This document presents a comprehensive meta-analysis of neuromodulation techniques in schizophrenia, examining their effects on symptoms and cognitive functions across different intervention parameters.
First, we load the required packages for our analysis:
We’ll import the data from the Excel file containing our meta-analysis data:
Next, we preprocess the data for consistency and create domain categorizations:
# Convert to lowercase for consistency
baseline$Study <- tolower(baseline$Study)
baseline$Group <- tolower(baseline$Group)
outcomes$Study <- tolower(outcomes$Study)
outcomes$Group <- tolower(outcomes$Group)
# Create unique identifiers for each study-group combination
baseline$study_group_id <- paste(baseline$Study, baseline$Group, sep = "_")
outcomes$study_group_id <- paste(outcomes$Study, outcomes$Group, sep = "_")
# Categorize outcome measures
outcomes <- outcomes %>%
mutate(domain = case_when(
grepl("^P_", Outcome_Measure) ~ "positive_symptoms",
grepl("^N_", Outcome_Measure) ~ "negative_symptoms",
grepl("^T_", Outcome_Measure) ~ "total_psychopathology",
grepl("^G_", Outcome_Measure) ~ "general_psychopathology",
grepl("^PS_", Outcome_Measure) ~ "processing_speed",
grepl("^AV_", Outcome_Measure) ~ "attention_vigilance",
grepl("^WM_", Outcome_Measure) ~ "working_memory",
grepl("^VerL_", Outcome_Measure) ~ "verbal_learning",
grepl("^VisL_", Outcome_Measure) ~ "visual_learning",
grepl("^RPS_", Outcome_Measure) ~ "reasoning_problem_solving",
grepl("^SC_", Outcome_Measure) ~ "social_cognition",
grepl("^GC_", Outcome_Measure) ~ "global_cognition",
TRUE ~ "other"
))We calculate standardized mean differences (Hedges’ g) between active and sham groups:
effect_sizes <- data.frame()
# Identify active and sham groups
for(study in unique(outcomes$Study)) {
# Get all groups for this study
groups <- unique(outcomes$Group[outcomes$Study == study])
# Identify which is active and which is sham
active_groups <- groups[grepl("active", groups, ignore.case = TRUE)]
sham_groups <- groups[grepl("sham", groups, ignore.case = TRUE)]
for(active in active_groups) {
for(sham in sham_groups) {
# For each outcome measure
for(outcome in unique(outcomes$Outcome_Measure)) {
# Check if both groups have this outcome
active_data <- outcomes %>%
filter(Study == study, Group == active, Outcome_Measure == outcome)
sham_data <- outcomes %>%
filter(Study == study, Group == sham, Outcome_Measure == outcome)
if(nrow(active_data) >= 2 && nrow(sham_data) >= 2) {
# Get baseline and endpoint data
active_t0 <- active_data %>% filter(Time_Point == "T0")
active_t1 <- active_data %>% filter(Time_Point == "T1" | grepl("T1_Change", Time_Point))
sham_t0 <- sham_data %>% filter(Time_Point == "T0")
sham_t1 <- sham_data %>% filter(Time_Point == "T1" | grepl("T1_Change", Time_Point))
# Only proceed if we have complete data
if(nrow(active_t0) == 1 && nrow(active_t1) == 1 &&
nrow(sham_t0) == 1 && nrow(sham_t1) == 1) {
# Check if this is a change score
is_change_score <- grepl("T1_Change", active_t1$Time_Point)
# Calculate effect sizes based on whether it's a change score
if(is_change_score) {
# For change scores
n1 <- as.numeric(active_t1$N)
n2 <- as.numeric(sham_t1$N)
m1 <- as.numeric(active_t1$Mean)
m2 <- as.numeric(sham_t1$Mean)
sd1 <- as.numeric(active_t1$SD)
sd2 <- as.numeric(sham_t1$SD)
# Skip if any data is missing
if(any(is.na(c(n1, n2, m1, m2, sd1, sd2)))) next
# Calculate Hedges' g
es <- escalc(measure = "SMD",
m1i = m1, m2i = m2,
sd1i = sd1, sd2i = sd2,
n1i = n1, n2i = n2)
} else {
# For pre-post data
n1 <- as.numeric(active_t1$N)
n2 <- as.numeric(sham_t1$N)
m1_pre <- as.numeric(active_t0$Mean)
m1_post <- as.numeric(active_t1$Mean)
m2_pre <- as.numeric(sham_t0$Mean)
m2_post <- as.numeric(sham_t1$Mean)
sd1_pre <- as.numeric(active_t0$SD)
sd1_post <- as.numeric(active_t1$SD)
sd2_pre <- as.numeric(sham_t0$SD)
sd2_post <- as.numeric(sham_t1$SD)
# Skip if any data is missing
if(any(is.na(c(n1, n2, m1_pre, m1_post, m2_pre, m2_post,
sd1_pre, sd1_post, sd2_pre, sd2_post)))) next
# Pre-post correlation (estimate 0.7 if not known)
cor_pre_post <- 0.7
# Calculate change scores and their SDs
m1 <- m1_post - m1_pre
m2 <- m2_post - m2_pre
# Calculate SD of change scores
sd1 <- sqrt(sd1_pre^2 + sd1_post^2 - 2*cor_pre_post*sd1_pre*sd1_post)
sd2 <- sqrt(sd2_pre^2 + sd2_post^2 - 2*cor_pre_post*sd2_pre*sd2_post)
# Calculate Hedges' g
es <- escalc(measure = "SMD",
m1i = m1, m2i = m2,
sd1i = sd1, sd2i = sd2,
n1i = n1, n2i = n2)
}
# Determine if lower scores are better (for direction adjustment)
lower_is_better <- grepl("PANSS|SANS|SAPS|AHRS|BPRS|PSYRATS", outcome)
# Adjust direction so positive effect size always means improvement
if(lower_is_better) {
es$yi <- -es$yi
}
# Get the domain of this outcome
domain <- active_data$domain[1]
# Get technique, target, and other metadata from baseline
technique <- baseline$Technique[baseline$study_group_id == paste(study, active, sep="_")][1]
target <- baseline$Target[baseline$study_group_id == paste(study, active, sep="_")][1]
lateralisation <- baseline$Lateralisation[baseline$study_group_id == paste(study, active, sep="_")][1]
targeting_method <- baseline$Targeting_Method[baseline$study_group_id == paste(study, active, sep="_")][1]
total_time <- baseline$Total_Time[baseline$study_group_id == paste(study, active, sep="_")][1]
total_sessions <- baseline$Total_Sessions[baseline$study_group_id == paste(study, active, sep="_")][1]
session_frequency <- baseline$Session_Frequency[baseline$study_group_id == paste(study, active, sep="_")][1]
# Add to effect sizes dataframe
effect_sizes <- rbind(effect_sizes, data.frame(
study = study,
outcome = outcome,
domain = domain,
technique = technique,
target = target,
lateralisation = lateralisation,
targeting_method = targeting_method,
total_time = total_time,
total_sessions = total_sessions,
session_frequency = session_frequency,
yi = es$yi, # Effect size
vi = es$vi, # Variance
n1 = n1, # Sample size active
n2 = n2, # Sample size sham
lower_is_better = lower_is_better,
stringsAsFactors = FALSE
))
}
}
}
}
}
}
# Check the resulting effect sizes
cat("Total number of effect sizes calculated:", nrow(effect_sizes), "\n")## Total number of effect sizes calculated: 677
Let’s check for missing values in key variables:
check_missing <- function(data) {
cat("Missing values in key variables:\n")
cat("technique:", sum(is.na(data$technique)), "missing out of", nrow(data), "\n")
cat("target:", sum(is.na(data$target)), "missing out of", nrow(data), "\n")
cat("lateralisation:", sum(is.na(data$lateralisation)), "missing out of", nrow(data), "\n")
cat("total_time:", sum(is.na(data$total_time)), "missing out of", nrow(data), "\n")
cat("total_sessions:", sum(is.na(data$total_sessions)), "missing out of", nrow(data), "\n")
cat("session_frequency:", sum(is.na(data$session_frequency)), "missing out of", nrow(data), "\n")
# Print unique values of technique to see what we're working with
cat("\nUnique values in technique variable:\n")
print(table(data$technique, useNA = "always"))
}This function runs the subgroup analyses with error handling:
run_subgroup_analysis <- function(data, factor_var, factor_name, min_studies = 3) {
# First, remove NAs in the factor variable
data_clean <- data %>% filter(!is.na(!!sym(factor_var)))
cat("\nAnalyzing", factor_name, "with", nrow(data_clean), "valid cases\n")
# Get the unique levels of the factor
factor_levels <- unique(data_clean[[factor_var]])
cat("Found", length(factor_levels), "unique levels:", paste(factor_levels, collapse=", "), "\n")
# Create a list to store results for each subgroup
subgroup_results <- list()
# Create a dataframe to store results for the table
results_table <- data.frame(
Subgroup = character(),
k = integer(),
ES = numeric(),
CI_Lower = numeric(),
CI_Upper = numeric(),
p = numeric(),
I2 = numeric(),
stringsAsFactors = FALSE
)
# For each level of the factor, run a separate meta-analysis
for(level in factor_levels) {
# Filter data for this level
subgroup_data <- data_clean %>% filter(!!sym(factor_var) == level)
cat("Level:", level, "- Number of studies:", nrow(subgroup_data), "\n")
# Only analyze if we have enough studies
if(nrow(subgroup_data) >= min_studies) {
# Run the meta-analysis
tryCatch({
subgroup_model <- rma(yi, vi, data = subgroup_data, method = "REML")
# Store the results
subgroup_results[[as.character(level)]] <- subgroup_model
# Add to results table
results_table <- rbind(results_table, data.frame(
Subgroup = as.character(level),
k = subgroup_model$k,
ES = subgroup_model$b,
CI_Lower = subgroup_model$ci.lb,
CI_Upper = subgroup_model$ci.ub,
p = subgroup_model$pval,
I2 = (subgroup_model$tau2 / (subgroup_model$tau2 + subgroup_model$vt)) * 100,
stringsAsFactors = FALSE
))
}, error = function(e) {
cat("Error in subgroup", level, ":", e$message, "\n")
})
} else {
cat("Skipping", level, "- not enough studies\n")
}
}
# Check if we have any results
if(nrow(results_table) == 0) {
cat("No valid subgroups with enough studies found for", factor_name, "\n")
return(NULL)
}
# Run meta-regression to test for subgroup differences
if(length(unique(data_clean[[factor_var]])) > 1 && nrow(results_table) > 1) {
# Run meta-regression
tryCatch({
metareg_formula <- as.formula(paste("yi ~ factor(", factor_var, ")", sep=""))
metareg_model <- rma(metareg_formula, vi, data = data_clean, method = "REML")
# Print results
cat("\n\nMeta-regression for differences between", factor_name, "subgroups:\n")
print(summary(metareg_model))
}, error = function(e) {
cat("Error in meta-regression:", e$message, "\n")
metareg_model <- NULL
})
} else {
metareg_model <- NULL
}
# Format the results table
results_table$ES <- round(results_table$ES, 2)
results_table$CI_Lower <- round(results_table$CI_Lower, 2)
results_table$CI_Upper <- round(results_table$CI_Upper, 2)
results_table$p <- round(results_table$p, 3)
results_table$I2 <- round(results_table$I2, 1)
# Add significance markers
results_table$Sig <- ifelse(results_table$p < 0.001, "***",
ifelse(results_table$p < 0.01, "**",
ifelse(results_table$p < 0.05, "*", "")))
# Create effect size with CI column
results_table$Effect_Size <- paste0(results_table$ES, " [",
results_table$CI_Lower, ", ",
results_table$CI_Upper, "]",
results_table$Sig)
# Create a temporary table with columns we need for plotting
plot_table <- results_table %>%
select(Subgroup, ES, CI_Lower, CI_Upper, p)
# Reorder columns for display in the results table
results_table <- results_table %>%
select(Subgroup, k, Effect_Size, p, I2) %>%
rename(`Subgroup` = Subgroup,
`Number of Effect Sizes` = k,
`Effect Size [95% CI]` = Effect_Size,
`p-value` = p,
`I²` = I2)
# Create a forest plot for subgroups using the plot_table (not the renamed results_table)
plot_data <- plot_table %>%
mutate(
Significant = p < 0.05,
Subgroup = factor(Subgroup, levels = rev(Subgroup))
)
# Create the plot
p <- ggplot(plot_data, aes(x = ES, y = Subgroup, xmin = CI_Lower, xmax = CI_Upper,
color = Significant)) +
geom_point(size = 3) +
geom_errorbarh(height = 0.2) +
geom_vline(xintercept = 0, linetype = "dashed", color = "darkgray") +
scale_color_manual(values = c("FALSE" = "gray50", "TRUE" = "blue")) +
labs(title = paste("Effect of Neuromodulation by", factor_name),
x = "Hedges' g Effect Size",
y = "",
color = "Statistically\nSignificant") +
theme_minimal() +
theme(legend.position = "bottom")
# Print the table
cat("\n\nSubgroup Analysis for", factor_name, ":\n")
print(kable(results_table,
caption = paste("Summary of Results by", factor_name)) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = FALSE))
# Display the plot
print(p)
# Return the results
return(list(table = results_table, plot = p, metareg = metareg_model))
}Let’s clean the data and prepare it for our subgroup analyses:
# First make sure we replace empty strings with NA
effect_sizes <- effect_sizes %>%
mutate(across(where(is.character), ~na_if(., "")))
# Clean up technique names for better display
effect_sizes$technique <- toupper(effect_sizes$technique)
# Run the check for missing values
check_missing(effect_sizes)## Missing values in key variables:
## technique: 5 missing out of 677
## target: 5 missing out of 677
## lateralisation: 5 missing out of 677
## total_time: 5 missing out of 677
## total_sessions: 5 missing out of 677
## session_frequency: 5 missing out of 677
##
## Unique values in technique variable:
##
## CTBS DTMS HD-TDCS HF-RTMS ITBS LF-RTMS PRM-RTMS TACS
## 20 19 9 225 112 88 4 13
## TDCS <NA>
## 182 5
We’ll analyze the effect of different neuromodulation techniques:
##
##
## ** INTERVENTION TYPE ANALYSIS **
##
## Analyzing Intervention Type with 672 valid cases
## Found 9 unique levels: LF-RTMS, HF-RTMS, ITBS, PRM-RTMS, TDCS, TACS, HD-TDCS, DTMS, CTBS
## Level: LF-RTMS - Number of studies: 88
## Level: HF-RTMS - Number of studies: 225
## Level: ITBS - Number of studies: 112
## Level: PRM-RTMS - Number of studies: 4
## Level: TDCS - Number of studies: 182
## Level: TACS - Number of studies: 13
## Level: HD-TDCS - Number of studies: 9
## Level: DTMS - Number of studies: 19
## Level: CTBS - Number of studies: 20
##
##
## Meta-regression for differences between Intervention Type subgroups:
##
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -633.0810 1266.1619 1286.1619 1331.1297 1286.4994
##
## tau^2 (estimated amount of residual heterogeneity): 0.2285 (SE = 0.0186)
## tau (square root of estimated tau^2 value): 0.4780
## I^2 (residual heterogeneity / unaccounted variability): 71.17%
## H^2 (unaccounted variability / sampling variability): 3.47
## R^2 (amount of heterogeneity accounted for): 2.45%
##
## Test for Residual Heterogeneity:
## QE(df = 663) = 2092.4841, p-val < .0001
##
## Test of Moderators (coefficients 2:9):
## QM(df = 8) = 17.7426, p-val = 0.0232
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -0.1079 0.1331 -0.8109 0.4174 -0.3687 0.1529
## factor(technique)DTMS 0.3653 0.1946 1.8775 0.0605 -0.0161 0.7466
## factor(technique)HD-TDCS 0.3848 0.2397 1.6052 0.1085 -0.0851 0.8547
## factor(technique)HF-RTMS 0.3198 0.1385 2.3085 0.0210 0.0483 0.5913
## factor(technique)ITBS 0.3667 0.1438 2.5502 0.0108 0.0849 0.6485
## factor(technique)LF-RTMS 0.4548 0.1472 3.0891 0.0020 0.1662 0.7433
## factor(technique)PRM-RTMS 0.3552 0.3337 1.0644 0.2871 -0.2988 1.0092
## factor(technique)TACS 0.2964 0.2246 1.3199 0.1869 -0.1437 0.7366
## factor(technique)TDCS 0.2047 0.1403 1.4587 0.1447 -0.0704 0.4798
##
## intrcpt
## factor(technique)DTMS .
## factor(technique)HD-TDCS
## factor(technique)HF-RTMS *
## factor(technique)ITBS *
## factor(technique)LF-RTMS **
## factor(technique)PRM-RTMS
## factor(technique)TACS
## factor(technique)TDCS
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for Intervention Type :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by Intervention Type</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> LF-RTMS </td>
## <td style="text-align:right;"> 88 </td>
## <td style="text-align:left;"> 0.34 [0.2, 0.49]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 79.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> HF-RTMS </td>
## <td style="text-align:right;"> 225 </td>
## <td style="text-align:left;"> 0.21 [0.14, 0.28]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 70.5 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> ITBS </td>
## <td style="text-align:right;"> 112 </td>
## <td style="text-align:left;"> 0.27 [0.11, 0.42]** </td>
## <td style="text-align:right;"> 0.001 </td>
## <td style="text-align:right;"> 87.7 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt3 </td>
## <td style="text-align:left;"> PRM-RTMS </td>
## <td style="text-align:right;"> 4 </td>
## <td style="text-align:left;"> 0.25 [-0.12, 0.62] </td>
## <td style="text-align:right;"> 0.190 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt4 </td>
## <td style="text-align:left;"> TDCS </td>
## <td style="text-align:right;"> 182 </td>
## <td style="text-align:left;"> 0.08 [0.03, 0.14]** </td>
## <td style="text-align:right;"> 0.002 </td>
## <td style="text-align:right;"> 21.9 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt5 </td>
## <td style="text-align:left;"> TACS </td>
## <td style="text-align:right;"> 13 </td>
## <td style="text-align:left;"> 0.23 [0, 0.47]* </td>
## <td style="text-align:right;"> 0.048 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt6 </td>
## <td style="text-align:left;"> HD-TDCS </td>
## <td style="text-align:right;"> 9 </td>
## <td style="text-align:left;"> 0.22 [0.02, 0.41]* </td>
## <td style="text-align:right;"> 0.030 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt7 </td>
## <td style="text-align:left;"> DTMS </td>
## <td style="text-align:right;"> 19 </td>
## <td style="text-align:left;"> 0.24 [0.07, 0.42]** </td>
## <td style="text-align:right;"> 0.006 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt8 </td>
## <td style="text-align:left;"> CTBS </td>
## <td style="text-align:right;"> 20 </td>
## <td style="text-align:left;"> -0.14 [-0.57, 0.28] </td>
## <td style="text-align:right;"> 0.510 </td>
## <td style="text-align:right;"> 88.7 </td>
## </tr>
## </tbody>
## </table>
Next, we examine the effect of different brain targets:
##
##
## ** TARGET REGION ANALYSIS **
##
## Analyzing Target Region with 672 valid cases
## Found 34 unique levels: L-TPJ, Bi-TPJ, Bi-DLPFC, Cereb-Vermis, L-DLPFC, Bi-DMPFC, L-DLPFC_L-TPJ, L-FC/L-PC_CPz/FCz, L-STS, L-DMPFC, L-DLPFC_R-SORB, Bi-DLPFC_Bi-TPJ, L-DLPFC_R-DLPFC, R-ORBF, DLPFC, L-M1, TPJ, R-DLPFC, R-DLPFC_L-Orbit, L-PC, L-LPC, L-DLPFC_R-ORBF, Bi-PFC, L-DLPFC_Cz, Bi-Insula, fMRI-TC, L_DLPFC, fMRI-TPC, R-IPL, L-SMA, R-DLPFC_L-TPJ, L-DLPFC_L-PFC, L-DLPFC/L-TPJ_Cz, L-DLPFC_R-ORB
## Level: L-TPJ - Number of studies: 45
## Level: Bi-TPJ - Number of studies: 12
## Level: Bi-DLPFC - Number of studies: 45
## Level: Cereb-Vermis - Number of studies: 36
## Level: L-DLPFC - Number of studies: 232
## Level: Bi-DMPFC - Number of studies: 1
## Skipping Bi-DMPFC - not enough studies
## Level: L-DLPFC_L-TPJ - Number of studies: 71
## Level: L-FC/L-PC_CPz/FCz - Number of studies: 3
## Level: L-STS - Number of studies: 1
## Skipping L-STS - not enough studies
## Level: L-DMPFC - Number of studies: 3
## Level: L-DLPFC_R-SORB - Number of studies: 10
## Level: Bi-DLPFC_Bi-TPJ - Number of studies: 4
## Level: L-DLPFC_R-DLPFC - Number of studies: 32
## Level: R-ORBF - Number of studies: 24
## Level: DLPFC - Number of studies: 6
## Level: L-M1 - Number of studies: 5
## Level: TPJ - Number of studies: 4
## Level: R-DLPFC - Number of studies: 14
## Level: R-DLPFC_L-Orbit - Number of studies: 2
## Skipping R-DLPFC_L-Orbit - not enough studies
## Level: L-PC - Number of studies: 5
## Level: L-LPC - Number of studies: 8
## Level: L-DLPFC_R-ORBF - Number of studies: 48
## Level: Bi-PFC - Number of studies: 9
## Level: L-DLPFC_Cz - Number of studies: 6
## Level: Bi-Insula - Number of studies: 3
## Level: fMRI-TC - Number of studies: 3
## Level: L_DLPFC - Number of studies: 3
## Level: fMRI-TPC - Number of studies: 2
## Skipping fMRI-TPC - not enough studies
## Level: R-IPL - Number of studies: 6
## Level: L-SMA - Number of studies: 5
## Level: R-DLPFC_L-TPJ - Number of studies: 12
## Level: L-DLPFC_L-PFC - Number of studies: 5
## Level: L-DLPFC/L-TPJ_Cz - Number of studies: 4
## Level: L-DLPFC_R-ORB - Number of studies: 3
##
##
## Meta-regression for differences between Target Region subgroups:
##
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -593.9482 1187.8965 1257.8965 1413.9383 1262.0825
##
## tau^2 (estimated amount of residual heterogeneity): 0.2103 (SE = 0.0179)
## tau (square root of estimated tau^2 value): 0.4586
## I^2 (residual heterogeneity / unaccounted variability): 69.52%
## H^2 (unaccounted variability / sampling variability): 3.28
## R^2 (amount of heterogeneity accounted for): 10.19%
##
## Test for Residual Heterogeneity:
## QE(df = 638) = 1927.4497, p-val < .0001
##
## Test of Moderators (coefficients 2:34):
## QM(df = 33) = 78.6316, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb
## intrcpt 0.1239 0.0933 1.3284 0.1840 -0.0589
## factor(target)Bi-DLPFC_Bi-TPJ 0.5546 0.3369 1.6461 0.0998 -0.1058
## factor(target)Bi-DMPFC -0.0459 0.6879 -0.0667 0.9468 -1.3942
## factor(target)Bi-Insula 0.4986 0.3859 1.2922 0.1963 -0.2577
## factor(target)Bi-PFC 0.0420 0.2137 0.1967 0.8441 -0.3768
## factor(target)Bi-TPJ -0.1271 0.1854 -0.6854 0.4931 -0.4905
## factor(target)Cereb-Vermis -0.1317 0.1291 -1.0201 0.3077 -0.3846
## factor(target)DLPFC 0.4471 0.2336 1.9138 0.0556 -0.0108
## factor(target)fMRI-TC -0.3721 0.3595 -1.0351 0.3006 -1.0768
## factor(target)fMRI-TPC -0.2334 0.4053 -0.5759 0.5647 -1.0278
## factor(target)L_DLPFC 0.0144 0.3618 0.0399 0.9682 -0.6946
## factor(target)L-DLPFC 0.1644 0.1003 1.6394 0.1011 -0.0322
## factor(target)L-DLPFC_Cz 0.0703 0.2725 0.2580 0.7964 -0.4638
## factor(target)L-DLPFC_L-PFC 0.0431 0.2493 0.1728 0.8628 -0.4455
## factor(target)L-DLPFC_L-TPJ -0.0449 0.1173 -0.3825 0.7021 -0.2748
## factor(target)L-DLPFC_R-DLPFC -0.0055 0.1342 -0.0412 0.9672 -0.2685
## factor(target)L-DLPFC_R-ORB -0.1945 0.3386 -0.5743 0.5657 -0.8582
## factor(target)L-DLPFC_R-ORBF 0.0003 0.1242 0.0026 0.9979 -0.2432
## factor(target)L-DLPFC_R-SORB -0.1635 0.2039 -0.8017 0.4227 -0.5631
## factor(target)L-DLPFC/L-TPJ_Cz -0.0634 0.3193 -0.1986 0.8426 -0.6893
## factor(target)L-DMPFC -0.1944 0.3538 -0.5496 0.5826 -0.8878
## factor(target)L-FC/L-PC_CPz/FCz 0.4586 0.3427 1.3381 0.1808 -0.2131
## factor(target)L-LPC -0.3844 0.2103 -1.8275 0.0676 -0.7966
## factor(target)L-M1 0.1599 0.2667 0.5994 0.5489 -0.3629
## factor(target)L-PC 0.2111 0.2958 0.7137 0.4754 -0.3687
## factor(target)L-SMA 0.8873 0.2697 3.2897 0.0010 0.3587
## factor(target)L-STS -0.2319 0.5366 -0.4322 0.6656 -1.2835
## factor(target)L-TPJ 0.3598 0.1306 2.7542 0.0059 0.1038
## factor(target)R-DLPFC -0.0629 0.1712 -0.3673 0.7134 -0.3984
## factor(target)R-DLPFC_L-Orbit 0.0020 0.4207 0.0048 0.9962 -0.8225
## factor(target)R-DLPFC_L-TPJ -0.3385 0.2525 -1.3404 0.1801 -0.8334
## factor(target)R-IPL -0.2196 0.2984 -0.7360 0.4618 -0.8045
## factor(target)R-ORBF 0.2826 0.1395 2.0260 0.0428 0.0092
## factor(target)TPJ -0.8814 0.2969 -2.9686 0.0030 -1.4634
## ci.ub
## intrcpt 0.3068
## factor(target)Bi-DLPFC_Bi-TPJ 1.2150 .
## factor(target)Bi-DMPFC 1.3024
## factor(target)Bi-Insula 1.2549
## factor(target)Bi-PFC 0.4608
## factor(target)Bi-TPJ 0.2363
## factor(target)Cereb-Vermis 0.1213
## factor(target)DLPFC 0.9050 .
## factor(target)fMRI-TC 0.3325
## factor(target)fMRI-TPC 0.5610
## factor(target)L_DLPFC 0.7235
## factor(target)L-DLPFC 0.3609
## factor(target)L-DLPFC_Cz 0.6044
## factor(target)L-DLPFC_L-PFC 0.5317
## factor(target)L-DLPFC_L-TPJ 0.1851
## factor(target)L-DLPFC_R-DLPFC 0.2574
## factor(target)L-DLPFC_R-ORB 0.4692
## factor(target)L-DLPFC_R-ORBF 0.2438
## factor(target)L-DLPFC_R-SORB 0.2362
## factor(target)L-DLPFC/L-TPJ_Cz 0.5625
## factor(target)L-DMPFC 0.4989
## factor(target)L-FC/L-PC_CPz/FCz 1.1302
## factor(target)L-LPC 0.0279 .
## factor(target)L-M1 0.6827
## factor(target)L-PC 0.7910
## factor(target)L-SMA 1.4160 **
## factor(target)L-STS 0.8198
## factor(target)L-TPJ 0.6159 **
## factor(target)R-DLPFC 0.2727
## factor(target)R-DLPFC_L-Orbit 0.8266
## factor(target)R-DLPFC_L-TPJ 0.1564
## factor(target)R-IPL 0.3653
## factor(target)R-ORBF 0.5561 *
## factor(target)TPJ -0.2995 **
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for Target Region :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by Target Region</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> L-TPJ </td>
## <td style="text-align:right;"> 45 </td>
## <td style="text-align:left;"> 0.46 [0.19, 0.72]** </td>
## <td style="text-align:right;"> 0.001 </td>
## <td style="text-align:right;"> 81.1 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> Bi-TPJ </td>
## <td style="text-align:right;"> 12 </td>
## <td style="text-align:left;"> 0.01 [-0.16, 0.18] </td>
## <td style="text-align:right;"> 0.938 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> Bi-DLPFC </td>
## <td style="text-align:right;"> 45 </td>
## <td style="text-align:left;"> 0.12 [-0.05, 0.29] </td>
## <td style="text-align:right;"> 0.166 </td>
## <td style="text-align:right;"> 47.4 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt3 </td>
## <td style="text-align:left;"> Cereb-Vermis </td>
## <td style="text-align:right;"> 36 </td>
## <td style="text-align:left;"> -0.01 [-0.1, 0.08] </td>
## <td style="text-align:right;"> 0.842 </td>
## <td style="text-align:right;"> 1.1 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt4 </td>
## <td style="text-align:left;"> L-DLPFC </td>
## <td style="text-align:right;"> 232 </td>
## <td style="text-align:left;"> 0.29 [0.21, 0.37]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 77.9 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt5 </td>
## <td style="text-align:left;"> L-DLPFC_L-TPJ </td>
## <td style="text-align:right;"> 71 </td>
## <td style="text-align:left;"> 0.05 [-0.03, 0.12] </td>
## <td style="text-align:right;"> 0.251 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt6 </td>
## <td style="text-align:left;"> L-FC/L-PC_CPz/FCz </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> 0.58 [0.2, 0.97]** </td>
## <td style="text-align:right;"> 0.003 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt7 </td>
## <td style="text-align:left;"> L-DMPFC </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> -0.07 [-0.49, 0.35] </td>
## <td style="text-align:right;"> 0.743 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt8 </td>
## <td style="text-align:left;"> L-DLPFC_R-SORB </td>
## <td style="text-align:right;"> 10 </td>
## <td style="text-align:left;"> -0.04 [-0.41, 0.33] </td>
## <td style="text-align:right;"> 0.829 </td>
## <td style="text-align:right;"> 68.6 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt9 </td>
## <td style="text-align:left;"> Bi-DLPFC_Bi-TPJ </td>
## <td style="text-align:right;"> 4 </td>
## <td style="text-align:left;"> 0.72 [-0.25, 1.7] </td>
## <td style="text-align:right;"> 0.147 </td>
## <td style="text-align:right;"> 79.1 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt10 </td>
## <td style="text-align:left;"> L-DLPFC_R-DLPFC </td>
## <td style="text-align:right;"> 32 </td>
## <td style="text-align:left;"> 0.08 [0, 0.17] </td>
## <td style="text-align:right;"> 0.064 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt11 </td>
## <td style="text-align:left;"> R-ORBF </td>
## <td style="text-align:right;"> 24 </td>
## <td style="text-align:left;"> 0.4 [0.25, 0.55]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 65.9 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt12 </td>
## <td style="text-align:left;"> DLPFC </td>
## <td style="text-align:right;"> 6 </td>
## <td style="text-align:left;"> 0.57 [0.15, 0.99]** </td>
## <td style="text-align:right;"> 0.008 </td>
## <td style="text-align:right;"> 76.4 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt13 </td>
## <td style="text-align:left;"> L-M1 </td>
## <td style="text-align:right;"> 5 </td>
## <td style="text-align:left;"> 0.28 [0, 0.56] </td>
## <td style="text-align:right;"> 0.050 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt14 </td>
## <td style="text-align:left;"> TPJ </td>
## <td style="text-align:right;"> 4 </td>
## <td style="text-align:left;"> -1 [-3.18, 1.17] </td>
## <td style="text-align:right;"> 0.365 </td>
## <td style="text-align:right;"> 98.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt15 </td>
## <td style="text-align:left;"> R-DLPFC </td>
## <td style="text-align:right;"> 14 </td>
## <td style="text-align:left;"> 0.07 [-0.12, 0.26] </td>
## <td style="text-align:right;"> 0.480 </td>
## <td style="text-align:right;"> 43.8 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt16 </td>
## <td style="text-align:left;"> L-PC </td>
## <td style="text-align:right;"> 5 </td>
## <td style="text-align:left;"> 0.44 [-2.81, 3.68] </td>
## <td style="text-align:right;"> 0.793 </td>
## <td style="text-align:right;"> 98.8 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt17 </td>
## <td style="text-align:left;"> L-LPC </td>
## <td style="text-align:right;"> 8 </td>
## <td style="text-align:left;"> -0.26 [-0.6, 0.08] </td>
## <td style="text-align:right;"> 0.137 </td>
## <td style="text-align:right;"> 69.8 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt18 </td>
## <td style="text-align:left;"> L-DLPFC_R-ORBF </td>
## <td style="text-align:right;"> 48 </td>
## <td style="text-align:left;"> 0.12 [0, 0.25]* </td>
## <td style="text-align:right;"> 0.046 </td>
## <td style="text-align:right;"> 41.9 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt19 </td>
## <td style="text-align:left;"> Bi-PFC </td>
## <td style="text-align:right;"> 9 </td>
## <td style="text-align:left;"> 0.17 [-0.06, 0.39] </td>
## <td style="text-align:right;"> 0.156 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt20 </td>
## <td style="text-align:left;"> L-DLPFC_Cz </td>
## <td style="text-align:right;"> 6 </td>
## <td style="text-align:left;"> 0.19 [-0.36, 0.74] </td>
## <td style="text-align:right;"> 0.495 </td>
## <td style="text-align:right;"> 61.9 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt21 </td>
## <td style="text-align:left;"> Bi-Insula </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> 0.62 [0.1, 1.14]* </td>
## <td style="text-align:right;"> 0.019 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt22 </td>
## <td style="text-align:left;"> fMRI-TC </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> -0.25 [-0.69, 0.19] </td>
## <td style="text-align:right;"> 0.270 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt23 </td>
## <td style="text-align:left;"> L_DLPFC </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> 0.14 [-0.31, 0.58] </td>
## <td style="text-align:right;"> 0.547 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt24 </td>
## <td style="text-align:left;"> R-IPL </td>
## <td style="text-align:right;"> 6 </td>
## <td style="text-align:left;"> -0.09 [-0.51, 0.32] </td>
## <td style="text-align:right;"> 0.660 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt25 </td>
## <td style="text-align:left;"> L-SMA </td>
## <td style="text-align:right;"> 5 </td>
## <td style="text-align:left;"> 1.03 [0.25, 1.82]* </td>
## <td style="text-align:right;"> 0.010 </td>
## <td style="text-align:right;"> 86.5 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt26 </td>
## <td style="text-align:left;"> R-DLPFC_L-TPJ </td>
## <td style="text-align:right;"> 12 </td>
## <td style="text-align:left;"> -0.21 [-0.59, 0.17] </td>
## <td style="text-align:right;"> 0.278 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt27 </td>
## <td style="text-align:left;"> L-DLPFC_L-PFC </td>
## <td style="text-align:right;"> 5 </td>
## <td style="text-align:left;"> 0.17 [-0.04, 0.38] </td>
## <td style="text-align:right;"> 0.117 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt28 </td>
## <td style="text-align:left;"> L-DLPFC/L-TPJ_Cz </td>
## <td style="text-align:right;"> 4 </td>
## <td style="text-align:left;"> 0.06 [-0.33, 0.46] </td>
## <td style="text-align:right;"> 0.765 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt29 </td>
## <td style="text-align:left;"> L-DLPFC_R-ORB </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> -0.07 [-0.45, 0.32] </td>
## <td style="text-align:right;"> 0.725 </td>
## <td style="text-align:right;"> 7.0 </td>
## </tr>
## </tbody>
## </table>
We analyze the effect of stimulation lateralization:
##
##
## ** LATERALIZATION ANALYSIS **
##
## Analyzing Lateralization with 672 valid cases
## Found 5 unique levels: Uni-L, Bi-Seq, Bi-Sim, Uni-R, Uni-fMRI-L/R
## Level: Uni-L - Number of studies: 504
## Level: Bi-Seq - Number of studies: 55
## Level: Bi-Sim - Number of studies: 55
## Level: Uni-R - Number of studies: 56
## Level: Uni-fMRI-L/R - Number of studies: 2
## Skipping Uni-fMRI-L/R - not enough studies
##
##
## Meta-regression for differences between Lateralization subgroups:
##
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -641.0461 1282.0923 1294.0923 1321.1090 1294.2196
##
## tau^2 (estimated amount of residual heterogeneity): 0.2328 (SE = 0.0188)
## tau (square root of estimated tau^2 value): 0.4825
## I^2 (residual heterogeneity / unaccounted variability): 71.56%
## H^2 (unaccounted variability / sampling variability): 3.52
## R^2 (amount of heterogeneity accounted for): 0.59%
##
## Test for Residual Heterogeneity:
## QE(df = 667) = 2134.3155, p-val < .0001
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 5.1930, p-val = 0.2681
##
## Model Results:
##
## estimate se zval pval ci.lb
## intrcpt 0.0820 0.0839 0.9769 0.3286 -0.0825
## factor(lateralisation)Bi-Sim 0.0146 0.1149 0.1268 0.8991 -0.2106
## factor(lateralisation)Uni-fMRI-L/R -0.1915 0.4170 -0.4593 0.6461 -1.0088
## factor(lateralisation)Uni-L 0.1430 0.0879 1.6257 0.1040 -0.0294
## factor(lateralisation)Uni-R 0.1173 0.1156 1.0148 0.3102 -0.1093
## ci.ub
## intrcpt 0.2465
## factor(lateralisation)Bi-Sim 0.2397
## factor(lateralisation)Uni-fMRI-L/R 0.6258
## factor(lateralisation)Uni-L 0.3154
## factor(lateralisation)Uni-R 0.3439
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for Lateralization :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by Lateralization</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> Uni-L </td>
## <td style="text-align:right;"> 504 </td>
## <td style="text-align:left;"> 0.23 [0.17, 0.28]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 76.3 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> Bi-Seq </td>
## <td style="text-align:right;"> 55 </td>
## <td style="text-align:left;"> 0.07 [-0.05, 0.18] </td>
## <td style="text-align:right;"> 0.244 </td>
## <td style="text-align:right;"> 22.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> Bi-Sim </td>
## <td style="text-align:right;"> 55 </td>
## <td style="text-align:left;"> 0.06 [-0.03, 0.15] </td>
## <td style="text-align:right;"> 0.184 </td>
## <td style="text-align:right;"> 15.4 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt3 </td>
## <td style="text-align:left;"> Uni-R </td>
## <td style="text-align:right;"> 56 </td>
## <td style="text-align:left;"> 0.23 [0.11, 0.35]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 55.6 </td>
## </tr>
## </tbody>
## </table>
We categorize and analyze the effect of total treatment time:
# Create categories for total time
effect_sizes <- effect_sizes %>%
mutate(time_category = case_when(
total_time < 100 ~ "Very Short (<100 min)",
total_time >= 100 & total_time < 300 ~ "Short (100-300 min)",
total_time >= 300 & total_time < 600 ~ "Medium (300-600 min)",
total_time >= 600 ~ "Long (>600 min)",
TRUE ~ NA_character_
))
cat("\n\n** TREATMENT TIME ANALYSIS **\n")##
##
## ** TREATMENT TIME ANALYSIS **
##
## Analyzing Total Treatment Time with 672 valid cases
## Found 4 unique levels: Short (100-300 min), Very Short (<100 min), Medium (300-600 min), Long (>600 min)
## Level: Short (100-300 min) - Number of studies: 271
## Level: Very Short (<100 min) - Number of studies: 135
## Level: Medium (300-600 min) - Number of studies: 199
## Level: Long (>600 min) - Number of studies: 67
##
##
## Meta-regression for differences between Total Treatment Time subgroups:
##
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -640.5327 1281.0655 1291.0655 1313.5869 1291.1561
##
## tau^2 (estimated amount of residual heterogeneity): 0.2323 (SE = 0.0188)
## tau (square root of estimated tau^2 value): 0.4820
## I^2 (residual heterogeneity / unaccounted variability): 71.49%
## H^2 (unaccounted variability / sampling variability): 3.51
## R^2 (amount of heterogeneity accounted for): 0.83%
##
## Test for Residual Heterogeneity:
## QE(df = 668) = 2132.2541, p-val < .0001
##
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.0736, p-val = 0.0696
##
## Model Results:
##
## estimate se zval pval
## intrcpt 0.1526 0.0710 2.1505 0.0315
## factor(time_category)Medium (300-600 min) 0.1227 0.0819 1.4978 0.1342
## factor(time_category)Short (100-300 min) 0.0483 0.0799 0.6042 0.5457
## factor(time_category)Very Short (<100 min) -0.0443 0.0873 -0.5073 0.6119
## ci.lb ci.ub
## intrcpt 0.0135 0.2916 *
## factor(time_category)Medium (300-600 min) -0.0379 0.2834
## factor(time_category)Short (100-300 min) -0.1084 0.2050
## factor(time_category)Very Short (<100 min) -0.2154 0.1268
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for Total Treatment Time :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by Total Treatment Time</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> Short (100-300 min) </td>
## <td style="text-align:right;"> 271 </td>
## <td style="text-align:left;"> 0.2 [0.13, 0.26]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 62.5 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> Very Short (<100 min) </td>
## <td style="text-align:right;"> 135 </td>
## <td style="text-align:left;"> 0.1 [-0.03, 0.23] </td>
## <td style="text-align:right;"> 0.131 </td>
## <td style="text-align:right;"> 83.7 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> Medium (300-600 min) </td>
## <td style="text-align:right;"> 199 </td>
## <td style="text-align:left;"> 0.28 [0.19, 0.36]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 76.6 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt3 </td>
## <td style="text-align:left;"> Long (>600 min) </td>
## <td style="text-align:right;"> 67 </td>
## <td style="text-align:left;"> 0.15 [0.06, 0.24]** </td>
## <td style="text-align:right;"> 0.001 </td>
## <td style="text-align:right;"> 33.1 </td>
## </tr>
## </tbody>
## </table>
# Meta-regression with time as a continuous variable
time_metareg <- tryCatch({
rma(yi, vi, mods = ~ total_time, data = effect_sizes %>% filter(!is.na(total_time)), method = "REML")
}, error = function(e) {
cat("Error in time meta-regression:", e$message, "\n")
return(NULL)
})
if(!is.null(time_metareg)) {
cat("\n\nMeta-regression for Total Treatment Time (continuous):\n")
print(summary(time_metareg))
# Plot a bubble plot for time vs effect size
ggplot(effect_sizes %>% filter(!is.na(total_time)),
aes(x = total_time, y = yi, size = 1/sqrt(vi))) +
geom_hline(yintercept = 0, linetype = "dashed", color = "darkgray") +
geom_point(alpha = 0.5) +
geom_smooth(method = "lm", se = TRUE, color = "blue") +
labs(title = "Relationship Between Treatment Time and Effect Size",
x = "Total Treatment Time (minutes)",
y = "Hedges' g Effect Size",
size = "Precision\n(1/SE)") +
theme_minimal()
}##
##
## Meta-regression for Total Treatment Time (continuous):
##
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -643.7424 1287.4847 1293.4847 1307.0066 1293.5208
##
## tau^2 (estimated amount of residual heterogeneity): 0.2336 (SE = 0.0188)
## tau (square root of estimated tau^2 value): 0.4834
## I^2 (residual heterogeneity / unaccounted variability): 71.64%
## H^2 (unaccounted variability / sampling variability): 3.53
## R^2 (amount of heterogeneity accounted for): 0.25%
##
## Test for Residual Heterogeneity:
## QE(df = 670) = 2152.1119, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.1814, p-val = 0.1397
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1570 0.0372 4.2263 <.0001 0.0842 0.2299 ***
## total_time 0.0002 0.0001 1.4770 0.1397 -0.0001 0.0004
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `geom_smooth()` using formula = 'y ~ x'
## Warning: The following aesthetics were dropped during statistical transformation: size.
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
We analyze the effect of session frequency:
##
##
## ** SESSION FREQUENCY ANALYSIS **
frequency_results <- run_subgroup_analysis(
effect_sizes,
"session_frequency",
"Session Frequency"
)##
## Analyzing Session Frequency with 672 valid cases
## Found 2 unique levels: high, low
## Level: high - Number of studies: 167
## Level: low - Number of studies: 505
##
##
## Meta-regression for differences between Session Frequency subgroups:
##
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -642.8603 1285.7206 1291.7206 1305.2424 1291.7566
##
## tau^2 (estimated amount of residual heterogeneity): 0.2321 (SE = 0.0188)
## tau (square root of estimated tau^2 value): 0.4818
## I^2 (residual heterogeneity / unaccounted variability): 71.50%
## H^2 (unaccounted variability / sampling variability): 3.51
## R^2 (amount of heterogeneity accounted for): 0.91%
##
## Test for Residual Heterogeneity:
## QE(df = 670) = 2141.1712, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.9577, p-val = 0.0467
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1212 0.0458 2.6459 0.0081 0.0314 0.2111
## factor(session_frequency)low 0.1051 0.0528 1.9894 0.0467 0.0016 0.2087
##
## intrcpt **
## factor(session_frequency)low *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for Session Frequency :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by Session Frequency</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> high </td>
## <td style="text-align:right;"> 167 </td>
## <td style="text-align:left;"> 0.12 [0.05, 0.19]** </td>
## <td style="text-align:right;"> 0.001 </td>
## <td style="text-align:right;"> 52.5 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> low </td>
## <td style="text-align:right;"> 505 </td>
## <td style="text-align:left;"> 0.23 [0.17, 0.28]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 74.9 </td>
## </tr>
## </tbody>
## </table>
We categorize and analyze the effect of the number of treatment sessions:
# Create categories for number of sessions
effect_sizes <- effect_sizes %>%
mutate(sessions_category = case_when(
total_sessions == 1 ~ "Single Session",
total_sessions > 1 & total_sessions <= 5 ~ "2-5 Sessions",
total_sessions > 5 & total_sessions <= 10 ~ "6-10 Sessions",
total_sessions > 10 & total_sessions <= 20 ~ "11-20 Sessions",
total_sessions > 20 ~ "More than 20 Sessions",
TRUE ~ NA_character_
))
cat("\n\n** NUMBER OF SESSIONS ANALYSIS **\n")##
##
## ** NUMBER OF SESSIONS ANALYSIS **
sessions_results <- run_subgroup_analysis(
effect_sizes,
"sessions_category",
"Number of Sessions"
)##
## Analyzing Number of Sessions with 672 valid cases
## Found 5 unique levels: 11-20 Sessions, Single Session, 6-10 Sessions, More than 20 Sessions, 2-5 Sessions
## Level: 11-20 Sessions - Number of studies: 340
## Level: Single Session - Number of studies: 14
## Level: 6-10 Sessions - Number of studies: 199
## Level: More than 20 Sessions - Number of studies: 92
## Level: 2-5 Sessions - Number of studies: 27
##
##
## Meta-regression for differences between Number of Sessions subgroups:
##
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -628.3011 1256.6023 1268.6023 1295.6190 1268.7295
##
## tau^2 (estimated amount of residual heterogeneity): 0.2189 (SE = 0.0180)
## tau (square root of estimated tau^2 value): 0.4678
## I^2 (residual heterogeneity / unaccounted variability): 70.29%
## H^2 (unaccounted variability / sampling variability): 3.37
## R^2 (amount of heterogeneity accounted for): 6.56%
##
## Test for Residual Heterogeneity:
## QE(df = 667) = 2057.9858, p-val < .0001
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 31.3649, p-val < .0001
##
## Model Results:
##
## estimate se zval
## intrcpt 0.3093 0.0313 9.8884
## factor(sessions_category)2-5 Sessions -0.2069 0.1210 -1.7091
## factor(sessions_category)6-10 Sessions -0.2676 0.0523 -5.1136
## factor(sessions_category)More than 20 Sessions -0.1132 0.0662 -1.7101
## factor(sessions_category)Single Session -0.4333 0.1609 -2.6935
## pval ci.lb ci.ub
## intrcpt <.0001 0.2480 0.3705 ***
## factor(sessions_category)2-5 Sessions 0.0874 -0.4441 0.0304 .
## factor(sessions_category)6-10 Sessions <.0001 -0.3702 -0.1650 ***
## factor(sessions_category)More than 20 Sessions 0.0872 -0.2430 0.0165 .
## factor(sessions_category)Single Session 0.0071 -0.7485 -0.1180 **
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for Number of Sessions :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by Number of Sessions</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> 11-20 Sessions </td>
## <td style="text-align:right;"> 340 </td>
## <td style="text-align:left;"> 0.31 [0.24, 0.39]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 81.4 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> Single Session </td>
## <td style="text-align:right;"> 14 </td>
## <td style="text-align:left;"> -0.09 [-0.3, 0.12] </td>
## <td style="text-align:right;"> 0.401 </td>
## <td style="text-align:right;"> 25.9 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> 6-10 Sessions </td>
## <td style="text-align:right;"> 199 </td>
## <td style="text-align:left;"> 0.03 [-0.02, 0.08] </td>
## <td style="text-align:right;"> 0.195 </td>
## <td style="text-align:right;"> 18.5 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt3 </td>
## <td style="text-align:left;"> More than 20 Sessions </td>
## <td style="text-align:right;"> 92 </td>
## <td style="text-align:left;"> 0.2 [0.11, 0.28]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 52.7 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt4 </td>
## <td style="text-align:left;"> 2-5 Sessions </td>
## <td style="text-align:right;"> 27 </td>
## <td style="text-align:left;"> 0.11 [-0.07, 0.29] </td>
## <td style="text-align:right;"> 0.241 </td>
## <td style="text-align:right;"> 37.7 </td>
## </tr>
## </tbody>
## </table>
# Meta-regression with sessions as a continuous variable
sessions_metareg <- tryCatch({
rma(yi, vi, mods = ~ total_sessions, data = effect_sizes %>% filter(!is.na(total_sessions)), method = "REML")
}, error = function(e) {
cat("Error in sessions meta-regression:", e$message, "\n")
return(NULL)
})
if(!is.null(sessions_metareg)) {
cat("\n\nMeta-regression for Total Number of Sessions (continuous):\n")
print(summary(sessions_metareg))
# Plot a bubble plot for sessions vs effect size
ggplot(effect_sizes %>% filter(!is.na(total_sessions)),
aes(x = total_sessions, y = yi, size = 1/sqrt(vi))) +
geom_hline(yintercept = 0, linetype = "dashed", color = "darkgray") +
geom_point(alpha = 0.5) +
geom_smooth(method = "lm", se = TRUE, color = "blue") +
labs(title = "Relationship Between Number of Sessions and Effect Size",
x = "Total Number of Sessions",
y = "Hedges' g Effect Size",
size = "Precision\n(1/SE)") +
theme_minimal()
}##
##
## Meta-regression for Total Number of Sessions (continuous):
##
## Mixed-Effects Model (k = 672; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -642.3875 1284.7750 1290.7750 1304.2969 1290.8111
##
## tau^2 (estimated amount of residual heterogeneity): 0.2320 (SE = 0.0188)
## tau (square root of estimated tau^2 value): 0.4817
## I^2 (residual heterogeneity / unaccounted variability): 71.49%
## H^2 (unaccounted variability / sampling variability): 3.51
## R^2 (amount of heterogeneity accounted for): 0.94%
##
## Test for Residual Heterogeneity:
## QE(df = 670) = 2142.7155, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.9308, p-val = 0.0264
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1071 0.0478 2.2422 0.0249 0.0135 0.2007 *
## total_sessions 0.0052 0.0024 2.2205 0.0264 0.0006 0.0098 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## `geom_smooth()` using formula = 'y ~ x'
## Warning: The following aesthetics were dropped during statistical transformation: size.
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
Function to run analyses on specific symptom domains:
# Function to run subgroup analyses for a specific symptom domain
run_domain_subgroup_analyses <- function(domain_name) {
# Filter for this domain
domain_data <- effect_sizes %>% filter(domain == domain_name)
if(nrow(domain_data) >= 10) { # Only run if we have enough studies
cat("\n\n## Subgroup Analyses for", gsub("_", " ", domain_name), "Domain\n\n")
# Technique analysis
cat("\n### Intervention Type Analysis for", gsub("_", " ", domain_name), "\n")
technique_results <- run_subgroup_analysis(
domain_data,
"technique",
paste(gsub("_", " ", domain_name), "- Intervention Type"),
min_studies = 2 # Reduce minimum for domain-specific analyses
)
# Target analysis
cat("\n### Target Region Analysis for", gsub("_", " ", domain_name), "\n")
target_results <- run_subgroup_analysis(
domain_data,
"target",
paste(gsub("_", " ", domain_name), "- Target Region"),
min_studies = 2
)
# Sessions analysis
cat("\n### Treatment Sessions Analysis for", gsub("_", " ", domain_name), "\n")
sessions_results <- run_subgroup_analysis(
domain_data,
"sessions_category",
paste(gsub("_", " ", domain_name), "- Number of Sessions"),
min_studies = 2
)
} else {
cat("\n\nInsufficient data for subgroup analyses in the", gsub("_", " ", domain_name), "domain\n")
}
}Now we run the domain-specific analyses:
# Run subgroup analyses for key domains
domains_to_analyze <- c("positive_symptoms", "negative_symptoms", "total_psychopathology", "global_cognition")
for(domain in domains_to_analyze) {
cat("\n\n** DOMAIN-SPECIFIC ANALYSIS FOR", toupper(domain), "**\n")
run_domain_subgroup_analyses(domain)
}##
##
## ** DOMAIN-SPECIFIC ANALYSIS FOR POSITIVE_SYMPTOMS **
##
##
## ## Subgroup Analyses for positive symptoms Domain
##
##
## ### Intervention Type Analysis for positive symptoms
##
## Analyzing positive symptoms - Intervention Type with 118 valid cases
## Found 9 unique levels: LF-RTMS, HF-RTMS, ITBS, PRM-RTMS, TDCS, HD-TDCS, DTMS, CTBS, TACS
## Level: LF-RTMS - Number of studies: 32
## Level: HF-RTMS - Number of studies: 29
## Level: ITBS - Number of studies: 11
## Level: PRM-RTMS - Number of studies: 3
## Level: TDCS - Number of studies: 26
## Level: HD-TDCS - Number of studies: 2
## Level: DTMS - Number of studies: 2
## Level: CTBS - Number of studies: 9
## Level: TACS - Number of studies: 4
##
##
## Meta-regression for differences between positive symptoms - Intervention Type subgroups:
##
## Mixed-Effects Model (k = 118; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -128.6486 257.2971 277.2971 304.2106 279.5420
##
## tau^2 (estimated amount of residual heterogeneity): 0.4387 (SE = 0.0773)
## tau (square root of estimated tau^2 value): 0.6623
## I^2 (residual heterogeneity / unaccounted variability): 80.25%
## H^2 (unaccounted variability / sampling variability): 5.06
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 109) = 442.6867, p-val < .0001
##
## Test of Moderators (coefficients 2:9):
## QM(df = 8) = 6.6929, p-val = 0.5701
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -0.3403 0.2459 -1.3839 0.1664 -0.8222 0.1416
## factor(technique)DTMS 0.6380 0.5951 1.0722 0.2836 -0.5283 1.8044
## factor(technique)HD-TDCS 0.6186 0.5962 1.0376 0.2995 -0.5500 1.7872
## factor(technique)HF-RTMS 0.4888 0.2819 1.7341 0.0829 -0.0637 1.0413
## factor(technique)ITBS 0.5974 0.3312 1.8037 0.0713 -0.0517 1.2465
## factor(technique)LF-RTMS 0.6994 0.2807 2.4913 0.0127 0.1492 1.2497
## factor(technique)PRM-RTMS 0.5204 0.5065 1.0274 0.3042 -0.4723 1.5130
## factor(technique)TACS 0.3530 0.4743 0.7441 0.4568 -0.5767 1.2826
## factor(technique)TDCS 0.4875 0.2889 1.6871 0.0916 -0.0788 1.0538
##
## intrcpt
## factor(technique)DTMS
## factor(technique)HD-TDCS
## factor(technique)HF-RTMS .
## factor(technique)ITBS .
## factor(technique)LF-RTMS *
## factor(technique)PRM-RTMS
## factor(technique)TACS
## factor(technique)TDCS .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for positive symptoms - Intervention Type :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by positive symptoms - Intervention Type</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> LF-RTMS </td>
## <td style="text-align:right;"> 32 </td>
## <td style="text-align:left;"> 0.36 [0.02, 0.69]* </td>
## <td style="text-align:right;"> 0.036 </td>
## <td style="text-align:right;"> 85.5 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> HF-RTMS </td>
## <td style="text-align:right;"> 29 </td>
## <td style="text-align:left;"> 0.14 [0.03, 0.26]* </td>
## <td style="text-align:right;"> 0.016 </td>
## <td style="text-align:right;"> 8.4 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> ITBS </td>
## <td style="text-align:right;"> 11 </td>
## <td style="text-align:left;"> 0.26 [-0.2, 0.72] </td>
## <td style="text-align:right;"> 0.273 </td>
## <td style="text-align:right;"> 85.9 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt3 </td>
## <td style="text-align:left;"> PRM-RTMS </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> 0.18 [-0.26, 0.62] </td>
## <td style="text-align:right;"> 0.418 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt4 </td>
## <td style="text-align:left;"> TDCS </td>
## <td style="text-align:right;"> 26 </td>
## <td style="text-align:left;"> 0.12 [-0.03, 0.27] </td>
## <td style="text-align:right;"> 0.114 </td>
## <td style="text-align:right;"> 17.5 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt5 </td>
## <td style="text-align:left;"> HD-TDCS </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.24 [-0.19, 0.67] </td>
## <td style="text-align:right;"> 0.270 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt6 </td>
## <td style="text-align:left;"> DTMS </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.24 [-0.27, 0.75] </td>
## <td style="text-align:right;"> 0.348 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt7 </td>
## <td style="text-align:left;"> CTBS </td>
## <td style="text-align:right;"> 9 </td>
## <td style="text-align:left;"> -0.39 [-1.35, 0.57] </td>
## <td style="text-align:right;"> 0.422 </td>
## <td style="text-align:right;"> 95.8 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt8 </td>
## <td style="text-align:left;"> TACS </td>
## <td style="text-align:right;"> 4 </td>
## <td style="text-align:left;"> 0.01 [-0.44, 0.45] </td>
## <td style="text-align:right;"> 0.975 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## </tbody>
## </table>
##
## ### Target Region Analysis for positive symptoms
##
## Analyzing positive symptoms - Target Region with 118 valid cases
## Found 27 unique levels: L-TPJ, Bi-TPJ, Bi-DLPFC, Cereb-Vermis, L-DLPFC_L-TPJ, L-DLPFC, L-STS, L-DMPFC, Bi-DLPFC_Bi-TPJ, L-DLPFC_R-DLPFC, R-ORBF, DLPFC, L-M1, TPJ, R-DLPFC, Bi-PFC, L-DLPFC_R-SORB, Bi-Insula, fMRI-TC, L-DLPFC_R-ORBF, L_DLPFC, fMRI-TPC, R-IPL, L-SMA, R-DLPFC_L-TPJ, L-DLPFC_L-PFC, L-DLPFC/L-TPJ_Cz
## Level: L-TPJ - Number of studies: 23
## Level: Bi-TPJ - Number of studies: 6
## Level: Bi-DLPFC - Number of studies: 4
## Level: Cereb-Vermis - Number of studies: 3
## Level: L-DLPFC_L-TPJ - Number of studies: 19
## Level: L-DLPFC - Number of studies: 30
## Level: L-STS - Number of studies: 1
## Skipping L-STS - not enough studies
## Level: L-DMPFC - Number of studies: 1
## Skipping L-DMPFC - not enough studies
## Level: Bi-DLPFC_Bi-TPJ - Number of studies: 1
## Skipping Bi-DLPFC_Bi-TPJ - not enough studies
## Level: L-DLPFC_R-DLPFC - Number of studies: 2
## Level: R-ORBF - Number of studies: 2
## Level: DLPFC - Number of studies: 1
## Skipping DLPFC - not enough studies
## Level: L-M1 - Number of studies: 2
## Level: TPJ - Number of studies: 4
## Level: R-DLPFC - Number of studies: 1
## Skipping R-DLPFC - not enough studies
## Level: Bi-PFC - Number of studies: 1
## Skipping Bi-PFC - not enough studies
## Level: L-DLPFC_R-SORB - Number of studies: 1
## Skipping L-DLPFC_R-SORB - not enough studies
## Level: Bi-Insula - Number of studies: 1
## Skipping Bi-Insula - not enough studies
## Level: fMRI-TC - Number of studies: 2
## Level: L-DLPFC_R-ORBF - Number of studies: 3
## Level: L_DLPFC - Number of studies: 1
## Skipping L_DLPFC - not enough studies
## Level: fMRI-TPC - Number of studies: 2
## Level: R-IPL - Number of studies: 1
## Skipping R-IPL - not enough studies
## Level: L-SMA - Number of studies: 1
## Skipping L-SMA - not enough studies
## Level: R-DLPFC_L-TPJ - Number of studies: 2
## Level: L-DLPFC_L-PFC - Number of studies: 1
## Skipping L-DLPFC_L-PFC - not enough studies
## Level: L-DLPFC/L-TPJ_Cz - Number of studies: 2
##
##
## Meta-regression for differences between positive symptoms - Target Region subgroups:
##
## Mixed-Effects Model (k = 118; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -107.4613 214.9226 270.9226 341.2267 297.1161
##
## tau^2 (estimated amount of residual heterogeneity): 0.4425 (SE = 0.0853)
## tau (square root of estimated tau^2 value): 0.6652
## I^2 (residual heterogeneity / unaccounted variability): 80.40%
## H^2 (unaccounted variability / sampling variability): 5.10
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 91) = 370.7548, p-val < .0001
##
## Test of Moderators (coefficients 2:27):
## QM(df = 26) = 25.8135, p-val = 0.4734
##
## Model Results:
##
## estimate se zval pval ci.lb
## intrcpt 0.5578 0.4030 1.3841 0.1663 -0.2321
## factor(target)Bi-DLPFC_Bi-TPJ -0.0902 0.8898 -0.1014 0.9193 -1.8341
## factor(target)Bi-Insula -0.0309 0.9010 -0.0343 0.9727 -1.7968
## factor(target)Bi-PFC -0.6051 0.8522 -0.7100 0.4777 -2.2753
## factor(target)Bi-TPJ -0.6892 0.5027 -1.3708 0.1704 -1.6745
## factor(target)Cereb-Vermis -0.5330 0.5836 -0.9132 0.3611 -1.6768
## factor(target)DLPFC -0.4033 0.8159 -0.4943 0.6211 -2.0025
## factor(target)fMRI-TC -0.8664 0.6779 -1.2781 0.2012 -2.1951
## factor(target)fMRI-TPC -0.6675 0.6588 -1.0132 0.3110 -1.9588
## factor(target)L_DLPFC -0.7266 0.8719 -0.8334 0.4046 -2.4355
## factor(target)L-DLPFC -0.4497 0.4251 -1.0577 0.2902 -1.2829
## factor(target)L-DLPFC_L-PFC -0.3430 0.8134 -0.4217 0.6733 -1.9372
## factor(target)L-DLPFC_L-TPJ -0.3934 0.4406 -0.8927 0.3720 -1.2570
## factor(target)L-DLPFC_R-DLPFC -0.2464 0.6659 -0.3700 0.7114 -1.5516
## factor(target)L-DLPFC_R-ORBF -0.5878 0.5969 -0.9849 0.3247 -1.7577
## factor(target)L-DLPFC_R-SORB -0.5233 0.8260 -0.6335 0.5264 -2.1422
## factor(target)L-DLPFC/L-TPJ_Cz -0.5711 0.6818 -0.8375 0.4023 -1.9074
## factor(target)L-DMPFC -0.6375 0.8625 -0.7392 0.4598 -2.3280
## factor(target)L-M1 -0.2236 0.6596 -0.3390 0.7346 -1.5163
## factor(target)L-SMA 1.2757 0.8567 1.4891 0.1365 -0.4034
## factor(target)L-STS -0.6658 0.8208 -0.8111 0.4173 -2.2745
## factor(target)L-TPJ 0.0188 0.4346 0.0433 0.9654 -0.8329
## factor(target)R-DLPFC -1.1290 0.8598 -1.3130 0.1892 -2.8142
## factor(target)R-DLPFC_L-TPJ -0.7783 0.7937 -0.9805 0.3268 -2.3340
## factor(target)R-IPL -0.2843 0.9355 -0.3039 0.7612 -2.1179
## factor(target)R-ORBF 0.1275 0.6388 0.1995 0.8418 -1.1246
## factor(target)TPJ -1.4164 0.5486 -2.5818 0.0098 -2.4916
## ci.ub
## intrcpt 1.3477
## factor(target)Bi-DLPFC_Bi-TPJ 1.6537
## factor(target)Bi-Insula 1.7351
## factor(target)Bi-PFC 1.0652
## factor(target)Bi-TPJ 0.2962
## factor(target)Cereb-Vermis 0.6109
## factor(target)DLPFC 1.1958
## factor(target)fMRI-TC 0.4623
## factor(target)fMRI-TPC 0.6238
## factor(target)L_DLPFC 0.9822
## factor(target)L-DLPFC 0.3836
## factor(target)L-DLPFC_L-PFC 1.2513
## factor(target)L-DLPFC_L-TPJ 0.4703
## factor(target)L-DLPFC_R-DLPFC 1.0588
## factor(target)L-DLPFC_R-ORBF 0.5820
## factor(target)L-DLPFC_R-SORB 1.0956
## factor(target)L-DLPFC/L-TPJ_Cz 0.7653
## factor(target)L-DMPFC 1.0529
## factor(target)L-M1 1.0692
## factor(target)L-SMA 2.9549
## factor(target)L-STS 0.9430
## factor(target)L-TPJ 0.8706
## factor(target)R-DLPFC 0.5563
## factor(target)R-DLPFC_L-TPJ 0.7774
## factor(target)R-IPL 1.5493
## factor(target)R-ORBF 1.3795
## factor(target)TPJ -0.3411 **
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for positive symptoms - Target Region :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by positive symptoms - Target Region</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> L-TPJ </td>
## <td style="text-align:right;"> 23 </td>
## <td style="text-align:left;"> 0.57 [0.15, 0.99]** </td>
## <td style="text-align:right;"> 0.008 </td>
## <td style="text-align:right;"> 85.5 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> Bi-TPJ </td>
## <td style="text-align:right;"> 6 </td>
## <td style="text-align:left;"> -0.12 [-0.41, 0.17] </td>
## <td style="text-align:right;"> 0.415 </td>
## <td style="text-align:right;"> 28.7 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> Bi-DLPFC </td>
## <td style="text-align:right;"> 4 </td>
## <td style="text-align:left;"> 0.65 [-0.74, 2.04] </td>
## <td style="text-align:right;"> 0.360 </td>
## <td style="text-align:right;"> 90.2 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt3 </td>
## <td style="text-align:left;"> Cereb-Vermis </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> 0.02 [-0.32, 0.35] </td>
## <td style="text-align:right;"> 0.914 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt4 </td>
## <td style="text-align:left;"> L-DLPFC_L-TPJ </td>
## <td style="text-align:right;"> 19 </td>
## <td style="text-align:left;"> 0.15 [-0.1, 0.39] </td>
## <td style="text-align:right;"> 0.241 </td>
## <td style="text-align:right;"> 55.4 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt5 </td>
## <td style="text-align:left;"> L-DLPFC </td>
## <td style="text-align:right;"> 30 </td>
## <td style="text-align:left;"> 0.12 [-0.03, 0.28] </td>
## <td style="text-align:right;"> 0.115 </td>
## <td style="text-align:right;"> 52.4 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt6 </td>
## <td style="text-align:left;"> L-DLPFC_R-DLPFC </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.32 [-0.13, 0.78] </td>
## <td style="text-align:right;"> 0.161 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt7 </td>
## <td style="text-align:left;"> R-ORBF </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.68 [0.38, 0.99]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt8 </td>
## <td style="text-align:left;"> L-M1 </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.33 [-0.31, 0.98] </td>
## <td style="text-align:right;"> 0.313 </td>
## <td style="text-align:right;"> 52.5 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt9 </td>
## <td style="text-align:left;"> TPJ </td>
## <td style="text-align:right;"> 4 </td>
## <td style="text-align:left;"> -1 [-3.18, 1.17] </td>
## <td style="text-align:right;"> 0.365 </td>
## <td style="text-align:right;"> 98.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt10 </td>
## <td style="text-align:left;"> fMRI-TC </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> -0.31 [-0.85, 0.23] </td>
## <td style="text-align:right;"> 0.263 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt11 </td>
## <td style="text-align:left;"> L-DLPFC_R-ORBF </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> -0.02 [-0.42, 0.39] </td>
## <td style="text-align:right;"> 0.938 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt12 </td>
## <td style="text-align:left;"> fMRI-TPC </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> -0.11 [-0.56, 0.34] </td>
## <td style="text-align:right;"> 0.638 </td>
## <td style="text-align:right;"> 5.6 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt13 </td>
## <td style="text-align:left;"> R-DLPFC_L-TPJ </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> -0.19 [-1.15, 0.77] </td>
## <td style="text-align:right;"> 0.701 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt14 </td>
## <td style="text-align:left;"> L-DLPFC/L-TPJ_Cz </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> -0.01 [-0.57, 0.55] </td>
## <td style="text-align:right;"> 0.963 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## </tbody>
## </table>
##
## ### Treatment Sessions Analysis for positive symptoms
##
## Analyzing positive symptoms - Number of Sessions with 118 valid cases
## Found 4 unique levels: 11-20 Sessions, 6-10 Sessions, More than 20 Sessions, 2-5 Sessions
## Level: 11-20 Sessions - Number of studies: 61
## Level: 6-10 Sessions - Number of studies: 38
## Level: More than 20 Sessions - Number of studies: 11
## Level: 2-5 Sessions - Number of studies: 8
##
##
## Meta-regression for differences between positive symptoms - Number of Sessions subgroups:
##
## Mixed-Effects Model (k = 118; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -133.3652 266.7304 276.7304 290.4114 277.2859
##
## tau^2 (estimated amount of residual heterogeneity): 0.4235 (SE = 0.0735)
## tau (square root of estimated tau^2 value): 0.6508
## I^2 (residual heterogeneity / unaccounted variability): 79.82%
## H^2 (unaccounted variability / sampling variability): 4.96
## R^2 (amount of heterogeneity accounted for): 0.90%
##
## Test for Residual Heterogeneity:
## QE(df = 114) = 451.4017, p-val < .0001
##
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 3.8890, p-val = 0.2737
##
## Model Results:
##
## estimate se zval
## intrcpt 0.2811 0.0951 2.9559
## factor(sessions_category)2-5 Sessions -0.3435 0.2844 -1.2078
## factor(sessions_category)6-10 Sessions -0.2644 0.1563 -1.6911
## factor(sessions_category)More than 20 Sessions -0.0020 0.2356 -0.0084
## pval ci.lb ci.ub
## intrcpt 0.0031 0.0947 0.4674 **
## factor(sessions_category)2-5 Sessions 0.2271 -0.9010 0.2139
## factor(sessions_category)6-10 Sessions 0.0908 -0.5708 0.0420 .
## factor(sessions_category)More than 20 Sessions 0.9933 -0.4638 0.4598
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for positive symptoms - Number of Sessions :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by positive symptoms - Number of Sessions</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> 11-20 Sessions </td>
## <td style="text-align:right;"> 61 </td>
## <td style="text-align:left;"> 0.28 [0.09, 0.48]** </td>
## <td style="text-align:right;"> 0.005 </td>
## <td style="text-align:right;"> 82.9 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> 6-10 Sessions </td>
## <td style="text-align:right;"> 38 </td>
## <td style="text-align:left;"> 0.02 [-0.26, 0.29] </td>
## <td style="text-align:right;"> 0.902 </td>
## <td style="text-align:right;"> 82.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> More than 20 Sessions </td>
## <td style="text-align:right;"> 11 </td>
## <td style="text-align:left;"> 0.3 [0.09, 0.51]** </td>
## <td style="text-align:right;"> 0.006 </td>
## <td style="text-align:right;"> 34.7 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt3 </td>
## <td style="text-align:left;"> 2-5 Sessions </td>
## <td style="text-align:right;"> 8 </td>
## <td style="text-align:left;"> -0.08 [-0.34, 0.18] </td>
## <td style="text-align:right;"> 0.553 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## </tbody>
## </table>
##
##
## ** DOMAIN-SPECIFIC ANALYSIS FOR NEGATIVE_SYMPTOMS **
##
##
## ## Subgroup Analyses for negative symptoms Domain
##
##
## ### Intervention Type Analysis for negative symptoms
##
## Analyzing negative symptoms - Intervention Type with 106 valid cases
## Found 8 unique levels: LF-RTMS, HF-RTMS, ITBS, TDCS, TACS, HD-TDCS, DTMS, CTBS
## Level: LF-RTMS - Number of studies: 18
## Level: HF-RTMS - Number of studies: 33
## Level: ITBS - Number of studies: 18
## Level: TDCS - Number of studies: 23
## Level: TACS - Number of studies: 4
## Level: HD-TDCS - Number of studies: 3
## Level: DTMS - Number of studies: 4
## Level: CTBS - Number of studies: 3
##
##
## Meta-regression for differences between negative symptoms - Intervention Type subgroups:
##
## Mixed-Effects Model (k = 106; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -100.4297 200.8595 218.8595 242.1242 220.9049
##
## tau^2 (estimated amount of residual heterogeneity): 0.2780 (SE = 0.0581)
## tau (square root of estimated tau^2 value): 0.5272
## I^2 (residual heterogeneity / unaccounted variability): 71.83%
## H^2 (unaccounted variability / sampling variability): 3.55
## R^2 (amount of heterogeneity accounted for): 11.77%
##
## Test for Residual Heterogeneity:
## QE(df = 98) = 314.1667, p-val < .0001
##
## Test of Moderators (coefficients 2:8):
## QM(df = 7) = 14.6539, p-val = 0.0407
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.0928 0.3685 0.2517 0.8012 -0.6295 0.8151
## factor(technique)DTMS 0.2724 0.4983 0.5467 0.5846 -0.7042 1.2490
## factor(technique)HD-TDCS 0.2090 0.5387 0.3880 0.6980 -0.8467 1.2647
## factor(technique)HF-RTMS 0.4913 0.3844 1.2780 0.2013 -0.2621 1.2447
## factor(technique)ITBS 0.6499 0.3976 1.6346 0.1021 -0.1294 1.4293
## factor(technique)LF-RTMS 0.1344 0.3992 0.3367 0.7364 -0.6480 0.9168
## factor(technique)TACS 0.2928 0.4955 0.5909 0.5546 -0.6784 1.2640
## factor(technique)TDCS 0.0159 0.3929 0.0405 0.9677 -0.7541 0.7859
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for negative symptoms - Intervention Type :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by negative symptoms - Intervention Type</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> LF-RTMS </td>
## <td style="text-align:right;"> 18 </td>
## <td style="text-align:left;"> 0.29 [0.13, 0.45]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> HF-RTMS </td>
## <td style="text-align:right;"> 33 </td>
## <td style="text-align:left;"> 0.59 [0.34, 0.84]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 82.1 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> ITBS </td>
## <td style="text-align:right;"> 18 </td>
## <td style="text-align:left;"> 0.72 [0.28, 1.17]** </td>
## <td style="text-align:right;"> 0.002 </td>
## <td style="text-align:right;"> 89.3 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt3 </td>
## <td style="text-align:left;"> TDCS </td>
## <td style="text-align:right;"> 23 </td>
## <td style="text-align:left;"> 0.08 [-0.06, 0.23] </td>
## <td style="text-align:right;"> 0.251 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt4 </td>
## <td style="text-align:left;"> TACS </td>
## <td style="text-align:right;"> 4 </td>
## <td style="text-align:left;"> 0.41 [0.04, 0.79]* </td>
## <td style="text-align:right;"> 0.032 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt5 </td>
## <td style="text-align:left;"> HD-TDCS </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> 0.18 [-0.21, 0.58] </td>
## <td style="text-align:right;"> 0.368 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt6 </td>
## <td style="text-align:left;"> DTMS </td>
## <td style="text-align:right;"> 4 </td>
## <td style="text-align:left;"> 0.34 [-0.06, 0.73] </td>
## <td style="text-align:right;"> 0.093 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt7 </td>
## <td style="text-align:left;"> CTBS </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> 0.07 [-0.29, 0.44] </td>
## <td style="text-align:right;"> 0.693 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## </tbody>
## </table>
##
## ### Target Region Analysis for negative symptoms
##
## Analyzing negative symptoms - Target Region with 106 valid cases
## Found 28 unique levels: L-TPJ, Bi-TPJ, Bi-DLPFC, Cereb-Vermis, L-DLPFC, Bi-DMPFC, L-DLPFC_L-TPJ, L-FC/L-PC_CPz/FCz, L-DMPFC, Bi-DLPFC_Bi-TPJ, L-DLPFC_R-DLPFC, R-ORBF, DLPFC, L-M1, R-DLPFC, R-DLPFC_L-Orbit, Bi-PFC, L-DLPFC_R-SORB, Bi-Insula, fMRI-TC, L-DLPFC_R-ORBF, L_DLPFC, R-IPL, L-SMA, R-DLPFC_L-TPJ, L-DLPFC_L-PFC, L-DLPFC/L-TPJ_Cz, L-DLPFC_R-ORB
## Level: L-TPJ - Number of studies: 8
## Level: Bi-TPJ - Number of studies: 3
## Level: Bi-DLPFC - Number of studies: 9
## Level: Cereb-Vermis - Number of studies: 4
## Level: L-DLPFC - Number of studies: 39
## Level: Bi-DMPFC - Number of studies: 1
## Skipping Bi-DMPFC - not enough studies
## Level: L-DLPFC_L-TPJ - Number of studies: 10
## Level: L-FC/L-PC_CPz/FCz - Number of studies: 2
## Level: L-DMPFC - Number of studies: 1
## Skipping L-DMPFC - not enough studies
## Level: Bi-DLPFC_Bi-TPJ - Number of studies: 2
## Level: L-DLPFC_R-DLPFC - Number of studies: 2
## Level: R-ORBF - Number of studies: 2
## Level: DLPFC - Number of studies: 1
## Skipping DLPFC - not enough studies
## Level: L-M1 - Number of studies: 1
## Skipping L-M1 - not enough studies
## Level: R-DLPFC - Number of studies: 1
## Skipping R-DLPFC - not enough studies
## Level: R-DLPFC_L-Orbit - Number of studies: 2
## Level: Bi-PFC - Number of studies: 1
## Skipping Bi-PFC - not enough studies
## Level: L-DLPFC_R-SORB - Number of studies: 2
## Level: Bi-Insula - Number of studies: 1
## Skipping Bi-Insula - not enough studies
## Level: fMRI-TC - Number of studies: 1
## Skipping fMRI-TC - not enough studies
## Level: L-DLPFC_R-ORBF - Number of studies: 4
## Level: L_DLPFC - Number of studies: 2
## Level: R-IPL - Number of studies: 1
## Skipping R-IPL - not enough studies
## Level: L-SMA - Number of studies: 2
## Level: R-DLPFC_L-TPJ - Number of studies: 1
## Skipping R-DLPFC_L-TPJ - not enough studies
## Level: L-DLPFC_L-PFC - Number of studies: 1
## Skipping L-DLPFC_L-PFC - not enough studies
## Level: L-DLPFC/L-TPJ_Cz - Number of studies: 1
## Skipping L-DLPFC/L-TPJ_Cz - not enough studies
## Level: L-DLPFC_R-ORB - Number of studies: 1
## Skipping L-DLPFC_R-ORB - not enough studies
##
##
## Meta-regression for differences between negative symptoms - Target Region subgroups:
##
## Mixed-Effects Model (k = 106; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -82.9655 165.9310 223.9310 292.2756 260.1810
##
## tau^2 (estimated amount of residual heterogeneity): 0.3126 (SE = 0.0708)
## tau (square root of estimated tau^2 value): 0.5591
## I^2 (residual heterogeneity / unaccounted variability): 74.49%
## H^2 (unaccounted variability / sampling variability): 3.92
## R^2 (amount of heterogeneity accounted for): 0.78%
##
## Test for Residual Heterogeneity:
## QE(df = 78) = 271.3771, p-val < .0001
##
## Test of Moderators (coefficients 2:28):
## QM(df = 27) = 27.7324, p-val = 0.4249
##
## Model Results:
##
## estimate se zval pval ci.lb
## intrcpt 0.3725 0.2347 1.5869 0.1125 -0.0876
## factor(target)Bi-DLPFC_Bi-TPJ 0.4822 0.5725 0.8423 0.3996 -0.6398
## factor(target)Bi-DMPFC -0.2945 0.7886 -0.3734 0.7088 -1.8401
## factor(target)Bi-Insula 0.4536 0.7647 0.5932 0.5530 -1.0452
## factor(target)Bi-PFC -0.0204 0.7006 -0.0291 0.9768 -1.3937
## factor(target)Bi-TPJ -0.2697 0.4432 -0.6085 0.5428 -1.1383
## factor(target)Cereb-Vermis -0.3205 0.3929 -0.8157 0.4147 -1.0906
## factor(target)DLPFC 0.2870 0.6570 0.4368 0.6623 -1.0007
## factor(target)fMRI-TC -0.5006 0.7197 -0.6955 0.4867 -1.9112
## factor(target)L_DLPFC -0.0800 0.5383 -0.1485 0.8819 -1.1349
## factor(target)L-DLPFC 0.4140 0.2574 1.6083 0.1078 -0.0905
## factor(target)L-DLPFC_L-PFC -0.3170 0.6513 -0.4868 0.6264 -1.5935
## factor(target)L-DLPFC_L-TPJ -0.3136 0.3197 -0.9811 0.3266 -0.9401
## factor(target)L-DLPFC_R-DLPFC -0.0225 0.5215 -0.0432 0.9655 -1.0446
## factor(target)L-DLPFC_R-ORB -0.3380 0.6886 -0.4909 0.6235 -1.6876
## factor(target)L-DLPFC_R-ORBF -0.2512 0.4149 -0.6054 0.5449 -1.0643
## factor(target)L-DLPFC_R-SORB -0.5538 0.5003 -1.1069 0.2683 -1.5345
## factor(target)L-DLPFC/L-TPJ_Cz -0.3517 0.7280 -0.4831 0.6291 -1.7786
## factor(target)L-DMPFC -0.3974 0.7118 -0.5584 0.5766 -1.7924
## factor(target)L-FC/L-PC_CPz/FCz 0.1987 0.5189 0.3830 0.7017 -0.8183
## factor(target)L-M1 -0.3613 0.6839 -0.5283 0.5973 -1.7017
## factor(target)L-SMA -0.2614 0.5075 -0.5150 0.6065 -1.2561
## factor(target)L-TPJ -0.2574 0.3404 -0.7560 0.4496 -0.9246
## factor(target)R-DLPFC -0.3069 0.7049 -0.4353 0.6633 -1.6885
## factor(target)R-DLPFC_L-Orbit -0.2465 0.5239 -0.4704 0.6381 -1.2734
## factor(target)R-DLPFC_L-TPJ -0.9132 0.8845 -1.0324 0.3019 -2.6467
## factor(target)R-IPL -0.1332 0.7984 -0.1668 0.8675 -1.6981
## factor(target)R-ORBF 0.1651 0.4851 0.3403 0.7336 -0.7857
## ci.ub
## intrcpt 0.8326
## factor(target)Bi-DLPFC_Bi-TPJ 1.6042
## factor(target)Bi-DMPFC 1.2511
## factor(target)Bi-Insula 1.9524
## factor(target)Bi-PFC 1.3528
## factor(target)Bi-TPJ 0.5989
## factor(target)Cereb-Vermis 0.4496
## factor(target)DLPFC 1.5747
## factor(target)fMRI-TC 0.9100
## factor(target)L_DLPFC 0.9750
## factor(target)L-DLPFC 0.9185
## factor(target)L-DLPFC_L-PFC 0.9595
## factor(target)L-DLPFC_L-TPJ 0.3129
## factor(target)L-DLPFC_R-DLPFC 0.9995
## factor(target)L-DLPFC_R-ORB 1.0116
## factor(target)L-DLPFC_R-ORBF 0.5620
## factor(target)L-DLPFC_R-SORB 0.4268
## factor(target)L-DLPFC/L-TPJ_Cz 1.0753
## factor(target)L-DMPFC 0.9976
## factor(target)L-FC/L-PC_CPz/FCz 1.2157
## factor(target)L-M1 0.9791
## factor(target)L-SMA 0.7333
## factor(target)L-TPJ 0.4099
## factor(target)R-DLPFC 1.0748
## factor(target)R-DLPFC_L-Orbit 0.7804
## factor(target)R-DLPFC_L-TPJ 0.8204
## factor(target)R-IPL 1.4317
## factor(target)R-ORBF 1.1158
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for negative symptoms - Target Region :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by negative symptoms - Target Region</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> L-TPJ </td>
## <td style="text-align:right;"> 8 </td>
## <td style="text-align:left;"> 0.2 [-0.06, 0.46] </td>
## <td style="text-align:right;"> 0.135 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> Bi-TPJ </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> 0.09 [-0.27, 0.46] </td>
## <td style="text-align:right;"> 0.611 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> Bi-DLPFC </td>
## <td style="text-align:right;"> 9 </td>
## <td style="text-align:left;"> 0.37 [-0.07, 0.81] </td>
## <td style="text-align:right;"> 0.103 </td>
## <td style="text-align:right;"> 61.1 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt3 </td>
## <td style="text-align:left;"> Cereb-Vermis </td>
## <td style="text-align:right;"> 4 </td>
## <td style="text-align:left;"> 0.05 [-0.23, 0.33] </td>
## <td style="text-align:right;"> 0.718 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt4 </td>
## <td style="text-align:left;"> L-DLPFC </td>
## <td style="text-align:right;"> 39 </td>
## <td style="text-align:left;"> 0.79 [0.52, 1.05]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 86.3 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt5 </td>
## <td style="text-align:left;"> L-DLPFC_L-TPJ </td>
## <td style="text-align:right;"> 10 </td>
## <td style="text-align:left;"> 0.09 [-0.13, 0.31] </td>
## <td style="text-align:right;"> 0.437 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt6 </td>
## <td style="text-align:left;"> L-FC/L-PC_CPz/FCz </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.57 [0.1, 1.04]* </td>
## <td style="text-align:right;"> 0.018 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt7 </td>
## <td style="text-align:left;"> Bi-DLPFC_Bi-TPJ </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.96 [-1.46, 3.37] </td>
## <td style="text-align:right;"> 0.438 </td>
## <td style="text-align:right;"> 92.2 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt8 </td>
## <td style="text-align:left;"> L-DLPFC_R-DLPFC </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.3 [-0.25, 0.84] </td>
## <td style="text-align:right;"> 0.283 </td>
## <td style="text-align:right;"> 24.6 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt9 </td>
## <td style="text-align:left;"> R-ORBF </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.54 [0.23, 0.84]** </td>
## <td style="text-align:right;"> 0.001 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt10 </td>
## <td style="text-align:left;"> R-DLPFC_L-Orbit </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.13 [-0.37, 0.62] </td>
## <td style="text-align:right;"> 0.618 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt11 </td>
## <td style="text-align:left;"> L-DLPFC_R-SORB </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> -0.18 [-0.57, 0.21] </td>
## <td style="text-align:right;"> 0.360 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt12 </td>
## <td style="text-align:left;"> L-DLPFC_R-ORBF </td>
## <td style="text-align:right;"> 4 </td>
## <td style="text-align:left;"> 0.08 [-0.31, 0.47] </td>
## <td style="text-align:right;"> 0.674 </td>
## <td style="text-align:right;"> 7.9 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt13 </td>
## <td style="text-align:left;"> L_DLPFC </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.29 [-0.26, 0.84] </td>
## <td style="text-align:right;"> 0.297 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt14 </td>
## <td style="text-align:left;"> L-SMA </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.11 [-0.54, 0.76] </td>
## <td style="text-align:right;"> 0.739 </td>
## <td style="text-align:right;"> 58.2 </td>
## </tr>
## </tbody>
## </table>
##
## ### Treatment Sessions Analysis for negative symptoms
##
## Analyzing negative symptoms - Number of Sessions with 106 valid cases
## Found 4 unique levels: 11-20 Sessions, 6-10 Sessions, More than 20 Sessions, 2-5 Sessions
## Level: 11-20 Sessions - Number of studies: 62
## Level: 6-10 Sessions - Number of studies: 29
## Level: More than 20 Sessions - Number of studies: 11
## Level: 2-5 Sessions - Number of studies: 4
##
##
## Meta-regression for differences between negative symptoms - Number of Sessions subgroups:
##
## Mixed-Effects Model (k = 106; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -104.4877 208.9755 218.9755 232.1003 219.6005
##
## tau^2 (estimated amount of residual heterogeneity): 0.2850 (SE = 0.0579)
## tau (square root of estimated tau^2 value): 0.5339
## I^2 (residual heterogeneity / unaccounted variability): 72.58%
## H^2 (unaccounted variability / sampling variability): 3.65
## R^2 (amount of heterogeneity accounted for): 9.53%
##
## Test for Residual Heterogeneity:
## QE(df = 102) = 336.9933, p-val < .0001
##
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 10.3778, p-val = 0.0156
##
## Model Results:
##
## estimate se zval
## intrcpt 0.5520 0.0819 6.7393
## factor(sessions_category)2-5 Sessions -0.6457 0.3482 -1.8542
## factor(sessions_category)6-10 Sessions -0.4151 0.1482 -2.8001
## factor(sessions_category)More than 20 Sessions -0.0433 0.2024 -0.2137
## pval ci.lb ci.ub
## intrcpt <.0001 0.3914 0.7125 ***
## factor(sessions_category)2-5 Sessions 0.0637 -1.3283 0.0368 .
## factor(sessions_category)6-10 Sessions 0.0051 -0.7057 -0.1246 **
## factor(sessions_category)More than 20 Sessions 0.8308 -0.4400 0.3535
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for negative symptoms - Number of Sessions :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by negative symptoms - Number of Sessions</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> 11-20 Sessions </td>
## <td style="text-align:right;"> 62 </td>
## <td style="text-align:left;"> 0.56 [0.36, 0.75]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 82.7 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> 6-10 Sessions </td>
## <td style="text-align:right;"> 29 </td>
## <td style="text-align:left;"> 0.14 [0.01, 0.27]* </td>
## <td style="text-align:right;"> 0.035 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> More than 20 Sessions </td>
## <td style="text-align:right;"> 11 </td>
## <td style="text-align:left;"> 0.51 [0.21, 0.82]** </td>
## <td style="text-align:right;"> 0.001 </td>
## <td style="text-align:right;"> 65.9 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt3 </td>
## <td style="text-align:left;"> 2-5 Sessions </td>
## <td style="text-align:right;"> 4 </td>
## <td style="text-align:left;"> -0.11 [-0.51, 0.29] </td>
## <td style="text-align:right;"> 0.598 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## </tbody>
## </table>
##
##
## ** DOMAIN-SPECIFIC ANALYSIS FOR TOTAL_PSYCHOPATHOLOGY **
##
##
## ## Subgroup Analyses for total psychopathology Domain
##
##
## ### Intervention Type Analysis for total psychopathology
##
## Analyzing total psychopathology - Intervention Type with 72 valid cases
## Found 9 unique levels: ITBS, LF-RTMS, PRM-RTMS, TDCS, TACS, HF-RTMS, DTMS, CTBS, HD-TDCS
## Level: ITBS - Number of studies: 10
## Level: LF-RTMS - Number of studies: 10
## Level: PRM-RTMS - Number of studies: 1
## Skipping PRM-RTMS - not enough studies
## Level: TDCS - Number of studies: 17
## Level: TACS - Number of studies: 3
## Level: HF-RTMS - Number of studies: 24
## Level: DTMS - Number of studies: 3
## Level: CTBS - Number of studies: 3
## Level: HD-TDCS - Number of studies: 1
## Skipping HD-TDCS - not enough studies
##
##
## Meta-regression for differences between total psychopathology - Intervention Type subgroups:
##
## Mixed-Effects Model (k = 72; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -58.8186 117.6372 137.6372 159.0686 141.8680
##
## tau^2 (estimated amount of residual heterogeneity): 0.2422 (SE = 0.0647)
## tau (square root of estimated tau^2 value): 0.4921
## I^2 (residual heterogeneity / unaccounted variability): 70.23%
## H^2 (unaccounted variability / sampling variability): 3.36
## R^2 (amount of heterogeneity accounted for): 6.92%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 197.1374, p-val < .0001
##
## Test of Moderators (coefficients 2:9):
## QM(df = 8) = 10.1498, p-val = 0.2547
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1731 0.3514 0.4927 0.6222 -0.5156 0.8619
## factor(technique)DTMS 0.1500 0.5078 0.2954 0.7677 -0.8452 1.1452
## factor(technique)HD-TDCS 0.0860 0.6501 0.1323 0.8948 -1.1881 1.3601
## factor(technique)HF-RTMS 0.1751 0.3715 0.4715 0.6373 -0.5529 0.9032
## factor(technique)ITBS 0.6480 0.3997 1.6212 0.1050 -0.1354 1.4314
## factor(technique)LF-RTMS 0.5003 0.4023 1.2436 0.2137 -0.2882 1.2887
## factor(technique)PRM-RTMS 0.2688 0.7087 0.3793 0.7045 -1.1202 1.6578
## factor(technique)TACS 0.1417 0.5132 0.2761 0.7825 -0.8641 1.1475
## factor(technique)TDCS -0.0131 0.3822 -0.0343 0.9726 -0.7622 0.7360
##
## intrcpt
## factor(technique)DTMS
## factor(technique)HD-TDCS
## factor(technique)HF-RTMS
## factor(technique)ITBS
## factor(technique)LF-RTMS
## factor(technique)PRM-RTMS
## factor(technique)TACS
## factor(technique)TDCS
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for total psychopathology - Intervention Type :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by total psychopathology - Intervention Type</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> ITBS </td>
## <td style="text-align:right;"> 10 </td>
## <td style="text-align:left;"> 0.82 [0.37, 1.28]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 80.5 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> LF-RTMS </td>
## <td style="text-align:right;"> 10 </td>
## <td style="text-align:left;"> 0.65 [0.19, 1.11]** </td>
## <td style="text-align:right;"> 0.005 </td>
## <td style="text-align:right;"> 77.6 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> TDCS </td>
## <td style="text-align:right;"> 17 </td>
## <td style="text-align:left;"> 0.14 [-0.04, 0.32] </td>
## <td style="text-align:right;"> 0.134 </td>
## <td style="text-align:right;"> 13.2 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt3 </td>
## <td style="text-align:left;"> TACS </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> 0.36 [-0.1, 0.82] </td>
## <td style="text-align:right;"> 0.120 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt4 </td>
## <td style="text-align:left;"> HF-RTMS </td>
## <td style="text-align:right;"> 24 </td>
## <td style="text-align:left;"> 0.35 [0.09, 0.62]* </td>
## <td style="text-align:right;"> 0.010 </td>
## <td style="text-align:right;"> 80.2 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt5 </td>
## <td style="text-align:left;"> DTMS </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> 0.31 [-0.13, 0.75] </td>
## <td style="text-align:right;"> 0.165 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt6 </td>
## <td style="text-align:left;"> CTBS </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> 0.2 [-0.17, 0.57] </td>
## <td style="text-align:right;"> 0.285 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## </tbody>
## </table>
##
## ### Target Region Analysis for total psychopathology
##
## Analyzing total psychopathology - Target Region with 72 valid cases
## Found 25 unique levels: L-DLPFC, L-TPJ, L-DLPFC_L-TPJ, L-FC/L-PC_CPz/FCz, Cereb-Vermis, L-DMPFC, Bi-DLPFC, Bi-DLPFC_Bi-TPJ, L-DLPFC_R-DLPFC, R-ORBF, DLPFC, L-M1, R-DLPFC, Bi-PFC, L-DLPFC_R-SORB, L-DLPFC_Cz, Bi-Insula, L-DLPFC_R-ORBF, R-IPL, Bi-TPJ, L-SMA, R-DLPFC_L-TPJ, L-DLPFC_L-PFC, L-DLPFC/L-TPJ_Cz, L-DLPFC_R-ORB
## Level: L-DLPFC - Number of studies: 28
## Level: L-TPJ - Number of studies: 7
## Level: L-DLPFC_L-TPJ - Number of studies: 7
## Level: L-FC/L-PC_CPz/FCz - Number of studies: 1
## Skipping L-FC/L-PC_CPz/FCz - not enough studies
## Level: Cereb-Vermis - Number of studies: 3
## Level: L-DMPFC - Number of studies: 1
## Skipping L-DMPFC - not enough studies
## Level: Bi-DLPFC - Number of studies: 2
## Level: Bi-DLPFC_Bi-TPJ - Number of studies: 1
## Skipping Bi-DLPFC_Bi-TPJ - not enough studies
## Level: L-DLPFC_R-DLPFC - Number of studies: 2
## Level: R-ORBF - Number of studies: 2
## Level: DLPFC - Number of studies: 1
## Skipping DLPFC - not enough studies
## Level: L-M1 - Number of studies: 1
## Skipping L-M1 - not enough studies
## Level: R-DLPFC - Number of studies: 1
## Skipping R-DLPFC - not enough studies
## Level: Bi-PFC - Number of studies: 1
## Skipping Bi-PFC - not enough studies
## Level: L-DLPFC_R-SORB - Number of studies: 1
## Skipping L-DLPFC_R-SORB - not enough studies
## Level: L-DLPFC_Cz - Number of studies: 2
## Level: Bi-Insula - Number of studies: 1
## Skipping Bi-Insula - not enough studies
## Level: L-DLPFC_R-ORBF - Number of studies: 3
## Level: R-IPL - Number of studies: 1
## Skipping R-IPL - not enough studies
## Level: Bi-TPJ - Number of studies: 1
## Skipping Bi-TPJ - not enough studies
## Level: L-SMA - Number of studies: 1
## Skipping L-SMA - not enough studies
## Level: R-DLPFC_L-TPJ - Number of studies: 1
## Skipping R-DLPFC_L-TPJ - not enough studies
## Level: L-DLPFC_L-PFC - Number of studies: 1
## Skipping L-DLPFC_L-PFC - not enough studies
## Level: L-DLPFC/L-TPJ_Cz - Number of studies: 1
## Skipping L-DLPFC/L-TPJ_Cz - not enough studies
## Level: L-DLPFC_R-ORB - Number of studies: 1
## Skipping L-DLPFC_R-ORB - not enough studies
##
##
## Meta-regression for differences between total psychopathology - Target Region subgroups:
##
## Mixed-Effects Model (k = 72; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -46.6681 93.3361 145.3361 193.4400 215.5361
##
## tau^2 (estimated amount of residual heterogeneity): 0.2929 (SE = 0.0853)
## tau (square root of estimated tau^2 value): 0.5412
## I^2 (residual heterogeneity / unaccounted variability): 74.87%
## H^2 (unaccounted variability / sampling variability): 3.98
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 47) = 174.5570, p-val < .0001
##
## Test of Moderators (coefficients 2:25):
## QM(df = 24) = 17.5423, p-val = 0.8246
##
## Model Results:
##
## estimate se zval pval ci.lb
## intrcpt 0.0948 0.4946 0.1916 0.8480 -0.8745
## factor(target)Bi-DLPFC_Bi-TPJ 0.5277 0.8533 0.6185 0.5363 -1.1446
## factor(target)Bi-Insula 0.4246 0.8627 0.4922 0.6226 -1.2662
## factor(target)Bi-PFC 0.0992 0.8120 0.1222 0.9028 -1.4923
## factor(target)Bi-TPJ 0.1368 0.7783 0.1758 0.8605 -1.3886
## factor(target)Cereb-Vermis -0.0491 0.6150 -0.0798 0.9364 -1.2544
## factor(target)DLPFC 0.3450 0.7743 0.4456 0.6559 -1.1726
## factor(target)L-DLPFC 0.4240 0.5090 0.8331 0.4048 -0.5736
## factor(target)L-DLPFC_Cz 0.6047 0.6952 0.8699 0.3844 -0.7578
## factor(target)L-DLPFC_L-PFC 0.1644 0.7710 0.2132 0.8312 -1.3467
## factor(target)L-DLPFC_L-TPJ 0.0561 0.5542 0.1013 0.9193 -1.0301
## factor(target)L-DLPFC_R-DLPFC 0.4168 0.6723 0.6200 0.5353 -0.9008
## factor(target)L-DLPFC_R-ORB -0.5490 0.8041 -0.6827 0.4948 -2.1250
## factor(target)L-DLPFC_R-ORBF -0.1721 0.6232 -0.2762 0.7824 -1.3935
## factor(target)L-DLPFC_R-SORB -0.4514 0.7849 -0.5751 0.5652 -1.9898
## factor(target)L-DLPFC/L-TPJ_Cz 0.1534 0.8373 0.1833 0.8546 -1.4876
## factor(target)L-DMPFC -0.2017 0.8225 -0.2452 0.8063 -1.8138
## factor(target)L-FC/L-PC_CPz/FCz 0.5103 0.8085 0.6312 0.5279 -1.0743
## factor(target)L-M1 0.1443 0.7989 0.1806 0.8567 -1.4215
## factor(target)L-SMA 1.5005 0.8107 1.8508 0.0642 -0.0885
## factor(target)L-TPJ 0.6036 0.5577 1.0823 0.2791 -0.4894
## factor(target)R-DLPFC -0.0320 0.8165 -0.0392 0.9688 -1.6323
## factor(target)R-DLPFC_L-TPJ -0.2256 0.9513 -0.2371 0.8126 -2.0900
## factor(target)R-IPL -0.1156 0.8974 -0.1288 0.8975 -1.8744
## factor(target)R-ORBF 0.8748 0.6456 1.3550 0.1754 -0.3906
## ci.ub
## intrcpt 1.0641
## factor(target)Bi-DLPFC_Bi-TPJ 2.2001
## factor(target)Bi-Insula 2.1154
## factor(target)Bi-PFC 1.6907
## factor(target)Bi-TPJ 1.6622
## factor(target)Cereb-Vermis 1.1562
## factor(target)DLPFC 1.8627
## factor(target)L-DLPFC 1.4216
## factor(target)L-DLPFC_Cz 1.9672
## factor(target)L-DLPFC_L-PFC 1.6754
## factor(target)L-DLPFC_L-TPJ 1.1424
## factor(target)L-DLPFC_R-DLPFC 1.7344
## factor(target)L-DLPFC_R-ORB 1.0271
## factor(target)L-DLPFC_R-ORBF 1.0493
## factor(target)L-DLPFC_R-SORB 1.0870
## factor(target)L-DLPFC/L-TPJ_Cz 1.7945
## factor(target)L-DMPFC 1.4104
## factor(target)L-FC/L-PC_CPz/FCz 2.0949
## factor(target)L-M1 1.7100
## factor(target)L-SMA 3.0895 .
## factor(target)L-TPJ 1.6967
## factor(target)R-DLPFC 1.5683
## factor(target)R-DLPFC_L-TPJ 1.6389
## factor(target)R-IPL 1.6433
## factor(target)R-ORBF 2.1401
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for total psychopathology - Target Region :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by total psychopathology - Target Region</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> L-DLPFC </td>
## <td style="text-align:right;"> 28 </td>
## <td style="text-align:left;"> 0.53 [0.25, 0.8]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 83.5 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> L-TPJ </td>
## <td style="text-align:right;"> 7 </td>
## <td style="text-align:left;"> 0.67 [0.05, 1.29]* </td>
## <td style="text-align:right;"> 0.035 </td>
## <td style="text-align:right;"> 77.3 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> L-DLPFC_L-TPJ </td>
## <td style="text-align:right;"> 7 </td>
## <td style="text-align:left;"> 0.17 [-0.08, 0.41] </td>
## <td style="text-align:right;"> 0.183 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt3 </td>
## <td style="text-align:left;"> Cereb-Vermis </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> 0.05 [-0.32, 0.42] </td>
## <td style="text-align:right;"> 0.787 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt4 </td>
## <td style="text-align:left;"> Bi-DLPFC </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.1 [-0.52, 0.71] </td>
## <td style="text-align:right;"> 0.759 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt5 </td>
## <td style="text-align:left;"> L-DLPFC_R-DLPFC </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.47 [0.01, 0.92]* </td>
## <td style="text-align:right;"> 0.046 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt6 </td>
## <td style="text-align:left;"> R-ORBF </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.97 [0.66, 1.28]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt7 </td>
## <td style="text-align:left;"> L-DLPFC_Cz </td>
## <td style="text-align:right;"> 2 </td>
## <td style="text-align:left;"> 0.69 [0.1, 1.27]* </td>
## <td style="text-align:right;"> 0.021 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt8 </td>
## <td style="text-align:left;"> L-DLPFC_R-ORBF </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> -0.09 [-0.5, 0.31] </td>
## <td style="text-align:right;"> 0.651 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## </tbody>
## </table>
##
## ### Treatment Sessions Analysis for total psychopathology
##
## Analyzing total psychopathology - Number of Sessions with 72 valid cases
## Found 4 unique levels: 11-20 Sessions, 6-10 Sessions, 2-5 Sessions, More than 20 Sessions
## Level: 11-20 Sessions - Number of studies: 40
## Level: 6-10 Sessions - Number of studies: 22
## Level: 2-5 Sessions - Number of studies: 3
## Level: More than 20 Sessions - Number of studies: 7
##
##
## Meta-regression for differences between total psychopathology - Number of Sessions subgroups:
##
## Mixed-Effects Model (k = 72; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -62.4936 124.9871 134.9871 146.0847 135.9549
##
## tau^2 (estimated amount of residual heterogeneity): 0.2410 (SE = 0.0619)
## tau (square root of estimated tau^2 value): 0.4910
## I^2 (residual heterogeneity / unaccounted variability): 70.46%
## H^2 (unaccounted variability / sampling variability): 3.39
## R^2 (amount of heterogeneity accounted for): 7.36%
##
## Test for Residual Heterogeneity:
## QE(df = 68) = 222.8489, p-val < .0001
##
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.0591, p-val = 0.0700
##
## Model Results:
##
## estimate se zval
## intrcpt 0.5583 0.0942 5.9254
## factor(sessions_category)2-5 Sessions -0.6641 0.3742 -1.7745
## factor(sessions_category)6-10 Sessions -0.3536 0.1651 -2.1414
## factor(sessions_category)More than 20 Sessions -0.2593 0.2354 -1.1013
## pval ci.lb ci.ub
## intrcpt <.0001 0.3736 0.7429 ***
## factor(sessions_category)2-5 Sessions 0.0760 -1.3976 0.0694 .
## factor(sessions_category)6-10 Sessions 0.0322 -0.6772 -0.0300 *
## factor(sessions_category)More than 20 Sessions 0.2708 -0.7206 0.2021
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for total psychopathology - Number of Sessions :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by total psychopathology - Number of Sessions</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> 11-20 Sessions </td>
## <td style="text-align:right;"> 40 </td>
## <td style="text-align:left;"> 0.56 [0.35, 0.77]*** </td>
## <td style="text-align:right;"> 0.000 </td>
## <td style="text-align:right;"> 79.9 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> 6-10 Sessions </td>
## <td style="text-align:right;"> 22 </td>
## <td style="text-align:left;"> 0.2 [0.05, 0.35]* </td>
## <td style="text-align:right;"> 0.011 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> 2-5 Sessions </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> -0.11 [-0.55, 0.33] </td>
## <td style="text-align:right;"> 0.615 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt3 </td>
## <td style="text-align:left;"> More than 20 Sessions </td>
## <td style="text-align:right;"> 7 </td>
## <td style="text-align:left;"> 0.3 [-0.13, 0.73] </td>
## <td style="text-align:right;"> 0.169 </td>
## <td style="text-align:right;"> 74.9 </td>
## </tr>
## </tbody>
## </table>
##
##
## ** DOMAIN-SPECIFIC ANALYSIS FOR GLOBAL_COGNITION **
##
##
## ## Subgroup Analyses for global cognition Domain
##
##
## ### Intervention Type Analysis for global cognition
##
## Analyzing global cognition - Intervention Type with 25 valid cases
## Found 6 unique levels: HF-RTMS, LF-RTMS, TDCS, ITBS, TACS, HD-TDCS
## Level: HF-RTMS - Number of studies: 10
## Level: LF-RTMS - Number of studies: 1
## Skipping LF-RTMS - not enough studies
## Level: TDCS - Number of studies: 6
## Level: ITBS - Number of studies: 6
## Level: TACS - Number of studies: 1
## Skipping TACS - not enough studies
## Level: HD-TDCS - Number of studies: 1
## Skipping HD-TDCS - not enough studies
##
##
## Meta-regression for differences between global cognition - Intervention Type subgroups:
##
## Mixed-Effects Model (k = 25; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -5.9095 11.8190 25.8190 32.4300 36.0008
##
## tau^2 (estimated amount of residual heterogeneity): 0.0307 (SE = 0.0370)
## tau (square root of estimated tau^2 value): 0.1751
## I^2 (residual heterogeneity / unaccounted variability): 26.38%
## H^2 (unaccounted variability / sampling variability): 1.36
## R^2 (amount of heterogeneity accounted for): 30.15%
##
## Test for Residual Heterogeneity:
## QE(df = 19) = 22.7010, p-val = 0.2508
##
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 7.1219, p-val = 0.2117
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.0376 0.2964 0.1267 0.8991 -0.5434 0.6185
## factor(technique)HF-RTMS 0.2582 0.3135 0.8234 0.4103 -0.3563 0.8727
## factor(technique)ITBS -0.0463 0.3292 -0.1407 0.8881 -0.6914 0.5988
## factor(technique)LF-RTMS 0.6108 0.4074 1.4993 0.1338 -0.1877 1.4093
## factor(technique)TACS -0.3713 0.6389 -0.5811 0.5612 -1.6235 0.8810
## factor(technique)TDCS 0.0630 0.3366 0.1872 0.8515 -0.5967 0.7227
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for global cognition - Intervention Type :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by global cognition - Intervention Type</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> HF-RTMS </td>
## <td style="text-align:right;"> 10 </td>
## <td style="text-align:left;"> 0.29 [0.05, 0.53]* </td>
## <td style="text-align:right;"> 0.017 </td>
## <td style="text-align:right;"> 50.3 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> TDCS </td>
## <td style="text-align:right;"> 6 </td>
## <td style="text-align:left;"> 0.1 [-0.18, 0.37] </td>
## <td style="text-align:right;"> 0.491 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> ITBS </td>
## <td style="text-align:right;"> 6 </td>
## <td style="text-align:left;"> -0.01 [-0.25, 0.22] </td>
## <td style="text-align:right;"> 0.913 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## </tbody>
## </table>
##
## ### Target Region Analysis for global cognition
##
## Analyzing global cognition - Target Region with 25 valid cases
## Found 10 unique levels: Bi-DLPFC, L-DLPFC, R-ORBF, L-DLPFC_R-DLPFC, L-PC, L-LPC, R-DLPFC, L-DLPFC_L-TPJ, L-DLPFC_R-ORBF, L-DLPFC_L-PFC
## Level: Bi-DLPFC - Number of studies: 1
## Skipping Bi-DLPFC - not enough studies
## Level: L-DLPFC - Number of studies: 12
## Level: R-ORBF - Number of studies: 1
## Skipping R-ORBF - not enough studies
## Level: L-DLPFC_R-DLPFC - Number of studies: 1
## Skipping L-DLPFC_R-DLPFC - not enough studies
## Level: L-PC - Number of studies: 1
## Skipping L-PC - not enough studies
## Level: L-LPC - Number of studies: 1
## Skipping L-LPC - not enough studies
## Level: R-DLPFC - Number of studies: 1
## Skipping R-DLPFC - not enough studies
## Level: L-DLPFC_L-TPJ - Number of studies: 3
## Level: L-DLPFC_R-ORBF - Number of studies: 3
## Level: L-DLPFC_L-PFC - Number of studies: 1
## Skipping L-DLPFC_L-PFC - not enough studies
##
##
## Meta-regression for differences between global cognition - Target Region subgroups:
##
## Mixed-Effects Model (k = 25; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -5.7322 11.4644 33.4644 41.2529 121.4644
##
## tau^2 (estimated amount of residual heterogeneity): 0.0431 (SE = 0.0463)
## tau (square root of estimated tau^2 value): 0.2077
## I^2 (residual heterogeneity / unaccounted variability): 33.88%
## H^2 (unaccounted variability / sampling variability): 1.51
## R^2 (amount of heterogeneity accounted for): 1.73%
##
## Test for Residual Heterogeneity:
## QE(df = 15) = 20.8890, p-val = 0.1404
##
## Test of Moderators (coefficients 2:10):
## QM(df = 9) = 7.4156, p-val = 0.5939
##
## Model Results:
##
## estimate se zval pval ci.lb
## intrcpt 0.2931 0.5065 0.5787 0.5628 -0.6996
## factor(target)L-DLPFC -0.0330 0.5162 -0.0639 0.9491 -1.0448
## factor(target)L-DLPFC_L-PFC -0.2555 0.5974 -0.4277 0.6688 -1.4263
## factor(target)L-DLPFC_L-TPJ -0.3052 0.6004 -0.5084 0.6112 -1.4820
## factor(target)L-DLPFC_R-DLPFC -0.0674 0.6141 -0.1097 0.9126 -1.2711
## factor(target)L-DLPFC_R-ORBF -0.2497 0.5513 -0.4530 0.6506 -1.3302
## factor(target)L-LPC -0.7054 0.6104 -1.1556 0.2478 -1.9017
## factor(target)L-PC -0.1436 0.6305 -0.2278 0.8198 -1.3794
## factor(target)R-DLPFC -0.2968 0.6047 -0.4908 0.6236 -1.4819
## factor(target)R-ORBF 0.3553 0.5891 0.6031 0.5465 -0.7994
## ci.ub
## intrcpt 1.2857
## factor(target)L-DLPFC 0.9789
## factor(target)L-DLPFC_L-PFC 0.9153
## factor(target)L-DLPFC_L-TPJ 0.8715
## factor(target)L-DLPFC_R-DLPFC 1.1363
## factor(target)L-DLPFC_R-ORBF 0.8308
## factor(target)L-LPC 0.4910
## factor(target)L-PC 1.0921
## factor(target)R-DLPFC 0.8884
## factor(target)R-ORBF 1.5100
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for global cognition - Target Region :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by global cognition - Target Region</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> L-DLPFC </td>
## <td style="text-align:right;"> 12 </td>
## <td style="text-align:left;"> 0.26 [0.05, 0.47]* </td>
## <td style="text-align:right;"> 0.015 </td>
## <td style="text-align:right;"> 43.7 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> L-DLPFC_L-TPJ </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> -0.01 [-0.6, 0.58] </td>
## <td style="text-align:right;"> 0.972 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> L-DLPFC_R-ORBF </td>
## <td style="text-align:right;"> 3 </td>
## <td style="text-align:left;"> 0.03 [-0.32, 0.39] </td>
## <td style="text-align:right;"> 0.857 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## </tbody>
## </table>
##
## ### Treatment Sessions Analysis for global cognition
##
## Analyzing global cognition - Number of Sessions with 25 valid cases
## Found 4 unique levels: 6-10 Sessions, More than 20 Sessions, 11-20 Sessions, 2-5 Sessions
## Level: 6-10 Sessions - Number of studies: 5
## Level: More than 20 Sessions - Number of studies: 8
## Level: 11-20 Sessions - Number of studies: 11
## Level: 2-5 Sessions - Number of studies: 1
## Skipping 2-5 Sessions - not enough studies
##
##
## Meta-regression for differences between global cognition - Number of Sessions subgroups:
##
## Mixed-Effects Model (k = 25; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -8.3757 16.7515 26.7515 31.9741 30.7515
##
## tau^2 (estimated amount of residual heterogeneity): 0.0516 (SE = 0.0414)
## tau (square root of estimated tau^2 value): 0.2271
## I^2 (residual heterogeneity / unaccounted variability): 38.66%
## H^2 (unaccounted variability / sampling variability): 1.63
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 21) = 32.0618, p-val = 0.0577
##
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 0.8558, p-val = 0.8361
##
## Model Results:
##
## estimate se zval
## intrcpt 0.2251 0.1075 2.0935
## factor(sessions_category)2-5 Sessions 0.1589 0.4514 0.3520
## factor(sessions_category)6-10 Sessions -0.1793 0.2283 -0.7854
## factor(sessions_category)More than 20 Sessions -0.0638 0.1682 -0.3794
## pval ci.lb ci.ub
## intrcpt 0.0363 0.0144 0.4359 *
## factor(sessions_category)2-5 Sessions 0.7249 -0.7259 1.0437
## factor(sessions_category)6-10 Sessions 0.4322 -0.6268 0.2682
## factor(sessions_category)More than 20 Sessions 0.7044 -0.3935 0.2658
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
## Subgroup Analysis for global cognition - Number of Sessions :
## <table class="table table-striped table-hover table-condensed" style="color: black; width: auto !important; margin-left: auto; margin-right: auto;">
## <caption>Summary of Results by global cognition - Number of Sessions</caption>
## <thead>
## <tr>
## <th style="text-align:left;"> </th>
## <th style="text-align:left;"> Subgroup </th>
## <th style="text-align:right;"> Number of Effect Sizes </th>
## <th style="text-align:left;"> Effect Size [95% CI] </th>
## <th style="text-align:right;"> p-value </th>
## <th style="text-align:right;"> I² </th>
## </tr>
## </thead>
## <tbody>
## <tr>
## <td style="text-align:left;"> intrcpt </td>
## <td style="text-align:left;"> 6-10 Sessions </td>
## <td style="text-align:right;"> 5 </td>
## <td style="text-align:left;"> 0.05 [-0.28, 0.38] </td>
## <td style="text-align:right;"> 0.767 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt1 </td>
## <td style="text-align:left;"> More than 20 Sessions </td>
## <td style="text-align:right;"> 8 </td>
## <td style="text-align:left;"> 0.16 [-0.03, 0.35] </td>
## <td style="text-align:right;"> 0.107 </td>
## <td style="text-align:right;"> 0.0 </td>
## </tr>
## <tr>
## <td style="text-align:left;"> intrcpt2 </td>
## <td style="text-align:left;"> 11-20 Sessions </td>
## <td style="text-align:right;"> 11 </td>
## <td style="text-align:left;"> 0.22 [-0.05, 0.49] </td>
## <td style="text-align:right;"> 0.118 </td>
## <td style="text-align:right;"> 64.8 </td>
## </tr>
## </tbody>
## </table>
Finally, we create a comprehensive summary of all subgroup analyses:
# Create a combined summary of all subgroup analyses if results are available
combined_results <- list()
if(!is.null(technique_results)) combined_results$technique <- technique_results$table %>% mutate(Factor = "Intervention Type")
if(!is.null(target_results)) combined_results$target <- target_results$table %>% mutate(Factor = "Target Region")
if(!is.null(lateralization_results)) combined_results$lateral <- lateralization_results$table %>% mutate(Factor = "Lateralization")
if(!is.null(time_results)) combined_results$time <- time_results$table %>% mutate(Factor = "Total Treatment Time")
if(!is.null(frequency_results)) combined_results$freq <- frequency_results$table %>% mutate(Factor = "Session Frequency")
if(!is.null(sessions_results)) combined_results$sessions <- sessions_results$table %>% mutate(Factor = "Number of Sessions")
if(length(combined_results) > 0) {
# Combine all available results
combined_summary <- bind_rows(combined_results)
# Reorder columns
combined_summary <- combined_summary %>%
select(Factor, everything())
# Print the combined summary
kable(combined_summary,
caption = "Comprehensive Summary of All Subgroup Analyses") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"),
full_width = FALSE) %>%
pack_rows(index = table(combined_summary$Factor))
}| Factor | Subgroup | Number of Effect Sizes | Effect Size [95% CI] | p-value | I² | |
|---|---|---|---|---|---|---|
| Intervention Type | ||||||
| intrcpt…1 | Intervention Type | LF-RTMS | 88 | 0.34 [0.2, 0.49]*** | 0.000 | 79.0 |
| intrcpt1…2 | Intervention Type | HF-RTMS | 225 | 0.21 [0.14, 0.28]*** | 0.000 | 70.5 |
| intrcpt2…3 | Intervention Type | ITBS | 112 | 0.27 [0.11, 0.42]** | 0.001 | 87.7 |
| intrcpt3…4 | Intervention Type | PRM-RTMS | 4 | 0.25 [-0.12, 0.62] | 0.190 | 0.0 |
| intrcpt4…5 | Intervention Type | TDCS | 182 | 0.08 [0.03, 0.14]** | 0.002 | 21.9 |
| intrcpt5…6 | Intervention Type | TACS | 13 | 0.23 [0, 0.47]* | 0.048 | 0.0 |
| intrcpt6…7 | Intervention Type | HD-TDCS | 9 | 0.22 [0.02, 0.41]* | 0.030 | 0.0 |
| intrcpt7…8 | Intervention Type | DTMS | 19 | 0.24 [0.07, 0.42]** | 0.006 | 0.0 |
| intrcpt8…9 | Intervention Type | CTBS | 20 | -0.14 [-0.57, 0.28] | 0.510 | 88.7 |
| Lateralization | ||||||
| intrcpt…10 | Target Region | L-TPJ | 45 | 0.46 [0.19, 0.72]** | 0.001 | 81.1 |
| intrcpt1…11 | Target Region | Bi-TPJ | 12 | 0.01 [-0.16, 0.18] | 0.938 | 0.0 |
| intrcpt2…12 | Target Region | Bi-DLPFC | 45 | 0.12 [-0.05, 0.29] | 0.166 | 47.4 |
| intrcpt3…13 | Target Region | Cereb-Vermis | 36 | -0.01 [-0.1, 0.08] | 0.842 | 1.1 |
| Number of Sessions | ||||||
| intrcpt4…14 | Target Region | L-DLPFC | 232 | 0.29 [0.21, 0.37]*** | 0.000 | 77.9 |
| intrcpt5…15 | Target Region | L-DLPFC_L-TPJ | 71 | 0.05 [-0.03, 0.12] | 0.251 | 0.0 |
| intrcpt6…16 | Target Region | L-FC/L-PC_CPz/FCz | 3 | 0.58 [0.2, 0.97]** | 0.003 | 0.0 |
| intrcpt7…17 | Target Region | L-DMPFC | 3 | -0.07 [-0.49, 0.35] | 0.743 | 0.0 |
| intrcpt8…18 | Target Region | L-DLPFC_R-SORB | 10 | -0.04 [-0.41, 0.33] | 0.829 | 68.6 |
| Session Frequency | ||||||
| intrcpt9 | Target Region | Bi-DLPFC_Bi-TPJ | 4 | 0.72 [-0.25, 1.7] | 0.147 | 79.1 |
| intrcpt10 | Target Region | L-DLPFC_R-DLPFC | 32 | 0.08 [0, 0.17] | 0.064 | 0.0 |
| Target Region | ||||||
| intrcpt11 | Target Region | R-ORBF | 24 | 0.4 [0.25, 0.55]*** | 0.000 | 65.9 |
| intrcpt12 | Target Region | DLPFC | 6 | 0.57 [0.15, 0.99]** | 0.008 | 76.4 |
| intrcpt13 | Target Region | L-M1 | 5 | 0.28 [0, 0.56] | 0.050 | 0.0 |
| intrcpt14 | Target Region | TPJ | 4 | -1 [-3.18, 1.17] | 0.365 | 98.0 |
| intrcpt15 | Target Region | R-DLPFC | 14 | 0.07 [-0.12, 0.26] | 0.480 | 43.8 |
| intrcpt16 | Target Region | L-PC | 5 | 0.44 [-2.81, 3.68] | 0.793 | 98.8 |
| intrcpt17 | Target Region | L-LPC | 8 | -0.26 [-0.6, 0.08] | 0.137 | 69.8 |
| intrcpt18 | Target Region | L-DLPFC_R-ORBF | 48 | 0.12 [0, 0.25]* | 0.046 | 41.9 |
| intrcpt19 | Target Region | Bi-PFC | 9 | 0.17 [-0.06, 0.39] | 0.156 | 0.0 |
| intrcpt20 | Target Region | L-DLPFC_Cz | 6 | 0.19 [-0.36, 0.74] | 0.495 | 61.9 |
| intrcpt21 | Target Region | Bi-Insula | 3 | 0.62 [0.1, 1.14]* | 0.019 | 0.0 |
| intrcpt22 | Target Region | fMRI-TC | 3 | -0.25 [-0.69, 0.19] | 0.270 | 0.0 |
| intrcpt23 | Target Region | L_DLPFC | 3 | 0.14 [-0.31, 0.58] | 0.547 | 0.0 |
| intrcpt24 | Target Region | R-IPL | 6 | -0.09 [-0.51, 0.32] | 0.660 | 0.0 |
| intrcpt25 | Target Region | L-SMA | 5 | 1.03 [0.25, 1.82]* | 0.010 | 86.5 |
| intrcpt26 | Target Region | R-DLPFC_L-TPJ | 12 | -0.21 [-0.59, 0.17] | 0.278 | 0.0 |
| intrcpt27 | Target Region | L-DLPFC_L-PFC | 5 | 0.17 [-0.04, 0.38] | 0.117 | 0.0 |
| intrcpt28 | Target Region | L-DLPFC/L-TPJ_Cz | 4 | 0.06 [-0.33, 0.46] | 0.765 | 0.0 |
| intrcpt29 | Target Region | L-DLPFC_R-ORB | 3 | -0.07 [-0.45, 0.32] | 0.725 | 7.0 |
| intrcpt…40 | Lateralization | Uni-L | 504 | 0.23 [0.17, 0.28]*** | 0.000 | 76.3 |
| intrcpt1…41 | Lateralization | Bi-Seq | 55 | 0.07 [-0.05, 0.18] | 0.244 | 22.0 |
| intrcpt2…42 | Lateralization | Bi-Sim | 55 | 0.06 [-0.03, 0.15] | 0.184 | 15.4 |
| intrcpt3…43 | Lateralization | Uni-R | 56 | 0.23 [0.11, 0.35]*** | 0.000 | 55.6 |
| intrcpt…44 | Total Treatment Time | Short (100-300 min) | 271 | 0.2 [0.13, 0.26]*** | 0.000 | 62.5 |
| intrcpt1…45 | Total Treatment Time | Very Short (<100 min) | 135 | 0.1 [-0.03, 0.23] | 0.131 | 83.7 |
| intrcpt2…46 | Total Treatment Time | Medium (300-600 min) | 199 | 0.28 [0.19, 0.36]*** | 0.000 | 76.6 |
| intrcpt3…47 | Total Treatment Time | Long (>600 min) | 67 | 0.15 [0.06, 0.24]** | 0.001 | 33.1 |
| intrcpt…48 | Session Frequency | high | 167 | 0.12 [0.05, 0.19]** | 0.001 | 52.5 |
| intrcpt1…49 | Session Frequency | low | 505 | 0.23 [0.17, 0.28]*** | 0.000 | 74.9 |
| intrcpt…50 | Number of Sessions | 11-20 Sessions | 340 | 0.31 [0.24, 0.39]*** | 0.000 | 81.4 |
| Total Treatment Time | ||||||
| intrcpt1…51 | Number of Sessions | Single Session | 14 | -0.09 [-0.3, 0.12] | 0.401 | 25.9 |
| intrcpt2…52 | Number of Sessions | 6-10 Sessions | 199 | 0.03 [-0.02, 0.08] | 0.195 | 18.5 |
| intrcpt3…53 | Number of Sessions | More than 20 Sessions | 92 | 0.2 [0.11, 0.28]*** | 0.000 | 52.7 |
| intrcpt4…54 | Number of Sessions | 2-5 Sessions | 27 | 0.11 [-0.07, 0.29] | 0.241 | 37.7 |