB - not enough studies
## Level: L-DLPFC_Cz - Number of studies: 2 
## Level: Bi-Insula - Number of studies: 1 
## Skipping Bi-Insula - not enough studies
## Level: L-DLPFC_R-ORBF - Number of studies: 3 
## Level: R-IPL - Number of studies: 1 
## Skipping R-IPL - not enough studies
## Level: Bi-TPJ - Number of studies: 1 
## Skipping Bi-TPJ - not enough studies
## Level: L-SMA - Number of studies: 1 
## Skipping L-SMA - not enough studies
## Level: R-DLPFC_L-TPJ - Number of studies: 1 
## Skipping R-DLPFC_L-TPJ - not enough studies
## Level: L-DLPFC_L-PFC - Number of studies: 1 
## Skipping L-DLPFC_L-PFC - not enough studies
## Level: L-DLPFC/L-TPJ_Cz - Number of studies: 1 
## Skipping L-DLPFC/L-TPJ_Cz - not enough studies
## Level: L-DLPFC_R-ORB - Number of studies: 1 
## Skipping L-DLPFC_R-ORB - not enough studies
## 
## 
## Meta-regression for differences between total psychopathology - Target Region subgroups:
## 
## Mixed-Effects Model (k = 72; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
## -46.6681   93.3361  145.3361  193.4400  215.5361   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2929 (SE = 0.0853)
## tau (square root of estimated tau^2 value):             0.5412
## I^2 (residual heterogeneity / unaccounted variability): 74.87%
## H^2 (unaccounted variability / sampling variability):   3.98
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 47) = 174.5570, p-val < .0001
## 
## Test of Moderators (coefficients 2:25):
## QM(df = 24) = 17.5423, p-val = 0.8246
## 
## Model Results:
## 
##                                  estimate      se     zval    pval    ci.lb 
## intrcpt                            0.0948  0.4946   0.1916  0.8480  -0.8745 
## factor(target)Bi-DLPFC_Bi-TPJ      0.5277  0.8533   0.6185  0.5363  -1.1446 
## factor(target)Bi-Insula            0.4246  0.8627   0.4922  0.6226  -1.2662 
## factor(target)Bi-PFC               0.0992  0.8120   0.1222  0.9028  -1.4923 
## factor(target)Bi-TPJ               0.1368  0.7783   0.1758  0.8605  -1.3886 
## factor(target)Cereb-Vermis        -0.0491  0.6150  -0.0798  0.9364  -1.2544 
## factor(target)DLPFC                0.3450  0.7743   0.4456  0.6559  -1.1726 
## factor(target)L-DLPFC              0.4240  0.5090   0.8331  0.4048  -0.5736 
## factor(target)L-DLPFC_Cz           0.6047  0.6952   0.8699  0.3844  -0.7578 
## factor(target)L-DLPFC_L-PFC        0.1644  0.7710   0.2132  0.8312  -1.3467 
## factor(target)L-DLPFC_L-TPJ        0.0561  0.5542   0.1013  0.9193  -1.0301 
## factor(target)L-DLPFC_R-DLPFC      0.4168  0.6723   0.6200  0.5353  -0.9008 
## factor(target)L-DLPFC_R-ORB       -0.5490  0.8041  -0.6827  0.4948  -2.1250 
## factor(target)L-DLPFC_R-ORBF      -0.1721  0.6232  -0.2762  0.7824  -1.3935 
## factor(target)L-DLPFC_R-SORB      -0.4514  0.7849  -0.5751  0.5652  -1.9898 
## factor(target)L-DLPFC/L-TPJ_Cz     0.1534  0.8373   0.1833  0.8546  -1.4876 
## factor(target)L-DMPFC             -0.2017  0.8225  -0.2452  0.8063  -1.8138 
## factor(target)L-FC/L-PC_CPz/FCz    0.5103  0.8085   0.6312  0.5279  -1.0743 
## factor(target)L-M1                 0.1443  0.7989   0.1806  0.8567  -1.4215 
## factor(target)L-SMA                1.5005  0.8107   1.8508  0.0642  -0.0885 
## factor(target)L-TPJ                0.6036  0.5577   1.0823  0.2791  -0.4894 
## factor(target)R-DLPFC             -0.0320  0.8165  -0.0392  0.9688  -1.6323 
## factor(target)R-DLPFC_L-TPJ       -0.2256  0.9513  -0.2371  0.8126  -2.0900 
## factor(target)R-IPL               -0.1156  0.8974  -0.1288  0.8975  -1.8744 
## factor(target)R-ORBF               0.8748  0.6456   1.3550  0.1754  -0.3906 
##                                   ci.ub    
## intrcpt                          1.0641    
## factor(target)Bi-DLPFC_Bi-TPJ    2.2001    
## factor(target)Bi-Insula          2.1154    
## factor(target)Bi-PFC             1.6907    
## factor(target)Bi-TPJ             1.6622    
## factor(target)Cereb-Vermis       1.1562    
## factor(target)DLPFC              1.8627    
## factor(target)L-DLPFC            1.4216    
## factor(target)L-DLPFC_Cz         1.9672    
## factor(target)L-DLPFC_L-PFC      1.6754    
## factor(target)L-DLPFC_L-TPJ      1.1424    
## factor(target)L-DLPFC_R-DLPFC    1.7344    
## factor(target)L-DLPFC_R-ORB      1.0271    
## factor(target)L-DLPFC_R-ORBF     1.0493    
## factor(target)L-DLPFC_R-SORB     1.0870    
## factor(target)L-DLPFC/L-TPJ_Cz   1.7945    
## factor(target)L-DMPFC            1.4104    
## factor(target)L-FC/L-PC_CPz/FCz  2.0949    
## factor(target)L-M1               1.7100    
## factor(target)L-SMA              3.0895  . 
## factor(target)L-TPJ              1.6967    
## factor(target)R-DLPFC            1.5683    
## factor(target)R-DLPFC_L-TPJ      1.6389    
## factor(target)R-IPL              1.6433    
## factor(target)R-ORBF             2.1401    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for total psychopathology - Target Region :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by total psychopathology - Target Region</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> L-DLPFC </td>
##    <td style="text-align:right;"> 28 </td>
##    <td style="text-align:left;"> 0.53 [0.25, 0.8]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 83.5 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> L-TPJ </td>
##    <td style="text-align:right;"> 7 </td>
##    <td style="text-align:left;"> 0.67 [0.05, 1.29]* </td>
##    <td style="text-align:right;"> 0.035 </td>
##    <td style="text-align:right;"> 77.3 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> L-DLPFC_L-TPJ </td>
##    <td style="text-align:right;"> 7 </td>
##    <td style="text-align:left;"> 0.17 [-0.08, 0.41] </td>
##    <td style="text-align:right;"> 0.183 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt3 </td>
##    <td style="text-align:left;"> Cereb-Vermis </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> 0.05 [-0.32, 0.42] </td>
##    <td style="text-align:right;"> 0.787 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt4 </td>
##    <td style="text-align:left;"> Bi-DLPFC </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.1 [-0.52, 0.71] </td>
##    <td style="text-align:right;"> 0.759 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt5 </td>
##    <td style="text-align:left;"> L-DLPFC_R-DLPFC </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.47 [0.01, 0.92]* </td>
##    <td style="text-align:right;"> 0.046 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt6 </td>
##    <td style="text-align:left;"> R-ORBF </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.97 [0.66, 1.28]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt7 </td>
##    <td style="text-align:left;"> L-DLPFC_Cz </td>
##    <td style="text-align:right;"> 2 </td>
##    <td style="text-align:left;"> 0.69 [0.1, 1.27]* </td>
##    <td style="text-align:right;"> 0.021 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt8 </td>
##    <td style="text-align:left;"> L-DLPFC_R-ORBF </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> -0.09 [-0.5, 0.31] </td>
##    <td style="text-align:right;"> 0.651 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
## </tbody>
## </table>

## 
## ### Treatment Sessions Analysis for total psychopathology 
## 
## Analyzing total psychopathology - Number of Sessions with 72 valid cases
## Found 4 unique levels: 11-20 Sessions, 6-10 Sessions, 2-5 Sessions, More than 20 Sessions 
## Level: 11-20 Sessions - Number of studies: 40 
## Level: 6-10 Sessions - Number of studies: 22 
## Level: 2-5 Sessions - Number of studies: 3 
## Level: More than 20 Sessions - Number of studies: 7 
## 
## 
## Meta-regression for differences between total psychopathology - Number of Sessions subgroups:
## 
## Mixed-Effects Model (k = 72; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
## -62.4936  124.9871  134.9871  146.0847  135.9549   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2410 (SE = 0.0619)
## tau (square root of estimated tau^2 value):             0.4910
## I^2 (residual heterogeneity / unaccounted variability): 70.46%
## H^2 (unaccounted variability / sampling variability):   3.39
## R^2 (amount of heterogeneity accounted for):            7.36%
## 
## Test for Residual Heterogeneity:
## QE(df = 68) = 222.8489, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.0591, p-val = 0.0700
## 
## Model Results:
## 
##                                                 estimate      se     zval 
## intrcpt                                           0.5583  0.0942   5.9254 
## factor(sessions_category)2-5 Sessions            -0.6641  0.3742  -1.7745 
## factor(sessions_category)6-10 Sessions           -0.3536  0.1651  -2.1414 
## factor(sessions_category)More than 20 Sessions   -0.2593  0.2354  -1.1013 
##                                                   pval    ci.lb    ci.ub      
## intrcpt                                         <.0001   0.3736   0.7429  *** 
## factor(sessions_category)2-5 Sessions           0.0760  -1.3976   0.0694    . 
## factor(sessions_category)6-10 Sessions          0.0322  -0.6772  -0.0300    * 
## factor(sessions_category)More than 20 Sessions  0.2708  -0.7206   0.2021      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for total psychopathology - Number of Sessions :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by total psychopathology - Number of Sessions</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> 11-20 Sessions </td>
##    <td style="text-align:right;"> 40 </td>
##    <td style="text-align:left;"> 0.56 [0.35, 0.77]*** </td>
##    <td style="text-align:right;"> 0.000 </td>
##    <td style="text-align:right;"> 79.9 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> 6-10 Sessions </td>
##    <td style="text-align:right;"> 22 </td>
##    <td style="text-align:left;"> 0.2 [0.05, 0.35]* </td>
##    <td style="text-align:right;"> 0.011 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> 2-5 Sessions </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> -0.11 [-0.55, 0.33] </td>
##    <td style="text-align:right;"> 0.615 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt3 </td>
##    <td style="text-align:left;"> More than 20 Sessions </td>
##    <td style="text-align:right;"> 7 </td>
##    <td style="text-align:left;"> 0.3 [-0.13, 0.73] </td>
##    <td style="text-align:right;"> 0.169 </td>
##    <td style="text-align:right;"> 74.9 </td>
##   </tr>
## </tbody>
## </table>

## 
## 
## ** DOMAIN-SPECIFIC ANALYSIS FOR GLOBAL_COGNITION **
## 
## 
## ## Subgroup Analyses for global cognition Domain
## 
## 
## ### Intervention Type Analysis for global cognition 
## 
## Analyzing global cognition - Intervention Type with 25 valid cases
## Found 6 unique levels: HF-RTMS, LF-RTMS, TDCS, ITBS, TACS, HD-TDCS 
## Level: HF-RTMS - Number of studies: 10 
## Level: LF-RTMS - Number of studies: 1 
## Skipping LF-RTMS - not enough studies
## Level: TDCS - Number of studies: 6 
## Level: ITBS - Number of studies: 6 
## Level: TACS - Number of studies: 1 
## Skipping TACS - not enough studies
## Level: HD-TDCS - Number of studies: 1 
## Skipping HD-TDCS - not enough studies
## 
## 
## Meta-regression for differences between global cognition - Intervention Type subgroups:
## 
## Mixed-Effects Model (k = 25; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
##  -5.9095   11.8190   25.8190   32.4300   36.0008   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0307 (SE = 0.0370)
## tau (square root of estimated tau^2 value):             0.1751
## I^2 (residual heterogeneity / unaccounted variability): 26.38%
## H^2 (unaccounted variability / sampling variability):   1.36
## R^2 (amount of heterogeneity accounted for):            30.15%
## 
## Test for Residual Heterogeneity:
## QE(df = 19) = 22.7010, p-val = 0.2508
## 
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 7.1219, p-val = 0.2117
## 
## Model Results:
## 
##                           estimate      se     zval    pval    ci.lb   ci.ub    
## intrcpt                     0.0376  0.2964   0.1267  0.8991  -0.5434  0.6185    
## factor(technique)HF-RTMS    0.2582  0.3135   0.8234  0.4103  -0.3563  0.8727    
## factor(technique)ITBS      -0.0463  0.3292  -0.1407  0.8881  -0.6914  0.5988    
## factor(technique)LF-RTMS    0.6108  0.4074   1.4993  0.1338  -0.1877  1.4093    
## factor(technique)TACS      -0.3713  0.6389  -0.5811  0.5612  -1.6235  0.8810    
## factor(technique)TDCS       0.0630  0.3366   0.1872  0.8515  -0.5967  0.7227    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for global cognition - Intervention Type :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by global cognition - Intervention Type</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> HF-RTMS </td>
##    <td style="text-align:right;"> 10 </td>
##    <td style="text-align:left;"> 0.29 [0.05, 0.53]* </td>
##    <td style="text-align:right;"> 0.017 </td>
##    <td style="text-align:right;"> 50.3 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> TDCS </td>
##    <td style="text-align:right;"> 6 </td>
##    <td style="text-align:left;"> 0.1 [-0.18, 0.37] </td>
##    <td style="text-align:right;"> 0.491 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> ITBS </td>
##    <td style="text-align:right;"> 6 </td>
##    <td style="text-align:left;"> -0.01 [-0.25, 0.22] </td>
##    <td style="text-align:right;"> 0.913 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
## </tbody>
## </table>

## 
## ### Target Region Analysis for global cognition 
## 
## Analyzing global cognition - Target Region with 25 valid cases
## Found 10 unique levels: Bi-DLPFC, L-DLPFC, R-ORBF, L-DLPFC_R-DLPFC, L-PC, L-LPC, R-DLPFC, L-DLPFC_L-TPJ, L-DLPFC_R-ORBF, L-DLPFC_L-PFC 
## Level: Bi-DLPFC - Number of studies: 1 
## Skipping Bi-DLPFC - not enough studies
## Level: L-DLPFC - Number of studies: 12 
## Level: R-ORBF - Number of studies: 1 
## Skipping R-ORBF - not enough studies
## Level: L-DLPFC_R-DLPFC - Number of studies: 1 
## Skipping L-DLPFC_R-DLPFC - not enough studies
## Level: L-PC - Number of studies: 1 
## Skipping L-PC - not enough studies
## Level: L-LPC - Number of studies: 1 
## Skipping L-LPC - not enough studies
## Level: R-DLPFC - Number of studies: 1 
## Skipping R-DLPFC - not enough studies
## Level: L-DLPFC_L-TPJ - Number of studies: 3 
## Level: L-DLPFC_R-ORBF - Number of studies: 3 
## Level: L-DLPFC_L-PFC - Number of studies: 1 
## Skipping L-DLPFC_L-PFC - not enough studies
## 
## 
## Meta-regression for differences between global cognition - Target Region subgroups:
## 
## Mixed-Effects Model (k = 25; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
##  -5.7322   11.4644   33.4644   41.2529  121.4644   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0431 (SE = 0.0463)
## tau (square root of estimated tau^2 value):             0.2077
## I^2 (residual heterogeneity / unaccounted variability): 33.88%
## H^2 (unaccounted variability / sampling variability):   1.51
## R^2 (amount of heterogeneity accounted for):            1.73%
## 
## Test for Residual Heterogeneity:
## QE(df = 15) = 20.8890, p-val = 0.1404
## 
## Test of Moderators (coefficients 2:10):
## QM(df = 9) = 7.4156, p-val = 0.5939
## 
## Model Results:
## 
##                                estimate      se     zval    pval    ci.lb 
## intrcpt                          0.2931  0.5065   0.5787  0.5628  -0.6996 
## factor(target)L-DLPFC           -0.0330  0.5162  -0.0639  0.9491  -1.0448 
## factor(target)L-DLPFC_L-PFC     -0.2555  0.5974  -0.4277  0.6688  -1.4263 
## factor(target)L-DLPFC_L-TPJ     -0.3052  0.6004  -0.5084  0.6112  -1.4820 
## factor(target)L-DLPFC_R-DLPFC   -0.0674  0.6141  -0.1097  0.9126  -1.2711 
## factor(target)L-DLPFC_R-ORBF    -0.2497  0.5513  -0.4530  0.6506  -1.3302 
## factor(target)L-LPC             -0.7054  0.6104  -1.1556  0.2478  -1.9017 
## factor(target)L-PC              -0.1436  0.6305  -0.2278  0.8198  -1.3794 
## factor(target)R-DLPFC           -0.2968  0.6047  -0.4908  0.6236  -1.4819 
## factor(target)R-ORBF             0.3553  0.5891   0.6031  0.5465  -0.7994 
##                                 ci.ub    
## intrcpt                        1.2857    
## factor(target)L-DLPFC          0.9789    
## factor(target)L-DLPFC_L-PFC    0.9153    
## factor(target)L-DLPFC_L-TPJ    0.8715    
## factor(target)L-DLPFC_R-DLPFC  1.1363    
## factor(target)L-DLPFC_R-ORBF   0.8308    
## factor(target)L-LPC            0.4910    
## factor(target)L-PC             1.0921    
## factor(target)R-DLPFC          0.8884    
## factor(target)R-ORBF           1.5100    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for global cognition - Target Region :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by global cognition - Target Region</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> L-DLPFC </td>
##    <td style="text-align:right;"> 12 </td>
##    <td style="text-align:left;"> 0.26 [0.05, 0.47]* </td>
##    <td style="text-align:right;"> 0.015 </td>
##    <td style="text-align:right;"> 43.7 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> L-DLPFC_L-TPJ </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> -0.01 [-0.6, 0.58] </td>
##    <td style="text-align:right;"> 0.972 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> L-DLPFC_R-ORBF </td>
##    <td style="text-align:right;"> 3 </td>
##    <td style="text-align:left;"> 0.03 [-0.32, 0.39] </td>
##    <td style="text-align:right;"> 0.857 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
## </tbody>
## </table>

## 
## ### Treatment Sessions Analysis for global cognition 
## 
## Analyzing global cognition - Number of Sessions with 25 valid cases
## Found 4 unique levels: 6-10 Sessions, More than 20 Sessions, 11-20 Sessions, 2-5 Sessions 
## Level: 6-10 Sessions - Number of studies: 5 
## Level: More than 20 Sessions - Number of studies: 8 
## Level: 11-20 Sessions - Number of studies: 11 
## Level: 2-5 Sessions - Number of studies: 1 
## Skipping 2-5 Sessions - not enough studies
## 
## 
## Meta-regression for differences between global cognition - Number of Sessions subgroups:
## 
## Mixed-Effects Model (k = 25; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc   
##  -8.3757   16.7515   26.7515   31.9741   30.7515   
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0516 (SE = 0.0414)
## tau (square root of estimated tau^2 value):             0.2271
## I^2 (residual heterogeneity / unaccounted variability): 38.66%
## H^2 (unaccounted variability / sampling variability):   1.63
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 21) = 32.0618, p-val = 0.0577
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 0.8558, p-val = 0.8361
## 
## Model Results:
## 
##                                                 estimate      se     zval 
## intrcpt                                           0.2251  0.1075   2.0935 
## factor(sessions_category)2-5 Sessions             0.1589  0.4514   0.3520 
## factor(sessions_category)6-10 Sessions           -0.1793  0.2283  -0.7854 
## factor(sessions_category)More than 20 Sessions   -0.0638  0.1682  -0.3794 
##                                                   pval    ci.lb   ci.ub    
## intrcpt                                         0.0363   0.0144  0.4359  * 
## factor(sessions_category)2-5 Sessions           0.7249  -0.7259  1.0437    
## factor(sessions_category)6-10 Sessions          0.4322  -0.6268  0.2682    
## factor(sessions_category)More than 20 Sessions  0.7044  -0.3935  0.2658    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## 
## Subgroup Analysis for global cognition - Number of Sessions :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by global cognition - Number of Sessions</caption>
##  <thead>
##   <tr>
##    <th style="text-align:left;">  </th>
##    <th style="text-align:left;"> Subgroup </th>
##    <th style="text-align:right;"> Number of Effect Sizes </th>
##    <th style="text-align:left;"> Effect Size [95% CI] </th>
##    <th style="text-align:right;"> p-value </th>
##    <th style="text-align:right;"> I² </th>
##   </tr>
##  </thead>
## <tbody>
##   <tr>
##    <td style="text-align:left;"> intrcpt </td>
##    <td style="text-align:left;"> 6-10 Sessions </td>
##    <td style="text-align:right;"> 5 </td>
##    <td style="text-align:left;"> 0.05 [-0.28, 0.38] </td>
##    <td style="text-align:right;"> 0.767 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt1 </td>
##    <td style="text-align:left;"> More than 20 Sessions </td>
##    <td style="text-align:right;"> 8 </td>
##    <td style="text-align:left;"> 0.16 [-0.03, 0.35] </td>
##    <td style="text-align:right;"> 0.107 </td>
##    <td style="text-align:right;"> 0.0 </td>
##   </tr>
##   <tr>
##    <td style="text-align:left;"> intrcpt2 </td>
##    <td style="text-align:left;"> 11-20 Sessions </td>
##    <td style="text-align:right;"> 11 </td>
##    <td style="text-align:left;"> 0.22 [-0.05, 0.49] </td>
##    <td style="text-align:right;"> 0.118 </td>
##    <td style="text-align:right;"> 64.8 </td>
##   </tr>
## </tbody>
## </table>

Combined Results Summary

Finally, we create a comprehensive summary of all subgroup analyses:

# Create a combined summary of all subgroup analyses if results are available
combined_results <- list()

if(!is.null(technique_results)) combined_results$technique <- technique_results$table %>% mutate(Factor = "Intervention Type")
if(!is.null(target_results)) combined_results$target <- target_results$table %>% mutate(Factor = "Target Region")
if(!is.null(lateralization_results)) combined_results$lateral <- lateralization_results$table %>% mutate(Factor = "Lateralization")
if(!is.null(time_results)) combined_results$time <- time_results$table %>% mutate(Factor = "Total Treatment Time")
if(!is.null(frequency_results)) combined_results$freq <- frequency_results$table %>% mutate(Factor = "Session Frequency")
if(!is.null(sessions_results)) combined_results$sessions <- sessions_results$table %>% mutate(Factor = "Number of Sessions")

if(length(combined_results) > 0) {
  # Combine all available results
  combined_summary <- bind_rows(combined_results)
  
  # Reorder columns
  combined_summary <- combined_summary %>%
    select(Factor, everything())
  
  # Print the combined summary
  kable(combined_summary, 
        caption = "Comprehensive Summary of All Subgroup Analyses") %>%
    kable_styling(bootstrap_options = c("striped", "hover", "condensed"), 
                  full_width = FALSE) %>%
    pack_rows(index = table(combined_summary$Factor))
}
Comprehensive Summary of All Subgroup Analyses
Factor Subgroup Number of Effect Sizes Effect Size [95% CI] p-value
Intervention Type
intrcpt…1 Intervention Type LF-RTMS 88 0.34 [0.2, 0.49]*** 0.000 79.0
intrcpt1…2 Intervention Type HF-RTMS 225 0.21 [0.14, 0.28]*** 0.000 70.5
intrcpt2…3 Intervention Type ITBS 112 0.27 [0.11, 0.42]** 0.001 87.7
intrcpt3…4 Intervention Type PRM-RTMS 4 0.25 [-0.12, 0.62] 0.190 0.0
intrcpt4…5 Intervention Type TDCS 182 0.08 [0.03, 0.14]** 0.002 21.9
intrcpt5…6 Intervention Type TACS 13 0.23 [0, 0.47]* 0.048 0.0
intrcpt6…7 Intervention Type HD-TDCS 9 0.22 [0.02, 0.41]* 0.030 0.0
intrcpt7…8 Intervention Type DTMS 19 0.24 [0.07, 0.42]** 0.006 0.0
intrcpt8…9 Intervention Type CTBS 20 -0.14 [-0.57, 0.28] 0.510 88.7
Lateralization
intrcpt…10 Target Region L-TPJ 45 0.46 [0.19, 0.72]** 0.001 81.1
intrcpt1…11 Target Region Bi-TPJ 12 0.01 [-0.16, 0.18] 0.938 0.0
intrcpt2…12 Target Region Bi-DLPFC 45 0.12 [-0.05, 0.29] 0.166 47.4
intrcpt3…13 Target Region Cereb-Vermis 36 -0.01 [-0.1, 0.08] 0.842 1.1
Number of Sessions
intrcpt4…14 Target Region L-DLPFC 232 0.29 [0.21, 0.37]*** 0.000 77.9
intrcpt5…15 Target Region L-DLPFC_L-TPJ 71 0.05 [-0.03, 0.12] 0.251 0.0
intrcpt6…16 Target Region L-FC/L-PC_CPz/FCz 3 0.58 [0.2, 0.97]** 0.003 0.0
intrcpt7…17 Target Region L-DMPFC 3 -0.07 [-0.49, 0.35] 0.743 0.0
intrcpt8…18 Target Region L-DLPFC_R-SORB 10 -0.04 [-0.41, 0.33] 0.829 68.6
Session Frequency
intrcpt9 Target Region Bi-DLPFC_Bi-TPJ 4 0.72 [-0.25, 1.7] 0.147 79.1
intrcpt10 Target Region L-DLPFC_R-DLPFC 32 0.08 [0, 0.17] 0.064 0.0
Target Region
intrcpt11 Target Region R-ORBF 24 0.4 [0.25, 0.55]*** 0.000 65.9
intrcpt12 Target Region DLPFC 6 0.57 [0.15, 0.99]** 0.008 76.4
intrcpt13 Target Region L-M1 5 0.28 [0, 0.56] 0.050 0.0
intrcpt14 Target Region TPJ 4 -1 [-3.18, 1.17] 0.365 98.0
intrcpt15 Target Region R-DLPFC 14 0.07 [-0.12, 0.26] 0.480 43.8
intrcpt16 Target Region L-PC 5 0.44 [-2.81, 3.68] 0.793 98.8
intrcpt17 Target Region L-LPC 8 -0.26 [-0.6, 0.08] 0.137 69.8
intrcpt18 Target Region L-DLPFC_R-ORBF 48 0.12 [0, 0.25]* 0.046 41.9
intrcpt19 Target Region Bi-PFC 9 0.17 [-0.06, 0.39] 0.156 0.0
intrcpt20 Target Region L-DLPFC_Cz 6 0.19 [-0.36, 0.74] 0.495 61.9
intrcpt21 Target Region Bi-Insula 3 0.62 [0.1, 1.14]* 0.019 0.0
intrcpt22 Target Region fMRI-TC 3 -0.25 [-0.69, 0.19] 0.270 0.0
intrcpt23 Target Region L_DLPFC 3 0.14 [-0.31, 0.58] 0.547 0.0
intrcpt24 Target Region R-IPL 6 -0.09 [-0.51, 0.32] 0.660 0.0
intrcpt25 Target Region L-SMA 5 1.03 [0.25, 1.82]* 0.010 86.5
intrcpt26 Target Region R-DLPFC_L-TPJ 12 -0.21 [-0.59, 0.17] 0.278 0.0
intrcpt27 Target Region L-DLPFC_L-PFC 5 0.17 [-0.04, 0.38] 0.117 0.0
intrcpt28 Target Region L-DLPFC/L-TPJ_Cz 4 0.06 [-0.33, 0.46] 0.765 0.0
intrcpt29 Target Region L-DLPFC_R-ORB 3 -0.07 [-0.45, 0.32] 0.725 7.0
intrcpt…40 Lateralization Uni-L 504 0.23 [0.17, 0.28]*** 0.000 76.3
intrcpt1…41 Lateralization Bi-Seq 55 0.07 [-0.05, 0.18] 0.244 22.0
intrcpt2…42 Lateralization Bi-Sim 55 0.06 [-0.03, 0.15] 0.184 15.4
intrcpt3…43 Lateralization Uni-R 56 0.23 [0.11, 0.35]*** 0.000 55.6
intrcpt…44 Total Treatment Time Short (100-300 min) 271 0.2 [0.13, 0.26]*** 0.000 62.5
intrcpt1…45 Total Treatment Time Very Short (<100 min) 135 0.1 [-0.03, 0.23] 0.131 83.7
intrcpt2…46 Total Treatment Time Medium (300-600 min) 199 0.28 [0.19, 0.36]*** 0.000 76.6
intrcpt3…47 Total Treatment Time Long (>600 min) 67 0.15 [0.06, 0.24]** 0.001 33.1
intrcpt…48 Session Frequency high 167 0.12 [0.05, 0.19]** 0.001 52.5
intrcpt1…49 Session Frequency low 505 0.23 [0.17, 0.28]*** 0.000 74.9
intrcpt…50 Number of Sessions 11-20 Sessions 340 0.31 [0.24, 0.39]*** 0.000 81.4
Total Treatment Time
intrcpt1…51 Number of Sessions Single Session 14 -0.09 [-0.3, 0.12] 0.401 25.9
intrcpt2…52 Number of Sessions 6-10 Sessions 199 0.03 [-0.02, 0.08] 0.195 18.5
intrcpt3…53 Number of Sessions More than 20 Sessions 92 0.2 [0.11, 0.28]*** 0.000 52.7
intrcpt4…54 Number of Sessions 2-5 Sessions 27 0.11 [-0.07, 0.29] 0.241 37.7